
PhD Thesis in Automatica, Bioingegneria e Ricerca Operativa

XXXII Ciclo

Multi-Sensor Coordination in
Human-Robot Interaction

Maram Khatib

Advisor Prof. Alessandro De Luca

October 2019

Dipartimento di Ingegneria Informatica, Automatica e Gestionale (DIAG)
Sapienza Università di Roma





Dedicated to the memory of Fabrizio Flacco.





Abstract

In the framework of Human-Robot interaction, a robot and a human operator
may need to move in close coordination within the same workspace. In this
thesis, the contactless human-robot collaboration with coordinated motion tasks
is considered. A control system based on multiple sensors is presented for safe
and efficient collaboration. A contactless coordinated motion can be achieved
using vision, mounting a camera either on the robot end-effector or on the
human. We consider here a visual coordination task, with the robot end-effector
that should maintain a prescribed position with respect to a moving RGB-D
camera while pointing at it. For the 3D localization of the moving camera,
we compare three different techniques and introduce some improvements to the
best solution found for our application. Instead, an Oculus Rift HMD system
can be used to track an operator moving in the workspace. In this case, a
stereo camera is used to perform a mixed-reality interface that enables the user
to choose between different collaboration modes. The robot should also avoid
any collision with the operator and with nearby static or dynamic obstacles,
based on distance computations performed in the depth space of a fixed Kinect
sensor. To exploit effectively and efficiently the advantage of robot redundancy,
different soft constraints for both the coordinated motion and collision avoidance
tasks are proposed. Two relaxed versions of the pointing part of the task are
introduced to achieve the desired task without exhausting the robot capabilities.
Also, a relaxed formulation for collision avoidance task, that does not slack
the avoidance performance, is used. Several control algorithms with different
complexity are developed to suitably combine and organize the simultaneous
control tasks with their priority. The proposed control system using different
approaches is validated by V-REP and MATLAB simulations, and experiments
with the 7-dof KUKA LWR manipulator.

Keywords: Robotics, Human-Robot Collaboration, Relaxed Tasks, Motion
Control, Redundant Robots, Mixed-Reality.

v





Acknowledgements

Firstly, I would like to express my sincere gratitude to my teacher and advisor
Prof. Alessandro De Luca for the sustained support of my Ph.D. study and
related research, motivation, and immense knowledge.

In addition, I would like to thank all Robotics Lab members who shared
with me this journey, and all my friends for their motivation and nice refresh
breaks during the day.

A big thanks to my parents and brothers for their endless encouragement,
support, and patience for being far from them.

My great gratitude and thanks to my soulmate Khaled AL Khudir for being
my colleague, friend, and husband. I am so appreciative of his support and
assistance in every step of my Ph.D. journey.

A very special thanks to my sweet little daughter Yafa for being such a good
girl. She helped me in her calmness and amused me in her innocence.

Finally, I am grateful for the financial support of my work, provided by the
Italian Ministry of Foreign Affairs and International Cooperation (Farnesina).

vii





Contents

Abstract v

Acknowledgements vii

Introduction 1

1 Human-Robot Awareness 7
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 NICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 PTAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 ARToolKit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Oculus Rift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.6 Mixed-Reality Interface . . . . . . . . . . . . . . . . . . . . . . . 12

2 Coordination Tasks 15
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Positional Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Human-Head Following . . . . . . . . . . . . . . . . . . . 17
2.2.2 Variable Circular Task . . . . . . . . . . . . . . . . . . . . 17

2.3 Pointing Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Task Limit Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Collision Avoidance Tasks 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Distance Computation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Task Definition for Collision Avoidance . . . . . . . . . . . . . . 25

4 Motion Control 27
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Task Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Null-Space Projection . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4 Task Augmentation vs. Projected Gradient . . . . . . . . . . . . 30

ix



x

4.4.1 Comparative Simulations . . . . . . . . . . . . . . . . . . 30
4.4.2 Experimental Evaluation with Task Augmentation . . . . 33

4.5 Saturation in the Null Space Algorithm . . . . . . . . . . . . . . 35
4.5.1 Experimental Evaluation . . . . . . . . . . . . . . . . . . 37
4.5.2 Including Mixed-Reality Interface . . . . . . . . . . . . . . 45

4.6 Task Priority Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.6.1 The Complete Approach . . . . . . . . . . . . . . . . . . . 48
4.6.2 Comparative Simulations . . . . . . . . . . . . . . . . . . 49
4.6.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . 57

Conclusion 65

Appendix A Notes on the KUKA LWR IV robot 67

Bibliography 75



Introduction

The capability of handling tasks that involve interaction between humans and
robots has become nowadays a highly desirable feature in service applications
of robotics De Santis et al. [2008], as well as one of the enabling technologies
of Industry 4.0 (Hägele et al. [2016], Lu [2017]). Robot co-workers should be
able to share their workspace and collaborate safely with humans, combining
and enhancing the skills of both parties. Safe handling of human-robot interac-
tion tasks can be achieved within a hierarchical control architecture organized
in three functional layers De Luca and Flacco [2012]. With reference to Fig. 1,
the three nested layers are concerned with safety, coexistence, and collaboration,
which easily map into the four forms of ‘collaboration’ modes of the ISO 10218
standard (enhanced by the technical specification TS 15066). Each layer con-
tains specific methods related to its objectives, with their associated sensory
requirements and control algorithms.

Safety is the most important feature of a robot that works close to human
beings, and should always be enforced in any condition. The safety layer at
the bottom is always active and deals with collision detection, specifying also
how the robot should promptly react to undesired (and unavoidable) contacts.
In (De Luca and Mattone [2005], De Luca et al. [2006]) a model-based method
is introduced to detect collisions and isolate the link subject to the contact
force which does not need exteroceptive or distributed tactile sensors. The
method works for robots with rigid or with flexible joints, in the latter case
both with and without joint torque sensing Haddadin et al. [2008]. Considering
robot dynamics, the unknown torque due to a collision/contact force with the
human/environment at a generic robot location, is approximated using the so-
called residual vector. The critical aspects of friction and payload estimation in
the robot dynamic model have been analyzed in Gaz and De Luca [2017]. The
model-based terms in the residual can be efficiently computed via a Newton-
Euler implementation following De Luca and Ferrajoli [2009]. The same holds
true for robots with elastic joints in the absence of joint torque sensing Buon-
donno and De Luca [2015], and for VSA systems Buondonno and De Luca [2016].
When the robot dynamics is poorly known, an alternative signal-based method
for detecting collisions (though without their isolation) relies on processing the
motor currents in Geravand et al. [2013]. A logic based on high-pass and low-

1



2

(a)

Safety-rated 
monitored stop Hand guiding

Speed and 
separation 
monitoring

Power and force 
limiting

Speed Zero while 

operator in CWS

Safety-rated 

monitored 

speed

Safety-rated 

monitored speed

Max determined by 

RA to limit impact 

forces

Separation 
distance Small or zero Small or zero

Safety-rated 

monitored distacne
Small or zero

Torques Gravity + load 

compensation only

As by direct 

operator input

As required to 

execute application 

and maintain min 

separation distance

Max determined by 

RA to limit static 

forces

Oprerator
controls

None while 

operator in CWS

E-stop; 

Enabling device;

Motion input

None while 

operatorin CWS

As required by 

application

Main risk 
reduction

No motion in 

presence of 

operator

Motion only by 

direct operator 

input

Contact between 

robot and operator 

prevented

By design or control, 

robot cannot impart 

excessive force

Safety

Coexistence Collaboration
Coexistence Collaboration

(b)

Figure 1: (a): The three nested layers of the hierarchical control architecture
for pHRI proposed in De Luca and Flacco [2012]; (b): The mapping of the three
control layers into the four modes of the ISO standards on robot safety.

pass filtering of motor currents has been used to distinguish the nature of the
detected impact, i.e., a soft/slow contact (possibly signifying the start of an
intentional collaboration) or a hard/fast collision (always undesired). The same
can be performed with two residuals having low and high bandwidths. The var-
ious possible implementations and a comparison of these approaches have been
described in Haddadin et al. [2017].

Coexistence occurs when the robot shares the workspace with humans, with-
out requiring mutual contact. This is probably the most common situation in an
Industry 4.0 environment, when a lightweight robot and human operator should
work side-by-side. Safety requirements must still be guaranteed, obtaining thus
a safe coexistence. Monitoring the workspace, e.g. with exteroceptive (cam-
era, depth laser) sensors, and computing online relative distances between the
full body of the robot in motion and the operator are fundamental to prevent
collisions and to reduce the speed of the robot TCP in potentially critical situa-
tions. This should be obtained without giving up robot mobility and dexterity,
by oversizing the safety areas.



3

For the detection of obstacles in the robot workspace, several sensors and
methods have been proposed. Laser and sonar sensors can scan the workspace
and detect obstacles intersecting a 2D plane (usually, parallel to the floor and
at the calf height or at the torso), allowing the robot to avoid that part of the
human body (Ulrich and Borenstein [1998], Brock and Khatib [1999]). Detec-
tion of the whole human body (or, simultaneously, of several of its parts) can
be achieved by either attaching passive or active markers to the body, or by
extracting its shape from RGB/depth images as a ‘point cloud’ in the Cartesian
space Polverini et al. [2014]. However, the robot would avoid in this way only
the human body and thus neglect other dangerous obstacles in the workspace.
In Lacevic et al. [2013], a laser sensor was attached close to the robot end-effector
to compute distances and danger zones from nearby obstacles. Unfortunately,
repeating this arrangement for every robot link (which may also possibly col-
lide) would be inefficient and too expensive. In (Flacco et al. [2012b], Flacco
et al. [2015b]), an efficient robot-obstacle distance computation is introduced.
The proposed approach works directly in the depth space of a RGB-D sensor,
achieving collision avoidance with real time (300 Hz) performance. To avoid
gray zones or sensor occlusion, the algorithm has been extended to the case of
multiple depths sensor Fabrizio and De Luca [2016]. The optimal placement
of multiple (depth and/or presence) sensors in the workspace is investigated
in Flacco and De Luca [2010]. A GPU implementation of the algorithm Magrini
and De Luca [2017] allows to preserve efficiency while computing distances with
any moving object or any human part. More recently, this safe coexistence ap-
proach has been implemented in a full-size industrial cell with a large ABB robot,
where the depth space method using two Kinects was combined/integrated with
additional laser scanners for ISO compliance Magrini et al. [2020].

Based on this distance information, collisions can be avoided by any pre-
ferred variant of the artificial potential fields method Khatib [1986b]. In case of
kinematic redundancy, it is preferred to preserve the desired tasks while avoiding
any collision. This can be done with the common null space projection Sicil-
iano and Slotine [1991]. Instead, the avoidance tasks are translated into hard
inequality joint velocity constraints which should be respected by the other de-
sired tasks Flacco et al. [2012a]. To keep the robot dexterity, a relaxed avoidance
task is used with the so-called Task Priority Matrix in order to control the robot
end-effector to achieve efficiently the prioritized desired Cartesian tasks while
avoiding any collision Khatib et al. [2019b].

Finally, physical Magrini et al. [2015a] or contactless Khatib et al. [2017]
human-robot collaboration is established in the top layer. Collaboration occurs
when the robot performs complex tasks with direct human interaction and co-
ordination, the most demanding and critical feature in safe pHRI. During a
physical collaboration, there is an explicit and intentional contact with con-
trolled exchange of forces between human and robot. Safety and coexistence
should also be guaranteed during physical collaboration. For example, if the
human is collaborating with the robot using his/her right hand, contact be-
tween the robot and the left hand or the rest of the human body is undesired,
and therefore such accidental contacts are treated as potential collisions that
must be avoided.

The estimation of contact forces at a generic point of the robot is proposed
without using force/torque sensing Magrini et al. [2014]. This virtual force
sensing is obtained determining first the localization of the contact point on



4

the robot body, by combining the information from an external RGB-D sensor
(when the distance computed by the depth space algorithm is close to zero)
with the residual-based contact detection algorithm (when at least one residual
component crosses a small threshold). Once the contact point has been deter-
mined, it is possible to extract from the residual also an estimate of the contact
force by pseudoinversion of the transpose of the 3× n Jacobian matrix related
to the contact point. When the contact occurs far down the serial chain of the
robot links (at a link 6) the action line of the contact force can be estimated also
without the external sensor Haddadin et al. [2017]. At this stage, the knowledge
of the estimate of the Cartesian contact force can be used for designing a num-
ber of classical control laws, regulating or tracking reference values for motion
and/or force quantities. However, this occurs in a generalized whole-body sense,
namely the desired behavior is not imposed at the joint or end-effector level,
but directly at the level of the detected contact position in the robot structure.
In Magrini et al. [2014], human-robot collaboration has been realized using the
estimated contact force in an admittance scheme, with the robot controlled in
position mode. Torque control laws based on generalized impedance and task-
consistent force control Magrini et al. [2015b], as well as hybrid force-velocity
control Magrini and De Luca [2016], have also been proposed. With a F/T
sensor, it is possible to handle simultaneously and separately both intentional
contacts at the end-effector and reaction to undesired collisions on the robot
body Gaz et al. [2018]. To this end, kinematic redundancy of the robot can be
exploited together with the relaxation of multiple tasks with priority Magrini
and De Luca [2017]. A similar approach works also when a dynamic model is
not available, using the motor currents as proxies of the residuals Mariotti et al.
[2019].

Beside such a physical collaboration, contactless collaboration could also
be established. A contactless collaborative task is typically realized by im-
posing a coordinated motion between the robot and a human operator under
safety premises. For such a collaboration, localizing the human pose and de-
tecting obstacles in the workspace should both be guaranteed (Khatib et al.
[2017], Khatib et al. [2019a]). Spatial and temporal motion coordination can be
obtained via direct and explicit communication, such as using gestures and/or
voice commands Rogalla et al. [2002], or by indirect communication, such as
recognizing intentions Nehaniv et al. [2005], raising the attention with legible
action Mainprice et al. [2010], or passively following the human motion. Each
type of collaboration raises different challenges. Indeed, as a common feature,
the robot should always be aware of the existence of the human in the workspace,
and specifically of the pose of his/her body parts. Use of laser range measure-
ments Svenstrup et al. [2009] and of vision/depth cameras are the preferred
choices for this purpose, followed by the extraction of the human pose from
the sensor data Villani et al. [2009]. Based on this information, a coordinated
motion task can be defined online by requiring the robot to track some human
feature in a specific way. Another modality is to attach a compact RGB-D sen-
sor on the human body, and then localizing with different techniques (Besl and
McKay [1992], Davison [2003]). In Khatib et al. [2017], a comparison between
three different localization methods introduced in Kato and Billinghurst [1999],
Klein and Murray [2007], and Serafin and Grisetti [2015] was done. All these
techniques suffer from inefficiency during fast human motion, in highly dynamic
environments, or when markers/features are not present. Moreover, they need a



5

frequent and complex calibration phase. To overcome such problems, the Oculus
Rift system (a HMD for Virtual Reality (VR) exploration) could be used Khatib
et al. [2019a]. This sensor does not need markers or specific features, allows the
human to look and move freely in the workspace, and provides a sufficiently
accurate pose estimation both in static and dynamic environments, during fast
human motion, and in bad lighting conditions. Furthermore, It can be used to
perform a mixed-reality interface for end-user robot programming (Gadre et al.
[2019], Khatib et al. [2019a]).

In this thesis, we address simultaneously a contactless human-robot collab-
oration supported with a mixed-reality interface and safe coexistence, based on
a multi-sensor control system in Fig. 2. We consider a contactless collaborative
scenario with direct communication and address the motion control problem
for a coordination task in which a robot should track the motion of a human
head (for instance, to show an item held by its end-effector) while avoiding any
collision.

Obstacle 
Monitor

Human-Head 
Localization

EE Desired Pose 
Task

Nearby Obstacles Detected

Priority Control 
Algorithm

Kinect depth 
sensor

Oculus Rift HMD + 
ZED Mini stereo camera

NO
YES

Nearby 
end-effector

Nearby 
Robot Body

Figure 2: The proposed multi-sensor control scheme for safe coordinated human-
robot collaboration.

At the beginning, the problem of Human-Head pose localization is investi-
gated. First, for a RGB-D camera carried by the human (say, mounted on a
helmet), different approaches for camera pose localization are compared experi-
mentally and various improvements are proposed. As an alternative, an Oculus
Rift is used to localize efficiently the human pose. In this case, a stereo camera is
attached to perform a friendly human-robot interaction through a mixed-reality
interface, that represents the current robot task and the other available collab-
oration modes which the user can switch between them. In this environment,
both the robot and the operator will be aware about each other current activity.



6

Next, a coordinated motion task is defined in which the robot end-effector
should maintain a desired relative position with respect to the head of a mov-
ing human operator while pointing at it. Different relaxed definitions for the
pointing task are presented. Moreover, Cartesian task limits, w.r.t the robot
work space, are specified to adjust the desired task accordingly. During the
collaboration, the robot should avoid any collision with other body parts of the
operator and with all nearby obstacles. This is done based on distance eval-
uations that use a Kinect depth sensor placed in the environment. For this,
various definitions for the collision avoidance task, with different dimensions,
are used and compared.

Subsequently, we suitably combine the previous tasks and organize them
with a priority. Despite the many degrees of freedom of the chosen manipula-
tor, the mobility resources of the robot should be carefully used when facing
the multiple control tasks. For this, different kinematic control laws, that take
advantage of the available robot redundancy to handle the desired tasks in a spe-
cific priority, are proposed and compared. The different presented approaches
are implemented and tested in V-REP and MATLAB simulations and experi-
ments with a KUKA LWR arm.

The present thesis is structured as follows. In Chapter 1, four methods for
moving sensor pose localization are compared. Also, the proposed mixed-reality
interface for friendly human-robot collaboration is presented. Chapter 2 con-
tains the complete definitions of the different coordination tasks. The relaxed
pointing tasks using equality and inequality constraints are shown. Also, the
proposed task limits sphere is illustrated. Chapter 3 includes the distance com-
putations and different definitions for the collision avoidance task. In Chapter 4,
four different motion control approaches are illustrated to handle the coordina-
tion tasks with/without collision avoidance using different localization sensors.
Also, comparative simulations and experiments are presented.

The ideas and methods presented in this thesis, have been published/are
being submitted, as author’s original work in:

• M. Khatib, K. Al Khudir, and A. De Luca, “Visual coordination task
for human robot collaboration”. In Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 3762–3768, 2017.

• M. Khatib, K. Al Khudir, and A. De Luca,“Multi-sensor control system
for safe human-robot collaboration with mixed-reality interface”, in prepa-
ration to the Robotics and Computer Integrated Manufacturing.

• M. Khatib, K. Al Khudir, and A. De Luca, “Robot collision avoidance
using tasks priority matrix with soft constraints at the acceleration level”,
in preparation to the IEEE Robotics and Automation Letters.



1
Human-Robot Awareness

1.1 Introduction

To perform a friendly contactless collaboration experience, both the robot and
the human should be aware about each other current action and location. In
this chapter we propose to mount a sensor (i.e. RGB camera, depth camera,
Oculus Rift) on the human head; by localizing the sensor; the robot will be
aware of human head pose in order to collaborate with it.

Sensor localization may be performed with vision-based or LiDAR-based
methods. Vision-based methods either locate fiduciary markers using feature
recognition algorithms from computer vision, or work in markerless fashion
by estimating the RGB camera pose by features extraction and point corre-
spondences in stereo images Davison [2003]. On the other hand, LiDAR-based
methods localize a RGB-D sensor based on the Iterative Closest Point (ICP)
algorithm Besl and McKay [1992], which compares the current Point Cloud with
a reference cloud (typically, the initial one).

Oculus Rift device together with its tracking sensor could be used also for
localization. In this case, we propose to design a Mixed Reality Head-Mounted
Display (MR-HMD) interface that enables the human to know what the robot
is currently doing. Moreover we allow the user to switch between different
collaboration modes using the Oculus supplied controller.

In the following sections we have tested and compared different localization
methods to find the best one that fits our dynamic sensor localization problem.

1.2 NICP

The first (markerless) method considered was the Normal Iterative Closest Point
(NICP) Serafin and Grisetti [2015], which solves the Point Cloud Registration
(PCR) problem, i.e., it finds the transformation that aligns at best the common
parts of two point clouds. PCR is used in 2D- or 3D-surface reconstruction, in
robot localization, path planning and many other applications. NICP considers

7



8 Human-Robot Awareness

(a) (b) (c)

Figure 1.1: Outputs with the NICP method in three different operative con-
ditions: (a) slow camera moving in static environment; (b) faster motion; (c)
static camera in dynamic environment. The red dots represent the camera pose
estimation and the yellow parts are the 3D reconstruction of the camera scenes.

each point together with some local features of the surface, and takes advantage
of the 3D structure around the points for guiding the data association between
the two point clouds. Moreover, it is based on a least-squares formulation of
the alignment problem, which minimizes an augmented error metric depending
on point coordinates as well as on surface characteristics.

We have tested the NICP method for tracking the motion of a depth camera
in different operative conditions. When the camera moves slowly (at about
0.14 m/s) in a static environment, Figure 1.1(a) shows that clearly NICP is
able to track well the camera motion. When the camera moves slightly faster
than before (at about 0.2 m/s, i.e., 40% faster) but again in a static environment,
there is a duplication of some parts in the 3D map, as shown in Fig. 1.1(b), which
implies an inaccurate camera pose estimation. In the last test, the camera was
held at rest in a dynamic environment. Figure 1.1(c) shows that different pose
estimations that do not reflect the static condition of the real camera. As a
result, NICP is not suitable for our goal unless the user (carrying the camera)
moves very slowly in an environment which is otherwise static.

1.3 PTAM

The second method tested was Parallel Tracking and Mapping (PTAM) Klein
and Murray [2007]. Although PTAM was originally designed for Augmented
Reality (AR), its parallel framework enables fast camera localization in a small,
but otherwise unknown environment. This vision-based method does not require
markers, pre-made maps, or known templates.

We have used PTAM to estimate the pose of a RGB camera moving around
the desired robot workspace. An initialization phase, in which the camera must
be translated between the first two key-frames, is mandatory before the tracking
phase can start. In a first test (Fig. 1.2), the camera keeps moving in the same
field of view seen in the initialization phase and the method is able to track
the camera motion satisfactorily. In the second test (Fig. 1.3), starting from
the same previous initialization view, the camera was moved around the whole



1.4 ARToolKit 9

(a)

−1 −0.5 0 0.5
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

x

y

[m]
[m
]

(b)

−1 −0.5 0 0.5
−1

−0.5
0

0

0.5

1

y
x

z

[m]
[m]

[m
]

(c)

Figure 1.2: First PTAM test: (a) represents the tracking map and the features;
in the top view (b) and 3D-view (c), the green dots represent the estimated
path of the camera and the circle/cylinder denotes the robot position.

(a)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2

−0.8

−0.6

−0.4

−0.2

0

x

y

[m]

[m
]

(b) (c)

Figure 1.3: Second PTAM test: (a) initialization view; (b) path of the camera;
(c) camera view when the method fails.

workspace. The method fails to estimate the camera pose as soon as its field
of view exits from the one covered in the initialization phase (thus, the method
strongly depends on this phase). As a result, PTAM is a good method for our
tracking purposes only when the environment is relatively small and quasi-static.

1.4 ARToolKit

The Third camera tracking test was done with the ARToolKit library Kato and
Billinghurst [1999], which is mainly used for developing AR applications. The
algorithms in this computer vision library produce in fact a good solution to
the problem of calculating in real time the user’s viewpoint. Adding a simple
calibration setup, is can be used aslo to determine the pose of a RGB camera
relative to a physical marker, which can be chosen as a 2D black square card
with a special pattern.

In our tests, three different markers have been added to the workspace,
placed on the supporting table of the robot manipulator (see also Fig. 4.4). Each
marker has its own features (location, size, and pattern). Using the associated
homogeneous transformation matrices, it is then easy to obtain online the pose
of a moving camera with respect to the world frame. During the multiple
experiments done, the ARToolKit performance was extremely good, as long as
at least one marker was found in the camera field of view. In Fig. 1.4, the green



10 Human-Robot Awareness

Figure 1.4: The estimated trajectory of a moving camera obtained using the
ARToolkit method alone (green line), and with two additional enhancement
techniques (blue line = with EKF; red line = with EKF and IMU). The three
top figures are expanded views of the paths inside the violet ellipse. For clarity,
just a 2D projection on a horizontal plane is shown, instead of the full 3D
trajectories.

Figure 1.5: A smart phone attached to a Kinect sensor. For ARToolKit method,
the RGB sensor of the Kinect, and the accelerometer of the smart phone are
used to enhance the camera pose estimation.

line represents the path of the camera estimated with the ARToolKit method
in one of the experiments. When there is no marker in the view or when this
is not sufficiently clear, discontinuous tracts appear along the estimated motion
path together with a number of outlier points. To address this problem, an
Extended Kalman Filter (EKF) can be used in the processing of visual data,
and a (cheap) Inertial Measurement Unit (IMU) can be added to the camera
hardware, i.e. the accelerometer of a smart phone in Fig. 1.5. When the camera
is in motion, the EKF eliminates discontinuities and outliers. However, when
the camera stops and no marker is in the field of view, the EKF will return false
camera pose estimations, i.e., the extra blue line in Fig. 1.4. This behavior is
discarded when resorting to the IMU estimation, see the red line in Fig. 1.4.

The previous enhanced system has a simple setup and an easy initialization
phase, works at the same camera frame acquisition rate (i.e; 30 Hz), and re-
turns accurate camera pose estimations relative to the desired world reference



1.5 Oculus Rift 11

Figure 1.6: The Oculus Rift HMD and its tracking sensor.

frame (note that the NICP and PTAM methods provide instead pose estimates
expressed with respect to their initial frame).

1.5 Oculus Rift

The Oculus system in Fig 1.6 is developed to provide a Virtual/Augmented
Reality experience by synchronizing the user view in the screen of the Head
Mounted Display (HMD) with his head motion in the real world. This is done
by estimating on line the six degrees of freedom of the device, including position
and orientation represented by roll-pitch-yaw angles, and their first and second
derivatives, through a sensor fusion process. Data are combined coming from the
micro-electrical-mechanical sensors (MEMS) on the Rift, that include gyroscope,
accelerometer, and magnetometer, and from the IR on the tracking sensor. In
our application the Head Mounted Display (HMD) together with its tracking
sensor could be used also for human head pose localization. The tracking sensor
should be located in a static place near to the human motion area, and a simple
calibration procedure should be done each time the placement of the tracking
sensor is changed. The tracking sensor is able to detect and localize the Rift in
a distance range from 0.4 to 2.5 m. Multiple tracking sensors could be used to
cover a larger area.

For our application we checked the Oculus localization experimentally through
different scenarios. In first case, in Fig. 1.7(a), the Rift was mounted on a stand-
ing up human without moving for a duration of 60 s in dynamic environment.
In second case, in Fig. 1.7(b), the human was moving during the experiment.
Finally, we tested the localization during fast and long duration motions, in
Fig. 1.7(c). In all previous experiments, the Rift pose estimation was stable,
continues and deterministic. This system has a simple setup and an easy initial-
ization phase, and returns accurate Rift pose estimation relative to the desired
world reference frame.

From the obtained results and discussions, the head localization in our appli-
cation can be done using either the ARToolKit method with both EKF and IMU
or the Oculus system. The first option is cheaper, while with Oculus system,
the mixed-reality user interface can be integrated.



12 Human-Robot Awareness

x [m]

-1 -0.8 -0.6 -0.4 -0.2 0

y
 [

m
]

-0.5

0

0.5

Rift

x [m]

-1 -0.5 0

y
 [

m
]

0

0.2

0.4

0.6

0.8

1
Rift

x [m]

-1 -0.8 -0.6 -0.4 -0.2 0

y
 [

m
]

-0.4

-0.2

0

0.2

0.4

Rift

y [m]

0.5

0

-0.50
x [m]

-0.5
-1

0

0.5

1

z
 [

m
]

Rift

y [m]

1

0.5

0
0

x [m]

-0.5-1

0

1

0.6

0.4

0.2

0.8

z
 [

m
]

Rift

y [m]

0.4

0

-0.4
0

x [m]

-0.5
-1

0.5

0

1

z
 [
m

]

Rift

(a) (b) (c)

Figure 1.7: The estimated trajectory of a moving Oculus Rift during three
human actions: (a) static; (b) slow motion; (c) fast and long motion. [top] The
top view in 2D, and [bottom] for the 3D-view.

1.6 Mixed-Reality Interface

To let the operator aware about the active robot task, and give him the possibil-
ity to command the robot directly and efficiently, we propose to add a mixed-
reality interface to the Oculus HMD. For this, a ZED-Mini stereo camera is
mounted to the Rift as in Fig. 1.8. Using Unity cross-platform, the surrounding
workspace of the operator can be rendered in the HMD screen and augmented
with any useful information about the robot behavior and any desired optional
commands. In figure 1.9, the whole hardware setup for the mixed-reality expe-
rience is shown.

For our proposed application, we designed a simple interface in Fig. 1.10
which consists of a static menu with four buttons represent the available col-
laboration modes. The user can switch between them using the Rift controller.
The first mode is ”Follow”, where the robot should track a dynamic target po-
sition with respect to the human-head while pointing to it with a relaxed angle
5◦ or 90◦. In the ”Circle” mode, the robot should achieve a variable circle that
centered on a dynamic position w.r.t human-head, and placed on a plane per-
pendicular to the line of sight of the human. Also, the user can determine the
desired pointing angle. The option ”Stop” will command the robot with the
last computed target point reducing then the residual errors to zero, and finally
remaining at rest. The last gray option is to choose between two pointing an-
gles. After selecting the desired mode, the corresponding button is highlighted.
More details about the desired robot tasks are in Chapter 2.



1.6 Mixed-Reality Interface 13

Figure 1.8: ZED-Mini stereo camera mounted on the Oculus Rift.

Figure 1.9: The hardware setup to achieve a mixed-reality experience during
human-robot collaboration.

Figure 1.10: The mixed-reality user interface on the Rift HMD screen lenses.





2
Coordination Tasks

2.1 Introduction

For a robot with n joints, we can define a m-dimensional task to be executed.
If n > m, the robot will be kinematically redundant for the given task. Fig-
ure 2.1(a) illustrates preliminarily some typical motion tasks, with their dimen-
sion m: following the position of a reference point peed along a path (m = 3),
adding to this also a desired pointing direction defined by a unit vector zd (in
total m = 5), or specifying in addition a complete desired orientation through
a moving reference frame (m = 6). Further, we introduce two possibilities that
relax the pointing task, while still keeping some control on it: the actual point-
ing direction of the robot end effector (defined by a unit vector ze) is allowed
to stay within a cone with apex at peed , axis zd, and apex angle α > 0. This
is indeed an inequality constraint which increases the task dimension intermit-
tently. However, inequalities are more cumbersome to be handled within the
kinematic task formalism Chiaverini et al. [2008]. Another way is to consider a
slightly stronger definition by imposing that the relative angle between ze and
zd takes a (small) constant value αd: pointing in a direction that belongs to the
cone surface is then a one-dimensional task. Combining this with the positional
task gives m = 4.

With the above in mind, a visual coordination task between the human
(head/face) and the robot can be formulated in two almost symmetric ways. In
Fig. 2.1(b), a camera is placed on the end effector (eye-in-hand) of the robot,
whose motion needs to be controlled so as to search for the human face, point
at it (with the above defined relative angle relaxation), and follow the human
motion at a desired distance d along the camera line of sight. In this case, the
pose of the camera is known from the robot direct kinematics. Alternatively, a
camera/sensor can be mounted on the human head (say, on a helmet at height h
above the eyes) as in Fig. 2.1(c). In this case, the moving (eye-to-hand) camera
needs to be continuously localized with respect to the world frame as described
in Chapter 1. The robot will receive this information and move accordingly in

15



16 Coordination Tasks

(a)

zd 

line of  
sight 

eye-in-hand 
camera d 

human 
head/face 

(b)

(c)

Figure 2.1: (a) Different types of Cartesian motion tasks, with their dimension
m. (b) Visual coordination task with the camera on the robot, pointing at
the moving human head/face. (c) Camera on the moving human head, with
the robot end-effector pointing at it. The cones represent the relaxation of the
pointing task by some relative angle αd.

order to achieve coordination. This is the situation considered in this thesis, with
the coordination task being of dimension m = 4 in case of equality constraint
for relaxed pointing task and m = 3 or m = 4 in case of inequality constraint,



2.2 Positional Task 17

while the robot joint space is of dimension n = 7 for a KUKA LWR robot in
Appendix A.

In the following sections, the desired coordination tasks of different collab-
oration modes for our application are defined. Also, a suitable workspace task
limits are proposed with its corresponding effects.

2.2 Positional Task

Consider a desired task peed ∈ R3 defined for the robot end-effector position,

pee = k(q) ⇒ ṗee = Jpee(q)q̇, (2.1)

where q ∈ Rn is the robot configuration, k(.) is the direct kinematics, and
Jpee = ∂k/∂q is the 3 × n Jacobian matrix for this task. In this case, the
positional error can be defined as epee = peed − k(q) ∈ R3. For our contactless
collaboration, three different positional tasks are defined as follows.

2.2.1 Human-Head Following

As shown in Fig. 2.2, the tip of the robot should follow a desired Cartesian point
defined as

peed = pcoord(t) = ps(t) + rRs

 0

h

d

 , (2.2)

which is attached to the moving camera/sensor, displaced by h ≥ 0 along the
camera frame axis ys, and located at a distance d > 0 along its zs axis, where
rRs is the rotation matrix between the sensor frame and the world reference
frame. In case the localization sensor is worn on the human head (e.g. Oculus
Rift) then h = 0, as in Fig. 2.3. This task is corresponding to the command
”Follow” of the mixed-reality interface.

Figure 2.2: Frames and parameter definitions for the coordination task. Here,
ze = zd yielding α = 0.

2.2.2 Variable Circular Task

The second positional task, in Fig. 2.3, is to follow a circular path by the robot
end-effector. The circle radius is r = 0.2 m and its center is at the point pcoord(t)



18 Coordination Tasks

Figure 2.3: Frames and parameter definitions for the desired circular coordina-
tion task.

that is also attached to the moving sensor in the same way of the previous task.
In this case, the unit vector zd (i.e. always parallel to zs) should be orthogonal
on the desired circle

peed = Circcoord(s(t)) = Circ(s(t)) + rRs

 0

h

d

 , (2.3)

where
Circ(s(t)) = ps(t) + r (cos(s(t)) u + sin(s(t)) n), (2.4)

where n and u are any two orthonormal vectors to zs, and s(t) is the path
parameter. This task is corresponding to the command ”Circle” of the mixed-
reality interface. In (2.2) and (2.3) the peed is always updated according to the
human-head motion localized as in Chapter 1.

The last positional task is corresponding to the command ”Stop”. The robot
should regulate to the last computed desired point peed and remains at rest.

2.3 Pointing Task

Adding a classical 3D pointing task (m = 2) or a complete orientation task
(m = 3) to the positional one, the task dimension would reach m = 5 or m = 6,
respectively. For a standard industrial manipulator with n = 6 joints, this would
imply that just one or no additional dof is left to the robot in order to achieve
other tasks, i.e. collision avoidance. To milden this situation, in our framework
we have proposed the use of a relaxed pointing task which requires one additional
dof (m = 3 + 1 = 4) continuously using an equality constraint Khatib et al.
[2017], or transversely in the inequality case Khatib et al. [2019b].

Denoting by q ∈ Rn the joint coordinates of the robot. The relaxed pointing
task is specified by a constant relative angle αd ∈ R (e.g., αd = 5◦) between
a unit vector zd(t) and the ze(q) axis of the frame attached to the robot end-
effector (the third column of the rotation matrix Re(q) relative to the world
frame). In this case, the pointing task can be represented as a cone has its apex
located at peed(t), with an apex angle αd and an unit axis zd(t) with a desired
orientation. For our application, peed(t) is determined from the estimated head



2.3 Pointing Task 19

pose, and zd(t) is ideally pointing at the human eyes as shown in Figs. 2.2
and 2.3 where

zd(t) = Red(t)
(

0 0 1
)T
,

Red(t) = Rs(t)

 −1 0 0
0 1 0
0 0 −1

 .
(2.5)

The end-effector (EE) unit axis may point only approximately toward the human
head and, in fact, should only belong to the surface of the pointing cone. In
this case, the EE pointing can be expressed as

prp(q) = zTd ze(q) = cos(α), (2.6)

where for a constant desired relative angle αd > 0,

prpd = cos(αd) (2.7)

and the error is computed as

erp = prpd − prp ∈ R. (2.8)

Beside using the equality constraint in (2.7), we propose further relaxation by
defining the desired pointing angle using the following inequality

0 ≤ α ≤ αd. (2.9)

In this case, the desired task (2.7) can be written as

1 ≥ cos(α) ≥ cos(αd),
1 ≥ zTd ze(q) ≥ cos(αd),

(2.10)

where the unit axis ze(q) is allowed to point toward any Cartesian point belongs
to the surface of the coin or any point inside it. Through our mixed-reality
interface in Sec.1.6, the user can determine the desired αd to be 5◦ or 90◦.

To derive the Jacobian associated to the relaxed pointing task, assume that
α is constant. Differentiating eq. (2.6) yields

dprp(q)

dt
=
dzd
dt

T

ze(q) + zTd
dze(q)

dt
= 0. (2.11)

Being the time derivative of Re(q) Siciliano et al. [2010]

dRe(q)

dt
= S(ω)Re(q),

where S is the 3×3 skew-symmetric matrix representing the vector (×) product
and ω denotes the angular velocity of frame Re(q), we have

dze(q)

dt
= −S(ze(q))ω = ST(ze(q))Joee(q)q̇, (2.12)



20 Coordination Tasks

Figure 2.4: The blue sphere represents a limit for the coordination task. When
the sensor is outside the sphere in the position ps, the projected position ps
on the boundary of the sphere will be used as reference to compute the desired
following task.

where Joee(q) is the 3× n Jacobian that maps the joint velocity q̇ to the end-
effector angular velocity ω. Substituting (2.12) in (2.11), we obtain

dzd
dt

T

ze(q) + Jrp(q)q̇ = 0, (2.13)

where

Jrp(q) = zTd ST(ze(q))Joee(q) (2.14)

is the 1×n Jacobian matrix associated to the task defined through (2.6). From
(2.13), our relaxed pointing task is executed in nominal conditions by choosing
a q̇ that satisfies

Jrp(q)q̇ = −żTd (t) ze(q) = ṗrpd . (2.15)

2.4 Task Limit Sphere

During the execution of a complete coordination task, some limits may be
reached as well as task singularities encountered. While singularities can be
handled properly by the DLS technique Chiaverini et al. [2008] for Jacobian
computation, the occurrence of task limits deserve a special treatment.

For this situation, we propose in algorithm 1, a special treatment to avoid
any operational task limit. A Cartesian boundary is defined by a virtual sphere
S (of radius rs = 1 [m] and center cs at the second robot joint in the case of
our 7-dof KUKA), as shown in Fig. 2.4. If the sensor position is outside the
sphere and an intersection exists between its line of sight and the sphere, then
the desired EE position for the following task will be relocated accordingly at
the intersection point. Otherwise, if there is no intersection, the robot will be



2.4 Task Limit Sphere 21

Algorithm 1 Coordinated task limit check

1: l = zs

‖zs‖ , a =‖ l ‖2, b = 2l(ps − cs), c =‖ ps − cs ‖2 −r2
s

2: incidence = b2 − 4ac
3: if incidence ≤ 0 then
4: use the last estimate pose
5: else
6: d1 = −2b+

√
incidence
2a , d2 = −2b−

√
incidence
2a

7: p1 = ps + d1l, p2 = ps + d2l

8: l1 = p1−ps

‖p1−ps‖
, l2 = p2−ps

‖p2−ps‖
9: if ‖ ps − cs ‖2< r2

s then
10: if {l1 == l and ‖ p1 − ps ‖2> r2

s} or {l2 == l and ‖ p2 − ps ‖2> r2
s}

then
11: update the task with the current pose estimation
12: else
13: use the last estimate pose
14: end if
15: else if ‖ p1 − ps ‖2>‖ p2 − ps ‖2 and l2 == l then
16: update the task according to p2

17: else if ‖ p2 − ps ‖2>‖ p1 − ps ‖2 and l1 == l then
18: update the task according to p1

19: else
20: use the last estimate pose
21: end if
22: end if



22 Coordination Tasks

Figure 2.5: Different situations for the human-head pose, and how it get modi-
fied according to the task limits sphere.

Figure 2.6: The desired circular task is defined according to the projected circle
on the task limits sphere.

commanded to regulate for the last computed desired task reducing the residual
errors to zero, and finally remaining at rest.

Another situation which is beyond the task limits occurs when the sensor
is inside the sphere but looking to the outside of the robot workspace. Also in
this case the robot will be commanded for a regulation as before. As soon as
the position and pointing direction of the sensor become again feasible for the
task, motion control is resumed with the updated desired tasks. A scheme that
illustrates how we deal with the task limits in different situations is presented
in Fig. 2.5.

The same procedure is done in case of the desired circular task in Fig. 2.3,
where each point of the circle outside the limits, will be projected on the sphere,
as in Figure 2.6. Then the desired EE task will be computed according to the
projected point. The different coordinations tasks are illustrated, using V-REP
simulations, in a video at this link.

https://drive.google.com/file/d/14BLu2lLKyW6nZSLXLPqGJwPCZ7naIjxq/view?usp=sharing


3
Collision Avoidance Tasks

3.1 Introduction

In our contactless collaboration, the human operator is supposed to work close
to a robot that may live in an environment cluttered with obstacles. Therefore,
both human safety and robot integrity should always be guaranteed. Collision
avoidance problem can be separated into two sub-problems. The first one is the
definition of the avoidance task in the Cartesian space (which will be introduced
in this chapter), and the other one is how to control this task together with
other robot main tasks (in Chapter 4). The main process for avoiding any
obstacle is the related distance computations. In the following sections, we
summarized the depth space approach Flacco et al. [2015b] which we used for
distance computations in our application. Also, different definitions for the
collision avoidance task are introduced.

3.2 Distance Computation

The critical operation for any collision avoidance approach is to compute the
distances between all interest objects efficiently in the real-time. For this, we
resort to the depth space approach in Flacco et al. [2015b] to evaluate the dis-
tances between a number of control points (including the EE) selected along the
robot arm and any obstacle (including the human operator) in the workspace. In
this work, we considered nine control points along the robot body, four of them
located between the third and fourth joints. While, the next four points are
located between the fourth and sixth joints. The last control point is located on
the robot TCP. The distance computations are done using a single RGB-D cam-
era only, where the point-to-object distances are evaluated directly in the depth
space of the sensor, allowing large saving in the computation time, Fig. 3.1.

Consider an obstacle point o and a generic control point c, which are rep-
resented in the depth space as Do = (ox oy do)

T and Dc = (cx cy dc)
T , where

the first two coordinates represent the position of the projected point in the
2D image plane of the sensor, and the third coordinate represents the depth of
this point as seen from the sensor. To compute the Cartesian distance D(c,o)

23



24 Collision Avoidance Tasks

Figure 3.1: Snapshot of a depth image superposed with the computed distances
between control points (green circles) on the robot arm and close objects lo-
cated in the surveillance area. The picture shows also the computed distance
between the end-effector and the human hand obstacle (cyan line), as well as
its associated repulsive vector (blue line).

between points c and o, two different cases are considered.

• If do > dc, then

D(c,o) w DD(Dc,Do) =
√
a2
x + a2

y + a2
z,

ax =
(ox − ρx)do − (cx − ρx)dc

l sx
,

ay =
(oy − ρy)do − (cy − ρy)dc

l sy
,

az = do − dc,

(3.1)

where DD is the distance in the depth space, l is the focal length of
the depth camera, (sx, sy) are the pixel sizes and (ρx, ρy) are the pixel
coordinates of the image plane center.

• If do ≤ dc, the depth of the obstacle is assumed conservatively to be equal
to the depth of the control point (do = dc), and the distance is then
computed using (3.1).

The generic unit vector between c and o is given by

u(Dc,Do) =
(ax ay az)

T

DD(Dc,Do)
. (3.2)

To evaluate distances between c and all obstacle points sufficiently close to it,
the distance evaluation is applied only to pixels in the depth image plane within
a desired region of surveillance.



3.3 Task Definition for Collision Avoidance 25

3.3 Task Definition for Collision Avoidance

Potential field approach is a common way to define the collision avoidance
task Khatib [1986a], where the key tool is how the repulsive vectors between
the interest robot points and obstacles will be computed. The desired reaction
magnitude is usually based on a reverse relation with the nearest object. While
the preferred direction can be considered as the mean/minimum for the direc-
tion vectors of all objects in the surveillance area of each interest point, see for
examples Flacco et al. [2015a] and Lacevic et al. [2013].

In our case, the magnitude of the desired reaction takes into account the
nearest object to each control point as

u(c) =
umax

1 + e(Dmin(c)(2/ρ)−1)γ
, (3.3)

where umax is the maximum admissible magnitude, the factor γ > 0 shapes the
exponential decay rate, and

Dmin(c) =
h

min
i=1

D(c,oi), (3.4)

where h is the number of obstacle points in the surveillance area of c. In practice,
for a large value of γ, the magnitude u of the repulsive vector approximately
equals umax when Dmin(c) ≈ 0, and approximately vanishes when the distance
reaches the ρ value, where beyonds ρ the u(c) is not defined.

The direction of the desired reaction is evaluated either as the mean vector
cumean(c), or minimum vector cumin(c) of the unit distance vectors between
each control point c and all points of objects in the surveillance area where

cumean(c) =
1

h

h∑
i=1

u(Dc,Doi), (3.5)

and

cumin(c) = u(Dc,Domin), (3.6)

where omin is the nearest obstacle to c. In this case, the repulsive vector
associated to each control point can be defined in the base reference frame as

u(c) = rRc u(c) cumean|min(c), (3.7)

where rRc is the rotation matrix between the depth camera frame and the base
reference frame.

Using (3.7), each control point along the robot has its corresponding repul-
sive vector to be used for collision avoidance task. These repulsive vectors can
be considered as desired Cartesian forces, accelerations or velocities according
to the applied motion control. In Flacco et al. [2015a], all repulsive vectors for
the robot body control points, but the EE, are treated as Cartesian constraints
with artificial forces and transformed approximately into hard joint velocity or
acceleration constraints which used during the control of the desired tasks. In-
stead, the authors in Lacevic et al. [2013] considered the collision avoidance



26 Collision Avoidance Tasks

task as a joint space desired velocity. All repulsive vectors are transformed ap-
proximately to the joint space and then accumulated algebraically to finally be
projected it in the null space of the robot main task as follows

q̇ = δJ#ṗ + (I − δJ#J)q̇c, (3.8)

where

q̇c =

y∑
k=1

JTcku(ck), (3.9)

where y is the total number of robot control points, and Jc is the analytic
Jacobian of the direct kinematics for the position of the control point c. In (3.8)
the parameter δ is used to switch off/on the main task smoothly according to
a predefined danger field. Using (3.9), if there are multiple obstacles moving
oppositely to the same interest point, the corresponding repulsive vectors will
cancel/reduce the effect of each other and the collision could be unavoidable.

Another way is to consider each repulsive vector as a desired Cartesian ac-
celeration

p̈c = u(c). (3.10)

In (3.10), the definition of the collision avoidance task is over deterministic and
requires at least three dofs to be handled. Instead, similar to Zlajpah and Nemec
[2002], we propose to relax the avoidance task constraints to be m = 1. This is
done by projecting the repulsive vector in its corresponding unit direction as

p̈n =
u(c)T

||u(c)||
p̈c,

Jn =
u(c)T

||u(c)||
Jc,

(3.11)

where p̈n ∈ R and Jn ∈ R1×n. In this form, the task in (3.10) is modified so
that not the direction but only the speed of moving away from the obstacle is
specified thus creating only one constraint. According to the motion control
algorithm, one could consider single or several relaxed collision avoidance tasks,
e.g. the most critical one.



4
Motion Control

4.1 Introduction

In this chapter different motion control algorithm will be introduced and com-
pared to perform the proposed collaboration tasks using different sensors. This
will be presented in a progressive way.

In the first two sections, we present the design of kinematic control laws
that handle the coordination task, peed , introduced in Chapter 2, including the
relaxed definition of the pointing task, prpd . Two strategies are pursued: the
first one is by augmentation of the positional task (mpee = 3) with the relaxed
pointing task (mrp = 1), as detailed in Sec. 4.2; the second one is through
a suitable projection of the relaxed pointing task into the null space of the
positional one (in Sec. 4.3). Comparative results of V-REP simulations and of
an experiment with a KUKA LWR arm are reported.

In the second stage, the collision avoidance task, pck , for y different control
points along the robot body is included, where k ∈ [1, 2, .., y]. For this, a special
consideration is done for the control point of end-effector, pcee . The robot
desired tasks, i.e. (peed , prpd ,pcee ,pc1 , .., ,pcy ), are handled using two different
task priority control algorithms. Namely, the SNS algorithm in Sec. 4.5, and the
Task Priority Matrix (TPM) in Sec. 4.6. Various simulations using MATLAB,
and several experiments are presented.

4.2 Task Augmentation

Let a set of l desired Cartesian tasks, to be achieved in a specific desired priority,
be defined as

pi = pi(t), 0 < i ≤ l, (4.1)

where pi ∈ Rmi . The i-th task has higher priority than the j-th task if i < j. In
this case, the simplest solution, that does not consider the priority order, can be
obtained using the first-order differential inverse kinematics given by Chiaverini

27



28 Motion Control

et al. [2008]
q̇ = J#ṗ, (4.2)

where q̇ ∈ Rn represents the joint velocities,

J = [JT1 . . . JTi . . . JTl ]T , (4.3)

is the augmented matrix that contains a Jacobian J i ∈ Rmi×n related to each
desired task, where

∑l
i=1mi = m ≤ n, and

ṗ = [ṗT1 . . . ṗTi . . . ṗTl ]T . (4.4)

Using (4.2), the accuracy of each task execution is according to the dependency
between all the tasks. For example, if there is no tasks conflict, the robot
can achieve all of them, otherwise the final solution will be the sum of each
task contribution. Indeed, solution (4.2) has a good shaping of the inverse
kinematic solution where the contribution and the null space for each task can
be deduced easily. On the other hand, singularities may appear when there are
linear dependencies between the tasks.

The complete coordination task can be realized using Task Augmentation
(TA), namely by stacking the Jacobians Jpee from (2.1) and Jrp from (2.15)
in (4.3). In nominal conditions, a solution can be obtained by choosing a joint
velocity q̇ that satisfies

ṗA,d =

(
ṗeed
ṗrpd

)
=

(
Jpee(q)

Jrp(q)

)
q̇ = JA(q)q̇, (4.5)

where JA(q) is the 4 × n Augmented Jacobian. Assuming that n > 4 = m,
i.e., the robot is redundant for the augmented task, and that we need to react
by feedback to possible positioning error epee and/or relaxed pointing error erp
that may arise during task execution, the final control law is defined as

q̇ = J#
A(q)

((
ṗeed
ṗrpd

)
+

(
KP (peed − k(q))

krp(prpd − prp(q))

))
, (4.6)

where J#
A is the pseudoinverse of the Jacobian JA in (4.5), KP > 0 is a 3× 3

diagonal gain matrix, and krp > 0 is a scalar gain. Typically, the 3D motion of
the human/sensor is not known in advance, and so ṗeed and ṗrpd in (4.6) will
not be available to the controller. In practice, these reference velocities are set
to zero and robot motion will be driven only by the two errors epee and erp.
Indeed, it is also possible to obtain an online prediction of the camera motion
(e.g., based on an EKF method, as done in Milighetti et al. [2011]), and include
this as the nominal feedforward term in the control law (4.6).

To obtain the pseudoinverse in (4.6), one needs to compute the Singular
Value Decomposition (SVD) Golub and Van Loan [1996] of the Jacobian, JA =
UΣV T , where U = col{ui} and V = col{vj} are, respectively, m × m and
n× n unitary matrices, and Σ is a m× n block matrix, with a leading m×m
diagonal block containing the singular values σi ≥ 0 (i = 1, . . . ,m) of JA in
decreasing order (σh ≥ σk for h < k), followed by n−m zero columns. It is

J#
A = V Σ#UT =

ρ∑
i=1

1

σi
viu

T
i , (4.7)



4.3 Null-Space Projection 29

where ρ ≤ m = 4 is the rank of JA. When the smallest singular value(s)
becomes too small (i.e., close to singularities), large joint velocities are being
generated. This drawback was addressed in our implementation by the Damped
Least Squares (DLS) technique Chiaverini et al. [2008], replacing in (4.7)

1

σi
→ σi

σ2
i + λ2

⇒ J#
A → JDLS

A . (4.8)

with

λ2 =

{
0, when σi ≥ ε,(

1− (σi/ε)
2
)
λ2
max, otherwise.

The small parameter ε ≥ 0 monitors the singular values σi and defines the range
of the damping action, while λ2

max > 0 is the largest damping factor used at
singularities.

4.3 Null-Space Projection

To take into account the task priority strictly, while executing the Stack of Task
(SoT) in (4.4), the most common way is to use the recursive solution with null
space projection Siciliano and Slotine [1991] as follows

q̇i = q̇i−1 + (J iN i−1)#(ṗi − J iq̇i−1), (4.9)

where q̇0 = 0. The null space projector is given by

N i = N i−1 − (J iN i−1)#J iN i−1, (4.10)

where N0 = I is the identity matrix. Using (4.9) the highest priority task, i.e.
i = 1, is ideally no longer affected by other tasks. On the other hand, when some
of the tasks are linearly dependent, the contribution of a lower priority task and
the null space of the higher task can not be inferred. This missing information
is important to perform a smooth transition during a desired addition, deletion
or reordering operation on the tasks.

As a second control strategy, we pursue the null-space design method to con-
sider the positional tracking task defined through (2.1) as the one with highest
priority, we accommodate the relaxed point task into a joint velocity q̇2 ∈ Rn
which is then projected in the null space of the high-priority task, so as not to
affect its execution in case of conflicts. Thus, we define

q̇ = q̇1 = J#
pee(q)

(
ṗeed + KPepee

)
+ N1(q)q̇2 (4.11)

where N1 = I − J#
peeJpee . To execute the relaxed pointing task, a Projected

Gradient (PG) technique Chiaverini et al. [2008] is followed, choosing vector q̇2

as
q̇2 = −kg∇qH(q), (4.12)

with

H(q) =
1

2
e2
rp =

1

2

(
cosαd − zTd ze(q)

)2
, (4.13)

namely along the negative gradient of the squared norm of the error erp, taken
as objective function H(q) ≥ 0. The scalar gain kg > 0 in (4.12) is used to
shape the convergence rate, and plays a very similar role as krp in (4.6).



30 Motion Control

4.4 Task Augmentation vs. Projected Gradient

4.4.1 Comparative Simulations

Several simulations have been run in a ROS environment, integrated with the
robot simulator V-REP, using the motion control law (4.6) or (4.11). Figure 4.1
shows in the V-REP scenario some typical robot configurations obtained for
different camera poses.

Figure 4.1: Representative robot behaviors achieved during the visual coordi-
nation task.

In all the numerical tests, we assumed an ideal localization. The two offsets
used to determine the desired position peed and the constant relative angle for
the relaxed pointing task (see Fig. 2.2) were chosen as

h = 0.05 [m], d = 0.2 [m], αd = 5◦. (4.14)

The gains in the control law (4.6) were chosen as

KP = diag{20, 30, 30}, krp = 20.

Moreover, the feedforward terms in (4.6) were absent (ṗeed = 0, ṗrpd = 0), since
the camera motion is assumed to be unknown.

In Figs. 4.2–4.3, we report the results obtained for two simple camera mo-
tions. In both cases, the robot initial configuration is matched with the initial
desired task, i.e., at time t = 0, the errors are epee(0) = 0 and erp(0) = 0.
In the first simulation, the camera position changes continuously, tracing a cir-
cle in the vertical plane at x0 = −0.8 m (parallel to (y0, z0), see Fig. 2.4),
while the pointing direction is kept constant and horizontal at the value zd =
(−1, 0, 0). Since the motion is relatively slow, both the maximum of the point-
ing error (erp,max = 5.4 · 10−4) and the maximum norm of the position error
(‖epee‖max = 2 · 10−3) in Fig. 4.2 are very small. In the second simulation, the
camera center is kept fixed while zd oscillates periodically in a horizontal plane
around the vertical axis. As a result, the reference position of the displaced
target point peed is changing, as shown in Fig. 4.3. The peaks or discontinuities
in the errors occur when the x and y coordinates of peed are inverting motion,
but the errors remain always small. The results obtained using the PG con-
trol method are very similar to those shown with TA control, and are thus not
reported.



4.4 Task Augmentation vs. Projected Gradient 31

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

2

time [s]

d
e

s
ir
e

d
 p

o
s
it
io

n
 [

m
]

 

 

x
y
z

0 10 20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time [s]

e
rr

o
r 

[m
]

 

 

x
y
z

0 10 20 30 40 50 60

0

0.5

1

1.5

2

2.5

3

3.5

4

time [s]

d
e

s
ir
e

d
 o

ri
e

n
ta

io
n

 [
ra

d
]

 

 

pan
tilt

0 10 20 30 40 50 60
−6

−4

−2

0

2

4

6
x 10

−4

time [s]

e
rr

o
r 

[c
o

s
α

d
 −

 z
d

T
.z

e
]

0 10 20 30 40 50 60
−0.5

0

0.5

1

1.5

2

2.5

time [s]

jo
in

t 
p

o
s
it
io

n
s
 [

ra
d

]

 

 

q1 q2 q3 q4 q5 q6 q7

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

0.1

0.15

time [s]

c
o

n
tr

o
l 
v
e

lo
c
it
ie

s
 [

ra
d

/s
]

 

 

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7

Figure 4.2: Motion control with the TA method in the first simulated task:
(top) desired end-effector position peed and position error epee ; (center) desired
pointing direction zd, represented by its pan and tilt angles, and relaxed pointing
error erp; (bottom) joint positions and commanded velocities.



32 Motion Control

0 10 20 30 40
−1

−0.5

0

0.5

1

1.5

time [s]

d
e

s
ir
e

d
 p

o
s
it
io

n
 [

m
]

 

 

x
y
z

0 10 20 30 40
−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time [s]
e

rr
o

r 
[m

]

 

 

x
y
z

0 10 20 30 40
−4

−3

−2

−1

0

1

2

3

4

time [s]

d
e

s
ir
e

d
 o

ri
e

n
ta

io
n

 [
ra

d
]

 

 

pan
tilt

0 10 20 30 40
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−3

time [s]

e
rr

o
r 

[c
o

s
α

d
 −

 z
d

T
.z

e
]

0 10 20 30 40
−1

−0.5

0

0.5

1

1.5

2

2.5

time [s]

jo
in

t 
p

o
s
it
io

n
s
 [

ra
d

]

 

 

q1 q2 q3 q4 q5 q6 q7

0 10 20 30 40
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

time [s]

c
o

n
tr

o
l 
v
e

lo
c
it
ie

s
 [

ra
d

/s
]

 

 

q̇1 q̇2 q̇3 q̇4 q̇5 q̇6 q̇7

Figure 4.3: Motion control with the TA method in the second simulated task.
Quantities are the same reported in Fig. 4.2.



4.4 Task Augmentation vs. Projected Gradient 33

zc 

zd 
ze 

Figure 4.4: Snapshot of the experiment. The camera is simply held by hand and
moved around, but frames and offsets mimic the situation of a camera mounted
on the human head. Three markers are used for continuous camera localization.
Depends on the camera pose, the marker with the highest confidence factor
being used.

4.4.2 Experimental Evaluation with Task Augmentation

Experiments were conducted with a KUKA LWR IV manipulator in a ROS
environment, using the joint position control mode of the FRI with a sampling
time ts = 5 ms. An Intel core i5 @2.5GHz×4 laptop was used under 64-bit
Ubuntu. For the online localization of the human, in this experiment we used
the ARToolKit library with a RGB camera (i.e. Kinect camera 1) as shown
in Sec.1.4. Three markers were placed on the robot supporting table and an
additional EKF was used. Nonetheless, we found in practice that performance
in the visual coordination tasks was already good without the further addition
of the IMU. The camera is being held by an operator who is moving around
in the workspace tracing an arbitrary, a priori unknown path, see Fig. 4.4.
The offset data h and d, and the relative angle αd were chosen as in (4.14).
Task augmentation was used to control the robot motion, with (cautious) gains
KP = 1.5 · I and krp = 1.5, and no feedforward.

A video for one representative experiment can be watched here, where the
obtained results are reported in Fig. 4.5. The error peaks on position and
pointing angle are related to fast transients in the camera motion, leading to
larger actual differences with respect to the desired visual coordination task.
Nonetheless, once the initial mismatching error is recovered, the maximum of the
(non-dimensional and normalized) pointing error was erp,max ' 0.04. Similarly,
‖epee‖max ' 0.14 m.

1We used the libfreenect-based ROS driver for the Microsoft Kinect, where the camera
parameters can be found and edited.

https://youtu.be/SRfpNrZD7k0


34 Motion Control

0 20 40 60 80
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

time [s]

e
rr

o
r 

[m
]

 

 

x
y
z

0 20 40 60 80
−0.05

0

0.05

0.1

0.15

0.2

time [s]

e
rr

o
r 

[c
o
s
α

d
 −

 z
d

T
.z

e
]

0 20 40 60 80

−0.5

0

0.5

1

1.5

2

2.5

time [s]

jo
in

t 
p
o
s
it
io

n
s
 [
ra

d
]

 

 

q1 q2 q3 q4 q5 q6 q7

Figure 4.5: Experimental results with the KUKA LWR IV: (top) position error;
(center) relaxed pointing error; (bottom) evolution of the joints.



4.5 Saturation in the Null Space Algorithm 35

4.5 Saturation in the Null Space Algorithm

In this section we will consider the collision avoidance task in addition to the
EE coordination tasks in Chap. 2. For this, the saturation in the null-space
algorithm (SNS) of Flacco et al. [2015a] will be used to handle all desired tasks
in a specific priority. The EE collision avoidance task will be considered as a
desired Cartesian velocity, while the collision avoidance tasks of the other control
points along the robot body will be transformed to hard joint space limits. In
this case, the SNS algorithm will be applied at the acceleration level to avoid
any joint velocity discontinuity due to the switching of saturated joints Flacco
et al. [2015a]. The distance computations required for collision avoidance are
done using the depth space approach in Sec. 3.2.

Repulsive vector of the robot EE

For EE collision avoidance, the repulsive vector in (3.7) is considered as a
repulsive velocity ṗcee that directly modifies the EE original desired velocity
ṗeed ∈ R3 for the coordinated positional task as

ṗ′eed = ṗeed + ṗcee , (4.15)

where

ṗeed = v
peed − pee
‖peed − pee‖

, (4.16)

and
ṗcee = u(cee) = u(cee)umean(cee). (4.17)

The EE repulsive vector direction umean(cee) is computed as in (3.5), to pre-
vent the EE to stuck between any obstacles located in symmetric positions.
The desired EE position peed in (4.16) is computed according to the desired
collaboration using (2.2) or (2.3).

To have a smooth trajectory, the velocity magnitude v in (4.16) is evaluated
at discrete instants tk = kT , being T > 0 the sampling time, as

vk = v(tk) = kp‖peed,k − pee,k‖ − kdvk−1, (4.18)

where pee = k(q) is the robot direct kinematics, kp > 0, kd > 0, and vk−1

is the previous sample of the Cartesian speed. From (4.15), the desired task
acceleration p̈′eed is obtained as

p̈′eed =
ṗ′eed − ṗee

T
, (4.19)

where ṗee = J(q)q̇ is the EE velocity and J is the 3 × n analytic Jacobian
related to the positional task.

Repulsive vectors along the robot body

Following Flacco et al. [2015a], the repulsive vectors associated to control points
along the robot body are treated as Cartesian constraints with artificial forces
that are translated into joint velocity and acceleration inequality constraints.
Let Dmin(c) and umin(c) be the minimum distance and the minimum vector



36 Motion Control

Figure 4.6: The block diagram of the SNS algorithm.

between a control point c and all objects in its associated surveillance region. In
this case, a ‘risk of collision’ can be defined through the function similar to (3.3)
as

u(c) =
1

1 + e(Dmin(c)(2/ρ)−1)γ
. (4.20)

Accordingly, a Cartesian constraint force can be defined as u(c)umin(c) and
converted to the joint space by

h(q) = JTc (q)
[
u(c)umin(c)

]
, (4.21)

where Jc is the analytic Jacobian of the direct kinematics for the position of
the control point c. Each component of the n-dimensional vector h represents
the ‘degree of influence’ of the Cartesian constraint on the homologous joint.
Next, the admissible velocity limits of each joint will be reshaped using the risk
of collision function (4.20) according to the rule

if hi > 0, q̇max,i = Q̇max,i (1− u(c))

else, q̇min,i = −Q̇max,i (1− u(c)),
(4.22)

where ± Q̇max,i are the (symmetric) original bounds on the ith joint velocity,

i.e., |q̇i| ≤ Q̇max,i, for i = 1, . . . , n. As a result, the modified velocity limits will
be converted as bounds on the actual acceleration commands, namely

Q̈min,i =
q̇min,i + q̇i

T
≤ q̈i ≤

q̇max,i + q̇i
T

= Q̈max,i, (4.23)

for i = 1, . . . , n. Multiple Cartesian constraints, arising from different obstacles,
can be taken into account by considering, for each joint i, the maximum degree
of influence of all these virtual constraints.

SNS algorithm for the first priority task

At this stage, we can apply the simplest version of the SNS algorithm at the
acceleration level Flacco et al. [2012a], considering the joint acceleration lim-
its (4.23), which already embed collision avoidance for the robot body, and ex-
ploiting robot redundancy to realize the other desired tasks as much as possible
(see Fig. 4.6). In our framework, the first priority task for the robot is to follow
with its end-effector EE a specific position trajectory peed(t) that is coordinated



4.5 Saturation in the Null Space Algorithm 37

with the motion of the head of the human operator, as defined in Sec. 2.2. This
will be the case, unless the acceleration command p̈′eed in (4.19) includes the
velocity modification resulting from the EE collision avoidance scheme (4.17)
and (4.15).

In the SNS algorithm, the joint acceleration satisfying the first task is com-
puted through some iterations (at the current sampling instant) based on Jaco-
bian pseudoinversion as

q̈1 = q̈N,1 + (J1W 1)#(s1p̈
′
eed
− J̇1q̇ − J1q̈N,1), (4.24)

with the first iteration being initialized with W 1 = I, q̈N,1 = 0, and s1 = 1.
If the joint acceleration in (4.24) exceeds any of the limits (4.23) related to
the robot body collision avoidance, it will be modified by bringing back to
its saturated value the most violating command and projecting it into the null
space of the task Jacobian of the enabled (non-saturated) joints (i.e., by suitably
modifying the values of W 1, and q̈N,1). This is repeated until all acceleration
limits are satisfied or when the rank of J1W1 < m. In the latter case, a proper
scaling factor s1 ∈ (0, 1) is necessarily used to reduce the original p̈′eed and obtain
feasibility. In practice, joint motions that are in contrast with the Cartesian
constraints will be scaled down. When a constraint is too close, all joint motions
that are not compatible with it will be denied.

SNS algorithm for the second priority task

The relaxed pointing task defined in section 2.3 can be realized by minimizing
the cost function H(q) in (4.13). This will be considered as our second (lower)
priority task, thus preserving the higher priority positional task and still without
violating the constraints on the joint acceleration commands associated to the
robot body collision avoidance requirement. Therefore, the negative gradient
of the cost function (4.13) with a step kg > 0 is projected in the auxiliary
null-space projector P given by

P = (I − ((I −W 2)(I − J#
1 J1))#)(I − J#

1 J1), (4.25)

where initially W 2 = I. For each saturated q̈1i, we shall set W 2ii = 0. Itera-
tions proceed then as for the first task. The final commanded joint acceleration
will take the form

q̈com = q̈1 + s2P (−Dq̇ − kg∇H(q)), (4.26)

where s2 ∈ (0, 1) is a proper scale factor introduced only if feasibility with re-
spect to the hard inequality constraints cannot be recovered. The addition of
a (diagonal) damping matrix D > 0 in the null space is strictly recommended
when working with acceleration commands, in order to eliminate any uncon-
trolled self-motion velocity. The complete multi-task SNS algorithm at the
acceleration level can be found in Flacco et al. [2012a].

4.5.1 Experimental Evaluation

In the experimental setup we have considered again the KUKA LWR4 ma-
nipulator. The robot should execute the coordination positional and pointing
tasks while avoiding collision with the human operator or any static or dynamic



38 Motion Control

Oculus 
System

Mixed-Reality
Interface

ZED Mini 
Camera 

LWR4 FRI 
Server

Kinect 
Camera

Human-Head 
Localization

Task Limit 
Check

Depth Space 
Approach

SNS Control 
Algorithm

Control computer

Robot’s controller

Depth 
images
[30 Hz]

Stereo 
images

[∼30 Hz]

Augmented 
images [90 Hz]

HMD pose
[200 Hz]

User command
[200 Hz]

"##$ , %&
[200 Hz]

"', %'
[200 Hz]

((*, ,)
[200 Hz]

Joints read
[200 Hz]

Position 
command
[200 Hz]

ROS node

ROS topic

Unity Platform

Figure 4.7: Data flow diagram for the proposed control system.



4.5 Saturation in the Null Space Algorithm 39

obstacle in the environment. The proposed control algorithm in Fig. 4.6 is im-
plemented using C++ through ROS 2 middle-ware. The control framework is
implemented according to the data flow diagram in Fig. 4.7. The KUKA robot
is controlled using the position control mode through the Fast Research Inter-
face (FRI) library KUK [2011], with a control cycle of T = 5 [ms]. For collision
avoidance, the workspace is monitored by a Microsoft Kinect depth sensor that
captures 640 × 480 depth images at a frequency of 30 Hz. For human head
localization, a combination of Oculus Rift and single tracking sensor is used as
illustrated in Sec. 1.5. The Rift is attached to the operator helmet while the
tracking sensor is located in a static place, directed toward the robot workspace,
see Fig. 4.12. The control scheme in these experiments can be represented using
the general proposed one in Fig. 2, where in this case there is no mixed-reality
interface and the involved priority control algorithm is the SNS. The system
runs on core i7-6700k CPU @4GHz, with 4-core and 8-logical processors.

The parameters values for EE collision avoidance in (3.3) and for the other
control points in (4.20) have been set to ρ = 0.3 [m], umax = 1.5 [m/s] and γ = 5.
The used motion control gains are kp = 0.5, kd = 0.05 in (4.18), and kg = 10
in (4.26). Finally, for the coordinated motion tasks we have used the parameters
h = d = 0.15 [m] for the following task in (2.2) and αd = 5◦ for the pointing task
in (4.13). The results of two typical experiments are presented in the following
paragraphs. More experiments are shown in a video available here.

First experiment

In the first experiment the human operator is standing still in front of the
robot during the whole experiment (for about 60 s), keeping his head at rest
and frequently moving his right hand toward the robot (see Fig. 4.8). At the
beginning, the robot EE moves to comply with the desired coordination task,
minimizing the position and orientation errors w.r.t. the constant reference
specified by the human. Every time an obstacle (in this case, the operator
hand) is coming closer to the robot, the EE will try to achieve the task while
primarily avoiding collision. If this is impossible, the robot will move away from
the obstacle increasing thus the coordination error. When the operator moves
back the hand away from the robot end-effector, the EE starts again being able
to achieve the coordinated task. In Fig. 4.8, since the head position is always
out of the robot predefined task limits, the corresponding projection is used to
define the desired task. The difference between the actual EE position and the
desired one is due instead to obstacle avoidance.

The positional tracking error in Fig. 4.9(a) increases every time the robot
is not able to achieve the task because of the need of avoiding obstacles. The
robot reaction magnitude (3.3) in Fig. 4.9(c) indicates in fact how close is the
nearest obstacle to the robot EE. Nonetheless, the EE keeps approximately the
desired orientation during the whole experiment, since this is not in conflict
with the higher priority task (Fig. 4.9(b)). The scaling factor (1− u(c)) on the
velocity limits (4.22) is shown in Fig. 4.9(d). Only the limits corresponding to
joints that are more influenced by the presence of the obstacle (joints 1 to 3)
are reduced.

https://youtu.be/MIPYas7-kQk


40 Motion Control

y [m]

0.4
0

-0.40
x [m]

-0.5-1

0.4

1.2

0.6

1

0.8

z 
[m

]

Rift
Projection
Task
EE

x [m]
-1 -0.8 -0.6 -0.4 -0.2 0

y 
[m

]

-0.4

-0.2

0

0.2

0.4 Rift
Projection
Task
EE

Figure 4.8: 3D (above) and top (below) views of the coordination task during
the first experiment. Green points: Estimated position of the human head. Red
points: Head pose projection on the task limit sphere. Blue points: Desired
positional task. Black points: EE position. The cylinder/circle denote the
robot base location.



4.5 Saturation in the Null Space Algorithm 41

time [s]
0 10 20 30 40 50 60

er
ro

r 
[m

]

-0.05

0

0.05

0.1

0.15

0.2
x
y
z

(a)

time [s]
0 10 20 30 40 50 60

er
ro

r 
[c

os
α

d -
 z

dT
.z

e]

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

time [s]
0 10 20 30 40 50 60

u
(r

E
E
)

0

0.02

0.04

0.06

0.08

0.1

0.12

(c)

0 10 20 30 40 50 60
0

0.5
1J 1

0 10 20 30 40 50 60
0

0.5
1J 2

0 10 20 30 40 50 60
0

0.5
1J 3

0 10 20 30 40 50 60
0
1
2J 4

0 10 20 30 40 50 60
0
1
2J 5

0 10 20 30 40 50 60
0
1
2J 6

time [s]
0 10 20 30 40 50 60

0
1
2

J 7

(d)

Figure 4.9: First experiment: The operator is standing still in front of the robot
and uses his hand as a dynamic obstacle. (a-b) EE position and orientation
errors. (c) EE desired reaction magnitude. (d) Joint limit scaling factors.



42 Motion Control

0-0.5

x [m]
-10

0.5

y [m]

1

0.2

0.6

0.8

1

1.2

0.4

z 
[m

]

Rift
Projection
Task
EE

x [m]
-1 -0.5 0

y 
[m

]

0

0.2

0.4

0.6

0.8

1

Rift
Projection
Task
EE

Figure 4.10: 3D (above) and top (below) views of the coordination task during
the second experiment. Legend is the same as in in Fig. 4.8.



4.5 Saturation in the Null Space Algorithm 43

time [s]
0 10 20 30 40 50 60

er
ro

r 
[m

]

-0.1

-0.05

0

0.05

0.1
x
y
z

(a)

time [s]
0 10 20 30 40 50 60

er
ro

r 
[c

os
α

d -
 z

dT
.z

e]

0

0.05

0.1

0.15

0.2

0.25

(b)

time [s]
0 10 20 30 40 50 60

u
(r

E
E
)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(c)

0 10 20 30 40 50 60
0

0.5
1J 1

0 10 20 30 40 50 60
0

0.5
1J 2

0 10 20 30 40 50 60
0

0.5
1J 3

0 10 20 30 40 50 60
0
1
2J 4

0 10 20 30 40 50 60
0
1
2J 5

0 10 20 30 40 50 60
0
1
2J 6

time [s]
0 10 20 30 40 50 60

0
1
2

J 7

(d)

Figure 4.11: Second experiment: The operator is moving and uses his hand as
a dynamic obstacle. Quantities are the same reported in Fig. 4.9.



44 Motion Control

Second experiment

In the second experiment, the human operator moves initially and the robot
follows his head for the first 15 s approximately. Then, the human stops and
moves his hand toward the robot as in the first experiment. Figure 4.10 shows
how the human head pose estimation using the Oculus Rift is continuous and
smooth without any outliers. During some intervals, the EE does not follows
the desired behavior, again due to the need of obstacle avoidance.

In Fig. 4.11(a-b), the large initial values of the position tracking error are
due to the relatively fast motion of the human operator in this case. A similar
behavior is illustrared also in the mentioned video clip. The successive increases
in the position error are due instead to obstacle avoidance, as indicated also by
the three peaks in Fig. 4.11(c). At about t = 43 s, the robot is keeping the
desired EE position while an obstacle is getting nearer the first and second joints.
However, since the desired orientation has lower priority, its corresponding error
will be relatively high in response to the obstacle avoidance.

It must be remarked that multiple obstacles may affect at the same time
the motion of the robot, while acting on different parts of the structure. One
example is shown in Fig. 4.12, which is a snapshot from the video of another
experiment. In this case, the robot end-effector is pushed away from its coordi-
nated motion (with the human head) and is moving downward in response to
the hand motion, which is seen as a dynamic obstacle. However, in this way the
robot elbow is dangerously approaching the table supporting the robot base, a
static obstacle in the workspace, and the robotic system may also get stuck in
the limit. The proposed control scheme handles these situations as well, with
the SNS method smoothly stopping the joint motion.

Figure 4.12: A situation in which the simultaneous avoidance of two obsta-
cles affects the original human-robot coordinated motion: the dynamic obstacle
constituted by the human hand moving toward the robot end-effector and the
supporting table as a static obstacle acting repulsively from the bottom on the
robot elbow. Minimum distances to control points are highlighted in the depth
image on the top left.



4.5 Saturation in the Null Space Algorithm 45

0 50 100 150

time [s]

-0.4

-0.2

0

0.2

0.4

0.6
x

y

z

(a)

0 50 100 150

time [s]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

(b)

Figure 4.13: Experiment with mixed-reality interface: (a) The EE position and
(b) orientation errors. The operator is switching between the available tasks
and moving his hand as a dynamic obstacle.

4.5.2 Including Mixed-Reality Interface

The last experiment using the SNS algorithm is done including the proposed
mixed-reality interface in Sec. 1.6, where the whole proposed general scheme in
Fig. 2 is considered. The robot should execute the desired coordination task
selected by the operator using the Oculus controller. The robot starts with the
human-head following task as a default task, and then the operator can change
it to ”circle” or ”stop” tasks as defined in the Sec. 2.2.2. Also, the desired αd
for the pointing task can be chosen (i.e. 5◦ or 90◦). In this case the ZED-Mini
camera is attached to the Oculus Rift as shown in Fig. 1.9. The parameters
values for motion control and collision avoidance are the same as previous, but
the h parameter for the coordination task (2.2) is set to zero. The results of the
experiment is presented in the following paragraph, and its corresponding video
is available at this link.

In Fig. 4.13, the error in the desired coordination tasks is shown for the whole
experiment. From beginning, the ”follow” task is activated for 16 s where at
the 15th second the human hand act as a moving obstacle near the EE. Then,
the operator activates the ”stop” task from the second 17 until the second 23.

https://drive.google.com/file/d/14BLu2lLKyW6nZSLXLPqGJwPCZ7naIjxq/view?usp=sharing


46 Motion Control

Between the seconds 24 and 59, the ”circle” is activated and the user keeps
standing. Next, the user moves till the second 125. After that the ”stop” task
is selected for two seconds only. From the second 129 to 150, the ”follow” task
is re-activated. After that, the user selects the ”stop” mode. At the seconds
141 and 160 the human hand act again as a moving obstacle near the robot.
The high error peaks in the EE desired position happened whenever the human
hand moves nearly (i.e. at the seconds 16 and 141).

4.6 Task Priority Matrix

The solution using the task augmentation in (4.2) has a good inverse kinematic
solution shape, but it does not consider the tasks priority and singularities may
appear when there are linear dependencies between the tasks. The null-space
projection approach in (4.9) takes into account the task priority strictly. On
the other hand, some information for the contribution of lower priority tasks
can not be inferred. This missing information is important to perform a smooth
transition during any change in the tasks priority. In the SNS algorithm, the
modified joint limits are considered hard although they are determined approx-
imately in (4.21) and (4.22). Also, it is more complicated than the previous two
solutions.

In order to have a simple solution that combines the advantages of both
(4.2) and (4.9) solutions, a new approach that has a similar shape of (4.2) and
returns exactly the solution obtained by (4.9), keeping the whole knowledge of
the tasks, has been presented by Flacco [2016], where redundancy resolution is
independent from enforcing desired task priority. This is done using the so-called
Tasks Priority Matrix (TPM) as follows

q̇ = J#F ṗ, (4.27)

where F ∈ Rm×m is a square matrix to be computed in a specific way to
control the desired task priority strictly. The key tool of TPM calculation
is to use the Gauss-Jordan elimination method, which is commonly used to
compute the reduced row echelon form (rref), considering a pivot square matrix
with dimension (mi ×mi) for each corresponding desired task instead of pivot
elements as in rref.

Let the QR decomposition for the transpose of the augmented Jacobian (4.3)
given by

JT = Q

[
R
O

]
, (4.28)

where Q ∈ Rn×n is an orthogonal matrix and R ∈ Rm×m is an upper triangular
matrix. The diagonal block matrices Rii ∈ Rmi×mi correspond to the desired
tasks will be used as pivots matrices during the TPM calculations. Note that,
the pivot matrix Rii is nonsingular if the task i is nonsingular and linearly
independent from all tasks with higher priority.

The algorithm to compute the TPM is as follows

Step 1: Initialize the TPM as

F̄ = R. (4.29)



4.6 Task Priority Matrix 47

Figure 4.14: The structure of the temporary matrix F̄ . The highlighted com-
ponents refer to the involved block matrices during the operations of computing
the TPM for i = 2 [top], and i = l [bottom].

Step 2: Let mhi
=
∑i−1
k=1mk and mh1

= 0. Multiply the block row
F̄ (mhi

+ 1 : mhi
+ mi, 1 : m), i.e. the blue blocks in Fig. 4.14, with the

pseudoinverse of its pivot matrix, i.e. R#
ii . As a result, the i-th diagonal

block will be Identity if Rii is nonsingular.

Step 3: For i > 1, multiply the block F̄ (1 : mhi
,mhi

+ 1 : mhi
+mi), i.e.

the red blocks in Fig. 4.14, by the row block F̄ (mhi + 1 : mhi +mi, 1 : m),
i.e. the blue blocks in Fig. 4.14, and subtract it from the block row
F̄ (1 : mhi

, 1 : m), i.e. the green blocks in Fig. 4.14,.

Step 4: Repeat the steps 2 and 3 for all blocks row related to all tasks,
i.e. for 0 < i ≤ l.

Step 5: Get the transpose of the modified matrix where

F = F̄
T
modified. (4.30)

Note that, the QR decomposition in (4.28) can be also used to compute the J#

in (4.27) as

J# = Q

[
R
O

]−T
. (4.31)

In Flacco [2016], the solution using TPM (4.27) is proofed to be exactly
equal to the standard null-space projection (4.9). Note that, using (4.27), the
redundancy resolution is totally separated from controlling the SoT in a desired
priority order. This gives more flexibility for applying any desired change in the
task priority on-line. In this case, the only part to be recomputed in (4.27) is the
F matrix according to the new tasks order. Also, to boost the computational



48 Motion Control

efficiency, the QR decomposition in (4.28) can be parallelized. While using (4.9),
all computations should be repeated sequentially since the low priority tasks
control has to wait for the outcome of all higher priority tasks. On the other
hand, using TPM, it is not clarified in Flacco [2016] if and how the tasks defined
in the joint space can be included (e.g., joint damping). Furthermore, both
solutions in (4.9) and (4.27) suffer from joints velocity discontinuity within any
change in either the desired SoT or in the tasks dependencies between each
others. A scale factor can be used in (4.9) to achieve soft transition as proposed
in Lee et al. [2012]. Also, since the solutions are defined in the velocity level,
the advantage of including dynamics is missed.

In this thesis, we are proposing two main changes to the solution in (4.27)
in order to get the following improvements

• Eliminating any undesired behaviour in the joints velocity.

• Allowing to include the consideration of dynamics and any desired joint
space task.

This is done by defining a control law, similar to (4.27), at the acceleration level
as

q̈ = J#F (p̈− J̇ q̇) + (I − J#J)q̈0, (4.32)

where q̈0 is used to achieve any desired joint space task. For example, in order
to get stable and smooth joint trajectories, the joint acceleration q̈0 can be
computed as

q̈0 = −Dq̇, (4.33)

where D ∈ Rn×n is a positive semi-definite matrix, e.g., the robot mass matrix.
Note that, by projecting q̈0 in the null space of the augmented Jacobian (4.3),
the desired joint task/behaviour will be always in the lowest control priority
without any influence on the higher priority Cartesian tasks.

4.6.1 The Complete Approach

In order to control the EE to achieve the prioritized desired Cartesian tasks
while avoiding any collision efficiently, we propose:

• Using the soft pointing task in (2.7) or in (2.10) to control the desired
orientation.

• Using the relaxed definition (3.11), consider one collision avoidance task
for the most critical control point ck, i.e. argminkDmin(ck), when

Dminimal =
y

min
k=1

Dmin(ck) < ε, (4.34)

where Dminimal is the minimal distance between all obstacles and all con-
trol points, y is the number of the robot body control points, and ε > 0 is
a danger threshold distance.

• Similar to (4.15), adding the repulsive vector p̈cee to the main EE posi-
tional task when Dmin(cee) < ε, where p̈cee = u(cee) = u(cee)umean(cee).

• Using algorithm 2 to set the proper priority for each desired task.

• Using the control law (4.32) with the null space damping (4.33).



4.6 Task Priority Matrix 49

Algorithm 2 Arranging tasks priorities for the TPM method

p̈ = p̈eed , J = Jpee , J̇ = J̇pee
if Dmin(cee) < ε then
p̈ = p̈eed + p̈cee , J = Jpee , J̇ = J̇pee

end if
if Dminimal < ε then
p̈ = [p̈Tnk

p̈T ]T

J = [JTnk
JTpee ]T

J̇ = [J̇
T

nk
J̇
T

pee ]T

end if
if α > αd or α < 0 then

p̈ = [p̈T p̈Trpd ]T

J = [JT JTrp]
T

J̇ = [J̇
T

J̇
T

rp]
T

end if

The special features of F matrix, make it simple to enforce any desired
change in the SoT. Note that, the algorithm 2 can be extended/modified easily
to apply other control strategies. For example, applying the collision avoidance
for more than one interest point, or dividing the surveillance area into two
different danger regions. In the farther one, the avoidance tasks are added in
lower priorities preventing the robot in advance to near from the closer danger
region.

4.6.2 Comparative Simulations

In this section we present different simulation scenarios and comparisons. First,
we introduce a comparison between using TPM at the velocity level (4.27) and
our proposed scheme at the acceleration level (4.32). Second, the robot behavior
using the classical three dimensional avoidance task in (3.7) is compared to the
relaxed one in (3.11). In the last, we show the difference between using the
pointing task with equality constraint (2.7) and the inequality one in (2.10). The
robot behavior in the different simulations are included in a video at this link.

The previous evaluations are done in MATLAB using the 7-dofs KUKA LWR
IV robot. The desired tasks are to follow an ellipsoidal path in the Cartesian
space for three rounds while pointing to a direction parallel to the world-frame
positive x-axes. During this, the robot should avoid any collision with three
static obstacles that are located in the robot work space (i.e. see Fig. 4.15). To
have a challenging task, the first obstacle crosses the desired ellipsoidal path.
The desired priority for each of the robot tasks will be arranged according to
the algorithm 2 where the priority in a descending order is as following

1. Robot body collision avoidance.

2. EE collision avoidance.

3. Positional task.

4. Relaxed pointing task.

https://drive.google.com/file/d/1chD9L45_PHC27LQdirOR6lZ5oQePv6Ni/view?usp=sharing


50 Motion Control

Figure 4.15: Simulation at the velocity level: a snapshot during tasks execution.
Black lines represent the robot links, the black spheres denote to the positions
of the robot joints and EE DH frames as in Fig. A.1. The red points represent
8 interest control points along the robot body. During the task, the active
control point will be changed to the blue color and linked to the nearest obstacle
by a green line. The green ellipsoid represents the desired path while the red
curve shows the robot EE position. The three static obstacles are represented
as green spheres.

When all obstacles are far enough from the robot, the collision avoidance tasks
are eliminated, and the positional and the pointing tasks will be the first two
priorities, respectively.

Velocity level vs. Acceleration level

In the first comparison, the robot has a positional and an inequality pointing
tasks with αd = 5◦. For control points of collision avoidance, the one dimen-
sional task definition in used. At the beginning, these tasks are controlled using
TPM at the velocity level. Figure 4.16 shows the Cartesian tasks errors where
the peaks appear when the robot should avoid a collision. In Fig. 4.17, it is
shown how far the obstacles are from robot during the whole simulation. It is
clear how the EE, at each round, moves far from the obstacle 1 when the dis-
tance between them is less than the admissible one, i.e. ε = 0.1 [m]. Also, the
robot avoids any collision with its body while preserving the desired Cartesian
tasks as much as possible. Figure 4.18 shows the evolution of joints positions
and velocities. One can see clearly, the discontinuity in the velocities corre-
sponding to any change in the SoT. This happens mainly when the robot body
collision avoidance task is added.

The previous tasks are repeated controlling the robot at this time using
our proposed scheme at the acceleration level. In this case, the joint positions
are smoother, the discontinuity in the joint velocities is eliminated with no high
peaks in its values, see Fig. 4.21. Also, the error behavior in Fig. 4.19 is smoother
without peaks when the robot should avoid an obstacle.



4.6 Task Priority Matrix 51

0 10 20 30 40

time [s]

-0.04

-0.02

0

0.02

0.04

0.06

0.08

x

y

z

0 10 20 30 40

time [s]

-5

0

5

10
10

-3

(a) (b)

Figure 4.16: Simulation at the velocity level: (a) and (b) represent the errors of
the EE positional and pointing tasks, receptively.

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
(c

e
e
) 

[m
]

(a)

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30 35
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(b)

Figure 4.17: Simulation at the velocity level: (a) The distance from the EE
and the nearest obstacle in the surveillance area, (b) The active control point
during the simulation [above], and its corresponding Dminimal distance (4.34)
[bottom].



52 Motion Control

(a)

(b)

Figure 4.18: Simulation at the velocity level: the joint positions (a) and veloci-
ties (b).

0 10 20 30 40

time [s]

-0.1

-0.05

0

0.05 x

y

z

0 10 20 30 40

time [s]

-0.005

0

0.005

0.01

0.015

0.02

0.025

(a) (b)

Figure 4.19: Simulation at the acceleration level: (a) and (b) represent the
errors of the EE positional and pointing tasks, receptively.



4.6 Task Priority Matrix 53

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
(c

e
e
) 

[m
]

(a)

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30 35
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(b)

Figure 4.20: Simulation at the acceleration level: (a) The distance from the
EE and the nearest obstacle in the surveillance area, (b) The active control
point during the simulation [above], and its corresponding Dminimal distance
[bottom].



54 Motion Control

(a)

(b)

(c)

Figure 4.21: Simulation at the acceleration level: the joint positions (a), veloc-
ities (b) and accelerations (c)



4.6 Task Priority Matrix 55

Figure 4.22: Simulation using three dimensional task for control points collision
avoidance: two different snapshots during the simulation. The cyan cone rep-
resents the EE pointing task, for better visualization, its apex located at the
sixth joint frame position.

Figure 4.23: Simulation using one dimensional task for control points collision
avoidance: a snapshot during tasks execution.

Different collision avoidance tasks for control points

We will compare between using the three and one dimensional avoidance tasks.
For this, the robot should achieve the positional and an inequality pointing
tasks with αd = 5◦. The same previous simulation at the acceleration level
is repeated, but here the classical avoidance task definition in (3.10) is used
instead of the soft one in (3.11).

Figure 4.22 presents two robot snapshots during the simulation where we
used the three dimensional task for robot body collision avoidance. In this case,
at the beginning of the simulation, the robot can not handle the EE (positional
and relaxed pointing) tasks, and the avoidance of robot body from the obstacle
1, simultaneously. Since the robot body collision avoidance at this case needs
3-dofs, there is no enough capability to achieve the EE tasks. On contrast, the
EE can achieve the positional task when one dimensional task for robot body
collision avoidance is used in Fig. 4.23,

In Fig. 4.25 (the 3-dimensional case), the robot is close to the obstacles
more frequently and the distances between them are lower than in Fig, 4.20



56 Motion Control

(the relaxed case). At the same time, the errors in both position and pointing
tasks in Fig. 4.24 are higher than in Fig. 4.19. This behavior is because the
3-dimensional avoidance task pushes the robot to move hardly far away from
the current closest obstacle. This makes the robot be nearby other obstacles
repeating the previous reaction again.

0 10 20 30 40

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

x

y

z

0 10 20 30 40

time [s]

0

0.5

1

1.5

2

(a) (b)

Figure 4.24: Simulation using three dimensional task for control points collision
avoidance: (a) and (b) represent the errors of the EE positional and pointing
tasks, receptively.

Pointing task constraint (equality vs. inequality)

For a desired relaxed pointing task αd = 35◦. Two simulations are done using
TPM at the acceleration level, 1-dimensional task for robot body collision avoid-
ance and two different constraints for the pointing task. The different behavior
in each case is very clear in Fig. 4.29, where in the equality case the EE link
should be always on the surface of the cyan cone, while in the inequality case
the EE link can be inside the cone or on its surface.

The error in the positional task in Fig. 4.30, during the first quarter of the
simulation is larger using the equality constraint. In this period, the relaxed
pointing task using the inequality constrained is deactivated and the robot has
one more dof to handle efficiently the robot body collision avoidance at one of
the interest points and the EE positional task. Using the inequality constraint,
the pointing error has positive values when the EE points outside the cone
in Fig. (4.31). In this case, the task is activated until the error value be equal
or less than zero. While in the equality case, the task is always activated and
the error should converge to zero.



4.6 Task Priority Matrix 57

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
(c

e
e
) 

[m
]

(a)

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30 35
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(b)

Figure 4.25: Simulation using three dimensional task for control points collision
avoidance: (a) The distance from the EE and the nearest obstacle in the surveil-
lance area, (b) The active control point during the simulation [above], and its
corresponding Dminimal distance [bottom].

4.6.3 Experimental Evaluation

Our proposed algorithm is implemented using C++ in a ROS 2 platform and
evaluated in an experimental setup using KUKA LWR robot. For this, we
used the depth space approach in Sec. 3.2 to compute the distances between
nine control points along the robot (including th EE), and any obstacle in the
surveillance area, see Fig. (4.32).

The robot desired task is to preserve its EE to a fixed prescribed Cartesian
point while pointing in a direction parallel to the x-axes with relaxed angle
αd = 5◦ using an equality constraint. During the experiment an object will be
moved close to the robot frequently. The results of the experiment is presented
in the following paragraph, while the robot behavior is included in a video at
this link. Note that, the TPM approach can be integrated easily to the proposed
general control scheme in Fig. (2).

The experiment last for around 80 s, where an operator moves an obstacle
toward both the EE the robot body several times. In Fig. 4.33, the high peaks
in the position and pointing errors are in order to avoid any possible collision.
Since the pointing task has a lower priority, its error in general is higher than the

https://drive.google.com/file/d/1chD9L45_PHC27LQdirOR6lZ5oQePv6Ni/view?usp=sharing


58 Motion Control

(a)

(b)

(c)

Figure 4.26: Simulation using three dimensional task for control points collision
avoidance: Joints positions, velocities and accelerations.

positional one. For both, the EE and other robot control points, the minimum
distance to the obstacle does not exceed 0.1 m, as shown in Fig. 4.34. This
distance can be increased by raising the corresponding repulsive vector intensity,
taking into account that for too large value, the robot behavior will lose its
smoothness. Since the robot initial position is near to the desired Cartesian
point, the joints in Fig. 4.35, are almost static during the first 10 s of the
experiment. Then, the joints move in order to avoid the moving obstacle while
preserving the main tasks. Since, the dynamic obstacle moves near to the upper
part of the robot, the second and third joints get the main load for collision
avoidance task, see Fig. 4.35(b).



4.6 Task Priority Matrix 59

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
(c

e
e
) 

[m
]

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30 35
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(a) Inequality constraint.

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
(c

e
e
) 

[m
]

0 5 10 15 20 25 30 35

time [s]

0

0.05

0.1

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30 35
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(b) Equality constraint.

Figure 4.27: Simulation: The distances between the robot and the nearest ob-
stacle in the surveillance area using pointing task with two different constraints.



60 Motion Control

(a) (d)

(b) (e)

(c) (f)

Figure 4.28: Simulation using pointing task with inequality constraint (left) vs
equality constraint(right): Joints positions, velocities and accelerations.



4.6 Task Priority Matrix 61

(a) (b)

Figure 4.29: (a) Using inequality constraint for relaxed pointing task; (b) Using
equality constraint. The cyan cone represent the desired pointing task coin,
where for better visualization, its apex is shifted to the sixth joint frame position.

0 10 20 30 40

time [s]

-0.05

0

0.05

0.1

x

y

z

0 10 20 30 40

time [s]

-0.05

0

0.05

0.1
x

y

z

(a) (b)

Figure 4.30: EE positional error using pointing with: (a) inequality constraint,
and (b) equality constraint.

0 10 20 30 40

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 10 20 30 40

time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

(a) (b)

Figure 4.31: EE pointing error using: (a) inequality constraint, and (b) equality
constraint.



62 Motion Control

Figure 4.32: Snapshot of a depth image superposed with the computed distances
between control points (green circles) on the robot arm and a close object in the
surveillance area. The blue line refers to the control point of minimum distance
to the obstacle. The picture shows also the computed distance between the
end-effector and the same obstacle (cyan line).

0 20 40 60 80

time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
x

y

z

0 20 40 60 80

time [s]

0

0.05

0.1

0.15

0.2

0.25

0.3

(a) (b)

Figure 4.33: An experiment using our proposed approach in Sec. 4.6.1: (a) and
(b) represent the errors of the EE positional and pointing tasks, receptively.



4.6 Task Priority Matrix 63

0 5 10 15 20 25 30

time [s]

0

0.1

0.2

0.3

0.4

D
m

in
(c

e
e
) 

[m
]

(a)

0 5 10 15 20 25 30

time [s]

0

0.1

0.2

0.3

0.4

D
m

in
im

a
l [

m
]

0 5 10 15 20 25 30
0

2

4

6

8

a
c
ti
v
e
 C

.P
.

(b)

Figure 4.34: An experiment using our proposed approach: the distances between
the robot and the nearest obstacle in the surveillance area.



64 Motion Control

(a)

(b)

(c)

Figure 4.35: An experiment using our proposed approach: Joints evolution.



Conclusion

Within the general hierarchical control architecture for pHRI in Fig. 1, a multi-
sensor control system for safe and friendly human-robot interaction is proposed
to achieve contactless collaboration according to desired coordination tasks. The
proposed system is useful for different stages along the general manufacturing
lines, e.g. in the quality assurance phase, where the operator should check a
desired level of quality in a service or product. To design a robust and efficient
solution, contactless collaboration is separated into four main subproblems.

The first problem is how to localize the collaborator position and orientation
continuously and accurately (Chapter 1). Several RGB-D camera-based solu-
tions are presented and compared. Furthermore, different enhancements are
proposed to get a reliable method. That is, an RGB camera attached to a mov-
ing human is efficiently localized online by an enhanced method that combines
the ARToolkit library and data processing by EKF and IMU. Alternatively,
besides the human pose localization, the awareness between the robot and the
human can be bidirectional using a stereo camera attached to the Oculus Rift
HMD. In this case, a mixed-reality interface is built to provide the operator with
different information about the current robot task and let him communicate di-
rectly with the robot, using the supported controller, to change the desired task
as preferred at any time during the collaboration.

The second problem is how to define suitable Cartesian tasks for the de-
sired contactless and coordinated collaboration (Chapter 2). The coordinated
motion of the robot with the human is obtained via a special task definition,
which involves three positional variables and only one angular component. The
tasks are defined in order to follow the operator head motion while pointing
to it. This can be done either in a regulation mode or by tracking a specified
circular path. If the desired task is out of the robot workspace, a sphere of task
limit is presented for task adjustment. Furthermore, a relaxed pointing task is
proposed using either equality or inequality constraint to decrease the coordi-
nation task dimension as much as possible. This increases the robot dexterity
and manipulability to perform the collaboration while avoiding any obstacle.

The third problem is how to keep the desired collaboration safe from any
collision with the collaborator himself or any other static or dynamic obstacle

65



66 Motion Control

(Chapter 3). In the proposed scheme, we consider several control points along
the robot body, including the EE, and compute the distances, between these
points and any object in the monitoring area, online in the depth space of a
fixed RGB-D sensor. Then, these distances are involved in different possible
definitions of the collision avoidance task. For this, using a relaxed collision
avoidance definition, that has one dimension only, is recommended. In this
case, the robot preserves more dofs to keep performing the main tasks while
avoiding any obstacle.

The last considered problem is how to handle robot redundancy to achieve
the desired coordination tasks while keeping far from any collision (Chapter 4).
For this, several control laws have been proposed and compared. First, it is
shown how the pointing task can be integrated with the positional task, to
achieve the desired coordination, using either the task augmentation technique
or the null-space projection. Then, including the collision avoidance task, the
SNS algorithm for strict prioritized task control is presented at the acceleration
level. Using this algorithm, a complete demonstration for the proposed control
scheme in Fig. 2 is done. Next, as an alternative to the SNS algorithm, different
improvements for the task priority matrix approach are proposed. The TPM
method is developed at the acceleration level to eliminate any discontinuity
in the joint velocities. Also, a simple algorithm for ordering task priority is
proposed. For this, soft constraints for both pointing and collision avoidance
tasks are involved. Several comparisons between different task constraints are
presented. Different simulations and experiments using KUKA LWR robot are
done to validate all presented control schemes.

Various enhancements could be done to boost the proposed control system.
First, the mixed-reality environment can be supported by various useful aug-
mented objects. For example, the desired EE task and task limits sphere can
be added. Furthermore, user control options can be increased by including dif-
ferent control strategies. Also, it possible to let the operator design the desired
Cartesian task as a pre-process before starting the collaboration.

In addition, to improve the collision avoidance performance, a second fixed
depth camera can be used to avoid gray zones or sensor occlusion. Since, a
stereo camera is used for building the mixed-reality interface, it is possible to
investigate how to exploit it for robot collision avoidance. Finally, using TPM
approach with different Cartesian/joint task constraints could be explored.



A
Notes on the KUKA LWR IV

robot

The KUKA LWR IV robot (Light Weight Robot) considered in this work Fig. A.1,
is usually used for research development and consists of seven revolute elastic
joints. However, in all study cases of this work, it is considered as a rigid robot.
Its total weight is approximately 16 kg, with a rated payload of 7 kg. All joints
are equipped with position sensors on the motor and link sides, and with a joint
torque sensor. Table A.1 contains the position, velocity, and torque limits for
each joint. The robot kinematics are computed according to the link frames in
Fig. A.1. The associated parameters are given in Tab. A.2. The constructor,
KUKA, has still not released a public version of its dynamic model. However, it
can be computed depending on the reverse engineering approach by Gaz et al.
[2014].

For simulations, we used the robot model provided by the V-REP. For the
supplied KUKA LWR robot model, several aspects make its behavior different
from the real system Cefalo [2015]. First, the motor dynamics and the low level
electronic controllers are not modeled. Also, the friction is neglected and the
mass distribution is considered uniform. In this work all simulations done with
KUKA LWR were in the static mode.

For the experiments, the KUKA LWR IV system in Fig. A.2 is used. The
robot controller is connected to a remote PC node via an Ethernet connection
and the Fast Research Interface library (FRI) by KUK [2011] is used through
ROS/ROS 2 node with C++ programming language to set up the desired control
architecture. The robot system can work with the sampling rates 1, 2 and 5 [ms].

67



68 Bibliography

Table A.1: Joint position, torque and velocity limits of the KUKA LWR IV.

Joint
number

Range of motion
[rad]

Maximum torque
[Nm]

Maximum velocity
[rad/s]

1 ± 2.97 176 1.92

2 ± 2.09 176 1.92

3 ± 2.97 100 2.23

4 ± 2.09 100 2.23

5 ± 2.97 100 3.56

6 ± 2.09 38 3.21

7 ± 2.97 38 3.21

Table A.2: Denavit-Hartenberg parameters of the KUKA LWR IV.

Link
number

ai
[m]

αi

[rad]
di
[m]

θi
[rad]

1 0 π/2 0 q1

2 0 −π/2 0 q2

3 0 −π/2 d3 = 0.4 q3

4 0 π/2 0 q4

5 0 π/2 d5 = 0.39 q5

6 0 −π/2 0 q6

7 0 π/2 l + d7 =
l + 0.078

q7



Bibliography 69

!"

!#

!$

%"

%&

%$

%#

%'

%(

%)

!&

!)

%*

!( !'

!*

+#

+(

+*

,

Figure A.1: Denavit-Hartenberg frames of the KUKA LWR IV: All x-axes point
toward the viewer (frames are displaced sideways for better clarity).



70 Bibliography

Figure A.2: The KUKA LWR system at DIAG Robotics Lab. (A) The LWR
body. (B) The KR C2 lr robot controller unit. (C) PC node. (D) Kuka control
panel.



Bibliography

P.J. Besl and N. McKay. A method for registration of 3-D shapes. IEEE Trans.
on Pattern Analysis and Machine Intelligence, 14(12):239–256, 1992.

O. Brock and O. Khatib. High-speed navigation using the global dynamic win-
dow approach. In Proc. IEEE Int. Conf. on Robotics and Automation, pages
341–346, 1999.

G. Buondonno and A. De Luca. A recursive newton-euler algorithm for
robots with elastic joints and its application to control. In Proc. Int. Conf.
IEEE/RSJ on Intelligent Robots and Systems, pages 5526–5532, 2015.

G. Buondonno and A. De Luca. Efficient computation of inverse dynamics and
feedback linearization for vsa-based robots. IEEE Robotics and Automation
letters, 1(2):908–915, 2016.

M. Cefalo. Notes on the KUKA LWR4 dynamic model, 2015. URL http://

www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf.

S. Chiaverini, G. Oriolo, and I.D. Walker. Kinematically redundant manipula-
tors. In Handbook of Robotics, pages 245–268. Springer, 2008.

A.J. Davison. Real-time simultaneous localisation and mapping with a single
camera. In Proc. 9th IEEE Int. Conf. on Computer Vision, pages 1403–1410,
2003.

A. De Luca and L. Ferrajoli. A modified newton-euler method for dynamic
computations in robot fault detection and control. In Proc. Int. Conf. IEEE
on Robotics and Automation, pages 3359–3364, 2009.

A. De Luca and F. Flacco. Integrated control for pHRI: Collision avoidance, de-
tection, reaction and collaboration. In Proc. 4th IEEE Int. Conf. on Biomed-
ical Robotics and Biomechatronics, pages 288–295, 2012.

A. De Luca and R. Mattone. Sensorless robot collision detection and hybrid
force/motion control. In Proc. of IEEE Int. Conf. on Robotics and Automa-
tion, pages 999–1004, 2005.

71

http://www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf
http://www.coppeliarobotics.com/contributions/LBR4p_dynamic_model.pdf


72 Bibliography

A. De Luca, A. Albu-Schaffer, S. Haddadin, and G. Hirzinger. Collision detec-
tion and safe reaction with the dlr-iii lightweight manipulator arm. In Proc.
Int. Conf. IEEE/RSJ on Intelligent Robots and Systems, pages 1623–1630,
2006.

A. De Santis, B. Siciliano, A. De Luca, and A. Bicchi. An atlas of physical
human-robot interaction. Mechanism and Machine Theory, 43(3):253–270,
2008.

F. Fabrizio and A. De Luca. Real-time computation of distance to dynamic
obstacles with multiple depth sensors. IEEE Robotics and Automation Letters,
2(1):56–63, 2016.

F. Flacco. The tasks priority matrix: a new tool for hierarchical redundancy
resolution. In Proc. Int. Conf. IEEE-RAS 16th on Humanoid Robots, pages
1–7, 2016.

F. Flacco and A. De Luca. Multiple depth/presence sensors: Integration and
optimal placement for human/robot coexistence. In Proc. Int. Conf. IEEE
on Robotics and Automation, pages 3916–3923, 2010.

F. Flacco, A. De Luca, and O. Khatib. Prioritized multi-task motion control of
redundant robots under hard joint constraints. In Proc. Int. Conf. IEEE/RSJ
on Intelligent Robots and Systems, pages 3970–3977, 2012a.

F. Flacco, T. Kröger, A. De Luca, and O. Khatib. A depth space approach to
human-robot collision avoidance. In Proc. IEEE Int. Conf. on Robotics and
Automation, pages 338–345, 2012b.

F. Flacco, A. De Luca, and O. Khatib. Control of redundant robots under hard
joint constraints: Saturation in the null space. IEEE Trans. on Robotics, 31
(3):637–654, 2015a.

F. Flacco, T. Kröger, A. De Luca, and O. Khatib. A depth space approach
for evaluating distance to objects – with application to human-robot collision
avoidance. J. of Intelligent & Robotic Systems, 80, Suppl. 1:7–22, 2015b.

S.Y. Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and G. Konidaris. End-
user robot programming using mixed reality. In Proc. Int. Conf. IEEE on
Robotics and Automation, 2019.

C. Gaz and A. De Luca. Payload estimation based on identified coefficients
of robot dynamics—with an application to collision detection. In Proc. Int.
Conf. IEEE/RSJ on Intelligent Robots and Systems, pages 3033–3040, 2017.

C. Gaz, F. Flacco, and A. De Luca. Identifying the dynamic model used by the
KUKA LWR: A reverse engineering approach. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 1386–1392, 2014.

C. Gaz, E. Magrini, and A. De Luca. A model-based residual approach for
human-robot collaboration during manual polishing operations. Mechatron-
ics, 55:234–247, 2018.



Bibliography 73

M. Geravand, F. Flacco, and A. De Luca. Human-robot physical interaction and
collaboration using an industrial robot with a closed control architecture. In
Proc. Int. Conf. IEEE on Robotics and Automation, pages 4000–4007, 2013.

G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins Univ. Press,
1996.

S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger. Collision detec-
tion and reaction: A contribution to safe physical human-robot interaction.
In Proc. Int. Conf. IEEE/RSJ on Intelligent Robots and Systems, pages 3356–
3363, 2008.

S. Haddadin, A. De Luca, and A. Albu-Schäffer. Robot collisions: A survey
on detection, isolation, and identification. IEEE Trans. on Robotics, 33(6):
1292–1312, 2017.

M. Hägele, K. Nilsson, J.N. Pires, and R. Bischoff. Industrial robotics. In
B. Siciliano and O. Khatib, editors, Handbook of Robotics (2nd Ed.), pages
1385–1421. Springer, 2016.

H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-
based augmented reality conferencing system. In Proc. 2nd IEEE/ACM Int.
Work. on Augmented Reality, pages 85–94, 1999.

M. Khatib, K. Al Khudir, and A. De Luca. Visual coordination task for human-
robot collaboration. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pages 3762–3768, 2017.

M. Khatib, K. Al Khudir, and A. De Luca. Multi-sensor control system for
safe human-robot collaboration with mixed-reality interface. In preparation
to Robotics and Computer-Integrated Manufacturing, 2019a.

M. Khatib, K. Al Khudir, and A. De Luca. Robot collision avoidance using tasks
priority matrix with soft constraints at the acceleration level. In preparation
to IEEE Robotics and Automation Letters, 2019b.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
In Autonomous Robot Vehicles, pages 396–404. Springer, 1986a.

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.
Int. J. of Robotics Research, 5(1):90–99, 1986b.

G. Klein and D. Murray. Parallel tracking and mapping for small ar workspaces.
In Proc. 6th IEEE/ACM Int. Symp. on Mixed and Augmented Reality, pages
225–234, 2007.

KUKA.FastResearchInterface 1.0. KUKA System Technology (KST), D-86165
Augsburg, Germany, 2011. Version 2.

B. Lacevic, P. Rocco, and A. Zanchettin. Safety assessment and control of
robotic manipulators using danger field. IEEE Trans. on Robotics, 29(5):
1257–1270, 2013.



74 Bibliography

J. Lee, N. Mansard, and J. Park. Intermediate desired value approach for task
transition of robots in kinematic control. IEEE Trans. on Robotics, 28(6):
1260–1277, 2012.

Y. Lu. Industry 4.0: A survey on technologies, applications and open research
issues. J. of Industrial Information Integration, 6:1–10, 2017.

E. Magrini and A. De Luca. Hybrid force/velocity control for physical human-
robot collaboration tasks. In Proc. Int. Conf. IEEE/RSJ on Intelligent Robots
and Systems, pages 857–863, 2016.

E. Magrini and A. De Luca. Human-robot coexistence and contact handling
with redundant robots. In Proc. Int. Conf. IEEE/RSJ on Intelligent Robots
and Systems, pages 4611–4617, 2017.

E. Magrini, F. Flacco, and A. De Luca. Estimation of contact forces using a
virtual force sensor. In Proc. Int. Conf. IEEE/RSJ on Intelligent Robots and
Systems, pages 2126–2133, 2014.

E. Magrini, F. Flacco, and A. De Luca. Control of generalized contact motion
and force in physical human-robot interaction. In Proc. IEEE Int. Conf. on
Robotics and Automation, pages 2298–2304, 2015a.

E. Magrini, F. Flacco, and A. De Luca. Control of generalized contact motion
and force in physical human-robot interaction. In Proc. Int. Conf. IEEE on
Robotics and Automation, pages 2298–2304, 2015b.

E. Magrini, F. Ferraguti, A.J. Ronga, F. Pini, A. De Luca, and F. Leali.
Human-robot coexistence and interaction in open industrial cells. Robotics
and Computer-Integrated Manufacturing, 61:101846, 2020.

J. Mainprice, E.A. Sisbot, T. Siméon, and R. Alami. Planning safe and legible
hand-over motions for human-robot interaction. In Proc. IARP Work. on
Technical Challenges for Dependable Robots in Human Environments, 2010.

E. Mariotti, E. Magrini, and A. De Luca. Admittance control for human-robot
interaction using an industrial robot equipped with a f/t sensor. In Proc. Int.
Conf. IEEE on Robotics and Automation, pages 6130–6136, 2019.

G. Milighetti, L. Vallone, and A. De Luca. Adaptive predictive gaze control of a
redundant humanoid robot head. In Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pages 3192–3198, 2011.

C. Nehaniv, K. Dautenhahn, J. Kubacki, M. Haegele, C. Parlitz, and R. Alami.
A methodological approach relating the classification of gesture to identifi-
cation of human intent in the context of human-robot interaction. In Proc.
IEEE Int. Workshop on Robot and Human Interactive Communication, pages
371–377, 2005.

Oculus. URL https://developer.oculus.com.

M.P. Polverini, A.M. Zanchettin, and P. Rocco. Real-time collision avoidance
in human-robot interaction based on kinetostatic safety field. In Proc. Int.
Conf. IEEE/RSJ on Intelligent Robots and Systems, pages 4136–4141, 2014.

https://developer.oculus.com


Bibliography 75

O. Rogalla, M. Ehrenmann, R. Zollner, R. Becher, and R. Dillmann. Using
gesture and speech control for commanding a robot assistant. In Proc. IEEE
Int. Workshop on Robot and Human Interactive Communication, pages 454–
459, 2002.

J. Serafin and G. Grisetti. NICP: Dense normal based point cloud registration.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 742–
749, 2015.

B. Siciliano and J. J. Slotine. A general framework for managing multiple tasks
in highly redundant robotic systems. In Proc. 5th Int. Conf. on Advanced
Robotics, pages 1211–1216, 1991.

B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, plan-
ning and control. Springer, 2010.

M. Svenstrup, S. Tranberg, H.J. Andersen, and T. Bak. Pose estimation and
adaptive robot behaviour for human-robot interaction. In Proc. IEEE Int.
Conf. on Robotics and Automation, pages 3571–3576, 2009.

I. Ulrich and J. Borenstein. VFH+: Reliable obstacle avoidance for fast mobile
robots. In Proc. IEEE Int. Conf. on Robotics and Automation, pages 1572–
1577, 1998.

Unity. URL https://unity.com.

L. Villani, A. De Santis, V. Lippiello, and B. Siciliano. Human-aware interac-
tion control of robot manipulators based on force and vision. In Proc. 7th
Work. on Robot Motion Control, pages 209–225. Lecture Notes in Control
and Information Sciences, vol. 396, Springer, 2009.

ZED-Mini. URL https://www.stereolabs.com/zed-mini.

L. Zlajpah and B. Nemec. Kinematic control algorithms for on-line obstacle
avoidance for redundant manipulators. In Proc. Int. Conf. IEEE/RSJ on
Intelligent Robots and Systems, volume 2, pages 1898–1903, 2002.

https://unity.com
https://www.stereolabs.com/zed-mini

	Abstract
	Acknowledgements
	Introduction
	Human-Robot Awareness
	Introduction
	NICP
	PTAM
	ARToolKit
	Oculus Rift
	Mixed-Reality Interface

	Coordination Tasks
	Introduction
	Positional Task
	Human-Head Following
	Variable Circular Task

	Pointing Task
	Task Limit Sphere

	Collision Avoidance Tasks 
	Introduction
	Distance Computation
	Task Definition for Collision Avoidance

	Motion Control
	Introduction
	Task Augmentation
	Null-Space Projection
	Task Augmentation vs. Projected Gradient
	Comparative Simulations
	Experimental Evaluation with Task Augmentation

	Saturation in the Null Space Algorithm
	Experimental Evaluation
	Including Mixed-Reality Interface

	Task Priority Matrix
	The Complete Approach
	Comparative Simulations
	Experimental Evaluation


	Conclusion
	Appendix Notes on the KUKA LWR IV robot
	Bibliography

