
UNIVERSITY OF ROME "LA SAPIENZA"

DOCTORAL THESIS

Pattern Recognition Techniques for
Modelling Complex Systems in

Non-Metric Domains

Author:
Alessio MARTINO

Supervisor:
Prof. Antonello RIZZI

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy

in the

Computational Intelligence and Pervasive Systems Laboratory
Department of Information Engineering, Electronics and

Telecommunications

February 21, 2020

https://www.uniroma1.it/en
mailto:alessio.martino@uniroma1.it
mailto:antonello.rizzi@uniroma1.it
https://web.uniroma1.it/dip_diet/archivionotizie/laboratori
https://web.uniroma1.it/dip_diet/en
https://web.uniroma1.it/dip_diet/en

Pattern Recognition Techniques for Modelling Complex Systems in Non-Metric Domains
PhD Thesis – University of Rome "La Sapienza"
PhD Programme: Information and Communication Technologies (XXXII cycle)
© 2019 Alessio Martino. All rights reserved.

Version 1.2. Thesis defended on February 18th, 2020.

Examiners:
Prof. Guglielmo D’Inzeo (University of Rome "La Sapienza")
Prof. Luca Facheris (University of Florence)
Dr. Andrea Bartolini (University of Bologna)
Prof. Andrea Detti (University of Rome "Tor Vergata")
Prof. Paolo Baccarelli (University of Rome "Roma Tre")

Referees:
Prof. Luisa Di Paola (Università Campus Bio-Medico di Roma)
Prof. Lorenzo Livi (University of Manitoba)

iii

Declaration of Authorship
I, Alessio MARTINO, declare that this thesis titled, “Pattern Recognition Techniques
for Modelling Complex Systems in Non-Metric Domains” and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

UNIVERSITY OF ROME "LA SAPIENZA"

Abstract
Faculty of Information Engineering, Informatics, and Statistics

Department of Information Engineering, Electronics and Telecommunications

Doctor of Philosophy

Pattern Recognition Techniques for Modelling Complex Systems in Non-Metric
Domains

by Alessio MARTINO

Pattern recognition and machine learning problems are often conceived to work on
metric vector spaces, where patterns are described by multi-dimensional feature vec-
tors. However, many real-world complex systems are more conveniently modelled
by complex data structures such as graphs, which are able to capture topological
and semantic information amongst entities.

This Thesis helps in bridging the gap between pattern recognition and graphs,
with major emphasis on the hypergraphs domain. Six different strategies for solving
graph-based pattern recognition problems are proposed, spanning several paradigms
including kernel methods, embedding spaces and feature generation. The first two
techniques map a graph towards a vector space by means of the spectral density of
the Laplacian matrix and by means of topological invariants called the Betti num-
bers, respectively. Two additional techniques, according to the Granular Computing
paradigm, map a graph towards a vector space by means of symbolic histograms.
In a first case, simplices extracted from the simplicial complexes evaluated over the
underlying graph are considered as candidate pivotal substructures for synthesising
the symbolic histograms; in a second case, each path along a graph can be assigned a
score that consider its specificity and sensitivity with respect to one of the problem-
related classes and its inclusion in the candidate pivotal substructures is strictly re-
lated to its score. The final two techniques fall under the kernel methods umbrella:
the first defines novel hypergraph kernels on the top of the simplicial complexes,
the latter embraces a multiple kernel paradigm to exploit multiple graph represen-
tations simultaneously.

These techniques are tested on real-world problems related to three biological
case studies, namely the solubility prediction and enzymatic properties discrimi-
nation in protein networks and the analysis of metabolic networks. Further, the
most cutting-edge techniques are also tested on well-known benchmark datasets for
graph classification and compared against current approaches in graph-based pat-
tern recognition.

HTTPS://WWW.UNIROMA1.IT/EN
https://web.uniroma1.it/i3s/en
https://web.uniroma1.it/dip_diet/en

vii

Contents

Declaration of Authorship iii

Abstract v

List of Figures ix

List of Tables xi

List of Abbreviations xiii

1 Introduction 1
1.1 Complex Systems and Complex Networks 1
1.2 Computational Intelligence and Modelling Complex Systems 3
1.3 Computational Biology Case Studies . 4
1.4 Thesis Scope and Outline . 6

2 Fundamentals of Graph Theory 9
2.1 Preliminary Definitions . 9

2.1.1 A Primer on Complex Networks 13
2.2 Topological Data Analysis . 14

3 Pattern Recognition in Structured Domains 19
3.1 Preliminary Definitions . 19
3.2 Designing a Machine Learning System 20
3.3 Mainstream Approaches . 22

3.3.1 Feature Generation / Feature Engineering 24
3.3.2 Custom Dissimilarities in the Input Space 24
3.3.3 Embedding Techniques . 26

Dissimilarity Space . 26
Information Granulation . 27
Kernel Methods . 28

4 Proposed Pattern Recognition Systems 31
4.1 Graph Classification by Spectral Density Estimation 31
4.2 Graph Classification using the Betti Numbers Sequence 32
4.3 Embedding over Simplicial Complexes 34
4.4 Embedding via INDVAL . 37
4.5 Hypergraph Kernels . 39
4.6 Graph Classification using a Multiple Kernel Approach 42
4.7 Final Remarks . 44

viii

5 Tests and Results 47
5.1 Datasets Description . 47

5.1.1 E. coli str. K12 PCN-EC . 47
5.1.2 E. coli str. K12 PCN-SOL . 49
5.1.3 Metabolic Networks . 50
5.1.4 Benchmark Datasets . 51

5.2 PCN Experiments: Enzymatic Properties 51
5.2.1 EC Classification via Spectral Density 51
5.2.2 EC Classification via Betti Numbers 55
5.2.3 EC Classification by Embedding over Simplicial Complexes . . 58
5.2.4 EC Classification using Hypergraph Kernels 62
5.2.5 EC Classification using Multiple Kernel Machines 62
5.2.6 Final Remarks . 69

5.3 PCN Experiments: Solubility Degree . 73
5.3.1 Solubility Prediction via Spectral Density 73
5.3.2 Solubility Prediction via Betti Numbers 74
5.3.3 Solubility Prediction via Embedding over Simplicial Complexes 75
5.3.4 Solubility Classification via Embedding over Simplicial Com-

plexes . 76
5.3.5 Final Remarks . 78

5.4 Metabolic Pathways Experiments . 80
5.4.1 A Preliminary Investigation on the Gut Microbiota 80
5.4.2 Metabolic Networks classification via INDVAL score 87

On the Impact of the Threshold T 91
5.4.3 Statistical Assessment of Classification Results 93
5.4.4 Final Remarks . 97

5.5 Tests on Benchmark Datasets . 102
5.5.1 Hypergraph Kernels . 103
5.5.2 Embedding over Simplicial Complexes 107
5.5.3 Embedding via INDVAL . 109

6 Other Research Activities 115
6.1 Evolutive Agent-Based Clustering . 115
6.2 Distributed k-medoids Clustering . 116
6.3 Energy Management System Synthesis by ANFIS Networks 121

7 Conclusions 125

A Knowledge Discovery Data 127
A.1 Multiple Kernel Machines (EC number classification) 127
A.2 Embedding Simplicial Complexes (EC number classification) 130
A.3 Embedding Simplicial Complexes (solubility classification) 132

B Notes on Parallel and Distributed Evaluations 133
B.1 Feature Generation using Graphs Spectral Density 133
B.2 Feature Generation using the Betti Numbers 134
B.3 Embedding over Simplicial Complexes 134
B.4 Embedding via INDVAL . 137

Bibliography 141

ix

List of Figures

1.1 E. coli str. K12 RNA-binding protein (PDB 1HNR) 5
1.2 Krebs cycle from the H. sapiens metabolic pathway (KEGG M00009) . . 7

2.1 An example of undirected graph, its adjacency matrix and degree matrix 10
2.2 Comparison amongst Random, Scale-free and Small-world graphs . . 15
2.3 Example of Simplicial Complexes and their Homology 18

3.1 A (simplified) pattern recognition system workflow 20

4.1 Pre-processing chain for evaluating graphs spectral density 33
4.2 Topological configuration of a sample PCN (PDB 1HNR) at different

scales . 35
4.3 Barcode for sample PCN (PDB 1HNR) 36

5.1 Statistics for the initial 6685 PCNs dump (E. coli str. K12) 48
5.2 Statistics for PCN-EC . 49
5.3 Statistics for PCN-SOL . 50
5.4 Classes Distribution for the four Metabolic Network Datasets 52
5.5 EC classification via spectral density, weights vector for discriminat-

ing EC2 and EC4 . 55
5.6 EC classification via Betti numbers, vector space using the Clique Com-

plex . 56
5.7 EC classification via Betti numbers, weights heatmap 58
5.8 EC classification via multiple kernel machines, weights heatmap (α = 1) 66
5.9 EC classification via multiple kernel machines, weights heatmap (α =

0.5) . 66
5.10 Schematic of the OCC_System and its learning procedure 67
5.10 ROC curves for EC number classification 71
5.11 Solubility prediction via spectral density, weights vector 75
5.12 Solubility prediction via Betti numbers, weights vector 75
5.13 Solubility classification via embedding over simplicial complexes, av-

erage performances as function of τ (α = 1) 77
5.14 Solubility classification via embedding over simplicial complexes, av-

erage performances as function of τ (α = 0.5) 78
5.15 F-statistic for metabolic pathways data (Problem 1) 81
5.16 F-statistic for metabolic pathways data (Problem 2) 81
5.17 F-statistic for metabolic pathways data (Problem 3) 82
5.18 F-statistic for metabolic pathways data (Problem 4) 82
5.19 Gut flora organisms clustering, the elbow plot 84
5.19 Gut flora organisms clustering, clusters composition 86
5.20 Metabolic Networks classification, average performances and alpha-

bet size as function of T (`1-SVMs, Problem 1) 93

x

5.21 Metabolic Networks classification, average performances and alpha-
bet size as function of T (`1-SVMs, Problem 2) 93

5.22 Metabolic Networks classification, average performances and alpha-
bet size as function of T (`1-SVMs, Problem 3) 94

5.23 Metabolic Networks classification, average performances and alpha-
bet size as function of T (`1-SVMs, Problem 4) 94

5.24 Metabolic Networks classification, average performances and alpha-
bet size as function of T (ν-SVMs, Problem 1) 95

5.25 Metabolic Networks classification, average performances and alpha-
bet size as function of T (ν-SVMs, Problem 2) 95

5.26 Metabolic Networks classification, average performances and alpha-
bet size as function of T (ν-SVMs, Problem 3) 96

5.27 Metabolic Networks classification, average performances and alpha-
bet size as function of T (ν-SVMs, Problem 4) 96

5.28 Performance of the blind classifier for all four metabolic pathways
problems . 97

5.29 (Hyper)graph kernels comparison, average accuracy on the test set . . 105
5.30 (Hyper)graph kernels comparison, average running times on the en-

tire dataset . 106
5.31 Edit-based hypergraph kernels, negative eigenfraction 107
5.32 Embedding over simplicial complexes performances on benchmark

data, average accuracy on the Test Set 109
5.32 Embedding via INDVAL (path length 1) performances on benchmark

data . 111
5.32 Embedding via INDVAL (path length 2) performances on benchmark

data . 112
5.32 Embedding via INDVAL (path length 3) performances on benchmark

data . 113

6.1 MapReduce schema for the word-count problem 117

xi

List of Tables

3.1 Some popular non-linear kernels for vector data 29

5.1 The six big EC nomenclature groups . 47
5.2 Benchmark Datasets for Graph Classification 53
5.3 EC classification via spectral density, performances on the Test Set . . . 55
5.4 EC classification via Betti numbers (Clique Complex), performances

on the Test Set . 57
5.5 EC classification via Betti numbers (Vietoris-Rips Complex), perfor-

mances on the Test Set . 57
5.6 EC classification via embedding over simplicial complexes, perfor-

mances on the Test Set at α = 1. 61
5.7 EC classification via embedding over simplicial complexes, perfor-

mances on the Test Set at α = 0.5 . 61
5.8 EC classification via Hypergraph Kernels, performance on the Test Set

for Histogram Kernel . 63
5.9 EC classification via Hypergraph Kernels, performance on the Test Set

for Jaccard Kernel . 63
5.10 EC classification via Hypergraph Kernels, performance on the Test Set

for Edit Kernel . 63
5.11 EC classification via Hypergraph Kernels, performance on the Test Set

for Stratified Edit Kernel . 63
5.12 EC classification via multiple kernel machines, performances on the

Test Set . 65
5.13 EC classification: comparison between OCC and MK, performances

on the Test Set . 69
5.14 Variance explained and statistical significance for the seven models . . 72
5.15 Hydrophilicity contribution to score for different classes 73
5.16 Polarity contribution to score for different classes 73
5.17 Solubility prediction via spectral density, performances on the Test Set 74
5.18 Solubility prediction via Betti numbers, performances on the Test Set . 75
5.19 Solubility prediction via embedding over simplicial complexes, per-

formances on the Test Set . 76
5.20 Pearson correlation coefficients between polarity and hydrophilicity . 79
5.21 Gut flora organisms clustering, chemical reaction INDVAL scores . . . 86
5.22 Metabolic Networks classification, Problem 1 with K-NN, average per-

formances on the Test Set . 87
5.23 Metabolic Networks classification, Problem 2 with K-NN, average per-

formances on the Test Set . 87
5.24 Metabolic Networks classification, Problem 3 with K-NN, average per-

formances on the Test Set . 88
5.25 Metabolic Networks classification, Problem 4 with K-NN, average per-

formances on the Test Set . 88

xii

5.26 Metabolic Networks classification, average size of the starting alpha-
bet for building the INDVAL-based embedding space (T = 50) 89

5.27 Metabolic Networks classification, Problem 1 via INDVAL-based em-
bedding, average performances on the Test Set (T = 50) 89

5.28 Metabolic Networks classification, Problem 2 via INDVAL-based em-
bedding, average performances on the Test Set (T = 50) 90

5.29 Metabolic Networks classification, Problem 3 via INDVAL-based em-
bedding, average performances on the Test Set (T = 50) 90

5.30 Metabolic Networks classification, Problem 4 via INDVAL-based em-
bedding, average performances on the Test Set (T = 50) 91

5.31 Metabolic Networks classification, Problem 4 via INDVAL-based em-
bedding, average performances on the Test Set (T = 30) 92

5.32 Metabolic Networks classification, relevant edges for Problem 1 (T =
50) . 102

5.33 Metabolic Networks classification, relevant edges for Problem 2 (T =
50) . 103

5.34 Metabolic Networks classification, relevant edges for Problem 3, class
2 only (T = 50) . 103

5.35 Kernel parameters to be tuned . 104

A.1 Selected proteins in order to discriminate EC 1 (Oxidoreductases) vs.
all the rest . 127

A.2 Selected proteins in order to discriminate EC 2 (Transferases) vs. all
the rest . 127

A.3 Selected proteins in order to discriminate EC 3 (Hydrolases) vs. all
the rest . 128

A.4 Selected proteins in order to discriminate EC 4 (Lyases) vs. all the rest 128
A.5 Selected proteins in order to discriminate EC 5 (Isomerases) vs. all the

rest . 129
A.6 Selected proteins in order to discriminate EC 6 (Ligases) vs. all the rest 129
A.7 Selected proteins in order to discriminate not-enzymes vs. all the rest . 130
A.8 Amino-acids nomenclature table . 130
A.9 Selected simplices for EC number classification 131
A.10 Selected simplices for solubility classification 132

xiii

List of Abbreviations

avg average
e.g. exempli gratia (transl. for example)
i.e. id est (transl. that is to say)
std standard deviation
ACC Accuracy
ANFIS Adaptive NeuroFuzzy Inference System
API Application Program Interface
AUC Area Under the (ROC) Curve
BSAS Basic Sequential Algorithmic Scheme
DNA DeoxyriboNucleic Acid
E-ABC Evolutive Agent Based Clustering
EC Enzyme Commission
EK Edit Kernel
EQ Estimation Quality
FN False Negatives
FP False Positives
GrC Granular Computing
GPU Graphics Processing Unit
GRALG GRanular Computing Approach for Labeled Graphs
HK Histogram Kernel
IP Identified Patterns
K-NN K-Nearest Neighbours
KEGG Kyoto Encyclopedia of Genes and Genomes
LD-ABCD Local Dissimilarities-Agent-Based Clusters Discoverer
MinSoD (element that leads to the) Minimum Sum of Distances (syn. medoid)
MKMD Multiple Kernels over Multiple Dissimilarities
MLP MultiLayer Perceptron
MSE MultiSquared Error
NEF Negative EigenFraction
NPV Negative Predictive Value
OCC One Class Classification System (also, OCC_System)
PCN Protein Contact Network
PPV Positive Predictive Value
PDB Protein Data Bank
PK Propagation Kernel
RDD Resilient Distributed Dataset
RNA RiboNucleic Acid
ROC Receiver Operating Characteristic
RW Random Walk (Kernel)
SEK Stratified Edit Kernel
SNS Sensitivity
SPC Specificity
SVM Support Vector Machine

xiv

SVR Support Vector Regression
TDA Topological Data Analysis
TN True Negatives
TP True Positives
WCSoD Within-Clusters Sum-of-Distances
WJK Weighted Jaccard Kernel
WL Weisfeiler–Lehman (Subtree Kernel)
WLSP Weisfeiler–Lehman Shortest Path (Kernel)

1

Chapter 1

Introduction

1.1 Complex Systems and Complex Networks

Complex systems are everywhere in nature: they are by far more frequent than ’sim-
ple’ ones, which are the true outliers in our world.

However, there is still some debate about a precise and rigorous definition of
complex system. This is mainly due to the fact that complex systems are nowa-
days faced by several disciplines (including, but not limited to, biology, engineering,
physics, chemistry), each one bringing its own concepts, definitions and viewpoints
to the subject matter. The lack of a shared and precise definition about complex
systems has been remarked in the seminal paper "From Complexity to Perplexity",
written by John Horgan in 1995 [170]. Notwithstanding that, most authors agree that
a complex system should exhibit at least some of the following behavioural facets:

• abrupt changes of macroscopic behaviour, which may as well be chaotic

• scale invariance

• self-organisation, with possibly hierarchical structure

• power law-type relationships.

By observing these kind of systems, the following structural peculiarities emerge:

• the system is composed by many mutually interactive elements

• elements’ behaviour is characterised by non-linear dynamics

• the network representing the causal relationships amongst elements contains
loops.

Such ’interactive elements’ can be interpreted as useful and meaningful entities to
be chosen according to the desired representation (description) of the system. For
example, proteins can be considered as atomic entities in the network of chemical
reactions in a biological cell (the widely-known metabolic pathways), but if the sys-
tem to be described is the protein itself, then its secondary structures or (at deeper
level) its amino-acids can be considered as atomic entities. Similarly, neurones or
(at larger scale) individual parts of the brain (e.g., cortices) can be considered as the
atomic entities when modelling the brain as a network.

These examples of complex systems underline a frequent property, concerning
the fact the usually complexity arises in the form of a hierarchical organisation, as
nested system-of-systems. From this last point of view, it is possible to consider
causal relations between elements belonging to different levels in the hierarchical
organisation. When the network of these relations contains a loop, sometimes it is

2 Chapter 1. Introduction

referred to as ’strange loop’; that is, a causal loop between different levels of the
hierarchy [167]. This property is strongly related with the emergence of the most
interesting behaviours of a given system-of-systems when considered as a whole.

In 1948, Warren Weaver in his seminal work [377] proposed a three-fold partition
of science styles. Specifically, scientific themes can be divided into:

Class 1: Problems of Simplicity

Class 2: Problems of Disorganised Complexity

Class 3: Problems of Organised Complexity

Weaver’s class 1 corresponds to problems which can be solved in terms of differ-
ential and/or integro-differential equations and, at the same time, they allow a high
degree of abstraction. For example, in order to study gravitational laws, a planet can
be sketched as a pure dimensionless point whose only mass and distance from the
Sun shall be considered.

Weaver’s class 2 problems allow higher generalisation than class 1 problems and
the reasoning behind the system description is quite different: instead of focusing
on efficient abstract descriptions of the involved atomic elements, one shall con-
sider only a coarse-grained knowledge, usually by means of statistics on a transfi-
nite number of players. Thermodynamic quantities such as pressure, volume and
temperature belong to this class. Thus, an immediate comparison between class 1
and class 2 problems arise: class 1 problems need few actors with stable interactions
amongst them, class 2 problems need a lot of actors with negligible interactions.

Finally, Weaver’s class 3 can be considered as the ’middle kingdom’ of complex-
ity (or ’the middle way’, according to Robert B. Laughlin and colleagues [211]). In
class 3 problems there are many actors (even if not-so-many as in class 2) with non-
negligible interactions amongst them: here biological systems, one of the main fo-
cuses of this work, lie.

Graphs (or networks1) are the archetype of organised complexity: a set of nodes
(atomic entities) are pairwise connected by mutual interactions (edges). The wiring
architecture of these graphs can vary in both space and time and it is of utmost im-
portance to get quantitative similarities and differences among them. When graphs
are adopted to represent only topological information concerning a set of objects and
their relations, the network approach can roughly be described as the answer to the
following question [149, 150, 273]:

What can we derive from the sole knowledge of the wiring diagram of a sys-
tem?

The most crucial questions especially at the frontiers of biomedical sciences demands
a reliable answer to the above question. Fields (just to name a few) that are increasing
their formalisation in terms of network representations are: neuroscience at both
clinical and basic research level [55, 312], biochemistry [35, 116, 384], cancer research
[392], ecology [143] and structural biology [233], with protein science that still is the
most explored field in the realm of organised complexity [15, 20, 62, 114, 298, 365,
390]. Nonetheless, life sciences are not the only fields in which complex networks
play a huge modelling role: think about social networks [375], where people are
connected by some kind of relationship; the World Wide Web, where webpages point
to each other by hyperlinks [109, 381]; power grids, where electricity is distributed

1Albeit with graph one refers to an abstract mathematical object whereas a network is its physical,
real counterpart, these terms will be used interchangeably throughout this work.

1.2. Computational Intelligence and Modelling Complex Systems 3

amongst different geographic areas [216, 217]; natural language processing [81, 96,
97]; computer vision and image processing [3, 13, 43, 44, 106, 166].

Especially in the first decade of the 21st century, seminal works by Albert-László
Barabási, Steven Henry Strogatz and others paved the way for graph-theoretical
models for analysing complex systems [32, 34, 46, 92–94, 104, 114, 120, 150, 168, 227,
275, 289, 290, 330, 349, 350]. Indeed, by quoting Vincenzo Nicosia and colleagues
[292]:

Networks are the fabric of complex systems.

This new wave of graph-based methods allowed a rich set of measures which, in
turn, provided a multifaceted description of complex networks [5, 122, 129, 142, 156,
165, 227, 290, 297, 319, 329].

1.2 Computational Intelligence and Modelling Complex Sys-
tems

Computational Intelligence, formerly known as Soft Computing thanks to pioneer
Lotfi Aliasker Zadeh [397], is a set of data processing techniques tolerant to impreci-
sions, uncertainty, partial truth and approximation in data and/or models, aimed to
provide robust and low-cost solutions and to achieve tractability when dealing with
complex systems [251, 340]. Such toolbox includes mostly biologically-inspired al-
gorithms, usually exploiting inductive reasoning (i.e., based on generative logic in-
ferences, such as analogy and induction [66]). Basically, in this toolbox it is possible
to find:

• artificial neural networks

• fuzzy logic and neuro-fuzzy systems

• evolutionary computation and derivative-free optimisation metaheuristics.

Computational intelligence with this impressive armamentarium of computational
tools is usually employed to design powerful data-driven modelling systems. Being
able to synthesise a predictive model of a given (physical or even abstract) process
P is a fundamental topic in all natural sciences, as well as in engineering. Before
the widespread of digital computing devices, modelling was performed ’by hand’,
mostly relying on field-experts (analytical modelling): the field-expert used to identify
meaningful quantities and relations amongst them, with the ultimate goal of writ-
ing a set of integro-differential equations. Needless to say, this approach requires
a clear understanding of the process to be modelled. However, when a meaning-
ful sampling P̃ of the target process P is available, a second approach (data-driven
modelling) can be pursued: it consists in writing an algorithm2 able to automatically
synthesise a model M of P by exploiting P̃ according to some predefined optimality
criteria. Nowadays, this modelling approach is known as machine learning. A formal
definition can be found in [276], where Tom Mitchell considers machine learning as
the following, well-posed problem:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P, if its performance at tasks in T, as
measured by P, improves with experience E.

2Usually suitable to be run on a Von Neumann computing architecture.

4 Chapter 1. Introduction

More broadly, machine learning can be defined as a set of complex intelligent in-
formation processing systems, usually defined by means of adaptive learning algo-
rithms, able to act without being explicitly programmed or (in order words) able to
learn from data and experience.

1.3 Computational Biology Case Studies

In Section 1.1, major emphasis has been put to biological systems and the widespread
use of graphs in biological sciences. This is not by chance. Indeed, by quoting Sergio
Barbarossa3:

Biology is the science of networks.

In order to show the effectiveness of the techniques presented in this work, two real-
world biological systems will be analysed: Protein Contact Networks (PCNs) [114,
204] and metabolic pathways [139, 206].

A PCN is a minimalistic graph-based representation of the 3D folded state of
a protein (see Figure 1.1 for a visual comparison between the well-known ribbon
diagram4 and the PCN). Proteins are macromolecules in charge of performing a
plethora of functions within living organisms, including DNA replication [2], pro-
viding cytoskeleton [382], catalysing enzymatic reactions [36], cell signalling and
intracellular transport [237]. Proteins biosynthesis is composed by multiple steps,
the most important being transcription and translation [185]. The DNA sequence of
a gene encodes the sequence of amino-acids that forms each protein. This DNA
sequence undergoes transcription, hence becoming pre-messenger RNA. The RNA
sequence, in turn, is loaded into the ribosome where it undergoes translation. The ri-
bosome, thanks to the genetic code, performs translation: each triplet of nucleotides
(codon) is translated into one of the (approximately) 20 amino-acids. As this amino-
acid chain leaves the ribosome, the primary structure is formed and the process called
protein folding starts [21, 383]. Due to hydrogen bonds, local sub-structures start
emerging, leading to the so-called secondary structure, whether the chain does not
fall into a random coil configuration. α-helices, β-sheets and turns are the three
most common secondary structures. Finally, the spatial relationship between sec-
ondary structures determines the overall folded protein shape, namely the tertiary
structure [2]. The peculiar three-dimensional shape (structure) of a protein is unam-
biguously determined by the primary structure (Anfinsen’s dogma [7]) and is at the
basis of its function. Furthermore, this 3D configuration goes into slightly but cru-
cial changes in order to adapt to its micro-environment. Indeed, the deformation
affects the interaction potentials between protein’s atoms and the external environ-
ment, allowing it to carry out a specific function. There is a deep relation between the
function and the structure of a protein, and investigating the latter is a fundamen-
tal step in understanding the former. A thorough comprehension of how a protein
works is in turn of great significance for a variety of practical settings, like drug de-
sign and the diagnosis of diseases [94, 347, 348, 367, 370]. PCNs are (by definition)
unweighted, undirected and unlabelled networks which are built starting from the
native 3D structure [132, 390] where nodes correspond to amino-acids and edges ex-
ist between any two nodes whether they are in spatial proximity in the 3D protein

3Private communication.
4The ribbon representation (also cartoon representation) is a schematic 3D representation of the folded

protein, highlighting the structural organisation of the backbone and the secondary structures: α-
helices are shown as coiled ribbons, β-sheets as arrows and random coils as thick tubes or lines.

1.3. Computational Biology Case Studies 5

folded state, hence if their respective α-carbon atoms are arranged at a distance that
is within a given threshold of typically [4, 8]Å [100, 114, 226, 227, 233, 234, 244, 249,
251, 262]. The lower bound is usually defined in order to discard trivial first-order
contacts of adjacent residues along the backbone, whereas the upper bound is de-
fined according to the peptide bonds geometry [304] (8Å roughly correspond to two
Van der Waals radii [233]). Despite their ’minimalistic’ definition5, PCNs allow for
a reliable reconstruction of the overall folded protein structure [363, 379], as well as
an efficient description of the relevant biological properties, such as allosteric effect
and identification of active sites [94, 115].

(A) Ribbon Representation

-5

0

5

10

15

20

25 x-axis -10

-5

0

5

10

15

20

25

 y-axis

-10

-5

0

5

10
 z

-a
x

is

(B) PCN Representation

FIGURE 1.1: E. coli str. K12 RNA-binding protein (PDB 1HNR).

Metabolic pathways are chains of chemical reactions occurring within a cell,
where the products of one reaction are the substrates for the subsequent reactions.
Such intermediates (be it reactants, substrate, products, and and like) are usually
referred to as metabolites. Clearly, a metabolic pathway can be modelled by a net-
work where nodes correspond to metabolites and edges are scored whether there
exist a chemical reaction between the two nodes. Conversely to PCNs, metabolic
networks might not be undirected: indeed, despite all chemical reactions are tech-
nically reversible, conditions in the cell are often such that thermodynamically reac-
tions flow in one direction [83, 84]. The network formalism is a static representation
of the chemical reactions that can happen in a particular organism: it derives from
the knowledge of the reaction(s) catalysed by each single enzyme of the organism.
The complete list of those enzymes is known with no uncertainty and derives from
the total DNA sequencing of the organism. The involved players (i.e., metabolites,
which are the nodes of the network) are physical objects that interact by a dynam-
ical link (chemical reaction catalysed by an enzyme) but the kinetic data cannot be
represented in a unique way (in addition they are very difficult to ascertain in vivo)
because they can change up to four orders of magnitude depending to microenvi-
ronmental conditions (pH, nutrient concentration state, cell cycle phase and so on)
thus inhibiting any consistent network representation. This is why in literature a
binary yes/no information linked to the presence/absence of enzymes is currently

5It is worth remarking that the amino-acid type (node label) and the proper distance between
amino-acids (edge label) are deliberately discarded in order to focus on proteins’ topological structure.

6 Chapter 1. Introduction

used (i.e., presence/absence of a reaction transforming metabolite i into metabolite
j) [299, 360]. The interruption of the global connectivity of the metabolic network
caused by a mutation that impairs the functionality of the enzyme catalysing an es-
sential chemical reaction (and the consequent inability to follow a given pathway)
is a necessary (but not sufficient) condition for organism death [299]. The crucial
role of metabolic networks makes them a preferred viewpoint for a lot of biomedi-
cal applications [48, 91] and practical settings, for example when it comes to detect
comorbidity patterns (e.g., obesity vs. diabetes) in sick patients [212, 328]. Comor-
bidity can easily be driven by a malfunctioning in catalysing a given reaction: due
to the chain-like nature of metabolic pathways, a single enzyme defect may affect
other chemical reactions, leading to a potentially dangerous domino-effects. Figure
1.2 shows a very peculiar module on the human metabolic network: the citrate cycle
(also widely-known as TCA cycle or Krebs cycle).

1.4 Thesis Scope and Outline

The aim of this work is the development of novel pattern recognition systems able
to deal with structured domains, with particular emphasis on the (hyper)graphs
domain. Graphs, by definition, lie in a non-geometric space [230, 232, 251], which
is (computationally speaking) way more difficult than the plain Euclidean space in
which all pattern recognition systems can be used without alterations.

In order to show the effectiveness of the proposed techniques, the two real-world
biological systems briefly described in Section 1.3 will be analysed. As regards
PCNs, this work aims at addressing whether it is possible to predict proteins’ en-
zymatic class and solubility degree starting from the graph-based representation of
their folded state. As regards metabolic networks, we ask whether it is possible to
automatically recognise metabolic pathways belonging to different organisms.

The most cutting-edge techniques amongst the proposed ones will be also tested
on freely-available benchmark datasets and compared with state-of-the-art graph-
based classification systems.

This thesis is organised as follows: Chapters 2 and 3 will provide the reader
some theoretical background. Specifically, Chapter 2 regards graph theory: starting
from basic definitions, the most important matrix representations and their peculiar
properties in terms of network characterisation are introduced. Then, the discus-
sion moves towards the novel Topological Data Analysis field by introducing hyper-
graphs and simplicial complexes. Conversely, Chapter 3 extends the computational
intelligence part, briefly introduced in Section 1.2. Starting from basic definitions
about supervised and unsupervised learning, the Chapter will mainly discuss both
challenges and strategies when dealing with pattern recognition in structured do-
mains, namely domains which (conversely to the standard Euclidean space) might
not be metric in nature.

Chapter 4 describes the proposed six graph-based pattern recognition systems,
highlighting their respective strengths and weaknesses, whereas Chapter 5 presents
the computational results on both real-world data (PCNs and metabolic pathways)
and benchmark data.

Chapter 6 describes some major research activities that somehow shift from the
whole graph-based pattern recognition dissertation.

Finally, Chapter 7 concludes this work, remarking future research endeavours.
This thesis also features two appendices: Appendix A contains in-depth results

about the knowledge discovery carried out a-posteriori over some of the proposed

1.4. Thesis Scope and Outline 7

FIGURE 1.2: Krebs cycle from the H. sapiens metabolic pathway (KEGG M00009).

technique, whereas Appendix B sketches parallel and distributed implementations
for some of the proposed techniques in order to face computationally expensive
problems and/or large datasets.

9

Chapter 2

Fundamentals of Graph Theory

2.1 Preliminary Definitions

Let G = (V , E) be a graph where V is the finite set of vertices and E ⊆ V × V is the
set of edges. For short, let n = |V|.

A graph is said to be undirected if edges have no orientation: if an edge exists
between any two nodes, say (u, v) ∈ E for u, v ∈ V , then (v, u) is identical to (u, v).
If edges have orientation, that is (v, u) ∈ E , but (u, v) might not exist in E , then the
graph is said to be directed. Further, a graph is said to be simple if there are no self-
loops (i.e., no nodes connected to themselves) and there are no multi-edges6 (i.e.,
pair of nodes connected by more than one edge).

Clearly, graphs are able to capture topological information from the entities in-
volved. However, nodes and/or edges can be equipped with semantic information
(in terms of more or less complex attributes): in this case one shall refer to as labelled
graphs. The most simple type of labelled graph is widely-known as weighted graph,
where nodes have no attributes and edge attributes are plain real-valued scalars de-
noting the ’strength’ of the connection between the two nodes at their extremities.

The most straightforward and complete way to represent a graph is by means of
its adjacency matrix A, a square n× n matrix defined as

Ai,j =

{
1 if (vi, vj) ∈ E
0 otherwise

(2.1)

Trivially, for simple and unweighted graphs, one shall expect a binary and zero-
diagonal matrix. If the graph is undirected, then the adjacency matrix is also sym-
metric.

Starting from the adjacency matrix it is possible to evaluate the degree matrix D, a
diagonal n× n matrix defined as7

Di,j =

{
D(vi) if i = j
0 otherwise

(2.2)

where in turn D(vi), the degree of node vi, is defined as the number of nodes con-
nected to it

D(vi) =
n

∑
j=1

Ai,j (2.3)

6Whether multi-edges exist, one shall refer to as multi-graph.
7This definition holds for undirected networks. If the network is directed one shall consider sep-

arately the in-degree and the out-degree of each node, namely the number of incoming and outgoing
links, respectively.

10 Chapter 2. Fundamentals of Graph Theory

Figure 2.1 shows an example of simple, undirected and unweighted graph, along
with its corresponding adjacency and degree matrices.

A =

0 1 1 1 1 0
1 0 1 0 1 1
1 1 0 1 1 0
1 0 1 0 1 1
1 1 1 1 0 1
0 1 0 1 1 0

 D =

4 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 5 0
0 0 0 0 0 3

FIGURE 2.1: An example of undirected graph (bottom centre), its adjacency matrix (top left)
and degree matrix (top right). It is noteworthy that the node numbers do not have to be
intended as their respective attributes (labels); rather, they have been added for consistency

with the row/column ordering in the adjacency and degree matrices.

Starting from A and D, the Laplacian matrix L is defined as

L = D−A (2.4)

The Laplacian matrix is the generalisation of the differential Laplacian operator on
graphs [289] and provides many information about the topology: as such, it has been
widely used in many facets of graph theory, including graph partitioning, study
of dynamical network processes, network connectivity and the like [205, 209, 238,
308, 405]. The graph Laplacian is related to many local and global properties of the
network [272, 278] and its spectrum provides a compact representation of the graph,
which can be used for a better understanding of the network organisation [70, 277,
401, 406].

Let Λ(A) = {λ(A)
1 , . . . , λ

(A)
n } and Λ(L) = {λ(L)

1 , . . . , λ
(L)
n } be the set of eigenvalues

of A and L, respectively. It is possible to define the graph energy E and the Laplacian
energy LE respectively as [162]:

E =
n

∑
i=1

∣∣∣λ(A)
i

∣∣∣ (2.5)

LE =
n

∑
i=1

∣∣∣∣λ(L)
i −

2|E |
n

∣∣∣∣ (2.6)

From Eqs. (2.1)–(2.4) it is possible to define the normalised Laplacian matrix L as:

L = D−1/2(D−A)D−1/2 = D−1/2LD−1/2 (2.7)

2.1. Preliminary Definitions 11

As per the un-normalised counterpart, the normalised Laplacian is another impor-
tant matrix representation as it conveys many structural and dynamical properties
[234, 265, 277]. Further, the normalised Laplacian presents some interesting alge-
braic properties [60, 75, 184], notably:

• it is positive semi-definite: there are no negative eigenvalues

• all its eigenvalues (its spectrum) lie in range [0, 2], regardless of the underlying
graph G (i.e. number of nodes, number of vertices and the like)

• the multiplicity of the null eigenvalue equals the number of connected compo-
nents of G: as such, there exist at least one null eigenvalue.

Let us consider the spectral decomposition of L:

L = VΛ(L)VT (2.8)

where Λ(L) = diag
{

λ
(L)
1 , . . . , λ

(L)
n

}
is a diagonal matrix containing the eigenvalues

in increasing order and V contains the corresponding unitary-length eigenvectors.
The heat equation associated to L reads as [202, 387, 388]

∂H(t)
∂t

= −LH(t) (2.9)

The solution to Eq. (2.9), H(t), is the heat kernel matrix at time t.

H(t) = exp {−tL̄} = Vexp
{
−tΛ(L̄)

}
VT =

n

∑
i=1

exp
{
−λ

(L)
i t
}

vivT
i (2.10)

In short, the heat kernel operator simulates the heat diffusion across the network
and, obviously, the diffusion process is driven by the structure of the network itself.
For example, in a tightly-connected network, one shall expect a very fast diffusion
process that reaches an equilibrium point after a relatively small time, whereas in a
weakly-connected and highly-modular network, one shall expect a slower diffusion
process. The heat kernel matrix in Eq. (2.10) is an n× n doubly-stochastic and time
varying matrix which describes the amount of some diffusing substance across the
edges of the network: indeed, the element Hi,j(t) scores the amount of substance
that, starting from node i, goes towards node j after time t. The heat kernel matrix
shows the following properties:

H(t) '
{

I− L · t if t→ 0

exp
{

λ
(L)
2 · t

}
v2vT

2 if t→ ∞
(2.11)

where I is the identity matrix, λ
(L)
2 is the smallest non-zero eigenvalue of L and

v2 is the corresponding eigenvector (also commonly known as the Fiedler vector
[75]). From Eq. (2.11) it is possible to see that the short-time diffusion behaviour is
determined by the local structure of the network, whereas the large-time behaviour
is driven by the global structure of the network8.

8λ
(L)
2 is also known as the spectral gap and it can be seen as a measure of separateness of the graph

into strongly connected components [6].

12 Chapter 2. Fundamentals of Graph Theory

The heat kernel trace HT(t) of H(t) is given by

HT(t) = Tr {H(t)} =
n

∑
i=1

exp
{
−λ

(L)
i t
}

(2.12)

For a connected graph, at t = 0 we have HT(t) = n, whereas as t → ∞ we have9

HT(t) → 1. The heat trace HT(t) can be interpreted as the number of connected
components under the diffusion viewpoint. For example, at t = 0, each node of
the network generates some information which is not yet propagated towards other
nodes, hence HT(t = 0) = n (each node has its own information). As t grows, nodes
start propagating their information farther and farther across the network until a
steady-state is reached: that is, where all nodes are in contact with each other. Under
the information viewpoint, this corresponds to a single connected component, hence
HT(t→ ∞)→ 1.

The heat content HC(t) of H(t) is given by

HC(t) = ∑
vi∈V

∑
vj∈V

Hi,j(t) = ∑
vi∈V

∑
vj∈V

n

∑
k=1

exp
{
−λ

(L)
k t
}

vk(vi)vk(vj) (2.13)

where vk(vi) is the value related to node vi in the kth eigenvector.
The MacLaurin series for the negative exponential reads as

exp
{
−λ

(L)
k t
}
=

∞

∑
m=0

(
−λ

(L)
k t
)m

tm

m!
(2.14)

and substituting Eq. (2.14) in Eq. (2.13) yields

HC(t) = ∑
vi∈V

∑
vj∈V

n

∑
k=1

∞

∑
m=0

(
−λ

(L)
k t
)m

tm

m!
vk(vi)vk(vj) (2.15)

By re-writing Eq. (2.13) in terms of power series as [264]

HC(t) =
∞

∑
m=0

qmtm (2.16)

the set of coefficients qm are the so-called heat content invariants and can be evaluated
in closed-form as

qm =
n

∑
i=1

(∑
v∈V

vi(v)

)2

(
−λ

(L)
i

)m

m!
(2.17)

Conversely to the heat kernel trace, the heat content invariants rely on both eigenval-
ues and eigenvectors: this aspect makes them preferable over the plain heat kernel
trace since the joint consideration of both eigenvalues and eigenvectors for graph
characterisation helps in avoiding the co-spectrality problem [95, 127].

9Recall that if the graph is connected, there exist one connected component, hence only one null
eigenvalue.

2.1. Preliminary Definitions 13

2.1.1 A Primer on Complex Networks

At this point one might ask what makes networks ’complex’. Complex networks
show non-trivial topological features (i.e., connectivity patterns) that do not occur in
’simple networks’ such as purely regular graphs (lattices) or purely random graphs.
That is because complexity lies in-the-middle: for a medium number of interactions,
one gets the maximum entropy [197].

The two main families of complex networks include the so-called scale-free net-
works [26] and small-world networks [4, 376]. Scale-free networks are characterised by
a steady-growth process when new entities interact with already-existing entities.
Scale-free networks trace back to late 90’s [25], when the World Wide Web was in
its early stage: Barabási and colleagues noticed that new (source) webpages used
to link to existing (target) webpages with a probability driven by the degree of the
target webpage. This phenomenon is also called as preferential attachment or, infor-
mally, the rich-gets-richer effect: if a node has a high degree, then new nodes will
likely connect to it, increasing its degree even more. Similarly, low-degree nodes
will likely remain with few connections. This very wide distribution leads to the
seminal power law degree distribution of scale-free networks:

P(D) ∝ D−µ (2.18)

where µ represents the decay of the power law: a small µ leads to very large hubs
with degree significantly higher than the average degree. Another interesting as-
pect of scale-free networks is the inherent hierarchical organisation: major hubs are
linked to smaller hubs which, in turn, are linked to even minor nodes. A random
failure will not lead the network to lose its connectedness, even if an hub is involved
(generally, there are more than one hub) [78]. Finally, it is worth mentioning the im-
pact of this hierarchical structure on the clustering coefficient10: low-degree nodes
tend to form very tight and compact clusters and different clusters are connected via
hub nodes. This results in a clustering coefficient which also follows the power law
distribution.

This last observation about the clustering coefficient facilitates the introduction
of small-world networks. The fact that few hubs can connect small communities
implies that the shortest path between any two nodes is rather small (i.e., one node
can reach any other node with a relatively limited number of hops). It has been ob-
served that in many networks describing real-world systems the average shortest
path length [289] grows very slowly with respect to the number of nodes. This is the
so-called small-world effect: a network ’seems small’ because two nodes are linked by
a sequence of very few edges even if they are very far apart. Specifically, the dis-
tance H (i.e., the number of hops) between any two randomly chosen nodes grows
logarithmically with respect to the number of nodes in the network n:

H ∝ log n (2.19)

Conversely to the average shortest path length, which is small, the clustering coef-
ficient is high11. Small-world networks tend to have highly-connected cliques (in
virtue of high clustering coefficient), most pair of nodes connected by short paths
(in virtue of small average shortest path length) and there is a consistent number of
hubs in order to keep the average number of hops small. The small-world effect is

10A measure of the degree to which nodes in a graph tend to cluster together [289].
11This is a major striking difference with respect to random graphs: random graphs present small

average clustering coefficient and small average shortest path length [376].

14 Chapter 2. Fundamentals of Graph Theory

even older than Barabási’s studies on the World Wide Web: Stanley Milgram in the
late 60’s conducted the small-world experiment [274], which leaded to the concept
of "six degrees of separation". The rules of the experiment were very simple:

1. 296 letters have been sent from random people living in either Omaha (Ne-
braska, USA) or Wichita (Kansas, USA) to target people living in Boston (Mas-
sachusetts, USA)

2. people from Omaha/Wichita were asked whether they knew the target person:
if so, they were asked to send the letter directly to the target person; otherwise,
the sender had to think about a person that was more likely to know the target
and forward the letter to this ’intermediate’ person

3. each sender (be it the first or an intermediate one) must write on the letter its
name, in order to keep track of the number of steps.

64 letters reached the target person in Boston, with an average path length of 5.5-
6 hops, hence the "six degrees of separation". A ’modern’ small-world experiment
revolves around the so-called "Erdős number", namely the collaborative distance in
terms of number of co-authorships between Hungarian mathematician Paul Erdős
and another researcher12.

Figure 2.2 shows an at-the-glance comparison amongst a random graph gener-
ated using the Erdős-Rényi model [128], a scale-free network generated using the
Barabási-Albert model [25] and a small-world network generated using the Watts-
Strogatz model [376].

2.2 Topological Data Analysis

Topological Data Analysis (TDA) is a novel approach suitable whether data can be
analysed under a topological point of view [64, 374]. This regards two distinct types
of applications [63]:

a) when the entire dataset available can be topologically described (e.g., each pat-
tern is a node)

b) when individual entities from the dataset can be topologically described (e.g.,
each pattern is a graph).

TDA-based techniques regard the use of tools from graph theory, algebraic topology,
computational topology and mathematics in order to study the ’shape’ of objects
lying in topological spaces and in order to extract information from data starting
from their topology. Techniques like dimensionality reduction, manifold estimation
and persistent homology are commonly used in order to study how components
lying in a multi-dimensional space are connected, for example, in terms of loops
and multi-dimensional surfaces.

TDA can be applied starting from the so-called point clouds, namely a set of points
in a multi-dimensional space endowed with a notion of distance or by explicitly
providing a similarity matrix between objects. For the sake of generalisation, let us
consider the former case and let C be a given point cloud lying in a given topological

12Using the results stored in MathSciNet (https://mathscinet.ams.org/mathscinet/collaboratio
nDistance.html), I was able to estimate my Erdős number as 5 (full path: Alessio Martino→Antonello
Rizzi→Witold Pedrycz→ Peter J. M. van Laarhoven→ Jacobus Hendricus van Lint→ Paul Erdős).

https://mathscinet.ams.org/mathscinet/collaborationDistance.html
https://mathscinet.ams.org/mathscinet/collaborationDistance.html

2.2. Topological Data Analysis 15

(A) Scale-free (graph) (B) Scale-free (degree distribution)

(C) Random (graph) (D) Random (degree distribution)

(E) Small-world (graph) (F) Small-world (degree distribution)

FIGURE 2.2: Comparison amongst Random, Scale-free and Small-world graphs. Nodes (left-
most plots) are coloured according to their degree from yellow (high degree) to blue (low

degree).

space X . Intuitively, in order to study how points in C are connected, one can study
their connectivity in X .

To this end, it is worth defining simplices as multi-dimensional topological ob-
jects belonging to X , such as points, lines, triangles, tetrahedrons and higher-order
analogues, which can be interpreted as topological descriptors of X itself. Formally

16 Chapter 2. Fundamentals of Graph Theory

speaking, a k-order simplex (also, k-dimensional simplex or k-simplex) is defined as
the convex hull formed by its k + 1 points (vertices): aforementioned points, lines
and triangles are, for example, 0-dimensional, 1-dimensional and 2-dimensional
simplices, respectively. Every non-empty subset of the k+ 1 vertices of a k-simplex is
a face of the simplex: a face is itself a simplex. Trivially, starting from a k-simplex, its
faces can be returned via combinatorial extraction. For example, a 2-simplex (trian-
gle) contains three 0-faces (vertices), three 1-faces (lines) and one 2-faces (the triangle
itself). Similarly, a 3-simplex (tetrahedron) contains four 0-faces (vertices), six 1-faces
(lines), four 2-faces (triangles) and one 3-faces (the tetrahedron itself). More in gen-
eral, the number of m-faces contained in a k-simplex is given by (k+1

m+1), hence the
total number of faces is given by13 2k+1 − 1.

Simplicial complexes are properly-constructed finite collection of simplices able
to capture the multi-scale organisation (or multi-way relations) in complex systems
[27, 28, 169], something that a ’plain graph’ cannot represent. Simplicial complexes
are an example of hypergraphs: a generalisation of ’plain graphs’ where hyperedges
can connect two or more nodes. The modelling limitation offered by graphs can
be summarised by the following example [133]: let us represent a scientific collab-
oration network as a ’plain graph’ where nodes corresponds to authors and edges
exist whether authors co-authored a paper together. Hence, a group of n co-authors
are connected by n(n − 1)/2 edges with possible ambiguities about whether each
pair of authors co-authored a paper or all of the n authors co-authored a paper. Us-
ing hypergraphs, an hyperedge can connect the n authors, with no ambiguities. A
more biology-oriented example regards protein-protein interaction networks, where
nodes corresponds to proteins and edges connect two proteins whether they inter-
act. Similarly, the graph-based representation does not consider protein complexes
[146, 246, 317].

Given the above discussion, it is possible to derive the following formal defini-
tion.

Definition 1 (Simplicial complex). A simplicial complex is a finite collection of sim-
plices which is closed with respect to the inclusion of the faces and meets the follow-
ing conditions:

• if a simplex σ belongs to a simplicial complex S , then all faces of σ also belong
to S

• for any two simplices σ1, σ2 ∈ S , their non-empty intersection is a face of both
σ1 and σ2.

A subcomplex of S is a subset of S which is also a simplicial complex. An impor-
tant subcomplex is the k-skeleton, namely a simplicial complex with at most sim-
plices of order k. From this last definition stems another link between ’plain graphs’
and simplicial complexes: a ’plain graph’ is an example of simplicial complex (1-
skeleton) as it contains only points and lines (0-simplices and 1-simplices).

In literature, four main simplicial complexes have been thoroughly investigated
[22, 23, 64, 148, 151, 169, 374, 411]:

Alpha Complex: for each point p ∈ C, evaluate its Voronoi region V(p) (that is, the
set of points closest to p). The set of Voronoi regions forms the well-known
Voronoi diagram and the nerve of the Voronoi diagram is usually known as

13Some authors suggest [410, 411] that the (−1)-simplex, namely the ’empty simplex’, is a face of
every simplex, augmenting the total number of faces to 2k+1.

2.2. Topological Data Analysis 17

Delaunay Complex. For each point p ∈ C, consider a ball of radius ε centred
in p and consider the intersection between such ε-ball and V(p): this intersec-
tion leads to a ’restricted’ Voronoi region. The nerve of the restricted Voronoi
regions for all points in C forms the Alpha Complex.

Čech Complex: for each subset of points P ⊂ C, consider a ball of radius ε centred
at each point in P; if the balls have non-empty intersection, then P is a valid
simplex to be included in the Čech Complex. Dually, the Čech Complex can be
defined as the nerve of the balls of radius ε centred at each point in C.

Vietoris-Rips Complex: for each subset of points P ⊂ C, evaluate their pairwise
distances: if all pairwise distances are below a given threshold ε, then P is a
valid simplex to be included in the Vietoris-Rips Complex.

Clique Complex: given an underlying 1-skeleton, the Clique Complex is the simpli-
cial complex built on the top of its maximal cliques. In other words, a k-vertex
clique is represented by a (k− 1)-simplex.

Simplicial homology is a powerful approach in order to study topological spaces char-
acterised by their k-simplices by extending the widely-known number of connected
components in a graph to the number of multi-dimensional holes in a simplicial
complex. Since simplicial homology only depends on the topological space under
analysis, it can be seen as a computable way to distinguish between different topo-
logical spaces [10]. The core of simplicial homology are the so-called Betti numbers,
topological invariants which enumerate the number of holes in each dimension.

Let ∂k : S (k) → S (k−1) be the boundary operator, namely an incidence-like ma-
trix which maps S (k) (the set of k-simplices in S) against S (k−1) (the set of (k − 1)-
simplices in S). The k-order homology group is defined as [281]

Hk = ker{∂k}/im{∂k+1} (2.20)

where ker{·} and im{·} denote the kernel and image operators, respectively. The
rank ofHk, namely the kth Betti number βk, is then defined as [169]

βk = rank{ker{∂k}} − rank{im{∂k+1}} (2.21)

or, thanks to the Rank-Nullity theorem [12]

βk = (card{∂k} − rank{im{∂k}})− rank{im{∂k+1}} (2.22)

where card{·} corresponds to the cardinality operator (namely, the number of k-
simplices) and the rank of the image corresponds to the plain matrix rank in linear
algebra. The Betti numbers have the following characteristics:

1. the Betti numbers are all finite

2. the Betti numbers vanish after the spatial dimension

3. the 0th Betti number corresponds to the number of connected components (0-
dimensional holes)

4. the 1st Betti number corresponds to the number of circular holes (1-dimension-
al holes)

5. the 2nd Betti number corresponds to the number of voids/cavities (2-dimen-
sional holes).

18 Chapter 2. Fundamentals of Graph Theory

Figure 2.3 shows an example of two simplicial complexes, along with their homol-
ogy.

β0 = 3
β1 = 0
β2 = 0

(A) S1

β0 = 1
β1 = 2
β2 = 0

(B) S2

FIGURE 2.3: Example of Simplicial Complexes and their Homology. S1 (left) has three
connected components and no higher-dimensional holes, so the Betti numbers sequence is
(3, 0, 0). S2 (right) has one connected component and two circular holes, so the Betti num-
bers sequence is (1, 2, 0). Since both simplicial complexes are planar, for both of them β2 = 0

is trivial (i.e, there cannot be voids or cavities). Drawn using Wolfram Mathematica 1214.

14http://demonstrations.wolfram.com/SimplicialHomologyOfTheAlphaComplex/

http://demonstrations.wolfram.com/SimplicialHomologyOfTheAlphaComplex/

19

Chapter 3

Pattern Recognition in Structured
Domains

3.1 Preliminary Definitions

In Section 1.2, machine learning has been introduced as a powerful tool for com-
plex systems modelling as one very rarely knows a properly-said ’complex system’
in closed form. As part of the machine learning umbrella, pattern recognition lies.
Pattern recognition techniques focus on the classification of objects in a given num-
ber of categories (classes). Specifically, pattern recognition includes a wide range
of techniques employed to solve (properly said) classification problems and clus-
tering problems. Broadly speaking, pattern recognition techniques can generally be
divided in two main families: supervised and unsupervised learning, both of which (by
extension) fall under the data-driven modelling from Section 1.2.

For a more formal definition, let us consider an orientated process P : X → Y ,
where X is the input space (domain) and Y is the output space (codomain). More-
over, let {x, y} be a generic input-output sample drawn from P , i.e. y = P(x).

In supervised learning a finite set P̃ of input-output pairs drawn from P are
supposed to be known. Common supervised learning tasks can be divided into two
families: classification and function approximation [258]. The two mainly differ on the
nature of the output space Y :

• in classification, output values come from a categorical set of possible problem-
related classes (e.g., ’healthy’ and ’sick’ in a predictive medicine problem)

• in function approximation (such as regression, interpolation, fitting, extrap-
olation), output values usually are drawn from the real numbers field (e.g.,
predict tomorrow’s temperature in a weather forecast problem).

More formally, in the former case, the output space is a non-normed space due to the
impossibility to establish any total ordering between its elements or, similarly, due
to the nonsensical task of establishing a distance between its elements; whereas, in
the latter case, Y can be considered as a normed space.

In unsupervised learning there are no output values and regularities have to be
discovered by considering mutual relations amongst elements belonging to X . One
of the mostly acclaimed unsupervised learning approaches relies on data clustering
[179]. The aim of a clustering algorithm is to discover groups (clusters) of patterns
in such a way that similar patterns will fall into the same cluster, whereas dissimilar
patterns will fall into different clusters [255–257, 259]. Formally, let P̃ be a sampling
of a non-orientated process P and let c ∈ [2, |P̃ |] be the number of clusters to be

20 Chapter 3. Pattern Recognition in Structured Domains

found15: a clustering algorithm shall assign, to each x ∈ X , an integer h ∈ [1, c]
identifying one of c clusters induced over P̃ .

For the sake of completeness, it is worth stressing that clustering and classifica-
tion algorithms might as well co-operate and shall not be considered as two diamet-
rically opposed techniques. For classification purposes, a rather common approach
relies on clustering labelled data without considering their respective labels and then
assigning a label to each cluster by considering (for example) the most frequent label
amongst the patterns belonging to the cluster itself. Each new pattern can be classi-
fied (for example) by inheriting the label of the nearest cluster. An example of such
workflow can be found in [111–113].

3.2 Designing a Machine Learning System

In conventional machine learning, a pattern is defined by a set of measures related to
the original object to be represented, arranged in an array. Each entry (feature or at-
tribute) is usually a real-valued variable. Geometrically speaking, the pattern can be
referred to as feature vector and the space spanned by feature vectors is also known
as feature space. A well-defined feature space is able to facilitate the modelling pro-
cess: for example, in a classification problem, a well-designed feature space yields
simpler decision surfaces in terms of structural complexity (smooth and regular).

FIGURE 3.1: A (simplified) pattern recognition system workflow.

Let us consider a plain supervised pattern recognition (classification) problem as
an instance of the more general data-driven modelling paradigm. Recalling Section
3.1, the aim of a classification problem is to assign to an input pattern, represented by
its feature vector, one of the problem-related classes. Figure 3.1 sketches a simplified
workflow.

First, real-world data, belonging to a generic and possibly abstract space X are
cast into a proper data structure S , processable by a computational device, by means
of a representation function f (·), ad-hoc tailored for the problem at hand. From
structured data in S , a given number m of (usually numerical) features is extracted,
hence data are cast from S towards Rm (i.e., the feature space).

The two following blocks are not mandatory, yet they have been added for the
sake of completeness and in order to take into account inevitable uncertainties in
data collection and processing. The first block is in charge of data normalisation
and cleaning: the former task is sometimes crucial in order to facilitate the (classi-
fication) algorithm under particular circumstances16; the latter deals with missing
and/or noisy data (e.g., outliers’ removal17). Conversely, the feature selection block

15Trivially, it is pointless to find 1 cluster (i.e., the entire dataset) as it is pointless to find more cluster
than the number of patterns (i.e., the most degenerate case is where each point is its own cluster.)

16Especially when dealing with the Euclidean distance, a common problem is that features span-
ning a wider range of candidate values have more influence in the resulting distance value, therefore
normalising all attributes in the same range (usually [0, 1] or [−1,+1]) ensures fair contribution from
all attributes, regardless of their original range.

17In statistics, outliers are ’anomalous data’ that, for a given dissimilarity measure, lie far away from
most observations.

3.2. Designing a Machine Learning System 21

allows to select a suitable subset of the previously-generated features: indeed, as a
general rule, the feature vector should be small, yet informative18, in order to avoid
undesired phenomena such as overfitting and/or the so-called ’curse of dimension-
ality’. Further, it is recommended to get rid of unreliable features and correlations
with existing features.

At the end of this selection stage, feature vectors will lie in a (possibly) reduced
space Rn, with n ≤ m. Finally, feature vectors are used in order to train the classi-
fication system, with the final goal of estimating the correct label, an instance of the
nominal value set L ≡ Y .

For a better understanding of Figure 3.1 and all of its steps, let us consider a re-
alistic biology-related scenario about protein classification: X corresponds the pro-
teins space (i.e., the set of proper macromolecules). Let us suppose to represent
proteins as graphs by means of their respective PCNs (see Section 1.3), then f (·) is
an hypothetical function which ’converts’ macromolecules into graphs. Fortunately,
at least from a machine learning viewpoint, molecular biology helps: x-ray crystal-
lography19, despite it traces back to 1958 [193], is nowadays still the most extensively
used technique20 for experimental evaluation of protein structures21, making rather
easy the evaluation of the corresponding PCNs. The feature generation block aims
at extracting numerical features from graphs in S which, after possible further pro-
cessing, will directly fed to the classification system.

The training phase for a classification system is a rather delicate task and it needs
a separate discussion. Indeed, thanks to the training phase, the classification system
learns how to map and discriminate input patterns according to their class labels.
In other words, it learns the decision surface (decision region boundaries) which
separates patterns corresponding to different classes. A usual procedure for mea-
suring in a fair way the generalisation capability of a classification model consists
in splitting the available dataset into two non-overlapping subsets (training set and
test set). Specifically, as far as classification problems are concerned, one shall fig-
ure both training set and test set as composed by {x, y} pairs (see Section 3.1): the
classification system, driven by a training algorithm which strictly depends on the
chosen model (e.g., Support Vector Machines (SVMs) [50, 86], MultiLayer Percep-
tron (MLP) [263, 327], K-Nearest Neighbours (K-NN) [87]), uses the training set in
order to learn the input-output mapping. The test set will be used on the trained
model, with no further adaptive changes, in order to evaluate its performances on
previously-unseen patterns (e.g., percentage of patterns correctly classified). This

18Non sunt multiplicanda entia sine necessitate (Entities are not to be multiplied without necessity), com-
monly known as "The Ockham’s Razor" Criterion (William of Ockham, circa 1287-1347). This criterion
states that, amongst a set of predicting models sharing the same performances, the simplest one (i.e.,
the one with the simplest decision surface) should be preferred. It is for sure one of the fundamental
axioms for thoughtful and practical data-driven modelling.

19In short: a beam of incident x-rays is directed towards the crystalline structure under analysis
and, by measuring the diffracted beams, one can built a 3D picture of the electron density within the
crystal.

20Other common techniques include protein nuclear magnetic resonance spectroscopy [385, 386]
–in which the 3D structure (namely, how atoms are linked together) is determined by exploiting the
mechanical properties of the nucleus of each atom–, mass spectrometry [346] and electron microscopy
[282] –in which high-resolution images can be obtained by using electrons as the source of illuminating
radiation.

21As a matter of fact, recently deposited structures (as of February 2019) in the Protein Data Bank
(PDB) database [38] are still experimentally determined via x-ray crystallography. Furthermore, ac-
cording to PDB, the vast majority of the overall deposited structures have been determined via x-ray
crystallography (approx. 125000), the second most common technique being nuclear magnetic reso-
nance (approx. 11000).

22 Chapter 3. Pattern Recognition in Structured Domains

double-split procedure tout court, however, is not effective since every training al-
gorithm depends on a set of parameters (usually known as hyper-parameters in the
machine learning terminology) which must be properly tuned in order to maximise
the generalisation capabilities of the synthesised model. In order to find a suitable
set of hyper-parameters (the so-called model selection phase) a three-split procedure
is usually employed: the entire dataset is split into three non-overlapping parts
(training set, validation set and test set). The training algorithm, driven by a set
of hyper-parameters Γ, exploits the training set and its performances are evaluated
on the validation set. The parameters Γ are tuned in order to maximise the perfor-
mances on the validation set and once the (sub-)optimal set Γ? is found, the final
performances are evaluated on the test set. In literature, several ways to perform
the aforementioned parameters search have been proposed: amongst which, grid
search, random search [37] and (evolutionary) optimisation metaheuristics (e.g., ge-
netic algorithms [153], particle swarm optimisation [194], ant colony optimisation
[82] and simulated annealing [199]) emerge. However, if the dataset size is not suffi-
ciently large, a three-split procedure might not be a good choice: indeed, there might
not be ’enough patterns’ for either the training phase (the model will not learn prop-
erly) or the validation/test phase (performances not statistically sound). In this case,
the validation set can be derived from the training set via out-of-sample testing, e.g.
k-fold cross-validation, leave-one-out, leave-p-out, holdout. By taking k-fold cross-
validation [201] as example, the training set is split into k non-overlapping splits
(folds) of equal size. Of the k splits, a single split is retained as the validation data
for testing the model, and the remaining k− 1 splits are used as training data. The
cross-validation process is then repeated k times, with each of the k folds used ex-
actly once as the validation data. The k results are then averaged to produce a single
estimation.

When dealing with unsupervised learning, the conceptual scheme from Figure
3.1 does not change significantly: a Clustering block should be placed in lieu of the
Classification block. Recall that a clustering algorithm is in charge of returning a set
of clusters according to a given dissimilarity measure and to a predefined objective
function. In literature, three main families of clustering algorithms can be found,
which mainly differ for their objective function (namely, according to which crite-
rion clusters should be discovered): partitional clustering (e.g., k-means [235, 242],
k-medians [51], k-medoids [191, 192]), which split the dataset into k non-overlapping
clusters; hierarchical clustering (e.g., BIRCH [402], CURE [160] or several linkage
methods [240, 353, 371, 403, 404, 407]), where clusters are found by building a den-
drogram in either top-down or bottom-up approach; density-based clustering (e.g.,
DBSCAN [130, 389], OPTICS [8]), which detect clusters as the most dense regions of
the dataset. Clustering algorithms do need hyper-parameters tuning as well. How-
ever, since there are no output (ground-truth) values, selecting a (sub)-optimal Γ?

must rely on the so-called internal validation measures [255, 362] such as the Davies-
Bouldin index [98] or the Silhouette index [331]. Both manual and fully automatic
tuning by means of evolutionary metaheuristics can be employed in unsupervised
learning as well.

3.3 Mainstream Approaches

So far, the design of pattern recognition systems has been described in its standard
and most common form, that is, where patterns are described by plain real-valued
feature vectors. In these cases, any Minkowski-based distance (e.g., Euclidean) can

3.3. Mainstream Approaches 23

be a good and straightforward candidate in order to measure (dis)similarity between
patterns. Now, it is worth asking the following question:

What if the input space X 6= Rn?

Before diving into a proper answer, it is worth recalling the following definitions.

Definition 2 (Metric dissimilarity measure). A dissimilarity measure d defined on a
generic input space X is a function d : X ×X → R satisfying the following proper-
ties

∃d0 ∈ R such that −∞ < d0 ≤ d(x, y) < ∞ (3.1)
d(x, x) = d0 (3.2)

d(x, y) = d(y, x) (3.3)

for any two objects x, y ∈ X . If, alongside Eqs. (3.1)–(3.3), d also satisfies the follow-
ing two properties

d(x, y) = d0 if and only if x = y (3.4)
d(x, z) ≤ d(x, y) + d(y, z) (3.5)

for any three objects x, y, z ∈ X , then d is a metric dissimilarity measure.

Definition 3 (Metric similarity measure). A similarity measure s defined on a generic
input space X is a function s : X ×X → R satisfying the following properties

∃s0 ∈ R such that −∞ < s(x, y) ≤ s0 < ∞ (3.6)
s(x, x) = s0 (3.7)

s(x, y) = s(y, x) (3.8)

for any two objects x, y ∈ X . If, alongside Eqs. (3.6)–(3.8), s also satisfies the follow-
ing two properties

s(x, y) = s0 if and only if x = y (3.9)
s(x, y) · s(y, z) ≤ (s(x, y) + s(y, z)) · s(x, z) (3.10)

for any three objects x, y, z ∈ X , then s is a metric similarity measure.

Under particular circumstances, one can easily ’switch’ between (metric) simi-
larity and dissimilarity measures in a given input space, as shown by Theorems 1
and 2. Indeed, dissimilarity measures quantify the degree of separation, whereas
similarity measures estimate the complementary notion of closeness.

Theorem 1. For a given metric dissimilarity measure d, let dmax be the maximum pairwise
distance between elements in X . Then, s = dmax − d is a metric similarity measure.

Proof. See [356] and [72].

Theorem 2. If d is a metric dissimilarity measure with d(x, y) > 0 for any two items
x, y ∈ X , then s = a/d is a metric similarity measure for a > 0.

Proof. See [356].

Given the above definitions, it is possible to say that X is a non-metric (also, non-
geometric) space if the pairwise dissimilarities between its elements do not satisfy at

24 Chapter 3. Pattern Recognition in Structured Domains

least one of the properties in Eqs. (3.1)–(3.5). This inevitably results in a lack of geo-
metric interpretation of the data, as they cannot be straightforwardly represented in
a Euclidean space [230, 232, 309]. Graphs are the seminal example of structured data
lying in a non-metric space, especially when nodes and edges themselves contain
suitable labels: in this case, graphs convoy not only topological information, but also
semantic information about entities and their relations [228, 229]. In literature, five
mainstream approaches can be found in order to solve pattern recognition problems
in structured domains. Those methods can roughly be divided in three main fam-
ilies, which will be briefly reviewed in the following, highlighting their respective
strengths and drawbacks: feature generation / feature engineering (Section 3.3.1),
custom dissimilarities in the input space (Section 3.3.2), embedding techniques and
kernel methods (Section 3.3.3).

3.3.1 Feature Generation / Feature Engineering

The feature generation strategy quite resembles the simplistic description of Figure
3.1. In this strategy, one defines a mapping function

m(·) : X → Rn (3.11)

which extracts numerical features from structured data in X and the n-dimensional
feature vector can be fed to any pattern recognition system.

Despite its straightforwardness, this approach deserves a thorough study of the
problem at hand: indeed, several numerical characteristics can be extracted from
structured data and finding a suitable subset deserves an in-depth investigation (and
knowledge) on both the data and the problem to be solved.

3.3.2 Custom Dissimilarities in the Input Space

The feature generation strategy aims at moving the problem from the structured
domain X towards Rn. In the latter, standard pattern recognition techniques can be
used without alterations, as it can be equipped with algebraic structures such as the
Euclidean distance or the dot product. However, by properly defining a dissimilarity
measure on X , this casting procedure can be avoided.

For example, ifX is the input space spanned by strings, the most straightforward
example is the Levenshtein distance [76, 221], a generalisation of the well-known
Hamming distance [164] which scores the distance between two strings of equal
length as the number of mismatches. The Levenshtein distance belongs to the wider
family of edit distances, in which the distance between any two objects is given by
the minimum path of atomic operations in order to transform the two objects into
one another. Specifically, the Levenshtein distance is defined as the minimum set
of insertions, substitutions and deletions of characters in order to transform the two
strings into one another.

Edit distances do not exclusively work in the strings domain: indeed, graph edit
distances have also been proposed in literature [57–59, 228, 229, 286]. Graph edit
distances follow the same rationale behind the plain Levenshtein distance, by defin-
ing atomic operations (insertions, substitutions, deletions) on both nodes and edges,
with the major drawback of having a non-negligible computational complexity. In-
deed, by quoting Horst Bunke [56]:

3.3. Mainstream Approaches 25

[...] consider the computation of the distance of a pair of objects, which is
linear in the number of data items in case of feature vectors, quadratic in case of
strings, and exponential for graphs.

Due to the impossibility to find the optimal sequence of operations with minimum
cost, graph edit distances collapse into (possibly greedy) heuristics, e.g. the (node)
best-match-first [17, 41, 43, 44]. As per the latter, given two graphs to be matched, say
Ga = (Va, Ea) and Gb = (Vb, Eb), the two sets of nodes are considered first: the first
node from Va is selected and matched with the most similar22 node from Vb. The pair
is included in the set of node matches, sayM, and the two nodes are removed from
their corresponding sets. The procedure iterates until Va or Vb is empty. In terms of
edit operations, each match counts as a node substitution, whereas insertions and
deletions can be deduced by the difference between |Va| and |Vb|. The matching
procedure then moves towards edges: for each pair of nodes in M, the procedure
checks whether an edge between the two nodes exists in Ea and Eb: if so, this counts
as an edge substitution. Otherwise, if the edge exists on Ea, this counts as an edge
insertion and, finally, if the edge exists on Eb only, this counts as an edge deletion.

Amongst these examples, the Levenshtein distance and the Hamming distance
are known to be metric, whereas the same might not be true for graph edit distances,
which are sensitive to the order of nodes23 in Va and Vb, and they might violate
the symmetry property. Furthermore, edit distances are not recommended if the
two patterns to be compared have rather different sizes as deletion and insertion
operations can easily prevail over substitutions.

On the plus side, methods based on ad-hoc (dis)similarities notably work in cases
where the pattern recognition system does not need to define an algebraic structure
on the input space. This, however, has the intrinsic drawback of limiting the number
of algorithms (both supervised and unsupervised) which can be employed. For ex-
ample, let us consider a clustering task to be performed into a non-metric space with
a given (dis)similarity measure: algorithms such as k-means or k-medians cannot be
considered as prospective candidates since, in order to update the cluster prototype,
the former needs to evaluate the component-wise mean amongst the patterns be-
longing to the cluster itself, whereas the latter needs to evaluate the component-wise
median. In both cases, the need to define an algebraic structure emerges which, how-
ever, turns into a non-sense as non-metric spaces are concerned. Suitable clustering
algorithms for such scenarios are k-medoids, as discussed in [255–257], and the Basic
Sequential Algorithmic Scheme (BSAS) [356], whether equipped with the MinSoD
(medoid) representative [107], namely the element of the cluster which minimises
the sum of pairwise distances. Similarly, as classification problem are concerned, a
straightforward candidate is the K-NN as it classifies test patterns according to the
pairwise distances with respect to some already-known data. Indeed, the distance
measure can easily be tailored to the data at hand, see e.g. [118], and might as well
not rely on operators such as the dot product, mandatory in MLPs or linear SVMs.

22According to a dissimilarity measure defined on the node labels.
23In order to make the matching procedure more robust, usually a given number of matching pro-

cedures are performed by shuffling nodes in Va and Vb and the match which leads to the minimum
distance determines the overall distance between Ga and Gb.

26 Chapter 3. Pattern Recognition in Structured Domains

3.3.3 Embedding Techniques

Embedding strategies are popular techniques in order build a feature space in which
pattern recognition algorithms can be applied without alternations. The major dif-
ference between embedding techniques and the feature generation approach de-
scribed in Section 3.3.1 is that the latter case considers a one-to-one mapping be-
tween patterns in the original space and their respective feature vectors (each pattern
is individually transformed thanks to the mapping function m(·)). Conversely, in the
former case, the feature space (embedding space) is built by considering some sort
of ’cooperation’ and exploiting relations between patterns, or substructures drawn
from them.

Dissimilarity Space

The dissimilarity space embedding can be summarised by this simple, yet effective,
idea: each pattern is represented according to the pairwise distances with respect to
all other patterns [125, 309].

Specifically, let D be a dataset whose patterns belong to a structured domain X
and let d(·, ·) be a dissimilarity function defined over X . The embedding towards a
dissimilarity space consists in defining the following dissimilarity matrix:

Pi,j = d(xi, xj) ∀xi, xj ∈ D (3.12)

and then using the ith row (or column) from P in lieu of the ith pattern from D.
In other words, each pattern is described as a |D|-dimensional real-valued vector
containing the pairwise distances with respect to all other patterns, including itself.

Two caveats have to be considered. First, if d(·, ·) does not satisfy the symmetry
property, then P will not be symmetric either and ambiguities exist about whether
to represent the ith pattern according to the ith row or column of P. In this case, it is
possible to ’enforce’ symmetry by letting

P← 1
2

(
P + PT

)
(3.13)

where (·)T denotes the transpose operator.
Second, building the dissimilarity space as in Eq. (3.12) has time and space com-

plexity which goes as O(c · |D|2), where c indicates the computational complexity
for evaluating a single dissimilarity between any two patterns, and can be trouble-
some for large datasets and/or computationally expensive dissimilarity measures
d(·, ·). In order to overcome this problem, in [310], it has been proposed to choose
a suitable subset of prototypes R ⊂ D as pivotal patterns in order to build the em-
bedding space. Therefore, it is possible to define a ’reduced’ dissimilarity space as
follows:

Pi,j = d(xi, xj) ∀xi ∈ D, xj ∈ R (3.14)

Evaluating the pairwise distances with respect to the prototypes drops the overall
complexity from O(c · |D|2) to O(c · |D| · |R|). The price to pay for lower complex-
ity relies on a thoughtful and suitable choice of patterns to be included in R: the
cardinality of R impacts the complexity, yet the selected representatives must well
characterise the decision boundary. For carrying out the delicate task of electing
patterns in R, several techniques have been proposed in literature, including [100,
231]:

• random selection, possibly class-aware in case of supervised problems

3.3. Mainstream Approaches 27

• clustering procedures over D using d(·, ·) (cf. Section 3.3.2) in order to use the
resulting medoids (MinSoDs) as prototypes

• optimisation-driven techniques, where a suitable subset of prototypes is se-
lected in order to optimise a given objective function (e.g., classifier perfor-
mances on some validation/test data).

Information Granulation

Another explicit embedding procedure relies on Granular Computing (GrC). GrC
is a human-inspired information processing paradigm suitable for modelling com-
plex systems that explores multiple levels of ’granularity’ in data [29, 305, 394]. The
concept of GrC arose from many branches of natural and social sciences [172, 393],
and it is at the basis of recently developed frameworks in computational intelligence
[225, 345]. GrC aims at the extraction of suitable entities known as information gran-
ules which are strictly problem- and data-dependent. The process of ’granulation’,
intended as the extraction of meaningful data aggregates, mimics the human mech-
anism needed to organise complex data from the surrounding environment in order
to support decision making activities and describe the world around [306].

The importance of information granules resides in the ability to underline prop-
erties and relationships between data aggregates. Specifically, their synthesis can be
achieved by following the indistinguishability rule, according to which elements that
show enough similarity, proximity or functionality shall be grouped together [398].
With this approach, each granule is able to show homogeneous semantic informa-
tion from the problem at hand [307]. Furthermore, data at hand can be represented
using different levels of granularity and thus different peculiarities of the system
can emerge. When analysing a system with high level of detail, one shall expect a
huge number of very compact information granules since finer details are of interest.
Conversely, as the level of abstraction increases, the number of information granules
decreases and, as a result, one shall expect very few, yet populated and less compact
information granules. Depending on the resolution, a problem may exhibit differ-
ent properties and different atomic units that show different representations of the
whole system.

Due to the very tight link between "information granules" and "groups-of-similar-
data", data clustering is one of the mainstream approaches in order to extract infor-
mation granules from a set of (possibly structured) data [119]. In fact, data cluster-
ing has been successfully employed in several GrC-based classification systems for
structured data, including graphs [17, 41, 43, 44, 231] and sequences [243, 315, 323,
324].

All aforementioned works share four macro-blocks for synthesising the pattern
recognition system. The first block is the "extractor" which returns sub-structures24

drawn from the training data. The resulting set of sub-structures is forwarded to
the next module, the "granulator": a clustering algorithm (usually BSAS or BSAS-
like) equipped with an ad-hoc (dis)similarity suitable to the domain (e.g., graph
edit distance in case of graphs or string matching techniques [183, 221] in case of
strings/documents) returns a suitable number of clusters. The corresponding Min-
SoDs form an alphabet of pivotal symbols on the top of which the embedding can be
performed thanks to the "embedder" block: let A = {s1, . . . , sM} be the alphabet of
M symbols, each (structured) pattern x is cast towards an M-length integer-valued

24e.g., simple paths in case of graphs or adjacent items (characters, words) in case of sequences.

28 Chapter 3. Pattern Recognition in Structured Domains

vector h ∈ RM defined as

hA(x) = [count(s1, x), . . . , count(sM, x)] (3.15)

where count(a, b) is a function that enumerates a in b. h is the so-called symbolic his-
togram [105, 106], as it contains the number of occurrences of each alphabet symbol
within the original pattern. The space spanned by symbolic histograms is the em-
bedding space, which can be equipped with any algebraic structure, and the "clas-
sifier" block, usually driven by K-NN equipped with the plain Euclidean distance,
takes care of performing the classification. Those advanced pattern recognition sys-
tems for structured domains are usually driven by genetic algorithms in order to
tune weights and parameters involved, including the cluster radius and maximum
number of allowed clusters for BSAS, weights for the (dis)similarity measure (if any)
and the binary mask for feature selection.

The feature selection phase deserves a few additional remarks due to the follow-
ing benefits:

1. the clustering procedure can easily return symbols which might not be useful
for the classification task: discarding unpromising symbols can improve the
classification performances and avoid phenomena such as the curse of dimen-
sionality or overfitting

2. the complexity (dimensionality) of the embedding space is reduced and the
classification of new patterns is faster (i.e., less symbols to match with – see
Eq. (3.15))

3. GrC-based pattern recognition systems allow an interesting a-posteriori knowl-
edge discovery phase: depending on the application, one can let field-experts
to analyse the information granules that somehow ’survived’ the feature gen-
eration phase in order to gather further insights on the modelled system.

Kernel Methods

Dissimilarity spaces and GrC-based techniques rely on explicit embeddings towards
a vector space: in the former case, the embedding space is built on top of (a possibly
reduced subset of) the training data; in the latter case, the embedding is built by con-
sidering meaningful and recurrent sub-structures extracted from the training data.
Further, in both cases, an a-posteriori knowledge discovery phase is possible: in the
former case, one can analyse the patterns included in the prototypes set; in the latter
case, one can analyse the resulting alphabet.

Kernel methods are another powerful pattern analysis technique that, conversely,
relies on an implicit embedding and can be used with suitable learning systems, the
seminal example being SVMs [86]. Kernel methods rely on the so-called kernel func-
tions [271] to implicitly embed the input data towards an high-dimensional (possibly
infinite-dimensional) Hilbert space H. In the latter, according to the Cover’s Theo-
rem [88], linear classification is more likely.

Definition 4 ((Positive Definite) Kernel). Let X be a generic input space and let
K : X × X → R be a continuous function from the product space X × X towards
the reals. The function K(·, ·) is called a (positive definite) kernel if it is symmetric

3.3. Mainstream Approaches 29

and positive definite, that is:

K(xi, xj) = K(xj, xi) ∀xi, xj ∈ X (3.16)
NP

∑
i=1

NP

∑
j=1

cicjK(xi, xj) ≥ 0 ∀ci, cj ∈ R, ∀xi, xj ∈ X (3.17)

Usually kernel methods are employed whether the input space has an underly-
ing Euclidean geometry: indeed, the simplest kernel (the linear kernel) is the plain
dot product between feature vectors

K(xi, xj) = 〈xi, xj〉 (3.18)

where 〈·, ·〉 denotes the dot product.
Let us consider the input data to be arranged in an N×m instance matrix, where

N denotes the number of patterns and m denotes the number of features. The kernel
matrix25 K ∈ RN×N can also be evaluated in a batch fashion as

K = X · XT (3.19)

If data points are linearly separable, the linear kernel can lead to satisfactory results.
Otherwise, one can replace the dot product with one of the many kernel functions
available. In Table 3.1 some popular non-linear kernels suitable for dealing with
vector data are summarised.

TABLE 3.1: Some popular non-linear kernels for vector data.

Kernel Definition Parameters

Radial Basis Function K(x, y) = exp{−γ‖x− y‖2}
Polynomial K(x, y) = (x · y + v)p v ≥ 0, p ≥ 0

Hyperbolic Tangent K(x, y) = tanh{ax · y + r} a > 0, r < 0
Laplace K(x, y) = exp

{
− ‖x−y‖2

σ

}
The power of kernel methods can be summarised by the kernel trick [335], de-

scribed be the following, seminal equation:

K(x, y) = 〈φ(x), φ(y)〉H (3.20)

which basically states that instead of performing an explicit mapping thanks to a
(possibly unknown and possibly computationally expensive) function φ(·) and then
performing the dot product between the two transformed vectors, one can define a
kernel function K(·, ·) satisfying the Mercer’s condition, namely Eqs. (3.16)–(3.17),
that takes care of implicitly performing both embedding and dot product inH.

So far, kernel methods have been described for dealing with vector data, stress-
ing the fact that kernels should satisfy the Mercer’s condition. However, especially
in the 2000s, a lot of research has been devoted towards learning from empirical
(indefinite) kernels, namely ’kernels’ that do not satisfy the Mercer’s condition. As
SVMs are concerned, a non-positive definite kernel does not guarantee the maximal-
margin optimisation problem to be convex, hence local solutions can be returned.
Nonetheless, some empirical kernels have been proved to be quite successful, or

25Also known as the Gram matrix, after Danish mathematician Jørgen Pedersen Gram.

30 Chapter 3. Pattern Recognition in Structured Domains

some techniques have been proposed in order to foster an empirical kernel matrix
towards positive definiteness, see e.g. [73, 74, 163, 210, 296].

In the same timespan, research has been devoted to the development of kernel
functions for dealing with structured data as well. Notable examples include strings
[219, 220], images [207] and, obviously, graphs. As the latter case is concerned, graph
kernels can be divided into four big families [147]:

• Model driven kernels exploit generative models or transformative models. An
example of generative model driven kernel is the Fisher kernel [175], which
exploits hidden Markov models. Conversely, an example of transformative
model driven kernel is the diffusion kernel [203], which exploits the heat equa-
tion in order to diffuse local information (neighbourhood) to all the graph.

• The largest family is composed by syntax driven kernels, which aim at analysing
trees, paths, cycles or subgraphs. Notable examples include random walk ker-
nels [145, 366], shortest path kernels [49], graphlet kernels [342] and the We-
isfeiler–Lehman kernels [341, 343]. The first three, respectively, take into con-
sideration the number of random walks between two graphs via their product
graph, the number of common shortest paths and the number of common k-
order graphlets. The fourth one, as instead, computes the number of subtree-
walks shared between two graphs using the Weisfeiler–Lehman test of graph
isomorphism.

• Another state-of-the-art approach is given by propagation kernels [288], which
are based on the spread of information across several graphs using early-stage
distributions from propagation schemes (e.g., random walks) in order to model
different types of node and edge labels. Such propagation schemes make prop-
agation kernels suitable for dealing also with unlabelled and partially labelled
graphs.

• Finally, deep graph kernels [391] can be seen as an extension of the aforemen-
tioned syntax driven kernels, where a positive semidefinite matrix weights
(encodes) the relationships between sub-structures (e.g., graphlets).

31

Chapter 4

Proposed Pattern Recognition
Systems

4.1 Graph Classification by Spectral Density Estimation

In Section 2.1, the main graph matrix representations have been introduced, namely
the adjacency matrix A, the degree matrix D, the Laplacian matrix L and the nor-
malised Laplacian L. Again from Section 2.1, it is worth recalling the following char-
acteristics of the normalised Laplacian matrix:

1. conveys many structural and dynamical properties of the network

2. is a square and symmetric matrix: as such, there exist a spectral decomposition
with non-complex eigenvectors and eigenvalues

3. following point 2, there are no negative eigenvalues and, specifically, all eigen-
values lie in range [0, 2].

This first experiment concentrates on the normalised Laplacian matrix, with the
latter point serving as the main actor.

Let D = {G1, . . . ,GN} be a dataset of N graphs of the form G = (V , E). For the
sake of generalisation, let us suppose that graphs in D have different sizes. For each
graph, one can easily evaluate the four matrices A, D, L and L; however, if the graph
has n = |V| nodes, then A, D, L, L ∈ Rn×n, hence none of these matrices can directly
be used in order to compare two graphs having different number of nodes.

Let us consider the spectral decomposition of L as in Eq. (2.8):

L = VΛ(L)VT (4.1)

with Λ(L) = diag
{

λ
(L)
1 , . . . , λ

(L)
n

}
being a diagonal matrix containing the eigenval-

ues of L. Despite the aforementioned boundedness in [0, 2], the size of the spectrum
(i.e., the number of eigenvalues) equals the number of nodes: so neither the spec-
trum can directly be used in order to compare two graphs having different sizes.

Following [244], it is possible to estimate the graph spectral density by means
of a kernel density estimator [303] with Gaussian kernel. In other words, the (nor-
malised) Laplacian matrix is treated as a random matrix with a well-defined spectral
density p(x) [158, 180, 181, 267, 269] that reads as:

p(x) =
1
n

n

∑
i=1

1√
2πσ2

e
−(x− λi)

2

2σ2 (4.2)

32 Chapter 4. Proposed Pattern Recognition Systems

where σ denotes the bandwidth. In order to consider a bandwidth that automatically
scales in a graph-wise fashion, the Scott’s rule [338] has been considered, defined as

σ =
3.5σ̂

n−1/3 (4.3)

where σ̂ denotes the sample standard deviation and n denotes its size.
Let Ga and Gb two graphs to be compared and let pa(x) and pb(x) be their respec-

tive spectral densities. Their distance can be evaluated by taking the `2 norm:

d(Ga,Gb) =
∫ 2

0
(pa(x)− pb(x))2dx (4.4)

The same operation can be performed in the discrete domain by sampling a finite
number of samples m, equal for all graphs, from their respective spectral densities:
each graph is therefore unambiguously identified by a vector in Rm and the distance
between any graphs, formerly Eq. (4.4), collapses into a plain Euclidean distance.

Figure 4.1 summarises the steps required in order to evaluate the spectral density
of a given graph. Starting from an unweighted and undirected graph G with n = 20
nodes (Figure 4.1a) described by its adjacency matrix A (Figure 4.1b), the degree ma-
trix D, the Laplacian matrix L and the normalised Laplacian matrix L are evaluated
(Figures 4.1c, 4.1d and 4.1e, respectively) thanks to Eqs. (2.2), (2.4) and (2.7), respec-
tively. Figure 4.1f closes the pre-processing chain: the eigenvalues of L are computed
first (red crosses on the x-axis), in order to evaluate the spectral density as in Eq. (4.2)
(smooth blue curve) and, eventually, a given number of m = 100 samples linearly
spaced in [0, 2] are drawn from the resulting distribution (blue stems).

By recalling the three-fold partition of techniques for solving pattern recognition
problems in structured domains (Section 3.3), it is safe to say that this approach
falls under the feature generation umbrella (Section 3.3.1). The herein described pre-
processing chain has to be individually performed on each graph in D in order to
cast each graph into an m-length feature vector. By following the standard machine
learning convention, the dataset D can be transformed into an instance matrix X ∈
RN×m with patterns (i.e., feature vectors) arranged as rows. This instance matrix,
lying in a Euclidean space, can be freely fed to any machine learning system.

4.2 Graph Classification using the Betti Numbers Sequence

In Section 2.2, TDA has been introduced along with the definition of simplices, sim-
plicial complexes, simplicial homology and Betti numbers. Specifically, Betti num-
bers have been defined as topological invariants in order to distinguish different
topological spaces.

The evaluation of the Betti numbers starts from the definition of a properly con-
structed simplicial complex. In this case, the Vietoris-Rips complex is considered
due to lighter computational burden and intuitiveness. In [410] a fast three-steps
procedure for building the Vietoris-Rips is proposed:

1. given a set of points C equipped with a notion of distance d(·, ·), the Vietoris-
Rips neighbourhood graph GVR = (V , E) is build by considering C ≡ V and
by adding edges in E whether two points are less than or equal to ε apart,
according to d(·, ·)

2. the Clique Complex of GVR is evaluated (i.e., thanks to the Bron-Kerbosch al-
gorithm [54])

4.2. Graph Classification using the Betti Numbers Sequence 33

(A) A (random) graph (B) Adjacency Matrix

(C) Degree Matrix (D) Laplacian Matrix

(E) Normalised Laplacian Matrix (F) (Sampled) Spectral Density

FIGURE 4.1: Pre-processing chain for evaluating graphs spectral density.

3. the faces of the (maximal) simplices (i.e., lower order simplices) can be ex-
tracted combinatorially.

Given a suitable value for ε, once the Vietoris-Rips is built, the Betti numbers can be
evaluated thanks to Eqs. (2.20)–(2.22).

The choice of ε is critical as it determines the ’resolution’ of the simplicial com-
plex. In Figure 4.2 an example is shown which sees the 1HNR protein (already in
Figure 1.1) at different scales. Usually, in TDA one finds a suitable value for ε thanks

34 Chapter 4. Proposed Pattern Recognition Systems

to persistence diagrams and barcodes [71, 412], useful visualisation tools for study-
ing relevant topological features. The idea behind persistence can be summarised
as follows: as ε changes, new connected components can appear, disappear, can be
merged to other connected components. In higher dimensions, voids and cavities
can appear, can be filled, and so on. Persistence is a tool which ’tracks’ the life-
time of such changes and, with the rationale that features having longer lifetimes
are more important, one finds a suitable scale value that lets such important features
to be ’visible’. The data analysis task proceeds using this suitable value. Figure 4.3
shows the barcode for protein 1HNR (Figure 4.2): the barcode shows the persistence
of topological features as ε changes. There is a strong link between the barcode and
the Betti numbers: the number of k-dimensional holes, namely βk, at a given scale
ε is the number of intervals in dimension k that intersects a vertical line through ε.
For example, see Figure 4.3, at k = 0 there are plenty of bars crossing ε ∈ [0, 4),
meaning that there are plenty of 0-dimensional holes, hence the graph is strongly
disconnected with a lot of connected components (coherently with the PCN connec-
tivity range – cf. Section 1.3). For ε ≥ 4 there is only one interval at k = 0, meaning
that there is one connected component. Further analogies between barcodes and
Betti numbers can be found in the caption of Figure 4.3.

The learning approach herein discussed considers the rationale behind persis-
tence by putting it in a feature engineering scenario. Specifically, letD = {C1, . . . , CN}
be a dataset of N point clouds lying in an m-dimensional space and let ε1, . . . , εj be
a set of j suitable candidates for the scale parameter ε.

For each point cloud in D the Vietoris-Rips complex is evaluated by considering
each of the ε candidate values and, consequently, its Betti numbers are computed.
Hence, a given point cloud C is cast towards an integer-valued vector defined as:[

β
(ε1)
0 , . . . , β

(ε1)
m−1, . . . , β

(εj)
0 , . . . , β

(εj)

m−1

]
(4.5)

where β
(b)
a is the ath Betti number at ε = b. In other words, the feature vector collects

the number of ’holes’ in each dimension as ε changes.
The dataset D can therefore be transformed into an instance matrix X ∈ RN×(j·m)

which spans a multidimensional Euclidean space that can trivially be equipped with
any algebraic structure for pattern recognition purposes.

4.3 Embedding over Simplicial Complexes

In Section 2.2, simplicial complexes have been defined as finite collections of sim-
plices that, in turn, have been introduced as ’multidimensional building blocks’ of
a topological space. Further, in Section 4.2, the Betti numbers have been feature-
engineered as prospective features for pattern recognition purposes. The technique
herein described leverages on the following question:

Can simplices be interpreted as meaningful information granules?

Specifically, recalling the GrC-based embedding techniques from Section 3.3.3, the
possibility of using these topological objects as pivotal substructures in order to
build an embedding space for pattern recognition purposes is investigated. Fur-
thermore, this experiment not only marks a significant deviation from previous two
feature engineering strategies (Sections 4.1 and 4.2) towards an embedding via in-
formation granulation, but also sees semantic information playing a crucial role. In-
deed, in Section 2.1, graphs have been described as abstract entities able to capture

4.3. Embedding over Simplicial Complexes 35

(A) ε = 4 (B) ε = 5

(C) ε = 6 (D) ε = 7

(E) ε = 8

FIGURE 4.2: Topological configuration of a sample PCN (PDB 1HNR) at different scales. For
the sake of completeness, at ε = 4 the sequence of Betti numbers is β0 = 1, β1 = 1, β2 = 0;
at ε = 5 one gets (1, 7, 0); at ε = 6 one gets (1, 4, 0); at ε = 7 one gets (1, 3, 0) and, finally, at

ε = 8 one gets (1, 2, 0).

both semantic and topological information: nonetheless, in the two previous strate-
gies, labels on nodes and edges have not been taken into account.

Let D be a dataset of graphs26 (1-skeletons) of the form G = (V , E ,Lv), where Lv

26In Chapter 5 this embedding procedure will be tested using the Clique Complex in order to exploit
the topological information already available in the considered datasets. However, it is worth noting
that any simplicial complex can be used instead of the Clique Complex, so this embedding technique
can easily be extended towards datasets composed by point clouds.

36 Chapter 4. Proposed Pattern Recognition Systems

FIGURE 4.3: Barcode for sample PCN (PDB 1HNR) drawn using JavaPlex [354] for MAT-
LAB®. The filtration value ε lies on the x-axis. For example, note that, at ε = 4, one 0-
dimensional interval and one 1-dimensional interval cross the corresponding vertical line,
while there are no intervals in dimension 2: the Betti numbers are therefore (1, 1, 0). Simi-
larly, at ε = 5, one 0-dimensional interval and seven 1-dimensional intervals cross the cor-
responding vertical line, while there are no intervals in dimension 2: the Betti numbers are
(1, 7, 0). These ’plain counts’ perfectly match the Betti numbers sequences from Figure 4.2,

which have been evaluated analytically according to Eqs. (2.20)–(2.22).

is the set of node labels: for the sake of ease, let us consider node labels belonging to
a finite categorical set (e.g., strings). Finally, let D be split into three disjoint subsets,
namely training set (DTR), validation set (DVAL) and test set (DTS), i.e. such that:

DTR ∪DVAL ∪DTS = D (4.6)
DTR ∩DVAL = ∅, DTS ∩DVAL = ∅, DTR ∩DTS = ∅ (4.7)

DTR ∩DVAL ∩DTS = ∅ (4.8)

The first step consists in inferring the simplicial complexes separately for all
graphs in the three splits:

DSC
TR = {sc(G), ∀G ∈ DTR} (4.9)

DSC
VAL = {sc(G), ∀G ∈ DVAL} (4.10)

DSC
TS = {sc(G), ∀G ∈ DTS} (4.11)

where sc(·) : G → S is a function that builds the simplicial complex S starting from
the 1-skeleton G.

The embedding considers the simplices belonging to the simplicial complexes in
DSC

TR ∪ DSC
VAL. In information granulation terms, the union of these simplices forms

the alphabet on the top of which the embedding can be performed. This operation,
however, has the following two drawbacks:

4.4. Embedding via INDVAL 37

1. in case of large networks and/or large datasets, this might lead to a huge num-
ber of simplices (very high-dimensional space)

2. simplices are impossible to match, hence evaluating the symbolic histograms
is impossible. In order to focus this point, let us consider any given vertex
belonging a given graph to be identified by a unique progressive number. In
this case, it is impossible to match two simplices belonging to possibly differ-
ent simplicial complexes (i.e., determine whether they are equal or not): one
can easily say whether they share the same order by looking at the number
of nodes belonging to the simplex, yet one cannot say whether they share the
same nodes.

In order to overcome these problems, node labels play a crucial role. Each node
can dually be identified by its node label drawn from Lv, other than a progressive
unique identifier. This conversion from ’simplices-of-nodes’ to ’simplices-of-node-
labels’ has a three-fold meaning:

1. matching two simplices (possibly belonging to two different simplicial com-
plexes) is straightforward: two simplices are equal if they share the same order
and their respective vertices share the same node labels

2. the enumeration of different, unique, simplices is straightforward

3. by means of this conversion, simplicial complexes are de facto treated as multi-
sets: indeed, within the same simplicial complex, different simplices can share
the same node labels.

It is possible to define the three counterparts of Eqs. (4.9)–(4.11) where each given
node v belonging to a given simplex σ is identified by its node label:

DSC
TR = {Lv(v), ∀v ∈ σ, ∀σ ∈ S , ∀S ∈ DSC

TR} (4.12)

DSC
VAL = {Lv(v), ∀v ∈ σ, ∀σ ∈ S , ∀S ∈ DSC

VAL} (4.13)

DSC
TS = {Lv(v), ∀v ∈ σ, ∀σ ∈ S , ∀S ∈ DSC

TS} (4.14)

Let A be the alphabet composed by the union of the distinct (unique) simplices in
DSC

TR ∪ D
SC
VAL: as per the symbolic histograms technique, A contains the set of piv-

otal substructures (i.e., information granules – cf. Section. 3.3.3) on the top of which
the embedding is performed. Let M = |A| be the number of symbols, each simpli-
cial complex S is transformed into an M-length integer-valued vector (the symbolic
histogram – cf. Eq. (3.15)) as follows:

hA(S) = [count(A1,S), . . . , count(AM,S)] (4.15)

Thanks to the symbolic histograms embedding, the three sets DSC
TR, DSC

VAL and DSC
TS

are transformed into three instance matrices XTR ∈ R|DTR|×M, XVAL ∈ R|DVAL|×M and
XTS ∈ R|DTS|×M lying in a Euclidean space and suitable to be processed by standard
pattern recognition algorithms.

4.4 Embedding via INDVAL

With this embedding technique the focus returns to ’plain graphs’ rather than hy-
pergraphs and simplicial complexes. Furthermore, conversely to the previous case

38 Chapter 4. Proposed Pattern Recognition Systems

from Section 4.3, this embedding procedure exploits the ground-truth labels from
the classification problem at hand.

The core of this procedure is the so-called INDVAL score: a sensitivity/specificity
integrated evaluation approach originally proposed in [124] and developed for in-
dividuating the ’signature species’ of a given environment. The philosophy at the
basis of the INDVAL is straightforward: a given species, say S, is ’representative’
(thus useful for the recognition of a given environmental condition E) if it satisfies
both of the following properties

1. S must be present only (or almost only) in the E-positive objects (e.g., fields,
samples of territory)

2. S must be present in all (or the great majority) of the E-positive cases.

Rather than individuating ’signature species’ of different environments, in this em-
bedding technique, the INDVAL is used in order to spot ’signature substructures’
in structured data. These ’signature substructures’ will finally form the alphabet of
pivotal substructures for building the embedding space.

As per the previous case, let D be a dataset of graphs where each graph has the
form G = (V , E ,Lv) and let L be the set of ground-truth class labels for graphs in
D. Again, for the sake of ease, let us suppose that node labels Lv belong to a finite
and categorical set. Let DTR, DVAL and DTS be three disjoint subsets drawn from D
satisfying Eqs. (4.6)–(4.8) and, finally, consider L to be split accordingly (LTR, LVAL
and LTS).

In [124], the authors proposed a unified index (INDVAL) aimed at identifying
the sensitivity and the specificity of single individual elements (species, in their
work) belonging to different groups (environments, in their work). As the proce-
dure herein described is concerned, "individual elements" can be substructures of
structured data (e.g., edges in a graph), whereas "groups" can be deduced thanks to
L. Given the definition of substructure (e.g., edge), under the graphs point of view,
the INDVAL I can be restated as follows:

Ai,j =
patterns in class j having edge i

patterns having edge i
(4.16)

Bi,j =
patterns in class j having edge i

patterns belonging to class j
(4.17)

Ii,j = Ai,j · Bi,j · 100 (4.18)

By definition, since Ai,j ∈ [0, 1] and Bi,j ∈ [0, 1], then Ii,j ∈ [0, 100]. The three involved
players (A, B, I) have the following interpretation:

• A is a measure of specificity: its maximum value is obtained when the ith edge
can be found only in patterns of class j

• B is a measure of sensitivity: its maximum value is obtained if all patterns of
class j have the ith edge

• the INDVAL I considers the two previous terms: the maximum INDVAL cor-
responds to the maximum specificity and sensitivity of the ith edge for the jth

group (class), namely the ’perfect edge’, which is contained in all patterns of
class j and is absent in all patterns belonging to other classes.

4.5. Hypergraph Kernels 39

Let E be the set of unique edges27 in DTR ∪ DVAL and let L be the set of unique
ground-truth class labels (i.e., the number of classes for the classification problem at
hand), then one can figure A, B, I ∈ R|E |×|L| as compact matrix representations of
Eqs. (4.16), (4.17) and (4.18), respectively. Then, one can select edges (rows) from
I whether at least one of the INDVALs (columns) is above a user-defined threshold
T. In other words, edges are selected if considered ’relevant’ for at least one of the
problem-related classes. Hence, the alphabet A = {s1, . . . , sM} is composed by the
set of selected edges.

As per the previous case, the embedding follows the symbolic histogram ap-
proach: each graph is described by an M-length integer-valued vector containing
the number of occurrences of each relevant edge within the original graph. The
three sets (DTR, DVAL and DTS) are finally transformed into the three already famil-
iar instance matrices (XTR ∈ R|DTR|×M, XVAL ∈ R|DVAL|×M and XTS ∈ R|DTS|×M).

4.5 Hypergraph Kernels

In Sections 4.1–4.2 two feature engineering techniques have been proposed (Section
3.3.1) and in Sections 4.3–4.4 two GrC-based embedding strategies have been pre-
sented (Section 3.3.3). In this Section (and in the following one), kernel methods will
be of interest.

In Section 3.3.3 the main families of graph kernels have been introduced, so it is
worth asking the following question:

Is it possible to define kernels over simplicial complexes (hypergraphs)?

The overall setup is the same as the embedding over simplicial complexes described
in Section 4.3: let us consider a dataset D composed by either point clouds or 1-
skeletons. Let the vertices be equipped with categorical node labels.

The first step is to evaluate the simplicial complexes for all items inD: trivially, if
D is composed by 1-skeletons, one can directly use the Clique Complex; otherwise,
if D is composed by point clouds, one can use the Alpha Complex or the Vietoris-
Rips Complex28. As already discussed in Section 4.3, let each vertex belonging to
a given simplex to be identified by its corresponding node label in order to easily
match two simplices: two simplices can be considered equal if they share the same
order and the same node labels. Given the simplicial complexes, the following four
hypergraph kernels are proposed [254].

The Histogram Kernel (HK) is loosely based on the symbolic histogram technique.
Let Si and Sj be two simplicial complexes and let A = Si ∪ Sj be the set of unique
simplices belonging to either Si or Sj. Then, a given simplicial complex, say S , can
be cast into a vector, say f ∈ R|A|, where

fk = count(Ak,S), ∀k = 1, . . . , |A| (4.19)

where count(a, b) is a function that counts the number of occurrences of a in b.
Hence, thanks to Eq. (4.19), Si → f(i) and Sj → f(j) and HK has the form

KH(Si,Sj) = 〈f(i), f(j)〉 (4.20)

27The unique edges can be enumerated by considering the two nodes (or, better, their labels) at their
extremities (alike to the simplices case in Section 4.3).

28Due to heavy computational burden, using the Čech Complex is always discouraged.

40 Chapter 4. Proposed Pattern Recognition Systems

However, HK defined as in Eq. (4.20) can be skewed by the different number of
simplices within each simplicial complex. To this end, the following normalisation
is adopted:

KH(Si,Sj) =
〈f(i), f(j)〉√

〈f(i), f(i)〉 · 〈f(j), f(j)〉
(4.21)

From Section 2.2 it is clear that simplicial complexes as sets, hence a straightfor-
ward idea is to use a similarity measure between sets as the core of the kernel. The
seminal example is the Jaccard similarity [176–178], defined as the ratio between the
size of the intersection divided by the size of the union between two sets. Since
a simplex can be identified by the set of labels associated to each node, different
simplices within the same simplicial complex can share the same node labels. This
means that simplicial complexes are de facto multisets and the Jaccard similarity as
previously defined loses its effectiveness. For dealing with multisets, the weighted
Jaccard similarity (also known as Ružička index [332]) is considered. Given two
vectors, say a, b ∈ Rn, the weighted Jaccard similarity is defined as

JW(a, b) = ∑n
i=1 min(ai, bi)

∑n
i=1 max(ai, bi)

(4.22)

and the Weighted Jaccard Kernel (WJK) is therefore defined as

KWJ(Si,Sj) = JW(f(i), f(j)) (4.23)

where f(i) and f(j) follow from Eq. (4.19).
The Edit Kernel (EK) aims at measuring the similarity between two simplicial

complexes according to the number of simplices to be inserted/removed/substituted
in order to transform the two simplicial complexes into one another. Let e(Si,Sj) be
an edit distance (Levenshtein-like) with unitary weights. The first step is to convert
the distance measure into a (possibly normalised) similarity measure. In [396] it has
been demonstrated that

ē(Si,Sj) =
2 · e(Si,Sj)

|Si|+ |Sj|+ e(Si,Sj)
(4.24)

is a normalised edit distance in range [0, 1] which satisfies the properties of a met-
ric. From Section 3.3, recall that if d is a normalised metric distance, then 1− d is a
normalised metric similarity. Hence, EK has the form

KE(Si,Sj) = 1− ē(Si,Sj) (4.25)

It is noteworthy that edit distances/similarities are sensitive to the order of the input
sequences. In order to ease the matching procedure, within each simplicial complex,
simplices are jointly sorted both lexicographically (i.e., according to the node labels)
and according to their orders.

The Stratified Edit Kernel (SEK) takes into account the following issue with EK: the
latter can be skewed if the two simplicial complexes have a high variety of simplices
per order. LetK be the set of different orders amongst simplices in the two simplicial
complexes to be matched, then the SEK is defined as

KSE(Si,Sj) =
1
|K| ∑

k∈K
1− ē(S (k)i ,S (k)j) (4.26)

4.5. Hypergraph Kernels 41

where, recall, S (k) denotes the subset of k-simplices in the simplicial complex S .
The stratification allows to treat independently subsets of simplices having the same
order; nonetheless, simplices are sorted lexicographically within each subset.

By their respective definitions, the four kernels exploit simplicial complexes un-
der different lights: for HK, an explicit embedding towards a vector space is per-
formed before evaluating the linear kernel; WJK relies on the set (or, better, multiset)
structure of the simplicial complexes when equipped with semantic information on
their respective nodes; EK and SEK measure the similarity in terms of edit opera-
tions defined on simplices.

In Section 3.3.3 the importance of positive definiteness has been stressed, so it is
worth addressing whether the four proposed kernels satisfy the Mercer’s condition.

Theorem 3. The Histogram Kernel is positive definite.

Proof. The Histogram Kernel is based on pairwise dot products, hence it trivially
satisfies Mercer’s condition, as already in Eq. (3.18). Furthermore, the normalisation
adopted does not affect positive definiteness, as stated by Schölkopf and Smola in
[335].

Theorem 4. The Weighted Jaccard Kernel is positive definite.

Proof. In order show that the Weighted Jaccard Kernel is a valid kernel is worth
mentioning the following theorem (the proof can be found in [144]):

Let K(a, b) be a kernel function satisfying Mercer’s condition, then the following kernel
is still valid:

K̂(a, b) =
K(a, b)

K(a, a) + K(b, b)− K(a, b)
(4.27)

Eq. (4.22) can be re-written as follows

JW(a, b) = ∑n
i=1 min(ai, bi)

∑n
i=1 ai + ∑n

i=1 bi −∑n
i=1 min(ai, bi)

(4.28)

and by considering Eq. (4.27), Eq. (4.28) can be re-written as

JW(a, b) = ∑n
i=1 min(ai, bi)

∑n
i=1 min(ai, ai) + ∑n

i=1 min(bi, bi)−∑n
i=1 min(ai, bi)

(4.29)

By comparing Eqs. (4.27) and (4.29), it is clear that the Weighted Jaccard Kernel
is a valid kernel if K(a, b) = ∑n

i=1 min(ai, bi) is a valid kernel as well. In order to
demonstrate the latter, it is worth mentioning the following lemma (the proof can be
found in [283]):

Let {a1, . . . , am} be a finite set of real-valued numbers, then the matrix M ∈ Rm×m,
defined as follows, is a valid kernel matrix:

Mi,j = min(ai, aj) (4.30)

As the Weighted Jaccard Kernel deals with real-valued vectors in Rn and not with
real-valued scalars as in the previous lemma, we shall extend the lemma to the for-
mer case. To this end, it is possible to build a series of n matrices, where each matrix
(of the form as in Eq. (4.30)) considers the pairwise minimum along a given dimen-
sion, say i = 1, . . . , n, of the considered vectors and then perform the element-wise
sum of such matrices:

K(a, b) = M(1) + . . . + M(i) + . . . + M(n) (4.31)

42 Chapter 4. Proposed Pattern Recognition Systems

Finally, Eq. (4.31) can easily be shown to be a valid kernel matrix thanks to the
property that the element-wise sum of positive definite matrices leads to a positive
definite matrix, as shown by Horn and Johnson in [171].

Theorem 5. The Edit Kernel and the Stratified Edit Kernel are not positive definite.

Proof. Edit distances (similarities) are well-known to lead to possibly indefinite ker-
nels, as shown by Neuhaus and Bunke in [287] and stated by Riesen and Bunke in
[320].

4.6 Graph Classification using a Multiple Kernel Approach

In this last technique, different graph representations are simultanously considered
by an hybridisation of multiple kernel learning and dissimilarity representations.

Let us start by briefly recalling the rationale behind dissimilarity spaces (Section
3.3.3). Let D = {x1, . . . , xN} be a dataset lying in a given input space X , not nec-
essarily metric, and let d : X × X → R be a dissimilarity measure defined over X .
The dataset D can be cast towards a dissimilarity space by building a dissimilarity
matrix P ∈ RN×N as follows:

Pi,j = d(xi, xj) ∀xi, xj ∈ D (4.32)

In order to reduce the computational complexity of the dissimilarity space embed-
ding, one can think of selecting a given prototype subset R ⊂ D and perform the
embedding towards a ’reduced’ dissimilarity space P̄ ∈ R|D|×|R| by considering the
pairwise dissimilarities with respect to the prototypes only [310]:

P̄i,j = d(xi, xj) ∀i = 1, . . . , |D|, ∀j = 1, . . . , |R| (4.33)

In Section 3.3.3, kernel methods have also been introduced as powerful pattern
recognition technique, especially for solving non-linear problems. In multiple ker-
nel learning [155] a given number of NK kernels are properly combined into a final
kernel matrix K, with the linear combination being the most straightforward option:

K =
NK

∑
i=1

ωiK(i) (4.34)

where K(i) are single ’sub-kernels’. The weights ωi can be learned according to dif-
ferent strategies and can be constrained in several ways, see e.g. [14, 85, 154, 155,
174, 208, 222, 351]. Typically, multiple kernel methods are employed according to
two different strategies:

• same data to be analysed by several kernels, which may differ in shape and/or
type

• different data (possibly coming from different sources) to be analysed by the
same (or different) kernels.

In this case, a mixed approach is considered: same source (graphs), but different
representations. Further, a convex linear combination of radial basis function kernels
is considered, hence

K(i)
j,k = exp

{
−γi · ‖xj − xk‖2} ∀j, k = 1, . . . , N (4.35)

4.6. Graph Classification using a Multiple Kernel Approach 43

where γi is the shape parameter (see Table 3.1), and the kernel weights ωi are con-
strained as

NK

∑
i=1

ωi = 1 (4.36)

ωi ∈ [0, 1] for i = 1, . . . , NK (4.37)

Before diving into an in-depth description of the proposed technique, is worth stress-
ing the following.

Theorem 6. A multiple kernel machine as in Eq. (4.34) where each single kernel has the
form Eq. (4.35) and where kernels are weighted as in Eqs. (4.36)–(4.37) satisfies Mercer’s
condition.

Proof. Recall from Section 3.3.3 that the radial basis function kernel is a valid kernel
(i.e., satisfying Mercer’s condition). In Cristianini and Shawe-Taylor [90], it has been
shown that the summation of two valid kernels is still a valid kernel, whereas in
Horn and Johnson [171] it has been shown that a positive semi-definite matrix mul-
tiplied by a non-negative scalar returns a positive semi-definite matrix. By merging
these results the proof is straightforward, and the proposed multiple kernel can be
freely used on kernelised SVMs.

Let D be a structured dataset, to be considered as split in three non-overlapping
training, validation and test set (DTR, DVAL and DTS, respectively). Especially in
structured domains, several representations (set of descriptors) might hold for the
same pattern and let {X(1), . . . , X(NR)} be such representations, split in the same fash-
ion (i.e. {X(i)

TR}
NR
i=1, {X(i)

VAL}
NR
i=1 and {X(i)

TS}
NR
i=1). Finally, let {d1(·, ·), . . . , dNR(·, ·)} be

the set of dissimilarity measures, ad-hoc chosen for each of the NR representations.
Hence, one can evaluate the pairwise dissimilarity matrices between training, vali-
dation and test set:

P(1)
TR = d1(X

(1)
TR , X(1)

TR) . . . P(NR)
TR = dNR(X

(NR)
TR , X(NR)

TR)

P(1)
VAL = d1(X

(1)
VAL, X(1)

TR) . . . P(NR)
VAL = dNR(X

(NR)
VAL , X(NR)

TR) (4.38)

P(1)
TS = d1(X

(1)
TS , X(1

TR) . . . P(NR)
TS = dNR(X

(NR)
TS , X(NR)

TR)

Let w ∈ {0, 1}|DTR| be a binary vector in charge of selecting columns from the dissim-
ilarity matrices in Eq. (4.38). Therefore, w allows to move from the ’full’ dissimilarity
space towards the ’reduced’ dissimilarity space (Eq. (4.32) vs. Eq. (4.33)) or, in other
words, w acts as prototype selector:

P̄(1)
TR = P(1)

TR(: , w) . . . P̄(NR)
TR = P(NR)

TR (: , w)

P̄(1)
VAL = P(1)

VAL(: , w) . . . P̄(NR)
VAL = P(NR)

VAL (: , w) (4.39)

P̄(1)
TS = P(1)

TS (: , w) . . . P̄(NR)
TS = P(NR)

TS (: , w)

From the ’reduced’ dataset it is possible to train a multikernel ν-SVM where the
kernel matrix has the form as in Eq. (4.34) and each ’sub-kernel’ has the form as in
Eq. (4.35), hence

K =
NR

∑
i=1

ωi · exp
{
−γi · ‖P̄(i)

TR � P̄(i)
TR‖

2
}

(4.40)

where � denotes the pairwise distances.

44 Chapter 4. Proposed Pattern Recognition Systems

From Eq. (4.40) it is clear that each ’sub-kernel’ operates on a different repre-
sentation (NK ≡ NR). Further, albeit there is some research about learning from
indefinite kernels (see e.g. [73, 74, 163, 210, 296]), namely kernels that do not satisfy
Mercer’s condition, the evaluation on the top of Euclidean spaces (e.g., dissimilarity
spaces) retain the (conditionally) positive definiteness, devoting matrix regularisa-
tion or other tricks to foster positive definiteness.

The combination of training and validation set helps in tuning the several pa-
rameters involved, namely the regularisation term for SVMs, the kernel shapes γi,
the kernel weights ωi and the feature selector vector w.

4.7 Final Remarks

In this Chapter, six techniques for graph-based pattern recognition have been intro-
duced and discussed.

The first two techniques, respectively described in Sections 4.1 and 4.2, aim at de-
scribing a given graph according to its (sampled) spectral density and according to
the sequence of Betti numbers at different scales. Both of these techniques fall under
the feature generation and feature engineering umbrella (see Section 3.3.1). Amongst
the two techniques, the spectral density-based is the easiest to evaluate: indeed, the
computational complexity required for generating features out of a single graph G
with n nodes is upper-bounded by O(n2), namely the computational complexity
of the QR algorithm for returning the QZ factorisation (also known as generalised
Schur decomposition) for solving the generalised eigenvalue problem. Conversely,
the evaluation of the kth Betti number (for a given scale parameter value) has com-
plexity which goes like O(pq2) +O(qr2) if p is the number of (k− 1)-simplices, q is
the number of k-simplices and r is the number of (k + 1)-simplices, namely the com-
plexities of two singular value decompositions for evaluating the two matrix ranks
(see Eq. (2.22)). For a given scale value, one must also consider the computational
complexity required for building the simplicial complex whose Betti numbers are of
interest.

The other two techniques, respectively described in Sections 4.3 and 4.4, aim at
describing a given graph via symbolic histograms using the GrC paradigm. In the
former case, simplices are considered as candidate information granules, whereas in
the latter case ’relevant’ edges (where the ’relevance’ relies upon the INDVAL score)
are considered as candidate information granules. Nonetheless, it is worth consid-
ering that the INDVAL score can be evaluated on ideally any subgraph, being not
a peculiarity of single edges: indeed, one can also evaluate the INDVAL score on
paths on any length within the graph (straightforwardly, an edge is a path of length
1). Amongst the two techniques, the former is easier to evaluate: the number of sim-
plices is way lower than the number of paths. If the Clique Complex is used, then the
worst-case complexity required in order to evaluate the simplicial complex starting
from an n-vertex graph isO(3n/3) [280, 359]. Conversely, if the Vietoris-Rips is used,
then one should build the Vietoris-Rips neighbourhood graph by scoring edges if
nodes are at most ε apart and then evaluate the Clique Complex [410], augment-
ing the overall complexity to O(n2) + O(3n/3). The second technique, as instead,
needs to evaluate all simple paths (e.g., using a Depth First Search-like algorithm
[339]): given a graph G with n nodes and |E | edges, a single path can be found in
O(n + |E |), yet the number of simple paths goes like O(n!) in the worst-case sce-
nario.

4.7. Final Remarks 45

The four hypergraph kernels described in Section 4.5 also rely on simplicial com-
plexes, so the computational complexity required for a single simplicial complex
evaluation does not change with respect to the embedding via simplicial complexes
case. However, the kernel matrix must be evaluated for each pair of simplicial com-
plexes, adding an additional O(N2) cost, if N is the number of patterns.

Finally, the multiple kernel approach described in Section 4.6 is the most expen-
sive technique, computationally speaking. Indeed, for the NR ≡ NK representations,
the full dissimilarity space must be built, with O(N2) cost. Fortunately, these dis-
similarity space matrices must be evaluated only once. The main drawback is the
tuning of the prototype selection and the kernel weights, which lead to many multi-
ple kernel evaluation, each with cost NK · O(N2).

Practically speaking, the multiple kernel technique is the only one in which hard-
ware acceleration turned out to be crucial in order to ensure reasonable training
times: radial basis kernels rely on pairwise Euclidean distances (see the exponen-
tial argument, Table 3.1), that along with other matrix operations such as sum and
element-wise exponential can easily be parallelised on Graphics Processing Units
(GPUs). To this end, a 12GB NVIDIA GeForce GTX TITAN X has been used, along
with the MATLAB® Parallel Computing Toolbox GPU frontend. Nonetheless, the
two embedding techniques and the two feature generation techniques can also be
parallelised in order to deal with large datasets: distributed implementations are
sketched in Appendix B.

Leaving the respective complexities aside, three techniques deserve an addi-
tional, interesting remark. The two embedding techniques (via simplicial complexes
and INDVAL) and the multiple kernel approach allow an additional knowledge dis-
covery phase, which cannot be carried out when using the other three techniques
(spectral density, Betti numbers and hypergraph kernels). The embedding via sim-
plicial complexes technique relies on representing each simplicial complex accord-
ing to the histogram of simplices within the training data, so the following question
might arise

Instead of using all simplices drawn from the training data, there exist
a subset of meaningful simplices? If so, can those simplices give the field-
experts some further insights about the modelled system? Can they be
human-interpretable?

The embedding via INDVAL follows pretty much the same strategy by representing
each graph according to the histogram of relevant edges within the training data. So
the very same questions can be asked.

The multiple kernel approach allows a two-fold knowledge discovery phase. In-
deed,

1. by analysing the kernel weights (i.e., ωi in Eq. (4.34)) one can determine which
are the most important representations for solving the problem at hand (higher
weights)

2. by analysing the prototype selector (i.e., w in Eq. (4.39)) one can analyse which
are the patterns elected as pivotal for building the dissimilarity space.

Those questions will be answered in the next Chapter with the help of field-
experts, where the INDVAL-based embedding will be tested on real metabolic path-
ways data and the other two techniques will be tested on real proteomic data.

47

Chapter 5

Tests and Results

5.1 Datasets Description

5.1.1 E. coli str. K12 PCN-EC

Since proteins perform a vast array of functions within living organisms, the target
of this analysis is the prediction of enzymatic properties by relying on the Enzyme
Commission (EC) nomenclature scheme [378]. The EC nomenclature classifies pro-
teins (enzymes) according to the chemical reaction they catalyse by means of four
digits separated by dots: the first digit discriminates amongst the six big enzymatic
groups (see Table 5.1) and the latter three represent a progressively finer enzyme
classification. In this work, the first digit is considered as the ground-truth class la-
bel for supervised machine learning purposes. However, since not all proteins are
enzymes, a further class of ’not enzymes’ is considered: this class indicates proteins
with no enzymatic characteristics or proteins for which enzymatic characteristics are
still unknown nowadays. It is worth noting that the data retrieval phase has been
performed before August 2018, when the EC scheme introduced EC7 (Translocases).

TABLE 5.1: The six big EC nomenclature groups.

EC Family Reaction

1 Oxidoreductases Transfer of electrons between two molecules (reductant and oxidant)
2 Transferases Transfer of functional groups between two molecules (donor and acceptor)
3 Hydrolases Breakage using water (hydrolysis) of a chemical bond
4 Lyases Breakage of chemical bonds (no hydrolysis, no oxidation)
5 Isomerases Isomer conversion, intermolecular arrangement
6 Ligases Merging of two molecules

The dataset at the basis of the EC-related experiments has been constructed as
follows:

1. on 8 April 2018 the entire Escherichia coli str K12 proteome has been retrieved
from UniProt [355]

2. the list has been cross-checked with Protein Data Bank [38] in order to consider
only resolved proteins (i.e., proteins whose 3D structure is available): for those
proteins, the corresponding .pdb files have been collected

3. proteins with multiple EC numbers have been discarded

4. in .pdb files containing multiple structure models, only the first model is re-
tained; similarly, for atoms having alternate coordinate locations, only the first
location is retained.

48 Chapter 5. Tests and Results

Data collection and cleaning have been performed thanks to the following Python
libraries: BioServices [79] for accessing online databases programmatically, BioPy-
thon [69, 77] and BioPandas [318] for manipulating and parsing .pdb files.

The dump leaded to a total number of 6685 proteins and some basic statistics
are summarised in Figure 5.1. In order to preserve only good quality structures,
by jointly considering the PCNs connectivity range (namely [4, 8]Å) and the reso-
lution distribution in Figure 5.1a, all proteins with resolution greater than 3Å have
been discarded and proteins with no information about the measurement resolu-
tion in the .pdb file header have been discarded as well. These filtering procedures
dropped the number of available proteins from 6685 to 5583: hereinafter, this 5583-
proteins dataset will be referred to as PCN-EC and serves a ’baseline dataset’ for all
experiments regarding the EC number prediction in order to make the results as
comparable as possible, although minor filtering procedures will be performed on
an experiment-related basis.

(A) Resolution Distribution (B) Size Distribution

(C) Classes Distribution

FIGURE 5.1: Statistics for the initial 6685 PCNs dump (E. coli str. K12).

For the sake of completeness, Figure 5.2 shows some statistics about PCN-EC.

5.1. Datasets Description 49

(A) Classes Distribution (B) Size Distribution

FIGURE 5.2: Statistics for PCN-EC.

5.1.2 E. coli str. K12 PCN-SOL

A second PCN-related problem consists in predicting proteins’ solubility degree
(folding propensity) starting from their PCN. Both problems are very hard to solve
because no biochemical predictive theory is currently available. In the first problem
(EC prediction), the difficulty resides in the fact that functional classification of en-
zymes is inherently sloppy: the chemical reactions defining the classes are largely
superimposable and, in any case, mainly influence a minor part of the protein struc-
ture (active site). In this second problem (solubility/folding propensity prediction),
the difficulty resides in the fact that the solubility of a protein in vivo is largely de-
termined by the contemporary presence of other proteins that influence the folding
of the target protein, while the specific reference database [293] is based on ’isolated
proteins’ in vitro (intrinsic solubility) and has to do with the folding prediction, that
is still out of reach in protein science [295].

The data retrieval process can be summarised as follows:

1. from the eSOL database29, containing the solubility degree (in percentage) for
the E. coli proteins using the chaperone-free PURE system [344], the entire
dump has been collected

2. proteins with no information about their solubility degree have been discarded

3. in order to enlarge the number of samples30, we reversed the JW-to-PDB rela-
tion by downloading all structure files (if any) related to each JW entry from
eSOL. Each structure will inherit the solubility degree from the JW entry

4. inconsistent data (e.g. same PDB with different solubility values) have been
discarded; duplicates have been removed in case of redundant data (e.g., one
solubility per PDB, but multiple JW’s)

5. proteins having solubility degree greater than 100% have been set as 100%. The
(small) deviations from 100% can be ascribed to minor experimental errors.
After straightforward normalisation, the solubility degree can be considered
as a real-valued number in range [0, 1]

29eSOL database (http://tp-esol.genes.nig.ac.jp/) developed in the Targeted Proteins Research
Project.

30From the entire dump, only 432 proteins have their corresponding PDB identifier.

http://tp-esol.genes.nig.ac.jp/

50 Chapter 5. Tests and Results

6. as per the PCN-EC dataset (Section 5.1.1), .pdb files have been parsed by remov-
ing alternate models and alternate atom locations.

The initial dump counted 5517 proteins and, following the same rationale as per
Section 5.1.1, proteins with no information about measurement resolution and pro-
teins with resolution greater than 3Å have been removed, leading to a final dataset
(hereinafter PCN-SOL) composed by 4781 proteins. Basic statistics are summarised
in Figure 5.3.

(A) Solubility Degree Distribution (B) Size Distribution

FIGURE 5.3: Statistics for PCN-SOL.

5.1.3 Metabolic Networks

Using the Python BioServices library, from the KEGG database [186–188], the entire
dump of 5299 organisms whose metabolic network is known has been retrieved on
22-24 April 2018. The KEGG API returns data in an edge list-like format, starting
from which the metabolic network can easily be built. Each organism has been de-
scribed by its own metabolic network and mapped with a ground-truth class label
according to the Linnaeus’ taxonomical classification. Specifically, four classification
tasks will be investigated:

Cell: The entire set of 5299 organisms has been divided in two classes, Eukaryotes
and Prokaryotes, on the base of their basic cellular architecture. This is the
most fundamental division of life located at the very basis of cellular architec-
ture. As for the metabolic network wiring: the differences between prokary-
otic (bacteria and archaea, the most simple forms of life) and eukaryotic (all
the other organisms, from unicellular fungi to mammals) cell are striking.

Kingdom: The entire set of 5299 organisms has been divided in six classes, depend-
ing on their kingdom: Animals, Archaea, Bacteria, Fungi, Plants and Protists.
This is mainly an ’exercise on evolution’: the kingdom is the highest level of bi-
ological classification and the discrimination of different kingdoms by means
of metabolic network wiring is a sort of benchmark for proposing metabolic
networks as ’universal phenotype’ for evolution studies. This is not a triv-
ial task if one considers that while all the organisms can be compared as for
their genotype (basically, DNA sequences), this does not hold for phenotypes

5.2. PCN Experiments: Enzymatic Properties 51

(i.e., actual physiological features). It is in fact very difficult to think of a suf-
ficiently complex physiological process in common between a yeast and a dog
other than the need to perform an efficient metabolism.

Animals: The third problem has to do with the classification of metazoa (multicel-
lular animal species made of organised tissues and organs). In order to ensure
a fair balance between number of classes and number of samples per class:

• organisms with no (Linnaeus’) class have been discarded

• (Linnaeus’) classes having less than 5 organisms have been discarded

The resulting dataset consists in 143 organisms, divided in 5 classes: Birds,
Fishes, Insects, Mammals and Reptiles. The relevance of this exercise is linked
to the rational choice of species whose metabolism is specifically suited for
pharmacological or toxicological testing, see [198].

Bacteria: The fourth problem deals with classification of bacteria. Again, in order
to ensure a fair balance between number of classes and number of samples
per class: all (Linnaeus’) classes having less than 50 organisms have been
discarded. The resulting dataset consists in 1456 organisms divided in 17
classes: Bacillus, Bifidobacterium, Burkholderia, Campylobacter, Chlamydia,
Clostridium, Corynebacterium, Escherichia, Helicobacter, Lactobacillus, My-
cobacterium, Mycoplasma, Pseudomonas, Salmonella, Staphylococcus, Strep-
tococcus, Streptomyces. The phenotypic classification of bacteria is a partic-
ularly hard problem [53] but has a crucial importance in biomedicine. Two
applications with potentially huge consequences for human health are: a) the
definition of ’healthy’ and ’pathological’ microbiota (the symbiotic/parasitic
micro-organism communities playing a crucial role in human metabolism and
disease, see [247]); b) the development of new antibiotic molecules efficiently
contrasting emerging iatrogenic infections, see [380].

Figure 5.4 shows the classes distribution for the four problems.

5.1.4 Benchmark Datasets

Alongside the two biological case studies, several of the proposed techniques from
Chapter 4 will also be tested on well-known benchmark datasets, whose main char-
acteristics are summarised in Table 5.2. All datasets have been downloaded from
[195] and no pre-processing has been performed. All datasets are featured by unla-
belled edges and nodes labelled with categorical attributes.

5.2 PCN Experiments: Enzymatic Properties

5.2.1 EC Classification via Spectral Density

The aim of this experiment is to address whether it is possible to predict the enzy-
matic function of a protein starting from its spectral density, following Section 4.1.
Preliminary versions of this experiment can be found in [258] and [262].

From the baseline PCN-EC dataset (5583 proteins, see Section 5.1.1), all proteins
having at least one isolated node have been discarded: indeed, such graphs will have
at least one zero on the main diagonal of the degree matrix D, making impossible
the evaluation of D−1/2 (see Eq. (2.7)). This filtering procedure dropped the number
of available proteins from 5583 to 5554.

52 Chapter 5. Tests and Results

(A) Cell (B) Kingdom

(C) Animals (D) Bacteria

FIGURE 5.4: Classes Distribution for the four Metabolic Network Datasets.

For each of the remaining proteins, the feature generation technique described
in Section 4.1 and depicted in Figure 4.1, here summarised for the sake of ease, has
been performed:

1. evaluation of the adjacency matrix A by scoring edges whether the Euclidean
distance between residues’ α-carbon atoms falls within [4, 8]Å

2. evaluation of the degree matrix D, as in Eq. (2.2)

3. evaluation of the Laplacian matrix L, as in Eq. (2.4)

4. evaluation of the normalised Laplacian matrix L, as in Eq. (2.7)

5. evaluation of the spectral decomposition of L, as in Eq. (2.8)

6. evaluation of the spectral density via kernel density estimator, as in Eq. (4.2),
and final uniform sampling of m = 100 points in range [0, 2].

The entire dataset (5554 patterns in R100) has been split into three non-overlapping
Training, Validation and Test Set (50%, 25% and 25% of the total number of patterns,
respectively) satisfying Eqs. (4.6)–(4.8): the splitting has been performed in a strat-
ified fashion in order to preserve labels’ distribution across the three subsets. The

5.2. PCN Experiments: Enzymatic Properties 53

TABLE 5.2: Benchmark Datasets for Graph Classification.

Dataset Name # of patterns # of classes Avg. # of nodes Avg. # of edges

AIDS 2000 2 15.69 16.2
BZR 405 2 35.75 38.36

COX2 467 2 41.22 43.45
DHFR 467 2 42.43 44.54

DD 1178 2 284.32 715.66
ENZYMES 600 6 32.63 62.14

FIRSTMM_DB 41 11 1377.27 3074.1
KKI 83 2 26.96 48.42

Mutagenicity 4337 2 30.32 30.77
MSRC_9 221 8 40.58 97.94
MSRC_21 563 20 77.52 198.32
MUTAG 188 2 17.93 19.79

NCI1 4110 2 29.87 32.3
NCI109 4127 2 29.68 32.13
OHSU 79 2 82.01 199.66

Peking_1 85 2 39.31 77.35
PTC_FM 349 2 14.11 14.48
PTC_FR 351 2 14.56 15

PTC_MM 336 2 13.97 14.32
PTC_MR 344 2 14.29 14.69

PROTEINS 1113 2 39.06 72.82
SYNTHETIC 300 2 100 196
Tox21_AHR 8169 2 18.09 18.5
Tox21_AR 9362 2 18.39 18.84

Tox21_AR-LBD 8599 2 17.77 18.16
Tox21_ARE 7167 2 16.28 16.52

Tox21_aromatase 7226 2 17.5 17.79
Tox21_ATAD5 9091 2 17.89 18.3

Tox21_ER 7697 2 17.58 17.94
Tox21_ER_LBD 8753 2 18.06 18.47

Tox21_HSE 8150 2 16.72 17.04
Tox21_MMP 7320 2 17.49 17.83
Tox21_p53 8634 2 17.79 18.19

Tox21_PPAR-gamma 8184 2 17.23 17.55

LibSVM implementation [67] of ν-SVM [336] has been used in order to perform clas-
sification31. The latter is equipped with the radial basis function kernel (cf. Table 3.1)
of the form

K(a, b) = e−γ·d2(a,b,w) (5.1)

where a, b ∈ Rm are two given patterns drawn from the dataset, γ is the kernel
shape parameter and

d2(a, b, w) =
m

∑
i=1

wi(ai − bi)
2 (5.2)

31All experiments in this Chapter see SVMs as base classification system in order to stress the com-
parison between the proposed graph-based pattern recognition systems rather than classifiers as such.
Preliminary tests shown that SVMs presented a good tradeoff between efficiency, effectiveness and
ease of tuning with respect to other well-known classifiers such as Artificial Neural Networks, Naïve
Bayes, Decision Trees and K-Nearest Neighbours (data not shown).

54 Chapter 5. Tests and Results

is the (squared) weighted Euclidean distance with w ∈ [0, 1]m acting as the weight-
ing vector in order to investigate whether some samples (i.e., portions of the spectral
density curve) are more important than others.

In order to automatically select in a data driven fashion not only suitable weights
w, but also the two SVM hyperparameters (i.e., the regularisation term ν and the ker-
nel shape γ), a genetic algorithm [153] has been employed. Specifically, the genetic
code has the form [

ν γ w
]

(5.3)

where ν ∈ (0, 1] by definition, γ ∈ (0, 100] and w ∈ [0, 1]100. The genetic optimisa-
tion aims at the maximisation of the informedness32 J [395], defined as

J = Sensitivity + Specificity− 1 ∈ [−1,+1] (5.4)

The model synthesis can be summarised as follows:

1. each individual from the evolving population strips the three parameters writ-
ten in its genetic code, namely, ν, γ and w

2. a ν-SVM which exploits γ and w in order to evaluate the kernel matrix (cf. Eqs
(5.1)–(5.2)) and ν as regularisation parameter is trained on the Training Set

3. the fitness function (to be maximised) is the informedness as in Eq. (5.4) and is
evaluated on the Validation Set

4. at the end of the evolution, the best individual is retained and finally tested on
the Test Set.

The genetic algorithm has been configured to host 100 individuals with a maximum
number of 100 generations; the elitism operator moves the best 10% of the individu-
als unaltered to the next generation; the crossover operator acts in a scattered fash-
ion; the selection follows the roulette wheel heuristic; the mutation adds a random
number drawn from a zero-mean Gaussian distribution whose variance shrinks as
generations go by. A strict early stopping criterion halts the evolution if the shift in
the fitness function for 1/3rd of the generations is below 10−6.

Table 5.3 shows the average results on the Test Set across five Training-Validation-
Test splits in order to account the intrinsic randomness in the model synthesis. Re-
sults are presented via the following performance indices, expressed in percentage:

Accuracy: ACC =
TP + TN

TP + TN + FP + FN

Sensitivity (also, Recall): SNS =
TP

TP + FN

Specificity: SPC =
TN

TN + FP

Positive Predictive Value (also, Precision): PPV =
TP

TP + FP

32The rationale behind the choice of informedness follows: the informedness not only considers
true positives, true negatives, false positives and false negatives simultaneously, but is also unbiased
towards the most frequent class in case of heavily unbalanced problems. The same peculiarities do not
hold in other most common performance indices such as the accuracy or the F-measure, as thoroughly
investigated in [316].

5.2. PCN Experiments: Enzymatic Properties 55

Negative Predictive Value: NPV =
TN

TN + FN
where TP, TN, FP and FN indicate true positives, true negatives, false positives and
false negatives, respectively.

TABLE 5.3: EC classification via spectral density, performances on the Test Set (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 92.51 ± 0.42 47.12 ± 2.95 98.71 ± 0.57 83.73 ± 6.01 93.18 ± 0.33
EC2 86.77 ± 0.25 50.49 ± 2.18 96.11 ± 0.45 76.99 ± 1.50 88.30 ± 0.42
EC3 88.07 ± 0.74 49.50 ± 4.35 96.92 ± 0.41 78.66 ± 2.03 89.33 ± 0.81
EC4 94.67 ± 0.13 29.79 ± 2.61 99.38 ± 0.13 77.96 ± 3.37 95.12 ± 0.17
EC5 93.66 ± 7.01 17.50 ± 7.88 96.39 ± 7.53 55.45 ± 28.29 97.03 ± 0.08
EC6 96.10 ± 0.30 29.19 ± 4.85 99.53 ± 0.08 75.77 ± 6.01 96.48 ± 0.23

not-enzymes 79.39 ± 0.84 57.44 ± 2.29 90.57 ± 1.04 75.63 ± 1.88 80.71 ± 0.79

From Table 5.3 it is possible to see that all classifiers have satisfactory results, yet
all of them share a rather low sensitivity (high false negatives). There are also minor
false positives, as shown by precision (circa 70-80%). EC5 seems overall the most
difficult to discriminate: sensitivity and precision are rather low with respect to the
other classes.

(A) EC2 (B) EC4

FIGURE 5.5: EC classification via spectral density, weights vector for discriminating EC2
(left) and EC4 (right). Along with the weights values (blue stems), the average spectral

density amongst the patterns belonging to the 7 classes are also shown.

Similarly, Figure 5.5 shows the resulting weights vector w as returned by the
best amongst the five runs. For the sake of example, only the second (EC2) and forth
classifiers (EC4) are shown in which it is possible to see that, for EC2, the rising front
of the density curve (i.e., the first 20 samples, approximately) seems to be one of the
most important parts for classification; conversely, for EC4, the falling front of the
curve (i.e., the last 20 samples, approximately) seems to be one of the most important
parts.

5.2.2 EC Classification via Betti Numbers

The aim of this experiment is to address whether it is possible to predict the enzy-
matic function of a protein starting from the sequence of Betti numbers at different

56 Chapter 5. Tests and Results

scales, following Section 4.2. Preliminary versions of this experiment can be found
in [249].

Since the topological structure of a PCN is well-defined (nodes lie in a 3D space,
edges exist whether the Euclidean distance between nodes is within [4, 8]Å), one
might question the need of finding a suitable scale/connectivity resolution (e.g., ε for
the Vietoris-Rips Complex) and argue that the Clique Complex is a suitable choice.
So, given the Clique Complex, one can evaluate the three Betti numbers β0, β1 and
β2 and cast each PCN into a three-dimensional vector: this transformation has been
performed on the entire PCN-EC dataset (5583 proteins). Since each PCN is cast in R3,
Figure 5.6 shows the three-dimensional space spanned by β0, β1 and β2 evaluated
over the Clique Complex.

FIGURE 5.6: EC classification via Betti numbers, vector space using the Clique Complex.

By visual inspection, Figure 5.6 does not show enough separation amongst the
seven classes, so one shall not expect interesting classification results. Nonetheless,
after the usual Training-Validation-Test stratified split, ν-SVMs have been used as
classification system where only ν and γ are tuned via genetic optimisation33, fol-
lowing the same workflow as per the spectral density experiment discussed in Sec-
tion 5.2.1. Table 5.4 shows the classification results (averaged across five Training-
Validation-Test splits) when using the three Betti numbers evaluated over the Clique
Complex: clearly, at least if compared with the spectral density experiment, there is
a clear performance drop (especially as precision and sensitivity are concerned).

A second attempt sees the Vietoris-Rips Complex as core simplicial complex for
the Betti numbers evaluation. Conversely to the Clique Complex, the Vietoris-Rips
Complex needs a scale parameter ε, which can be addressed by considering the
[4, 8]Å connectivity range. Specifically, five candidate values for ε have been con-
sidered, namely ε = {4, 5, 6, 7, 8} and, for each value of ε, the three Betti numbers
(β0, β1 and β2) have been evaluated over the resulting Vietoris-Rips Complex.

33In case of very few parameters, easier optimisation procedures can be considered in lieu of evolu-
tionary metaheuristics, such as random search or grid search. Yet, for the sake of comparison, the very
same genetic algorithm as per the previous Section has been employed for hyperparamters tuning.

5.2. PCN Experiments: Enzymatic Properties 57

TABLE 5.4: EC classification via Betti numbers (Clique Complex), performances on the Test
Set (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 81.98 ± 4.06 13.73 ± 9.25 91.20 ± 5.83 14.00 ± 7.93 88.69 ± 0.45
EC2 68.67 ± 4.85 37.82 ± 10.33 76.59 ± 8.52 30.14 ± 4.06 82.82 ± 1.06
EC3 83.83 ± 0.65 21.23 ± 2.86 98.24 ± 0.64 73.95 ± 6.94 84.42 ± 0.47
EC4 78.16 ± 14.95 21.04 ± 20.66 82.39 ± 17.54 8.51 ± 2.63 93.44 ± 0.44
EC5 61.88 ± 22.82 47.50 ± 22.17 62.39 ± 24.40 5.02 ± 1.64 97.11 ± 0.35
EC6 61.45 ± 6.72 56.42 ± 17.74 61.70 ± 7.74 6.81 ± 1.53 96.62 ± 0.95

not-enzymes 60.39 ± 2.08 60.17 ± 4.29 60.50 ± 5.06 43.74 ± 1.70 74.97 ± 0.85

Each protein from the baseline PCN-EC dataset has been cast towards a 15-length
feature vector of the form[

β
(4)
0 , β

(4)
1 , β

(4)
2 , β

(5)
0 , β

(5)
1 , β

(5)
2 , β

(6)
0 , β

(6)
1 , β

(6)
2 , β

(7)
0 , β

(7)
1 , β

(7)
2 , β

(8)
0 , β

(8)
1 , β

(8)
2

]
(5.5)

where, recall, β
(b)
a indicates the ath Betti number at ε = b.

From the initial set of 5583 proteins composing PCN-EC, 9 proteins have been
removed because out-of-memory errors have been thrown during the evaluation of
the Betti numbers at ε = 8, leading to a resulting set of 5574 proteins, which have
been split in Training Set, Validation Set and Test Set. The experimental setup does
not significantly change with respect to the spectral density case. The same genetic
algorithm orchestrates the model synthesis using ν-SVMs equipped with the radial
basis function kernel (Eq. (5.1)) whose core sees the weighted (squared) Euclidean
distance from Eq. (5.2). Due to the different dimensionality of the feature vectors,
for this experiment the weights vector reads as w ∈ [0, 1]15. The genetic algorithm
setup remains unaltered.

TABLE 5.5: EC classification via Betti numbers (Vietoris-Rips Complex), performances on
the Test Set (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 89.83 ± 0.32 22.69 ± 4.37 98.96 ± 0.32 75.11 ± 3.46 90.41 ± 0.47
EC2 83.00 ± 0.50 26.25 ± 3.10 97.60 ± 0.64 74.02 ± 4.33 83.73 ± 0.53
EC3 84.92 ± 0.34 27.51 ± 2.82 98.16 ± 0.64 77.99 ± 4.59 85.45 ± 0.42
EC4 94.01 ± 0.18 18.33 ± 2.61 99.61 ± 0.13 78.07 ± 5.20 94.28 ± 0.17
EC5 85.34 ± 22.42 14.17 ± 27.06 87.88 ± 24.18 27.95 ± 48.04 96.68 ± 0.23
EC6 95.42 ± 0.21 10.07 ± 2.92 99.77 ± 0.11 69.44 ± 11.95 95.60 ± 0.17

not-enzymes 74.70 ± 0.58 41.32 ± 2.90 91.59 ± 0.86 71.35 ± 1.25 75.53 ± 0.78

Table 5.5 is the counterpart of Table 5.4 for the Vietoris-Rips Complex. The per-
formance shifts between the Clique Complex and the Vietoris-Rips Complex are
striking, with the latter greatly outperforming the former. Nonetheless, similar ob-
servations hold with respect to the spectral density experiment (Table 5.3): generally
low sensitivity and EC5 still emerges as the most difficult class to discriminate.

Figure 5.7, finally, shows the best weights vector w amongst the five runs.

58 Chapter 5. Tests and Results

FIGURE 5.7: EC classification via Betti numbers, weights heatmap.

5.2.3 EC Classification by Embedding over Simplicial Complexes

For this experiment, discussed in [252], the entire PCN-EC dataset (5583 proteins) has
been considered and properly split into Training, Validation and Test Set.

For each PCN within each set:

1. the Clique Complex has been considered as simplicial complex: indeed, the
underlying 1-skeleton is already available thanks to existing knowledge on
protein networks (i.e., edges are scored if nodes are within [4, 8]Å apart)

2. each node within each simplex has been identified by its node label (i.e., amino-
acid type).

The alphabet A of candidate information granules is composed by the set of unique
simplices by considering the simplicial complexes drawn from the Training Set and
Validation Set. The unique simplices evaluation relies on the following two rules:

1. nodes ordering within the simplex has to be neglected: for example, the 2-
simplex Arginine-Lysine-Serine and the 2-simplex Arginine-Serine-Lysine are
considered equivalent. This can be easily done by properly sorting the node
labels within each simplex, instead of trying out every possible permutation

2. due to the categorical nature of the node labels and as per the previous rule
it is safe to say that two simplices are considered equal if they share the same
order and they share the same node labels.

The alphabet synthesis returned a number of approximately 12000 symbols.
The next step is to build the symbolic histograms. For each simplicial complex

within each set:

1. node labels are sorted within each simplex in order to facilitate the counting
procedure with the alphabet symbols

5.2. PCN Experiments: Enzymatic Properties 59

2. each simplicial complex is cast towards a≈ 12000 integer-valued vector which
counts in position i the number of times the ith alphabet symbol (a simplex)
appears within the simplicial complex under analysis. The counting proce-
dure still relies on the observation that two simplices are equal (i.e., increment
counter) if they share the same order and the same node labels.

As the three instance matrices for Training, Validation and Test Set are build
(XTR, XVAL and XTS, respectively), the classification stage follows. For the sake of
consistency with the two previous experiments, a radial basis function kernelised
ν-SVM acts as classification system with the help of a genetic algorithm for hyper-
parameter tuning and feature selection. Indeed, by recalling Section 4.7, this exper-
iment also aim at investigating the knowledge discovery peculiarity of information
granulation-based pattern recognition systems. For a thorough and easy investiga-
tion, an important step is to shrink as much as possible the number of useful and
pivotal symbols without loosing in classification performance.

The genetic code for each individual has the form[
ν γ w

]
(5.6)

where ν ∈ (0, 1] and γ ∈ (0, 100] are the usual SVM hyperparameters and w is a
boolean vector with as many elements as there are symbols in A (i.e., features in the
instance matrices). The genetic algorithm setup does not change significantly with
respect to the former two experiments, with the only difference being the mutation
operator, which still follows a Gaussian behaviour for real-valued genes (ν and γ),
but acts in a flip-the-bit fashion for boolean-valued genes (entries in w).

The fitness function must be revisited as well in order to jointly consider the
sparsity of the feature selector w and the classification performance. A suitable for-
mulation reads as:

f = α · (1− J) + (1− α) · |w == 1|
|w| (5.7)

where the rightmost term takes into account the sparsity of the feature selector vec-
tor w, J is the normalised34 informedness, so the leftmost term takes into account
the classification performances, and finally α ∈ [0, 1] is a user-defined parameter
that weights the two contributions.

The model synthesis can be summarised as follows:

1. each individual from the evolving population strips the three parameters writ-
ten in its genetic code, namely, ν, γ and w

2. features corresponding to 1’s in w are retained from XTR and XVAL, whereas
features corresponding to 0’s are discarded

3. a ν-SVM which exploits γ in order to evaluate the kernel matrix (cf. Eqs (5.1)–
(5.2)) and ν as regularisation parameter is trained on the shrunk version of XTR

4. the fitness function in Eq. (5.7) (to be minimised) is evaluated on the shrunk
version of XVAL

5. at the end of the evolution, the best individual is retained: the w portion of
its genetic code is used to shrink the Test Set and the final performances are
evaluated.

34Recall from Section 5.2.1 that the informedness J is bounded in [−1,+1]. However, since the
rightmost term is bounded in [0, 1] a scaled version of the informedness has been used J = (J + 1)/2
in order to be fairly combined.

60 Chapter 5. Tests and Results

For high-dimensional problems, evolutionary metaheuristics such as genetic algo-
rithms can easily be trapped in local minima (maxima) due to the vast dimension-
ality of the search space, so one might wondering whether exists a smarter way of
addressing the feature selection phase without optimising thousands of variables. A
second classification system based on 1-norm SVMs (also `1-SVMs) [409] is proposed
to address this problem. The rationale behind this choice follows:

• `1-SVMs minimise the 1-norm instead of the 2-norm of the separating hyper-
plane, as in ’standard’ SVMs [50, 86, 90, 335, 336], so they return a solution
(hyperplane coefficient vector) which is sparse: this leads to an intrinsic fea-
ture selection during training [409]

• it has been experimentally demonstrated that for high-dimensional and possi-
bly sparse data (e.g., text classification, sentiment analysis) linear methods (a
family which includes `1-SVMs) tend to have similar performances with non-
linear methods, at a very small fraction of the training time [135]

• there exist efficient implementations for high-dimensional and sparse data, e.g.
the LibLINEAR library [135] developed by the same team behind the already-
mentioned LibSVM.

Since the feature selection phase is automatically performed during training, return-
ing the hyperplane coefficient vector β which is natively sparse, the model synthesis
must be revisited. For `1-SVMs the genetic code has the form:[

C c
]

(5.8)

where C ∈ [−10,+10] is the regularisation term and c is a real-valued vector with en-
tries also in [−10,+10] which weights C in a class-wise fashion: for the ith class, mis-
classifications are weighted as C · ci. It is worth noting that these additional weights
are not mandatory for `1-SVMs to work, but they might be helpful in case of un-
balanced classification problems. The genetic optimisation does not change with
respect to the previous case, other than the mutation rate (which works in a fully
Gaussian fashion since there are no boolean genes) and the fitness function (which
still reads as Eq. (5.7), but with β in lieu of w).

Tables 5.6 and 5.7 show the classification performances (averaged across five
Training-Validation-Test Set splits) for ν-SVMs and `1-SVMs on PCN-EC for α = 1
and α = 0.5 in the fitness function: in the former case, each classifier can choose
as many features as required in order to maximise performances; in the latter case,
the sparsity is equally considered along with performances. Alongside the five well-
known performance indices (ACC, SNS, SPC, NPV, PPV), the sparsity is also shown,
defined as the percentage of selected symbols: conversely to the performance in-
dices, a lower value is preferred.

As `1-SVMs are concerned, by matching Tables 5.6 and 5.7 (i.e., when switching
from α = 1 to α = 0.5), it is possible to see that `1-SVMs, other than selecting a
smaller number of symbols, tend to improve in terms of SNS and NPV for almost
all classes. Similarly, as regards ν-SVMs, they mainly benefit in terms of feature
selection, with only class 7 showing minor performance improvements in terms of
SNS and NPV.

5.2. PCN Experiments: Enzymatic Properties 61

TABLE 5.6: EC classification via embedding over simplicial complexes, performances on the
Test Set at α = 1 (avg ± std). In bold, the best between the two classification systems.

Class Classifier ACC SNS SPC NPV PPV Sparsity

EC1
ν-SVM 97.2 ± 0.4 81.9 ± 2.7 99.2 ± 0.3 97.6 ± 0.3 93.6 ± 2.4 11.5 ± 5.8
`1-SVM 97.0 ± 0.3 87.3 ± 2.0 98.4 ± 0.4 98.3 ± 0.3 88.0 ± 2.6 16.0 ± 10.0

EC2
ν-SVM 94.5 ± 0.9 79.7 ± 3.4 98.3 ± 0.8 95.0 ± 0.8 92.2 ± 3.3 26.1 ± 18.5
`1-SVM 94.5 ± 0.9 83.8 ± 2.7 97.3 ± 0.5 95.9 ± 0.7 88.9 ± 2.0 22.7 ± 11.4

EC3
ν-SVM 94.7 ± 0.7 78.2 ± 1.9 98.5 ± 0.5 95.1 ± 0.4 92.3 ± 2.5 18.6 ± 8.1
`1-SVM 93.3 ± 1.5 83.9 ± 3.7 95.5 ± 2.5 96.3 ± 0.8 81.9 ± 7.6 17.4 ± 8.2

EC4
ν-SVM 97.3± 0.4 69.2 ± 8.5 99.4 ± 0.3 97.8 ± 0.6 89.9 ± 3.8 19.1 ± 16.6
`1-SVM 97.3 ± 0.4 79.8 ± 2.7 98.6 ± 0.5 98.5 ± 0.2 81.6 ± 5.1 7.8 ± 1.6

EC5
ν-SVM 98.7± 0.2 63.8 ± 7.3 99.9 ± 0.1 98.7 ± 0.3 97.1 ± 3.4 31.7 ± 19.5
`1-SVM 97.9 ± 1.2 70.4 ± 9.7 98.9 ± 1.3 98.9 ± 0.3 75.3 ± 20.3 5.1 ± 3.2

EC6
ν-SVM 99.1± 0.6 83.5 ± 10.3 99.9 ± 0.1 99.2 ± 0.5 97.2 ± 2.6 28.7 ± 14.4
`1-SVM 98.7 ± 0.6 86.2 ± 5.1 99.4 ± 0.4 99.3 ± 0.3 87.8 ± 7.7 9.6 ± 4.7

not-enzymes
ν-SVM 87.4 ± 1.0 75.7 ± 2.3 93.4 ± 0.7 88.3 ± 1.0 85.3 ± 1.5 6.9 ± 1.6
`1-SVM 88.8 ± 1.4 83.4 ± 2.0 91.6 ± 2.0 91.6 ± 0.9 83.6 ± 3.3 36.3 ± 13.2

TABLE 5.7: EC classification via embedding over simplicial complexes, performances on the
Test Set at α = 0.5 (avg ± std). In bold, the best between the two classification systems.

Class Classifier ACC SNS SPC NPV PPV Sparsity

EC1
ν-SVM 96.8 ± 0.4 80.4 ± 3.7 99.0 ± 0.5 97.4 ± 0.5 92.0 ± 3.9 9.9 ± 6.5
`1-SVM 95.3 ± 1.3 87.1 ± 1.8 96.5 ± 1.6 98.2 ± 0.2 77.7 ± 7.4 3.3 ± 0.4

EC2
ν-SVM 93.9 ± 1.1 77.8 ± 4.6 98.0 ± 0.3 94.5 ± 1.1 90.9 ± 1.5 6.8 ± 3.0
`1-SVM 92.7 ± 1.1 86.7 ± 3.6 94.2 ± 1.4 96.5 ± 0.9 79.6 ± 3.8 4.5 ± 0.3

EC3
ν-SVM 94.0 ± 0.6 74.3 ± 2.8 98.5 ± 0.2 94.3 ± 0.6 92.1 ± 1.3 6.8 ± 5.3
`1-SVM 92.1 ± 0.9 84.4 ± 3.3 93.8 ± 1.4 96.3 ± 0.7 76.2 ± 3.6 4.0 ± 0.5

EC4
ν-SVM 97.3 ± 0.5 69.6 ± 8.2 99.3 ± 0.3 97.8 ± 0.6 88.4 ± 4.1 12.8 ± 14.8
`1-SVM 96.6 ± 0.4 82.5 ± 3.6 97.7 ± 0.7 98.7 ± 0.3 72.9 ± 5.3 2.8 ± 0.4

EC5
ν-SVM 98.5 ± 0.3 61.3 ± 11.3 99.8 ± 0.1 98.6 ± 0.4 93.0 ± 4.2 13.6 ± 11.9
`1-SVM 96.9 ± 1.2 71.7 ± 10.1 97.8 ± 1.3 99.0 ± 0.4 56.9 ± 12.7 1.8 ± 0.6

EC6
ν-SVM 98.9 ± 0.4 80.3 ± 5.6 99.9 ± 0.1 99.0 ± 0.3 97.1 ± 2.9 23.3 ± 18.5
`1-SVM 97.5 ± 1.7 88.8 ± 2.5 97.9 ± 1.7 99.4 ± 0.1 71.5 ± 15.1 2.2 ± 0.3

not-enzymes
ν-SVM 87.4 ± 0.8 76.5 ± 2.2 93.0 ± 0.5 88.6 ± 1.0 84.7 ± 1 6.5 ± 2.1
`1-SVM 86.6 ± 1.1 80.1± 3.9 89.9 ± 3.3 89.9 ± 1.5 80.5 ± 4.5 4.8 ± 0.9

By comparing the two classification systems it is possible to draw the following
conclusions:

• at α = 1: `1-SVMs outperform the kernelised counterpart in terms of SNS
(all classes) and NPV (all classes), whereas ν-SVMs outperform the former in
terms of SPC (all classes) and PPV (all classes). The overall ACC sees `1-SVMs
outperforming ν-SVMs only for class 7, the two classifiers perform equally for
classes 2 and 4 and for the remaining classes ν-SVMs perform better. Regard-
less of which performs the best in an absolute manner, the performance shifts
are rather small as ACC, SPC and NPV are concerned (≈ 3.3% or less), whereas
interesting shifts include SNS (`1-SVMs outperforming by ≈ 10% on class 4)
and PPV (ν-SVMs outperforming by ≈ 10% on class 3 and ≈ 22% on class 5);

• at α = 0.5: `1-SVMs outperform the kernelised counterpart in terms of SNS
(all classes) and NPV (all classes), whereas ν-SVMs outperform the former in
terms of SPC (all classes), PPV (all classes) and ACC (all classes). While the
performance shifts are rather small for ACC (≈ 1− 2%) and SPC (≈ 3− 4%),
remarkable shifts regard PPV (ν-SVMs outperform up to 36% for class 5) and
SNS (`1-SVMs outperform up to 13% for class 4).

62 Chapter 5. Tests and Results

Conversely, as the sparsity is concerned:

• at α = 1: `1-SVMs select fewer symbols with respect to ν-SVMs only for classes
1 and 7

• at α = 0.5: `1-SVMs outperform ν-SVMs for all classes.

Another non negligible aspect of this procedure is the time effort for the model
synthesis due to the high dimensionality of the dataset at hand: `1-SVMs are incred-
ibly faster with respect to the 2-norm counterpart, mainly for the following reasons:

• there is no need to explicitly evaluate the kernel matrix (see Eqs. (5.1)–(5.2)):
`1-SVMs are linear classifiers by definition

• the training phase for `1-SVMs relies on solving a linear programming prob-
lem, whereas ν-SVMs solve a quadratic programming problem

• they automatically return a sparse solution, there is no need to optimise any
feature selector35.

5.2.4 EC Classification using Hypergraph Kernels

As per the previous experiment, which also regarded simplicial complexes, the en-
tire PCN-EC dataset has been considered and properly split into Training, Validation
and Test Set.

For each PCN within each set:

1. the Clique Complex has been evaluated

2. each vertex within each simplex has been identified by its own node label (i.e.,
amino-acid type).

All of the four kernels from Section 4.5 have been considered as prospective ker-
nels for the ν-SVM. Recalling that the four kernels are parameter-free, as the Clique
Complex does not depend on any scale parameter, the only parameter to be tuned
is the regularisation term ν. This single variable optimisation has been performed
via random search in the admissible domain (0, 1]: candidate values are tested on
the Training Set and validated on the Validation Set. The value which maximises
the informedness J on the Validation Set is retained and the final performances are
evaluated on the Test Set.

Tables 5.8–5.11 show the average results across five Training-Validation-Test Set
splits. For the EC number prediction, there is no kernel that significantly outper-
forms the others. However, like in the embedding over simplicial complexes case
(Tables 5.6–5.7), the overall performances feature a remarkable boost with respect to
the Betti numbers and the spectral density experiments.

5.2.5 EC Classification using Multiple Kernel Machines

For this experiment, discussed in [261], NK ≡ NR = 8 representations for each PCN
have been considered:

35In this test a genetic algorithm for hyper-parameter optimisation has been used because of con-
sistency with the ν-SVMs case. As already discussed in Section 5.2.2, since the number of hyper-
parameters to be optimised is rather small (see Eq. (5.8)), lighter procedures can be employed instead.

5.2. PCN Experiments: Enzymatic Properties 63

TABLE 5.8: EC classification via Hypergraph Kernels, performance on the Test Set for His-
togram Kernel (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 97.76 ± 0.39 86.75 ± 3.74 99.25 ± 0.32 94.07 ± 2.26 98.23 ± 0.49
EC2 95.50 ± 0.43 84.84 ± 1.91 98.23 ± 0.29 92.51 ± 1.14 96.19 ± 0.46
EC3 95.17 ± 0.93 82.99 ± 1.85 97.97 ± 1.01 90.55 ± 4.17 96.16 ± 0.41
EC4 98.31 ± 0.46 81.46 ± 4.19 99.55 ± 0.26 93.14 ± 4.02 98.64 ± 0.31
EC5 98.92 ± 0.25 71.67 ± 8.01 99.90 ± 0.12 96.39 ± 4.37 99.00 ± 0.28
EC6 99.54 ± 0.12 91.04 ± 1.83 99.97 ± 0.04 99.34 ± 0.90 99.55 ± 0.09

not-enzymes 89.78 ± 0.57 81.91 ± 3.12 93.77 ± 1.53 87.10 ± 2.39 91.1 ± 1.32

TABLE 5.9: EC classification via Hypergraph Kernels, performance on the Test Set for Jaccard
Kernel (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 97.81 ± 0.39 84.70 ± 2.51 99.58 ± 0.21 96.45 ± 1.73 97.97 ± 0.33
EC2 95.93 ± 0.21 83.44 ± 1.73 99.14 ± 0.44 96.17 ± 1.85 95.89 ± 0.40
EC3 95.86 ± 0.39 80.69 ± 2.87 99.35 ± 0.37 96.66 ± 1.70 95.72 ± 0.61
EC4 98.16 ± 0.46 77.50 ± 5.97 99.69 ± 0.17 94.92 ± 2.93 98.36 ± 0.43
EC5 98.85 ± 0.36 69.58 ± 11.08 99.90 ± 0.12 96.33 ± 4.50 98.93 ± 0.39
EC6 99.46 ± 0.20 88.96 ± 3.75 99.98 ± 0.03 99.66 ± 0.77 99.45 ± 0.19

not-enzymes 90.42 ± 1.00 82.77 ± 2.54 94.31 ± 1.34 88.15 ± 2.41 91.52 ± 1.13

TABLE 5.10: EC classification via Hypergraph Kernels, performance on the Test Set for Edit
Kernel (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 97.62 ± 0.39 83.13 ± 3.24 99.58 ± 0.21 96.4 ± 1.71 97.76 ± 0.42
EC2 95.46 ± 0.25 81.89 ± 1.96 98.94 ± 0.61 95.28 ± 2.51 95.52 ± 0.44
EC3 95.54 ± 0.34 79.54 ± 1.73 99.22 ± 0.38 95.97 ± 1.88 95.47 ± 0.36
EC4 97.89 ± 0.57 73.75 ± 7.23 99.68 ± 0.18 94.37 ± 3.12 98.09 ± 0.52
EC5 98.72 ± 0.4 66.25 ± 13.04 99.88 ± 0.13 95.78 ± 4.79 98.81 ± 0.45
EC6 99.41 ± 0.06 88.06 ± 1.06 99.98 ± 0.03 99.67 ± 0.75 99.4 ± 0.05

not-enzymes 90.01 ± 0.77 82.34 ± 2.58 93.9 ± 0.97 87.32 ± 1.64 91.29 ± 1.15

TABLE 5.11: EC classification via Hypergraph Kernels, performance on the Test Set for Strat-
ified Edit Kernel (avg ± std).

Class ACC SNS SPC PPV NPV

EC1 97.53 ± 0.41 82.53 ± 3.27 99.56 ± 0.22 96.24 ± 1.81 97.69 ± 0.42
EC2 95.53 ± 0.17 82.04 ± 2.15 98.99 ± 0.37 95.48 ± 1.48 95.55 ± 0.49
EC3 95.67 ± 0.36 79.62 ± 2.05 99.37 ± 0.31 96.68 ± 1.57 95.49 ± 0.43
EC4 97.99 ± 0.46 75.42 ± 6.10 99.66 ± 0.17 94.30 ± 2.81 98.21 ± 0.44
EC5 98.74 ± 0.29 67.50 ± 9.03 99.85 ± 0.19 94.83 ± 6.52 98.85 ± 0.31
EC6 99.38 ± 0.20 87.46 ± 3.89 99.98 ± 0.03 99.66 ± 0.77 99.37 ± 0.19

not-enzymes 90.42 ± 0.72 82.77 ± 2.44 94.31 ± 0.84 88.12 ± 1.4 91.52 ± 1.07

1. Betti numbers sequence evaluated over the Vietoris-Rips Complex: 15-length
integer-valued vector, as described in Section 5.2.2

64 Chapter 5. Tests and Results

2. Centrality measures: 27-length real-valued vector containing the degree cen-
trality [289], the eigenvector centrality [289], the PageRank centrality [289], the
Katz centrality [190, 289], the closeness centrality [289], the betweenness cen-
trality [289], the edge betweenness centrality [52], the load centrality [52, 152],
the edge load centrality, the subgraph centrality [134], the Estrada index [131],
the harmonic centrality [47], the global reaching centrality [279], the average
clustering coefficient [333], the average neighbour degree [31]. Whilst the aver-
age clustering coefficient, the Estrada index and the global reaching centrality
are global characteristics (i.e., related to the whole graph), the others are local
characteristics (i.e., related to individual nodes or edges): for these centrality
measures, the mean and standard deviation across nodes or edges have been
considered

3. Energy and Laplacian Energy: 2-length real-valued vector containing the en-
ergy and the Laplacian energy of a graph (see Eqs. (2.5) and (2.6))

4. Nodes Functional Cartography: 8-length real-valued vector containing the per-
centage of nodes belonging to each functional role36 and the graph modularity
according to the node classification by Guimerà and Amaral [161]

5. Heat Content Invariant: 4-length real-valued vector containing the first four
heat content invariants (q0, q1, q2, q3) evaluated as in Eq. (2.17)

6. Heat Kernel Trace: 10-length real-valued vector containing the heat kernel
trace at time instants t = 1, 2, . . . , 10 evaluated as in Eq. (2.12)

7. Size: 4-length real-valued vector containing the number of nodes, the number
of edges, the number of chains and the radius of gyration37 [236]

8. Normalised Laplacian Spectral Density: 100-length real-valued vector, as de-
scribed in Section 5.2.1.

For each of these eight representations, the full dissimilarity matrices have been built
(Section 3.3.3) by using the Euclidean distance as dissimilarity measure. The genetic
algorithm orchestrating the overall synthesis has the following genetic code[

ν γ ω w
]

(5.9)

where ν ∈ (0, 1] is the usual regularisation term for ν-SVMs, γ ∈ (0, 100]8 is an 8-
length vector containing the kernel shapes (see Eq. (4.35)), ω is an 8-length vector
containing the kernel weights (see Eqs. (4.36)–(4.37)) and w is a boolean vector con-
taining as many entries as there are training patterns in order to select suitable pro-
totypes in the dissimilarity space. The genetic algorithm setup remains unchanged
with respect to the embedding over simplicial complexes case (Section 5.2.3) and the
model synthesis can be summarised as follows:

1. each individual from the evolving population strips the four parameters writ-
ten in its genetic code, namely, ν, γ, ω and w

2. from each of the 8 dissimilarity space matrices, the sub-matrices correspond-
ing to the pairwise dissimilarities between training patterns are sliced (cf. Eq.
(4.38))

36Non-hub nodes: ultra-peripherals, peripherals, non-hub connectors, non-hub kinless.
Hub nodes: provincial hubs, connector hubs, kinless hubs.

37The radius of gyration measures the compactness of the folded protein structure with respect to
its centre of mass.

5.2. PCN Experiments: Enzymatic Properties 65

3. columns (prototypes) corresponding to 0’s in w are discarded (see Eq. (4.39))

4. eight kernels with shapes γ are individually evaluated over the eight (reduced)
dissimilarity matrices and combined in a single kernel matrix thanks to ω (see
Eq. (4.40))

5. a ν-SVM which exploits the previously-evaluated kernel matrix and the regu-
larisation term ν is trained

6. the fitness function in Eq. (5.7) (to be minimised) is evaluated on the Validation
Set (i.e., steps 3 and 4 are repeated by considering the pairwise dissimilarities
between validation and training patterns and fed to the SVM trained in step 5)

7. at the end of the evolution, the best individual is retained and the final perfor-
mances are evaluated on the Test Set (i.e., steps 3 and 4 are repeated by consid-
ering the pairwise dissimilarities between test and training patterns and fed to
the SVM trained on the Training Set with the best parameters).

From the initial PCN-EC dataset (5583 patterns), as in Section 5.2.2, 9 proteins had to
be removed because of the impossibility to evaluate the Betti numbers at ε = 8.

Table 5.12 shows the average results on the Test Set across five Training-Validation-
Test splits. As per the embedding over simplicial complexes experiment (Section
5.2.3), the sparsity of the feature selector in the dissimilarity space is also shown.
Further, both α = 1 and α = 0.5 have been considered in the fitness function (see
Eq. (5.7)). Finally, Figures 5.8 and 5.9 show the best kernel weights ω amongst the
five runs for each class at α = 1 and α = 0.5, respectively. The performances, es-
pecially in terms of sensitivity, seems to be lower with respect to the two simplicial
complexes-based techniques from Sections 5.2.3 and 5.2.4. Nonetheless, the multiple
kernel technique outperforms both the Betti numbers technique (Section 5.2.2) and
the spectral density technique (Section 5.2.1).

TABLE 5.12: EC classification via multiple kernel machines, performances on the Test Set
(avg ± std). In bold, the best between the α values.

Class α ACC SNS SPC PPV NPV Sparsity

EC1
0.5 94.47 ± 0.61 63.46 ± 3.73 98.68 ± 0.41 86.77 ± 3.66 95.22 ± 0.47 4.50 ± 2.22
1 94.69 ± 0.59 64.54 ± 3.63 98.78 ± 0.39 87.81 ± 3.54 95.36 ± 0.45 45.81 ± 23.13

EC2
0.5 90.51 ± 1.24 65.96 ± 4.30 96.82 ± 0.65 84.21 ± 3.24 91.71 ± 0.99 3.58 ± 0.49
1 91.06 ± 0.94 67.58 ± 3.84 97.09 ± 0.96 85.84 ± 3.83 92.10 ± 0.85 38.27 ± 11.10

EC3
0.5 90.73 ± 0.47 60.54 ± 2.67 97.69 ± 0.38 85.82 ± 1.86 91.48 ± 0.52 3.61 ± 0.43
1 90.78 ± 0.79 60.46 ± 2.75 97.77 ± 0.57 86.27 ± 3.24 91.47 ± 0.56 55.93 ± 11.85

EC4
0.5 96.34 ± 0.36 54.37 ± 4.50 99.44 ± 0.06 87.79 ± 2.06 96.72 ± 0.32 7.82 ± 4.93
1 96.22 ± 0.35 53.33 ± 3.41 99.4 ± 0.24 86.91 ± 4.9 96.64 ± 0.24 29.14 ± 15.03

EC5
0.5 97.72 ± 0.16 37.92 ± 4.27 99.85 ± 0.05 90.09 ± 3.14 97.83 ± 0.15 8.78 ± 4.31
1 97.73 ± 0.28 38.33 ± 7.00 99.85 ± 0.09 90.04 ± 6.00 97.84 ± 0.24 44.64 ± 9.87

EC6
0.5 97.86 ± 0.35 62.65 ± 7.56 99.65 ± 0.21 90.53 ± 5.46 98.13 ± 0.38 5.95 ± 4.30
1 97.95 ± 0.21 63.53 ± 5.32 99.70 ± 0.18 91.79 ± 4.55 98.17 ± 0.27 39.12 ± 15.68

not-enzymes
0.5 82.68 ± 1.50 67.99 ± 1.90 90.12 ± 1.36 77.71 ± 2.80 84.76 ± 0.94 3.58 ± 0.54
1 83.17 ± 1.23 67.52 ± 2.49 91.09 ± 0.71 79.30 ± 1.83 84.72 ± 1.07 20.93 ± 2.89

In order to properly benchmark the proposed multikernel approach, a One-Class
Classification System (hereinafter OCC or OCC_System) capable of exploiting mul-
tiple dissimilarities is used. This classification system has been initially proposed
in [102] and later used for modelling complex systems such as smart grids [99, 101,
102]. The main idea in order to build a model through the One-Class Classifier is
to use a clustering-evolutionary hybrid technique [99, 102]. The main assumption is

66 Chapter 5. Tests and Results

FIGURE 5.8: EC classification via multiple kernel machines, weights heatmap (α = 1).

FIGURE 5.9: EC classification via multiple kernel machines, weights heatmap (α = 0.5).

that similar protein types have similar chances of generating a specific class, reflect-
ing the cluster model. Therefore, the core of the recognition system is a custom-based
dissimilarity measure computed as a weighted Euclidean distance, that is:

d(x1, x2, W) =
√
(x1 	 x2)TWTW(x1 	 x2) (5.10)

where x1, x2 are two generic patterns and W is a diagonal matrix whose elements
are generated through a suitable vector of weights w. The dissimilarity measure is
component-wise, therefore the	 symbol represents a generic dissimilarity measure,
tailored on each pattern subspace, that has to be specified depending on the semantic
of data at hand.

5.2. PCN Experiments: Enzymatic Properties 67

In this study, patterns are represented by dissimilarity vectors extracted from
each sub-dissimilarity matrix, one for each feature adopted to describe the protein.
In other words, also in the OCC_System, patterns pertain to a suitable dissimilarity
space.

The decision region of each cluster Ci is constructed around the medoid ci bound-
ed by the average radius δ(Ci) plus a threshold σ, considered together with the dis-
similarity weights w = diag(W) as free parameters. Given a test pattern x the de-
cision rule consists in evaluating whether it falls inside or outside the overall target
decision region, by checking whether it falls inside the closest cluster. The learning
procedure consists in clustering the Training Set composed by target patterns, adopt-
ing a standard genetic algorithm in charge of evolving a family of cluster-based clas-
sifiers considering the weights w and the thresholds of the decision regions as search
space, guided by a proper objective function. The latter is evaluated on the Valida-
tion Set, taking into account a linear combination of the accuracy of the classification
(that should be maximised) and the extension of the thresholds (that should be min-
imised). Note that in building the classification model only target patterns are used
(positive), while non-target ones (negatives) are used in the cross-validation phase,
hence the adopted learning paradigm is the One-Class classification one [196, 314].
Moreover, in order to outperform the well-known limitations of the initialisation of
the standard k-means algorithm, the OCC_System initialises more than one instance
of the clustering algorithm with random starting representatives, namely medoids
since the OCC_System is capable of dealing with arbitrarily structured data.

FIGURE 5.10: Schematic of the OCC_System and its learning procedure. The model provides
the crisp decision as well as a score (a real number) encoding the decision reliability.

At test stage (or during validation) a voting procedure for each cluster model is
performed. This technique allows building a more robust model. Figure 5.10 shows
the schematic representing the core subsystems of the proposed OCC_System, such
as Clustering and Genetic Algorithm. Moreover, it is shown the Test subsystem,
where given a generic test pattern and given a learned model, it is possible to asso-
ciate a score value (soft-decision) besides the Boolean decision. Hence, each cluster
Ci is equipped with a suitable membership function, denoted in the following as
µCi(·). In practice, a fuzzy set [268] is generated over Ci. The membership function
allows us to quantify the uncertainty (expressed by the membership degree in [0, 1])
of a decision about the recognition of a test pattern. Membership values close to
either 0 or 1 denote ’certain’ and hence reliable decisions. When the membership
degree assigned to a test pattern is close to 0.5, there is no clear distinction about

68 Chapter 5. Tests and Results

the fact that such a test pattern is really a target pattern or not (regardless of the cor-
rectness of the Boolean decision). For this purpose, we adopt a parametric sigmoid
model for µCi(·), which is defined as follows:

µCi(x) =
1

1 + exp{(d(ci, x)− bi)/ai}
(5.11)

where ai, bi ≥ 0 are two parameters specific to Ci, and d(·, ·) is the dissimilarity
measure from Eq. (5.10). Notably, ai is used to control the steepness of the sigmoid
(the lower the value, the faster the rate of change), and bi is used to translate the
function in the input domain. If a cluster (that models a typical protein found in the
Training Set) is very compact, then it describes a very specific scenario. Therefore,
no significant variations should be accepted to consider test patterns as members of
this cluster. Similarly, if a cluster is characterised by a wide extent, then a tolerance
might be suitable in the evaluation of the membership. Accordingly, the parameter
ai is set equal to δ(Ci). On the other hand, bi = δ(Ci) + σi/2. This allows to position
the part of the sigmoid that changes faster right in-between the area of the decision
region determined by the dissimilarity values falling in [B(Ci) − σi, B(Ci)], where
in turn B(Ci) = δ(Ci) + σi is the boundary of the decision region related to the ith

cluster. Finally, the soft decision function s(·) is defined as

s(x) = µC∗(x) (5.12)

where C∗ is the cluster where the test (target) pattern falls.
In conclusion, the OCC_System works in two phases:

1. learning a cluster model of proteins through a suitable dataset divided into
two disjoint sets, namely Training and Validation Set

2. using the learned model in order to recognise or classify unseen patterns drawn
from the Test Set, assigning to each pattern a probability value.

The OCC parameters defining the model are optimised by means of a genetic algo-
rithm guided by a suitable objective function that takes into account the classification
accuracy. For the sake of comparison, the same genetic operators (selection, muta-
tion, crossover, elitism) as per the multiple kernel system have been considered. As
concerns the complexity of the model, measured as the cardinality of the partition k,
a suitable value k = 120 has been selected.

Table 5.13 shows the comparison between the OCC_System and the multiple ker-
nel approach (MKMD). In order to ensure a fair comparison, since the OCC_System
does not perform representatives selection in the dissimilarity space, in the multiple
kernel genetic code (cf. Eq. (5.9)), the weights vector w has been removed and all
weights have been considered unitary (i.e., no representative selection). Further, the
very same five Training-Validation-Test Set splits have been fed to both classifiers.
Clearly, the multiple kernel approach outperforms OCC_System in terms of perfor-
mances. The opposite is true as the structural complexity of the trained model is con-
cerned38: indeed, whilst 120 clusters are needed in order to build the OCC model,
the training phase for the multiple kernel approach returned an average of 1300 sup-
port vectors (≈52% of the training data) for EC1, 1881 support vectors (≈76%) for

38In brief, the structural complexity of a clustering-based classifier is strongly related to the number
of clusters since, in order to classify a new pattern, the pairwise distances with respect to the cen-
troids/medoids have to be computed. Conversely, for SVMs, one shall evaluate as many dot products
as the are support vectors [113, 250].

5.2. PCN Experiments: Enzymatic Properties 69

EC2, 1745 support vectors (≈70%) for EC3, 1213 support vectors (≈49%) for EC4,
767 support vectors (≈31%) for EC5, 864 support vectors (≈35%) for EC6 and 1945
support vectors (≈78%) for not-enzymatic proteins.

TABLE 5.13: EC classification: comparison between One-Class Classifier (OCC) and the mul-
tiple kernel approach (MKMD), performances on the Test Set (avg ± std). In bold, the best

between the two classifiers.

Class Classifier ACC SNS SPC PPV NPV

EC1
MKMD 95.43 ± 0.27 67.26 ± 2.48 98.88 ± 0.21 88.02 ± 1.80 96.11 ± 0.28

OCC 91.78 ± 0.68 35.26 ± 9.93 98.7 ± 0.51 77.32 ± 3.37 92.59 ± 1.02

EC2
MKMD 91.48 ± 0.38 66.22 ± 1.19 97.99 ± 0.30 89.48 ± 1.45 91.84 ± 0.27

OCC 83.49 ± 0.81 44.80 ± 5.47 93.46 ± 1.07 63.94 ± 2.68 86.80 ± 1.03

EC3
MKMD 90.06 ± 0.38 57.48 ± 1.55 97.48 ± 0.27 83.89 ± 1.50 90.96 ± 0.30

OCC 83.44 ± 4.28 48.78 ± 7.69 91.34 ± 6.92 61.61 ± 15.6 88.72 ± 0.82

EC4
MKMD 96.50 ± 0.09 53.41 ± 0.55 99.55 ± 0.09 89.42 ± 1.95 96.79 ± 0.04

OCC 68.43 ± 0.35 77.68 ± 19.32 44.37 ± 22.28 68.43 ± 6.64 61.09 ± 7.46

EC5
MKMD 97.59 ± 0.11 43.56 ± 1.99 99.63 ± 0.11 81.92 ± 4.83 97.91 ± 0.07

OCC 85.41 ± 5.60 36.67 ± 9.16 87.25 ± 6.14 10.37 ± 1.82 97.35 ± 0.21

EC6
MKMD 98.53 ± 0.22 76.72 ± 2.43 99.66 ± 0.19 92.26 ± 4.12 98.81 ± 0.12

OCC 96.88 ± 2.45 60.09 ± 18.10 98.63 ± 2.10 75.79 ± 31.45 98.11 ± 0.56

not-enzymes
MKMD 82.11 ± 0.35 68.12 ± 0.86 89.58 ± 0.54 77.72 ± 0.84 84.05 ± 0.34

OCC 68.43 ± 0.35 77.68 ± 19.32 44.37 ± 22.28 68.43 ± 6.64 61.09 ± 7.46

5.2.6 Final Remarks

In this Section, five (hyper)graph-based pattern recognition techniques have been
applied to real-world proteomic data for assessing whether it is possible to predict
the EC number starting from the topological structure of a folded protein.

In order to ease the comparison between the five techniques, in Figure 5.10 the
Receiver Operating Characteristic (ROC) curves [137] are shown in a class-wise fash-
ion: each plot shows the ROC curves for a given class by considering all of the five
techniques (the best of the five runs). In the legend39, the Area Under the Curve
(AUC) is also shown.

As classification performances are concerned, the three embedding-based tech-
niques (multiple kernels, hypergraph kernels and embedding over simplicial com-
plexes) greatly outperform the other two feature generation-based competitors (spec-
tral density and Betti numbers), especially for EC5, where SD and BN have AUC
approaching 0.5 (random chance).

All techniques other than hypergraph kernels rely on parametric dissimilarity
measures whose weights have been tuned by means of a genetic algorithm. As the
two feature generation based techniques are concerned, Figure 5.5 and Figure 5.7
show the corresponding weights for each feature: however, the knowledge discov-
ery phase is rather poor in these cases (e.g., the assessment of which part of the
spectral density is considered important is more ’out of curiosity’ than for the sake
of discoverable knowledge). The same is not true for the multiple kernel and the
embedding over simplicial complexes experiments.

39Abbreviations: Spectral Density (SD), Betti Numbers (BN), Edit Kernel (EK), Histogram Kernel
(HK), Weighted Jaccard Kernel (WJK), Stratified Edit Kernel (SEK), Multiple Kernels over Multiple Dis-
similarities at α = 1 (MKMD), Embedding over Simplicial Complexes with ν-SVMs at α = 1 (EmbSC-
L2).

70 Chapter 5. Tests and Results

(A) EC1 (B) EC2

(C) EC3 (D) EC4

(E) EC5 (F) EC6

5.2. PCN Experiments: Enzymatic Properties 71

(G) not-enzymes

FIGURE 5.10: ROC curves for EC number classification.

In the first case, one can easily determine by analysing the kernel weights (see
Figures 5.8–5.9) which representation is the most relevant for the problem at hand.
Furthermore, by analysing the weights vector, one can determine which patterns
have been considered as pivotal for the dissimilarity space. As thoroughly discussed
in the reference paper [261], the protein size and the centrality measures seems to
be the most important characteristics: this is perfectly in line with current biologi-
cal knowledge if we consider that enzymes have a more pronounced allosteric ef-
fect with respect to non-enzymatic proteins. This is a consequence of the need to
modulate chemical kinetics according to microenvironment conditions (allostery is
the modulating effect of a modification happening in a site different from catalytic
site on the efficiency of the reaction [159]). Allostery implies an efficient transport
of the signal along protein structure and it was discovered to be efficiently inter-
preted in terms of PCN descriptors, especially centrality measures [285]. Further,
by analysing the proteins marked as pivotal for the dissimilarity spaces, some in-
teresting conclusions can be derived as well, despite the classification task is indeed
very hard (the ability to catalyse a specific class of chemical reaction has a small
impact on the overall global shape). Regardless of the target class, the pivotal pro-
teins come from all EC classes and not only from the target class: this is perfectly
in line with both biological knowledge (absence of a clear form-function relation,
hence they can be considered as an ’emergent property’ of the discrimination task)
and pattern recognition knowledge (the pivotal patterns in the dissimilarity space
must well characterise the decision boundary between the two classes). The pres-
ence of molecules of different classes crucial for a specific category modelling and
thus the image in light of a peculiar strategy adopted by the system is analogue to
the use of ’paired samples’ in statistical investigation [33, 110]. When in presence of
only minor details discriminating statistical units pertaining to different categories,
the only possibility to discriminate is to adopt a paired samples strategy in which
elements of a category is paired with a very similar example of another category so
to rely on their differences (on a sample-by-sample basis) instead of looking for a
general ’class-specific’ properties. The three basic structural patterns found in the
pivotal proteins (spherical shape, symmetrical shape and elongated shape), despite
having different frequencies in the EC-classes40, are present in all analysed classes
in order to ensure the sample-by-sample analysis discussed above. This peculiar
situation is in line with current biochemical knowledge (minimal effect exerted by

40For example, the elongated shape is way more common in non-enzymatic proteins.

72 Chapter 5. Tests and Results

catalysed reaction on global structure) and it is a relevant proof-of-concept of both
the reliability of the classification solution and of the power of the proposed multi-
ple kernels/multiple dissimilarities approach. Appendix A (Section A.1) enlists the
most relevant proteins marked as pivotal for the dissimilarity space.

Similar knowledge discovery can be carried out on the simplicial complexes em-
bedding experiment, thoroughly discussed in the reference paper [252], in which
one may ask why the selected simplices have been considered as relevant for the
classification problem at hand. In order to extract a biochemically relevant explana-
tion from the results of the pattern recognition procedure, for each extracted gran-
ule (simplex), namely a small peptide located into the protein structure, the main
chemico-physical parameters at the amino-acid residue level (volume, polarity, hy-
drophilicity) according to the results presented in [30] have been computed. Each
information granule (simplex) has been mapped with 6 real values indicating the
average and standard deviation of polarity, volume and hydrophilicity evaluated
amongst the amino-acids forming the simplex. The chemico-physical properties of
each information granule have been correlated with a score ranging from 1 to 5,
namely the number of times said granule has been selected across the five test runs:
the higher the score, the higher the confidence about its discrimination importance
for the classification problem. Seven statistical models (one for each of the problem-
related classes) based on linear discrimination analysis [140]: all of these models
show statistical significance, mainly thanks to the large number of samples (more
than 12000 simplices). Table 5.14 summarises their main characteristics. Alongside
the statistical significance, it is interesting to note that all of the seven models have
R2 ≈ 0.02, meaning that they explain 2% of the overall variance.

TABLE 5.14: Variance explained and statistical significance for the seven models.

EC1 EC2 EC3 EC4 EC5 EC6
not

enzymes
R2 0.0250 0.0239 0.0212 0.0199 0.0239 0.0170 0.0250
p < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001 < 0.0001

In this experiment (and the same will also hold for the solubility prediction ex-
periment, see later Section 5.3.5) hydrophilicity has been shown to be the most im-
portant predictor and completely superimposable results are obtained for average
polarity that is strictly related to hydrophilicity. Table 5.15 shows the main char-
acteristics of the seven models as hydrophilicity is concerned and Table 5.16 is its
counterpart as regards polarity: they both reports the t-statistics and the relative
p-value of the null hypothesis of no contribution of hydrophilicity (polarity) of the
multiple linear regression having score for different classes as dependent variable
and different chemico-physical indexes relative to the simplices as regressors. As
evident, especially hydrophilicity, enters with a significant contribution in all mod-
els, stemming as the most important predictor (i.e., the estimated coefficient for av-
erage hydrophilicity is approximately one order of magnitude higher with respect
to other coefficients). Another interesting aspect is that all models show a negative
coefficient for average hydrophilicity and positive sign for its standard deviation.

5.3. PCN Experiments: Solubility Degree 73

TABLE 5.15: Hydrophilicity contribution to score for different classes.

Hydrophilicity (avg) Hydrophilicity (std)

Class t-value p Coefficient t-value p Coefficient
1 11.55 < 0.0001 -4.17734 0.92 0.3563 0.24438
2 10.52 < 0.0001 -3.73211 0.0647 1.85 0.47999
3 10.61 < 0.0001 -3.38981 0.0651 1.84 0.43182
4 11.08 < 0.0001 -2.98596 2.11 0.0352 0.41574
5 12.13 < 0.0001 -2.43624 2.49 0.0127 0.36671
6 10.73 < 0.0001 -2.65512 2.57 0.01 0.46672
7 11.55 < 0.0001 -4.17734 0.92 0.3563 0.24438

TABLE 5.16: Polarity contribution to score for different classes.

Polarity (avg) Polarity (std)

Class t-value p Coefficient t-value p Coefficient
1 11.27 < 0.0001 1.51515 1.77 0.0762 -0.17376
2 10.26 < 0.0001 1.35280 2.52 0.0118 -0.24206
3 10.43 < 0.0001 1.23898 2.62 0.0089 -0.22655
4 10.83 < 0.0001 1.08515 2.72 0.0066 -0.19836
5 11.84 < 0.0001 0.88388 3.16 0.0016 -0.17190
6 10.52 < 0.0001 0.96768 3.14 0.0017 -0.21080
7 11.27 < 0.0001 1.51515 1.77 0.0762 -0.17376

5.3 PCN Experiments: Solubility Degree

An interesting aspect of the pattern recognition techniques discussed in Chapter 4
is that almost all of them are suitable for solving also function approximation and
clustering problems, alongside classification problems as in Section 5.2. The only
exception is the INDVAL-based technique: indeed, in order to evaluate the INDVAL
score, one needs a finite number of problem-related classes (see Eqs. (4.16)–(4.18)), a
peculiarity that only classification problems exhibit (cf. Section 3.1). In order to see
the proposed pattern recognition techniques in action for function approximation
problems, aim of this Section is to investigate the relationship between the PCN and
its solubility degree.

5.3.1 Solubility Prediction via Spectral Density

From the baseline PCN-SOL dataset (4781 patterns), 26 patterns have been removed
because they had at least one isolated node and the evaluation of D−1/2 is impos-
sible (as per Section 5.2.1), leading to a total number of 4755 proteins. In order to
perform a stratified splitting between Training, Validation and Test Set, the ground-
truth values (solubility degrees) have been distributed into 10 uniformly spaced bins
in [0, 1] and the ID of the bin serves as a ’(fake) ground-truth label’. Due to the fi-
nite and categorical nature of this labelling, the stratified splitting has been possible,
keeping the same proportions of 50% (Training Set), 25% (Validation Set) and 25%
(Test Set). Once the three sets are returned, the original solubility degrees have been

74 Chapter 5. Tests and Results

considered as the proper ground-truth values, whereas the ID of the bins have been
discarded.

Methodologically speaking, the model synthesis does not change with respect to
the EC classification experiment from Section 5.2.1: for each PCN within each split,
m = 100 samples are drawn from the normalised Laplacian spectral density.

Since this is a function approximation problem rather than a classification prob-
lem, the core model is a radial basis function-kernelised ν-Support Vector Regression
[336] (ν-SVR) and the following two performance indices take place in lieu of accu-
racy, sensitivity, informedness and other indices from Section 5.2:

Mean Squared Error: MSE = 1
N ∑N

i=1(yi − ŷi)
2

Squared Correlation Coefficient: R2 =
(N ∑N

i=1 yi ŷi−∑N
i=1 ŷi ∑N

i=1 yi)
2(

N ∑N
i=1 ŷ2

i−(∑N
i=1 ŷi)

2)·(N ∑N
i=1 y2

i−(∑N
i=1 yi)

2)
where N is the number of samples, y and ŷ indicate the true and predicted output
value, respectively.

The genetic code for the optimisation procedure still reads as Eq. (5.3) and the
genetic algorithm setup remains unchanged. Trivially, the only difference relies on
the fitness function due to the unfeasibility of the informedness for non-classification
problems: for this experiment, the R2 (to be maximised) serves as the fitness func-
tion41.

Table 5.17 shows the average and standard deviation of both MSE and R2 on
the Test Set evaluated across five Training-Validation-Test Set splits. For the sake of
completeness, as in Figure 5.5, Figure 5.11 shows the resulting weights.

TABLE 5.17: Solubility prediction via spectral density, performances on the Test Set (avg ±
std).

MSE R2

0.0534± 0.0017 0.4439± 0.0196

5.3.2 Solubility Prediction via Betti Numbers

This experiment is the counterpart of the experiment described in Section 5.2.2, in
which the Betti numbers are evaluated on the Vietoris-Rips Complex at different
scales ε = {4, 5, 6, 7, 8}. The Clique Complex will not be tested, due to its poor
performances.

From the initial set of 4781 proteins in PCN-SOL, 5 proteins have been removed
because of out-of-memory errors during the evaluation of the three Betti numbers at
ε = 8. The remaining 4776 proteins have been cast towards the 15-length integer-
valued vector already in Eq. (5.5) which contains the first three Betti numbers for
each candidate ε.

The resulting dataset has been split in Training, Validation and Test Set following
the same binning strategy described in Section 5.3.1. The genetic algorithm orches-
tration does not change with respect to the previous experiment (Section 5.3.1).

41The choice behind the R2 over the MSE follows: the R2 is bounded in [0, 1] and the closer to 1, the
better. The same is generally not true for the MSE, for which "the lower, the better" holds. Hence, the
R2 allows for a more informed evaluation of the goodness of fit.

5.3. PCN Experiments: Solubility Degree 75

FIGURE 5.11: Solubility prediction via spectral density, weights vector. Along with the
weights values (orange stems), the average spectral density amongst the entire dataset is

also shown.

Table 5.18 shows the average and standard deviation of both MSE and R2 on
the Test Set evaluated across five Training-Validation-Test Set splits. For the sake of
completeness, as in Figure 5.7, Figure 5.12 shows the resulting weights.

TABLE 5.18: Solubility prediction via Betti numbers, performances on the Test Set (avg ±
std).

MSE R2

0.0613± 0.0019 0.3706± 0.0164

FIGURE 5.12: Solubility prediction via Betti numbers, weights vector.

5.3.3 Solubility Prediction via Embedding over Simplicial Complexes

This experiment is the counterpart of the experiment described in Section 5.2.3, in
which each PCN has been described as the histogram of simplices composing the
Clique Complex.

76 Chapter 5. Tests and Results

The entire 4781 proteins in PCN-SOL have been considered and properly split into
Training, Validation and Test Set according to the already-mentioned binning strat-
egy. For each PCN, the Clique Complex is evaluated and vertices are represented
according to the amino-acid type. The set of unique simplices from the union of
Training Set and Validation Set forms the alphabet A on the top of which the sym-
bolic histograms are individually evaluated for each simplicial complex. Whilst for
the EC number classification the alphabet counts approximately 12000 symbols, in
this case it counts approximately 11000 symbols.

The genetic algorithm wrapping the model synthesis procedure relies on a ge-
netic code that reads as in Eq. (5.6) and the setup remains unaltered with respect
to the embedding over simplicial complexes for EC number classification (Section
5.2.3). The fitness function, akin to Eq. (5.7), (still to be minimised) sees a convex
linear combination between (1− R2) and the sparsity.

Table 5.19 shows the performances (in terms of average and standard deviation)
on five Training-Validation-Test splits. Both α = 0.5 and α = 1 in the fitness func-
tion have been used for comparison. The sparsity (i.e., the percentage of selected
symbols) is shown as well.

TABLE 5.19: Solubility prediction via embedding over simplicial complexes, performances
on the Test Set (avg ± std).

MSE R2 Sparsity

α = 0.5 0.0298± 9.8396 · 10−4 0.6919± 0.0101 6.8272± 1.8437
α = 1 0.0251± 0.0015 0.7437± 0.0168 41.2517± 17.4360

5.3.4 Solubility Classification via Embedding over Simplicial Complexes

In Sections 5.3.1–5.3.3, the solubility prediction problem has been formulated as a
function approximation problem, where target of the learning system is to predict
the solubility degree (recall, a scalar in range [0, 1]) as accurately as possible. How-
ever, it is possible to ’relax’ this task by letting the learning system to discriminate
between soluble and non-soluble proteins. In other words, this ’relaxed’ problem
turns into a binary classification problem where proteins having solubility degree
greater than a user-defined threshold τ are considered ’soluble’, whereas the remain-
ing proteins are marked as ’non-soluble’ [252].

For the sake of shorthand, only the embedding over simplicial complexes (one of
the most promising tecniques, according to Section 5.2) is considered, with `1-SVM
acting as the core classification model due to efficiency (very fast training times,
as stressed towards the end of Section 5.2.3) and effectiveness (comparable perfor-
mances with non-linear methods, as can be seen by matching Tables 5.6 and 5.7).

For a thorough investigation, the solubility threshold τ has been varied in range
[0.1, 0.9] with step size 0.1, for a total of 9 candidate values. For each candidate τ,
the entire PCN-SOL dataset has been relabelled (soluble vs. non-soluble proteins)
and split in Training-Validation-Test Set according to the usual stratified sampling.
After performing the embedding, the classification is still orchestrated via genetic
optimisation where the genetic code has the form (alike Eq. (5.8))[

C c− c+
]

(5.13)

5.3. PCN Experiments: Solubility Degree 77

where c− and c+ are the two additional weights in order to adjust the regularisation
term C for negative and positive misclassifications, respectively. The fitness function
is given by Eq. (5.7). Both α = 0.5 and α = 1 have been considered for testing.

Figures 5.13 and 5.14 show the classification performances and the percentage
of selected symbols (sparsity) as function of τ. As usual, for each τ five Training-
Validation-Test splits have been performed and the average values are shown.

By matching the top panels in Figures 5.13 and 5.14, the best threshold values are
in range τ ∈ [0.5, 0.7] for α = 1 and τ ∈ [0.5, 0.6] for α = 0.5. In the latter case, as τ →
0.7, precision starts deteriorating. Indeed, for very low threshold values (τ → 0.1)
there will be a lot of ’soluble’ proteins with respect to ’non-soluble’ ones42: trivially,
this reflects in very high positive-related performance indices such as precision and
sensitivity (circa 100%) and rather low negative-related performance indices such as
negative predictive value and specificity (circa 80-90%). The opposite is true for very
high thresholds (τ → 0.9). In the aforementioned ranges, all performance indices
are rather balanced: in Figure 5.13, for τ ∈ [0.5, 0.7], all performance indices are in
range 89-94%; in Figure 5.14, for τ ∈ [0.5, 0.6], all performance indices are in range
89-92%. This (minor) shift in performances is counterbalanced by the number of
selected symbols: for α = 1 approximately 20% of the alphabet symbols have been
selected, whereas for α = 0.5 the percentage of selected symbols is always below
5%. Interestingly, in Figure 5.14, the range τ ∈ [0.5, 0.7] is also featured by the largest
alphabet: a slightly more complex embedding space is needed for maximising the
overall performances.

FIGURE 5.13: Solubility classification via embedding over simplicial complexes, average
performances as function of τ (α = 1).

42In other words, many positive instances with respect to negative ones.

78 Chapter 5. Tests and Results

FIGURE 5.14: Solubility classification via embedding over simplicial complexes, average
performances as function of τ (α = 0.5).

5.3.5 Final Remarks

In this Section, three out of the six proposed pattern recognition techniques from
Chapter 4 have been tested in a function approximation scenario, conversely to the
classification scenario in Section 5.2. This has been possible because in (almost) all
of the cases, the feature space is independent of the nature of the problem at hand
with the only exception being, as already introduced at the beginning of Section 5.3,
the INDVAL-based strategy that demands finite and categorical class labels.

Methodologically speaking, moving from the classification scenario towards the
function approximation scenario demands two major workflow modifications:

1. changing the pattern recognition model (e.g., from ν-SVM to ν-SVR)

2. changing the fitness function (e.g., from informedness to R2).

For the sake of argument, it is worth saying that despite unsupervised problems
have not been explicitly addressed, such pattern recognition procedures can also
be employed for clustering problems by applying the very same two modifications
above (i.e., selecting a suitable clustering algorithm along with a suitable perfor-
mance index).

Leaving aside the INDVAL-based strategy, only three of the remaining five tech-
niques have been tested, namely the two feature engineering approaches (spectral
density –Section 5.3.1– and Betti numbers –Section 5.3.2) and the embedding over
simplicial complexes (Section 5.3.3): for the sake of shorthand, only the two worst-
performing techniques (spectral density and Betti numbers) and one of the best-
performing techniques (embedding over simplicial complexes) according to the EC
classification experiments from Section 5.2 have been considered. Despite the differ-
ent nature of the problem (function approximation vs. classification), by matching
Tables 5.17, 5.18 and 5.19, the embedding over simplicial complexes still emerges as
the most performing technique.

5.3. PCN Experiments: Solubility Degree 79

Following the same rationale, in Section 5.3.4, only the embedding over simpli-
cial complexes has been tested for the classification between soluble and non-soluble
proteins. Furthermore, it is worth recalling that the embedding over simplicial com-
plexes is one of the few methods that allows a suitable knowledge discovery phase.
Following the same statistical assessment as per the EC number classification ex-
periment (Section 5.2.6, the set of selected simplices at suitable τ values have been
correlated with the average and standard deviation of the different chemico-physical
parameters at the amino-acid residue level. In Section 5.2.6, only polarity and hy-
drophilicity have been deemed of interest for the analysis at hand because volume
has been shown to be not statistically significant (p-value approx. 0.11): this is
perfectly coherent if we consider that the volume of a simplex (usually less than
5 residues) is very unlikely to endow biological meaning in terms of the overall pro-
tein solubility. On the other hand, the standard deviation volume has been shown
to be statistically significant (p-value < 0.0001): this interesting result remarks that
simplices composed by ’similar amino-acids’ (small standard deviation) show bet-
ter solubility. Nonetheless, it is important to note that, for a given chemico-physical
property (e.g., volume in this case) the standard deviation and the average value
shall be treated independently and do not show any correlation. This latter aspect
of average and standard deviation carrying different information has also been con-
firmed by analysing the two other properties (polarity and hydrophilicity).

TABLE 5.20: Pearson correlation coefficients between polarity and hydrophilicity.

Polarity
(avg)

Hydrophilicity
(avg)

Polarity
(std)

Hydrophilicity
(std)

Polarity
(avg)

1 0.99818 -0.01869 -0.06879

Hydrophilicity
(avg)

0.99818 1 -0.03705 -0.08582

Polarity
(std)

-0.01869 -0.03705 1 0.99397

Hydrophilicity
(std)

-0.06879 -0.08582 0.99397 1

Polarity and hydrophilicity not only show statistical significance (all p-values are
less than 0.0001), but also show a strong correlation (> 0.99) in terms of both mean
values and standard deviations, as shown in Table 5.20, yet mean values and stan-
dard deviations are not correlated with each other (as per the volume case). This
perfectly fits with current biochemical knowledge and, specifically, this is consis-
tent with the well-known importance of ’hydrophobic interaction’ in protein folding
(residues with hydrophobicity/hydrophilicity values tend to aggregate [284]).

In conclusion, beside the confirmation of the pivotal role of residue hydrophilic
character in determining the protein structure, is well known [80] that shifting from
single residue to entire protein level, new organisation principles arise and ’context-
dependent’ features largely overcome single residue level properties. The 2% of
variance explained observed in the EC case study is the percentage which can be
imputed to the plain chemico-physical properties of individual simplices and one
might ask whether the same analyses can be carried by considering ’groups of sim-
plices’ instead of individual simplices and scoring their relevance for the problem at
hand: this paves the way to new granulation-based studies which should take into

80 Chapter 5. Tests and Results

account also these aspects. All in all, the observed results confirm the actual bio-
chemical theory, thus give a ’lateral validation’ to the pattern recognition procedure,
while at the same time push biochemists to look for non-local chemico-physical
properties for getting rid of protein folding and structure-function relation.

5.4 Metabolic Pathways Experiments

5.4.1 A Preliminary Investigation on the Gut Microbiota

In Section 1.3 the network formalism for metabolic pathways has been introduced,
where edges mark the existence of chemical reactions transforming a node (metabo-
lite) i into another metabolite j. Regardless of the orientation of the edges (i.e.,
whether transformations are considered reversible or not), this representation has
been demonstrated useful in many different scenarios [299, 337]. As such, each
metabolic network can be represented by a binary adjacency matrix A having as
many rows and columns as the are nodes which in position Ai,j sees a unit value if
an edge exists between the ith and the jth node. Following [360], in order to compare
metabolic networks with a different number of metabolites, all graphs are projected
into n× n adjacency matrices, with n being the total number of metabolites present
at least once in the analysed dataset: if a given metabolite k is not present in the
metabolic network of a particular organism, the kth row and the kth column of its
adjacency matrix are set to 0. The maximal coverage set of nodes trick allows a
straightforward comparison between different adjacency matrices by means of the
Hamming distance: the distance between two matrices (networks) is given by the
number of discrepancies (i.e., different values at corresponding positions).

In order to demonstrate of the ability of the adopted representation and metric
to reconstruct phylogenesis at different magnification scales, the four datasets from
Section 5.1.3 have been analysed by means of the pairwise F-statistic by considering
the between- and within- classes metabolic distances. Specifically, if li and lj are the
ith and jth classes for a given classification problem, their F-statistic reads as

F(li, lj) =
d(li, lj)

0.5 · (d(li, li) + d(lj, lj))
(5.14)

where d(a, b) indicates the average (Hamming) distance amongst patterns belonging
to classes a and b. Figures 5.15–5.18 show the consistency between metabolic net-
work wiring (phenotypic) classification to reproduce the phylogenetic (genotypic)
classification of organisms at different scales of definition. The F-statistic shows a
clear-cut correlation between standard biological classification and metabolic data,
thus confirming that both the representation and the adopted metric hold from very
rough (between kingdoms) to very detailed (inside bacteria) problems.

Given these encouraging results, the next study aims at addressing the feasi-
bility and the biological relevance of the gut microbiota in terms of the difference
in metabolic network wiring of different micro-organisms. The analysis of micro-
biota from both methodological (wide use of biodiversity indexes [361], multidimen-
sional statistics approaches [266]) and theoretical (contemporary presence of differ-
ent species having mutualistic and/or competitive interactions, relevance of (micro)
environmental conditions) viewpoints can be intended as a specialised branch of
ecology [108, 136]. In this respect, when evaluating the changes induced by different

5.4. Metabolic Pathways Experiments 81

FIGURE 5.15: F-statistic for metabolic pathways data (Problem 1).

FIGURE 5.16: F-statistic for metabolic pathways data (Problem 2).

stimuli (e.g., disease, drugs, dietary habits...) on microbiota composition it is impor-
tant to go further the simple registration of microbiota profiles in terms of phylo-
genetic information (e.g., changes in relative frequency of microbial genera and/or
species) shifting to an appreciation of functional changes of the microbiota. Analo-
gously to classical ecology, where species occupy ’niches’ correspondent to peculiar
roles in the ecological interaction web, one can hypothesise [136] that to each bacte-
rial species corresponds a given ’niche’ in the mucosa environment. That is to say
that a ’healthy’ microbiota is expected to have a balanced occupation of the relevant
’niches’. Exactly as in classical ecology, the phylogenetic characterisation it is not
independent of the functional role played by the organisms, but it is not coincident
with it. This is why the representation of microbiome in terms of patterns of rela-
tive frequencies of functional classes could represent a more ’phenotypic-oriented’

82 Chapter 5. Tests and Results

FIGURE 5.17: F-statistic for metabolic pathways data (Problem 3).

FIGURE 5.18: F-statistic for metabolic pathways data (Problem 4).

(and thus potentially more biologically relevant) coding of microbiota with respect
to the phylogenesis oriented one. In the case of microbial species in the gut (the
specific environment under analysis), the best ’proxy’ of their ecological role is their
global metabolic network that mirrors the specific ’niche’ occupied by the organism
in terms of chemical products (output) and reactants (input) as well as of their inter-
mediate steps. This is why different microbial species are correlated by the mutual
similarities of their metabolic networks wiring: the aim of this study is indeed to
address whether distinct network clusters are significantly correlated with the phy-
logenetic classification. If successful, this is a proof-of-concept of the existence of
relevant ecological niches in the microbial ecology of the gut.

From the initial dump of 5299 organisms (Section 5.1.3), 1027 have been retained

5.4. Metabolic Pathways Experiments 83

as they are known to populate the human gastrointestinal tract43. In order to study
whether the gastrointestinal tract tends to form well-formed clusters, a k-medoids
algorithm has been used. Indeed, k-medoids, while retaining the properties of par-
titional clustering algorithms (i.e., a given pattern belongs to one and only one clus-
ter), does not depend to any algebraic structures (e.g., the mean in case of the well-
known k-means) and can therefore be equipped with a custom dissimilarity measure
[255–257]. Consequently, the binary adjacency matrices for the properly selected
1027 organisms have been considered, along with a k-medoids equipped with the
Hamming distance. As in [107, 256, 257, 301], the k-medoids exploits the very same
Voronoi iterations at the basis of k-means:

1. k patterns are randomly44 drawn from the dataset as initial medoids

2. each pattern is assigned to the closest cluster (medoid)

3. all medoids are updated: the medoid (also MinSoD) is the element which min-
imises the sum of pairwise distances amongst the patterns belonging to the
cluster

4. steps 2–3 are repeated until a maximum number of iterations is reached or a
given stopping criterion is triggered (e.g., medoids stop changing).

The optimal number of clusters has been determined thanks to the ’elbow plot’
heuristic [357]: a set of candidates k = {1, 2, . . . , 20} has been exhaustively tested
and the optimal k? is selected in proximity of an ’elbow’ in the within-clusters sum-
of-distances plot, drawn as function of k. The within-clusters sum-of-distances (WC-
SoD) is formally defined as

WCSoD =
k

∑
i=1

∑
x∈Ci

d(x, m(i))2 (5.15)

where Ci indicates the ith cluster and m(i) is its medoid, whereas d(·, ·) indicates the
dissimilarity measure adopted (i.e., the Hamming distance, in this case).
Basically, the rationale behind the elbow plot heuristic suggests that is pointless to
increase the number of clusters (i.e., the model complexity) if adding more clusters
does not lead to a better modelling of the data. As usual in k-clustering, since the
clustering results are sensitive to the initial conditions (see Step 1 for the Voronoi it-
erations), for each candidate k, 10 runs of the algorithm are performed with different
initial medoids: the best run is selected as the one that better minimises the WCSoD
as in Eq. (5.15).

Figure 5.19 shows the WCSoD (and its gradient, that sometimes helps in find-
ing the elbow) as function of k with the elbow somehow visible at k? = 7, meaning
that seven well-defined clusters have been found. For the k? = 7 clusters solution,
which explains 75% of the overall variance, Figure 5.19 shows the proportion of
genera across the seven clusters. It is immediate to note that the metabolic (ecologi-
cal) clusters, while presenting very different profiles in terms of genera composition
carry independent information with respect to the classical phylogenetic-based clas-
sification. This additional information must be ascribed to ’niche similarities’ only
partially recovered by phylogenetic based profiles and potentially useful to give a

43According to https://en.wikipedia.org/wiki/List_of_human_microbiota#Gastrointestinal_t
ract. Accessed 28/06/2018.

44A uniform random sampling has been employed for the sake of ease. However, there exist more
efficient initialisation techniques, see e.g. [11] and [40], at an additional computational cost.

https://en.wikipedia.org/wiki/List_of_human_microbiota#Gastrointestinal_tract
https://en.wikipedia.org/wiki/List_of_human_microbiota#Gastrointestinal_tract

84 Chapter 5. Tests and Results

rational basis to the observed differences in microbiome induced (or mirrored) by
changes in microbiota. Overall, this partition is suggestive of the existence of dis-
crete metabolic roles played by different species functional to a balanced microbiome
ecology or, in other words, the presence of a strongly clustered structure with few
relevant clusters is a proof of the tenability of the hypothesis of discrete niches defin-
ing the microbiota of the gut.

In order to further explore the clustering solutions, one can ask whether there
are some reactions that are specific to organisms belonging to a given cluster: this
is where the INDVAL score plays the main role. Since chemical reactions are edges
within a metabolic network, the INDVAL definition previously given in Section 4.4
can easily be restated as follows:

Ai,j =
patterns in cluster j having reaction i

patterns having reaction i
(5.16)

Bi,j =
patterns in cluster j having reaction i

patterns belonging to cluster j
(5.17)

Ii,j = Ai,j · Bi,j (5.18)

For each edge (reaction), the INDVAL score has been evaluated and in Table 5.21 the
most relevant reactions45 in each cluster, along with their INDVAL score, are shown.
In all clusters other than the 6th, there exist signature chemical reactions which, in
most of the cases, are also ’perfect’: the INDVAL score reaches 1, its maximum value,
meaning that all members of the cluster have that reaction and none of the other
clusters’ members have that reaction.

FIGURE 5.19: Gut flora organisms clustering, the elbow plot.

45This analysis leaded to a total number of 1380 edges, the complete listing is impossible.

5.4. Metabolic Pathways Experiments 85

(A) Cluster 1 (B) Cluster 2

(C) Cluster 3 (D) Cluster 4

(E) Cluster 5 (F) Cluster 6

86 Chapter 5. Tests and Results

(G) Cluster 7

FIGURE 5.19: Gut flora organisms clustering, clusters composition.

TABLE 5.21: Gut flora organisms clustering, chemical reaction INDVAL scores. I(a) indicates
the INDVAL score in cluster a. Source and target nodes have been identified according to

their KEGG compound ID. In bold, the most relevant scores in each cluster.

Source Target I(1) I(2) I(3) I(4) I(5) I(6) I(7)

cpd:C06552 cpd:C06553 0.00 1.00 0.00 0.00 0.00 0.00 0.00
cpd:C05893 cpd:C17550 0.02 0.93 0.00 0.00 0.00 0.02 0.02
cpd:C06364 cpd:C06365 0.00 0.91 0.00 0.03 0.00 0.00 0.06
cpd:C00423 cpd:C00079 0.00 0.00 1.00 0.00 0.00 0.00 0.00
cpd:C00024 cpd:C00083 0.00 0.00 1.00 0.00 0.00 0.00 0.00
cpd:C00173 cpd:C00170 0.00 0.00 1.00 0.00 0.00 0.00 0.00
cpd:C20246 cpd:C20247 1.00 0.00 0.00 0.00 0.00 0.00 0.00
cpd:C00381 cpd:C00110 1.00 0.00 0.00 0.00 0.00 0.00 0.00
cpd:C00588 cpd:C00114 1.00 0.00 0.00 0.00 0.00 0.00 0.00
cpd:C01227 cpd:C00280 0.00 0.00 0.00 1.00 0.00 0.00 0.00
cpd:C00603 cpd:C00048 0.00 0.00 0.00 1.00 0.00 0.00 0.00
cpd:C00603 cpd:C00014 0.00 0.00 0.00 1.00 0.00 0.00 0.00
cpd:C00062 cpd:C00581 0.00 0.00 0.07 0.93 0.00 0.00 0.00
cpd:C00032 cpd:C00500 0.00 0.08 0.00 0.92 0.00 0.00 0.00
cpd:C00346 cpd:C00084 0.00 0.00 0.00 0.00 1.00 0.00 0.00
cpd:C00195 cpd:C02686 0.00 0.00 0.00 0.00 1.00 0.00 0.00
cpd:C18911 cpd:C03492 0.00 0.00 0.00 0.00 1.00 0.00 0.00
cpd:C02985 cpd:C01019 0.00 0.00 0.00 0.00 0.00 0.00 1.00
cpd:C05557 cpd:C06564 0.00 0.00 0.00 0.00 0.10 0.00 0.90
cpd:C15858 cpd:C05432 0.00 0.67 0.00 0.00 0.00 0.33 0.00
cpd:C00455 cpd:C00153 0.10 0.03 0.16 0.06 0.31 0.27 0.06

The biochemical profiling offered by the INDVAL incredibly enriches the cluster
analysis results, highlighting the common peculiarities amongst micro-organisms
within the same cluster.

5.4. Metabolic Pathways Experiments 87

5.4.2 Metabolic Networks classification via INDVAL score

The metabolic networks clustering experiment paved the way towards the devel-
opment of the INDVAL-based embedding strategy methodologically described in
Section 4.4. The rationale behind the INDVAL-based technique can be summarised
by the following question:

Since the INDVAL spots relevant edges within the dataset, can it
be used for evaluating meaningful information granules for embedding
purposes?

The four problems (datasets) from Section 5.1.3 have been individually considered.
Experiments herein presented can be found in [260]. In a first experiment, since the
network formalisation and the Hamming distance have been proved to be effective
in metabolic networks discrimination, the four problems have been solved by means
of a plain K-NN decision rule equipped with the Hamming distance.

The model synthesis for this first experiment can be summarised as follows:

1. the dataset has been split into Training, Validation and Test Set, according the
usual stratified sampling

2. for each K candidate in range [1, 20], the K-NN exploits the Training Set in
order to classify the Validation Set: the best K, say K?, is the one that maximises
the informedness on the Validation Set. In case of multiple K’s leading to the
same results, the lowest is retained.

3. the final performances are evaluated on the Test Set, by exploiting K? neigh-
bours.

Tables 5.22–5.25 show the average performances on the Test Set for this first exper-
iment. For the sake of completeness, the optimal K? is also shown. Classes are
numbered according to their order in Figure 5.4 (x-axis, left to right).

TABLE 5.22: Metabolic Networks classification, Problem 1 with K-NN, average perfor-
mances on the Test Set.

ACC SNS SPC NPV PPV K?

99.98 99.82 100 99.98 100 1

TABLE 5.23: Metabolic Networks classification, Problem 2 with K-NN, average perfor-
mances on the Test Set.

Class ACC SNS SPC NPV PPV K?

1 99.95 100 99.95 100 98.46 1
2 99.89 98.18 99.98 99.90 99.55 1
3 99.80 99.99 98.51 99.94 99.77 1
4 99.91 98.39 99.95 99.96 97.85 1
5 99.99 100 99.99 100 99.57 1
6 99.83 81.67 100 99.83 100 1

88 Chapter 5. Tests and Results

TABLE 5.24: Metabolic Networks classification, Problem 3 with K-NN, average perfor-
mances on the Test Set.

Class ACC SNS SPC NPV PPV K?

1 100 100 100 100 100 1
2 98.57 91.67 100 98.33 100 1
3 100 100 100 100 100 1
4 100 100 100 100 100 1
5 98.57 100 98.48 100 83.33 1

TABLE 5.25: Metabolic Networks classification, Problem 4 with K-NN, average perfor-
mances on the Test Set.

Class ACC SNS SPC NPV PPV K?

1 100 100 100 100 100 1
2 100 100 100 100 100 1
3 100 100 100 100 100 1
4 99.97 100 99.97 100 99.41 1
5 100 100 100 100 100 1
6 100 100 100 100 100 1
7 99.89 100 99.88 100 98.43 1
8 100 100 100 100 100 1
9 99.97 99.44 100 99.97 100 1
10 99.97 99.55 100 99.97 100 1
11 99.89 98.46 100 99.88 100 1
12 100 100 100 100 100 1
13 100 100 100 100 100 1
14 100 100 100 100 100 1
15 100 100 100 100 100 1
16 99.97 100 99.97 100 99.72 1
17 100 100 100 100 100 1

In a second experiment, the INDVAL-based embedding space has been used in
lieu of the entire networks, as in the K-NN case. For the sake of comparison, the very
same Training-Validation-Test splits have been used.

The construction of the embedding space for this second experiment can be sum-
marised as follows:

1. all patterns belonging to Training and Validation Set have been considered for
building the embedding space

2. the set of unique edges (cf. E , Section 4.4) drawn from graphs belonging to
the union of Training and Validation Set has been considered: each edge can
be unambiguously identified by the (categorical) node labels at its extremities
(namely, the KEGG IDs as in Table 5.21). In this manner, the evaluation of the
unique edges is straightforward

3. for each edge, its INDVAL with respect to the problem-related classes has been
evaluated thanks to Eqs. (4.16)–(4.18)

5.4. Metabolic Pathways Experiments 89

4. given a user-defined threshold T, all edges whose INDVAL score is greater
than or equal to T for at least one of the problem-related classes becomes part
of the alphabet A of candidate information granules

5. each graph from Training Set, Validation Set and Test Set is individually trans-
formed into an |A|-length vector enumerating the number of occurrences of
each information granule (relevant edge) within the original graph (i.e., the
symbolic histogram).

As per the embedding over simplicial complexes (see Section 5.2.3 for the EC num-
ber classification and/or Section 5.3.4 for the solubility classiication) both ν-SVMs
and `1-SVMs are used for classification. The two classification models are driven by
a genetic algorithm which sees a genetic code of the form as in Eq. (5.6) for ν-SVMs
and a genetic code that reads as in Eq. (5.8) for `1-SVMs. For both cases, the fitness
function reads as in Eq. (5.7) (with the hyperplane coefficient vector in lieu of the
explicit feature selector w in the `1-SVMs case). For both SVMs, the fitness function
tradeoff parameter α has been set as α = 0.5 in order to give the same importance
to sparsity and performances. Since the INDVAL is in range [0, 100], a reasonable
threshold T = 50 is selected for prior edges filtering and alphabet synthesis.

Table 5.26 shows the starting alphabet size for all four problems, averaged across
the several Training-Validation-Test splits.

TABLE 5.26: Metabolic Networks classification, average size of the starting alphabet for
building the INDVAL-based embedding space (T = 50).

Problem 1 2 3 4
Alphabet Size 621 825 234 98

Tables 5.27–5.30 show the average performances across five Training-Validation-
Test Set splits on the Test Set for the four problems. As per the embedding over
simplicial complexes case, the sparsity is also shown. In bold, the best between the
two SVM-based models.

TABLE 5.27: Metabolic Networks classification, Problem 1 via INDVAL-based embedding,
average performances on the Test Set (T = 50).

Classifier ACC SNS SPC NPV PPV Sparsity

`1-SVM 99.98 99.82 100 99.98 100 2.03
ν-SVM 99.98 99.73 100 99.98 100 21.9

Amongst the two SVMs-based systems, `1-SVMs overperform ν-SVMs in terms
of alphabet selection in the vast majority of cases (Problems 1–3). The opposite is
true only for few classes from Problem 4. Apart from a minor shift in sensitivity, the
two systems perform equally for Problem 1 (Table 5.27). For Problems 2 and 3, `1-
SVMs overperform ν-SVMs in terms of sensitivity and negative predictive value; the
opposite is true for specificity and positive predictive value. For Problem 4, classes
4, 7, 9 and 12 seem harder to discriminate given the low precision (PPV) and low
sensitivity (for `1-SVMs). It is possible to improve these results by changing the
threshold T, hence Problem 4 has been solved again by lowering the threshold from
T = 50 to T = 30. Table 5.31 shows the corresponding results where, for the sake of
shorthand, only classes 4, 7, 9 and 12 are displayed.

90 Chapter 5. Tests and Results

TABLE 5.28: Metabolic Networks classification, Problem 2 via INDVAL-based embedding,
average performances on the Test Set (T = 50).

Class Classifier ACC SNS SPC NPV PPV Sparsity

1
`1-SVM 99.86 100 99.86 100 96.11 0.67
ν-SVM 99.98 99.55 100 99.98 100 26.36

2
`1-SVM 99.87 99.55 99.89 99.98 97.98 1.52
ν-SVM 99.87 97.88 99.98 99.89 99.55 25.86

3
`1-SVM 98.86 98.82 99.14 92.79 99.87 2.77
ν-SVM 99.83 99.97 98.86 99.83 99.83 22.41

4
`1-SVM 98.75 99.35 98.74 99.98 67.25 1.64
ν-SVM 99.92 96.77 100 99.92 100 28.39

5
`1-SVM 99.86 98.64 99.88 99.98 93.29 0.6
ν-SVM 99.95 97.27 100 99.95 100 34.02

6
`1-SVM 99.41 85 99.54 99.86 65.27 3.27
ν-SVM 99.81 83.33 99.96 99.85 95.69 31.33

TABLE 5.29: Metabolic Networks classification, Problem 3 via INDVAL-based embedding,
average performances on the Test Set (T = 50).

Class Classifier ACC SNS SPC NPV PPV Sparsity

1
`1-SVM 98.86 95 99.35 99.36 95.5 3.34
ν-SVM 98.86 90 100 98.79 100 20.07

2
`1-SVM 100 100 100 100 100 0.43
ν-SVM 97.14 85 99.66 97.05 98.33 17.44

3
`1-SVM 99.71 99 100 99.62 100 2.92
ν-SVM 98.86 96 100 98.49 100 7.4

4
`1-SVM 100 100 100 100 100 0.89
ν-SVM 96.86 92.31 99.55 95.83 99.17 8.29

5
`1-SVM 97.14 90 97.58 99.36 81.67 4.82
ν-SVM 98 80 99.09 98.81 88.33 15.3

As can be easily seen by matching Tables 5.22–5.25 with Tables 5.27–5.31, K-
NN slightly outperforms the two SVMs-based classification systems, both relying
on the proposed information granulation and embedding. However, the latter ap-
proach has an overwhelming advantage, since it enables knowledge discovery, of
utmost importance in most data driven modelling applications. Specifically, the K-
NN serves as a suitable benchmark for the following two facets:

1. K-NN is the simplest decision rule, with no training procedure, which does
not return any compressed model of the system to be analysed

2. K-NN exploits the entire metabolic networks.

In other words, K-NN exploits the entire information contained in each pattern of
the training set. The proposed technique, as instead, relies on an embedding proce-
dure on the top of relevant edges of the considered networks (instead of the entire
network), with a further feature selection phase that allows to select a suitable subset
of such edges. Since the performances are rather comparable, the proposed embed-
ding procedure retains the vast majority of the information contained in the original

5.4. Metabolic Pathways Experiments 91

dataset. This adds up to the aforementioned knowledge discovery phase, totally ab-
sent in the K-NN experiment, as new predictions are made by plain matching of the
adjacency matrices. Between the two SVMs-based systems, the same observations
discussed at the end of Section 5.2.3 still hold: `1-SVMs are faster and easier to train
due to the underlying linear (rather than a quadratic) programming problem, their
optimisation phase is easier due to the intrinsic feature selection phase.

TABLE 5.30: Metabolic Networks classification, Problem 4 via INDVAL-based embedding,
average performances on the Test Set (T = 50).

Class Classifier ACC SNS SPC NPV PPV Sparsity

1
`1-SVM 97.15 95.31 97.33 99.55 83.14 3.46
ν-SVM 99.31 93.75 99.85 99.4 98.46 5.77

2
`1-SVM 95.6 70.77 96.52 98.88 70.08 8.65
ν-SVM 98.95 70.77 100 98.92 100 7.24

3
`1-SVM 99.89 100 99.88 100 98.3 3.5
ν-SVM 99.22 97.73 99.32 99.85 90.86 4.2

4
`1-SVM 89.2 17.5 92.52 96.02 16.37 2.12
ν-SVM 80.08 78.13 80.17 98.92 25.27 36.51

5
`1-SVM 98.86 100 98.77 100 87.5 1.02
ν-SVM 99 100 98.92 100 89.03 3.68

6
`1-SVM 95.04 89.17 95.24 99.62 59.23 6.56
ν-SVM 99.06 90 99.37 99.66 84.9 9.6

7
`1-SVM 86.57 15.83 91.6 93.85 23.94 5.2
ν-SVM 77.06 94.17 75.85 99.45 22.33 27.54

8
`1-SVM 96.54 99.41 96.4 99.97 60.8 2.54
ν-SVM 99.67 98.24 99.74 99.91 95.09 6.08

9
`1-SVM 90.11 4.44 94.61 94.96 6.22 2.5
ν-SVM 82.69 76.67 83 98.78 15.64 40.88

10
`1-SVM 93.52 99.55 93.13 99.97 58.25 5.63
ν-SVM 98.86 98.64 98.88 99.91 86.16 4.69

11
`1-SVM 99.56 98.85 99.61 99.91 95.51 4.11
ν-SVM 99.7 97.69 99.85 99.82 98.25 2.66

12
`1-SVM 22.3 1.36 23.66 73.16 0.1 89.89
ν-SVM 67.15 99.09 65.07 99.92 20.7 50.31

13
`1-SVM 99.78 100 99.76 100 97.01 1.02
ν-SVM 99.72 99.6 99.73 99.97 96.7 4.91

14
`1-SVM 96.43 94.62 96.49 99.8 58.34 1.33
ν-SVM 99.83 96.92 99.94 99.89 98.57 5.11

15
`1-SVM 99.94 100 99.94 100 99.09 1.42
ν-SVM 99.94 99.05 100 99.94 100 4.79

16
`1-SVM 97.04 98.57 96.87 99.84 81.65 8.23
ν-SVM 99.72 98.57 99.85 99.85 98.59 4.27

17
`1-SVM 100 100 100 100 100 1.02
ν-SVM 99.56 92 99.88 99.66 97.23 7.83

On the Impact of the Threshold T

The choice of T, albeit being the only parameter to be tuned by the end-user in order
to build the alphabet, is critical: a higher T generally leads to a smaller alphabet

92 Chapter 5. Tests and Results

TABLE 5.31: Metabolic Networks classification, Problem 4 via INDVAL-based embedding,
average performances on the Test Set (T = 30)

.

Class Classifier ACC SNS SPC NPV PPV Sparsity

4
`1-SVM 91.97 100 91.59 100 40.08 1.73
ν-SVM 99.31 93.13 99.59 99.68 92.32 11.51

7
`1-SVM 98.14 97.5 98.19 99.82 83.07 5.75
ν-SVM 99.72 96.67 99.94 99.76 99.23 16.24

9
`1-SVM 92.44 100 92.04 100 44.19 2.24
ν-SVM 99.34 94.44 99.59 99.71 94.43 11.11

12
`1-SVM 95.37 48.18 98.44 96.69 72.32 9.92
ν-SVM 99.14 97.27 99.26 99.82 90.39 10.92

which, in turn, leads to a smaller embedding space which might not quite properly
describe the original input space. Conversely, a larger embedding space might be
computationally expensive, especially when it comes to select a suitable subset of
meaningful alphabet symbols. Indeed:

• the distance between two vectors in Rm, either evaluated as a plain Euclidean
distance or via dot product, has complexity O(m)

• in case of (evolutionary) metaheuristics, the search space is strictly related to
the alphabet size: a larger alphabet implies a larger search space which, in
turn, might lead to a larger number of individuals/generations (for better ex-
ploration) and/or larger probability of being trapped in local minima.

The aim of this Section is to investigate the impact of the threshold T in terms of
embedding space complexity (i.e. dimensionality) against performances on the test
set, where T ∈ [10, 90] with step size 10. The four Problems and corresponding splits
being equal, Figures 5.20–5.23 shows the tradeoff between alphabet size (both before
– after T thresholding – and after the feature selection phase) and the performances
in terms of (normalised) informedness when using `1-SVMs as classification system.
From Figures 5.20–5.23, it is clear that, as the problem gets more difficult, more edges
are needed (e.g., a smaller T). Indeed:

1. eukaryotes and prokaryotes can be (almost) perfectly classified even at T = 90
(the largest tested value)

2. different kingdoms can be (almost) perfectly classified for T ≤ 80: note from
Figure 5.21 that the informedness for class 6 drops from circa 90% to circa 60%
when sliding T from 80 to 90

3. organisms within the animal kingdom can be (almost) perfectly classified for
T ≤ 60: see from Figure 5.22 the behaviour of classes 1 and 5 for T > 60

4. different bacteria can be (almost) perfectly classified for T ≤ 30: only classes
1, 3, 5, 11, 13, 15 and 17 show outstanding classification performances up to
T = 90.

Similar considerations hold when using ν-SVMs as classification systems, as re-
ported in Figures 5.20–5.23, which are, however, featured by a higher number of
selected symbols (as already shown in Tables 5.27–5.31).

5.4. Metabolic Pathways Experiments 93

FIGURE 5.20: Metabolic Networks classification, average performances and alphabet size as
function of T (`1-SVMs, Problem 1).

FIGURE 5.21: Metabolic Networks classification, average performances and alphabet size as
function of T (`1-SVMs, Problem 2).

5.4.3 Statistical Assessment of Classification Results

In order to statistically show the difference in classification, the benchmark against
the dummy classifier (also, blind classifier) is investigated [113, 249, 260]. The blind
classifier randomly generates the output values (labels) just by considering their
statistics within the dataset. If the classification problem has NL labels, then the
probability to output the ith label is given by:

p(li) =
|D(li)

TR |
|DTR|

∀i = 1, . . . , NL (5.19)

94 Chapter 5. Tests and Results

FIGURE 5.22: Metabolic Networks classification, average performances and alphabet size as
function of T (`1-SVMs, Problem 3).

FIGURE 5.23: Metabolic Networks classification, average performances and alphabet size as
function of T (`1-SVMs, Problem 4).

where |D(li)
TR | is the number of patterns in the training set having label li and |DTR| is

the cardinality of the training set.
The blind classifier, by definition, does not consider the information carried out

by the training data: the ’blindness’ refers to the fact that in order to assign the
output label to a given patter, say x, the statistical inference adopted by the blind
classifier does not consider in any way the information carried out by x itself. Hence,
the blind classifier can dually quantify the amount of information that the dataset
contains and serve as null-model for the considered classification systems, either
based on the entire network topology (K-NN) or on the INDVAL-based strategy (`1-
SVM and ν-SVM).

5.4. Metabolic Pathways Experiments 95

FIGURE 5.24: Metabolic Networks classification, average performances and alphabet size as
function of T (ν-SVMs, Problem 1).

FIGURE 5.25: Metabolic Networks classification, average performances and alphabet size as
function of T (ν-SVMs, Problem 2).

Figure 5.28 shows via box plots46 the (normalised) informedness of 1000 blind
classifiers against the three proposed classification systems. For the sake of compar-
ison with the tables in the main manuscript, results for ν-SVMs and `1-SVMs have
been obtained by considering T = 50.

For Problems 1–3 (i.e., Figures 5.28a–5.28c) the statistical validity is striking. For
Problem 4 (Figure 5.28d) it is possible to see the weird behaviour for classes 4, 7, 9
and 12: ν-SVMs tend to deteriorate (average informedness of approx. 0.8). On the

46Red horizontal markers indicate the median value; boxes top and bottom correspond to 75th and
25th percentiles; top and bottom whiskers correspond to the maximum and minimum not-outliers; red
plus signs correspond to outliers.

96 Chapter 5. Tests and Results

FIGURE 5.26: Metabolic Networks classification, average performances and alphabet size as
function of T (ν-SVMs, Problem 3).

FIGURE 5.27: Metabolic Networks classification, average performances and alphabet size as
function of T (ν-SVMs, Problem 4).

other hand, `1-SVMs seem to have the same performance as the blind classifier for
classes 4, 7, 9 and seem to perform worst than the dummy classifier for class 12. This
is perfectly in line with the results presented in Table 5.30, in which we discussed
that these classes cannot be linearly separated at T = 50 and a lower threshold is
needed.

For blind classifiers, the informedness is always approximately 0.547: this is per-
fectly coherent with the rationale behind the definition of informedness. As discussed

47That is because we adopted the normalised informedness, otherwise the informedness for
pseudo-random classifiers is approximately 0.

5.4. Metabolic Pathways Experiments 97

in [316], the informedness can be interpreted as the probability of an informed de-
cision rather than a random guess. By excluding the aforementioned ’problematic’
classes in Problem 4 (that is because of the high value T = 50, cf. Table 5.30 and 5.31)
for `1-SVMs, all classifiers have informedness very close to 1 (its maximum value):
another confirmation of the statistical validity of the proposed classification systems.

(A) Problem 1 (B) Problem 2

(C) Problem 3 (D) Problem 4

FIGURE 5.28: Performance of the blind classifier for all four metabolic pathways problems.

5.4.4 Final Remarks

Besides the efficiency in classification, the INDVAL strategy allows the field-expert
to focus on specific substructures (edges, in this work) at the basis of the embedding
procedure, namely substructures marked as ’important’ for the classification system.
Indeed, it is worth stressing that the threshold T leads to a prior substructures fil-
tering, whereas the feature selection phase during classification refines the alphabet
selection.

As far as the metabolic networks application is concerned, the final set of bio-
chemical reactions can give some interesting hints for the functional basis of the
among organisms differences. All of the four problems gave rise to interesting bi-
ological solutions in terms of INDVAL ’almost perfect’ edges (score non-zero for a
given class vs. score 0 for other classes) or ’perfect’ edges (score 100 for a given class
vs. score 0 for all other classes), which will be separately discussed in the following:

98 Chapter 5. Tests and Results

Problem 1. As reported in Table 5.32, all the eukaryotic-only edges involve (directly
or indirectly) Inositol metabolism. The puzzling point is that Inositol molecule
is present in prokaryotes too, but while in prokaryotes Inositol is mainly in-
volved in maintaining a correct acid-base balance protecting some bacterial
species from inactivation by the host during infections, in eukaryotes via both
its antioxidant activity and its ability to detoxify a variety of toxic thiol-reactive
compounds [326] this molecule (in the form of inositol phosphate) is a key
component of (eukaryotic) signalling pathways that do not occur in bacteria
and archaea [245]. Biological membranes (both nuclear and cell membrane)
are the ’gates’ mediating these signalling pathways and all the ’Inositol-linked’
signature edges have to do with reactions involving Inositol in conjunction
with membrane components.
The most prominent difference between prokaryotic and eukaryotic organisa-
tion (reflected by their respective Greek-derived names: eu-karios means ’well
formed nucleus’ while pro-karios translates into ‘primitive nucleus’) is the ab-
sence in prokaryotes of a definite compartmentalisation between nucleus (the
site of genetic information) and the rest of the cell, while this compartmental-
isation is very strict in eukaryotes [1]. Besides the nucleus/cytoplasm separa-
tion eukaryotic cells display a very ordered and complex patterning of differ-
ent compartments (organelles) that allow to keep separate different cell func-
tionalities. Such a fundamental organisation difference between eukaryotic
and prokaryotic cells could give the (false) impression that there are many
metabolic pathways unique for each group, spanning the entire range of func-
tionalities. This is not the case, the ecological dimension of life rules out any
too simplistic quantitative reasoning: bacteria play a crucial role in both ex-
ternal (rivers, lakes, soil, oceans) and internal (gut, nose, buccal and vaginal
mucosa) ecologies in terms of degradation and production of biological mat-
ter. This role implies that the products of bacterial metabolism must ’match’
with enzymes able to transform these metabolites so to enter into eukaryotic
metabolism while at the same time, to accomplish the task of recycling the
degradation products coming from eukaryotic forms, the bacterial metabolism
must have the specific enzymes to let these products to enter prokaryotic me-
tabolism.
This ’recycling’ activity is essential for the maintaining of life (by the way, bac-
teria constitute a consistent part of the global biomass [24]) and necessitates
the establishing of strong functional relations between such incredibly distant
kingdoms of life. The intermingled relation between evolutionary and envi-
ronmental dimensions at the metabolic level is at the basis of the utmost inter-
est of metabolic network wiring comparison.
On the other side, the fact that only ’unique edges’ are linked to inositol metab-
olism, is of utmost interest for shedding light on the role of inositol in ’purely
multicellular/eukaryotic’ features like differentiation and cancer.
The eukaryotic organisation makes the membranes the preferred site of sig-
nalling between the external environment and cell allowing for cell differ-
entiation (and thus the following development of specialised tissues and or-
gans). This is why the appearing (after approximately two billion years of
prokaryotic-only life) of the eukaryotic cell is considered by many scientists
the most prominent milestone in the evolution of life [200].
The fact that such a complete re-shaping of cell architecture presents a ’per-
fectly discriminating signature’ in terms of a relatively simple molecular sys-
tem like Inositol (and its derivatives involved in membrane signalling) opens

5.4. Metabolic Pathways Experiments 99

very interesting perspectives. As for biological theory, this result suggests a
single critical transition that, by a ’different use’ of an already present molecule,
triggers a cascade of events making possible superior forms of life by a sort
of ’compartmentalisation revolution’. In more applicative terms, the (largely
unexpected) ’fundative’ role of Inositol helps to get rid of the accumulating ev-
idence of the involvement of Inositol in different regulation circuits of utmost
biomedical interest like psychiatric syndromes, diabetes, fertility problems and
cancer [39, 241, 352].

Problem 2. Archaea are the last kingdom of the tree-of-life to be discovered, they
are prokaryotes, like bacteria, and are considered the organisms most similar
to the initial forms of life on Earth as well as the direct precursors of eukaryotic
forms [248]. The chemical reactions that better allow archaea identification are
linked to Acetyl-CoA metabolism and consequently to fatty acid metabolism.
These arches are particularly relevant to distinguish archaea from eubacteria
[117]. Acetate and Acetyl-CoA play fundamental roles in all of biology, includ-
ing anaerobic prokaryotes from the both bacteria and archaea, which compose
an estimated quarter of all living protoplasm in Earth’s biosphere. Anaerobes
from the domain Archaea (at odds with Bacteria) have the unique property to
produce methane, so contributing to the global carbon cycle by metabolising
acetate as a growth substrate or product. Acetate-utilising anaerobes classi-
fied in the domain Archaea also proliferate in environments where terminal
electron acceptors are abundant and obtain energy through anaerobic respi-
ration, converting acetate to CO2 [138, 334]. The Archaea colonise extreme
environments (e.g., thermal source at near 100° temperature or the bottom of
the oceans at incredibly high pressure, ices, ...) so allowing for the global Earth
carbon cycle. In this case, the metabolic network analysis allowed to catch the
essential of the organisms ecology, complementing the classical genetics based
phylogenesis with the peculiar environmental (phenotypic) role of these or-
ganisms.
Most of the Earth biomass is made by plants, this is not strange by consid-
ering that the primary input of matter into the biosphere comes from plants,
which are responsible of the initial transformation of the primary energy in-
put (light coming from the Sun) into nutrients that are then made accessible
to other organisms. This singular position of plants at the beginning of global
metabolic cycles is made possible by photosynthetic pigments (mainly chloro-
phyll) that are in charge to ’capture’ photons. This is why this kingdom has
a lot of ’specific edges’ (unique metabolic reactions) mainly linked to the pro-
duction and/or transformation of these pigments. Under the same heading,
being plants ’primary producers’ of organic material, some constituents have
been found (e.g. mannose, oxaloacetate) that are peculiar to plants that in turn
individuate specific reactions in which they are involved in the plant metabolic
networks.
At odds with plants, that are autotroph (a Greek word that indicates that they
produce by themselves their food), fungi are heterotroph (need an external
source of food) and their metabolic peculiarities are strictly related to their
’struggle for life’ in soil ecosystems where they must compete with different
kind of organisms (mainly bacteria) to occupy their trophic niche. Human
made use of the weapons used by fungi to find a place in the extremely compet-
itive soil ecology: the most known example is penicillin, an antibiotic molecule

100 Chapter 5. Tests and Results

produced by the fungi of the Penicillium class to eliminate bacteria compet-
ing for the same habitat. In general, mushrooms are recognised as valuable
sources of natural products with a great structural diversity, including cyclic
peptides, steroids, sesquiterpenes and polysaccharides. They are known to ex-
hibit various beneficial pharmacological properties such as antibacterial, im-
munomodulatory, hypocholesterolemic and antioxidant activities with a con-
siderable therapeutic potential [373]. In our analysis, the fungi maximum IN-
DVAL specific edges are related to the metabolism of ergostane and its deriva-
tives: these molecules are hormones endowed with a marked biological activ-
ity going from antimicrobial to antioxidant and anti-inflammatory effects that
are now under the focus of pharmacological research [61, 123]. The unique
features (discovered by the INDVAL-based approach) of ergostane derivatives
suggest they could be a still unexplored source of new drugs.
The metabolic reactions unique to animals involve myoinositol metabolism
and the reaction converting phosphatidylcholine into phosphatidyl serine. The
crucial role of myoinositol when talking about the eukaryotic/prokaryotic dis-
crimination has already been discussed for Problem 1 (see Table 5.32). This
result allows us to better focus on the emerging role myoinositol that is not
generically ’eukaryotic-like’ but ’animal-like’, so reinforcing the unique role of
membrane signalling in animals with respect to other kingdoms of life. This
result is consistent with the ’phosphatidylcholine’ metabolism. Phosphatidyl-
choline is a major constituent of cell membranes and pulmonary surfactant,
and is more commonly found in the exoplasmic or outer leaflet of a cell mem-
brane. Phosphatidylcholine also plays a role in membrane-mediated cell sig-
nalling and activation of enzymes [189].
Summing up the biological evidences coming from the ’kingdom of life’ dis-
crimination is evident how the ’environment-organism’ interaction is managed
at different levels of organism complexity. At lower level (Archaea) the single
cell must cope with external (mainly physical) environment and the ’metabolic
peculiarities’ (high INDVAL edges) reflect the survival strategy in extreme sit-
uations. Going up the complexity scale (Fungi), competing organisms become
a crucial part of the environment that in turn becomes ’more biological’ and
asks for specific ’chemical weapons’ to survive. At the very end of organisa-
tion complexity (Animals) the single cell has no role to play in terms of envi-
ronmental interactions: in a complex multicellular organism the main issue is
to maintain an efficient signalling among cells so they can work in a coordi-
nated way. The ’environment’ of each cell are the other cells and coping with
external environment is a matter of organised aggregates of cells like tissue,
organs and integrated systems (e.g., immune system, nervous system, cardio-
vascular system, ...). This is registered by the animals specific edges that are
all related to among cells signalling. All relevant edges discussed so far for
Problem 2 are summarised in Table 5.33.

Problem 3. As far as Problem 3 is concerned, `1-SVMs selected a single, ’perfect’
edge able to perfectly discriminate fishes against non-fishes. In other words, by
using `1-SVMs, in order to check (with 100% accuracy, see Table 5.29) whether
a given organism is a fish or not, it is possible to check whether this single edge
(chemical reaction) exists or not in its metabolic network. The very same edge
has also been selected by ν-SVMs, however alongside other edges. This means
that `1-SVMs have been well able to exploit the ’perfection’ and ’meaningful-
ness’ of this edge for perfect classification: indeed, the INDVAL values for all

5.4. Metabolic Pathways Experiments 101

other classes (birds, insects, mammals and reptiles) is 0 whereas the INDVAL
for fishes is 100. This ’perfect’ chemical reaction is involved in ω-3 fatty acids
biosynthesis and is reported in Table 5.34. In fish species, lipids and proteins
are the main organic constituents and play many important roles in the fish’s
life history and physiology, which includes growth, movement, reproduction
and migration. The main role of lipids in these organisms is the storage and
provision of energy in the form of Adenosine Triphosphate (ATP) through the
β-oxidation of fatty acids [294]. Furthermore, the fatty acids of fish lipids are
rich in ω-3 long chain, highly unsaturated fatty acids (n-3 HUFA) that have
particularly important roles in animal nutrition, including fish and human nu-
trition, reflecting their roles in critical physiological processes. Indeed, fish are
the most important food source of these vital nutrients for man. Thus, the long-
standing interest in fish lipids stems from their abundance and their unique-
ness [358]. This uniqueness stems from fatty acid biosynthesis pathways only
present in fishes. These ’fish-only’ pathways have the phosphorylation of D-
Glucuronate as signature.

Problem 4. At odds with the other three Problems, in which the ’golden standard’
biological classification can be considered relatively stable, the discrimination
among different bacterial classes is still in a turmoil. A paper recently appeared
on Nature Biotechnology [302] reveals that a recently introduced phylogenetic
approach made the 58% of the 95789 bacterial genomes known until last year,
to change their taxonomy. It is worth stressing the fact that, in biology, tax-
onomy (i.e., the position of an organism in the tree of life) is ideally based on
evolutionary relationships among organisms. Development of a robust bac-
terial taxonomy has been hindered by an inability to obtain most bacteria in
pure culture and, to a lesser extent, by the historical use of phenotypes to guide
classification [157, 302]. Notwithstanding that, the emerging importance of the
study of microbiota (i.e., the pattern of species or higher taxonomic aggrega-
tions) in human mucosa (mouth, gut, vagina, ...) in many pathologies makes
the obtainment of a meaningful classification urgent. Beside the importance
of an evolution based phylogeny, it is perhaps still more crucial to establish an
ecological based taxonomy that not necessarily coincides with the evolutionary
one (as stressed at the beginning of Section 5.4). This is a very common feature
in the history of life: organisms that are not phylogenetically related can be
very similar due to their common environmental needs. This phenomenon is
called evolutionary convergence and is at the basis of well known ’only pheno-
typic similarities’ like the features shared by dolphins and some fishes, due to
the common needs of marine life, in spite of their lack of shared ancestry. In the
case of the definition of an optimal microbial ecology of the gut (or any other
mucosa) so to both appreciate disease-associated patterns and try to devise
therapeutic strategies, a first step is to find an ecologically relevant phenotypic
formalisation of bacteria. Metabolic networks are perfectly fit for this purpose
for the simple fact the basic role played by the microbes in the gut is to carry
out a metabolic work useful for the host (that can be turned into a damage in
the case of an altered microbial ecology). Before entering this very ambitious
issue, this experiment successfully dealt with a preliminary step in order to
check the ability of the proposed approach to recognise ’established bacterial
taxonomic classes’. It is worth noting that for very few exceptions (Chlamydia,

102 Chapter 5. Tests and Results

Pseudomonas, Staphylococcus and Streptomyces) the INDAVAL-based strat-
egy was able to find a unique diagnostic edge univocally classifying these bac-
terial classes. On the other hand, for other classes (Campylobacter, Corynebac-
terium, Helicobacter and Mycoplasma) there are no relevant edges (coherently
with the results presented in Table 5.30): this is a further confirmation of the
’hard character’ of bacterial classification.

A final remark has to do with the apparent ’triviality’ of the problem, suggested by
the reaching of 100% discrimination that could make one thinks that this is an ’easy
task’. As first, it is important to stress that the problem is trivial only a-posteriori and
only if the basic task is intended as a pure species-by-species discrimination, but this
is not the focus of these experiments. There are much easier ways to perform such
recognition, here the reaching of a 100% discrimination on the sole basis of the meta-
bolic network wiring is a biological relevant result per se. Such result gives the biol-
ogist an unparalleled occasion to rely on a universal phenotype [253] (all organisms
have a metabolism, only few have blood circulation or swimming activity) that puts
together environmental and evolutionary dimensions. The granulation approach (at
odds with other methods like K-NN) catches the essential property of metabolism
to be organised into chain of chemical reactions that give rise to intermediate level
organisation denominated ’pathways’ that are biologically meaningful per se.

TABLE 5.32: Metabolic Networks classification, relevant edges for Problem 1 (T = 50). These
edges have been selected (and survived the feature selection phase) in almost all of the strat-
ified splits. I(e) and I(p) indicate the INDVAL scores for eukaryotes and prokaryotes, respec-
tively. The leftmost column features "`1", "`2" or "∗" if the edge has been selected by using

`1-SVMs, ν-SVMs or has been selected by both classifier, respectively.

.

Classifier Source Node Target Node I(e) I(p)

∗ cpd:C01194 cpd:C01277 99.7 0
∗ cpd:C01212 cpd:C01050 0 89.5
∗ cpd:C00133 cpd:C00993 0 90.3
`1 cpd:C01277 cpd:C04637 99 0
∗ cpd:C03170 cpd:C02090 98.2 0
∗ cpd:C15667 cpd:C04751 0 86.5
∗ cpd:C01212 cpd:C00692 0 89.8
∗ cpd:C06156 cpd:C00352 0 83.5
∗ cpd:C04501 cpd:C06156 0 83
`2 gl:G00009 gl:G00171 86.9 0
∗ cpd:C04598 cpd:C04317 93.6 0
∗ cpd:C04631 cpd:C00043 0 89.9
`2 gl:G00143 gl:G00144 93.9 0
∗ cpd:C01194 gl:G00143 97.9 0
`2 cpd:C00100 cpd:C02876 0 67.2
`1 cpd:C04421 cpd:C00666 0 73.4

5.5 Tests on Benchmark Datasets

So far, the techniques presented in Chapter 4 have been tested on real-world case
studies, namely the study of proteins’ shape-vs-function (Section 5.2), the study of
proteins’ shape-vs-solubility (Section 5.3) and the analysis of metabolic pathways

5.5. Tests on Benchmark Datasets 103

TABLE 5.33: Metabolic Networks classification, relevant edges for Problem 1 (T = 50). I(an),
I(ar), I(b), I(f), I(pl) and I(pr) indicate the INDVAL scores for animals, archaea, bacteria, fungi,

plants and protists, respectively.

Classifier Source Node Target Node I(an) I(ar) I(b) I(f) I(pl) I(pr)

∗ cpd:C00522 cpd:C18911 0 93.1 0.002 0 0 0
∗ cpd:C00036 cpd:C00149 0 0 0 0 97.06 0
∗ cpd:C02139 cpd:C16540 0 0 0 0 97.06 0
∗ cpd:C02280 cpd:C00096 0.007 0 0 0 94.01 0.51
∗ cpd:C02280 cpd:C15926 0.005 0 0 0 93.52 0.16
∗ cpd:C05440 cpd:C15778 0 0 0 93.01 0 0
∗ cpd:C00681 cpd:C03372 0 0 0 68.89 0 0
∗ cpd:C03715 cpd:C03968 0 0 0 68.89 0 0
∗ cpd:C00157 cpd:C02737 98.49 0 0 0 0 0.01
∗ cpd:C01245 cpd:C01272 98.15 0 0 0 0 0.15
∗ cpd:C01277 cpd:C11554 97.02 0 0 0 0 0.18

TABLE 5.34: Metabolic Networks classification, relevant edges for Problem 3, class 2 only
(T = 50). I(b), I(f), I(i), I(m) and I(r) indicate the INDVAL scores for birds, fishes, insects,

mammals and reptiles, respectively.

Classifier Source Node Target Node I(b) I(f) I(i) I(m) I(r)

∗ cpd:C00191 cpd:C05385 0 100 0 0 0

(Section 5.4). Nonetheless, the proposed pattern recognition techniques have to be
intended as general purpose classification systems, not linked to a specific appli-
cation per se. In order to investigate their capabilities, the three most cutting-edge
techniques from Chapter 4 (the two embedding techniques and hypergraph kernels)
have been tested against suitable competitors on well-known graph classification
datasets (Section 5.1.4).

5.5.1 Hypergraph Kernels

The four proposed kernels, namely the Histogram Kernel (HK), the Weighted Jac-
card Kernel (WJK), the Edit Kernel (EK) and the Stratified Edit Kernel (SEK) have
been benchmarked against four state-of-the-art graph kernels, namely the Weis-
feiler–Lehman Subtree Kernel (WL) [343], Weisfeiler–Lehman Shortest Path Kernel
(WLSP) [343], Propagation Kernel (PK) [288] and Random Walk Kernel (RW) [366].
Since the underlying topology is available (i.e., for each graph within each dataset
its adjacency matrix is known), the parameter-free Clique Complex is used (cf. Sec-
tion 2.2) and evaluated using the Bron-Kerbosch algorithm [54, 65]. However, the
parameter-free peculiarity is not true for the four competitors. Specifically, WL,
WLSP and PK are iterative kernels, so one needs to find a suitable number of it-
erations, say h. Furthermore, PK needs the bin width, say w, for locality sensitive
hashing and RW needs the walk decay factor λ.

Each dataset has been split in Training Set (70%) and Test Set (30%) and the kernel
parameters, along with the regularisation term ν for ν-SVM, are learned via 5-fold
cross-validation driven by random search [37] on the Training Set. The best parame-
ters set is the one that maximises the cross-validation accuracy and it will finally be

104 Chapter 5. Tests and Results

used in order to evaluate the final performances on the Test Set48. Table 5.35 sum-
marises the set of parameters to be tuned for the four proposed kernels and the three
competitors. For PK, the following configuration has been used: the total variation
distance has been used in order to evaluate hashes, label diffusion has been used for
feature transformation (fully labelled graphs) and the base kernel has been set as the
linear kernel.

TABLE 5.35: Parameters to be tuned (along with their respective admissible values) for each
of the tested kernels. For the sake of completeness, the regularisation term ν for ν-SVMs has

been included as well.

Parameter

ν ∈ (0, 1] h ∈ {1, . . . , 20} w ∈ [10−8, 10−1] λ ∈ (0, 1)
HK 3 7 7 7

WJK 3 7 7 7

EK 3 7 7 7

SEK 3 7 7 7

WL 3 3 7 7

WLSP 3 3 7 7

PK 3 3 3 7

RW 3 7 7 3

Since WL, WLSP, PK and RW have been implemented in MATLAB® by the re-
spective Authors, the four proposed kernels have been implemented in MATLAB®

as well in order to avoid platform differences. Results herein presented have been
obtained with the following setup: a 64GB RAM workstation equipped with two
6-core hyper-threaded Intel® Xeon® CPU E5-2620 v3 @ 2.40GHz running MATLAB®

R2018b on Linux Ubuntu 18.04.2 LTS. Multithreaded parallelism has been exploited
in order to speedup the training phase, where each thread processes the training data
by using a different set of parameters. For WLSP, the shortest path length matrices
for all graphs in the dataset at hand have been evaluated beforehand, so that each
thread is focused on the proper kernel matrix evaluation with the current parameter
settings49.

Figure 5.29 shows the accuracy on the test set obtained by the four competitors
and the four proposed kernels averaged across five training-test stratified splits. For
the sake of comparison, the same five splits have been fed to all tested kernels. From
Figure 5.29 it is possible to see that the four proposed kernels (especially WJK, EK
and SEK) in the vast majority of the cases outperform the three competitors. Fur-
thermore, they are also very appealing for large datasets such as DD or the TOX21
family since no out-of-memory errors have been triggered and all executions termi-
nated within the 24 hours deadline (for details, see caption of Figure 5.29).

48This experimental setup is quite different with respect to the current literature, so results may
vary. Usually, the final results are obtained using a k-fold cross-validation (usually k = 10) on the
entire dataset, without considering a separate Test Set. To the best of the author’s judgement, consid-
ering a separate Test Set better highlights the generalisation capabilities of the learning system. Minor
discrepancies with respect to related works include the utilisation of random search (instead of grid
search) and the utilisation of ν-SVM instead of C-SVM [50, 86]. Acknowledging these discrepancies,
results herein shown for WL, WLSP, PK and RW have been obtained from the ground-up thanks to the
source code provided by the respective authors and are not taken from any research paper.

49The evaluation of the shortest paths matrices can be performed using the Floyd–Warshall algo-
rithm [141, 372], which does not depend on any of the parameters from Table 5.35.

5.5. Tests on Benchmark Datasets 105

FIGURE 5.29: (Hyper)graph kernels comparison, average accuracy on the test set. The colour
scale has been normalised row-wise (i.e., for each dataset) from yellow (lower values) to-
wards green (higher values, preferred). ’OoM’ indicates that the training procedure went
out-of-memory. The asterisk indicates that the training procedure for at least one of the 5
training-test splits did not finish within 24 hours: in this case, the training procedure has
been aborted and the best parameters obtained so far have been retained. For the sake of

readability, standard deviations are not included.

Conversely, Figure 5.30 shows the running times (in seconds) for evaluating the
kernel matrix over the entire dataset (no training-test split). Wall-clock times refer to
a single-threaded evaluation, no parallelism has been exploited. Since the execution
is not deterministic due to spurious processes running in background, the running
times have been averaged across five evaluations of the kernel matrices. For WL,
WLSP, PK and RW, the best parameters across the aforementioned five training-test
splits have been used. From Figure 5.30 it is possible to see RW is by far the slow-
est kernels to compute, followed by EK and SEK. The latter two kernels lack any
vectorised statements, whereas the same is not true for HK and WJK whose com-
putational burden is competitive with WL and PK (generally, the fastest kernel).
Notwithstanding the running times as such, it is worth stressing that WL, WLSP, PK
and RW shall be evaluated several times in order to find a suitable set of parameters
(see Table 5.35), whereas HK, WJK, EK and SEK can be evaluated only once.

106 Chapter 5. Tests and Results

FIGURE 5.30: (Hyper)graph kernels comparison, average running times (in seconds) for
evaluating the kernel matrix on the entire dataset. The colour scale has been normalised
row-wise (i.e., for each dataset) from yellow (lower values, preferred) towards green (higher
values). ’OoM’ indicates that the training procedure went out-of-memory, hence the impos-
sibility to gather a suitable set of parameters. For the four proposed kernels, running times
also include the simplicial complexes evaluation starting from the underlying graphs. For

the sake of readability, standard deviations are not included.

In Section 4.5 it has been said that, whilst HK and WJK satisfy Mercer’s condi-
tion, the same might not be true for edit-based kernels (namely, EK and SEK). In
order to quantify the goodness of the two proposed edit-based kernels, the nega-
tive eigenfraction (NEF) is investigated, defined as the relative mass of the negative
eigenvalues [311]:

NEF =
∑i:λi<0 |λi|

∑i |λi|
. (5.20)

Clearly, NEF ∈ [0, 1]: the closer to 0, the better. Figure 5.31 shows the NEF of
the kernel matrices evaluated over the 34 datasets from Table 5.2 for EK and SEK.
Both the proposed kernels have rather low NEF, the maximum being 0.0605 (dataset
TOX21_ATAD5 when using EK). Another interesting aspect is that SEK always out-
performs EK in terms of NEF for all datasets (i.e., always less than or equal to).

5.5. Tests on Benchmark Datasets 107

FIGURE 5.31: Edit-based hypergraph kernels, negative eigenfraction.

A final facet to be stressed, lies on the graphs-vs-hypergraphs duality: indeed,
the datasets used for experiments are graph datasets (not hypergraphs), yet the pro-
posed kernels are hypergraph kernels. The possibility to infer the simplicial struc-
ture from the underlying graph (e.g., thanks to the flag complex) has a crucial role
in this regard, thanks to which one can infer hypergraphs starting from graphs [27,
28, 151]. This makes the four proposed kernels comparable with graph kernels (i.e.,
they both start from the same graphs). Notwithstanding that, it is safe to say that the
four proposed kernels are indeed hypergraph kernels since they work on the top of
the simplicial complexes obtained from the underlying 1-skeletons.

5.5.2 Embedding over Simplicial Complexes

For a thorough investigation of the proposed embedding procedure, both of the clas-
sification strategies (ν-SVM and `1-SVM) have been considered. Two classification
systems have been used as competitors:

Weighted Jaccard Kernel Already known from Section 4.5 and whose classification
capabilities have been shown in Section 5.5.1

GRALG Originally proposed in [41] and later used in [43] and [44] for image clas-
sification, GRALG is a GrC-based classification system for graphs. Despite it
considers network motifs rather than simplices, it is still based on the same
embedding procedure via symbolic histograms. In small terms, GRALG ex-
tracts network motifs from the training data and runs a clustering procedure
on such subgraphs by using a graph edit distance as the core (dis)similarity
measure. The medoids (MinSODs) of these cluster form the alphabet on the
top of which the embedding space is built. Two genetic algorithms take care
of tuning the alphabet synthesis and the feature selection procedure, respec-
tively. GRALG, however, suffers from an heavy computational burden which

108 Chapter 5. Tests and Results

may become unfeasible for large datasets. In order to overcome this problem,
the random walk-based variant proposed in [17], and later explored in [16, 18,
19], has been used.

The rationale behind these competitors follows: the WJK relies as well on simplicial
complexes, despite it performs an implicit embedding; conversely, GRALG is an-
other GrC-based classification system powered by symbolic histograms, despite it
does not rely on simplicial complexes.

Thirty datasets drawn from Table 5.2 have been considered for testing. Each
dataset has been split in training set (70%) and test set (30%) in a stratified man-
ner in order to preserve ground-truth labels distribution across the two splits. Val-
idation data has been taken from the training set via 5-fold cross-validation. For
the proposed embedding procedure via simplicial complexes and WJK, the Clique
Complex has been used since the underlying 1-skeleton is already available from
the considered datasets. For GRALG, the maximum motifs size has been set to 5
and, following [17], a subsampling rate of 50% has been performed on the training
set50. Alongside GRALG and WJK, the accuracy of the dummy classifier is also in-
cluded [113]: the latter serves as a baseline solution and quantifies the performance
obtained by a purely random decision rule. Indeed, the dummy classifier outputs a
given label, say li with a probability related to the relative frequency of li amongst
the training patterns and, by definition, does not consider the information carried
out by the pattern descriptions (input domain) in training data.

In Figure 5.32 the accuracy on the Test Set is shown for the five competitors: the
dummy classifier, WJK, GRALG and the proposed embedding procedure using both
non-linear ν-SVM and `1-SVM. In order to take into account intrinsic randomness in
stratified sampling and in genetic optimisation, results herein presented have been
averaged across five different runs. Clearly, for the tested datasets, a linear classifier
performs poorly: it is indeed well-known that for high-dimensional datasets non-
linear and linear methods may have comparable performances [88, 135]. As a matter
of fact, for these datasets, PEKING_1 leaded to the largest embedding space (approx.
1500 symbols), followed by MSRC_9 (approx. 220 symbols).

From Figures 5.32 emerges that WJK is generally the most performing method,
followed by the proposed embedding procedure, in turn followed by GRALG. In-
deed, WJK exploits the entire simplicial complexes, without ’discarding’ any sim-
plices due to the explicit (and optimised) embedding procedure, as proposed in this
work. Further, the evaluation of the kernel matrix sees a 1-vs-1 comparison, so only
simplices belonging to the two simplicial complexes are subject to matching, with-
out relying on simplices belonging to other patterns. Amongst the three methods,
WJK is also the fastest to train: the kernel matrix can be pre-evaluated using very
fast vectorised statements and the only hyperparameter that needs to be tuned is
the ν-SVM regularisation term which, due to the boundedness, can be performed
by a plain random search in (0, 1]. Amongst the two information granulation-based
techniques, the proposed system outperforms GRALG in the vast majority of the
cases. This not only has to be imputed to the modelling capabilities offered by hy-
pergraphs, but also has a merely computational facet: the number of simple paths is
much greater than the number of simplices51, hence GRALG needs a ’compression
stage’ (i.e., clustering procedure via BSAS) to return a feasible number of alphabet

50Four datasets from the original 34 shown in Table 5.2 have been discarded because of their heavy
connectivity: a 50% subsampling rate was not sufficient for GRALG to avoid out-of-memory errors.

51A graph with n vertices has O(n!) paths, whereas the number of cliques goes like O(3n/3).

5.5. Tests on Benchmark Datasets 109

symbols. This compression stage not only may impact the quality of the embed-
ding procedure, but also leads to training times incredibly higher with respect to the
proposed technique in which simplices can be interpreted as granules themselves.

Another interesting aspect that should be considered for comparison relies on the
model interpretability. Despite WJK seems the most appealing technique due to high
training efficiency and remarkable generalisation capabilities, it basically relies on
pairwise evaluations of a positive definite kernel function between pair of simplicial
complexes which can then be fed into a kernelised classifier. This modus operandi
does not make the model interpretable and no knowledge discovery phase can be
pursued afterwards. The same is not true for GrC-based pattern recognition systems
such as GRALG or the proposed one, as already addressed in the EC classification
case study (Section 5.2.6).

FIGURE 5.32: Embedding over simplicial complexes performances on benchmark data, av-
erage accuracy on the Test Set. The colour scale has been normalised row-wise (i.e., for each
dataset) from yellow (lower values) towards green (higher values, preferred). For the sake

of readability, standard deviations are not included.

5.5.3 Embedding via INDVAL

Twenty-two datasets from Table 5.2 have been considered for this preliminary ex-
periments in which the INDVAL score acts as the main role in information granule
synthesis. Furthermore, in order to prove the generalisation of the procedure, let us
define a k-cutoff path as a simple path composed by k edges (k + 1 nodes).

110 Chapter 5. Tests and Results

The INDVAL score can be generalised as follows, for a given value k

Ai,j =
patterns in class j having k-cutoff path i

patterns having k-cutoff path i
(5.21)

Bi,j =
patterns in class j having k-cutoff path i

patterns belonging to class j
(5.22)

Ii,j = Ai,j · Bi,j · 100 (5.23)

Trivially, by considering that an edge is a k-cutoff path with k = 1, then Eqs. (5.21)–
(5.23) collapse into Eq. (4.16)–(4.18).

Figures 5.32, 5.32 and 5.32 show the accuracy on the Test Set for the twenty-
two considered datasets, along with the initial alphabet size (after threshold T) and
the final alphabet size (after genetic optimisation). Results are averaged across five
Training-Validation-Test Set splits. Interrupted line arts mean that the alphabet is
empty for that T value; that is, there are no symbols with INDVAL above the thresh-
old and the embedding cannot be performed.

(A) Average accuracy on the Test Set

(B) Prior symbols selection

5.5. Tests on Benchmark Datasets 111

(C) Optimised symbols selection

FIGURE 5.32: Embedding via INDVAL (path length 1) performances
on benchmark data.

(D) Average accuracy on the Test Set

(E) Prior symbols selection

112 Chapter 5. Tests and Results

(F) Optimised symbols selection

FIGURE 5.32: Embedding via INDVAL (path length 2) performances
on benchmark data.

(G) Average accuracy on the Test Set

(H) Prior symbols selection

5.5. Tests on Benchmark Datasets 113

(I) Optimised symbols selection

FIGURE 5.32: Embedding via INDVAL (path length 3) performances
on benchmark data.

115

Chapter 6

Other Research Activities

6.1 Evolutive Agent-Based Clustering

Evolutive Agent Based Clustering (E-ABC), originally proposed in [259], is a multi
agent-based clustering algorithm whose roots trace back to a previous work from the
research groups: Local Dissimilarities-Agent-Based Clusters Discoverer (LD-ABCD)
[42]. LD-ABCD is a multi agent algorithm in which agents perform a Markovian
random walk on a weighted graph representation of the input dataset. Specifically,
each agent builds its own graph connection matrix amongst data points, weighting
the edges according to its own set of distance measure parameters and performs
a random walk on such graph in order to discover clusters. Then, each agent au-
tonomously decides whether the processed data (i.e., the path of the walk) can be
accepted as a valid cluster or not. This algorithm has been successfully employed in
[45] to identify frequent behaviours of mobile network subscribers starting from a
set of call data records.

LD-ABCD allows the introduction of metric learning in pattern recognition [368],
namely the ability of an intelligent system to learn suitable parameters for a (para-
metric) dissimilarity measure in order to optimise some predefined criteria. Metric
learning tasks can be divided in two main family:

Global metric learning: learning a set of parameters for the dissimilarity measure
suitable for solving the entire pattern recognition problem. To this family usu-
ally belongs the feature selection paradigm (see Section 3.2), hence the vast
majority of the case studies presented in Chapter 5. Indeed, in those tests, a
feature selector vector (usually referred to as w) used to discard unpromising
features in order to maximise the classification performances.

Local metric learning: learning a set of parameters for the dissimilarity measure in
a cluster-wise or class-wise fashion. For the sake of ease, let us consider a
clustering problem in a Euclidean space: there might exist problems in which
clusters lie in different subspaces, so the learning system not only must find
clusters (as usual also in ’standard’ clustering algorithms), but also the sub-
space in which each cluster lies (i.e., is well-formed).

LD-ABCD definitely falls under the local metric learning umbrella (i.e., each agent
build its own graph-based representation of the dataset according to its own set of
dissimilarity measure parameters), yet it is featured by a huge computational com-
plexity, which drastically explodes as the dataset size increases because each agent
operates on (a graph-based representation of) the entire dataset.

E-ABC aims at working in a dual fashion, where many agents operate on a small
randomly drawn subset of the available patterns. In E-ABC, each agent is in charge
of running a core, lightweight clustering algorithm on a randomly chosen subset D

116 Chapter 6. Other Research Activities

of the entire dataset D. Each agents runs a variant of the BSAS algorithm (namely,
RL-BSAS [324]) which adds some Reinforcement Learning-based behaviour to the
standard BSAS by means of two additional parameters (reward factor α and forget-
ting factor β), alongside the well-known cluster radius θ. E-ABC must be able to
discover clusters in specific subspaces. To this end, the dissimilarity measure core of
the clustering algorithm reads as a weighted Euclidean distance (cf. Eq. (5.2)) with
binary weights w. The clustering algorithm parameters and the weights vector are
optimised by means of a genetic algorithm which aims at maximising compactness
and cardinality in order to foster the swarm of agents towards well-formed clusters.
Before moving to the next generation, agents undergo an intra-agent fusion phase
and an inter-agent fusion phase in order to shrink the output size, namely the set of
clusters found by the swarm.

In order to test the E-ABC capabilities of finding well-formed cluster lying in
different subspaces, eight synthetic datasets have been considered composed by a
juxtaposition of informative features (drawn from a multivariate Gaussian distribu-
tion) and noisy features (drawn from a uniform distribution). Those datasets differ
on the number of noisy features and/or the number of patterns per cluster. These
preliminary exercises showed that (at least for the considered datasets with strong
assumption on Gaussian clusters distribution and with tight and separate clusters)
E-ABC is capable of estimating quite correctly the most important characteristics of
the clusters and paved the way for further ideas which include the possibility of
dealing with structured data by properly replacing centroids with medoids in BSAS
and by moving away from the Euclidean distance, the possibility of developing a
supervised version for classification purposes, the adoption of customised evolu-
tionary strategies for dealing with multimodal problems (see e.g. [223]) for better
capturing different subspaces and, obviously, the possibility of letting the agents to
work in parallel by exploiting multi-core and/or many-core architectures due to the
lightweight clustering procedures which can be performed independently.

6.2 Distributed k-medoids Clustering

As briefly sketched in Section 5.4 in the context of clustering metabolic networks
belonging to organisms known to populate the human intestinal tract, k-medoids
is a hard partitional clustering algorithm and, as such, it breaks the dataset into k
non-overlapping clusters in such a way that the WCSoD (Eq. (5.15)) is minimised.
In literature, there are several algorithms for solving the k-medoids problem, in-
cluding PAM [191, 192], CLARA [191, 192], CLARANS [291] and Voronoi iteration
[301]. Regardless of the algorithm, k-medoids is harder to solve with respect to the
widely-known k-means due to the definition of the medoid itself: whilst the cen-
troid (k-means) is defined as the centre of mass of the cluster, the medoid is defined
as the element of the cluster which minimises the sum of pairwise distances. As the
Voronoi iteration method is concerned, naïvely speaking, for a given cluster C, one
needs to evaluate a |C| × |C| matrix encoding the pairwise dissimilarities between
all items in C and then find the element which minimises the sum of distances. This
adds a quadratic complexity procedure, whereas in k-means the centroid can be eval-
uated in linear time with respect to |C|.

In the big data era, the need for processing massive datasets emerged: to this end,
efficient and rather easy-to-use large-scale processing frameworks such as MapRe-
duce [103] and Apache Spark [400] have been proposed, gaining a lot of attention
from computer scientists and machine learning researchers alike. As a matter of fact,

6.2. Distributed k-medoids Clustering 117

several machine learning algorithms have been grouped in MLlib [270], the machine
learning library built-in in Apache Spark.

In short, MapReduce is a parallel and distributed workflow which consists in
two phases: a Map phase and a Reduce phase. During the Map phase, a map func-
tion is applied to a dataset shard and some intermediate results are returned. Those
results are usually presented in a 〈key, value〉 pair form. The MapReduce framework
automatically groups values according to their keys in such a way that each key k
is associated to the list of its values [v1, . . . , vn]. The Reduce phase, finally, applies
an aggregation function by properly combining values associated to the same key in
order to return the final results. Since usually the Map phase returns a huge num-
ber of 〈key, value〉 records, MapReduce can suffer from high overhead and network
congestion: in order to overcome this problem, a Combiner phase can be placed in-
between Map and Reduce where results coming from a single Map worker are com-
bined (i.e., ’reduced’) before sending the results to the proper Reduce phase which
aims at reducing only values belonging to the same key, but coming from different
workers. Figure 6.1 shows the schematic MapReduce workflow for the word-count
problem.

FIGURE 6.1: MapReduce schema for the word-count problem. The workflow does not in-
clude a Combiner phase: if one has to include this optional phase, for example, the second
mapper shall return 〈Car, 2〉 instead of two records of the form 〈Car, 1〉. Credits: Dr. Simone

Scardapane, lecture notes.

MapReduce certainly is simple: the developer must only code the Map function,
the Reduce function and, eventually, the Combiner function, whereas the framework
automatically takes care of the rest (data splitting and forwarding to the mappers,
shuffling and forwarding to reducers, and so on), yet the developer is forced to cast
the algorithm into this very tight and rigorous workflow. Furthermore, MapReduce
suffers from the following two drawbacks regarding

• iterative algorithms: MapReduce is doomed to be inefficient as computing
nodes (both mappers and reducers) have no memory of past executions. In
other words, at each iteration, data must be forwarded to computing nodes
again.

• operations such as filtering, join and the like must be cast into Map and Reduce
phases.

118 Chapter 6. Other Research Activities

Whilst keeping the simplicity of MapReduce, Apache Spark emerged as a break-
through framework for distributed processing. Spark overcomes these problems as
it includes highly efficient map, reduce, join, filter (and many others) operations
which are not only natively distributed, but can be arbitrarily pipelined together. As
far as iterative algorithms are concerned, Spark allows caching in memory and/or
disk, therefore there is no need to forward data back and forth from/to workers at
each iteration.

Distributed implementations of the k-means algorithm have been widely dis-
cussed in literature (see e.g. [408] for a MapReduce implementation and [270] for
an Apache Spark implementation) all of which basically leverage on the following
observations:

• the point-to-centroid assignments can be computed independently in parallel

• the mean value relies on summing items together and the sum is an associative
and commutative operation, so centroids can be updated efficiently.

So it is worth investigating whether the k-medoids using the Voronoi method can
be parallelised in Apache Spark. This investigation has roots in the following ratio-
nales:

• the Voronoi method is at the basis of k-means as well, so one can count on an
affirmed parallelisation workflow

• Apache Spark is way more efficient than MapReduce, especially for iterative
algorithms.

Originally proposed in [256], a first implementation deals with real-valued pat-
terns in order to prove both effectiveness against well-known implementations of
the k-medoids algorithm and its efficiency in distributed scenarios. The first im-
plementation features, as in k-means, a distributed point-to-medoid evaluation and
then, one cluster at the time, the representative update takes place. In this regard,
two alternatives have been proposed:

1. an exact medoid update routine: which solves, in a distributed manner, the
entire quadratic problem underneath the medoid evaluation

2. an approximate medoid tracking procedure, based on [107]: a pool of size
P hosts the first P patterns belonging to the cluster and then, by means of a
stochastic random sampling, two competing patterns are matched against the
current medoid and the farthest one is removed and replaced by one of the
remaining patterns in the cluster.

In order to show the effectiveness of the distributed implementation, namely its
ability to converge to established (even serial) implementations of the k-medoids al-
gorithm, two well-known datasets from the UCI Machine Learning Repository [121,
224] (IRIS and WINE) have been considered. Starting from the very same set of ini-
tial medoids, the distributed implementation using the exact medoid update rou-
tine is able to converge to the same solution (i.e., WCSoD) of the MATLAB® R2015a
k-medoids implementation. Due to its stochastic nature, the same is not true for the
approximate medoid tracking procedure, yet by properly choosing a suitable pool
size P the gap with respect to the exact solution can be reduced.

In order to show the efficiency of the distributed implementation, six additional
datasets have been downloaded from the UCI Machine Learning Repository. Speedup

6.2. Distributed k-medoids Clustering 119

and sizeup have been used as suitable performance indices in order to address how
a distributed algorithm is able to deal as the processing power increases whilst keep-
ing the dataset size constant (the former) and how it is able to deal as the processing
power remains constant, but the dataset size increases (the latter).

From the sizeup analysis emerged that the approximate medoid tracking routine
has very good sizeup performances (e.g., a 4-times larger dataset needs from 1.9 to
5.5 times for time). The exact medoid update generally has lower performances, as
expectable, yet as the dataset size increases the performances tend to improve.

From the speedup analysis emerged that the approximate medoid tracking is still
the most appealing routine. The exact update method is concerned has very good
speedup performances as well: indeed, due to the intensive parallel evaluations
required for building the exact dissimilarity matrix, more and more workers are
crucial for speeding up this computationally expensive phase.

A second implementation, proposed in [257], adds further improvements to the pre-
vious work, namely:

• improved dissimilarity matrices evaluation in case of small clusters

• improved dissimilarity matrices evaluation for the items in the pool in case of
approximate medoid tracking

• new routine for initialing clusters that loose all of its members.

This work also features a new test campaign which involves structured data rather
than real-valued vectors:

1. four metabolic pathways datasets have been downloaded from KEGG: the ref-
erence pathway itself along with three additional pathways (Biosynthesis of
antibiotics, Biosynthesis of secondary metabolites, Microbial metabolism in
diverse environments). The network representation of these pathways have
been considered by relying on the maximal set of intervening metabolites: as
in Section 5.4, networks can easily be compared by means of the Hamming
distance

2. four primary structures datasets have been downloaded from UniProt for the
following organisms: Homo sapiens, Escherichia coli str. K12, Drosophila
melanogaster and Saccharomyces cerevisiae. Since primary structures are se-
quences (of amino-acids), the Levenshtein distance has been used as suitable
dissimilarity measure.

From the speedup analysis emerged that exact medoid update shows a very
good speedup performances, which approaches the linear behaviour (desired) as the
dataset size increases, meaning that large datasets can be treated efficiently, yet –as
already observed from the vector data tests– it suffers from low sizeup performances
(e.g., a 4-times larger datasets needs around 10 times more time). The approximate
medoid tracking behaves in a dual fashion with respect to the exact medoid update:
whilst the latter outperforms the former in terms of speedup, the former outper-
forms the latter in terms of sizeup.

From the sizeup analysis emerged that the approximate medoid tracking greatly
outperforms the exact medoid update, showing a remarkable sub-linear behaviour
(e.g., a 4-times larger dataset needs approximately 1.3 times more time).

120 Chapter 6. Other Research Activities

Results both in terms of sizeup and speedup are coherent between the two differ-
ent scenarios (metabolic networks and primary sequences), suggesting that the over-
all implementation is quite robust with respect to the dissimilarity measure adopted.

To this point one might ask how to validate large-scale clustering results, for exam-
ple, by means of internal validation indices such as

Silhouette index: The Silhouette index [331] is an internal clustering validation in-
dex which measures how-well a given point has been assigned to its own clus-

ter. Let d
(i)
j indicate the average distance between a generic data point xi and

all patterns belonging to cluster j. For point xi it is possible to define a(xi) as
the average dissimilarity from all the patterns within its own cluster, say Sh,

thus a(xi) = d
(i)
h . Further, it is possible to define b(xi) as the nearest-cluster av-

erage dissimilarity of which xi is not a member, thus b(xi) = min
j=1,...,k

(d
(i)
j), with

j 6= h. The Silhouette for xi is evaluated as:

s(xi) =
b(xi)− a(xi)

max{b(xi), a(xi)}
(6.1)

and the overall Silhouette (i.e. for the whole clustering solution) is taken by
averaging each data point’s score:

s =
1
N

N

∑
i=1

s(xi) (6.2)

By definition, s(xi) ∈ [−1,+1] (∀i = 1, . . . , N) and, by extension, s ∈ [−1,+1]
as well: the closer to +1, the better the clustering solution.

Davies-Bouldin index: The Davies-Bouldin index [98] is an internal clustering val-
idation index which measures the intra-cluster separation against the inter-
cluster variance. Let Si be the statistical dispersion of the ith cluster, computed
as the average distance between the patterns belonging to the cluster itself and
its representative (i.e. its medoid). Let Mi,j be the distance between ith and jth

clusters’ representatives. For a clustering solution to be good, Si should be as
small as possible, whereas Mi,j should be as large as possible; therefore for a
given pair of clusters, a penalty score can be defined as:

Ri,j =
Si + Sj

Mi,j
(6.3)

The Davies-Bouldin Index for the ith cluster is thus defined as

DBIi = max
j 6=i

Ri,j (6.4)

and the overall Davies-Bouldin Index (i.e. for the whole clustering solution) is
taken by averaging each cluster’s score:

DBI =
1
k

k

∑
i=1

DBIi (6.5)

6.3. Energy Management System Synthesis by ANFIS Networks 121

Conversely to the Silhouette, the Davies-Bouldin index is not bounded within
a given range. As a general rule, the lower the Davies-Bouldin index, the better
the clustering solution. The soundness of this result is a direct consequence of
what previously explained; indeed, in order to obtain a low Davies-Bouldin
index, the numerator in Eq. (6.3) should be small (i.e. compact clusters) and/or
the denominator should be large (i.e. well separated clusters, far apart from
each other).

Simplified Silhouette index: The Simplified Silhouette index [89, 126, 173, 364, 369]
overcomes the problem of the Silhouette index as the latter needs to evaluate
all pairwise distances between points. In the Simplified Silhouette Index, a(xi)
is defined as the distance between xi and its cluster’s representative, whereas
b(xi) is defined as the minimum distance with respect to the other clusters’
representatives. s(xi) is still evaluated using Eq. (6.1) and, by extension, the
overall Simplified Silhouette Index is evaluated using Eq. (6.2). Like its ’stan-
dard’ counterpart, the Simplified Silhouette Index is also in range [−1,+1]: the
closer to +1, the better the clustering solution.

In [255] two contributions have been proposed:

1. the possibility of exploiting the full pairwise distance matrix in order to speedup
the entire k-medoids evaluation, along with the evaluation of the Davies-Bouldin
Index and the Silhouette Index (in fact, all of them rely only on dissimilarities
between patterns), but this approach is trivially not suitable for large datasets

2. the possibility of using Apache Spark in order to evaluate the Davies-Bouldin
Index and the Simplified Silhouette Index in a distributed manner.

The same metabolic pathways datasets from the previous work have been used
in order to stress the application on structured data. The distributed Simplified Sil-
houette index showed very good sizeup performances (e.g., a 4-times larger dataset
needs 3.5 to 4.6 times more time) and the speedup approaches the expected linear
behaviour as the dataset size increases. The distributed Davies-Bouldin index out-
performs the Simplified Silhouette index in terms of sizeup (e.g., a 4-times larger
dataset needs 2.4 to 3.6 times more time) and showed an approaching linear be-
haviour for larger dataset as well. However, after 9 cores, the speedup curves started
to flatten instead of increasing further: this is due to the fact that the Davies-Bouldin
index has a lower computational complexity, thus fewer workers suffice. Indeed, the
Davies-Bouldin index has linear complexity with respect to the number of patterns,
viz O(N) which, when parallelised over p computational units, drops to O(N/p).
Conversely, the Simplified Silhouette has complexity related to both patterns and
medoids, that is O(kN) which, when parallelised, drops to O(kN/p).

6.3 Energy Management System Synthesis by ANFIS Net-
works

In smart grids, the Energy Management System is a module in charge of operating in
real-time by defining the energy storage system energy flow in order to maximise the
revenues generated by the energy trade with the distribution grid. Specifically, its
correct functioning impacts the microgrid components (aggregated systems grouped
in renewable sources power generators, electric loads and the energy storage system
itself), whose flows must be managed and re-distributed across the microgrid and

122 Chapter 6. Other Research Activities

from/to the main grid. Fuzzy systems have been proved successful in this regard,
as thoroughly explored in literature [9, 68, 213–215, 239, 313] and in a first work
[217] the energy management system has been synthesised thanks to an Adaptive
NeuroFuzzy Inference System (ANFIS) [182] whose training leverages on clustering
algorithms.

The ANFIS is equipped with multivariate Gaussian membership functions of the
form

φ(i)(u) = e−
1
2 (u−µ(i))·C(i)−1 ·(uT−µ(i)T) (6.6)

where φ(i) is the generic ith membership function, defined by µ(i) and C(i), namely
the cluster centre and its covariance matrix, respectively, and u is the crisp input
vector normalized in [0, 1].

The ANFIS is defined by adopting the first order Takagi-Sugeno IF-THEN rules
where the ith membership function, φ(i), defines the antecedent set of the ith rule that
reads as

IF u is φ(i) THEN y(i) = uT · γ(i) (6.7)

where, in turn, γ(i) is the ith rule consequent, defined by a properly tuned hyperplane
coefficients vector. Due to the absence of AND-OR operators, the firing rule strength
is exactly the membership function value, hence f (i) ≡ φ(i). A Winner-Takes-All
strategy is adopted for computing the overall fuzzy inference system output as the
output of the most firing rule (highest membership function value). From Eq. (6.6),
it is clear that the membership function positions (and extend) can be tuned thanks
to clustering algorithms, where µ stands as the cluster representative (e.g., centroid)
and C reads as the covariance matrix of the cluster itself. However recall that clus-
tering algorithms notably work in the input space only, without relying on any out-
put values: this makes standard clustering algorithms unsuitable for the problem
at hand since it is impossible to evaluate the rule consequent (namely, the hyper-
plane). In order to overcome this problem, one must rely on the so-called hyperplane
clustering algorithms [300] where the point-to-cluster distance has the form

d̂(〈x, y〉, 〈θ, µ〉) = εd(x, µ) + (1− ε)(y− (θTx− θ0))
2 (6.8)

where µ and θ are the cluster centre and the hyperplane coefficients vector, respec-
tively, d(·, ·) is a suitable point-to-centroid distance measure computed in the input
space (e.g., squared Euclidean distance) and, finally, ε ∈ [0, 1] is a parameter weight-
ing the two linear convex combination members. It is worth noting that the leftmost
term, by considering patterns and centroids and by not considering output values or
hyperplanes, can be seen as the distance in the input space. Conversely, the rightmost
term considers output values and hyperplanes in lieu of centroids, therefore can be
seen as the distance in the hyperplanes space. Joining the two terms, makes (6.8) a
suitable joint input-hyperplanes space distance measure [217, 300], with ε in charge of
weighting the input and hyperplanes spaces contributions. It is worth remarking
that by setting ε = 0 only the hyperplanes space is considered, thereby leading to a
proper hyperplane clustering, and Eq. (6.8) becomes

d̂(〈x, y〉, θ) = (y− (θTx− θ0))
2 (6.9)

By matching Eq. (6.8) and Eq. (6.9) it is clear that in hyperplane clustering cen-
troids have no impact in the distance measure. Indeed, only the hyperplane co-
efficients vector θ can be considered as the proper cluster representative. In turn,

6.3. Energy Management System Synthesis by ANFIS Networks 123

hyperplanes are affine subspaces as they also include the fixed term, namely the inter-
cept, as stressed by the term θ0 in Eqs. (6.8) and (6.9). By following this approach,
the cluster representative is just the coefficients vector θ, and the distance measure
between a generic input-output pair 〈x, y〉 with respect to a cluster is defined as the
approximation error of the corresponding hyperplane on x (as in Eq. (6.9)).

In a first work, three candidate clustering algorithms have been considered (k-
means, k-medians and k-medoids with the Mahalanobis distance) and tweaked in
order to work on the input-hyperplane space (cf. Eq. (6.8)). Furthermore, four can-
didate values for ε = {1, 0.75, 0.50, 0.25} have been tested in order to show how
the hyperplane space and the input space impact on the overall performances, mea-
sured by the profit generated by the energy trade with the main grid. The dataset
provided by AReti SpA, the electricity distribution company in Rome (Italy), fea-
tures profiles of buy and sell prices, energy exchanged with the grid, energy genera-
tion, energy demand and state of charge of the energy storage system. Tests showed
that k-medoids is able to better minimise the profit (≈ 15− 20% with respect to the
benchmark solution formulated via mixed-integer linear programming).

The analysis has been extended in a second work [216], where the case ε = 0
has been thoroughly discussed. There in indeed a potential issue with hyperplane
clustering that needs to be carefully addressed: clusters well-separated in the input
space are approximated by the same hyperplane. This leads to superpositions in the
resulting membership functions, with undesired ambiguities. In order to overcome
this problem, a (Pruning) Adaptive Resolution Min-Max Classifier [321, 322, 325] is
used for membership function refining. As clustering algorithms are concerned, k-
means and two hierarchical variants (agglomerative and divisive) are considered for
comparison. Computational results on the same dataset showed that this procedure
(hyperplane clustering supported by min-max classifier) yields better performances
(≈ 10− 25% with respect to the benchmark solution formulated via mixed-integer
linear programming) if compared with the previous work.

A third work, finally, [218] compares different strategies for Energy Management
System synthesis: Echo State Networks, Mamdani Fuzzy Inference System, ANFIS,
MLP, SVR and Rolling Time Horizon equipped with two predictors (’ideal’ predic-
tor and Echo State Network). The Rolling Time Horizon strategy consists in running
(at each time sample) the prediction algorithm to obtain estimations used by the
optimisation algorithm in order to compute the optimal output (command) time se-
ries over a given time horizon, which is usually extended to one or two days. To
better manage the prediction error, only the first element of the optimal time series
is forwarded to the microgrid power converters in order to effectively balance the
microgrid power flows. The price to pay for their good performances lies on its
computational complexity. However, solutions based on soft computing (especially
ANFIS-based) have competitive performances with respect to Rolling Time Horizon
whilst featuring a much lower computational and structural complexity. Further-
more, ANFIS-based solutions can efficiently be implemented on low-cost hardware
(e.g., a Raspberry Pi model B+) whilst keeping the decision time below 15 minutes52,
whereas the same is not true for Rolling Time Horizon-based strategies.

52In most European countries, generation group deviations are calculated on a 15 minutes basis and,
consequently, energy systems are sampled every 15 minutes by assuming that the power generation
and demand are constant.

125

Chapter 7

Conclusions

In this thesis, six different pattern recognition systems suitable for dealing with (hy-
per)graphs have been presented and investigated. These six systems somewhat
span the entire three-fold partition of pattern recognition techniques from Chapter
3, namely feature engineering, embedding techniques and ad-hoc dissimilarities in
the input space.

The first technique (Section 4.1), which falls under the feature generation um-
brella, is a natural extension of [244], in which each graph is described according to
its (sampled) spectral density. A second feature generation procedure relies on TDA
(Section 4.2), by seeing graphs as purely topological objects and measuring the dis-
similarity between their respective topological spaces thanks to their Betti numbers.

Then the dissertation moves towards embedding spaces, both explicit and im-
plicit. The first (explicit) embedding technique still has roots in TDA, being based
on simplicial complexes (Section 4.3). According to this technique, each simplex is
a candidate information granule and, thanks to exact simplex matching, the total
number of prospective granules can easily be shrunk. Further, this exact simplex
matching (which is, in turn, possible thanks to the categorical nature of the node
labels) makes the symbolic histogram evaluation very fast and straightforward. As
common in GrC-based pattern recognition system, the model synthesis sees a suit-
able feature selection phase in order to further shrink the set of meaningful symbols
for the problem at hand: this feature selection can either be performed in a ’naïve
way’ by means of genetic optimisation or in an automatic way (e.g., by `1 norm min-
imisation).
A second embedding procedure leverages on the INDVAL score (Section 4.4) in or-
der to spot significant substructures in structures data (e.g., edges, paths in a graph).
This is the only technique suitable for classification problems only, since the IND-
VAL evaluation (hence the embedding space definition) relies on the ground-truth
class labels; the same is not true for all other techniques. The INDVAL helps in spot-
ting relevant substructures which, like the simplices in the previous experiment, are
candidate information granules for building the embedding space.
The family of four hypergraph kernels presented in Section 4.5 aim at defining suit-
able kernel functions in order to deal with hypergraphs (simplicial complexes) and
they still heavily rely on the categorial nature of node labels.
Finally, in Section 4.6, a multiple kernel approach leveraging over multiple dissim-
ilarity at the same time is presented. This technique not only can spot the most
relevant dissimilarities (i.e., representations), but also suitable prototypes in the re-
spective dissimilarity spaces, allowing a two-fold knowledge discovery phase.

Most of these techniques have been tested in order to solve a real-world problem,
namely the enzymatic function prediction in protein networks (Section 5.2), with the
two simplicial complexes-based techniques being the most performing ones. Fur-
ther, the Betti numbers, the spectral density and the embedding over simplicial

126 Chapter 7. Conclusions

complexes strategies have also been tested on another problem related to protein
networks, that is the solubility degree prediction (Section 5.3). Also in this different
problem (function approximation rather than classification), the embedding over
simplicial complexes emerged as the most performing technique. Finally, this strat-
egy has also been applied on a side problem, that is the classification of soluble vs.
non-soluble proteins, again with remarkable results.

The INDVAL-based technique has been applied to the analysis of metabolic net-
works (Section 5.4) and a major comparison has been performed with a plain K-NN
that considers the entire networks in order to quantify how much the semantic gap
between the original space (graphs) and the embedding space (Euclidean) this tech-
nique is able to fill.

The three most cutting-edge techniques (the two embedding strategies and hy-
pergraph kernels) have also been tested on benchmark datasets for graph classifica-
tion and compared against suitable competitors (Section 5.5). Specifically, the four
hypergraph kernels have been compared against four well-known competitors (WL,
WLSP, PK and RW), with three of the four proposed kernels (WJK, SEK and EK) out-
performing the competitors in the vast majority of the considered datasets. The em-
bedding over simplicial complexes, as instead, has been compared against GRALG
and against the WJK, with results close to the WJK. The INDVAL-based strategy has
also been tested on benchmark data, yet it deserves a more in-depth comparison
against existing techniques.

Needless to say, other than properly benchmarking the INDVAL-based embed-
ding, the research here proposed paves the way for interesting research endeavours,
especially as the extension of machine learning techniques towards hypergraphs is
concerned. First, addressing how those techniques scale as the dataset size increases,
possibly following the research notes in Appendix B. Second, and more interesting,
extending the simplicial complexes-based techniques in order to consider also edge
labels and more structured node labels, like GRALG does53. Hybridisations can also
go the other way round, by equipping GRALG with an INDVAL-based prior fil-
tering procedure before clustering the set of subgraphs in order to further reduce
the computational complexity. Finally, the INDVAL strategy can easily be extended
towards any type of structured data, for example text classification (spot relevant
words, or n-grams within documents) or sequence analysis (spot relevant k-mers).

53GRALG performs an inexact graph matching between subgraphs and is capable of dealing with
any type of node and/or edge labels. In order to make the comparison fair, GRALG did not con-
sider edge labels either (dissimilarity between edges is constant) and has been equipped with a delta-
distance between node labels (categorical).

127

Appendix A

Knowledge Discovery Data

A.1 Multiple Kernel Machines (EC number classification)

In the following tables, the sets of proteins elected as prototypes are listed. In order
to shrink the output size, the a-posteriori analysis has been carried only on proteins
which have been selected in all of the five runs of the genetic algorithm (in order
to remove ’spurious’ representatives due to randomness in the optimisation proce-
dure).

TABLE A.1: Selected proteins in order to discriminate EC 1 (Oxidoreductases) vs. all the rest.

PDB ID Notes / Description

1KOF Transferase
1XFG Transferase
3E2R Oxydoreductase
4TS9 Transferase

1ZDM Signalling Protein
1MPG Hydrolase
1QQQ Transferase

TABLE A.2: Selected proteins in order to discriminate EC 2 (Transferases) vs. all the rest.

PDB ID Notes / Description

3EDC LAC repressor (signalling protein)
1DKL Hydrolase
1JKJ Ligase
2DBI Unknown function
3UCS Chaperone
1LX7 Transferase
2GAR Transferase
3ILI Transferase
1S08 Transferase
4IXM Hydrolase
4XTJ Isomerase

1KW1 Lyase
1BDH Transcription factor (DNA-binding)
4PC3 Elongation factor (RNA-binding)
5G1L Isomerase

128 Appendix A. Knowledge Discovery Data

TABLE A.3: Selected proteins in order to discriminate EC 3 (Hydrolases) vs. all the rest.

PDB ID Notes / Description

4RZS Transcription factor (signalling protein)
1ZDM Signalling protein
3I7R Lyase

1HW5 Signalling protein
1SO5 Lyase

TABLE A.4: Selected proteins in order to discriminate EC 4 (Lyases) vs. all the rest.

PDB ID Notes / Description

2BWX Hydrolase
3UWM Oxydoreductase
2H71 Electron transport
1D7A Lyase
4DAP DNA-binding
1SPV Structural genomics, unknown function
1EXD Ligase + RNA-binding
1X83 Isomerase
3ILJ Transferase

2D4U Signalling protein
1JNW Oxydoreductase
1TRE Oxydoreductase
1ZPT Oxydoreductase
3LGU Hydrolase
1IB6 Oxydoreductase

3C0U Structural genomics, unknown function
5GT2 Oxydoreductase
2RN2 Hydrolase
4L4Z Transcription regulator

3CMR Hydrolase
1NQF Transport protein
1GPQ Hydrolase
4ODM Isomerase + chaperone
2NPG Transport protein
2UAG Ligase
1OVG Transferase
3AVU Transferase
1RBV Hydrolase
5AB1 Cell adhesion

1TMM Transferase
4NIY Hydrolase
4WR3 Isomerase

A.1. Multiple Kernel Machines (EC number classification) 129

TABLE A.5: Selected proteins in order to discriminate EC 5 (Isomerases) vs. all the rest.

PDB ID Notes / Description

4ITX Lyase
2BWW Hydrolase
5IU6 Transferase

1ODD Gene regulatory
5G5G Oxydoreductase
1G7X Transferase
2E0Y Transferase
2SCU Ligase
1HO4 Hydrolase
3RGM Transport Protein
1OAC Oxydoreductase
5MUC Oxydoreductase
3OGD Hydrolase + DNA binding
4K34 Membrane protein
1Q0L Oxydoreductase
1G58 Isomerase
5M3B Transport protein

2WOH Oxydoreductase
2PJP Translation regulation (RNA-binding)

TABLE A.6: Selected proteins in order to discriminate EC 6 (Ligases) vs. all the rest.

PDB ID Notes / Description

2OLQ Lyase
1JDI Isomerase
4NIG Oxydoreductase + DNA-binding
5T03 Transferase

5FNN Oxydoreductase
2Z9D Oxydoreductase
2V3Z Hydrolase
4ARI Ligase + RNA-binding
3LBS Transport protein
4QGS Oxydoreductase
5B7F Oxydoreductase

2ABH Transferase

130 Appendix A. Knowledge Discovery Data

TABLE A.7: Selected proteins in order to discriminate not-enzymes vs. all the rest.

PDB ID Notes / Description

1SPA Transferase
2YH9 Membrane protein
1NQF Transport protein
1LDI Transport protein
1TIK Hydrolase

1MWI Hydrolase + DNA-binding
1GEW Transferase
5CKH Hydrolase
3ABQ Lyase
3B6M Oxydoreductase

A.2 Embedding Simplicial Complexes (EC number classifi-
cation)

In Table A.9, the set of simplices that survived the feature selection phase for all five
runs are listed. Each amino-acid composing the simplex is identified by its 1-letter
code (see Table A.8). These simplices have been obtained with the following setup

• classifier: `1-SVMs

• sparsity weight in fitness function: α = 0.5.

TABLE A.8: Amino-acids nomenclature table.

Amino-acid 3-letter code 1-letter code

alanine ala A
arginine arg R

asparagine asn N
aspartic acid asp D

asparagine or aspartic acid asx B
cysteine cys C

glutamic acid glu E
glutamine gln Q

glutamine or glutamic acid glx Z
glycine gly G

histidine his H
isoleucine ile I

leucine leu L
lysine lys K

methionine met M
phenylalanine phe F

proline pro P
serine ser S

threonine thr T
tryptophan trp W

tyrosine tyr Y
valine val V

A.2. Embedding Simplicial Complexes (EC number classification) 131

TABLE A.9: Selected simplices for EC number classification.

EC1 EC2 EC3 EC4 EC5 EC6 not-enzymes

G-S-W
A-I-S
G-R-S
G-L

A-H-I
E-F-S
Q-S

H-Q-R
F-P

D-I-T
F-L
P-S

D-G-I
A-G-L
F-G-M
A-A-R

A-A-L-V
T-V-Y
I-I-N

A-A-K
A-E-G
L-Q-W
A-A-G
N-Q-V
D-H-Y
G-V-V
D-H-R
A-E-T
P-V-V
F-I-Y

H-P-R
D-F-T
L-R-V
L-P-V
K-R

I-P-V
E-L-T
E-I-V
E-L-V
E-L-S
A-L-T
I-L-R

G-H-T
E-G-I
G-L-Q
F-L-L
H-L-P
A-C-Q
I-T-V
L-P-S
I-I-L
E-N
E-K
E-T

A-S-V
A-L-Q
R-T-V
A-A
I-I-S

L-L-L
L-L-T
L-R

I-R-R
L-M-V
D-I-Y
I-K-T
I-N-V
D-R-V
E-K-Q
A-Q-V
G-P-T

L-T-V
L-L-V
A-R

A-C-L
L-Q-Q
V-V-Y
E-K-T
D-L-V
I-V-V
A-F-G
G-V-Y
A-I-M
G-P-V
E-N-V
A-F-T

P-R
A-F-W
A-D-E

D-E
C-D-T
A-N-Q

D-N
E-F-G
A-N-V
I-N-P

C-L-R
H-R-T
I-T-V

C-H-V
A-I-K
A-Y

A-I-M
A-A
D-M

A-A-A-V
A-M-P

K-P
D-R-V
A-I-Y
L-P-P
N-P-R
L-P-S
D-I

A-E-I
L-N

A-I-R
F-P-Q
G-L-Y
A-L-N

S-V
A-G
I-I-P

G-L-T
S-S-T
I-L-V
A-N

V-V-Y
A-C-D
F-M-V
I-L-L
A-C-I
D-F-K
F-P-Y
Q-R-T
G-T-T

A-Q-W
P-V-V
E-V-V
K-L-R
A-I-W
A-L-L
D-E

F-Q-S
E-N

F-G-L
A-A-V

I-T
E-W
E-L-S
D-I-I
F-I-T

I-I
A-A-I-V
A-L-L-V
F-N-N
D-G-N

G-R
A-T-Y
D-G-V
D-G-R

E-P
A-R-V

E-L
A-A-T
G-N-Q
A-A-R

K-K-L
G-L-Q
E-R-T
A-L-Q
A-F-R
Q-T

K-P-V
A-F-I
G-L-R
E-G-S

L-T
G-H-L
D-G-I
A-G-T
A-G-V
A-G-S
K-Q-V
L-N-R

E-E
D-D
I-T-T
F-K-V
I-K-L
H-R

T-V-Y
K-L

A-K-P
I-S-Y

A-E-Y
G-I-K
I-L-P
A-E-T

P-S
E-F-Q
I-L-S

A-H-L
G-I-V
L-Q-V
F-I-S
K-T

H-K-W
A-K-S
A-D-E
H-L-L

L-S
C-L-L
E-L-P
H-L-N
C-L-P
T-T-T
A-E-V
A-K-Y
L-M-R
G-I-R
L-M-T
D-Q
I-R-R
D-D-L

K-L-W
A-L-V-V

F-S
A-E-T
D-K-R
G-L-T

A-A-G-V
G-I-K
D-D
G-I-L
S-V

D-K-L
D-H-T
E-S-V
A-D-L
F-I-I

K-R-W
G-N-Y
D-E-P
D-R-W

E-Q
N-Q-V

E-L
E-G

S-V-Y
A-H-M
E-P-R
E-S-T

A-M-V
S-T

F-I-S
A-F-R
D-D-V
G-T-V
A-F-P
A-A-Q
A-Q-Y
A-Q-R
I-I-L

A-H-Y
A-D-H
E-Q-R
L-L-V
I-M-T
T-V-V
Q-R-T
S-T-W
P-S-V
D-Q-V
T-V-W
F-I-T
F-L-Y
A-C-I
I-Q-Y
A-T-V
H-K-L

S-S
D-I-V

I-L
I-K-L
F-I-N
A-F-K
G-K-V
A-L-S
G-G-V
L-P-V
E-I-S
L-P-S
A-G-T
A-H-P
D-L-N

G-P-S
A-M

D-N-S
D-F-L
A-K

G-L-V
E-G-I

K-Q-V
G-T-Y
G-G-N
C-G-L
A-D

C-L-V
F-G-N
E-R-W
F-F-G
A-D-I
A-E-H
D-F-N
F-F-L

E-S-V
G-V-V
A-C-V
A-H-L
A-N

E-F-K
E-K
A-I-I

A-Q-R
A-D-N
A-I-L
L-R-V
T-V-V
I-P-S
L-R

A-F-Y
A-P-V-V

E-I-P
I-L-W
A-G-L
D-L-R
F-L-V
A-S-S
L-Q-S
K-R
D-D

D-G-I
K-L-R
D-L

L-S-V
G-T-T
P-V-Y
I-N-V
A-E-Y
E-N-R
I-V-Y
A-E-T
A-A-S
G-L-S
A-E-K
S-T-V
H-L-Q
I-V-V

A-K-M
I-S-V

A-E-G
H-L-S
I-I-V

H-L-T
A-A-I

L-L
L-L-R
A-A-V
D-L-Q
P-S-V
D-Q-S
F-G-L
G-H-P
I-L-R
L-L-Q
A-S-T
L-R-T
A-L-N
D-E-I

A-A-V
A-G-N
D-L-L
D-L-T
G-G-S
A-V-V
E-L-Q
I-R-T
F-G-V
V-V-V
H-H

R-T-V
F-R-S
A-R-V
L-P-V
E-I-V
A-L-V
G-G-V
E-F-K
A-G-L
F-L-L
D-L

I-V-W
L-Q-V
A-D-V

F-L-V
D-G-T
D-N-S
E-F-V
K-L

F-G-I
F-I-P

D-G-G
D-G-L
E-L-P
E-R-T
I-I-S

G-K-R
L-M-V
A-D-I
G-I-V
G-I-S
D-I

L-P-Q
L-R

I-T-Y
E-V-Y
L-R-S

A-A-G-V
G-S

A-S-Y
G-K-V
D-N-T
D-I-R
L-L-P
G-I-T
A-K-S

P-V
F-G-G

K-R
G-G-I
I-I-V

K-L-R
E-L-R
E-I-S
L-L-R
G-T-Y
E-I-K
A-L-V
F-I-L
A-I-V
D-L-T
A-E-G
D-K-Q

G-T
R-T-V
D-Q-S
S-V-W

G-K
L-Q-W
A-E-K

K-T-T
E-G-I
F-G-V
N-V-Y
D-K-R
N-V-V
V-V-V
H-Q

D-L-S
G-I-T
I-P-R
D-G-I
L-N-V
E-G-K
F-L-L
R-V-Y
D-K-S
D-K-L
G-P-R

A-A-G-G
D-I-V
Q-T
Q-R

K-K-L
A-T-Y
D-Q-V
F-G-T
K-S-V
H-N-V
A-H-M
A-F-G
F-L-R
A-H-P
I-Q-V
L-N-P
E-K-Q
R-S-S
L-L-V
G-I-R
A-I-R
F-I-Y

G-K-N
G-I-Q
H-K

A-S-V
D-F-V
H-V-Y

E-R
A-A-A
G-V-V
K-L-Q
A-A-V
A-A-R
D-G-L

L-Q
P-Q-T
A-F-W
A-L-L
I-L-V
G-N
Q-S
G-K

I-L-Q
D-L-R
A-F-S
A-L-P
A-L-Q
A-L-V
F-F-L

D-L-W
A-G-I

L-T
A-L-S
G-I-L
E-K-P
D-T-T
A-A-E
G-L-S
G-N-Y
G-G-N
E-K-N

K-R
A-G-N
G-G-M
K-L-Y
A-Q-V

A-A-I-V
L-L-Q
N-R-S
E-Q-S
A-L

E-V-V
N-S-V

A-E
A-G
I-T-V
K-L-R
E-V-Y

A-G-W
A-C-V
I-I-V

F-M-V
S-V-Y
G-R

I-L-N
E-L-S
E-L-R
A-G-Y
I-L-M
G-G-T
A-F-R
E-F-G
C-H-V
I-V-V
G-T-V
V-V-Y
D-R-V

D-I
G-I-S
S-T

D-V-Y
D-R

G-L-T
P-T
N-Y

L-T-W
A-D-T
A-D-E
C-L-Y
A-D-I
L-R-S
A-R

A-G-M
A-D-F
L-Q-V
I-K-T
E-N-V

D-E
A-N-R
P-V-V
D-P-Q

132 Appendix A. Knowledge Discovery Data

A.3 Embedding Simplicial Complexes (solubility classifica-
tion)

Recalling Section 5.3.4, the proposed embedding technique over simplicial com-
plexes with `1-SVMs found the best solubility threshold in range τ ∈ [0.5, 0.7]. In
the following Table, the set simplices that survived the feature selection phase for
all of the five Training-Validation-Test splits for all of the candidate values τ = 0.5,
τ = 0.6 and τ = 0.7 are shown.

TABLE A.10: Selected simplices for solubility classification.

Simplex

E-L
G-Q-V
A-P-W

D-E
E-S-V
E-E-R
E-G-L
E-R-S
F-M-V
L-T-V
A-L-W
A-F-L
A-A-H
G-L-P
G-I-T
D-D-L
A-E-V
A-L-T
A-I-R
A-R-V
A-G-Q

L-S
I-L-P

D-N-Q
F-F-P
I-L-S

P-R-V
I-Q

A-A-A

133

Appendix B

Notes on Parallel and Distributed
Evaluations

The amount of data and information available nowadays made Big Data a buzz-
word in the information science and computer science communities alike. So, one
might ask whether the proposed techniques are able to scale for large datasets. For
the sake of shorthand, the discussion relies only on building the feature vectors (ei-
ther by using a feature engineering approach or by using an embedding technique)
and does not concern the classification and optimisation task. The rationale behind
this hypothesis is that the entire (structured) dataset might not fit in memory or the
generation of such feature vectors is too expensive (computationally speaking) to
be done in a serial manner whilst keeping reasonable running times. These parallel
implementation have been proved to be effective (i.e., they return the same solu-
tion as the non-parallel counterpart), yet their efficiency (e.g., in terms of sizeup and
speedup) must be further investigated.

B.1 Feature Generation using Graphs Spectral Density

The spectral density-based technique described in Section 4.1 is embarrassingly par-
allel due to the independence of the feature vectors generation. Indeed, recall that
(for each graph) one shall evaluate the adjacency matrix, the degree matrix, the nor-
malised Laplacian matrix, the spectrum of the Laplacian matrix, its spectral density
and, finally, draw a finite number of samples from such spectral density. There are
two ways in which one can leverage on distributed systems and the choice strictly
depends on the size of the available networks. The computational bottleneck of this
feature generation chain is the evaluation of the spectrum (eigenvalues) of the nor-
malised Laplacian matrix.

If the networks are quite big (in terms of number of nodes) GPUs might be of
help in speeding up the feature vectors generation. Given the adjacency matrix A,
both the evaluation of D and the evaluation of L fully rely on matrix operations
whose GPU acceleration is straightforward. Furthermore, there exist efficient linear
algebra libraries for GPUs which can also take care of evaluating the eigenvalues of
L. The kernel density estimator and final sampling can be performed on the CPU,
since their computational effort is negligible with respect to the previous steps. The
features generation phase can be performed in a serial manner, with a plain for-
loop iterating over the available networks and exploiting the GPU for processing
network. Recalling that A, D and L scale quadratically in terms of number of nodes,
the problem here is not ’having too many networks’. Rather, the problem is that
processing a single network takes a huge amount of time, so the speedup one can
obtain has to be imputed to the acceleration given by the GPU on each network.

134 Appendix B. Notes on Parallel and Distributed Evaluations

Let us now consider the opposite scenario, in which there is a consistent number
of networks and their sizes are rather small. If the networks are small, the time re-
quired for solving the eigenvalues problem on the CPU and on the GPU tend to be
similar, so the previous serial for-loop will unlikely be helpful. So, one can exploit
multiple cores available on the CPU and perform a parallel for-loop over the avail-
able networks where each thread (core) takes care of processing a given network.

Obviously, depending on the framework at hand, hybrid approaches can also be
pursued where multiple CPU threads in parallel exploit the GPU. The main limit
of this hybrid approach is the on-board GPU memory: the number of concurrent
threads and the data they need in order to accomplish their tasks must fit in the
GPU memory, otherwise an inevitable out-of-memory error aborts the execution.

B.2 Feature Generation using the Betti Numbers

As typical in feature generation approaches, there is a chain of processing stages that
individually involves each pattern. In this case, the processing chain concerns the
evaluation of a simplicial complex, the evaluation of boundary operators at differ-
ent simplicial orders and their Betti numbers. The computational bottleneck here
is another linear algebra operation, namely the matrix rank, hence similar observa-
tions hold with respect to the previous case, where the computationally expensive
algebraic operator was the eigenvalue solver.

B.3 Embedding over Simplicial Complexes

Things start getting more interesting as embedding techniques are concerned. In-
deed, conversely to feature generation scenarios where a chain of processing stages
are individually applied to each of the available patterns, building an embedding
space usually needs some sort of ’cooperation’ between patterns.

Here, a MapReduce-based workflow for building the embedding space over sim-
plicial complexes is sketched.

Let us start by presenting a MapReduce workflow in order to synthesise the al-
phabetAwhere, for the sake of generalisation, each pattern is a node-labelled graph.
In the Map phase (summarised in Algorithm 1), each worker processes a given pat-
tern drawn from DTR ∪DVAL, performing the following tasks:

1. infers the simplicial complex starting from the 1-skeleton (e.g., thanks to the
Clique complex)

2. by exploiting node labels, identifies each vertex belonging to each simplex ac-
cording to its node label

3. removes duplicates

4. returns 〈key, value〉 pairs where keys are simplices and values are dummy 1’s.

After the MapReduce framework automatically shuffles output 〈key-value〉 pairs
and groups them by keys, the Reduce phase acts as follows (Algorithm 2):

1. sum the 1’s belonging to the same keys

2. return the key (simplex) and the value (sum of occurrences)

B.3. Embedding over Simplicial Complexes 135

Algorithm 1: Pseudocode for the alphabet synthesis: Map phase.
Input : Data shard composed by a given number of graphs drawn from

DTR ∪DVAL
Output: Intermediate 〈key, value〉 pairs

/* Start evaluating the simplicial complexes */
1 SC = list(); // list of simplicial complexes
2 for each graph G in shard do
3 SC.append(CliqueComplex(G));
4 end
/* Identify simplices by node labels */

5 for each simplicial complex S ∈ SC do
6 for each node u ∈ S do
7 u := Lv(u);
8 end
9 end
/* Remove duplicates */

10 S = flatten(SC); // list of simplices, regardless of their complex
11 for each simplex s ∈ S do
12 s := sort(s); // sort nodes within simplex
13 end
14 S = unique(S);

/* Flush key-value pairs */
15 for each simplex s ∈ S do
16 Emit(key=s, value=1);
17 end

Algorithm 2: Pseudocode for the alphabet synthesis: Reduce phase.
Input : Key k, list of its values [v1, . . . , vn]
Output: Key k, sum of its values s

1 s = 0;
2 for each value v do
3 s = s + v;
4 end
/* Flush final results */

5 Emit(key=k, value=s);

The sum of occurrences can deliberately be discarded, being it just a trick to return
the unique keys (simplices), which will form the alphabet.

The proper embedding can also be performed in a MapReduce fashion. Along
with the Map phase (Algorithm 3), the alphabet Amust be broadcasted to all work-
ers. Then, in the Map phase, each worker processes a given pattern drawn from D,
performing the following tasks:

1. infers the simplicial complex starting from the 1-skeleton (e.g., thanks to the
Clique complex)

2. by exploiting node labels, identifies each vertex belonging to each simplex ac-
cording to its node label

136 Appendix B. Notes on Parallel and Distributed Evaluations

3. allocates an array with length |A|

4. scan the simplicial complex from steps 1–2 and fill the array

5. return key-value pair with the ID of the graph as key and the array as value

The Reduce phase (Algorithm 4) is the so-called ’identity reducer’, as it receives
key-value pairs and writes them on disk.

Algorithm 3: Pseudocode for the embedding procedure: Map phase.
Input : Data shard composed by a given number of graphs drawn from

D, alphabet A
Output: Intermediate 〈key, value〉 pairs

/* Start evaluating the simplicial complexes */
1 SC = list(); // list of simplicial complexes
2 for each graph G in shard do
3 SC.append(CliqueComplex(G));
4 end
/* Identify simplices by node labels */

5 for each simplicial complex S ∈ SC do
6 for each node u ∈ S do
7 u := Lv(u);
8 end
9 end
/* Symbolic histograms */

10 for i = 1, . . . , |SC| do
11 h = zeros(1× |A|);
12 for j = 1, . . . , |A| do
13 hj = count(Aj, SCi);
14 end
15 Emit(key=i, value=h); // Flush key-value pairs
16 end

Algorithm 4: Pseudocode for the embedding procedure: Reduce phase.
Input : Key k, its value h
Output: Key k, its value h

/* Flush final results */
1 Emit(key=k, value=h);

Obviously one might object that the simplicial complex must be evaluated in
both Map phases, resulting in a waste of computational efforts. In order to overcome
this problem, one can start with a dataset already composed by simplicial complexes
rather than composed by 1-skeletons. In order to do this, one must add an additional
MapReduce job before the alphabet synthesis where the Map phase infers the sim-
plicial complex and the Reduce phase writes it on disk. In this way, Lines 1–4 (or
Lines 1–9 if one wants also to consider the node labelling) from both the Map phases
(Algorithms 1 and 3) can be avoided.

B.4. Embedding via INDVAL 137

B.4 Embedding via INDVAL

Recall from Section 6.2 the major differences between MapReduce and Apache Spark.
The atomic data structure in Spark is the so-called Resilient Distributed Dataset
(RDD) [399]: distributed (across workers54) collection of data with fault-tolerance
mechanisms, which can be created starting from many sources (distributed file sys-
tems, databases, text files and the like) or by applying transformations on other RDDs.
Example of transformations55 which will turn useful in the following are:

map(): rdd2 = rdd1.map(f)
creates rdd2 by applying function f to every element in rdd1

join(): rdd3 = rdd2.join(rdd1)
creates rdd3 containing pairs with matching keys from rdd1 and rdd2

f ilter(): rdd2 = rdd1.filter(pred)
creates rdd2 by filtering elements from rdd1 which satisfy predicate pred (i.e.,
if pred is True)

union(): rdd3 = rdd1.union(rdd2)
creates rdd3 by vertically stacking rdd1 and rdd2

f latMapValues(): rdd2 = rdd1.flatMapValues(f)
creates rdd3 by first applying a function f to all values of rdd1, and then flat-
tening the results (note: the RDD must have 〈key, value〉 pair-like records)

cartesian(): rdd3 = rdd1.cartesian(rdd2)
creates rdd3 by evaluating the cartesian product between items in rdd1 and
rdd2

reduceByKey(): rdd2 = rdd1.reduceByKey(f)
creates rdd2 by merging, according to function f , all values for each key in
rdd1: rdd2 will have the same keys as rdd1 and a new value obtained by the
merging function.

Similarly, examples of actions which can be applied to RDDs are:

count(): rdd.count()
count the number of elements in rdd

collect(): rdd.collect()
collects in-memory on the master node the entire rdd content

toLocal Iterator(): rdd.toLocalIterator()
returns an iterator that scans all items in rdd in a partition-wise manner

collectAsMap(): rdd.collectAsMap()
returns in-memory on the master node a dictionary storing the entire rdd con-
tent (note: the RDD must have 〈key, value〉 pair-like records).

54In Spark, workers are the elementary computational units, which can be either single cores on a
CPU or entire computers, depending on the environment configuration (i.e., the Spark Context).

55For a more extensive list, the interested reader is referred to the official Apache Spark RDD API
at https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

https://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD

138 Appendix B. Notes on Parallel and Distributed Evaluations

Let us suppose to have three RDDs containing the Training Set (rdd_tr), the
Validation Set (rdd_val) and the Test Set (rdd_ts), respectively. Each record in these
RDDs contains a unique identifier, the graph G and its problem-related class (recall
that the INDVAL strategy needs the ground truth class values for scoring edges’
sensitivity and specificity), hence:

〈 ID, G, l 〉

The first step is to evaluate, for each graph in each RDD, its edge list (or path list,
in a more general sense). This can be accomplished thanks to a map() function that
strips G from each record and returns the list of its paths W , eventually expressed
by means of the node labels at their extremities. At the end of the map() function, G
can be dropped from the RDD records for the sake of memory footprint: indeed, its
paths are of interest as the INDVAL score is concerned. After this map() phase, each
record from the three RDDs will have the form:

〈 ID,W , l 〉

Now the INDVAL must be evaluated, so a temporary RDD (rdd_tv) containing
Training and Validation Set can be build thanks to union():

rdd_tv = rdd_tr.union(rdd_vl)

This RDD should not be cached in memory on the available workers (it would be a
waste of space as it can be easily generated if the three original RDDs are cached).
A chain of transformations can be pipelined to this RDD in order to return all the
desired actors.

Let us start by evaluating the denominator for B (see Eq. (4.17)), namely the
number of patterns per class: this can be done by a simple MapReduce-like job over
rdd_tv:

den_B = rdd_tv.map(〈 ID,W , l 〉 → 〈key = l, value = 1〉) \
.reduceByKey(f = sum(v1, v2)).collectAsMap()

The map() phase strips the label l from each record (which serves as the key) and
a 1 is considered as its corresponding value. The reduceByKey()() phase sums the
1’s corresponding to each key (i.e., label) and, finally, collectAsMap() returns on
the master node a dictionary containing the number of items per label. Since this
dictionary has as many entries as there are classes, it can be safely collected on the
master node with no risk of memory blow-up.

Let us continue by evaluating the numerator for both A and B (see Eqs. (4.16)–
(4.17)), namely the number of times a given path appears in patterns belonging to
different classes:

num_rdd = rdd_tv.map(〈 ID,W , l 〉 → 〈key = l, value =W〉) \
.flatMapValues(f (x) = x).map(〈l, w ∈ W〉 → 〈key = {l, w}, value = 1〉) \

.reduceByKey(f = sum(v1, v2))

Let us start from rdd_tv and, using a map() function, let us reshape the RDD in
such a way that l serves as the key and W serves as the value. However, W is a
list of paths, so the RDD should be flattened in such a way that each label is associ-
ated to a path rather than a list of paths: this can be done thanks to flatMapValues()
with a dummy flattening function. The path along with the label serve as the key
for another MapReduce-like job in which a 1 are considered as its corresponding
value. Another reduceByKey() task takes care of summing the 1’s so, at the end of

B.4. Embedding via INDVAL 139

this stage, we have the counts (values) of how many times a path is associated to
a class (keys). The resulting RDD (num_rdd) cannot be collected in memory, as it
grows with the number of paths. Furthermore, one might think that the flattening
procedure might result in a memory blow-up even in distributed scenarios since
this procedure augments in a non-negligible way the number of records in the RDD:
however, by pipelining further transformations, in no point of the execution the flat-
tened RDD is fully present in memory.

Finally, one shall evaluate the denominator for A, namely the number of times a
path appears, regardless of the class. Recall that each record from num_rdd has the
form

〈{w, l}, count〉

then, simply

den_A = num_rdd.map(〈{w, l}, count〉 → 〈key = w, value = count 〉) \
.reduceByKey(f = sum(v1, v2))

In order to count the number of times a path appears, one can get consider only the
path w to be the key for the MapReduce-like job and discard the stratification given
by the class l. Thanks to the map() function one can reshape the record as 〈w, count〉
and trigger another reduceByKey() task which sums the counts related to the same
w (path). This RDD (den_A) cannot be collected in memory either, since its size is
related to the number of paths.

Now that all actors are in place, the RDDs containing A, B and I for each path
and for each class can be evaluated as follows:

1. A (A_rdd) can be obtained by joining num_rdd and den_A using the {w, l}
pair as the key

2. B (B_rdd) can be obtained by broadcasting den_B to all workers and then,
using a map() function, the value associated to each record from num_rdd can
be divided by the corresponding value from den_B by paying attention at the
class l

3. I (I_rdd) can be obtained by joining A_rdd and B_rdd by using the {w, l}
pair as the key.

Finally, by means of a filtering operation, one can collect all symbols whose INDVAL
score is greater than (or equal to) a given threshold T, that is:

Alphabet = I_rdd.filter(〈{w, l}, I〉 : I ≥ T).collect()

The variable Alphabet is a list-like variable that contains all symbols composing the
alphabet (i.e., whose INDVAL score is above the desired threshold T). Obviously, the
major assumption is that this list can be safely collected on the master node memory.

The embedding procedure follows from Algorithm 3: the alphabet is broadcasted
to all workers and each worker, in parallel, evaluates the symbolic histograms of a
given dataset shard with respect to the alphabet.

141

Bibliography

[1] B. Alberts et al. Essential cell biology. Garland Science, 2015.

[2] B. Alberts et al. Molecular Biology of the Cell. 4th ed. New York, USA: Garland
Science, 2002. ISBN: 0815332181.

[3] E. Aldea, J. Atif, and I. Bloch. “Image Classification Using Marginalized Ker-
nels for Graphs”. In: Graph-Based Representations in Pattern Recognition. Ed. by
F. Escolano and M. Vento. Springer, Berlin, Heidelberg, 2007, pp. 103–113.
ISBN: 978-3-540-72903-7. DOI: 10.1007/978-3-540-72903-7_10.

[4] L. A. N. Amaral et al. “Classes of small-world networks”. In: Proceedings of the
National Academy of Sciences 97.21 (2000), pp. 11149–11152. ISSN: 0027-8424.
DOI: 10.1073/pnas.200327197.

[5] K. Anand and G. Bianconi. “Entropy measures for networks: Toward an in-
formation theory of complex topologies”. In: Phys. Rev. E 80 (4 2009), p. 045102.
DOI: 10.1103/PhysRevE.80.045102.

[6] W. N. Anderson Jr. and T. D. Morley. “Eigenvalues of the Laplacian of a
graph”. In: Linear and Multilinear Algebra 18.2 (1985), pp. 141–145. DOI: 10
.1080/03081088508817681.

[7] C. B. Anfinsen. “Principles that Govern the Folding of Protein Chains”. In:
Science 181.4096 (1973), pp. 223–230. ISSN: 0036-8075. DOI: 10.1126/science.1
81.4096.223.

[8] M. Ankerst et al. “OPTICS: ordering points to identify the clustering struc-
ture”. In: ACM Sigmod record. Vol. 28. 2. ACM. 1999, pp. 49–60.

[9] D. Arcos-Aviles et al. “Low complexity energy management strategy for grid
profile smoothing of a residential grid-connected microgrid using generation
and demand forecasting”. In: Applied Energy 205 (2017), pp. 69–84. ISSN: 0306-
2619. DOI: 10.1016/j.apenergy.2017.07.123.

[10] M. A. Armstrong. Basic Topology. Springer-Verlag New York, 1983. DOI: 10.10
07/978-1-4757-1793-8.

[11] D. Arthur and S. Vassilvitskii. “K-means++: The Advantages of Careful Seed-
ing”. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms. SODA ’07. New Orleans, Louisiana: Society for Industrial
and Applied Mathematics. Philadelphia, USA, 2007, pp. 1027–1035. ISBN:
978-0-898716-24-5.

[12] M. Artin. Algebra. Prentice Hall, 1991. ISBN: 9780130047632.

[13] F. R. Bach. “Graph Kernels Between Point Clouds”. In: Proceedings of the 25th
International Conference on Machine Learning. ICML ’08. Helsinki, Finland: ACM.
New York, NY, USA, 2008, pp. 25–32. ISBN: 978-1-60558-205-4. DOI: 10.1145
/1390156.1390160.

https://doi.org/10.1007/978-3-540-72903-7_10
https://doi.org/10.1073/pnas.200327197
https://doi.org/10.1103/PhysRevE.80.045102
https://doi.org/10.1080/03081088508817681
https://doi.org/10.1080/03081088508817681
https://doi.org/10.1126/science.181.4096.223
https://doi.org/10.1126/science.181.4096.223
https://doi.org/10.1016/j.apenergy.2017.07.123
https://doi.org/10.1007/978-1-4757-1793-8
https://doi.org/10.1007/978-1-4757-1793-8
https://doi.org/10.1145/1390156.1390160
https://doi.org/10.1145/1390156.1390160

142 Bibliography

[14] F. R. Bach, G. R. Lanckriet, and M. I. Jordan. “Multiple kernel learning, conic
duality, and the SMO algorithm”. In: Proceedings of the twenty-first international
conference on Machine learning. ACM. 2004, p. 6. DOI: 10.1145/1015330.10154
24.

[15] G. Bagler and S. Sinha. “Network properties of protein structures”. In: Physica
A: Statistical Mechanics and its Applications 346.1 (2005). Statphys - Kolkata V:
Proceedings of the International Conference on Statistical Physics: ’Complex
Networks: Structure, Function and Processes’, pp. 27 –33. ISSN: 0378-4371.
DOI: 10.1016/j.physa.2004.08.046.

[16] L. Baldini, A. Martino, and A. Rizzi. “Exploiting Cliques for Granular Computing-
basedGraph Classification”. In: 2020 International Joint Conference on Neural
Networks (IJCNN). Under Review. 2020.

[17] L. Baldini, A. Martino, and A. Rizzi. “Stochastic Information Granules Ex-
traction for Graph Embedding and Classification”. In: Proceedings of the 11th
International Joint Conference on Computational Intelligence - Volume 1: NCTA,
(IJCCI 2019). INSTICC. SciTePress, 2019, pp. 391–402. ISBN: 978-989-758-384-
1. DOI: 10.5220/0008149403910402.

[18] L. Baldini, A. Martino, and A. Rizzi. “Towards a Class-Aware Information
Granulation for Graph Embedding and Classification”. In: Computational In-
telligence: 11th International Joint Conference, IJCCI 2019 Vienna, Austria, Septem-
ber 17-19, 2019 Revised Selected Papers. To appear in.

[19] L. Baldini et al. “Complexity vs. Performances in Granular Embedding Spaces
for Graph Classification”. In: 2020 International Joint Conference on Neural Net-
works (IJCNN). Under Review. 2020.

[20] J. R. Banavar and A. Maritan. “Physics of Proteins”. In: Annual Review of Bio-
physics and Biomolecular Structure 36.1 (2007), pp. 261–280. DOI: 10.1146/annu
rev.biophys.36.040306.132808.

[21] J. R. Banavar and S. Vishveshwara. “Protein structure and folding – simplic-
ity within complexity”. In: Journal of Biomolecular Structure and Dynamics 31.9
(2013), pp. 973–975. DOI: 10.1080/07391102.2012.748533.

[22] H.-J. Bandelt and V. Chepoi. “Metric graph theory and geometry: a survey”.
In: Contemporary Mathematics 453 (2008), pp. 49–86.

[23] H.-J. Bandelt and E. Prisner. “Clique graphs and Helly graphs”. In: Journal
of Combinatorial Theory, Series B 51.1 (1991), pp. 34 –45. ISSN: 0095-8956. DOI:
10.1016/0095-8956(91)90004-4.

[24] Y. M. Bar-On, R. Phillips, and R. Milo. “The biomass distribution on Earth”.
In: Proceedings of the National Academy of Sciences 115.25 (2018), pp. 6506–6511.
ISSN: 0027-8424. DOI: 10.1073/pnas.1711842115.

[25] A.-L. Barabási and R. Albert. “Emergence of Scaling in Random Networks”.
In: Science 286.5439 (1999), pp. 509–512. ISSN: 0036-8075. DOI: 10.1126/scienc
e.286.5439.509.

[26] A.-L. Barabási and E. Bonabeau. “Scale-free networks”. In: Scientific american
288.5 (2003), pp. 60–69.

[27] S. Barbarossa, S. Sardellitti, and E. Ceci. “Learning from Signals Defined over
Simplicial Complexes”. In: 2018 IEEE Data Science Workshop (DSW). 2018,
pp. 51–55. DOI: 10.1109/DSW.2018.8439885.

https://doi.org/10.1145/1015330.1015424
https://doi.org/10.1145/1015330.1015424
https://doi.org/10.1016/j.physa.2004.08.046
https://doi.org/10.5220/0008149403910402
https://doi.org/10.1146/annurev.biophys.36.040306.132808
https://doi.org/10.1146/annurev.biophys.36.040306.132808
https://doi.org/10.1080/07391102.2012.748533
https://doi.org/10.1016/0095-8956(91)90004-4
https://doi.org/10.1073/pnas.1711842115
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1109/DSW.2018.8439885

Bibliography 143

[28] S. Barbarossa and M. Tsitsvero. “An introduction to hypergraph signal pro-
cessing”. In: 2016 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2016, pp. 6425–6429. DOI: 10.1109/ICASSP.2016.74729
14.

[29] A. Bargiela and W. Pedrycz. Granular computing: an introduction. Kluwer Aca-
demic Publishers, Boston, 2003.

[30] M. H. Barley, N. J. Turner, and R. Goodacre. “Improved descriptors for the
quantitative structure–activity relationship modeling of peptides and pro-
teins”. In: Journal of chemical information and modeling 58.2 (2018), pp. 234–243.
DOI: 10.1021/acs.jcim.7b00488.

[31] A. Barrat et al. “The architecture of complex weighted networks”. In: Pro-
ceedings of the National Academy of Sciences 101.11 (2004), pp. 3747–3752. ISSN:
0027-8424. DOI: 10.1073/pnas.0400087101.

[32] M. Barthélemy. “Spatial networks”. In: Physics Reports 499.1 (2011), pp. 1 –
101. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2010.11.002.

[33] A. E. Bartz. Basic Statistical Concepts. New York: Macmillan Pub Co., 1988.

[34] A. Bashan et al. “Network physiology reveals relations between network
topology and physiological function”. In: Nature communications 3 (2012), p. 702.
DOI: 10.1038/ncomms1705.

[35] V. Beckers et al. “In silico metabolic network analysis of Arabidopsis leaves”.
In: BMC systems biology 10.1 (2016), p. 102. DOI: 10.1186/s12918-016-0347-3.

[36] J. M. Berg, J. L. Tymoczko, and S. Lubert. Biochemistry. 5th ed. New York,
USA: W. H. Freeman, 2002. ISBN: 0-7167-3051-0.

[37] J. Bergstra and Y. Bengio. “Random search for hyper-parameter optimiza-
tion”. In: Journal of Machine Learning Research 13.Feb (2012), pp. 281–305.

[38] H. M. Berman et al. “The Protein Data Bank”. In: Nucleic Acids Research 28.1
(2000), pp. 235–242.

[39] M. J. Berridge. “The inositol trisphosphate/calcium signaling pathway in
health and disease”. In: Physiological reviews 96.4 (2016), pp. 1261–1296. DOI:
10.1152/physrev.00006.2016.

[40] F. M. Bianchi, L. Livi, and A. Rizzi. “Two density-based k-means initializa-
tion algorithms for non-metric data clustering”. In: Pattern Analysis and Ap-
plications 19.3 (2016), pp. 745–763. ISSN: 1433-755X. DOI: 10.1007/s10044-014
-0440-4.

[41] F. M. Bianchi et al. “A Granular Computing approach to the design of opti-
mized graph classification systems”. In: Soft Computing 18.2 (2014), pp. 393–
412. ISSN: 1433-7479. DOI: 10.1007/s00500-013-1065-z.

[42] F. M. Bianchi et al. “An agent-based algorithm exploiting multiple local dis-
similarities for clusters mining and knowledge discovery”. In: Soft Computing
21.5 (2017), pp. 1347–1369. ISSN: 1433-7479. DOI: 10.1007/s00500-015-1876-1.

[43] F. M. Bianchi et al. “An interpretable graph-based image classifier”. In: 2014
International Joint Conference on Neural Networks (IJCNN). 2014, pp. 2339–2346.
DOI: 10.1109/IJCNN.2014.6889601.

[44] F. M. Bianchi et al. “Granular Computing Techniques for Classification and
Semantic Characterization of Structured Data”. In: Cognitive Computation 8.3
(2016), pp. 442–461. ISSN: 1866-9964. DOI: 10.1007/s12559-015-9369-1.

https://doi.org/10.1109/ICASSP.2016.7472914
https://doi.org/10.1109/ICASSP.2016.7472914
https://doi.org/10.1021/acs.jcim.7b00488
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1016/j.physrep.2010.11.002
https://doi.org/10.1038/ncomms1705
https://doi.org/10.1186/s12918-016-0347-3
https://doi.org/10.1152/physrev.00006.2016
https://doi.org/10.1007/s10044-014-0440-4
https://doi.org/10.1007/s10044-014-0440-4
https://doi.org/10.1007/s00500-013-1065-z
https://doi.org/10.1007/s00500-015-1876-1
https://doi.org/10.1109/IJCNN.2014.6889601
https://doi.org/10.1007/s12559-015-9369-1

144 Bibliography

[45] F. M. Bianchi et al. “Identifying user habits through data mining on call data
records”. In: Engineering Applications of Artificial Intelligence 54 (2016), pp. 49–
61. ISSN: 0952-1976. DOI: 10.1016/j.engappai.2016.05.007.

[46] S. Boccaletti et al. “Complex networks: Structure and dynamics”. In: Physics
Reports 424.4 (2006), pp. 175 –308. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2
005.10.009.

[47] P. Boldi and S. Vigna. “Axioms for centrality”. In: Internet Mathematics 10.3-4
(2014), pp. 222–262. DOI: 10.1080/15427951.2013.865686.

[48] A. Bordbar et al. “Elucidating dynamic metabolic physiology through net-
work integration of quantitative time-course metabolomics”. In: Scientific re-
ports 7 (2017), p. 46249. DOI: 10.1038/srep46249.

[49] K. M. Borgwardt and H. P. Kriegel. “Shortest-path kernels on graphs”. In:
Fifth IEEE International Conference on Data Mining (ICDM’05). 2005, 8 pp.–.
DOI: 10.1109/ICDM.2005.132.

[50] B. E. Boser, I. Guyon, and V. Vapnik. “A training algorithm for optimal mar-
gin classifiers”. In: Proceedings of the fifth annual workshop on Computational
learning theory. ACM. 1992, pp. 144–152.

[51] P. S. Bradley, O. L. Mangasarian, and W. N. Street. “Clustering via Concave
Minimization”. In: Proceedings of the 9th International Conference on Neural In-
formation Processing Systems. NIPS’96. Denver, Colorado: MIT Press. Cam-
bridge, MA, USA, 1996, pp. 368–374.

[52] U. Brandes. “On variants of shortest-path betweenness centrality and their
generic computation”. In: Social Networks 30.2 (2008), pp. 136 –145. ISSN: 0378-
8733. DOI: 10.1016/j.socnet.2007.11.001.

[53] D. J. Brenner, J. T. Staley, and N. R. Krieg. “Classification of Procaryotic Or-
ganisms and the Concept of Bacterial Speciation”. In: Bergey’s Manual of Sys-
tematics of Archaea and Bacteria (2015), pp. 1–9. DOI: 10.1002/9781118960608.b
m00006.

[54] C. Bron and J. Kerbosch. “Algorithm 457: Finding All Cliques of an Undi-
rected Graph”. In: Commun. ACM 16.9 (1973), pp. 575–577. ISSN: 0001-0782.
DOI: 10.1145/362342.362367.

[55] E. Bullmore and O. Sporns. “Complex brain networks: graph theoretical anal-
ysis of structural and functional systems”. In: Nature Reviews Neuroscience 10.3
(2009), pp. 186–198. DOI: 10.1038/nrn2575.

[56] H. Bunke. “Graph-Based Tools for Data Mining and Machine Learning”. In:
Machine Learning and Data Mining in Pattern Recognition. Ed. by P. Perner and
A. Rosenfeld. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 7–19.
ISBN: 978-3-540-45065-8. DOI: 10.1007/3-540-45065-3_2.

[57] H. Bunke. “Graph matching: Theoretical foundations, algorithms, and appli-
cations”. In: Proceedings of Vision Interface. Montreal, Canada, 2000, pp. 82–88.

[58] H. Bunke. “On a relation between graph edit distance and maximum com-
mon subgraph”. In: Pattern Recognition Letters 18.8 (1997), pp. 689 –694. ISSN:
0167-8655. DOI: 10.1016/S0167-8655(97)00060-3.

[59] H. Bunke and G. Allermann. “Inexact graph matching for structural pattern
recognition”. In: Pattern Recognition Letters 1.4 (1983), pp. 245 –253. ISSN: 0167-
8655. DOI: 10.1016/0167-8655(83)90033-8.

https://doi.org/10.1016/j.engappai.2016.05.007
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1080/15427951.2013.865686
https://doi.org/10.1038/srep46249
https://doi.org/10.1109/ICDM.2005.132
https://doi.org/10.1016/j.socnet.2007.11.001
https://doi.org/10.1002/9781118960608.bm00006
https://doi.org/10.1002/9781118960608.bm00006
https://doi.org/10.1145/362342.362367
https://doi.org/10.1038/nrn2575
https://doi.org/10.1007/3-540-45065-3_2
https://doi.org/10.1016/S0167-8655(97)00060-3
https://doi.org/10.1016/0167-8655(83)90033-8

Bibliography 145

[60] S. Butler. “Algebraic aspects of the normalized Laplacian”. In: Recent Trends
in Combinatorics. Ed. by A. Beveridge et al. Cham: Springer International Pub-
lishing, 2016, pp. 295–315. ISBN: 978-3-319-24298-9. DOI: 10.1007/978-3-319-
24298-9_13.

[61] Z. Béni et al. “Bioactivity-Guided Isolation of Antimicrobial and Antioxidant
Metabolites from the Mushroom Tapinella atrotomentosa”. In: Molecules 23.5
(2018). ISSN: 1420-3049. DOI: 10.3390/molecules23051082.

[62] C. Böde et al. “Network analysis of protein dynamics”. In: FEBS Letters 581.15
(2007), pp. 2776–2782. DOI: 10.1016/j.febslet.2007.05.021.

[63] G. Carlsson. “Topological pattern recognition for point cloud data”. In: Acta
Numerica 23 (2014), 289–368. DOI: 10.1017/S0962492914000051.

[64] G. Carlsson. “Topology and data”. In: Bulletin of the American Mathematical
Society 46.2 (2009), pp. 255–308. DOI: 10.1090/S0273-0979-09-01249-X.

[65] F. Cazals and C. Karande. “A note on the problem of reporting maximal
cliques”. In: Theoretical Computer Science 407.1 (2008), pp. 564 –568. ISSN: 0304-
3975. DOI: 10.1016/j.tcs.2008.05.010.

[66] C. Cellucci. Rethinking logic: Logic in relation to mathematics, evolution, and method.
Springer Science & Business Media, 2013.

[67] C.-C. Chang and C.-J. Lin. “LIBSVM: a library for support vector machines”.
In: ACM transactions on intelligent systems and technology (TIST) 2.3 (2011),
p. 27.

[68] A. Chaouachi et al. “Multiobjective Intelligent Energy Management for a Mi-
crogrid”. In: IEEE Transactions on Industrial Electronics 60.4 (2013), pp. 1688–
1699. DOI: 10.1109/TIE.2012.2188873.

[69] B. Chapman and J. Chang. “Biopython: Python Tools for Computational Bi-
ology”. In: SIGBIO Newsl. 20.2 (2000), pp. 15–19. ISSN: 0163-5697. DOI: 10.114
5/360262.360268.

[70] S. Chauhan, M. Girvan, and E. Ott. “Spectral properties of networks with
community structure”. In: Phys. Rev. E 80 (5 2009), p. 056114. DOI: 10.1103
/PhysRevE.80.056114.

[71] F. Chazal et al. “Convergence rates for persistence diagram estimation in
topological data analysis”. In: The Journal of Machine Learning Research 16.1
(2015), pp. 3603–3635.

[72] S. Chen, B. Ma, and K. Zhang. “On the similarity metric and the distance
metric”. In: Theoretical Computer Science 410.24 (2009). Formal Languages and
Applications: A Collection of Papers in Honor of Sheng Yu, pp. 2365 –2376.
ISSN: 0304-3975. DOI: 10.1016/j.tcs.2009.02.023.

[73] Y. Chen, M. R. Gupta, and B. Recht. “Learning kernels from indefinite simi-
larities”. In: Proceedings of the 26th Annual International Conference on Machine
Learning. ACM. 2009, pp. 145–152. DOI: 10.1145/1553374.1553393.

[74] Y. Chen et al. “Similarity-based classification: Concepts and algorithms”. In:
Journal of Machine Learning Research 10.Mar (2009), pp. 747–776.

[75] F. R. K. Chung. Spectral Graph Theory. 2nd ed. Providence, USA: AMS, 1997.
ISBN: 978-0-8218-0315-8.

[76] A. Cinti et al. “A Novel Algorithm for Online Inexact String Matching and
its FPGA Implementation”. In: Cognitive Computation (2019). ISSN: 1866-9964.
DOI: 10.1007/s12559-019-09646-y.

https://doi.org/10.1007/978-3-319-24298-9_13
https://doi.org/10.1007/978-3-319-24298-9_13
https://doi.org/10.3390/molecules23051082
https://doi.org/10.1016/j.febslet.2007.05.021
https://doi.org/10.1017/S0962492914000051
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1016/j.tcs.2008.05.010
https://doi.org/10.1109/TIE.2012.2188873
https://doi.org/10.1145/360262.360268
https://doi.org/10.1145/360262.360268
https://doi.org/10.1103/PhysRevE.80.056114
https://doi.org/10.1103/PhysRevE.80.056114
https://doi.org/10.1016/j.tcs.2009.02.023
https://doi.org/10.1145/1553374.1553393
https://doi.org/10.1007/s12559-019-09646-y

146 Bibliography

[77] P. J. A. Cock et al. “Biopython: freely available Python tools for computa-
tional molecular biology and bioinformatics”. In: Bioinformatics 25.11 (2009),
pp. 1422–1423. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btp163.

[78] R. Cohen et al. “Resilience of the Internet to Random Breakdowns”. In: Phys.
Rev. Lett. 85 (21 2000), pp. 4626–4628. DOI: 10.1103/PhysRevLett.85.4626.

[79] T. Cokelaer et al. “BioServices: a common Python package to access biologi-
cal Web Services programmatically”. In: Bioinformatics 29.24 (2013), pp. 3241–
3242. ISSN: 1367-4803. DOI: 10.1093/bioinformatics/btt547.

[80] M. Colafranceschi et al. “Structure-related statistical singularities along pro-
tein sequences: A correlation study”. In: Journal of chemical information and
modeling 45.1 (2005), pp. 183–189. DOI: 10.1021/ci049838m.

[81] M. Collins and N. Duffy. “Convolution Kernels for Natural Language”. In:
Proceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic. NIPS’01. Vancouver, British Columbia, Canada:
MIT Press. Cambridge, MA, USA, 2001, pp. 625–632.

[82] A. Colorni, M. Dorigo, and V. Maniezzo. “Distributed optimization by ant
colonies”. In: Toward a practice of autonomous systems: proceedings of the First
European Conference on Artificial Life. MIT Press. 1992, p. 134.

[83] A. Cornish-Bowden and M. L. Cárdenas. “Information transfer in metabolic
pathways”. In: European Journal of Biochemistry 268.24 (2001), pp. 6616–6624.
DOI: 10.1046/j.0014-2956.2001.02616.x.

[84] A. Cornish-Bowden and M. L. Cárdenas. “Irreversible reactions in metabolic
simulations: how reversible is irreversible”. In: Animating the cellular map. Ed.
by J.-H. S. Hofmeyr, H. M. Rohwer, and J. L. Snoep. Stellenbosch University
Press, 2000, pp. 65–71.

[85] C. Cortes, M. Mohri, and A. Rostamizadeh. “Learning non-linear combina-
tions of kernels”. In: Advances in neural information processing systems. 2009,
pp. 396–404.

[86] C. Cortes and V. Vapnik. “Support-vector networks”. In: Machine learning 20.3
(1995), pp. 273–297.

[87] T. Cover and P. Hart. “Nearest neighbor pattern classification”. In: IEEE trans-
actions on information theory 13.1 (1967), pp. 21–27.

[88] T. M. Cover. “Geometrical and statistical properties of systems of linear in-
equalities with applications in pattern recognition”. In: IEEE transactions on
electronic computers EC-14.3 (1965), pp. 326–334. DOI: 10.1109/PGEC.1965.26
4137.

[89] T. F. Covões and E. R. Hruschka. “Towards improving cluster-based feature
selection with a simplified silhouette filter”. In: Information Sciences 181.18
(2011), pp. 3766–3782. ISSN: 0020-0255. DOI: 10.1016/j.ins.2011.04.050.

[90] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-based Learning Methods. Cambridge University Press, 2000.

[91] P. Csermely, V. Agoston, and S. Pongor. “The efficiency of multi-target drugs:
the network approach might help drug design”. In: Trends in pharmacological
sciences 26.4 (2005), pp. 178–182. DOI: 10.1016/j.tips.2005.02.007.

https://doi.org/10.1093/bioinformatics/btp163
https://doi.org/10.1103/PhysRevLett.85.4626
https://doi.org/10.1093/bioinformatics/btt547
https://doi.org/10.1021/ci049838m
https://doi.org/10.1046/j.0014-2956.2001.02616.x
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1109/PGEC.1965.264137
https://doi.org/10.1016/j.ins.2011.04.050
https://doi.org/10.1016/j.tips.2005.02.007

Bibliography 147

[92] P. Csermely et al. “Disordered proteins and network disorder in network
descriptions of protein structure, dynamics and function: hypotheses and
a comprehensive review”. In: Current Protein and Peptide Science 13.1 (2012),
pp. 19–33. DOI: 10.2174/138920312799277992.

[93] P. Csermely et al. “Structure and dynamics of core/periphery networks”. In:
Journal of Complex Networks 1.2 (2013), pp. 93–123. ISSN: 2051-1310. DOI: 10.10
93/comnet/cnt016.

[94] P. Csermely et al. “Structure and dynamics of molecular networks: A novel
paradigm of drug discovery: A comprehensive review”. In: Pharmacology &
Therapeutics 138.3 (2013), pp. 333 –408. ISSN: 0163-7258. DOI: 10.1016/j.phar
mthera.2013.01.016.

[95] E. R. van Dam and W. H. Haemers. “Which graphs are determined by their
spectrum?” In: Linear Algebra and its Applications 373 (2003). Combinatorial
Matrix Theory Conference (Pohang, 2002), pp. 241 –272. ISSN: 0024-3795. DOI:
10.1016/S0024-3795(03)00483-X.

[96] N. Das et al. “Comparison of Different Graph Distance Metrics for Semantic
Text Based Classification”. en. In: Polibits (2014), pp. 51 –58. ISSN: 1870-9044.

[97] N. Das et al. “Using Graphs and Semantic Information to Improve Text Clas-
sifiers”. In: Advances in Natural Language Processing. Ed. by A. Przepiórkowski
and M. Ogrodniczuk. Cham: Springer International Publishing, 2014, pp. 324–
336. ISBN: 978-3-319-10888-9.

[98] D. L. Davies and D. W. Bouldin. “A Cluster Separation Measure”. In: IEEE
transactions on pattern analysis and machine intelligence PAMI-1.2 (1979), pp. 224–
227. ISSN: 0162-8828. DOI: 10.1109/TPAMI.1979.4766909.

[99] E. De Santis, A. Rizzi, and A. Sadeghian. “A cluster-based dissimilarity learn-
ing approach for localized fault classification in Smart Grids”. In: Swarm and
evolutionary computation 39 (2018), pp. 267–278. DOI: 10.1016/j.swevo.2017.1
0.007.

[100] E. De Santis et al. “Dissimilarity Space Representations and Automatic Fea-
ture Selection for Protein Function Prediction”. In: 2018 International Joint
Conference on Neural Networks (IJCNN). 2018, pp. 1–8. DOI: 10.1109/IJCNN.2
018.8489115.

[101] E. De Santis et al. “Evolutionary Optimization of an Affine Model for Vulner-
ability Characterization in Smart Grids”. In: 2018 International Joint Conference
on Neural Networks (IJCNN). 2018, pp. 1–8. DOI: 10.1109/IJCNN.2018.848974
9.

[102] E. De Santis et al. “Modeling and recognition of smart grid faults by a com-
bined approach of dissimilarity learning and one-class classification”. In: Neu-
rocomputing 170 (2015), pp. 368–383. DOI: 10.1016/j.neucom.2015.05.112.

[103] J. Dean and S. Ghemawat. “MapReduce: simplified data processing on large
clusters”. In: Communications of the ACM 51.1 (2008), pp. 107–113.

[104] M. Dehmer, L. A. J. Mueller, and F. Emmert-Streib. “Quantitative Network
Measures as Biomarkers for Classifying Prostate Cancer Disease States: A
Systems Approach to Diagnostic Biomarkers”. In: PLOS ONE 8.11 (2013),
pp. 1–8. DOI: 10.1371/journal.pone.0077602.

https://doi.org/10.2174/138920312799277992
https://doi.org/10.1093/comnet/cnt016
https://doi.org/10.1093/comnet/cnt016
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1016/S0024-3795(03)00483-X
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1016/j.swevo.2017.10.007
https://doi.org/10.1016/j.swevo.2017.10.007
https://doi.org/10.1109/IJCNN.2018.8489115
https://doi.org/10.1109/IJCNN.2018.8489115
https://doi.org/10.1109/IJCNN.2018.8489749
https://doi.org/10.1109/IJCNN.2018.8489749
https://doi.org/10.1016/j.neucom.2015.05.112
https://doi.org/10.1371/journal.pone.0077602

148 Bibliography

[105] G. Del Vescovo and A. Rizzi. “Automatic classification of graphs by sym-
bolic histograms”. In: 2007 IEEE International Conference on Granular Comput-
ing (GRC 2007). IEEE. 2007, pp. 410–416. DOI: 10.1109/GrC.2007.140.

[106] G. Del Vescovo and A. Rizzi. “Online Handwriting Recognition by the Sym-
bolic Histograms Approach”. In: 2007 IEEE International Conference on Granu-
lar Computing (GRC 2007). 2007, pp. 686–686. DOI: 10.1109/GrC.2007.141.

[107] G. Del Vescovo et al. “On the problem of modeling structured data with the
MinSOD representative”. In: International Journal of Computer Theory and En-
gineering 6.1 (2014), p. 9. DOI: 10.7763/IJCTE.2014.V6.827.

[108] L. Dethlefsen, M. McFall-Ngai, and D. A. Relman. “An ecological and evolu-
tionary perspective on human–microbe mutualism and disease”. In: Nature
449.7164 (2007), p. 811. DOI: 10.1038/nature06245.

[109] A. Deutsch et al. “A query language for XML”. In: Computer Networks 31.11
(1999), pp. 1155 –1169. ISSN: 1389-1286. DOI: 10.1016/S1389-1286(99)00020-
1.

[110] J. L. Devore and R. Peck. Statistics : the exploration and analysis of data. 4th ed.
Pacific Grove, CA : Brooks/Cole, 2001. ISBN: 0534358675 (hbk.)

[111] A. Di Noia, P. Montanari, and A. Rizzi. “Occupational Diseases Risk Predic-
tion by Cluster Analysis and Genetic Optimization”. In: Proceedings of the In-
ternational Joint Conference on Computational Intelligence-Volume 1. SCITEPRESS-
Science and Technology Publications, Lda. 2014, pp. 68–75.

[112] A. Di Noia, P. Montanari, and A. Rizzi. “Occupational Diseases Risk Predic-
tion by Genetic Optimization: Towards a Non-exclusive Classification Ap-
proach”. In: Computational Intelligence. Springer, 2016, pp. 63–77.

[113] A. Di Noia et al. “Supervised machine learning techniques and genetic opti-
mization for occupational diseases risk prediction”. In: Soft Computing (2019).
ISSN: 1433-7479. DOI: 10.1007/s00500-019-04200-2.

[114] L. Di Paola et al. “Protein Contact Networks: An Emerging Paradigm in
Chemistry”. In: Chemical Reviews 113.3 (2013), pp. 1598–1613. DOI: 10.1021
/cr3002356.

[115] L. Di Paola and A. Giuliani. “Protein contact network topology: a natural
language for allostery”. In: Current Opinion in Structural Biology 31 (2015),
pp. 43 –48. ISSN: 0959-440X. DOI: 10.1016/j.sbi.2015.03.001.

[116] L. Di Paola and A. Giuliani. “Protein–Protein Interactions: The Structural
Foundation of Life Complexity”. In: eLS. John Wiley & Sons, 2017, pp. 1–12.
ISBN: 9780470015902. DOI: 10.1002/9780470015902.a0001346.pub2.

[117] D. V. Dibrova, M. Y. Galperin, and A. Y. Mulkidjanian. “Phylogenomic recon-
struction of archaeal fatty acid metabolism”. In: Environmental Microbiology
16.4 (), pp. 907–918. DOI: 10.1111/1462-2920.12359.

[118] H. Ding et al. “Querying and Mining of Time Series Data: Experimental Com-
parison of Representations and Distance Measures”. In: Proc. VLDB Endow.
1.2 (2008), pp. 1542–1552. ISSN: 2150-8097. DOI: 10.14778/1454159.1454226.

[119] S. Ding, M. Du, and H. Zhu. “Survey on granularity clustering”. In: Cognitive
neurodynamics 9.6 (2015), pp. 561–572.

[120] S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes. “Critical phenomena
in complex networks”. In: Rev. Mod. Phys. 80 (4 2008), pp. 1275–1335. DOI:
10.1103/RevModPhys.80.1275.

https://doi.org/10.1109/GrC.2007.140
https://doi.org/10.1109/GrC.2007.141
https://doi.org/10.7763/IJCTE.2014.V6.827
https://doi.org/10.1038/nature06245
https://doi.org/10.1016/S1389-1286(99)00020-1
https://doi.org/10.1016/S1389-1286(99)00020-1
https://doi.org/10.1007/s00500-019-04200-2
https://doi.org/10.1021/cr3002356
https://doi.org/10.1021/cr3002356
https://doi.org/10.1016/j.sbi.2015.03.001
https://doi.org/10.1002/9780470015902.a0001346.pub2
https://doi.org/10.1111/1462-2920.12359
https://doi.org/10.14778/1454159.1454226
https://doi.org/10.1103/RevModPhys.80.1275

Bibliography 149

[121] D. Dua and C. Graff. UCI Machine Learning Repository. 2017. URL: http://arc
hive.ics.uci.edu/ml.

[122] A. Duardo-Sánchez et al. “Modeling Complex Metabolic Reactions, Ecologi-
cal Systems, and Financial and Legal Networks with MIANN Models Based
on Markov-Wiener Node Descriptors”. In: Journal of Chemical Information and
Modeling 54.1 (2014), pp. 16–29. DOI: 10.1021/ci400280n.

[123] F. L. Duecker, F. Reuß, and P. Heretsch. “Rearranged ergostane-type natural
products: chemistry, biology, and medicinal aspects”. In: Org. Biomol. Chem.
17 (7 2019), pp. 1624–1633. DOI: 10.1039/C8OB02325E.

[124] M. Dufrêne and P. Legendre. “Species assemblages and indicator species:
the need for a flexible asymmetrical approach”. In: Ecological monographs 67.3
(1997), pp. 345–366. DOI: 10.2307/2963459.

[125] R. P. Duin and E. Pękalska. “The dissimilarity space: Bridging structural and
statistical pattern recognition”. In: Pattern Recognition Letters 33.7 (2012). Spe-
cial Issue on Awards from ICPR 2010, pp. 826 –832. ISSN: 0167-8655. DOI:
10.1016/j.patrec.2011.04.019.

[126] D. M. Eler et al. “Simplified Stress and Simplified Silhouette Coefficient to
a Faster Quality Evaluation of Multidimensional Projection Techniques and
Feature Spaces”. In: Information Visualisation (iV), 2015 19th International Con-
ference on. IEEE. 2015, pp. 133–139. DOI: 10.1109/iV.2015.33.

[127] D. Emms et al. “A matrix representation of graphs and its spectrum as a
graph invariant”. In: the electronic journal of combinatorics 13.1 (2006), p. 34.

[128] P. Erdős and A. Renyi. “On random graphs I”. In: Publicationes Mathematicae
6 (1959), pp. 290–297.

[129] F. Escolano, E. R. Hancock, and M. A. Lozano. “Heat diffusion: Thermody-
namic depth complexity of networks”. In: Phys. Rev. E 85 (3 2012), p. 036206.
DOI: 10.1103/PhysRevE.85.036206.

[130] M. Ester et al. “A density-based algorithm for discovering clusters in large
spatial databases with noise.” In: Proceedings of the Second International Con-
ference on Knowledge Discovery and Data Mining. Vol. 96. 34. 1996, pp. 226–231.

[131] E. Estrada. “Characterization of 3D molecular structure”. In: Chemical Physics
Letters 319.5-6 (2000), pp. 713–718. DOI: 10.1016/S0009-2614(00)00158-5.

[132] E. Estrada. “Universality in Protein Residue Networks”. In: Biophysical Jour-
nal 98.5 (2010), pp. 890 –900. ISSN: 0006-3495. DOI: 10.1016/j.bpj.2009.11.017.

[133] E. Estrada and J. A. Rodriguez-Velazquez. “Complex networks as hyper-
graphs”. In: arXiv preprint physics/0505137 (2005).

[134] E. Estrada and J. A. Rodriguez-Velazquez. “Subgraph centrality in complex
networks”. In: Physical Review E 71.5 (2005), p. 056103. DOI: 10.1103/PhysRe
vE.71.056103.

[135] R.-E. Fan et al. “LIBLINEAR: A Library for Large Linear Classification”. In:
Journal of Machine Learning Research 9 (2008), pp. 1871–1874.

[136] K. Faust and J. Raes. “Microbial interactions: from networks to models”. In:
Nature Reviews Microbiology 10.8 (2012), p. 538. DOI: 10.1038/nrmicro2832.

[137] T. Fawcett. “An introduction to ROC analysis”. In: Pattern recognition letters
27.8 (2006), pp. 861–874.

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1021/ci400280n
https://doi.org/10.1039/C8OB02325E
https://doi.org/10.2307/2963459
https://doi.org/10.1016/j.patrec.2011.04.019
https://doi.org/10.1109/iV.2015.33
https://doi.org/10.1103/PhysRevE.85.036206
https://doi.org/10.1016/S0009-2614(00)00158-5
https://doi.org/10.1016/j.bpj.2009.11.017
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.1038/nrmicro2832

150 Bibliography

[138] J. G. Ferry. “Acetate Metabolism in Anaerobes from the Domain Archaea”.
In: Life 5.2 (2015), pp. 1454–1471. ISSN: 2075-1729. DOI: 10.3390/life5021454.

[139] O. Fiehn and W. Weckwerth. “Deciphering metabolic networks”. In: European
Journal of Biochemistry 270.4 (), pp. 579–588. DOI: 10.1046/j.1432-1033.2003.0
3427.x.

[140] R. A. Fisher. “The statistical utilization of multiple measurements”. In: Annals
of eugenics 8.4 (1938), pp. 376–386.

[141] R. W. Floyd. “Algorithm 97: Shortest Path”. In: Commun. ACM 5.6 (1962),
pp. 345–. ISSN: 0001-0782. DOI: 10.1145/367766.368168.

[142] L. K. Gallos and N. H. Fefferman. “Revealing effective classifiers through
network comparison”. In: EPL (Europhysics Letters) 108.3 (2014), p. 38001. DOI:
10.1209/0295-5075/108/38001.

[143] J. Gao, B. Barzel, and A.-L. Barabási. “Universal resilience patterns in com-
plex networks”. In: Nature 530.7590 (2016), pp. 307–312. DOI: 10.1038/nature
16948.

[144] A. Gardner et al. “On the Definiteness of Earth Mover’s Distance and Its Re-
lation to Set Intersection”. In: IEEE Transactions on Cybernetics 48.11 (2018),
pp. 3184–3196. ISSN: 2168-2267. DOI: 10.1109/TCYB.2017.2761798.

[145] T. Gärtner, P. Flach, and S. Wrobel. “On Graph Kernels: Hardness Results
and Efficient Alternatives”. In: Learning Theory and Kernel Machines. Ed. by B.
Schölkopf and M. K. Warmuth. Springer, Berlin, Heidelberg, 2003, pp. 129–
143. ISBN: 978-3-540-45167-9.

[146] T. Gaudelet, N. Malod-Dognin, and N. Pržulj. “Higher-order molecular or-
ganization as a source of biological function”. In: Bioinformatics 34.17 (2018),
pp. i944–i953. DOI: 10.1093/bioinformatics/bty570.

[147] S. Ghosh et al. “The journey of graph kernels through two decades”. In: Com-
puter Science Review 27 (2018), pp. 88 –111. ISSN: 1574-0137.

[148] R. Ghrist. Elementary applied topology. 1st ed. Seattle, USA: Createspace, 2014.

[149] A. Giuliani. “Some Notes on the Actual Status of Quantitative Approaches in
Biotechnology”. In: Current Biotechnology 7.6 (2018), pp. 406–408. ISSN: 2211-
5501/2211-551X. DOI: 10.2174/221155010706190212111545.

[150] A. Giuliani, S. Filippi, and M. Bertolaso. “Why network approach can pro-
mote a new way of thinking in biology”. In: Frontiers in Genetics 5 (2014),
p. 83. ISSN: 1664-8021. DOI: 10.3389/fgene.2014.00083.

[151] C. Giusti, R. Ghrist, and D. S. Bassett. “Two’s company, three (or more) is a
simplex”. In: Journal of Computational Neuroscience 41.1 (2016), pp. 1–14. ISSN:
1573-6873. DOI: 10.1007/s10827-016-0608-6.

[152] K.-I. Goh, B. Kahng, and D Kim. “Universal behavior of load distribution in
scale-free networks”. In: Physical Review Letters 87.27 (2001), p. 278701. DOI:
10.1103/PhysRevLett.87.278701.

[153] D. E. Goldberg. Genetic algorithms in search, optimization and machine learning.
Reading, Massachusetts, USA: Addison-Wesley, 1989.

[154] M. Gönen and E. Alpaydin. “Localized multiple kernel learning”. In: Pro-
ceedings of the 25th international conference on Machine learning. ACM. 2008,
pp. 352–359. DOI: 10.1145/1390156.1390201.

https://doi.org/10.3390/life5021454
https://doi.org/10.1046/j.1432-1033.2003.03427.x
https://doi.org/10.1046/j.1432-1033.2003.03427.x
https://doi.org/10.1145/367766.368168
https://doi.org/10.1209/0295-5075/108/38001
https://doi.org/10.1038/nature16948
https://doi.org/10.1038/nature16948
https://doi.org/10.1109/TCYB.2017.2761798
https://doi.org/10.1093/bioinformatics/bty570
https://doi.org/10.2174/221155010706190212111545
https://doi.org/10.3389/fgene.2014.00083
https://doi.org/10.1007/s10827-016-0608-6
https://doi.org/10.1103/PhysRevLett.87.278701
https://doi.org/10.1145/1390156.1390201

Bibliography 151

[155] M. Gönen and E. Alpaydın. “Multiple kernel learning algorithms”. In: Journal
of machine learning research 12.Jul (2011), pp. 2211–2268.

[156] H. González-Díaz and P. Riera-Fernández. “New Markov-Autocorrelation
Indices for Re-evaluation of Links in Chemical and Biological Complex Net-
works used in Metabolomics, Parasitology, Neurosciences, and Epidemiol-
ogy”. In: Journal of Chemical Information and Modeling 52.12 (2012), pp. 3331–
3340. DOI: 10.1021/ci300321f.

[157] J. L. Green, B. J. M. Bohannan, and R. J. Whitaker. “Microbial Biogeography:
From Taxonomy to Traits”. In: Science 320.5879 (2008), pp. 1039–1043. ISSN:
0036-8075. DOI: 10.1126/science.1153475.

[158] J. Gu, B. Hua, and S. Liu. “Spectral distances on graphs”. In: Discrete Applied
Mathematics 190-191 (2015), pp. 56 –74. ISSN: 0166-218X. DOI: 10.1016/j.dam
.2015.04.011.

[159] E. Guarnera and I. N. Berezovsky. “Allosteric sites: remote control in regu-
lation of protein activity”. In: Current Opinion in Structural Biology 37 (2016),
pp. 1 –8. ISSN: 0959-440X. DOI: 10.1016/j.sbi.2015.10.004.

[160] S. Guha, R. Rastogi, and K. Shim. “CURE: an efficient clustering algorithm
for large databases”. In: ACM Sigmod Record. Vol. 27. 2. ACM. 1998, pp. 73–
84.

[161] R. Guimerà and L. A. N. Amaral. “Functional cartography of complex meta-
bolic networks”. In: Nature 433.7028 (2005), p. 895. DOI: 10.1038/nature03288.

[162] I. Gutman and B. Zhou. “Laplacian energy of a graph”. In: Linear Algebra and
its Applications 414.1 (2006), pp. 29 –37. ISSN: 0024-3795. DOI: 10.1016/j.laa.2
005.09.008.

[163] B. Haasdonk. “Feature space interpretation of SVMs with indefinite kernels”.
In: IEEE Transactions on Pattern Analysis and Machine Intelligence 27.4 (2005),
pp. 482–492. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2005.78.

[164] R. W. Hamming. “Error detecting and error correcting codes”. In: Bell Labs
Technical Journal 29.2 (1950), pp. 147–160.

[165] L. Han et al. “Graph characterizations from von Neumann entropy”. In: Pat-
tern Recognition Letters 33.15 (2012), pp. 1958 –1967. ISSN: 0167-8655. DOI: 10
.1016/j.patrec.2012.03.016.

[166] Z. Harchaoui and F. Bach. “Image Classification with Segmentation Graph
Kernels”. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition.
2007, pp. 1–8. DOI: 10.1109/CVPR.2007.383049.

[167] D. R. Hofstadter. I am a Strange Loop. Basic Books, 2007.

[168] P. Holme and J. Saramäki. “Temporal networks”. In: Physics Reports 519.3
(2012), pp. 97 –125. ISSN: 0370-1573. DOI: 10.1016/j.physrep.2012.03.001.

[169] D. Horak, S. Maletić, and M. Rajković. “Persistent homology of complex net-
works”. In: Journal of Statistical Mechanics: Theory and Experiment 2009.03 (2009),
P03034. DOI: 10.1088/1742-5468/2009/03/p03034.

[170] J. Horgan. “From complexity to perplexity”. In: Scientific American 272.6 (1995),
pp. 104–109.

[171] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
1985.

https://doi.org/10.1021/ci300321f
https://doi.org/10.1126/science.1153475
https://doi.org/10.1016/j.dam.2015.04.011
https://doi.org/10.1016/j.dam.2015.04.011
https://doi.org/10.1016/j.sbi.2015.10.004
https://doi.org/10.1038/nature03288
https://doi.org/10.1016/j.laa.2005.09.008
https://doi.org/10.1016/j.laa.2005.09.008
https://doi.org/10.1109/TPAMI.2005.78
https://doi.org/10.1016/j.patrec.2012.03.016
https://doi.org/10.1016/j.patrec.2012.03.016
https://doi.org/10.1109/CVPR.2007.383049
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1088/1742-5468/2009/03/p03034

152 Bibliography

[172] N. Howard and H. Lieberman. “BrainSpace: Relating Neuroscience to Knowl-
edge About Everyday Life”. In: Cognitive Computation 6.1 (2014), pp. 35–44.

[173] E. R. Hruschka, R. J. Campello, and L. N. de Castro. “Evolving clusters in
gene-expression data”. In: Information Sciences 176.13 (2006), pp. 1898–1927.
ISSN: 0020-0255. DOI: https://doi.org/10.1016/j.ins.2005.07.015.

[174] M. Hu, Y. Chen, and J. T.-Y. Kwok. “Building sparse multiple-kernel SVM
classifiers”. In: IEEE Transactions on Neural Networks 20.5 (2009), pp. 827–839.
DOI: 10.1109/TNN.2009.2014229.

[175] T. S. Jaakkola and D. Haussler. “Exploiting Generative Models in Discrimi-
native Classifiers”. In: Proceedings of the 1998 Conference on Advances in Neu-
ral Information Processing Systems II. Cambridge, MA, USA: MIT Press, 1999,
pp. 487–493. ISBN: 0-262-11245-0.

[176] P. Jaccard. “Distribution de la flore alpine dans le bassin des Dranses et dans
quelques régions voisines”. In: Bulletin de la Société Vaudoise des Sciences Na-
turelles 37.140 (1901), pp. 241–272. DOI: 10.5169/seals-266440.

[177] P. Jaccard. “Etude de la distribution florale dans une portion des Alpes et du
Jura”. In: Bulletin de la Société Vaudoise des Sciences Naturelles 37.142 (1901),
pp. 547–579. DOI: 10.5169/seals-266450.

[178] P. Jaccard. “The distribution of the flora in the Alpine zone”. In: New Phytolo-
gist 11.2 (1912), pp. 37–50. DOI: 10.1111/j.1469-8137.1912.tb05611.x.

[179] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data clustering: a review”. In: ACM
computing surveys (CSUR) 31.3 (1999), pp. 264–323.

[180] S. Jalan. “Spectral analysis of deformed random networks”. In: Phys. Rev. E
80 (4 2009), p. 046101. DOI: 10.1103/PhysRevE.80.046101.

[181] S. Jalan and J. N. Bandyopadhyay. “Random matrix analysis of network Lapla-
cians”. In: Physica A: Statistical Mechanics and its Applications 387.2 (2008),
pp. 667 –674. ISSN: 0378-4371. DOI: 10.1016/j.physa.2007.09.026.

[182] J. R. Jang. “ANFIS: adaptive-network-based fuzzy inference system”. In: IEEE
Transactions on Systems, Man, and Cybernetics 23.3 (1993), pp. 665–685. DOI: 10
.1109/21.256541.

[183] X. Ji and J. Bailey. “An Efficient Technique for Mining Approximately Fre-
quent Substring Patterns”. In: Seventh IEEE International Conference on Data
Mining Workshops (ICDMW 2007). 2007, pp. 325–330. DOI: 10.1109/ICDMW.2
007.121.

[184] G. Jurman, R. Visintainer, and C. Furlanello. “An introduction to spectral dis-
tances in networks”. In: Neural Nets WIRN10. Ed. by B. Apolloni et al. Vol. 226.
Frontiers in Artificial Intelligence and Applications. IOS Press, 2011, pp. 227–
234. DOI: 10.3233/978-1-60750-692-8-227.

[185] M. Kafri et al. “The Cost of Protein Production”. In: Cell Reports 14.1 (2016),
pp. 22 –31. ISSN: 2211-1247. DOI: 10.1016/j.celrep.2015.12.015.

[186] M. Kanehisa and S. Goto. “KEGG: kyoto encyclopedia of genes and genomes”.
In: Nucleic acids research 28.1 (2000), pp. 27–30.

[187] M. Kanehisa et al. “KEGG as a reference resource for gene and protein anno-
tation”. In: Nucleic acids research 44.D1 (2015), pp. D457–D462.

[188] M. Kanehisa et al. “KEGG: new perspectives on genomes, pathways, diseases
and drugs”. In: Nucleic acids research 45.D1 (2016), pp. D353–D361.

https://doi.org/https://doi.org/10.1016/j.ins.2005.07.015
https://doi.org/10.1109/TNN.2009.2014229
https://doi.org/10.5169/seals-266440
https://doi.org/10.5169/seals-266450
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1103/PhysRevE.80.046101
https://doi.org/10.1016/j.physa.2007.09.026
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/21.256541
https://doi.org/10.1109/ICDMW.2007.121
https://doi.org/10.1109/ICDMW.2007.121
https://doi.org/10.3233/978-1-60750-692-8-227
https://doi.org/10.1016/j.celrep.2015.12.015

Bibliography 153

[189] K. Kanno et al. “Interacting Proteins Dictate Function of the Minimal START
Domain Phosphatidylcholine Transfer Protein/StarD2”. In: Journal of Biologi-
cal Chemistry 282.42 (2007), pp. 30728–30736. DOI: 10.1074/jbc.M703745200.

[190] L. Katz. “A new status index derived from sociometric analysis”. In: Psy-
chometrika 18.1 (1953), pp. 39–43. DOI: 10.1007/BF02289026.

[191] L. Kaufman and P. Rousseeuw. “Clustering by means of Medoids”. In: Statis-
tical Data Analysis Based on the L1 Norm and Related Methods. Ed. by Y. Dodge.
North Holland, 1987, pp. 405–416.

[192] L. Kaufman and P. J. Rousseeuw. Finding groups in data: an introduction to clus-
ter analysis. John Wiley & Sons, 1990. DOI: 10.1002/9780470316801.

[193] J. C. Kendrew et al. “A three-dimensional model of the myoglobin molecule
obtained by x-ray analysis”. In: Nature 181.4610 (1958), pp. 662–666.

[194] J. Kennedy and R. Eberhart. “Particle swarm optimization”. In: Proceedings of
ICNN’95 - International Conference on Neural Networks. Vol. 4. 1995, pp. 1942–
1948. DOI: 10.1109/ICNN.1995.488968.

[195] K. Kersting et al. Benchmark Data Sets for Graph Kernels. http://graphkernels
.cs.tu-dortmund.de. 2016.

[196] S. S. Khan and M. G. Madden. “A Survey of Recent Trends in One Class
Classification”. In: Artificial Intelligence and Cognitive Science. Ed. by L. Coyle
and J. Freyne. Vol. 6206. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2010, pp. 188–197. ISBN: 978-3-642-17079-9. DOI: 10.1007/978-3-
642-17080-5_21.

[197] J. Kim and T. Wilhelm. “What is a complex graph?” In: Physica A: Statistical
Mechanics and its Applications 387.11 (2008), pp. 2637 –2652. ISSN: 0378-4371.
DOI: 10.1016/j.physa.2008.01.015.

[198] J. Kirchmair et al. “Predicting drug metabolism: experiment and/or compu-
tation?” In: Nature Reviews Drug discovery 14.6 (2015), pp. 387–404. DOI: 10.10
38/nrd4581.

[199] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. “Optimization by simulated
annealing”. In: Science 220.4598 (1983), pp. 671–680. DOI: 10.1126/science.22
0.4598.671.

[200] A. H. Knoll. “Paleobiological perspectives on early eukaryotic evolution”. In:
Cold Spring Harbor Perspectives in Biology 6.1 (2014), a016121. DOI: 10.1101/cs
hperspect.a016121.

[201] R. Kohavi. “A Study of Cross-validation and Bootstrap for Accuracy Estima-
tion and Model Selection”. In: Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence - Volume 2. IJCAI’95. Montreal, Quebec, Canada:
Morgan Kaufmann Publishers Inc. San Francisco, USA, 1995, pp. 1137–1143.
ISBN: 1-55860-363-8.

[202] R. I. Kondor and J. Lafferty. “Diffusion kernels on graphs and other discrete
structures”. In: In Proceedings of the ICML. 2002, pp. 315–322.

[203] R. I. Kondor and J. Lafferty. “Diffusion kernels on graphs and other discrete
structures”. In: Proceedings of the 19th international conference on machine learn-
ing. Vol. 2002. 2002, pp. 315–322.

[204] A. Krishnan et al. “Proteins as networks: usefulness of graph theory in pro-
tein science”. In: Current Protein and Peptide Science 9.1 (2008), pp. 28–38. DOI:
10.2174/138920308783565705.

https://doi.org/10.1074/jbc.M703745200
https://doi.org/10.1007/BF02289026
https://doi.org/10.1002/9780470316801
https://doi.org/10.1109/ICNN.1995.488968
http://graphkernels.cs.tu-dortmund.de
http://graphkernels.cs.tu-dortmund.de
https://doi.org/10.1007/978-3-642-17080-5_21
https://doi.org/10.1007/978-3-642-17080-5_21
https://doi.org/10.1016/j.physa.2008.01.015
https://doi.org/10.1038/nrd4581
https://doi.org/10.1038/nrd4581
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1101/cshperspect.a016121
https://doi.org/10.1101/cshperspect.a016121
https://doi.org/10.2174/138920308783565705

154 Bibliography

[205] R. Kühn and J. van Mourik. “Spectra of modular and small-world matrices”.
In: Journal of Physics A: Mathematical and Theoretical 44.16 (2011), p. 165205.
DOI: 10.1088/1751-8113/44/16/165205.

[206] V. Lacroix et al. “An Introduction to Metabolic Networks and Their Struc-
tural Analysis”. In: IEEE/ACM Trans. Comput. Biol. Bioinformatics 5.4 (2008),
pp. 594–617. ISSN: 1545-5963. DOI: 10.1109/TCBB.2008.79.

[207] C. H. Lampert. “Kernel Methods in Computer Vision”. In: Foundations and
Trends® in Computer Graphics and Vision 4.3 (2009), pp. 193–285. ISSN: 1572-
2740. DOI: 10.1561/0600000027.

[208] G. R. Lanckriet et al. “Learning the kernel matrix with semidefinite program-
ming”. In: Journal of Machine learning research 5.Jan (2004), pp. 27–72.

[209] S. de Lange, M. de Reus, and M. Van Den Heuvel. “The Laplacian spectrum of
neural networks”. In: Frontiers in Computational Neuroscience 7 (2014), p. 189.
ISSN: 1662-5188. DOI: 10.3389/fncom.2013.00189.

[210] J. Laub and K.-R. Müller. “Feature Discovery in Non-Metric Pairwise Data”.
In: J. Mach. Learn. Res. 5 (2004), pp. 801–818. ISSN: 1532-4435.

[211] R. B. Laughlin et al. “The middle way”. In: Proceedings of the National Academy
of Sciences 97.1 (2000), pp. 32–37. ISSN: 0027-8424. DOI: 10.1073/pnas.97.1.32.

[212] D.-S. Lee et al. “The implications of human metabolic network topology for
disease comorbidity”. In: Proceedings of the National Academy of Sciences 105.29
(2008), pp. 9880–9885. ISSN: 0027-8424. DOI: 10.1073/pnas.0802208105.

[213] S. Leonori et al. “An optimized microgrid energy management system based
on FIS-MO-GA paradigm”. In: 2017 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE). 2017, pp. 1–6. DOI: 10.1109/FUZZ-IEEE.2017.801543
8.

[214] S. Leonori et al. “Multi objective optimization of a fuzzy logic controller for
energy management in microgrids”. In: 2016 IEEE Congress on Evolutionary
Computation (CEC). 2016, pp. 319–326. DOI: 10.1109/CEC.2016.7743811.

[215] S. Leonori et al. “Optimization of a microgrid energy management system
based on a Fuzzy Logic Controller”. In: IECON 2016 - 42nd Annual Conference
of the IEEE Industrial Electronics Society. 2016, pp. 6615–6620. DOI: 10 . 1109
/IECON.2016.7793965.

[216] S. Leonori et al. “ANFIS Microgrid Energy Management System Synthesis by
Hyperplane Clustering Supported by Neurofuzzy Min–Max Classifier”. In:
IEEE Transactions on Emerging Topics in Computational Intelligence 3.3 (2019),
pp. 193–204. ISSN: 2471-285X. DOI: 10.1109/TETCI.2018.2880815.

[217] S. Leonori et al. “ANFIS Synthesis by Clustering for Microgrids EMS De-
sign”. In: Proceedings of the 9th International Joint Conference on Computational
Intelligence - Volume 1: IJCCI, INSTICC. SciTePress, 2017, pp. 328–337. ISBN:
978-989-758-274-5. DOI: 10.5220/0006514903280337.

[218] S. Leonori et al. “Microgrid Energy Management Systems Design by Compu-
tational Intelligence Techniques”. In: IEEE transactions on information theory
(2020). Under Review.

[219] C. Leslie, E. Eskin, and W. Stafford Noble. “The Spectrum Kernel: A String
Kernel for SVM Protein Classification”. In: Pacific Symposium on Biocomputing.
Vol. 7. World Scientific, 2002, pp. 564–575. DOI: 10.1142/9789812799623_005
3.

https://doi.org/10.1088/1751-8113/44/16/165205
https://doi.org/10.1109/TCBB.2008.79
https://doi.org/10.1561/0600000027
https://doi.org/10.3389/fncom.2013.00189
https://doi.org/10.1073/pnas.97.1.32
https://doi.org/10.1073/pnas.0802208105
https://doi.org/10.1109/FUZZ-IEEE.2017.8015438
https://doi.org/10.1109/FUZZ-IEEE.2017.8015438
https://doi.org/10.1109/CEC.2016.7743811
https://doi.org/10.1109/IECON.2016.7793965
https://doi.org/10.1109/IECON.2016.7793965
https://doi.org/10.1109/TETCI.2018.2880815
https://doi.org/10.5220/0006514903280337
https://doi.org/10.1142/9789812799623_0053
https://doi.org/10.1142/9789812799623_0053

Bibliography 155

[220] C. S. Leslie et al. “Mismatch string kernels for discriminative protein clas-
sification”. In: Bioinformatics 20.4 (2004), pp. 467–476. ISSN: 1367-4803. DOI:
10.1093/bioinformatics/btg431.

[221] V. I. Levenshtein. “Binary codes capable of correcting deletions, insertions,
and reversals”. In: Soviet physics doklady 10.8 (1966), pp. 707–710.

[222] D. P. Lewis, T. Jebara, and W. S. Noble. “Nonstationary kernel combination”.
In: Proceedings of the 23rd international conference on Machine learning. ACM.
2006, pp. 553–560. DOI: 10.1145/1143844.1143914.

[223] J.-P. Li et al. “A Species Conserving Genetic Algorithm for Multimodal Func-
tion Optimization”. In: Evolutionary Computation 10.3 (2002), pp. 207–234. DOI:
10.1162/106365602760234081.

[224] M. Lichman. UCI Machine Learning Repository. 2013. URL: http://archive.ics
.uci.edu/ml.

[225] T. Y. Lin, Y. Y. Yao, and L. A. Zadeh. Data mining, rough sets and granular com-
puting. Vol. 95. Physica, 2013.

[226] L. Livi, A. Giuliani, and A. Rizzi. “Toward a multilevel representation of pro-
tein molecules: Comparative approaches to the aggregation/folding propen-
sity problem”. In: Information Sciences 326 (2016), pp. 134–145. ISSN: 0020-
0255. DOI: 10.1016/j.ins.2015.07.043.

[227] L. Livi, A. Giuliani, and A. Sadeghian. “Characterization of graphs for protein
structure modeling and recognition of solubility”. In: Current Bioinformatics
11.1 (2016), pp. 106–114. DOI: 10.2174/1574893611666151109175216.

[228] L. Livi and A. Rizzi. “Graph ambiguity”. In: Fuzzy Sets and Systems 221 (2013),
pp. 24 –47. ISSN: 0165-0114. DOI: 10.1016/j.fss.2013.01.001.

[229] L. Livi and A. Rizzi. “The graph matching problem”. In: Pattern Analysis and
Applications 16.3 (2013), pp. 253–283. ISSN: 1433-755X. DOI: 10.1007/s10044-0
12-0284-8.

[230] L. Livi, A. Rizzi, and A. Sadeghian. “Granular modeling and computing ap-
proaches for intelligent analysis of non-geometric data”. In: Applied Soft Com-
puting 27 (2015), pp. 567 –574. ISSN: 1568-4946. DOI: 10.1016/j.asoc.2014.08.0
72.

[231] L. Livi, A. Rizzi, and A. Sadeghian. “Optimized dissimilarity space embed-
ding for labeled graphs”. In: Information Sciences 266 (2014), pp. 47–64. DOI:
10.1016/j.ins.2014.01.005.

[232] L. Livi and A. Sadeghian. “Granular computing, computational intelligence,
and the analysis of non-geometric input spaces”. In: Granular Computing 1.1
(2016), pp. 13–20. ISSN: 2364-4974. DOI: 10.1007/s41066-015-0003-0.

[233] L. Livi et al. “A generative model for protein contact networks”. In: Journal of
Biomolecular Structure and Dynamics 34.7 (2016), pp. 1441–1454. DOI: 10.1080
/07391102.2015.1077736.

[234] L. Livi et al. “Analysis of heat kernel highlights the strongly modular and
heat-preserving structure of proteins”. In: Physica A: Statistical Mechanics and
its Applications 441 (2016), pp. 199 –214. ISSN: 0378-4371. DOI: 10.1016/j.phys
a.2015.08.059.

[235] S. Lloyd. “Least squares quantization in PCM”. In: IEEE transactions on infor-
mation theory 28.2 (1982), pp. 129–137. ISSN: 0018-9448. DOI: 10.1109/TIT.198
2.1056489.

https://doi.org/10.1093/bioinformatics/btg431
https://doi.org/10.1145/1143844.1143914
https://doi.org/10.1162/106365602760234081
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1016/j.ins.2015.07.043
https://doi.org/10.2174/1574893611666151109175216
https://doi.org/10.1016/j.fss.2013.01.001
https://doi.org/10.1007/s10044-012-0284-8
https://doi.org/10.1007/s10044-012-0284-8
https://doi.org/10.1016/j.asoc.2014.08.072
https://doi.org/10.1016/j.asoc.2014.08.072
https://doi.org/10.1016/j.ins.2014.01.005
https://doi.org/10.1007/s41066-015-0003-0
https://doi.org/10.1080/07391102.2015.1077736
https://doi.org/10.1080/07391102.2015.1077736
https://doi.org/10.1016/j.physa.2015.08.059
https://doi.org/10.1016/j.physa.2015.08.059
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/TIT.1982.1056489

156 Bibliography

[236] M. Y. Lobanov, N. Bogatyreva, and O. Galzitskaya. “Radius of gyration as an
indicator of protein structure compactness”. In: Molecular Biology 42.4 (2008),
pp. 623–628. DOI: 10.1134/S0026893308040195.

[237] H. Lodish et al. Molecular Cell Biology. 4th ed. New York, USA: W. H. Freeman,
2000. ISBN: 0-7167-3136-3.

[238] U. von Luxburg. “A tutorial on spectral clustering”. In: Statistics and Comput-
ing 17.4 (2007), pp. 395–416. ISSN: 1573-1375. DOI: 10.1007/s11222-007-9033-
z.

[239] J. Ma and X. Ma. “A review of forecasting algorithms and energy manage-
ment strategies for microgrids”. In: Systems Science & Control Engineering 6.1
(2018), pp. 237–248. DOI: 10.1080/21642583.2018.1480979.

[240] Y. Ma et al. “Segmentation of Multivariate Mixed Data via Lossy Data Coding
and Compression”. In: IEEE Transactions on Pattern Analysis and Machine In-
telligence 29.9 (2007), pp. 1546–1562. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2
007.1085.

[241] R. W. A. Mackenzie and B. T. Elliott. “Akt/PKB activation and insulin signal-
ing: a novel insulin signaling pathway in the treatment of type 2 diabetes”.
In: Diabetes, metabolic syndrome and obesity: targets and therapy 7 (2014), p. 55.
DOI: 10.2147/DMSO.S48260.

[242] J. MacQueen. “Some methods for classification and analysis of multivariate
observations”. In: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, Volume 1: Statistics. Oakland, USA, 1967, pp. 281–297.

[243] E. Maiorino et al. “Noise Sensitivity of an Information Granules Filtering Pro-
cedure by Genetic Optimization for Inexact Sequential Pattern Mining”. In:
Computational Intelligence. Ed. by J. J. Merelo et al. Cham: Springer Interna-
tional Publishing, 2016, pp. 131–150. ISBN: 978-3-319-26393-9. DOI: 10.1007/9
78-3-319-26393-9_9.

[244] E. Maiorino et al. “Spectral reconstruction of protein contact networks”. In:
Physica A: Statistical Mechanics and its Applications 471 (2017), pp. 804–817.
DOI: 10.1016/j.physa.2016.12.046.

[245] P. W. Majerus, M. V. Kisseleva, and F. A. Norris. “The role of phosphatases in
inositol signaling reactions”. In: Journal of Biological Chemistry 274.16 (1999),
pp. 10669–10672. DOI: 10.1074/jbc.274.16.10669.

[246] N. Malod-Dognin and N. Pržulj. “Functional geometry of protein interac-
tomes”. In: Bioinformatics (2019). ISSN: 1367-4803. DOI: 10.1093/bioinformatic
s/btz146.

[247] J. R. Marchesi et al. “The gut microbiota and host health: a new clinical fron-
tier”. In: Gut 65.2 (2016), pp. 330–339. ISSN: 0017-5749. DOI: 10.1136/gutjnl-2
015-309990.

[248] W. Martin. “Archaebacteria (Archaea) and the origin of the eukaryotic nu-
cleus”. In: Current Opinion in Microbiology 8.6 (2005), pp. 630–637. ISSN: 1369-
5274. DOI: 10.1016/j.mib.2005.10.004.

[249] A. Martino, A. Rizzi, and F. M. Frattale Mascioli. “Supervised Approaches for
Protein Function Prediction by Topological Data Analysis”. In: 2018 Interna-
tional Joint Conference on Neural Networks (IJCNN). 2018, pp. 1–8. DOI: 10.1109
/IJCNN.2018.8489307.

https://doi.org/10.1134/S0026893308040195
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1080/21642583.2018.1480979
https://doi.org/10.1109/TPAMI.2007.1085
https://doi.org/10.1109/TPAMI.2007.1085
https://doi.org/10.2147/DMSO.S48260
https://doi.org/10.1007/978-3-319-26393-9_9
https://doi.org/10.1007/978-3-319-26393-9_9
https://doi.org/10.1016/j.physa.2016.12.046
https://doi.org/10.1074/jbc.274.16.10669
https://doi.org/10.1093/bioinformatics/btz146
https://doi.org/10.1093/bioinformatics/btz146
https://doi.org/10.1136/gutjnl-2015-309990
https://doi.org/10.1136/gutjnl-2015-309990
https://doi.org/10.1016/j.mib.2005.10.004
https://doi.org/10.1109/IJCNN.2018.8489307
https://doi.org/10.1109/IJCNN.2018.8489307

Bibliography 157

[250] A. Martino, F. M. Frattale Mascioli, and A. Rizzi. “On the Optimisation of
Embedding Spaces via Information Granulation for Pattern Recognition”. In:
2020 International Joint Conference on Neural Networks (IJCNN). Under Review.
2020.

[251] A. Martino, A. Giuliani, and A. Rizzi. “Granular Computing Techniques for
Bioinformatics Pattern Recognition Problems in Non-metric Spaces”. In: Com-
putational Intelligence for Pattern Recognition. Ed. by W. Pedrycz and S.-M.
Chen. Cham: Springer International Publishing, 2018, pp. 53–81. ISBN: 978-
3-319-89629-8. DOI: 10.1007/978-3-319-89629-8_3.

[252] A. Martino, A. Giuliani, and A. Rizzi. “(Hyper)Graph Embedding and Clas-
sification via Simplicial Complexes”. In: Algorithms 12.11 (2019). ISSN: 1999-
4893. DOI: 10.3390/a12110223.

[253] A. Martino, A. Giuliani, and A. Rizzi. “The Universal Phenotype”. In: Organ-
isms. Journal of Biological Sciences 3.2 (2019), pp. 8–10.

[254] A. Martino and A. Rizzi. “(Hyper)Graph Kernels over Simplicial Complexes”.
In: Pattern Recognition (2019). Under Review.

[255] A. Martino, A. Rizzi, and F. M. Frattale Mascioli. “Distance Matrix Pre-Caching
and Distributed Computation of Internal Validation Indices in k-medoids
Clustering”. In: 2018 International Joint Conference on Neural Networks (IJCNN).
2018, pp. 1–8. DOI: 10.1109/IJCNN.2018.8489101.

[256] A. Martino, A. Rizzi, and F. M. Frattale Mascioli. “Efficient Approaches for
Solving the Large-Scale k-medoids Problem”. In: Proceedings of the 9th Interna-
tional Joint Conference on Computational Intelligence - Volume 1: IJCCI, INSTICC.
SciTePress, 2017, pp. 338–347. ISBN: 978-989-758-274-5. DOI: 10.5220/0006515
003380347.

[257] A. Martino, A. Rizzi, and F. M. Frattale Mascioli. “Efficient Approaches for
Solving the Large-Scale k-Medoids Problem: Towards Structured Data”. In:
Computational Intelligence: 9th International Joint Conference, IJCCI 2017 Funchal-
Madeira, Portugal, November 1-3, 2017 Revised Selected Papers. Ed. by C. Sabourin
et al. Cham: Springer International Publishing, 2019, pp. 199–219. ISBN: 978-
3-030-16469-0. DOI: 10.1007/978-3-030-16469-0_11.

[258] A. Martino et al. “Calibration Techniques for Binary Classification Problems:
A Comparative Analysis”. In: Proceedings of the 11th International Joint Con-
ference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2019). INSTICC.
SciTePress, 2019, pp. 487–495. ISBN: 978-989-758-384-1. DOI: 10.5220/0008165
504870495.

[259] A. Martino et al. “Data Mining by Evolving Agents for Clusters Discovery
and Metric Learning”. In: Neural Advances in Processing Nonlinear Dynamic
Signals. Ed. by A. Esposito et al. Cham: Springer International Publishing,
2019, pp. 23–35. ISBN: 978-3-319-95098-3. DOI: 10.1007/978-3-319-95098-3_3
.

[260] A. Martino et al. “Metabolic networks classification and knowledge discov-
ery by information granulation”. In: Computational Biology and Chemistry 84
(2020), p. 107187. ISSN: 1476-9271. DOI: 10.1016/j.compbiolchem.2019.10718
7.

[261] A. Martino et al. “Modelling and Recognition of Protein Contact Networks by
Multiple Kernel Learning and Dissimilarity Representations”. In: Information
Sciences (2019). Under Review.

https://doi.org/10.1007/978-3-319-89629-8_3
https://doi.org/10.3390/a12110223
https://doi.org/10.1109/IJCNN.2018.8489101
https://doi.org/10.5220/0006515003380347
https://doi.org/10.5220/0006515003380347
https://doi.org/10.1007/978-3-030-16469-0_11
https://doi.org/10.5220/0008165504870495
https://doi.org/10.5220/0008165504870495
https://doi.org/10.1007/978-3-319-95098-3_3
https://doi.org/10.1007/978-3-319-95098-3_3
https://doi.org/10.1016/j.compbiolchem.2019.107187
https://doi.org/10.1016/j.compbiolchem.2019.107187

158 Bibliography

[262] A. Martino et al. “Supervised Approaches for Function Prediction of Proteins
Contact Networks from Topological Structure Information”. In: Image Analy-
sis: 20th Scandinavian Conference, SCIA 2017, Tromsø, Norway, June 12–14, 2017,
Proceedings, Part I. Ed. by P. Sharma and F. M. Bianchi. Cham: Springer Inter-
national Publishing, 2017, pp. 285–296. DOI: 10.1007/978-3-319-59126-1_24.

[263] W. S. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in
nervous activity”. In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–
133. ISSN: 1522-9602. DOI: 10.1007/BF02478259.

[264] P. McDonald and R. Meyers. “Diffusions on graphs, Poisson problems and
spectral geometry”. In: Transactions of the American Mathematical Society 354.12
(2002), pp. 5111–5136.

[265] P. N. McGraw and M. Menzinger. “Laplacian spectra as a diagnostic tool for
network structure and dynamics”. In: Phys. Rev. E 77 (3 2008), p. 031102. DOI:
10.1103/PhysRevE.77.031102.

[266] P. J. McMurdie and S. Holmes. “phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data”. In: PLOS
ONE 8.4 (2013), pp. 1–11. DOI: 10.1371/journal.pone.0061217.

[267] M. L. Mehta. Random matrices. 3rd ed. Vol. 142. Academic Press, Elsevier, 2004.

[268] J. M. Mendel. “Fuzzy logic systems for engineering: a tutorial”. In: Proceedings
of the IEEE 83.3 (1995), pp. 345–377. ISSN: 0018-9219. DOI: 10.1109/5.364485.

[269] J. A. Méndez-Bermúdez et al. “Universality in the spectral and eigenfunction
properties of random networks”. In: Phys. Rev. E 91 (3 2015), p. 032122. DOI:
10.1103/PhysRevE.91.032122.

[270] X. Meng et al. “Mllib: Machine learning in apache spark”. In: Journal of Ma-
chine Learning Research 17.34 (2016), pp. 1–7.

[271] J. Mercer. “Functions of positive and negative type, and their connection with
the theory of integral equations”. In: Philosophical transactions of the royal soci-
ety of London. Series A, containing papers of a mathematical or physical character
209 (1909), pp. 415–446.

[272] R. Merris. “Laplacian matrices of graphs: a survey”. In: Linear Algebra and its
Applications 197-198 (1994), pp. 143 –176. ISSN: 0024-3795. DOI: 10.1016/0024
-3795(94)90486-3.

[273] D. C. Mikulecky. “Network thermodynamics and complexity: a transition to
relational systems theory”. In: Computers & Chemistry 25.4 (2001), pp. 369 –
391. ISSN: 0097-8485. DOI: 10.1016/S0097-8485(01)00072-9.

[274] S. Milgram. “The small world problem”. In: Psychology today 2.1 (1967), pp. 60–
67.

[275] A. Mirshahvalad et al. “Dynamics of interacting information waves in net-
works”. In: Phys. Rev. E 89 (1 2014), p. 012809. DOI: 10.1103/PhysRevE.89.01
2809.

[276] T. M. Mitchell. Machine Learning. Boston, USA: McGraw-Hill, 1997.

[277] M. Mitrović and B. Tadić. “Spectral and dynamical properties in classes of
sparse networks with mesoscopic inhomogeneities”. In: Phys. Rev. E 80 (2
2009), p. 026123. DOI: 10.1103/PhysRevE.80.026123.

[278] B. Mohar. “Laplace eigenvalues of graphs—a survey”. In: Discrete Mathemat-
ics 109.1 (1992), pp. 171 –183. ISSN: 0012-365X. DOI: 10.1016/0012-365X(92)9
0288-Q.

https://doi.org/10.1007/978-3-319-59126-1_24
https://doi.org/10.1007/BF02478259
https://doi.org/10.1103/PhysRevE.77.031102
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1109/5.364485
https://doi.org/10.1103/PhysRevE.91.032122
https://doi.org/10.1016/0024-3795(94)90486-3
https://doi.org/10.1016/0024-3795(94)90486-3
https://doi.org/10.1016/S0097-8485(01)00072-9
https://doi.org/10.1103/PhysRevE.89.012809
https://doi.org/10.1103/PhysRevE.89.012809
https://doi.org/10.1103/PhysRevE.80.026123
https://doi.org/10.1016/0012-365X(92)90288-Q
https://doi.org/10.1016/0012-365X(92)90288-Q

Bibliography 159

[279] E. Mones, L. Vicsek, and T. Vicsek. “Hierarchy measure for complex net-
works”. In: PloS one 7.3 (2012), e33799. DOI: 10.1371/journal .pone.003379
9.

[280] J. W. Moon and L. Moser. “On cliques in graphs”. In: Israel Journal of Mathe-
matics 3.1 (1965), pp. 23–28. ISSN: 1565-8511. DOI: 10.1007/BF02760024.

[281] J. R. Munkres. Elements of algebraic topology. California, USA: Addison-Wesley,
1984.

[282] K. Murata and M. Wolf. “Cryo-electron microscopy for structural analysis of
dynamic biological macromolecules”. In: Biochimica et Biophysica Acta (BBA)
- General Subjects 1862.2 (2018). SI: Biophysical Exploration of Dynamical Or-
dering of Biomolecular Systems, pp. 324 –334. ISSN: 0304-4165. DOI: 10.1016
/j.bbagen.2017.07.020.

[283] R. Nader et al. “On the positive semi-definite property of similarity matrices”.
In: Theoretical Computer Science 755 (2019), pp. 13–28. ISSN: 0304-3975. DOI: 10
.1016/j.tcs.2018.06.052.

[284] D. Nayar and N. F. A. van der Vegt. “Cosolvent effects on polymer hydration
drive hydrophobic collapse”. In: The Journal of Physical Chemistry B 122.13
(2018), pp. 3587–3595. DOI: 10.1021/acs.jpcb.7b10780.

[285] C. F. A. Negre et al. “Eigenvector centrality for characterization of protein
allosteric pathways”. In: Proceedings of the National Academy of Sciences 115.52
(2018), E12201–E12208. ISSN: 0027-8424. DOI: 10.1073/pnas.1810452115.

[286] M. Neuhaus and H. Bunke. Bridging the gap between graph edit distance and
kernel machines. Vol. 68. World Scientific, 2007.

[287] M. Neuhaus and H. Bunke. “Edit distance-based kernel functions for struc-
tural pattern classification”. In: Pattern Recognition 39.10 (2006), pp. 1852–
1863. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2006.04.012.

[288] M. Neumann et al. “Propagation kernels: efficient graph kernels from propa-
gated information”. In: Machine Learning 102.2 (2016), pp. 209–245. ISSN: 1573-
0565. DOI: 10.1007/s10994-015-5517-9.

[289] M. E. J. Newman. Networks: an introduction. Oxford University Press, 2010.

[290] M. E. J. Newman. “Power laws, Pareto distributions and Zipf’s law”. In: Con-
temporary Physics 46.5 (2005), pp. 323–351. DOI: 10.1080/00107510500052444.

[291] R. T. Ng and J. Han. “CLARANS: a method for clustering objects for spatial
data mining”. In: IEEE Transactions on Knowledge and Data Engineering 14.5
(2002), pp. 1003–1016. DOI: 10.1109/TKDE.2002.1033770.

[292] V. Nicosia, M. D. Domenico, and V. Latora. “Characteristic exponents of com-
plex networks”. In: EPL (Europhysics Letters) 106.5 (2014), p. 58005. DOI: 10.1
209/0295-5075/106/58005.

[293] T. Niwa et al. “Bimodal protein solubility distribution revealed by an aggre-
gation analysis of the entire ensemble of Escherichia coli proteins”. In: Pro-
ceedings of the National Academy of Sciences 106.11 (2009), pp. 4201–4206. ISSN:
0027-8424. DOI: 10.1073/pnas.0811922106.

[294] H. F. Olivares-Rubio and A. Vega-López. “Fatty acid metabolism in fish species
as a biomarker for environmental monitoring”. In: Environmental Pollution
218 (2016), pp. 297 –312. ISSN: 0269-7491. DOI: 10.1016/j.envpol.2016.07.005.

https://doi.org/10.1371/journal.pone.0033799
https://doi.org/10.1371/journal.pone.0033799
https://doi.org/10.1007/BF02760024
https://doi.org/10.1016/j.bbagen.2017.07.020
https://doi.org/10.1016/j.bbagen.2017.07.020
https://doi.org/10.1016/j.tcs.2018.06.052
https://doi.org/10.1016/j.tcs.2018.06.052
https://doi.org/10.1021/acs.jpcb.7b10780
https://doi.org/10.1073/pnas.1810452115
https://doi.org/10.1016/j.patcog.2006.04.012
https://doi.org/10.1007/s10994-015-5517-9
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1109/TKDE.2002.1033770
https://doi.org/10.1209/0295-5075/106/58005
https://doi.org/10.1209/0295-5075/106/58005
https://doi.org/10.1073/pnas.0811922106
https://doi.org/10.1016/j.envpol.2016.07.005

160 Bibliography

[295] S. H. de Oliveira and C. M. Deane. “Exploring Folding Features in Protein
Structure Prediction”. In: Biophysical Journal 114.3, Supplement 1 (2018), 36a.
ISSN: 0006-3495. DOI: 10.1016/j.bpj.2017.11.244.

[296] C. S. Ong et al. “Learning with Non-positive Kernels”. In: Proceedings of the
Twenty-first International Conference on Machine Learning. ICML ’04. Banff, Al-
berta, Canada: ACM. New York, NY, USA, 2004, pp. 81–. ISBN: 1-58113-838-5.
DOI: 10.1145/1015330.1015443.

[297] J.-P. Onnela et al. “Taxonomies of networks from community structure”. In:
Phys. Rev. E 86 (3 2012), p. 036104. DOI: 10.1103/PhysRevE.86.036104.

[298] M. Orozco. “A theoretical view of protein dynamics”. In: Chem. Soc. Rev. 43
(14 2014), pp. 5051–5066. DOI: 10.1039/C3CS60474H.

[299] M. C. Palumbo et al. “Functional essentiality from topology features in meta-
bolic networks: A case study in yeast”. In: FEBS Letters 579.21 (2005), pp. 4642–
4646. ISSN: 0014-5793. DOI: 10.1016/j.febslet.2005.07.033.

[300] M. Panella et al. “ANFIS synthesis by hyperplane clustering”. In: Proceedings
Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat.
No. 01TH8569). Vol. 1. 2001, 340–345 vol.1. DOI: 10.1109/NAFIPS.2001.9442
75.

[301] H.-S. Park and C.-H. Jun. “A simple and fast algorithm for K-medoids clus-
tering”. In: Expert Systems with Applications 36.2, Part 2 (2009), pp. 3336 –3341.
ISSN: 0957–4174. DOI: 10.1016/j.eswa.2008.01.039.

[302] D. H. Parks et al. “A standardized bacterial taxonomy based on genome phy-
logeny substantially revises the tree of life”. In: Nature Biotechnology 36 (2018),
pp. 996–1004. DOI: 10.1038/nbt.4229.

[303] E. Parzen. “On estimation of a probability density function and mode”. In:
The annals of mathematical statistics 33.3 (1962), pp. 1065–1076.

[304] L. Pauling, R. B. Corey, and H. R. Branson. “The structure of proteins: two
hydrogen-bonded helical configurations of the polypeptide chain”. In: Pro-
ceedings of the National Academy of Sciences 37.4 (1951), pp. 205–211. DOI: 10.10
73/pnas.37.4.205.

[305] W. Pedrycz. “Granular computing: an introduction”. In: Proceedings Joint 9th
IFSA World Congress and 20th NAFIPS International Conference. Vol. 3. IEEE.
2001, pp. 1349–1354. DOI: 10.1109/NAFIPS.2001.943745.

[306] W. Pedrycz. Granular computing: analysis and design of intelligent systems. CRC
press, 2016.

[307] W. Pedrycz. “Human centricity in computing with fuzzy sets: an interpretabil-
ity quest for higher order granular constructs”. In: Journal of Ambient Intelli-
gence and Humanized Computing 1.1 (2010), pp. 65–74.

[308] T. P. Peixoto. “Eigenvalue Spectra of Modular Networks”. In: Phys. Rev. Lett.
111 (9 2013), p. 098701. DOI: 10.1103/PhysRevLett.111.098701.

[309] E. Pękalska and R. P. Duin. The dissimilarity representation for pattern recogni-
tion: foundations and applications. World Scientific, 2005. DOI: 10.1142/5965.

[310] E. Pękalska, R. P. Duin, and P. Paclík. “Prototype selection for dissimilarity-
based classifiers”. In: Pattern Recognition 39.2 (2006), pp. 189–208. DOI: 10.101
6/j.patcog.2005.06.012.

https://doi.org/10.1016/j.bpj.2017.11.244
https://doi.org/10.1145/1015330.1015443
https://doi.org/10.1103/PhysRevE.86.036104
https://doi.org/10.1039/C3CS60474H
https://doi.org/10.1016/j.febslet.2005.07.033
https://doi.org/10.1109/NAFIPS.2001.944275
https://doi.org/10.1109/NAFIPS.2001.944275
https://doi.org/10.1016/j.eswa.2008.01.039
https://doi.org/10.1038/nbt.4229
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1073/pnas.37.4.205
https://doi.org/10.1109/NAFIPS.2001.943745
https://doi.org/10.1103/PhysRevLett.111.098701
https://doi.org/10.1142/5965
https://doi.org/10.1016/j.patcog.2005.06.012
https://doi.org/10.1016/j.patcog.2005.06.012

Bibliography 161

[311] E. Pękalska et al. “Non-Euclidean or Non-metric Measures Can Be Informa-
tive”. In: Structural, Syntactic, and Statistical Pattern Recognition. Ed. by D.-Y.
Yeung et al. Springer, Berlin, Heidelberg, 2006, pp. 871–880. ISBN: 978-3-540-
37241-7.

[312] J. B. Pereira et al. “Disrupted network topology in patients with stable and
progressive mild cognitive impairment and Alzheimer’s disease”. In: Cerebral
Cortex 26.8 (2016), pp. 3476–3493. ISSN: 1047-3211. DOI: 10.1093/cercor/bhw
128.

[313] C. A. Peña-Reyes. “Evolutionary Fuzzy Modeling Human Diagnostic Deci-
sions”. In: Annals of the New York Academy of Sciences 1020.1 (2004), pp. 190–
211. DOI: 10.1196/annals.1310.017.

[314] M. A. F. Pimentel et al. “A review of novelty detection”. In: Signal Processing
99 (2014), pp. 215–249. DOI: 10.1016/j.sigpro.2013.12.026.

[315] F. Possemato and A. Rizzi. “Automatic text categorization by a Granular
Computing approach: Facing unbalanced data sets”. In: The 2013 International
Joint Conference on Neural Networks (IJCNN). IEEE. 2013, pp. 1–8. DOI: 10.1109
/IJCNN.2013.6707082.

[316] D. M. W. Powers. “Evaluation: From precision, recall and f-measure to roc.,
informedness, markedness & correlation”. In: Journal of Machine Learning Tech-
nologies 2.1 (2011), pp. 37–63.

[317] E. Ramadan, A. Tarafdar, and A. Pothen. “A hypergraph model for the yeast
protein complex network”. In: 18th International Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 2004, pp. 189–. DOI: 10.1109/IPDPS.20
04.1303205.

[318] S. Raschka. “BioPandas: Working with molecular structures in pandas Data-
Frames”. In: The Journal of Open Source Software 2.14 (2017). DOI: 10.21105/jo
ss.00279.

[319] P. Riera-Fernández et al. “New Markov–Shannon Entropy models to assess
connectivity quality in complex networks: From molecular to cellular path-
way, Parasite–Host, Neural, Industry, and Legal–Social networks”. In: Journal
of Theoretical Biology 293 (2012), pp. 174 –188. ISSN: 0022-5193. DOI: 10.1016/j
.jtbi.2011.10.016.

[320] K. Riesen and H. Bunke. “Graph Classification by Means of Lipschitz Em-
bedding”. In: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cy-
bernetics) 39.6 (2009), pp. 1472–1483. DOI: 10.1109/TSMCB.2009.2019264.

[321] A. Rizzi. “Automatic Training of Min-Max Classifiers”. In: Neuro-Fuzzy Pat-
tern Recognition. Ed. by H. Bunke and A. Kandel, pp. 101–124. DOI: 10.1142/9
789812792204_0005.

[322] A. Rizzi, M. Panella, and F. M. Frattale Mascioli. “Adaptive resolution min-
max classifiers”. In: IEEE Transactions on Neural Networks 13.2 (2002), pp. 402–
414. DOI: 10.1109/72.991426.

[323] A. Rizzi et al. “A dissimilarity-based classifier for generalized sequences by
a granular computing approach”. In: The 2013 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2013, pp. 1–8. DOI: 10.1109/IJCNN.2013.670
7041.

https://doi.org/10.1093/cercor/bhw128
https://doi.org/10.1093/cercor/bhw128
https://doi.org/10.1196/annals.1310.017
https://doi.org/10.1016/j.sigpro.2013.12.026
https://doi.org/10.1109/IJCNN.2013.6707082
https://doi.org/10.1109/IJCNN.2013.6707082
https://doi.org/10.1109/IPDPS.2004.1303205
https://doi.org/10.1109/IPDPS.2004.1303205
https://doi.org/10.21105/joss.00279
https://doi.org/10.21105/joss.00279
https://doi.org/10.1016/j.jtbi.2011.10.016
https://doi.org/10.1016/j.jtbi.2011.10.016
https://doi.org/10.1109/TSMCB.2009.2019264
https://doi.org/10.1142/9789812792204_0005
https://doi.org/10.1142/9789812792204_0005
https://doi.org/10.1109/72.991426
https://doi.org/10.1109/IJCNN.2013.6707041
https://doi.org/10.1109/IJCNN.2013.6707041

162 Bibliography

[324] A. Rizzi et al. “A new Granular Computing approach for sequences represen-
tation and classification”. In: The 2012 International Joint Conference on Neural
Networks (IJCNN). IEEE. 2012, pp. 1–8. DOI: 10.1109/IJCNN.2012.6252680.

[325] A. Rizzi et al. “A recursive algorithm for fuzzy min-max networks”. In: Pro-
ceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Net-
works. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the
New Millennium. Vol. 6. 2000, 541–546 vol.6. DOI: 10.1109/IJCNN.2000.85945
1.

[326] M. F. Roberts. “Inositol in Bacteria and Archaea”. In: Biology of Inositols and
Phosphoinositides: Subcellular Biochemistry. Ed. by A. L. Majumder and B. B.
Biswas. Boston, MA: Springer US, 2006, pp. 103–133. ISBN: 978-0-387-27600-
7. DOI: 10.1007/0-387-27600-9_5.

[327] F. Rosenblatt. “The perceptron: a probabilistic model for information storage
and organization in the brain.” In: Psychological review 65.6 (1958), p. 386.

[328] R. Ross et al. “Reduction in Obesity and Related Comorbid Conditions af-
ter Diet-Induced Weight Loss or Exercise-Induced Weight Loss in Men: A
Randomized, Controlled Trial”. In: Annals of Internal Medicine 133.2 (2000),
pp. 92–103. ISSN: 0003-4819. DOI: 10.7326/0003-4819-133-2-200007180-0000
8.

[329] L. Rossi et al. “Characterizing graph symmetries through quantum Jensen-
Shannon divergence”. In: Phys. Rev. E 88 (3 2013), p. 032806. DOI: 10.1103/Ph
ysRevE.88.032806.

[330] M. Rosvall et al. “Memory in network flows and its effects on spreading dy-
namics and community detection”. In: Nature communications 5 (2014), p. 4630.
DOI: 10.1038/ncomms5630.

[331] P. J. Rousseeuw. “Silhouettes: A graphical aid to the interpretation and vali-
dation of cluster analysis”. In: Journal of Computational and Applied Mathemat-
ics 20 (1987), pp. 53 –65. ISSN: 0377-0427. DOI: 10.1016/0377-0427(87)90125-7.

[332] M. Ružička. “Anwendung mathematisch-statistischer Methoden in der Geob-
otanik (Synthetische Bearbeitung von Aufnahmen)”. In: Biologia (Bratislava)
13 (1958), pp. 647–661.

[333] J. Saramäki et al. “Generalizations of the clustering coefficient to weighted
complex networks”. In: Physical Review E 75.2 (2007), p. 027105. DOI: 10.1103
/PhysRevE.75.027105.

[334] T. Schäfer, M. Selig, and P. Schönheit. “Acetyl-CoA synthetase (ADP form-
ing) in archaea, a novel enzyme involved in acetate formation and ATP syn-
thesis”. In: Archives of Microbiology 159.1 (1993), pp. 72–83. ISSN: 1432-072X.
DOI: 10.1007/BF00244267.

[335] B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2002.

[336] B. Schölkopf et al. “New support vector algorithms”. In: Neural computation
12.5 (2000), pp. 1207–1245. DOI: 10.1162/089976600300015565.

[337] S. Schuster, D. A. Fell, and T. Dandekar. “A general definition of metabolic
pathways useful for systematic organization and analysis of complex meta-
bolic networks”. In: Nature biotechnology 18.3 (2000), pp. 326–332. DOI: 10.103
8/73786.

https://doi.org/10.1109/IJCNN.2012.6252680
https://doi.org/10.1109/IJCNN.2000.859451
https://doi.org/10.1109/IJCNN.2000.859451
https://doi.org/10.1007/0-387-27600-9_5
https://doi.org/10.7326/0003-4819-133-2-200007180-00008
https://doi.org/10.7326/0003-4819-133-2-200007180-00008
https://doi.org/10.1103/PhysRevE.88.032806
https://doi.org/10.1103/PhysRevE.88.032806
https://doi.org/10.1038/ncomms5630
https://doi.org/10.1016/0377-0427(87)90125-7
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1103/PhysRevE.75.027105
https://doi.org/10.1007/BF00244267
https://doi.org/10.1162/089976600300015565
https://doi.org/10.1038/73786
https://doi.org/10.1038/73786

Bibliography 163

[338] D. W. Scott. “On optimal and data-based histograms”. In: Biometrika 66.3
(1979), pp. 605–610. ISSN: 0006-3444. DOI: 10.1093/biomet/66.3.605.

[339] R. Sedgewick. Algorithms in C, Part 5: Graph Algorithms. 3rd ed. Addison Wes-
ley Professional, 2001.

[340] R. Seising. “Warren Weaver’s “Science and complexity” Revisited”. In: Soft
Computing in Humanities and Social Sciences. Ed. by R. Seising and V. Sanz
González. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 55–87.
ISBN: 978-3-642-24672-2. DOI: 10.1007/978-3-642-24672-2_3.

[341] N. Shervashidze and K. Borgwardt. “Fast subtree kernels on graphs”. In: Ad-
vances in neural information processing systems. 2009, pp. 1660–1668.

[342] N. Shervashidze et al. “Efficient graphlet kernels for large graph compari-
son”. In: Proceedings of the Twelfth International Conference on Artificial Intelli-
gence and Statistics. Ed. by D. van Dyk and M. Welling. Vol. 5. Proceedings
of Machine Learning Research. Hilton Clearwater Beach Resort, Clearwater
Beach, Florida USA: PMLR, 2009, pp. 488–495.

[343] N. Shervashidze et al. “Weisfeiler-lehman graph kernels”. In: Journal of Ma-
chine Learning Research 12.Sep (2011), pp. 2539–2561.

[344] Y. Shimizu et al. “Cell-free translation reconstituted with purified compo-
nents”. In: Nature biotechnology 19.8 (2001), p. 751.

[345] P. K. Singh. “Similar Vague Concepts Selection Using Their Euclidean Dis-
tance at Different Granulation”. In: Cognitive Computation 10.2 (2018), pp. 228–
241.

[346] D. L. Smith and Z. Zhang. “Probing noncovalent structural features of pro-
teins by mass spectrometry”. In: Mass Spectrometry Reviews 13.5-6 (1994), pp. 411–
429. DOI: 10.1002/mas.1280130503.

[347] R. J. Smith et al. “Capture of endothelial cells under flow using immobilized
vascular endothelial growth factor”. In: Biomaterials 51 (2015), pp. 303 –312.
ISSN: 0142-9612. DOI: 10.1016/j.biomaterials.2015.02.025.

[348] G. Solinas et al. “JNK1 in Hematopoietically Derived Cells Contributes to
Diet-Induced Inflammation and Insulin Resistance without Affecting Obe-
sity”. In: Cell Metabolism 6.5 (2007), pp. 386 –397. ISSN: 1550-4131. DOI: 10.101
6/j.cmet.2007.09.011.

[349] C. Song, S. Havlin, and H. A. Makse. “Origins of fractality in the growth of
complex networks”. In: Nature Physics 2.4 (2006), p. 275. DOI: 10.1038/nphys
266.

[350] C. Song, S. Havlin, and H. A. Makse. “Self-similarity of complex networks”.
In: Nature 433.7024 (2005), p. 392. DOI: 10.1038/nature03248.

[351] S. Sonnenburg et al. “Large scale multiple kernel learning”. In: Journal of Ma-
chine Learning Research 7.Jul (2006), pp. 1531–1565.

[352] A Suárez-Causado et al. “HGF/c-Met signaling promotes liver progenitor
cell migration and invasion by an epithelial–mesenchymal transition-independent,
phosphatidyl inositol-3 kinase-dependent pathway in an in vitro model”.
In: Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1853.10 (2015),
pp. 2453–2463. DOI: 10.1016/j.bbamcr.2015.05.017.

https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.1007/978-3-642-24672-2_3
https://doi.org/10.1002/mas.1280130503
https://doi.org/10.1016/j.biomaterials.2015.02.025
https://doi.org/10.1016/j.cmet.2007.09.011
https://doi.org/10.1016/j.cmet.2007.09.011
https://doi.org/10.1038/nphys266
https://doi.org/10.1038/nphys266
https://doi.org/10.1038/nature03248
https://doi.org/10.1016/j.bbamcr.2015.05.017

164 Bibliography

[353] G. J. Szekely and M. L. Rizzo. “Hierarchical Clustering via Joint Between-
Within Distances: Extending Ward’s Minimum Variance Method”. In: Journal
of Classification 22.2 (2005), pp. 151–183. ISSN: 1432-1343. DOI: 10.1007/s0035
7-005-0012-9.

[354] A. Tausz, M. Vejdemo-Johansson, and H. Adams. “JavaPlex: A research soft-
ware package for persistent (co)homology”. In: Proceedings of ICMS 2014. Ed.
by H. Hong and C. Yap. Lecture Notes in Computer Science 8592. Software
available at http://appliedtopology.github.io/javaplex/. 2014, pp. 129–136.

[355] The UniProt Consortium. “UniProt: the universal protein knowledgebase”.
In: Nucleic Acids Research 45.D1 (2017), pp. D158–D169. DOI: 10.1093/nar/gk
w1099.

[356] S. Theodoridis and K. Koutroumbas. Pattern Recognition. 4th ed. Academic
Press, 2008.

[357] R. L. Thorndike. “Who belongs in the family?” In: Psychometrika 18.4 (1953),
pp. 267–276. ISSN: 1860-0980. DOI: 10.1007/BF02289263.

[358] D. R. Tocher. “Metabolism and Functions of Lipids and Fatty Acids in Teleost
Fish”. In: Reviews in Fisheries Science 11.2 (2003), pp. 107–184. DOI: 10.1080/7
13610925.

[359] E. Tomita, A. Tanaka, and H. Takahashi. “The worst-case time complexity for
generating all maximal cliques and computational experiments”. In: Theoret-
ical Computer Science 363.1 (2006), pp. 28 –42. ISSN: 0304-3975. DOI: 10.1016/j
.tcs.2006.06.015.

[360] K. Tun et al. “Metabolic pathways variability and sequence/networks com-
parisons”. In: BMC bioinformatics 7.1 (2006), p. 24. DOI: 10.1186/1471-2105-7-
24.

[361] P. J. Turnbaugh et al. “A core gut microbiome in obese and lean twins”. In:
Nature 457.7228 (2009), p. 480. DOI: 10.1038/nature07540.

[362] J. M. Valtorta et al. “A Clustering Approach for Profiling LoRaWAN IoT De-
vices”. In: Ambient Intelligence. Ed. by I. Chatzigiannakis, B. De Ruyter, and
I. Mavrommati. Cham: Springer International Publishing, 2019, pp. 58–74.
ISBN: 978-3-030-34255-5. DOI: 10.1007/978-3-030-34255-5_5.

[363] M. Vassura et al. “Reconstruction of 3D Structures From Protein Contact Maps”.
In: IEEE/ACM Transactions on Computational Biology and Bioinformatics 5.3 (2008),
pp. 357–367. ISSN: 1545-5963. DOI: 10.1109/TCBB.2008.27.

[364] L. Vendramin, P. A. Jaskowiak, and R. J. G. B. Campello. “On the Combina-
tion of Relative Clustering Validity Criteria”. In: Proceedings of the 25th Interna-
tional Conference on Scientific and Statistical Database Management. SSDBM. Bal-
timore, Maryland, USA: ACM, 2013, 4:1–4:12. ISBN: 978-1-4503-1921-8. DOI:
10.1145/2484838.2484844.

[365] M. Vijayabaskar and S. Vishveshwara. “Interaction Energy Based Protein Struc-
ture Networks”. In: Biophysical Journal 99.11 (2010), pp. 3704 –3715. ISSN: 0006-
3495. DOI: 10.1016/j.bpj.2010.08.079.

[366] S. V. N. Vishwanathan et al. “Graph kernels”. In: Journal of Machine Learning
Research 11.Apr (2010), pp. 1201–1242.

https://doi.org/10.1007/s00357-005-0012-9
https://doi.org/10.1007/s00357-005-0012-9
http://appliedtopology.github.io/javaplex/
https://doi.org/10.1093/nar/gkw1099
https://doi.org/10.1093/nar/gkw1099
https://doi.org/10.1007/BF02289263
https://doi.org/10.1080/713610925
https://doi.org/10.1080/713610925
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1016/j.tcs.2006.06.015
https://doi.org/10.1186/1471-2105-7-24
https://doi.org/10.1186/1471-2105-7-24
https://doi.org/10.1038/nature07540
https://doi.org/10.1007/978-3-030-34255-5_5
https://doi.org/10.1109/TCBB.2008.27
https://doi.org/10.1145/2484838.2484844
https://doi.org/10.1016/j.bpj.2010.08.079

Bibliography 165

[367] S. A. Vlahopoulos et al. “Dynamic aberrant NF-κB spurs tumorigenesis: A
new model encompassing the microenvironment”. In: Cytokine & Growth Fac-
tor Reviews 26.4 (2015). SI: Cytokines and growth factors in cancer biology,
pp. 389 –403. ISSN: 1359-6101. DOI: 10.1016/j.cytogfr.2015.06.001.

[368] F. Wang and J. Sun. “Survey on distance metric learning and dimensional-
ity reduction in data mining”. In: Data Mining and Knowledge Discovery 29.2
(2015), pp. 534–564. ISSN: 1573-756X. DOI: 10.1007/s10618-014-0356-z.

[369] F. Wang et al. “An Analysis of the Application of Simplified Silhouette to the
Evaluation of k-means Clustering Validity”. In: Machine Learning and Data
Mining in Pattern Recognition. Ed. by P. Perner. Cham: Springer International
Publishing, 2017, pp. 291–305. ISBN: 978-3-319-62416-7. DOI: 10.1007/978-3-3
19-62416-7_21.

[370] K. Wang, S. I. Grivennikov, and M. Karin. “Implications of anti-cytokine ther-
apy in colorectal cancer and autoimmune diseases”. In: Annals of the Rheumatic
Diseases 72.suppl 2 (2013), pp. ii100–ii103. ISSN: 0003-4967. DOI: 10.1136/ann
rheumdis-2012-202201.

[371] J. H. Ward Jr. “Hierarchical Grouping to Optimize an Objective Function”. In:
Journal of the American Statistical Association 58.301 (1963), pp. 236–244. DOI: 1
0.1080/01621459.1963.10500845.

[372] S. Warshall. “A Theorem on Boolean Matrices”. In: J. ACM 9.1 (1962), pp. 11–
12. ISSN: 0004-5411. DOI: 10.1145/321105.321107.

[373] S. P. Wasser. “Medicinal Mushroom Science: History, Current Status, Future
Trends, and Unsolved Problems”. In: International Journal of Medicinal Mush-
rooms 12.1 (2010), pp. 1–16. ISSN: 1521-9437. DOI: 10.1615/IntJMedMushr.v1
2.i1.10.

[374] L. Wasserman. “Topological Data Analysis”. In: Annual Review of Statistics and
Its Application 5.1 (2018), pp. 501–532. DOI: 10.1146/annurev-statistics-03101
7-100045.

[375] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications.
New York, USA: Cambridge University Press, 1994.

[376] D. J. Watts and S. H. Strogatz. “Collective dynamics of ’small-world’ net-
works”. In: Nature 393.6684 (1998), p. 440.

[377] W. Weaver. “Science and Complexity”. In: American Scientist 36.4 (1948), p. 536.

[378] E. C. Webb. Enzyme nomenclature 1992. Recommendations of the Nomenclature
Committee of the International Union of Biochemistry and Molecular Biology on the
Nomenclature and Classification of Enzymes. 6th ed. Academic Press, 1992.

[379] C. L. Webber Jr. et al. “Elucidating protein secondary structures using alpha-
carbon recurrence quantifications”. In: Proteins: Structure, Function, and Bioin-
formatics 44.3 (2001), pp. 292–303. DOI: 10.1002/prot.1094.

[380] R. A. Weinstein and B. Hota. “Contamination, disinfection, and cross-colonization:
are hospital surfaces reservoirs for nosocomial infection?” In: Clinical infec-
tious diseases 39.8 (2004), pp. 1182–1189. DOI: 10.1086/424667.

[381] M. Weis and F. Naumann. “Detecting Duplicates in Complex XML Data”. In:
22nd International Conference on Data Engineering (ICDE’06). 2006, pp. 109–109.
DOI: 10.1109/ICDE.2006.49.

https://doi.org/10.1016/j.cytogfr.2015.06.001
https://doi.org/10.1007/s10618-014-0356-z
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1136/annrheumdis-2012-202201
https://doi.org/10.1136/annrheumdis-2012-202201
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1080/01621459.1963.10500845
https://doi.org/10.1145/321105.321107
https://doi.org/10.1615/IntJMedMushr.v12.i1.10
https://doi.org/10.1615/IntJMedMushr.v12.i1.10
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1002/prot.1094
https://doi.org/10.1086/424667
https://doi.org/10.1109/ICDE.2006.49

166 Bibliography

[382] B. Wickstead and K. Gull. “The evolution of the cytoskeleton”. In: The Journal
of Cell Biology 194.4 (2011), pp. 513–525. ISSN: 0021-9525. DOI: 10.1083/jcb.20
1102065.

[383] P. G. Wolynes. “Evolution, energy landscapes and the paradoxes of protein
folding”. In: Biochimie 119 (2015), pp. 218 –230. ISSN: 0300-9084. DOI: 10.1016
/j.biochi.2014.12.007.

[384] S. Wuchty. “Scale-Free Behavior in Protein Domain Networks”. In: Molecular
Biology and Evolution 18.9 (2001), pp. 1694–1702. DOI: 10.1093/oxfordjournals
.molbev.a003957.

[385] K. Wüthrich. “Protein structure determination in solution by NMR spectroscopy”.
In: Journal of Biological Chemistry 265.36 (1990), pp. 22059–22062.

[386] K. Wüthrich. “The way to NMR structures of proteins”. In: Nature Structural
& Molecular Biology 8.11 (2001), p. 923.

[387] B. Xiao and E. R. Hancock. “Graph clustering using heat content invariants”.
In: Iberian Conference on Pattern Recognition and Image Analysis. Springer. 2005,
pp. 123–130. DOI: 10.1007/11492542_16.

[388] B. Xiao, E. R. Hancock, and R. C. Wilson. “Graph characteristics from the heat
kernel trace”. In: Pattern Recognition 42.11 (2009), pp. 2589–2606. DOI: 10.101
6/j.patcog.2008.12.029.

[389] X. Xu, J. Jäger, and H.-P. Kriegel. “A Fast Parallel Clustering Algorithm for
Large Spatial Databases”. In: Data Mining and Knowledge Discovery 3.3 (1999),
pp. 263–290. ISSN: 1573-756X. DOI: 10.1023/A:1009884809343.

[390] W. Yan et al. “The construction of an amino acid network for understanding
protein structure and function”. In: Amino Acids 46.6 (2014), pp. 1419–1439.
ISSN: 1438-2199. DOI: 10.1007/s00726-014-1710-6.

[391] P. Yanardag and S. Vishwanathan. “Deep Graph Kernels”. In: Proceedings of
the 21th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. KDD ’15. Sydney, Australia: ACM. New York, NY, USA, 2015,
pp. 1365–1374. ISBN: 978-1-4503-3664-2. DOI: 10.1145/2783258.2783417.

[392] Y. Yang et al. “Gene co-expression network analysis reveals common system-
level properties of prognostic genes across cancer types”. In: Nature commu-
nications 5 (2014), p. 3231. DOI: 10.1038/ncomms4231.

[393] Y. Yao. “A triarchic theory of granular computing”. In: Granular Computing
1.2 (2016), pp. 145–157.

[394] Y. Yao. “The rise of granular computing”. In: Journal of Chongqing University of
Posts and Telecommunications (Natural Science Edition) 20.3 (2008), pp. 299–308.

[395] W. J. Youden. “Index for rating diagnostic tests”. In: Cancer 3.1 (1950), pp. 32–
35.

[396] L. Yujian and L. Bo. “A Normalized Levenshtein Distance Metric”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 29.6 (2007), pp. 1091–
1095. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2007.1078.

[397] L. A. Zadeh. “Soft computing and fuzzy logic”. In: IEEE Software 11.6 (1994),
pp. 48–56. ISSN: 0740-7459. DOI: 10.1109/52.329401.

[398] L. A. Zadeh. “Toward a theory of fuzzy information granulation and its cen-
trality in human reasoning and fuzzy logic”. In: Fuzzy sets and systems 90.2
(1997), pp. 111–127.

https://doi.org/10.1083/jcb.201102065
https://doi.org/10.1083/jcb.201102065
https://doi.org/10.1016/j.biochi.2014.12.007
https://doi.org/10.1016/j.biochi.2014.12.007
https://doi.org/10.1093/oxfordjournals.molbev.a003957
https://doi.org/10.1093/oxfordjournals.molbev.a003957
https://doi.org/10.1007/11492542_16
https://doi.org/10.1016/j.patcog.2008.12.029
https://doi.org/10.1016/j.patcog.2008.12.029
https://doi.org/10.1023/A:1009884809343
https://doi.org/10.1007/s00726-014-1710-6
https://doi.org/10.1145/2783258.2783417
https://doi.org/10.1038/ncomms4231
https://doi.org/10.1109/TPAMI.2007.1078
https://doi.org/10.1109/52.329401

Bibliography 167

[399] M. Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing”. In: Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implementation. USENIX Association.
2012, pp. 2–2.

[400] M. Zaharia et al. “Spark: Cluster Computing with Working Sets.” In: Hot-
Cloud 10.10-10 (2010), p. 95.

[401] C. Zhan, G. Chen, and L. F. Yeung. “On the distributions of Laplacian eigen-
values versus node degrees in complex networks”. In: Physica A: Statistical
Mechanics and its Applications 389.8 (2010), pp. 1779 –1788. ISSN: 0378-4371.
DOI: 10.1016/j.physa.2009.12.005.

[402] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: An Efficient Data Clus-
tering Method for Very Large Databases”. In: Proceedings of the 1996 ACM
SIGMOD International Conference on Management of Data. SIGMOD ’96. Mon-
treal, Quebec, Canada: ACM. New York, NY, USA, 1996, pp. 103–114. ISBN:
0-89791-794-4.

[403] W. Zhang, D. Zhao, and X. Wang. “Agglomerative clustering via maximum
incremental path integral”. In: Pattern Recognition 46.11 (2013), pp. 3056 –
3065. ISSN: 0031-3203. DOI: 10.1016/j.patcog.2013.04.013.

[404] W. Zhang et al. “Graph Degree Linkage: Agglomerative Clustering on a Di-
rected Graph”. In: Computer Vision – ECCV 2012. Ed. by A. Fitzgibbon et al.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 428–441. ISBN: 978-
3-642-33718-5. DOI: 10.1007/978-3-642-33718-5_31.

[405] X. Zhang, R. R. Nadakuditi, and M. E. J. Newman. “Spectra of random graphs
with community structure and arbitrary degrees”. In: Phys. Rev. E 89 (4 2014),
p. 042816. DOI: 10.1103/PhysRevE.89.042816.

[406] Z. Zhang et al. “Exact eigenvalue spectrum of a class of fractal scale-free net-
works”. In: EPL (Europhysics Letters) 99.1 (2012), p. 10007. DOI: 10.1209/0295
-5075/99/10007.

[407] D. Zhao and X. Tang. “Cyclizing Clusters via Zeta Function of a Graph”. In:
Advances in Neural Information Processing Systems 21. Ed. by D. Koller et al.
Curran Associates, Inc., 2009, pp. 1953–1960.

[408] W. Zhao, H. Ma, and Q. He. “Parallel K-Means Clustering Based on MapRe-
duce”. In: Cloud Computing. Ed. by M. G. Jaatun, G. Zhao, and C. Rong. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2009, pp. 674–679. ISBN: 978-3-642-
10665-1. DOI: 10.1007/978-3-642-10665-1_71.

[409] J. Zhu et al. “1-norm support vector machines”. In: Advances in neural infor-
mation processing systems. 2004, pp. 49–56.

[410] A. Zomorodian. “Fast construction of the Vietoris-Rips complex”. In: Comput-
ers & Graphics 34.3 (2010). Shape Modelling International (SMI) Conference
2010, pp. 263 –271. ISSN: 0097-8493. DOI: 10.1016/j.cag.2010.03.007.

[411] A. Zomorodian. “Topological data analysis”. In: Advances in applied and com-
putational topology 70 (2012), pp. 1–39.

[412] A. Zomorodian and G. Carlsson. “Computing Persistent Homology”. In: Dis-
crete & Computational Geometry 33.2 (2005), pp. 249–274. ISSN: 1432-0444. DOI:
10.1007/s00454-004-1146-y.

https://doi.org/10.1016/j.physa.2009.12.005
https://doi.org/10.1016/j.patcog.2013.04.013
https://doi.org/10.1007/978-3-642-33718-5_31
https://doi.org/10.1103/PhysRevE.89.042816
https://doi.org/10.1209/0295-5075/99/10007
https://doi.org/10.1209/0295-5075/99/10007
https://doi.org/10.1007/978-3-642-10665-1_71
https://doi.org/10.1016/j.cag.2010.03.007
https://doi.org/10.1007/s00454-004-1146-y

	Declaration of Authorship
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Complex Systems and Complex Networks
	Computational Intelligence and Modelling Complex Systems
	Computational Biology Case Studies
	Thesis Scope and Outline

	Fundamentals of Graph Theory
	Preliminary Definitions
	A Primer on Complex Networks

	Topological Data Analysis

	Pattern Recognition in Structured Domains
	Preliminary Definitions
	Designing a Machine Learning System
	Mainstream Approaches
	Feature Generation / Feature Engineering
	Custom Dissimilarities in the Input Space
	Embedding Techniques
	Dissimilarity Space
	Information Granulation
	Kernel Methods

	Proposed Pattern Recognition Systems
	Graph Classification by Spectral Density Estimation
	Graph Classification using the Betti Numbers Sequence
	Embedding over Simplicial Complexes
	Embedding via INDVAL
	Hypergraph Kernels
	Graph Classification using a Multiple Kernel Approach
	Final Remarks

	Tests and Results
	Datasets Description
	E. coli str. K12 pcn-ec
	E. coli str. K12 pcn-sol
	Metabolic Networks
	Benchmark Datasets

	PCN Experiments: Enzymatic Properties
	EC Classification via Spectral Density
	EC Classification via Betti Numbers
	EC Classification by Embedding over Simplicial Complexes
	EC Classification using Hypergraph Kernels
	EC Classification using Multiple Kernel Machines
	Final Remarks

	PCN Experiments: Solubility Degree
	Solubility Prediction via Spectral Density
	Solubility Prediction via Betti Numbers
	Solubility Prediction via Embedding over Simplicial Complexes
	Solubility Classification via Embedding over Simplicial Complexes
	Final Remarks

	Metabolic Pathways Experiments
	A Preliminary Investigation on the Gut Microbiota
	Metabolic Networks classification via INDVAL score
	On the Impact of the Threshold T

	Statistical Assessment of Classification Results
	Final Remarks

	Tests on Benchmark Datasets
	Hypergraph Kernels
	Embedding over Simplicial Complexes
	Embedding via INDVAL

	Other Research Activities
	Evolutive Agent-Based Clustering
	Distributed k-medoids Clustering
	Energy Management System Synthesis by ANFIS Networks

	Conclusions
	Knowledge Discovery Data
	Multiple Kernel Machines (EC number classification)
	Embedding Simplicial Complexes (EC number classification)
	Embedding Simplicial Complexes (solubility classification)

	Notes on Parallel and Distributed Evaluations
	Feature Generation using Graphs Spectral Density
	Feature Generation using the Betti Numbers
	Embedding over Simplicial Complexes
	Embedding via INDVAL

	Bibliography

