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REGULARITY OF SOLUTIONS TO A FRACTIONAL ELLIPTIC PROBLEM
WITH MIXED DIRICHLET-NEUMANN BOUNDARY DATA

J. CARMONA, E. COLORADO, T. LEONORI, AND A. ORTEGA

ABSTRACT. In this work we study regularity properties of solutions to fractional elliptic prob-
lems with mixed Dirichlet-Neumann boundary data when dealing with the Spectral Fractional
Laplacian.

1. INTRODUCTION

In this paper we study some regularity properties of the solutions to fractional elliptic problems
such as

s (_A)Su = f in Qa
(P?) { Bu)=0  on o,
where £ < s <1, f € LP(Q), p > £ and Q is a bounded domain of RN, N > 1. By B(u) we mean
the mixed Dirichlet-Neumann boundary condition, i.e.
ou
v

where v is the outwards normal to 02, X 4 stands for the characteristic function of the set A and Q
satisty

B(u) =uXs, + X5

Q c RY is a bounded Lipschitz domain
Yp and Yy are smooth (N — 1)-dimensional submanifolds of 942,
Yp is a closed manifold of positive (N — 1)-dimensional Lebesgue measure,
|Ep| = a € (0,]09]).
YSpNIUny =0, 3pUSy=0Qand EpNEZpy =T
I' is a smooth (N — 2)-dimensional submanifold of 9f.

The main result we prove here is the following.

Theorem 1.1. Assume that Q@ satisfies hypotheses (B) and let u be the solution to problem (P7)
with £ < s <1, f € LP(Q), p> &, Then u € C7(Q) for some 0 < v < 5. Moreover, there ezists a
constant A = I (N, s, f,p,|Ep|) > 0 such that

|U(CE) - u(y)| < %M‘. - y|’)” v T,y € ﬁ

To prove Theorem [[LT] we follow some of the ideas in [8] [I0]. Using the De Giorgi truncation
method, Stampacchia (see [10]) established the regularity of solutions to the mixed boundary problem
involving the classical Laplace operator. Due to the nonlocal nature of problem (P5]), some difficulties
arise when trying to apply this truncation method to solutions to (P%)). Based on the ideas of [2} 3, 1],
at this point we will make full use of the local realization of the fractional operator (—A)® in terms
of certain auxiliary degenerate elliptic problem. We use the results of [7] to adapt the procedures of

Date: March 27, 2019.

2010 Mathematics Subject Classification. 35R11, 35B655.

Key words and phrases. Fractional Laplacian, Mixed Boundary Conditions, Regularity.

E. Colorado and A. Ortega are partially supported by the Ministry of Economy and Competitiveness of Spain and
FEDER under Research Project MTM2016-80618-P. J. Carmona is partially supported by Ministerio de Economia y
Competitividad (MINECO-FEDER), Spain under grant MTM2015-68210-P and Junta de Andalucia FQM-194.

1


http://arxiv.org/abs/1903.10931v1

2 J. CARMONA, E. COLORADO, T. LEONORI, AND A. ORTEGA

[10] to the case of degenerate elliptic equations with weights in the Muckenhoupt class Ay (see [7]
for the precise definition as well as some useful properties of those weights).
In addition to Theorem [[1], following some ideas in [6], in the last part of the work we study the
behaviour of the problem (P%)) when we move the boundary condition in a regular way as follows.
Given I, = [g, |09|] for some & > 0, let us consider the family of closed sets {3p(a)}acr., satisfying
(B1) Yp(a) has a finite number of connected components.
(Bg) Ep(al) C Ep(ag) if a1 < ao.
(B3) |Xp(a1)] = a1 € I..
We denote by Y r(a) = 9Q\Xp(a) and T'(a) = Yp(a)NE (). For a family of this type we consider
the corresponding family of mixed boundary value problems
{ (—A)su=f in  C R,

(P2) By(u) =0 on 09,

where B, (u) is the boundary condition associated to the parameter « in the previous hypotheses
and the boundary manifolds Xp(«) and () satisfy the corresponding hypotheses (8B,). In this
scenario we prove the following result.

Theorem 1.2. Given Q a smooth bounded domain such that the family {Ep(a)}acr. satisfies the
hypotheses (B,) and (B1)—~(Bs), let uq be the solution to with 3 < s <1, f € LP(Q) and
p> . Then, there exist two constants 0 < v < % and H#Z > 0 both independent from « € [e, |09)]
such that

Italler @) < -

As we will see in the proof of Theorem [[.2] when one takes o — 07 the control of the Holder
norm of such a family is lost. Hence, it is necessary bound from below the measure of the family
{Zp(a)}acr., in order to guarantee the control on the Hélder norm for the family {us}acr. -

Let us stress that problem related to the spectral fractional Laplacian with mixed boundary
conditions are news and, to our knowledge, have been treated only in [4, [5].

2. FUNCTIONAL SETTING AND PRELIMINARIES

As far as the fractional Laplace operator is concerned, we recall its definition given through the
spectral decomposition. Let (p;, A;) be the eigenfunctions (normalized with respect to the L%(Q)-
norm) and the eigenvalues of (—A) equipped with homogeneous mixed Dirichlet-Neumann boundary
data. Then, (p;, A7) are the eigenfunctions and eigenvalues of the fractional operator (—A)®, where

given u;(x) = Z(uz, wi)pi, i =1,2
Jj=1

<(_A)Su17 ’LL2> = Z )\j <’LL1, ¢J><u25 SDJ>5
Jj=>1
i.e., the action of the fractional operator on a smooth function w; is given by
(A)'uy =Y A{ur, @)
Jj=>1

As a consequence, the fractional Laplace operator (—A)® is well defined through its spectral decom-
position in the following space of functions that vanish on Xp,

Hs () =<{u= Zajcpj € LQ(Q) : H“H%{E%(Q) = Z‘I?)‘; <%0

j>1 j>1

Observe that since u € Hy,_ (£2), it follows that

lull g @) = [[(=2)Ful] 12 g -
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As it is proved in [9, Theorem 11.1], if 0 < s < % then H§(Q) = H*(Q) and, therefore, also
Hg, () = H*(S2), while for 1 < s <1, Hj(Q) € H*(2). Hence, the range 3 < s < 1 guarantees
that Hg (€2) C H*(Q), provides us the correct functional space to study the mixed boundary
problem ().

This definition of the fractional powers of the Laplace operator allows us to integrate by parts in the
appropriate spaces, so that a natural definition of weak solution to problem (P;) is the following.

Definition 2.1. We say that u € Hg_(Q) is a solution to (PY) if
/(—A)S/Qu (=A)*?epda = / fibdx,  for any ¢ € Hy, (€2).
Q Q

Due to the nonlocal nature of the fractional operator (—A)® some difficulties arise when one tries
to obtain an explicit expression of the action of the fractional Laplacian on a given function. In order
to overcome this difficuly, we use the ideas by Caffarelli and Silvestre (see [2]) together with those of
[1L B] to give an equivalent definition of the operator (—A)* by means of an auxiliary problem that
we introduce next.

Given any domain Q C RN, we set the cylinder %o = Q x (0,00) € RY™'. We denote by (,y)
those points that belong to 6q and by 9% = 9 x [0,00) the lateral boundary of the cylinder.
Let us also denote by ¥}, = ¥p x [0,00) and ¥}, = X x [0,00) as well as I'* =T x [0,00). It is
clear that, by construction,

E%HE}*\/:@, E*DUE’T\/:(?LCKQ and E*Dﬁﬁzr*
Given a function u € Hg_(f2) we define its s-harmonic extension function, denoted by U(z,y) =
EsJu(z)], as the solution to the problem

y)) =0 in %q,
BU(z,y)) =0 on 0%6q,
u(x) on Q x {y =0}.

where

ou
B(U) = UXss, + EXZ}’W
being v, with an abuse of notatimﬂ, the outwards normal to d;%. Following the well known result
by Caffarelli and Silvestre (see [2]), U is related to the fractional Laplacian of the original function
through the formula

ou .

dvs y—0F Oy
where K is a suitable positive constant (see [I] for its exact value). The extension function belongs
to the space

X3, (¢0) = G (R0 SA) X ,00)) 6w e,
where we define
2 ,7 1-2s 2
I W oy = e [ 190 Py
Note that X3 (%q) is a Hilbert space equipped with the norm || - || X3 () which is induced by the
scalar product

U Vixg () = Hs[g y' 72(VU, VV)dzdy.
Q

Moreover, the following inclusions are satisfied,

(2.1) X (Ca) C X3, (%) & X°(%0),

being X (%) the space of functions that belongs to X*(%q) = H'(¢q,y' ~?*drdy) and vanish on
the lateral boundary of 4.

ILet v be the outwards normal to 9§ and V(g,y) the outwards normal to %q then, by construction, v, ) = (v,0),
y > 0.
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Using the above arguments we can reformulate the problem (P2)) in terms of the extension problem
as follows:

—div(y'=*VU) =0 in %q,
(Ps*) B(U) =0 on 8chg),

oU
81/S:f on Q x {y = 0}.

Next, we specify

Definition 2.2. An energy solution to problem (P7)) is a function U € X (¢a) such that
(2.2) HS/ y' 73 (VU, V) dady = / f(x)e(z,0)dz, Vo € A3 (Ca).
Ga Q

IfU € X3 (6q) is the solution to problem (P7]) we can associate the function u(z) = Tr[U(z,y)] =
U(x,0), that belongs to Hs, (€), and solves problem (PZ). Moreover, also the vice versa is true:
given a solution u € Hy, () we can define its s-harmonic extension U € Ay, (%), as the solution
to (P7]). Thus, both formulations are equivalent and the Extension operator

E;s : H%D Q) — XE’D (40),

allows us to switch between both of them.
Accordingly to [2, 1], due to the choice of the constant ks, the extension operator F is an
isometry, i.e.

(2.3) IEs[e](2 9)ll g 60y = (@)l mg (), for all p € Hy, (2).

Let us also recall the trace inequality, that is a useful tool we exploit in many proofs in this paper

(see [I]):
there exists C' = C(N, s, r, |Q]) such that Vz € Xj(%q)

C (/ |Z($70)|Td$> ' S/ y 72|\ Ve(z, y) P dady,
Q €a

with 1 <7 < 2%, N > 2s, with 27 = 5.

Observe that such inequality turns out to be, in fact, equivalent to the fractional Sobolev inequal-
ity:

2
C ( |v|rd:1c> < | |(-A)2v)de, Yo e Hj(Q), 1 <r <2}, N >2s.
Q Q

When mixed boundary conditions are considered, the situation is quite similar since the Dirichlet
condition is imposed on a set ¥p C 92 such that |Zp| = a > 0. Hence, thanks to (Z1]), there exists
a positive constant Cp = Cp(N, s, |Xp|) such that

H“H%{S Q ||U||25
7273():: 'p < inf JH©@)

2.4 0<
(2.4) ueH; () ||ul|
uZ0

in
weHs () [Jull
uZ0
Remark 2.1. It is worth to observe (see [B], [4]) that Cp(N, s, |Sp|) < 2= % C(N, s,2%). Moreover,
having in mind the spectral definition of the fractional operator and by Hélder inequality, it follows
that Cp < |Q|F X3 (a), with M\ (a) the first eigenvalue of the Laplace operator with mized boundary

conditions on the sets Xp = Yp(a) and Ly = Xp (). Since Ai(a) = 0 as a — 07, see [6, Lemma
4.3], we conclude that Cp — 0 as o — 0.

Gathering together (23] and (24), we obtain,

2 2 .
L2 (Q) L% (Q)

2
3

* 25
(2.5) Cp < |<p($,0)|25daz> < ol 0z (@) = I1Bs[o(@,0)]%s_(w)-
Q D D

With this Sobolev-type inequality in hand we can prove a trace inequality adapted to the mixed
boundary data framework.



Lemma 2.1. There exists a constant Cp = Cp(N, s, |Ep|) > 0 such that,

2

(2.6) CD( |<P(w70)|2:)dév> S/ y' T EIVePdedy, Ve € X3 (Ga).
Q Ca

Proof. Thanks to (Z3), it is enough to prove that || Es[o(, 0)]||lxz (¢n) < ll¢llxg_(4q)- This inequal-
D D
ity is satisfied since, arguing as in [I], we find

2 1-2s 2
s = Vo|“dzd
Il iy = ' Vldndy

x| T (Bl 0)] + (e 9) ~ Bl O Py
= 1Bl 0y + ) = Bl Ok
= (VB [p( 0], V() — Bt 0))dady
= 1Bl 0 oy + ) — Bulio, 0l

2 / (—A)* ({2, 0) (i, 0) — p(z, )
Q

= sl (@, 0)]1%;_ (en) + (@ y) = Bslo(@, 0%y ()

3. HOLDER REGULARITY

The principal result we prove in this Section is Theorem[I.I], which deals with the Holder regularity
of the solution to problem (PF)). First we introduce the notation that we will follow along this Section.
Notation. Given an open bounded set Q, 2 € Q C RN and X € ¥ C Rf"’l, we define

- Qz, p) = Q2N B,(x),
= Ca(X,p) = Ca N By(X),
Given u(z) € Hy,_ () and U(X) € X3 (%a), let us also define

. A+(/€)_{;ceﬂ:u(:v) > k},

— AL (k) ={X € 6o : U(X) >k},
_ A+(k,p) = A+(k) ﬂQ(iE,p)

— A% (k,p) = A% (k) N Ca(X, p),
~ {-}* = min(-, k).

= {-}x = max(-, k).

In a similar way we may define the sets A_(k), A* (k), A_(k,p) and A* (k, p) replacing > with <
in the latter definitions. We denote by

— |Al]w the measure induced by a weight w of the set A.
— |A|,1-2s the measure induced by the weight y'~2¢ of the set A.
— |A] the usual Lebesgue measure of the set A.

On the regularity of €. Let us recall that 2 is assumed, in all the paper, to be Lipschitz and
consequently also Co turns out to have the same regularity. In particular, among others, we use the
following properties. There exists ¢ € (0, 1) such that for any z € Q and any p > 0

(3.1) 10 (Z, p)| = C|B,(Z)].

Moreover also the weighted counterpart is true, i.e. there exists (s € (0,1) such that for any z € Q
and any p > 0

(3.2) (Ga(Z,p)ly2e > CIBo(2)|yp»..
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Consequently 3A > 0 such that
(33) |A*+(k,7")|y1725 < /\|C€Q(z,R)(Z7 T)|y1725.

It is worth to observe that all the results we prove in this paper might be proved for a larger
class of open sets Q. Indeed following [10], this kind of results is true for the so called %7admissible
domains. Here we decided to not deal with such domains for brevity and in order to not make the
proofs much heavier.

Now we are ready to start with the statement and the proofs of several technical results.

Let z € Q and R > 0 and let u be a solution to problem (P%)): we write u(z) = v(z) + w(z) for
every © € Q(z, R), where the function v(z) satisfies

(~AYv=f inQ(R),
(3.4) v=0 on Yp.g:= 00z, R)\En,
? =0 on i,\/,R =00z, R) N X,
v

and the function w(z) is such that,

(—A)*w =0 in Q(z, R),
(35) w=0 on ED,R =YpN BR(Z),

0
Y0 on Yn.r =Xy N Bgr(2),
v

Using the extension technique we can write v(z) = V(z,0) with V (z, y) solves the extended problem

—div (y*"*VV) =0 in Goe,r).
(3.6) B(V)=0 on 0r%:,r),

ov
B = on Q(z, R) x {y =0},
8‘/ 3 ~* + ~* <«
where B(V) = VXE% R—|— EXE% K with ¥, p=%p r X [0, 00) and ENVR=2XNRX [0, 00).

In the same way, we write w(xz) = W(z,0), with W (x,y) satisfying the extended problem

—div(y!=»#VW) =0 in 6Q(z,R)
37) BOV) =0 on S 4U Sk p

ow
s 0 onQ(z, R) x{y =0},
oV . " *
where B(V) = VXE*D,R+ EXZE,R’ with ED,R:ED7RX [O, OO) and EN,R = EN,R X [0, OO)

Let us observe that we have the following situations:

(i) If z € Q, there exists R > 0 such that ipﬂ = 00(z,R) and Ep g = Enx,r = 0. Then,
v € H§(2(z,R)) and it is solution to a Dirichlet problem. Moreover, w is an s—harmonic
function, i.e. its extension W = E [w] € X*(€q(.,r)) and it satisfies

(3.8) / y' T2 (YW, V®) drdy = 0, VP € X5 (Cacs,r))-
Ca(z,R)

(ii) If z € Bp\I, there exists R > 0 such that Xp p = 00z, R) and Sy g = 0, then, v €
H{((z, R)) and it is a solution to a Dirichlet problem while W € X3 (%q(.,r)) and, also in
this case, it satisfies ([B.8]).

(iii) If z € Xy, there exists R > 0 such that ¥p g = 0. Then, the function v € HE R(Q(z,R))
and it is a solution to the mixed problem (B.4); moreover W belongs to X*(%q., R)’) and (Z8)
holds V® € X*(6q.,r)) vanishing on 91%q ., r)\X ) -
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(iv) Finally, if z € T, the sets ipﬁ, §N7R, Yp,r and Xp r are nonempty for all R > 0. Then,
the function v € H%D’R(Q(z, R)) and it is a solution to the mixed problem (34); as far as w
is concerned, W € XED,R(CKSZ(‘ZyR)) and if fulfills (3.8) holds for any ® € X*(%q.,r)) vanishing
on 9r6a-,r) \XN R

We also define the following sets that will be useful in the sequel:
* CSimy = Cair)\{(2,y) € Cai,r) : @ € OBR(2)},
® dba:,r) = ILba.r) \EN R
o IpCar) = ILbar)\ (b r UK R)-
We continue by stating the definitions and results needed in what follows. The first definition is
based on [10, Definition 2.1].

Definition 3.1. Given any 2o € Q and Z €Cirzo,m)» let Kt (Z) (resp. K~ (Z)) be the set of values
k € R such that there ewists a number p(Z) > 0 satisfying {U}rn € Xgo%n(zo,a) (Ca(zo,r)) (Tesp.
{Utrn € Xgo%”ﬂ(zo,m (Ca(zo,r))) for any U € XED,R(CKSZ(‘ZyR)) and any function n € C* (Rf"’l) such
that supp(n) C Bjz)(Z).
Remark 3.1. It is worth to observe that:

~ If Z €¥}, g then KT (Z)=[0,00), K~ (Z)=(~00,0] and p(Z) = dist(Z, 0% r))-

- {f Z € C5.p) \Epg then K¥(Z) = K7(Z) = (-00,00), and in this case

p(Z) = dZSt(Z, 60%1@13)).
— Thanks to the construction of the cylinder, it is immediate to notice that the number p(Z) > 0

does not depend on the y variable.

The control of the oscillations of solutions of elliptic problems is usually carried out through
integral estimates that mainly rely on a Sobolev-type inequality. Since the extension function solves
a degenerate elliptic problem involving a weight (namely, y'~2%) that belongs to the Muckenhoupt
class As, it is necessary to establish a Sobolev-type inequality dealing with such a type of singular
weights. To this aim, we recall the following definition.

Definition 3.2. Given an open subset D C RY and a function w : D — R, we say that w belongs
to the Muckenhoupt class A,, with p > 1 if there exists a constant C > 0 such that

sp (L /w,,) (L /wl_p)p‘zc
Bco \|B| JB |B| /B -

Now we can recall the following result.

Theorem 3.1 ([7], Theorem 1.3 and Theorem 1.6). Let D be an open bounded Lipschitz set in RN
and consider 1 < p < oo and a weight w € Ap.

Then, there exist a positive constant C(D) and & > 0 such that for all u € H}(D,w) and any
1§0§%+6wehm}e

(3.9) lull Lor (D wdey < C(D)|Vull e (D wdz),
1(1_
where C(D) = ¢, diam(D)|D|£(" ) for a positive constant c,, depending on N, p and w.

Moreover for any xo € 0D there exist a positive constant C = C(B,(xo)) and 6 > 0 such that
1<o0 <& +06 and any uw € H'(D(zo, p),w) vanishing on 0D N B, () we have

||u||L"P(D(mo,p),wd;E) < C(BP)||vu||LP((D(LE0,p),wdw)a
where C(B,) = pr%(§—1)+1 for a positive constant c,, depending on w, N, p and .

We want to apply such a Theorem to domains D C %o C Rf"’l so that the correspondent
exponent ¢ relies to satisfy 1 < o < %

As far as the weight is concerned, we set w = y'=2%, that, actually, belongs to As. Let us observe
that, according to [7], there exists €9 > 0 such that ([B.9]) holds true with p > 2 — «.
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As an immediate consequence of Theorem [B.I] we obtain the following result.

Lemma 3.1. Let Z € ¥}, and p > 2 — g¢ for some g > 0. Then, there exists p > 0, such that for
any p <p and any U € X (¢a) we have

101 4
(310) ||UHLUP(%Q(Z,p),y1*25dmdy) < Csp|Bp|;1(—25 )HVU”LP(%Q(Z,p),y1*25dmdy)7

with 1 <o < % + 6 for some § > 0 and cs depending on N, p and the weight y*~2°.

Although Theorem [Tl has been stated for Lipschitz domains, following [I0], we might prove most
of the results in this section under more general hypotheses on 0f2. Then, we relax the smoothness
hypotheses on 9§ and establish inequality (B.I0) for functions in A3, (%q(.,r)) and, given some

point Z € 65, py\Ep g, also for functions in H'(%q(Z, p),y'**dwdy) vanishing on suitable sets.

Definition 3.3. Given p > 2 — g for some gq € (0,1) and an open bounded set A, we define
F(Bs, A) as the family of sets B C A such that, for any U € H' (A, y'~2dxdy) vanishing on B,

. 1(e-1
(3.11) WUl gt -edsay) < Bsdiam(A) A5 VU] o yr 2oy
for some Bs > 0 depending on N, p and the weight y*=2°, and 1 < o < % + 6 for some 6 > 0.

With this scheme in mind, we focus first on finding bounds for solutions to (34 in terms of the
data of the problem.

Theorem 3.2. Let u be a solution to (P%) with f € LP(Q), p > 2_1\£ Then, there exists a positive
constant C = C(N, s,|Xp|) such that

25 1
[ullLee () < CllfllLe@)| QN "7,
In the proof of Theorem we make use of the following technical result.

Lemma 3.2 ([8], Lemma B.1). Let p(k) be a nonnegative and nonincreasing function defined for
k > ko such that

CO b
h) < ———¢’(k k<h
sﬂ()_(h_k)asﬁ(), <h,
where Cy,a,b are positive constants with b > 1. Then, p(ko + d) = 0, with d* = 254 Colp(ko)|>~ 2.

Proof of Theorem[3.2. Here we just prove the upper bound, being the lower one completely analo-
gous. Let us take k > 0, U(x,y) = Es[u(z)] and ¥ = (U — k) € X3 (¢q) as a test function in
@2). Using the trace inequality (2.6]) together with the Holder inequality, we get

Iis/ y1_2SVUVz/Jd:Edy:f<as/ y1_25|VU|2dxdy:/ (U(z,0) — k) f(x)dx
@ A% (k) Ay (k)

< </ |f|2d:1:> (CD1|A+(1<;)|?$/ y125|VU|2d:z:dy> :
Ay (k) A% (k)

2 2s
FlZ peen [ As (B))F 2N
AL ()

Thus,

Ay (k) Cpri ’

and applying the trace inequality (28] to the left-hand side of [BI2)) we get for any h > k,

2
2 S(/ |U(z,0) —k
Ay (k)

% dw) .
2 ||f||%p(ﬂ)

(h = k)| AL (h)] < W|A+(k)|lf;+ws

m*l“

(h— k)| A4 (h)

Thus we deduce



and setting p(h) = |A4 (h)], it follows that

S
'\7|m *

2% s
< ||f||LS:D(Q) w(l_%"—%)

(k)
olh) < (Cpks)? (h — k)2 :

o %

Applying now Lemma B2 with a = 2% and b = (1 - % + %) % > 1, we find |p(ko + d)| = 0 with
e.

d = C(N,s,[So|)||fllLrolelko)] =, and 5L = 22 — L5,

p7
U(x,0) < ko + C(N, 5, [0 fl Loy | A+ (ko) [ ¥ 77 ave. in €,
for any ko > 0, and we conclude u(z) < C(N, s, |E’D|)||f||LP(Q)|Q|%7% a.e. in Q. O

Let v(z) be the solution to 84) and V(x,y) = E4[v(x)] the solution to (B:6). Since the function
(V —k)y € &3 (6q) for any k > 0, repeating the proof above we deduce that Vz € Q

2s _ 1
(3.13) [o(@) Lo @z, m)) < CN, 8, [ED )|l o (2 |2z, B)[¥ 77

Now we turn our attention to the study of the behavior of solutions to the homogeneous problem

3.

Lemma 3.3 (Caccioppoli inequality). Assume that zg € Q and R > 0 and suppose that the function
W e X3, . (6a,r)) is a solution to problem B.1). Then, for any Z € G (zg,m) @A 0 < p <7 <
p(Z), we have that there exists C > 0 such that

C

/ y' 72|\ VW Pdady < 72/ y 72| WAdady .
C(zo.r) (Z,p) (r - p) C(zg.r) (Z,7)

Proof. We use 1) = n*W as a test function in B8), with 7 € C* (s, r)) such that it vanishes on

ILCa(z0,r)\ (XD g U X} g); observe that in particular ¢ = 0 on 910z, r)\ X} g, S0 that we have

that

/ y' B VW Pdedy = —2/ y' 2 VW, WVn)dady
(3.14) Cfmlzo,R) Cgf;(zo,R)
<2 = y 25| V| PW2dady + —/ y T2 VW P dady |
2 C(z9,R) 2 C(z9,R)

for any 0 < € < 1. To complete the proof, given Z € ‘55(20 R) and p < r < p(Z) it is enough to set
7 such that

c
(r—p)

and plug into (314). O

n=1in B,(Z), n=0in BS(Z) and [Vl <

Next we prove the following weighted version of the Poincaré Inequality.
Lemma 3.4. Let p > 2 —¢g for some 0 < g9 < 1 and U € X*(%q) such that {U = 0} € F(B,A)
for AC €q. Then 3B, = Bs(N,p,y*~2%) > 0 such that

(3.15) / Y\ |U Pdady < B2 [diam(A)P|A\TLY [{(z,y) € A5 U £ 017, / Y2 VU Pdady,
A A

yl

and

1_ 1 o
(3.16) / Y 2|U — k2 dady < Bfr2|BT|;1,is|Ai(k,r)|"1,23/ y 2|V P dady,
A% (k,r) Az (k,r)

with1§0§%+5f0rsome5>0.
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Proof. In fact, (BI5) is consequence of ([B.9) and the Holder inequality.

As far as ([B.I6) is concerned, we follows [10, Theorem 6.1]: given U € X*(%q(.,r)), let us
consider the function ¢} (U) = (U — k)4 that belongs to X*(€qs,,r)) for any k € R. Moreover,
if U € X3, ,.(%a(z,r) then th(U) € X3, o (%a(z,r)) for any k > 0. Then, applying B.II) to
(U — k)4 with p =2, (3I6) follows. O

A direct consequence of Lemma [3.4] is the following result.

Lemma 3.5. Given zop €Q and R >0, let U € X*(Ca(z9,r)). Then, for any Z € %&ZOR) and
0 <r<p(Z), there exist g9 € (0,1) and Bs = Bs(N,p,y*~2%) > 0 such that

2 2(1_1 . . 2_1q 9
(3.17) (h— k)2|Ai(h,r)|;172s < ﬁ§r2|Br|y§323)|A+(k,r) —A+(h,r)|;1,2s/ y' =2\ VU |2 dxdy,
A% (k,r)

with h >k, g = %(2—50) and p =2 — &g.
Proof. Given U € X*(%6q(z,r)) and h > k, let t;k(U) = {U}* — {U}*. Note that t;k(U) €
X*(6q(z,r)) for any k € R. Moreover, if U € XXS:DYR(CKQ(Z(MR)) then t;k(U) € XES:DYR(%Q(Z(J’R))

for any h > k > 0. Thus, we use Lemma B4 with ¢ = % and p = 2 — gp so that taking

q=op= "2 — &) we obtain,

a L »
(3.18) ( / y1—25|t;k(U)|dedy> < BurlB 35, ( / y1_28|VU|pd:Edy> .
%Q(ZO,R)(Z7T) Ai(k,’l‘)—Ai(h,T)

At one hand, it is immediate that

2 q a
(3.19) (h = k)| A% (b, r)) s < / v )| dway

Y Ca(zg.r)(Z,T) '
On the other hand, thanks to Hélder inequality

2
—2s ! * * %71 —2s
(320) / yl 2 |vU|pd$dy S |A+(k,7’) — A+(I’L,T)|y172$ / yl 2 |VU|2d$dy
A:(k,r)fAi(h,r) Ai(k,r)

Thus BI7) follows by gathering together (B.18), B19) and [B.20l). O

Following [10, Theorem 8.1], we show the next result.
Theorem 3.3. Let 2o €Q, R >0, and let W € XXS:DYR(CKSZ(Z()’R)) be a solution to the homogeneous
problem B). Then, for any Z € G (or) 0 <€ <1land0<r< min{p(2),p(Z2)}, there exists a
positive constant A = A({) such that
|AY (k+ed,r—r)| =0, with k€ K¥(Z) and |A* (k—td,r—0r)] =0, with k € K~(Z),

where

1
(3.21) d? > 7/ Yy TEW — Ek|?dady .
A(0) |Brlyi-2e Jas (k)

In the proof of Theorem B3] we make use of the following technical result.

Lemma 3.6 ([8], Lemma C.7). Assume that o(k,p) is a nonnegative function defined for k > ko
and 0 < p < ro which is nonincreasing with respect to k, nondecreasing with respect to p and such

that o
0 1
¢(h,p) < D ECETE (

where C,, 3,7 are positive constants with > 1. Then there exist £ € (0,1) and d > 0 such that
(ko + €d,mo(1 — £)) = 0, with

k,r), k<h, p<r<ry,

2D (g, 7o)
(otr] '

d*=Cy
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Proof of Theorem[3:3. Given zg € Q, ko € K (29)and k > ko, let us define
ilhp) = [ W kPdedy and alkp) = AT ()l e
Ax(k,p)

Observe that for h > k& we have

(3.22) (h = K| A% (h, p)|2e < / VI — kdady.
A% (k,r)
Assume that Z € Y7, p N Cq(z,r) and let 0 < rg < min{p(Z),p(Z)}. Then, due to Lemma [3.3]
and Lemma [B7] for any ro(1 — ¢) < p <r <rg and h > k, we have

1
/A y1—2s|W — h|2d;vdy < Keg(p) (/ y1—2s|VW|2dxdy> |A% (R, p)| T

3 (hp) A3 (h.p)

(3.23) < Ko (p) (/A %1_2S|VW|2d:vdy> | A% (K, )] 772

T (kyp)

1

1 1-2s 2 * -
< Keg(p) <(r — ) /A;z(Jk,r) W — k| da:dy) |A+(k,r)|y1,25,

1
where K, () = ﬂ§r2|BT|;}’1,ls, with 85 = Bs(N,y'72%,0Q) > 0and 1 < ¢ < XH 46 for some § > 0.
Assume, on the contrary, that Zo € €5, )/ \¥p g- Recalling .2), let A = A({) > 0 satisfying

A

C (1 _ é)NJrQ(l,S) < (1 - >\) for some A € (0, 1).

Therefore, given h > ko and (1 — £)rg < p < rg, we find
|Ai(h,p)|y1—2s < |Ai(k07r0)|y1*25 < |CKQ(2013)(Z, T0)|y1725 < |BTU(Z)|y1*2S

|Bp(Z)|y1*25 < A |(&2(201R)(Z7 p)|y172s
— (1 _ [)N+2(l—s) - Cs(l _ E)N+2(1—s)

Using Lemma B3] and Lemma B4 we deduce that 23] holds true.
As a consequence, for any Z € ‘(9”5(20 R)

< (1 — )\)|(ggl(Z0)R)(Z, p)|y1725.

K.
(3.24) i(h,p) < %i(k,r)[a(k,r)]%, ro(l—4)<p<r<ry, and h>k>ko
r—p
with ko € KT (Z) satistying B3). Moreover, since | By, | 1-2s = pV23=9)|B,[,1-2., we have that
Ko (ury = 1 Kegy(r), where ¢ =24 (£ — 1) (N +2(1 — 5)).
If welet 1 < 0 <1+ 25 (so that ¢ > 0) then Ke,, () < Kegy () for any 0 < r < ro. Hence,
from (B:24)), we obtain

Ko (r
(3.25) i(h, p) < (T“f’;;;i(k,r)[a(k,r)]%, p<r<ro, h>k> ko,

1
with Keg () = B218|Bry|7 2. We set now €+ 1 =0 and & =0, 50 that 0 = § + /1 + £ > 1
turns out to be the unique positive solution to the equation #2 — 0 — L = 0. Assume in addition

o—/
that the constant A satisfies
pé+1

2]
. 2 < .
(3.26) Az < peCEEs

From (322) and (32, we obtain

3

K
. Ca(r . £
li(h, p)|5|a(h, p)| < = p)Qg((hO)_ e li(k, T)|5+1 la(k, )|
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Then, taking @(k, p) = |i(k, p)|¢|a(k, p)|, it follows that ¢ satisfies

Keowy o
@(h,p) < (r—p)%(h—k)?(p (k,r), h>k>ko p<r <o

Using Lemma B0 with o = 2, u = 6, v = 2¢, we deduce that exist dyp > 0 and ¢ € (0,1) such that
(p(ko + gdo,?‘o(l — f)) =0,
for any ko € KT (Z) satisfying 8.3), 0 < ro < min{p(Z),p(Z)} and dy such that

(£+1)0 £/2 o—1 5
&y = 2 Koo P 7o) 7 ! / W — Fof2dedy |
vE+1 T(E) - A|Bm|y1723 A% (k,ro)

Since | A% (ko + £do,ro(1 — £))],1-22 = 0 implies [A% (ko + £do,7o(1 — €))| = 0 the proof is complete.

The proof on the lower bound follows using the same inequalities on (W + k)~ and getting the
bounds on |A* (kg — £d,ro(1 — £))|,1 2. O

As a consequence of the above Theorem we get the L bound on W.

Corollary 3.1. Let 2o € Q, R >0, and let W € X;:DYR(CKSZ(Z(MR)) be a solution to the homo-
geneous problem ([B); consider the set %&20 Rj2) = Ca(z0,r/2) N {y < m} with m > 0. Then,
W e L (€, ryay) for any m > 0.

In particular, any solution w € Hy, (20, R)) of problem ([B.1), satisfies w € L>((z0, R/2)).

Proof. First, let us prove that w € L (Q(zo, R/2)) with w satisfying problem B3). Let W €
X5, . (Caz,r)) @ solution to problem (B.7) and since (20, R/2) is a bounded set, there exists

Zi= (2, 0)6%5(%,1%)7 i=1,2,..., M such that

M

(3.27) Q(20, R/2) = (U Cfs%(zo,R)(ZivTi/Q)> N{y =0},

i=1
with 0 < r; < {p(Z;),p(Zi)}. Let k > 0 and k < 0 be such that,
| A% (B, i) < M| Cozg,ry(Zis i), and A% (k,3)| < AGazg.r) (Zin )],

for any i = 1,2,..., M. Then, applying Theorem we conclude that, given X € €., r)(Zi,74)
for some ¢ = 1,2,..., M; we have

(3.28) fom =k —0d < W (x,y) < kpr :=k + 4d,
with

1
d? > 7/ y' W P dady,
A|Br|y1—2s %Q(Zo,R)

for any 0 < r < minM r;. In particular, by [B27T), the former inequality holds for any point

i=1,...,
X = (,0) with = € Q(z0, R/2) and we are done.

As 6q(z,r/2) 18 an unbounded domain, if we repeat the steps above in order to prove that
W € L>®(€q(z,r/2)) from ([B.28), the numbers k,k do diverge when considering a covering se-
quence {Z;}ien. Nevertheless, it is clear that given any finite truncation of the extension cylinder,
‘5&203/2) = CQ(z9,r/2) N {y < m}, there exists a finite covering sequence and hence, we conclude

W e L*>® (M) for all finite m > 0. -

We focus now on the oscillation of the solutions W € A3 (€ (zy,r)) to problem ([3.7). Let us
set
m(p) = inf W(X) and M(p) = sup W(X).
XE%Q(ZO’R)(Z’p) Xe?ﬂ(zo,R)(va)
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and define the oscillation function as

w(p) = M(p) —m(p).

Our aim is to give some estimates on w(p) through the following result.

Theorem 3.4. Givenzg € Qand R >0, let Z € ‘55( R) and let W € Xg_ (Ga(zo,r)) be a solution

to the homogeneous problem [B1). Moreover, given 0< 4p < min{p(Z),p(Z)} let 0 < n < 1 such
that,

(i) (M(4p) — nw(4p), +00) C KF(2),

(ll) |Ai (M(4p) - 77w(4/’)a 2p)|y1’25 < A|(gﬂ(zo,R)(Z7 2p)|y1’25;
where A is determined by B21) with £ = 5. Then, there exists 0 <7 < 1 independent from Z and
p such that,
(3.29) w(p) < Teold)

Proof. Let Z € 6§, py and 0 <4p <min{p(Z),p(Z)}, let us define the sequence

. 1
kj = M(4p) — njw(dp), withn; = ——=, j€N.

2+
Assume first that Z € 4§, p/\Xp i so that Kt (Z) = (—o00,00) and observe that one of the
following conditions is satisfied: either

* 1 *
|A+(k052p)|y1723 S §|%Q(ZO7R)(Z5 2p)|y1’23 or |A—(k052p)|y1723 S |%Q(ZO7R)(Z5 2p)|y1*2

Assume without loss of generality that |A% (ko,2p)| < 1[Gaz0,r)(Z,2p)|- As a consequence,

N =

| A% (kj,2p)| < §|C@”Q(ZO,R)(Z, 2p)| for Jj=1

On the other hand, if Z € X7, , we can assume that at least one between M (4p) and —m(4p) is

greater than $w(4p); suppose that M (4p) > Fw(4p). Therefore we have that k; > 0 for j > 0.
Then, usmg Lemma B35 with h = kj 11 and k = k;, we obtain

)

with p, ¢ such that ¢ = N+1 (2 —¢0) and p = 2 — ¢ for a suitable g9 > 0.
Moreover, applying Lemma to the function t:j (W) e X3, . (Caz,r), J = 0, we find

2 _1
(k1 = k)2 A% (b1, 20)] s < B2(20)2 Bay o0 / LYW Pdady,
*+ 314P

C
/ y' T2V da:dy< — y' TBW — ki Pdady < —[M(4p) — k;]?[Bap(Z)] 2.
+(kJ72P) +(Ic],élp 4[)
Gathering together the above 1nequaht1es we have that
(3.30)

* 1)+1 * * -1
(kjp1 — k)2 AZ( J+1=2P)| 1-20 < OBs|Bapl 1! i, v) [M (4p) — kj]*| A% (s, 2p) — A% ( J+1=2P)| 120

where the constant C' > 0 is the one appearing in the Caccioppoli inequality. Let us define
A% (k, 20) 12
Ca(,r) (Z,20) | yp—2
and note that, by [B.) and @B.2), we have |Ba,|,1-22 < —|%”Q (,r)(Z,2p)|y1—2s.  Then, since
2 (% — %) + 1 > 0, taking into account that
kjy1 —kj =mnjpaw(dp)  and  M(4p) — k; = nw(dp),
from (330) we find

(k)5 < I[plky) — (k)7 with 9=

p(k) =

105,

C q p
S
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>0and a= 2541), so that the above inequality turns into

2
Let us set p = —5

P
ot (kn) <9 [p(k;) — @(kjv1)], Jj=0.
Summing up the above inequality for j = 0,1,...,n and noticing that ¢(k;) > ¢(k,) we get
gt (kn) < 0 [p(ko) — @(kn+1)]
and by (330), we conclude that

(3.31) olkn) < <’”’T(’“°))
Let us set m > 0 such that
532) > e et

. = Cg_lAH ’

where A is determined by (B3] with £ = 3, (s depends on ¢ in &) and the A;-constant (see (32)),
the constant 35 depends on N and the weight '~2% and C' > 0 is an universal constant coming from
the Caccioppoli inequality.
Consequently, 7 is independent of Z and p. Then, by inequality 31]), we find
|Aj_(kn,2p)|y1725 < A,
|<gQ(z,R) (27 2p)|y1725
Applying Theorem with kz = M (4p) — nrw(4p), r = 2p and £ = %, so that
1 —2s
W/ y' TEIW — (M (4p) — mmw(4p)) Pdady < (1w (4p))? = d°,
| 2P( )|yl*23 A% (M (4p)—nmw(4p),2p)

we obtain,

1 1 .
W(X) < k+ld < [M(dp) — maw(4p)] + 51mw(4p) < M(4p) = 5imew(dp),  ace. in Goi,r)(2,p) -

As a consequence,

wl(p) = M(p) —m(p) < M(p) ~m(4p) < [M(4p) — ()] — mi4p) < (1~ Ln)eldp).

and we deduce [B29) by choosing 7= (1 — 7+1)- O

Vn > 7.

The next result gives an estimate on the growth of the oscillation.

Theorem 3.5. Given zo € Q and R > 0, let W € X R((fg(ZmR)) be a solution to the homogeneous
problem [B). Then, there exist 0 < H <1 and 0 < 7 < % such that for any Z € ‘KS‘;(ZD’R) there
exists 6(Z) > 0 such that

w(p) = sup W(X)— _ inf W(X) < Hp",
X€Casg,m) (Z.p) X€Ca(zq.r)(Z:p)

for any 0 < p < 6(Z).

Proof. Let r(Z) = min{p(Z),p(Z)}, by TheoremB.4] inequality (3:29) holds true for any p < r(Z)/4.
Take 7, M positive such that 477 = a < 1 and w(p) < Mp™ for @ < p <r(Z). Then, again by
B29)), we have that
w(p) <A™ MpT,

for Tg) <p< T(f). In general, if ngl) <p< %
(ﬁ47)iMpT. Letting i large enough such that H = Ma' < 1, we obtain w(p) < Hp™ for any
p < 0(2)= % On the other hand, since we have chosen 7 > 0 such that 477 < 1 and, by
Theorem B4 7 = 1 — 7741 for some 7 > 0 independent from Z and p, it follows that

1 2n+2 1

for some i € N, we deduce that w(p) <
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O

Before proving Theorem [IL1] let us observe the following:
(i) if zo € Q, then there exist R > 0 sufficiently small such that ¥p p = Ty g = 0 and
p(Z) = dist(Z,01C0(=y,r)) for any z € Gz, R)-
(ii) if zo € ¥p\T', then there exist R > 0 such that Y-z = 0. Hence p(Z) = dist(Z, 0pCa(z0,r))
for any Z € ¥, p and p(Z) = dist(Z, 00Ca(zy,r)) for any Z € €5, 5)\ED g-
(iii) if zo € X, then there exist R > 0 such that ¥p g = (). Hence we have p(Z) = dist(Z, 0% (=,,r))
for any Z € ‘(o”é’(z())R).
(iv) if zo € T then VR > 0 both Xp g # 0 and Xxr g # 0 and hence p(Z) = dist(Z, 0oz, r))
for any Z € ¥7, p and p(Z) = dist(Z, 00z, r)) for any Z € CK&ZO)R)\E}B)R.
Now, consider ?Q(ZDR/Q) C bz, if 2 €  and ?52(2073/2) C CKS‘;(LR) if z € 0N).
Thus we deduce that:
(i) if z € Q, then p(Z) = dist(Z,0rCq.,r)) = p > 0 for any Z € ?Q(Z7R/2) and some positive

(ii) f)f z € Yp\I', then p(Z) = p > 0 for some positive p for any Z € X7, p, and p(Z) =
dist(Z, E%,R/Q) for any Z € ?Q”Q(LR/Q)\E%’R/Q.

(iii) if z € X, then p(Z) = dist(Z,0p6qz,r)) > p > 0 for any Z € € (-, r/2) and some positive

(iv) f)f z € I' then p(Z) = p > 0 for some positive p for any Z € ¥, 5/, and p(Z) =
dist(Z,Xp,rs2) for any Z € Ca: r/2)\Xp g2

Observe that if either (i) or (iii) holds true then the number 0 < §(Z) in Theorem B.5 has an infimum

value, namely 0 < 6 < §(Z) for any Z € ?(2(207 ry2) and we deduce that solutions W to problem
(3.7) are Holder continuous up to the boundary of €z, r/2). In fact, let us consider two points Z;
and Z5 in Cfé’zm gy With m > 0. Then, by Corollary Bl and Theorem we find
o If |Z1 — Z5| > §, we have
W(Z,) -W(Z2)| _ 2 2

< — = — ) .
|Zy — Zo|" Tor ‘fv’éﬁlfﬁ/z) v or Wil (be0.m/2)

o If | Z, — Z5| < &, by Theorem 33, Wgﬂrw@r{d.

We conclude the Holder regularity with a constant

2
(334) T: max{H, 5_T||W||Loo(<g§7zn(z,12/2))}'
Now we deal with the situation described in items (ii) and (iv).

Theorem 3.6. For any 20 € ¥p and R > 0 let W € X3 (Ca(zy,r)) be a solution to the homoge-
neous problem B1). Then W € C] (?Q(ZO)R/2)) for some 0 < T < %

loc

Proof. Observe that the number 0 < §(Z) in Theorem [3.5lis bounded from below by some 0 < dy for
Z € X} g/ and we can assume that d(Z) > min {5H, dist(Z,%7, R/2)} for Z € X3 /- Moreover,
by the construction of the lateral boundary of the extension cylinder, the numbers §(Z) do not
depend on the y variable. Hence such an infimum &y > 0 is attained at those points of the type

Z = (z,0) in 9 x {0}. Consider the set
(53(2071%/2) = {Z S Cg&z,R/Q) . dZSt(Z, E'*D,R/2) 2 5}]}
As above, we only need to study the case |Z; — Z| < dy. Suppose that Z; € CKS(;(ZO,R/Z)’ then
|Z1 = Za| < 6 < dist(Z1, 5% p/p) = 6(Z1), and thus, by Theorem B.5, we have
(W (Z1) - W(Z2)|
|21 — Zo|

<H.



16 J. CARMONA, E. COLORADO, T. LEONORI, AND A. ORTEGA

If neither Z; nor Z5 belongs to ng(zo,R/Q) but one of them, say Z; € E*D,R/w we have |71 — Z,| <
0y = 8(Z1), and the results follows as before. If, instead, none of them belongs neither to ng(zo,R/Q)
nor to 37, Ry2> We have two cases:

o |21 = Zo| < max {dist(Z1, S o), dist(Z2, T o) }-

o |21 = Zo| > max {dist(Z1, S o), dist(Za, S o) }-
In the first case at least one of the two points, say Zi, satisfies the inequality |Z; — Z3| < 0y <
dist(Z1,%7, R/2) = 6(Z1) and we have the result as before. In the second case, there exists at least
one Z € X /e such that |Z — Z1| < |Z1 — Z»|, and using the triangle inequality it follows that
|Z — Z3| < 2|Z1 — Zs|. Since the result has been proved for the case when at least one point belongs
to E%,R/Z’ we find
(3.35) (W(Zy) = W(Z2)| < [W(Z1) = W(2)| + [W(Z) = W(Z2)| < 3H|Z1 — Zo|",
and we conclude the Hélder regularity with constant 7 = max{3H, 20y "[|W || Lo (%o, 5/s) }» With
0 < H < 1 given by Theorem B.5 see (3.34)). O

Corollary 3.2. Let Q be a smooth domain such that Xp, Ynr satisfy hypotheses (B) and let w be
the solution to problem ([B.5) with z € Q and R > 0. Then, the function w € C™(Q(z, R/2)) for some
0<7<43.

Proof. Since 1 satisfies hypotheses (B), there exists 0 < g < 6(Z) for Z € Xf, 5, and we can
assume that §(Z) > min{&H, dist(Z, E%,R/Z)} for Z € ¥/ g /o, with 6(Z) given in Theorem 3.5l
Suppose that z1, z2 € (Q(z, R/2)):
o If |21 — 23| > 5. Then, due to Corollary Bl we have |[wl| (o2, r/2)) < 00 and, therefore,
lw(z1) —w(z2)| _ 2

< — max
|21 — 22|7 Of Q(z,R/2)

e While for |Zl — ZQ| < 6]{, let us set Z; = (21,0) and Zy = (22,0), Z1, 2y € ?Q(%R/?)? such
that |Z1 — Za| < 0g. Then, as in (835) in Theorem [3.0]
(w(z1) —w(z2)| _ [W(Z) - W(Zs)
|21 — 22|" |2y — Zo

<3H, O0<H<I.

Hence, we conclude
lw(z1) —w(z2)| < Tlz1 — 22|™, V1,22 € Q(z, R/2),
with 7 = max{3H, 20y " ||w|| L (a(z,r/2)) }> and o > 0 given as above. O
We prove now the main result of this work.

Proof of Theorem [Tl Let u be the solution to problem (P?)), Q a smooth bounded domain such
that Xp, ¥ satisfy hypotheses (B) and f € LP(Q) for p > % Given z € Qand 0 < R < 1, let v be
the solution to [34) and w = u — v a function satisfying ([3.3]). Thus, using [3I3]) and CorollaryB.2
we conclude that, for any z,y € Q(z, R/2),

w(u, R/2) < w(w,R/2) + 2 eflzr(la)é/mv(x) <TR +C(N,s, |ED|)||f||LP(Q(Z7R))R2S_% <CR",

where v = min{r, 2s — %} < 1 and C = max{T,2C(N, s, |Sp|)||f || r(z.r) }, With
T = max{3H, 20y "||w| £z r/2)) } = max{3H, 20y "||u — v|| L~ ((z,r/2)) }-

Moreover, by TheoremB.2] ||u—v|| L~z r/2) < ullL=ezr) V] L@ r)) < 2C(N, s, [ fllLr e, r)
hence we obtain

T <max{3H,46; "C(N,s, |Zpo|)|Ifll,}-
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Therefore, C = max{3H,46; "C(N, s, |Sp|)|| fllLr(a(,r)) }- Repeating the steps above in Theorem
[3.6] we conclude

(3.36) lu(z) —u(y)| < H)x —y|7, for any z,y € Q(z, R/2),
where
C(N by P(Q(z
jf:max{QH, (N,s,| DQEJCHL (Q(=z,R)) }7
H

and v = min{r, 2s — %} < 1. Since the constants . and v do not depend neither on z nor on R,

to complete the proof, set z; € Q, i =1,2,...,m and R; > 0, small enough such that
ﬁ = U Q(Z“ Rz/4)
i=1
Then ([B.30) follows by using a suitable recovering argument. O

4. MOVING THE BOUNDARY CONDITIONS

In this last part, we study the behavior of the solutions to problem (P2 when we move the
boundary conditions. First, let us describe this mixed moving boundary data framework. As
introduced above, given I. = [e, |0€]], let us consider the family of closed sets {3p(a) }aer. , satisfying

(B1) ¥p(e) has a finite number of connected components.

(Bg) Ep(al) C Ep(ag) if ap < Qo.

(B3) |2D(041)| =ao € I..
We call Xy (a) = 02\ Ep(a) and T'(a) = Ep(a)NE(a). Observe that, under the hypotheses (By)—
(Bj), the limit sets Yp(a), Xp(a) as a — €T are not degenerated sets (for instance a Cantor-like
set).
For a family of this type we consider the corresponding family of mixed boundary value problems

s (—A)u=f in Q,
(P2) { B,y(u)=0 on 01},
where B, (u) means B(u) with Xp, X7, and T are replaced by p(a), Ear(a), and I'(«) respectively.
Similarly, (B, ) means (8) with the natural changes as above.

Our main aim here is to prove Theorem

The key point in order to obtain it, is to prove that we can choose S5 > 0 in (311 independent
of the measure of the Dirichlet part. Nevertheless, as we will see below, when one takes o — 07 the
control of the Holder norm of such a family is lost. Hence, it is necessary to fix a positive minimum
¢ > 0 on the measure of the family {¥p(a)}qer., in order to guarantee the control on the Holder
norm for the family {uq}acr.-

Proof of Theorem [[.2. Assume that 9 is a smooth manifold and Xp(a), Xpr(«) satisfy hypotheses
(°B). Thus, there exists 6 > 0 such that p(Z) > ¢ for all Z € 91,%q. Then:

(1) If Z € €o\Y5(a), inequality (BII) holds true with 8 = &5 independent of «a, for all

)
0<p<é.
(2) If Z € ¥5(a) \ T*(a), we can set 0 < p < min{J,dist(Z,T*(a))}, such that for all X €
%Q(Zu p)u

H(Xv E*D N BP(Z)vch(Zv p)) > p > 07
with ¢ independent from a, recalling that (according to [10] §4])
M(zo, E,A) = [Vao (E) N Sn—1(20)] = |20 ]-

with V defined as follows: given xg € A and a closed set E C A, let us consider the cone
V.o (E) C A cousisting on all rays starting at xg and ending at some point P € E.

Hence, inequality (811 holds true with 8y < %f also independent from «.
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(3) If Z € I'*(«), we can assume without loss of generality that, for some neighborhood of radius
0 < p < min{d, dr} of the point Z = (Z1,...,Zn+1), OL%q coincides with the hyperplane
RV N {zy =0} and T*(a) C RYT' N {zx = 0,2x_1 = 0}, in such a way that in X5 (a)
we have zy_; > 0 and, in X}(c) we have zx_1 < 0. Now, €a(Z, p) is transformed by the
bi-Lipschitz transform (that in fact keeps the extension variable unchanged)
=&, i=1,2,...,N—1,

R gN if ngl < 0,
N En —&n-1 i én—1 >0,
O(Z) U 02%(Z) with

o(Z)
{ >0 §N 1<OZ y ZN+1) §p2}7

into a set O

En—1 20, Z (y— Zn11)* < P2,
0X(Z) =

2

N—-1
Ev-1 <N <évat <02 - Y EG-Z)-(y- ZN+1)2>
i=1

Moreover ¥3, N B,(Z) is transformed into the set

N-1
Dy(Z) = {5N—§N 1,6N - 1>OZ +(y — Zny1)? gpQ}.
=1
Given Xy € O,(Z), we use again the representation (see [10, cfr. 13.1]):
1
I(Xo,D,(2),0,(Z 27 —————cos(¥y)do,
( 0 P( ) P( )) |SN XO | (2) |X0—Y|N W)

where cos(¢p) = <|X0 v7:¥), with @ the normal vector to {év = En—1} NRY T Since

cos(¢) vanish only when Xy € D,(Z) we conclude that II(Xo, D,(Z), RNH) > ¢ >0 for all
Xo € O,(Z) and some ¢ > 0 independent of a. On the other hand, it is immediate that ¢
is independent of p. Hence, inequality (811 holds true with 85 < %f also independent of a.
Let us define
min{6, dist(Z, %)}, if Z € €a\XhH(a),
(4.1) Pa(Z) =< min{d,dist(Z,T%)}, if Z € T5(a)\T*(a),
min{d, or}, if Z e T*(a).
As a consequence of (1)—(3) above, we deduce

(i) by [B24), the constant A appearing in Theorem and Theorem [3.4] is independent of a.
Hence, inequality ([B.28) does not depends on « and also the number 0 < H < 1 in Theorem
is independent from .

(ii) by B32), the constant 7 in Theorem B4 is independent from « and, by ([B33)), also that
0<y< % is independent from a.

Then, given u,, a solution to problem (]E) with a € I, by Theorem [Tl we deduce
lualler o) < Ha,

Nsa

with v = min{7, 2s— %} < % independent of o and %, = max{9H, < Il f””} with the constants

0 <7< % and Jy o given as in Corollary Now, if we consider the family {uq}aecr., since
Py (Z) < P,,(Z) it is clear that 0., < 0u.a, and, therefore, J4,, > J,, for all ay,as € [g,[09]],
a1 < ag. Therefore, we can take 0 < v < % and JZ = max{9H, %W’} independent from «
such that

llualler ) < I,
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conclude, we observe that the condition « € [g,]0€]] is necessary in order to control the Hélder

norm of the family {uq }aer.. If welet a = [Sp(a)| — 07, then it is clear that |25 (a)NEa(Z, p)| — 0

for

any Z € €q and p > 0. Thus, if « — 0T, we conclude from () that p,(Z) — 0 for any Z € X%

and, hence, 0y o — 0 while J7, — +oo. O

Remark 4.1. Given an interphase point Z € T'*, it is clear from (A1), that we can choose an
uniform pe > 0 in the lines of [6l Corollary 6.1]. In fact, it is enough to choose ér in [@I) in such
a way that X5 (e) NCq(Z, p) is contained in some hyperplane (see (3) in the proof of Theorem [1.3).
Clearly, this Dirichlet boundary part, say ({xx =0,zy_1 > 0} N Rerl) N B, (Z) converges to an
empty set as p. — 0.
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