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Introduction 

 
1. Abiotic stress in plants  

 

Plants, as sessile organisms, have to survive to frequently changing 

environments presenting adverse or stressful conditions, which 

directly affect growth and development. The increasing attention 

towards global climate changes and the concern about the future 

survival of crops, triggered attempts to deeply analyse how plants 

cope with abiotic stress, focusing on how plant have evolved 

different molecular programs to rapidly perceive changes in the 

environment and adapt properly. Levitt distinguished two 

strategies that plants evolved in response to stress: stress avoidance 

and stress tolerance. Stress avoidance involves a multiplicity of 

protective mechanism that delay or prevent the negative impact of 

stress factors on a plant, through stable and inherited adaptation. 

On the other hand, stress tolerance is defined as the potential to 

acclimate to stressful conditions [1]. 

Abiotic stresses (such as drought, high salinity and low 

temperature) cause osmotic stress triggering turgor loss, reduced 

protein activity, and excess levels of reactive oxygen species 

(ROS) directly leading to oxidative damage. The cellular disorder 

resulting from stress causes growth defects, reduced fertility and 
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premature senescence. The phytohormone abscisic acid (ABA) 

was shown to be a pivotal regulator of abiotic stress responses in 

plants, triggering major changes in plant physiology, as ABA-

deficient plants have a consistently altered stress response [2-4]. 

The presence of abiotic stress induces local ABA biosynthesis, 

ABA is then transported throughout the plant to promote stomatal 

closure, as well as to induce stress-activated gene transcription, 

required to mediate the physiological response and metabolic 

adjustments. In parallel to ABA induction, plants modulate the 

production and distribution of growth-promoting hormones 

(gibberellins, GA, brassinosteroids, BR and cytokinins, CK) to 

allow an optimal response.  

The AP2/ERF (APETALA2/ ETHYLENE RESPONSIVE 

FACTOR) family of plant-specific transcription factors is involved 

in the stress-response pathway; their expression is low under 

normal conditions, but is quickly induced or repressed by 

hormone- and stress-related stimuli [5-11]. AP2/ERFs are 

characterized by an AP2/ERF domain, which consists of 40-70 

conserved amino acids involved in DNA binding[8, 12, 13]. In 

Arabidopsis this family is encoded by 145 loci [12]. Even in the 

single-cell green alga Chlamydomonas reinhardtii is present an 

AP2/ERF encoding-gene [14]. Interestingly, in bacterial and viral 

endonucleases, sequences homologous to the AP2/ERF domain 

have been found, suggesting that the AP2/ERF domain was 
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transferred to plants by a cyanobacterium through endosymbiosis, 

or by a bacterium or virus through lateral gene transfer events [15]. 

AP2/ERF factors are classified in four main subfamilies: AP2, 

RELATED TO ABSCISIC ACID INSENSITIVE3 / 

VIVIPAROUS1 (RAV), DEHYDRATION - RESPONSIVE 

ELEMENT BINDING proteins (DREBs) and ERFs [12, 13]. 

Among the AP2/ERF factors, the DREB family responds to and 

regulates cold, heat, drought and salt tolerance by directly 

controlling stress-responsive genes that present in the promoters a 

Dehydration Responsive Element (DRE) [16-18]. DREBs were 

first identified using a yeast one-hybrid system, by screening for 

the trans-acting factors able to bind the DRE element present in a 

number of drought and cold inducible promoters [19, 20]. In 

particular, DREB1s (DREB-A1 subgroup) are involved in cold 

tolerance [21], while DREB2s (DREB-A2 subgroup) in drought 

and heat tolerance [6]. Lastly, the DREB-A4 sub-family positively 

regulates drought and salt tolerance [22-25]. Ectopic or selective 

expression of DREB1a/CBF3 (C-REPEAT BINDING FACTOR3) 

can significantly enhance plant tolerance to multiple abiotic 

stresses, like drought, freezing and high salinity [20](Fig. 1). 

Interestingly, the stress-inducible DREBs are found in 

phylogenetically divergent species (i.e. oilseed rape, tomato, 

maize, rice and barley), substantiating the crucial role of these 

factors in stress response of land plants [26-30] (Fig.  2).  
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Fig. 1. Tolerance to freezing and drought of the 35S:DREB1Ab and 

35S:DREB1Ac transgenic plants.  

Wild type (wt) and 3 weeks-old transgenic plants growing under normal 

conditions (control), freezing stress (plants exposed to -6°C for 2 days and 

returned to 22°C for 5 days); drought stress (water withheld for 2 weeks). Under 

the images are indicated the percentages of surviving plants and numbers of 

surviving plants per plant total number (from [20]). 
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Fig. 2. Molecular model of DREB1A and DREB2A control of stress 

conditions.   

The genes downstream of the DREB proteins are divided into three groups. The 

middle group contains the downstream targets of both DREBs (from [31]). 

 

 

Among abiotic stresses, drought is one of the main issues of 

agriculture yields, due to the complexity of the water-limiting 

environments. Accordingly, plants have evolved different types of 

drought resistant strategies. Plant drought resistance can be divided 

into four basic types: drought avoidance, drought tolerance, 

drought escape and drought recovery [1, 32]. The transcription 

factor DREB2A activates genes involved in the drought- and salt-
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related stress response, and its function has been identified by 

generating a constitutively active form of DREB2A (DREB2A-

CA), by deletion of the negative regulatory domain (DREB2A-

NRD) [20, 31]. Qin and colleagues demonstrated that DREB2A is 

regulated by the proteasome 26S through two E3 ubiquitin ligases, 

namely DREB2A-INTERACTING PROTEIN 1 and 2 (DRIP1 and 

2), resulting in fine-tuning of DREB2A abundance [33]. Another 

major factor affecting water supply for global agriculture is 

represented by water salinity. High water salinity greatly limits 

root water uptake, damages cell physiology and reduces growth 

[34, 35]. In the presence of salt stress, the increase in ABA levels 

and the activation of ABA signaling pathways, trigger salt 

responses [36]. In addition, salt-stress activates ethylene signaling, 

which integrates with the ABA pathway on DELLA proteins - 

negative regulators of gibberellin (GA) responses - hub of this 

network to finally promote salt tolerance. In salt-treated wild type 

plants, reduced levels of bioactive GAs result in increased DELLA 

protein levels and enhanced growth-repressing effects. The 

consequent slower growth rate extends the duration of the 

vegetative growth phase. The quadruple-DELLA mutant (lacking 

GA INSENSITIVE, GAI, REPRESSOR OF ga1-3, RGA, RGA-

LIKE 1 and 8, RGL1 and RGL2) is less inhibited by salt 

concentrations than the wild type. The combined effect of the 

DELLA proteins GAI and RGA play the main role in salt-activated 



PhD Programme in Life Sciences 

 Pag. 11  

growth repression. The DELLA-dependent growth restraint may 

allow a versatile growth response to environmental variability, thus 

promoting survival [37, 38]. 

 

 1.1 Cold stress response  

 

Among abiotic stress, low temperature is one of the most relevant 

factors limiting the distribution of plant species [1, 39]. The 

response that allows the plants to increase the freezing tolerance is 

called cold acclimation [1]. To avoid damage due to freezing 

temperature, plants change membrane composition, accumulate 

stress-related proteins to prevent dehydration, activate antioxidant 

enzymes and protect the cold-sensitive photosynthetic machinery 

[40]. The CBF1-3 transcription factors play a key role in the 

response to low temperature; the Arabidopsis CBF loci map on 

chromosome 4 in tandem. The cbf triple mutant - produced with 

the CRISPR/Cas9 technology - showed an extreme sensibility to 

freezing, after cold acclimation, suggesting that the CBFs act as 

positive regulators of cold acclimation, possibly via the control of 

cold signaling pathway [41-43] (Fig. 3). 
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Fig. 3. Freezing tolerance of cbf1,3-1 and cbfs-1 mutants.  

Two weeks-old seedlings treated in a freezing chamber from 0°C and cooled at -

1°C per hour. The seedlings were kept in the chamber until -10°C for 1h (cold-

acclimated, CA). The images show the recovery after 3 days at 22°C. Col: wt, 

cbf 1,3-1: double mutant, cbfs-1: triple mutant. Adapted from [41]. 

 

Interestingly, different Arabidopsis accessions show diverse degree 

of freezing tolerance; indeed, CBF activity in cold climates helps 

the plant to adapt to low temperature, whereas this function can be 

deleterious in warmer climates [44-50]. Expression of CBF genes 

is low under normal condition, but it increases transiently within 

minutes of cold exposure, returning to resting levels after few 

hours at low temperature [20, 51, 52]. The trascriptomic analysis of 

the cbf triple mutant revealed that lack of CBF proteins affects the 

cold-regulation of 449 target genes, belonging to the functional 

clusters of “carbohydrate metabolism”, “lipid metabolism” and 

“cell wall modification”, therefore corroborating the involvement 
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of CBFs in the metabolic and biochemical adjustments to increase 

freezing tolerance [41, 42]. 

At low temperature the beta helix-loop-helix (bHLH) transcription 

factor called INDUCER OF CBF EXPRESSION1 (ICE1) is 

activated; ICE1 relives the repression of CBF genes, mediated by 

the factor MYELOBLASTOSIS 15 (MYB15), resulting in the 

activation of CBFs which in turn trigger the cold signaling 

pathway [21, 53]. Recently, it has been demonstrated that the 

CALMODULIN-BINDING TRANSCRIPTIONAL 

ACTIVATORS (CAMTA) has also a role in activating the cold 

pathway, indeed it binds the CBF1 and CBF2 promoters inducing 

their expression [54, 55]. 

The activation of CBFs is not only temperature-dependent, since it 

is also affected by an integrate environmental information about 

light quality and daylight length, as well as internal signals like the 

circadian clock and multiple hormonal pathways. Indeed, the 

photoreceptor phytochrome B (phyB) interacts with 

PHYTOCHROME INTERACTING FACTOR 4 AND 7 (PIF4 and 

PIF7), which repress CBF expression, mediating the photoperiodic 

control of CBF transcript levels [56]. Among the hormones 

involved in cold response, ethylene is the negative regulator of the 

CBF pathway and cold acclimation; it represses the expression of 

CBFs through the accumulation of EIN3 and PIF3, which directly 

bind the CBF promoters [57-59]. On the contrary, brassinosteroids 
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(BRs) are positive regulators of this pathway; indeed 

BRASSINAZOLE-RESISTANT1 (BRZ1) and CESTA (CES) 

directly up-regulate CBF expression [60, 61]. In the presence of 

low temperature GA levels decrease resulting in the stabilization of 

DELLA proteins and the promotion of cold acclimation by 

increasing CBF transcripts [62] [63]. Despite the hypothesis that 

the CBF-mediated pathway is independent from ABA, it has 

recently been shown that, in the presence of exogenous ABA, 

expression of CBF genes is induced; consistently, ABA-insensitive 

mutants showed a reduced induction of CBFs at low temperature. 

Furthermore, ICE1, ICE2 and CAMTA3 (upstream regulators of 

CBF genes) are regulated by the ABA signaling factors OPEN 

STOMATA 1 (OST1) and HEPTAHELICAL PROTEIN 1, 2 and 3 

(HHP1,2,3) which positively control expression of CBF genes [64-

66]. 

It has been proposed that, possibly, some elements of ABA 

signaling pathway can have an ABA-independent role in the 

process of cold response [65]. Nevertheless, ABA level increases 

in the presence of low temperature and, in ABA-deficient mutants, 

some CBFs targets are less induced [2, 67-69].  

Expression of CBF genes is also regulated through the epigenetic 

machinery, namely by histone modifications; lack of the Polycomb 

Repressor Complex 2 (PRC2), which is responsible of 

trimethylating histone H3 on K27 (H3K27me3), a repressive 
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epigenetic mark, results in increased CBF mRNA levels. 

Consistently, a genome wide analysis of histone modification in 

Arabidopsis at warm temperature revealed an increased 

H3K27me3 level in CBF promoters, required to silence these 

genes under non-inducing conditions [70].  

 

2. ABA and ABA-related processes 

 

ABA is an essential hormone in the control of plant growth and 

development, and in plant adaptation to environmental challenges 

(reviewed in [71-73]). 

ABA level is the result of a fine balance between biosynthesis and 

catabolism; the biosynthetic pathway is partly localised in the 

chloroplast, although the final steps are in the cytoplasm [74-76]. 

The synthesis reaction is catalysed by chloroplast localized nine-

cis-epoxycarotenoid dioxygenases (NCEDs) [77, 78]. As for ABA 

catabolism, a small group of cytochrome P450-type enzyme, the 

CYP707As, convert ABA to phaseic acid or neophaseic acid [79-

82]. 

ABA signaling pathway involves five core components: ABA 

receptors, negative regulators, positive regulators, ABA-responsive 

transcription factors and ABA-responsive genes [74]. The ABA 

receptors belong to the pyrabactin resistance 1 (PYR1), PYR1-like 

(PYLs) and Regulatory Components of ABA Receptors (RCAR) 
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family [83-85]; in Arabidopsis there are 14 PYR/PYLs/RCAR, 

localized in the cytoplasm, plasma membrane or nucleus [83, 86]. 

The negative regulators of ABA signaling are a group of protein 

phosphatase A (PP2c) responsible of dephosphorylating the 

positive regulator of ABA, SUCROSE NONFERMENTING 1 

(SNF1)-related protein kinases 2 (SnRK2). In the absence of ABA, 

PP2Cs inhibit SnRK2s activity therefore blocking ABA signal 

transduction. In the presence of ABA, the hormone bound the 

receptors, and in turn this complex interacts and inactivates PP2C.  

Consequently, the SnRK2 proteins are able to activate downstream 

responses, namely specific transcription factors called ABA- 

responsive element binding factors (AREBs/ ABFs) (Fig.  4). The 

ABA INSENSITIVE (ABI) factors are key positive regulators of 

ABA signaling; indeed mutations in ABI3, ABI4 and ABI5 genes 

result in ABA insensitive phenotype [87]. In particular, ABI3 is 

required during seed maturation to establish both desiccation 

tolerance and seed dormancy. ABI4 directly and positively controls 

the catabolic GA gene GA2ox7 and the ABA biosynthetic gene 

NCED6 to increase the ABA/GA ratio and promote dormancy [88, 

89]. ABI5 plays its role not only during seed maturation and 

germination but also in the response to abiotic stresses [90-94]. 
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Fig. 4. ABA signaling pathway in Arabidopsis.  

PYR/PYL family of ABA receptors, PP2Cs negative regulators, SnRK2s 

positive regulators. In the presence of ABA, the receptors PYR/PYL bind ABA 

and in turn this complex binds PP2Cs releasing the positive regulators SnRK2s. 

(From [95]). 

 

 2.1 Dormancy and Desiccation tolerance 

 

The progeny of Angiosperms is represented by the seed, defined as 

a dispersal unit, able to develop into a whole plant when the 
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environmental conditions are favourable for growth of the next 

generation [96]. In the model plant Arabidopsis thaliana, seed 

development is divided in two phases: embryogenesis and 

maturation. 

Embryogenesis ends when all embryo structures have been formed 

and cell division arrests. At this time the seed enters the maturation 

phase, characterised by a switch from maternal to filial control. 

This phase ends when storage compounds are accumulated, water 

level reduced, dormancy and desiccation tolerance are established 

and ABA levels increased [97, 98]. 

The maturation stage leads to dormancy, characterised by seed 

inability to germinate even under favourable conditions. Dormancy 

is an important evolutionary trait to prevent vivipary. Seed 

dormancy controls the timing of germination in response to 

environmental stimuli, preventing germination out of season, and 

plays an important role in seed plant evolution and adaptation to 

climatic changes.  

The main molecular elements that control both seed maturation and 

dormancy establishment are FUSCA 3 (FUS3), ABSCISIC ACID 

INSENSITIVE 3 (ABI3), and LECTIN-LIKE2 (LEC2).  

ABI3, FUS3 and LEC2 belong to a family of transcription factors 

characterized by the presence of a conserved B3-binding domain. 

The main role of these proteins during dormancy is to increase 

ABA content; consistently lack of any of these proteins results in 
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reduced dormancy, faster germination and decreased levels of seed 

storage proteins compared to the wild type [99-101].  

In Arabidopsis there are 51 LEA-encoding genes [102]. The LEA 

proteins have a protective role during water restraint; LEA protein 

levels raise just before seed desiccation, as well as in vegetative 

tissues exposed to dehydration, osmotic and low temperature stress 

[103]. 

While storage compounds are accumulated and seed dormancy is 

established, Desiccation Tolerance (DT) is also induced. DT, 

which is defined as the ability of the seed to germinate after re-

dehydration without lethal damage, is fully established before seed 

dehydration. When seed germination is induced, the seed becomes 

desiccation sensitive. 

The unicellular green algae (Chlorophyta) have acquired DT in 

order to be able to colonize intertidal zones; this phenomenon has 

been conserved during evolution and in higher plants is present in 

spores, pollen and seeds [104, 105]. 

DT relies on a number of protection mechanisms induced during 

dehydration, such as accumulation of LEA proteins and 

metabolism drop [106, 107]. 

The molecular mechanism underlying the establishment of DT 

involves ABA signaling, with the activation of the ABA positive 

regulators ABI3 and ABI5, which induce downstream genes and 

pathways responsible for the accumulation of LEA proteins, sugar, 
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osmolytes and aminoacids required for the establishment of DT. 

LEA proteins and sugar are involved in structural and 

macromolecular protection; in particular, LEA proteins act as a 

hydration buffer, sequestering ions and renaturing unfolded 

protein, whereas sugar maintains the osmotic balance under stress 

[108]. 

Since DT depends on water dehydration, the molecular pathways 

underlying this process are, at least in part, overlapping with 

signaling pathways related to the response to environmental stress. 

Indeed, in the presence of a mild osmotic stress (i.e. with 

polyethylene glycol) or exogenous ABA, the re-establishment of 

DT in seeds is induced. This has been proved in Arabidopsis 

thaliana as well as in other species [109, 110].  

To assess the re-establishment of desiccation tolerance in 

Arabidopsis, Maia [110] defined four distinct developmental stages 

(Fig. 5): 

-stage I: testa rupture 

-stage II radicle protrusion 

-stage III a primary root of 0.3-0.5 mm in length 

-stage IV the appearance of the first root hairs. 
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Fig. 5. The four developmental stages of Arabidopsis seeds.  

I testa rupture, II radical protrusion, III primary root of 0.3 mm length, IV first 

root hair.  (From [110]). 

 

It has been established that during the first three stages the seed is 

able to re-induce germination after dehydration by PEG- treatment, 

at stage IV this capacity is lost. Notably, in Arabidopsis seeds the 

degree of DT sensitivity varies in different organs, the cotyledons 

being the most tolerant while roots are more sensitive. 

Recent studies have shown that ABA-insensitive mutant seeds, 

namely abi3, abi4, and abi5, are partially unable to re-establish DT 

compared to the wild type. Indeed, while at the beginning of 

germination these mutants are still able to recover DT, later this 

response is lost, consistently with the reduced sensitivity to 

exogenous ABA. This suggested that the sensitivity to ABA more 

than ABA content, controls the induction of DT; indeed during the 
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treatment with PEG the content of ABA does not change, despite 

the biosynthetic and catabolic ABA genes are misregulated [109] 

(Fig. 6). 

 
Fig. 6. Re-establishment of DT and ABA-sensitivity in germinated 

Arabidopsis seeds.  

Red lines represent ABA sensitivity, Black bars represent survival of 

cotyledons, grey bars represent primary roots and white bars represent seedlings. 

(From [109]). 

 

 2.2 Hypocotyl development  

 

Germination of seeds leads to the emergence of young seedlings, 

whose development relies on environmental conditions, light being 

the most important clue. In the absence of light, which is the 

natural condition of seeds germinating underground, seedlings 
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undergo a skotomorphogenic developmental program, 

characterized by long hypocotyls, small and etiolated cotyledons 

and by the presence of an apical hook. On the other hand, 

photomorphogenesis is a multi-traits process characterized by 

inhibition of hypocotyl elongation, opening and expansion of 

cotyledons and chloroplast development.  

Hypocotyl growth is only dependent on cell expansion [111], thus 

this process has attracted attention because of the simplicity of the 

organ, and also because - besides light - a number of plant growth 

factors affect this process, namely GAs and auxin, as well as 

ethylene, BRs [112] and ABA [113-115].  

GAs and light play an antagonistic role in this process: GAs 

promote cell elongation and prevent de-etiolation, whereas light 

inhibits hypocotyl growth through the GA-DELLA signaling 

mechanism [116]. Consistently, light positively controls the GA 

catabolic genes [116]. The opposite action of GA and light 

converges on the PIF proteins, repressors of light-mediated 

processes [117]. 

Among PIF proteins, PIF1, PIF3, PIF4 and PIF5 are mostly 

involved in the repression of photomorphogenesis; indeed, the 

quadruple pif mutant (lacking PIF1, PIF3, PIF4 and PIF5) displays 

a photomorphogenic phenotype in the dark, suggesting that these 

PIF factors act redundantly to promote etiolated growth. [118] Li 

and coauthors proved that DELLA proteins interact with PIF1, 
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PIF3, PIF4 and PIF5, to trigger degradation of these PIF factors, 

via the ubiquitin-26S proteasome system. Thus, they proposed a 

model of how GA and light signals coordinate their action to 

control plant hypocotyl elongation (Fig. 7) [118].  

A molecular network including PIF and DELLA proteins acting 

through auxin and BRs has been described as the BZR-ARF-

PIF/DELLA module, which mediates the control of cell expansion 

(and hypocotyl elongation) through hormones and light signals 

during seedling morphogenesis [119, 120]. Auxin (Aux/IAA) 

promotes cell elongation by integrating the environmental clues 

with hints from other hormones, namely GAs and BRs [121, 122]. 

Auxin signaling is repressed - in the absence of IAA - through the 

Aux/IAA negative regulators, which are degraded via the 

ubiquitin-proteasome 26S once IAA is present, thus inducing the 

IAA-responsive genes through the AUXIN RESPONSE FACTOR 

(ARF) transcription factors [123, 124]. ARF proteins bind the 

Auxin Response Elements (AuxREs) [125]. The arf6arf8 double 

mutant shows shorter hypocotyls than the wild type and the arf6 

and arf8 single mutants in the dark, suggesting that ARF6 and 

ARF8 regulate hypocotyl elongation redundantly [126]. 

As for BRs, similarly to the pif quadruple mutant, Arabidopsis BR-

insensitive or BR-deficient mutant seedlings show a de-etiolated 

phenotype in the dark [127, 128]. Indeed, the activity of BZR1, 
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ARF6 and PIF4, which synergistically promote hypocotyl 

elongation, are inhibited by DELLA proteins [120, 129].  

The hormone ethylene also plays a critical role in hypocotyl 

elongation. Ethylene, through its positive effector EIN3, triggers 

two distinct pathways: the PIF3-dependent growth-promoting 

pathway and an ETHYLENE RESPONSIVE FACTOR 1 (ERF1)-

mediated growth-inhibiting pathway, to coordinately regulate 

hypocotyl elongation in response to soil conditions during seedling 

emergence [130]. The transcription factor ERF72, encoded by a 

target of EIN3, interacts with BZR1 and ARF6, inhibiting ARF6 

transcriptional activity. Liu and co-authors proposed a new model 

in which light, auxin, BR and ethylene signaling pathways regulate 

hypocotyl growth. In the dark, ERF72 is localized in the 

cytoplasm, while ARF6 and BZR1 are in the nucleus to regulate 

the expression of cell elongation-related genes and promote 

skotomorphogenic development. After light exposure, ERF72 

translocates to the nucleus and interacts with ARF6 and BZR1 to 

attenuate the transcriptional control of ARF6 and BZR1 target 

genes. Therefore hypocotyl growth is inhibited and seedlings 

undergo photomorphogenesis [131] (Fig. 8). 

The role of ABA in hypocotyl elongation is still controversial but 

recently it has been proposed that ABA represses GA biosynthesis, 

thus stabilizing DELLA proteins, and inhibiting the activity of 

PIFs, ultimately repressing auxin biosynthesis. Alternatively, ABA 
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inhibits PIF proteins, which no longer induce both GA and auxin 

biosynthesis (Fig. 9) [115]. 

 

 

 

 
 

Fig. 7. A model of DELLA activity to inhibit PIF proteins.    

On the left, DELLA proteins are degraded in the presence of GAs, thus releasing 

PIF factors and triggering hypocotyl elongation. On the right, in the absence of 

GAs, DELLA proteins inhibit PIF activity or by sequestering PIF factors, or by 

promoting their degradation through the 26S-proteasome, thus preventing 

binding of PIF factors to their targets, and in turn hindering hypocotyl 

elongation. (From [118]). 
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Fig. 8. Crosstalk among IAA, BRs, and ethylene signaling pathways 

regulates hypocotyl growth and photomorphogenesis in Arabidopsis 

seedlings.  

In the model is shown how these pathways, through ARF6 and BZR1promote 

hypocotyl elongation in the dark, while in the light the interaction of these 

factors with ERF72 inhibits cell elongation. (From [131]). 
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Fig. 9. Schematic model of ABA function in the inhibition of hypocotyl 

elongation in a DELLA-dependent or -independent pathway. 

On the left ABA represses GA biosynthesis, thus DELLA proteins are stabilized, 

and inhibit the activity of PIF proteins, repressing auxin biosynthesis. On the 

right ABA inhibits PIF proteins, which no longer induce both GA and auxin 

biosynthesis. (From [115]). 
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3. DAG1: a Dof transcription factor involved in the seed-to-
seedling transition  

  
 3.1 The Dof Family of plant transcription factors 

 

Dof Affecting Germination 1 (DAG1) belongs to the DNA-binding 

with One Finger (DOF) plant-specific family of transcription 

factors, characterized by a single zinc-finger DNA-binding 

domain. The DOF proteins have been identified first in maize 

[132], and then from green unicellular algae to mosses, ferns 

gymnosperms and angiosperms [133-135]. These proteins share a 

conserved 52–amino acid domain containing a single zinc finger 

(CX2CX21CX2C) and a downstream basic region localized in the 

protein N-terminus (DOF domain) (Fig. 10).  
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Fig. 10. Schematic representation of the DOF domain.  

In red are showed the conserved amino acid residues. The well-conserved 

residues are pink and in gray are shown the less-conserved residues. (From 

[136]). 

 

 

As a result of the highly conserved DNA binding domains, all the 

Dof proteins recognize similar target sequences, with a CTTT 

consensus core [137]. Therefore, the action specificity of these 

factors relies on specific interaction with other regulatory proteins 

[138-143]. DOF proteins are involved in plant-specific processes, 

such as maturation, dormancy and germination of seeds, or light-

mediated processes and vascular differentiation (Fig. 11). 
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Fig. 11. Processes regulated by DOF proteins.   

Examples of processes in which DOF proteins are involved. (From [136]). 

 

 3.2 DAG1 and Seed germination 
 

We identified DAG1 as a repressor of light-mediated seed 

germination, acting downstream of the master repressor of this 

process PIL5/PIF1 [120], which indirectly controls DAG1 

expression in the dark [144]. Indeed, lack of DAG1 results in an 

increase of germination potential; consistently, dag1 mutant seeds 

require less GA and less light to germinate compared to wild type 

seeds [145, 146]. 

Recently we proved that DAG1 controls the hormonal balance 

between GAs and ABA during the seed-to-seedling transition, 
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playing a key role in the establishment and maintenance of 

dormancy [147]. Indeed DAG1 directly represses the ABA 

catabolic gene CYP707A2, and the GA biosynthetic gene GA3ox1 

[138, 144, 147] (Fig. 12). 

 

 

 
 
Fig. 12. DAG1 directly binds the promoters of GA3ox1 and CYP707A2.  

Top: graphic representation of GA3ox1 (left) and CYP707A2 (right) promoters. 

Underlying thick lines marked by letters (1, 2, 3 and A, B, C respectively) are 

referred to different promoter fragments used for qPCR. Bottom: chromatin 

from dag1DAG1-HA seeds was immunoprecipitated with anti-HA antibodies 

(black bars) or without antibodies (white bars), and the amount of DNA was 

measured by qPCR. The values of fold enrichment were normalized to internal 

controls (relative to input), and are the average of two biological replicates 



PhD Programme in Life Sciences 

 Pag. 33  

presented with SD values. Significant fold enrichments were analyzed by t-test 

(*P ≤ 0,05). (Adapted from [138, 147]).  

 

In the molecular pathway repressing seed germination in the dark, 

PIF1 directly activates transcription of the GAI and RGA genes 

[148], to increase the ABA/GA ratio. Nevertheless, PIF1 does not 

directly control ABA and GA metabolism, rather it functions 

through downstream repressors, such as DAG1 [144].   

We have previously demonstrated, by ChIP assay, that GAI 

cooperates with DAG1 in repressing GA3ox1, since lack of GAI in 

the dag1gai-t6DAG1-HA line affects the binding of DAG1 to the 

DOF sites on the GA3ox1 promoter. By yeast two-hybrid assay, we 

also proved that GAI directly interacts with DAG1. In addition, 

DAG1 and GAI mutually affect their expression [149].  

DAG1 is expressed in the vascular system of the mother plant and 

during embryogenesis from the globular stage to mature embryo 

[138, 144, 145]. 

In addition, DAG1 is expressed in dry and imbibed seeds, its 

expression is modulated from maturation to germination. Indeed 

DAG1 is highly expressed during the late stage of seed maturation 

(13 DAP, Days After Pollination), then its expression decreases, 

keeping a steady-state level during dormancy [147]. Similarly to a 

number of seed-specific genes [150], DAG1 expression is 

controlled at the epigenetic level, during the seed-to-seedling 
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transition. Indeed, by ChIP analysis we proved that, in young 

seedlings, the DAG1 locus is enriched in the repressive epigenetic 

mark H3K27me3, catalysed by the Polycomb Repressive 

Complex2 (PRC2), whereas it is enriched in the activating 

epigenetic mark H3K4me3 in dry seeds, consistently with its role 

during the seed-to-seedling transition [147] (Fig. 13). 

 

 

 
 
Fig. 13. DAG1 expression is controlled at the epigenetic level.  

Top: graphic representation of the DAG1 locus. Bottom: Chromatin from wild 

type developing seeds at 10/13 DAP (days after pollination), 0 DAH (days after 

harvest), 24h-inbibited seeds and 14 old-seedlings was immunoprecipitated with 

specific antibodies against the H3K27me3 (left) and H3K4me3 (right). (Adapted 

From [147]). 
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It is known that, during dormancy, GA levels must be kept low 

[151]; our data proved that DAG1 plays a crucial role in 

maintaining GA biosynthesis low by repressing the expression of 

GA3ox1. Interestingly, we demonstrated that both DAG1 

expression and protein stability are controlled by GA, as the DAG1 

transcript level is increased and the protein stabilized by bioactive 

GAs, suggesting the presence of a feedback loop through which 

GAs promote DAG1 expression/stabilization to repress their own 

biosynthesis during seed germination [147]. 

 

 3.3 DAG1 and Hypocotyl development 
 

It has been previously proposed that DAG1 may be a negative 

component of the mechanism of light-mediated inhibition of 

hypocotyl elongation, as lack of dag1 results in a shorter 

hypocotyls compared to the wild type [144] (Fig. 14).  
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Fig. 14. DAG1 is a negative component of light-mediated inhibition of 

hypocotyl elongation.  

Hypocotyl length of wild type and dag1 seedlings grown in the dark (D), Far 

Red continuous (FRc), and Red continuous (Rc). (From [144]). 

 

 

 

More recently, we have shown that DAG1 promotes hypocotyl 

elongation, through the control of ABA, ethylene and auxin 

signaling in this developmental process [152].  

We have analysed the trascriptomic profile of 4 days-old dag1 and 

wild type hypocotyls by means of high-throughput RNA-seq. 

Interestingly, our analysis revealed that “response to abscisic acid”, 

“response to ethylene” and “response to auxin” are among the 

significantly enriched processes. Consistently, a large number of 

Differentially Expressed Genes (DEGs), are related to ABA, auxin 

and ethylene signaling (Tab. 1). In particular we have identified 

seven WRKY-encoding genes, known to be involved in ABA 

signaling, and seven ERF (ETHYLENE RESPONSE FACTOR) 

genes. Moreover, four SAUR (SMALL AUXIN RESPONSIVE) 

genes were down-regulated in dag1 hypocotyls (Tab. 1). The 

SAUR genes are rapidly induced by auxin, and it was recently 
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shown that they are light-repressed in hypocotyl, suggesting a 

positive role of these genes in hypocotyl elongation [152, 153] 

 

Table1:  

 

 
 

 
 

 

 
 

 

 
 

 
 

 

 
 

 
 

 

 

Categories Gene Name 
ABA-related genes ABR1 
 RAB18 
 WRKY40 
Ethylene Responsive Factors genes ERF2 
 ERF5 
 ERF11 
 ERF105 
 ERF109 
SMALL AUXIN UP RNA genes SAUR50 
 SAUR63 
 SAUR65 
 SAUR67 
WRKY-family WRKY6 
 WRKY18 
 WRKY28 
 WRKY33 
 WRKY46 
 WRKY70 
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4. WRKY: a family of stress-related transcription factors  
 

The WRKY family is one of the largest transcription factor 

families in plants; the Arabidopsis genome encodes for 72 WRKY 

proteins [154, 155]. A large number of studies on these proteins 

revealed that they are related to pathogen responses [154, 156, 

157], senescense [158], morphogenesis [159], cold tolerance [160], 

as well as response to drought and high salinity stresses [161]. The 

WRKY proteins are characterised by a DNA-binding domain, 

defined by a conserved WRKYGQK sequence of 60 amino acids at 

the N-terminal and a zinc-finger-like motif. The WRKY DNA-

binding domain recognises the W-box elements containing the 

TTGAC(C/T) motif, although the flanking sequences of the W-box 

provide the binding selectivity of these transcription factors. The 

binding of WRKY proteins to the W-box has been demonstrated 

by several experiments, both in vitro and in vivo [156, 157]. 

WRKY proteins contain either one or two WRKY domains. They 

are classified on the basis of both the number of WRKY domains 

and the features of their zing-finger-like motif. In the group I are 

present the transcription factors with two WRKY domains, in the 

group II the ones with only one WRKY domain. Groups I and II 

share the same C2-H2 finger motif, while a small subset of WRKY 

proteins (group III) display a C2-HC motif. The group II were 
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further divided into IIa, IIb, IIc IId and IIe based on the primary 

amino acid sequence (Fig. 15) [162]. 

 

 
Fig. 15. The consensus WRKY domain for each WRKY group in higher 

plants.  

The yellow boxes represent the WRKY domain, in red and green the two 

different zinc finger motifs.  

 

A large number of Arabidopsis WRKY genes are induced by 

pathogen infection or SA treatment [163]. Indeed, many plant 

defence or defence-related genes, including pathogenesis-related 

and the master regulatory NPR1 (NON-EXPRESSER OF 

PATHOGENESIS-RELATED GENES 1) encoding gene, contain 

W-box sequences in their promoters [164]. Several studies in 

Arabidopsis have revealed direct links between specific WRKY 

proteins and complex plant defence responses; for example, the 

wrky70 mutant shows increased plant susceptibility to both 

biothrophic and necrotrophic pathogens including Erwinia 



Veronica Ruta 

Pag 40  

carotovora, Hyaloperonospora parasitica, Erysiphe 

cichoracearum and Botrytis cinerea [165, 166]. On the other hand, 

lack of WRKY33 results in enhanced susceptibility to necrotrophic 

fungal pathogens and impaired expression of JA/ET- regulated 

defence genes [167].  

Besides their involvement with the response to biotic stress, 

WRKY proteins are also involved in plant responses to abiotic 

stresses. Indeed, a large number of Arabidopsis WRKY genes have 

been shown to be induced by drought, cold or high-salinity stress 

[168, 169]. The knockout mutant of WRKY63, named abo3, is 

hypersensitive to exogenous ABA in seeds and seedlings; 

conversely, the adult mutant plant shows reduced ABA sensitivity 

in guard cells, displays more rapid water loss and is more sensitive 

to drought stress than wild type plants [170]. A similar phenotype 

has been shown for the wrky2 mutant, which shows 

hypersensitivity to ABA response during seed germination. ABA 

induces WRKY2 protein accumulation in seeds and seedlings; this 

effect is lost in abi and aba mutants, suggesting that these ABA-

factors are crucial to mediate this ABA action on WRKY2 

stabilization [171].  

The Arabidopsis WRKY18 cooperates with the two related 

WRKY40 and WRKY60 proteins, in the response to biotic stress 

with both overlapping and distinct functions [172, 173]. Genetic 

and molecular analysis of the corresponding mutants proved that 
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these proteins have also a role in ABA signaling. Indeed, lack of 

WRKY18 and WRKY60 results in reduced ABA sensitivity for the 

inhibition of seed germination, as well as increased tolerance to 

salt and osmotic stress. Conversely, inactivation of WRKY40 

causes an increased ABA sensitivity for germination and a 

decreased tolerance to salt and osmotic stress [174](Fig. 16).  

                 
 

Fig. 16. Germination rates under ABA treatment of wrky18, wrky40 and 

wrky60 mutants.  
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Germination of wild type and wrky18, wrky40 and wrky60 single, double and 

triple mutants seeds in the presence of different concentration of ABA. The 

germination was determinated 120 hours after sowing. (From [174]). 

 

 

ABA controls the expression of WRKY18, WRKY40 and WRKY60: 

WRKY18 and WRKY40 are rapidly induced upon ABA treatment, 

whereas ABA-induction of WRKY60 is delayed and prolonged. In 

addition, both WRKY18 and WRKY40 are required for ABA-

induced WRKY60 expression [174]. By ChIP analysis, it has been 

shown that WRKY18 and WRKY60 bind the promoters of the 

ABA positive regulators-encoding genes ABI4 and ABI5, thus 

resulting in a complex molecular model in which WRKY18, 

WRKY40 and WRKY60 alternatively cooperate or play 

antagonistic roles to control ABI4 and ABI5 expression and ABA-

related responses [92].  

The Arabidopsis WRKY6 factor is involved not only in plant 

pathogen defence but also in ABA-signaling. Studies on wrky6 

knock-out mutants revealed that lack of WRKY6 results in 

decreased ABA sensibility during seed germination and seedling 

development, whereas WRKY6 over-expression results in ABA-

hypersensitive phenotypes (Fig. 17).  
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Fig. 17. ABA-sensitivity of wrky6 mutant and WRKY6 overexpressing lines. 

Top: phenotypic comparison between wild type (WT) and mutants in the 

presence of exogenous ABA (0.5μM). Bottom: Seed germination assay in the 

absence or presence of ABA. The seed germination rate was calculated at time 

indicated. (Adapted from [175]). 

 

 

In the working model proposed, WRKY6 regulates ABA-signaling 

by directly binding and repressing RAV1, a transcription factor 

that regulates the expression of ABIs during seed germination [93]. 

RAV1 represses the expression of ABI3, ABI4 and ABI5 thus 

promoting seed germination and early seedling development [175]. 
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5. Epigenetics 

 

The term epigenetics was introduced in the early 1940s by Conrad 

Waddington [176], as a refinement of his concept of "epigenetics 

landscape" [177](Fig. 18). Today epigenetics is defined as “the 

study of changes in gene function that are mitotically and/or 

meiotically heritable and that do not entail a change in DNA 

sequence” [178]. The epigenetic modifications comprise histone 

variants, post-translational modifications of amino acids on the 

amino-terminal tail of histones, and covalent modifications of 

DNA bases.  

 

                               
 
Fig. 18. Modern view of the Epigenetic Molecular Machinery. 
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H3.3 and macroH2A are shown as histone variants involved in transcriptional 

activation or repression, respectively. ChR, chromatin remodelers; DNMTs, 

DNA methyltransferases; HATs, histone acetyltransferases; HDACs, histone 

deacetylases; HMTs, histone methyltransferases; HDMs, histone demethylases; 

DDMs, DNA demethylases and TFs, transcription factors [reflecting the genetic 

component of the epigenetic process. (From [179]). 

In plants and animals, the genome size, genome complexity and 

the ratio of heterochromatin to euchromatin are generally 

comparable. Plants and mammals make similar use of both DNA 

methylation and histone post-translational modifications (PTMs) to 

control gene expression. The comparison of genome organization 

and epigenetic control in different model systems reveals that there 

are more common features between plants and mammals than 

within the animal kingdom itself [180]. Consequently, epigenetic 

mechanisms discovered in plants or mammals are generally 

relevant to both systems.  

Information content of the genome (DNA sequence) and its 

expression in response to stress are crucial for the adaptability of a 

genotype. Developmental and environmental signals can induce 

epigenetic modifications in the genome, and thus, a single genome 

in a plant cell gives rise to multiple epigenomes in response to 

developmental and environmental cues. 

Among the enzymes that post-translationally modify histones, the 

Polycomb group (PcG) proteins are a transcriptional repression 
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system for the epigenetic control of cell, tissue and organ 

differentiation, contributing to correctly attain a variety of plant 

developmental programs. The PcG group proteins were initially 

identified as master regulators and suppressors of homeotic genes 

in Drosophila. PcG proteins are grouped into two complexes: 

POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) and 2 (PRC2). 

PRC2 is responsible for the trimethylation of lysine 27 of histone3 

(H3K27me3), which is recognized by PRC1 to establish a silent 

chromatin conformation by monoubiquitination of histone H2A 

[181].  

PRC2 has four subunits:  

- an histone methyltransferase encoded by ENHANCER 

OF ZESTE (E(Z)) 

- a WD40 domain protein encoded by EXTRA SEX 

COMBS (ESC) 

- a Zn-finger protein encoded by SUPPRESSOR OF 

ZESTE 12 (SU(Z)12) 

- a nucleosome-remodeling protein encoded by 

NUCLEAR REMODELING FACTOR (NURF55) [182]. 

 

In Arabidopsis, there are 12 homologs of the Drosophila PRC2 

subunits and, in particular, the histone methyltransferase EZ is 

encoded by three homologs (CURLY LEAF, MEDEA and 

SWINGER; CLF, MEA and SWN), which share a highly conserved 
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SET domain, responsible of the catalytic activity [183]. Different 

combinations of the four subunits result in three PRC2-like 

complexes: the EMBRYONIC FLOWER (EMF), 

VERNALIZATION (VRN) and FERTILISATION 

INDEPENDENT SEED (FIS), which function in different 

developmental processes, although sharing some target genes [184, 

185](Fig. 19).  

 

 
Fig. 19. The conserved core proteins of PRC2 in Drosophila melanogaster, 

Mus musculus, Arabidopsis thaliana and Caenorhabditis elegants.  

In Arabidopsis PRC2 has evolved into three variants with different functions 

during development. Homologous proteins are indicated with the same color. 

Notably in C. elegans only three proteins form the PRC2 core complex, and the 

MES-3 subunit is not homologous with any other identified in PRC2 subunits. 

(From [186]). 
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In flowering plants, the activity of PRC2 is crucial during 

endosperm formation as it controls the imprinting of several genes, 

and mutations in the imprinting machinery lead to embryonic 

lethality [187]. This has severely hindered studies on the function 

of PRC2 during seed development (Fig. 20).  

 

 

                       
Fig. 20. Phenotypic analysis of post-embryonic development. The 

development of the wild type (A-C) compared to the fie mutant (C-I).  

(A and D) 5 days-old wild type and fie seedlings. (B and E) 15 days-old wild 

type and seedlings, the fie mutant showing early flowers. (C) 40 days-old wild 

type seedling is bigger than the fie mutant (arrow). (F) 3 months-old fie mutant 

transformed into a callus-like structure. (G-I) Misplaced cells and organs in fie 

mutants, flower-like organs (G), Leaves in root (H) and offshoots (I). (Adapted 

from [150]). 
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An exception is represented by the genetic strategy used by Bouyer 

and collaborators, who were able to bypass the female 

gametophytic defect of the fertilization independent endosperm 

(fie) mutant (Fig. 20), through pollination of heterozygous fie 

mother plants with pollen from a cdka;1-fie double heterozygous 

line. This allowed to generate viable homozygous fie mutants, 

derived from seeds where the endosperm was of uniparental 

(maternal) origin [150, 188]. 

PcG silencing is medically relevant as it has often been correlated 

with human disorders, including cancer, and tissue regeneration, 

which involve the reprogramming of PcG-controlled target genes. 

For this reason EZH2 has long been considered an ideal 

therapeutic target [189].  

The first compound described as inhibitor of EZH2 was the 3-

deazaneplanocin A (DZNep), which was shown to reduce 

H3K27me3 levels through depletion of EZH2 protein level, 

although with a fairly low specificity [190]. Subsequently, efforts 

in producing selective inhibitors of EZH2 by means of high-

throughput screenings have been highly promising [191-194]. 

Among the compounds identified, the dual inhibitor of 

EZH2/EZH1, UNC1999, has been shown to be highly effective in 

vitro on both wild type and both gain- and loss-of-function mutant 
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EZH2. UNC1999 was shown to be able to reduce H3K27me3 

levels as well as cell proliferation in a large number of cancer cells, 

without affecting EZH2 protein level (Xu et al 2015, Konze et al 

2013).  
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AIM OF THE WORK  
  

Plants, as sessile organism, have to survive to changing 

environmental conditions. The phytohormone abscisic acid (ABA) 

has a pivotal role in the adaptation to environmental challenges. 

ABA is also involved in the regulation of plant growth and 

development, and in particular in the establishment of dormancy, a 

period of storage necessary to prevent early germination and 

vivipary.  

 Dof AFFECTING GERMINATION 1 (DAG1) controls the 

balance between GA and ABA during dormancy. DAG1 acts 

through the direct repression of the GA biosynthetic gene GA3ox1 

and the ABA catabolic one CYP707A2, thus ensuring the 

establishment of dormancy and the repression of germination. 

Recently we proved that DAG1 has also a role during seedling 

development, indeed dag1 mutants show a shorter hypocotyl than 

the wild type. By using high-throughput RNA-seq we proved that 

DAG1 is involved in the promotion of hypocotyl elongation 

through the control of ABA, ethylene and auxin signaling. 

In this genome-wide analysis on dag1 hypocotyls, we have 

identified seven WRKY-encoding genes, known to be involved in 

the response to abiotic stresses. In particular, we focused our 

attention on WRKY6 and WRKY18 because they are likely to be 
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elements of the ABA-mediated developmental processes and stress 

response.  

This project aims to investigate the role of - and the putative 

interactions between - DAG1 and WRKYs factors in the ABA-

related processes and in particular in the response to abiotic stress. 

The PRC2 complex has a key role during plant development, in 

particular during the seed-to-seedling transition. The DAG1 locus 

is a target of PRC2, and is marked by H3K27me3 in seeds and 

seedlings, consistently it had been shown to be up-regulated in 

mutant plants lacking PRC2. 

Mutation on the catalytic subunit of PRC2 results in a severe 

phenotype, like embyo-lethality in plants or cancer in animals. The 

effects of different inhibitors of the catalytic subunit of PRC2 have 

long been tested in animals as a possible anti-cancer therapy.  

Taking advantage of the homology of the PCR2 catalytic subunits 

of animals and plants, the second aim of this PhD project was to 

develop a pharmacological approach to inhibit the activity of PRC2 

in seeds and seedlings of Arabidopsis thaliana. 
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Results: 

 
1. Lack of DAG1 affects expression of ABA-related and WRKY 

genes  

 
We had previously proposed that the Arabidopsis DOF 

transcription factor DAG1 might function as a negative component 

of the light-mediated inhibition of hypocotyl elongation, as light-

grown dag1 mutant seedlings show significant shorter hypocotyls 

than the wild type [144]. We investigated the role of DAG1 in 

hypocotyl elongation by using high-throughput RNA-seq. We 

compared the trascriptomic profile of dag1 and wild type 

hypocotyls and seedlings grown under continuous Red light [152]. 

This analysis revealed 257 differentially expressed genes (DE 

genes) in dag1 hypocotyls. The RNA-seq data suggest that DAG1 

is involved in the control of ABA, in hypocotyls. We validated the 

expression of a number of these hormone-related genes by RT-

qPCR on dag1 and wild type hypocotyls. Of the ABA-related 

genes, we analysed the expression of RAB GTPASE HOMOLOG 

B18 (RAB18), a stress-responsive gene involved in ABA and 

drought response, ABA REPRESSOR1 (ABR1) encoding an 

APETALA2 (AP2) domain transcription factor known as a 

repressor of ABA and the ABA-responsive WRKY40 transcription 
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factor encoding gene Fig. 21 [152]. Among the DE genes we 

identified 27 transcription factors encoding genes, belonging to 9 

different families. The most represented family was the WRKY 

family [152]. WRKY proteins are transcription factors mainly 

involved in abiotic-stress response and ABA-mediated processes 

like dormancy, desiccation tolerance (DT) and seed germination. 

Since DAG1 controls ABA levels during dormancy and 

germination playing a key role in the establishment of dormancy 

[147] we validated these targets through RT-qPCR. The expression 

of WRKY6, WRKY18, WRKY28, WRKY33, WRKY40, WRKY46 and 

WRKY70 was analysed in 4 days-old hypocotyls grown under 

continuous Red light. The results of this analysis revealed that 

expression of WRKYs was significantly increased by inactivation 

of DAG1 (Fig. 21), thus confirming the data obtained from the 

RNA-seq analysis. 
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Fig. 21. Lack of DAG1 affects the expression of ABA-related and WRKY 

genes under continuous Red light. 

Top: Relative expression of ABA-related genes in wild type and dag1 

hypocotyls. 

Bottom: Relative expression of WRKY genes, in wild type and dag1 hypocotyls. 

The values are the mean of three independent biological replicates, presented 

with SD values. Significant differences were analyzed by t-test (*P≤0.05). 

([152]). 

 

Since it has been recently demonstrated that DAG1 positively 

controls hypocotyl elongation through cell expansion, we assessed 

whether the control of DAG1 on the expression of the candidate 

WRKY genes might be independent of light conditions. Therefore, 

we performed an expression analysis on hypocotyls from dark-

grown seedlings. Interestingly, the results revealed that WRKY 

expression was significantly increased by inactivation of DAG1 

regardless of light conditions (Fig. 22).  

 

 

 

 

 



PhD Programme in Life Sciences 

 Pag. 57  

 
 

 
Fig. 22. Lack of DAG1 affects the expression of WRKY genes in the dark. 

The relative expression of WRKY genes, in wild type and dag1 hypocotyls. The 

values are the mean of three independent biological replicates, presented with 

SD values. Significant differences were analyzed by t-test (*P≤0.05). 

 

2. DAG1 directly binds the WRKY18 promoter  

 
DAG1, as a Dof transcription factor, binds the CTTT sequence on 

the promoter of target genes [195, 196]. The presence of a 

significant number of CTTT binding sites (BS) in the promoter of 

WRKY18 was verified by means of Promomer. This in silico result 

was verified by ChIP analysis, using the dag1DAG1-HA transgenic 

line expressing a DAG1-HA functional protein in a dag1 mutant 

background [138]. Protein-DNA complexes were precipitated with 

anti-HA antibodies, or without antibodies as a negative control. As 

additional negative control, we performed the same assay on 

untransformed dag1 seedlings. Three regions of the WRKY18 
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promoter were amplified by qPCR. The relative amount of 

promoter fragment c (7 Dof BS) precipitated by DAG1-HA was 

significantly higher compared to the negative controls, whereas 

fragment b (4 Dof BS), although slightly higher than the control, 

was not significantly different. As for fragment a (no Dof BS), it 

was similarly enriched in DAG1-HA and in the negative controls. 

Therefore, this analysis corroborated the result of the in silico 

analysis, revealing that DAG1 directly binds the WRKY18 

promoter (Fig. 23). 

 

 
 

 

Fig. 23. DAG1 directly binds the promoter of WRKY18.  

Top: graphic representation of the WRKY18 promoter. a, b, c are the different 

promoter fragments used for qPCR containing 0, 4, 7 Dof binding sites 
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respectively. Bottom: chromatin from dag1DAG1-HA (left) and from dag1 

(right) seedlings, as a negative control, was immunoprecipitated with anti-HA 

antibodies, and the amount of DNA was measured by qPCR for WRKY18 

promoter fragments. The values are the mean of two independent biological 

replicates, presented with SD values. Significant differences were analyzed by t-

test (*P≤0.05). ([152]). 

 
3. Phenotypic characterization of the wrky6 and wrky18 single 

mutants  
 

We focused on the WRKY6 and WRKY18 factors for further 

analysis because they are known to be involved in seed 

germination and ABA-related processes and signaling [92, 175].  

First, we performed a seed germination assay of non-dormant 

stratified or unstratified seeds, by measuring the germination rate 

every day up to complete germination. The germination rate was 

measured as the number of germinating seeds (radicle emerging 

from the seed coat) on the total number of seeds. Curiously, the 

wrky6 and wrky18 mutations did not affect the germination 

process. Indeed, in the presence or absence of stratification - a 

treatment necessary to remove the residual dormancy -, the 

germination rate of wrky6 and wrky18 mutants did not show a 

significant delay respect to the wild type (Fig. 24). 
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Fig. 24. Germination properties of wrky6 and wrky18 mutants.  

Top: germination assay with stratified mutant and wild type (wt) seeds; the 

number of germinated seeds were measured every day after imbibition. Bottom: 

germination assay with unstratified mutant and wild type (wt) seeds. The values 

are the mean of two independent biological replicates presented with SD values. 
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Our genome-wide analysis reveals that the expression of the 

WRKY6 and WRKY18 is affected in dag1 hypocotyls compared to 

wild type ones. To verify if these proteins could have a role in 

hypocotyl elongation, we performed a phenotypic analysis of 

hypocotyl length of the mutants under two different light 

conditions: continuous Red light and dark. Interestingly, the 

inactivation of WRKY6 results in a significantly increased 

hypocotyl length than the wild type in both light conditions. 

Conversely, lack of WRKY18 results in significantly shorter 

hypocotyls only in dark condition (Fig. 25). 
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Fig. 25. Hypocotyl length of the wrky6 and wrky18 mutants under Red light 

and in the Dark. 

Top: Relative hypocotyl length of 5 days-old mutant and wild type seedlings 

grown under Red Light. Bottom: Relative hypocotyl length of 5 days-old 

seedlings grown in the Dark. The values are the mean of three biological 

independent replicates, presented with SD values. Significant differences were 

analyzed by t-test (*P≤0.05). 
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4. Phenotypic characterization of the wrky6dag1 and 
wrky18dag1 double mutants in ABA-related processes 

 

ABA has a pivotal role in the response to abiotic stress; given the 

close relationship between DAG1, WRKYs and ABA we decided 

to investigate a putative role of these factors in the response to 

abiotic stresses.  

To study the genetic relationship between DAG1, WRKY6 and 

WRKY18 in the ABA-mediated processes, we generated the double 

mutants lines. Since the dag1 and wrky mutant lines were in 

different ecotypes (Ws-4 and Col-0 respectively), several lines for 

each genotype (such as double mutants, parental lines and wild 

type) were selected and analysed to reduce the effect of the ecotype 

on the phenotype of interest. 

 

4.1 Effect of simultaneous inactivation of DAG1 and WRKY6/18 
on hypocotyl elongation  

 

4.1.1 Hypocotyl length in different light conditions 
 

Our previous results demonstrated that lack of WRKY6 and 

WRKY18 resulted in an opposite phenotype: an increased 

hypocotyl length for the wrky6 mutant, while the wrky18 mutant 

displayed reduced hypocotyl length compared to the wild type. We 
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proved that DAG1 promotes hypocotyl elongation; therefore, we 

wondered which was the role of these WRKY proteins in 

hypocotyl elongation and their relationship with DAG1. We 

measured the hypocotyl length in the double mutants wrky6dag1 

and wrky18dag1 respect to the parental lines grown under Red 

light. As for wrky6dag1, this analysis showed that the wrky6dag1 

double mutant had significantly longer hypocotyls than wild type 

and dag1, since its hypocotyl length was comparable to the single 

wrky6 mutant, which, as expected, showed significantly longer 

hypocotyls than dag1 and the wild type (Fig. 26). Therefore, the 

wrky6 mutation is epistatic on the dag1 mutation, suggesting that 

WRKY6 could be a negative regulator of hypocotyl elongation. To 

verify if this effect was light-independent we measured the 

hypocotyl length of seedlings grown under dark condition. As 

expected, the wrky6 single mutant had longer hypocotyls respect to 

the wild type, while the hypocotyl length of the dag1 mutant was 

shorter than the wild type, regardless of light conditions. 

Interestingly, hypocotyls of the wrky6dag1 double mutant were 

shorter than the wild type ones and similar to dag1 hypocotyls, 

therefore suggesting a potential role of the light in the regulation of 

DAG1 on WRKY6 (Fig. 27).  
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Fig. 26. Hypocotyl length of wrky6dag1 double mutant under Red light. 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown 

under Red light. The values are the mean of three biological independent 

replicates, presented with SD values. Significant differences were analysed by t-

test (*P≤0.05).  
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Fig. 27. Hypocotyl length of wrky6dag1 double mutant in the dark. 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown in 

the dark. The values are the mean of three independent biological replicates, 

presented with SD values. Significant differences were analysed by t-test 

(*P≤0.05).  

 

 
 

 
As of wrky18dag1 double mutant, the results of this analysis 

revealed that inactivation of both WRKY18 and DAG1 results in 

hypocotyls significantly, although slightly, shorter than the wild 

type, albeit not short as the parental line dag1. Consistently with 

our previous result, the single mutant wrky18 did not show 

significant difference with the wild type (Fig. 28).  
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Fig. 28. Hypocotyl length of wrky18dag1 double mutant under Red light 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown 

under Red light. The values are the mean of three independent biological 

replicates, presented with SD values. Significant differences were analysed by t-

test (*P≤0.05).  

 

 

 

The wrky18 single mutant displayed a hypocotyl phenotype only in 

dark condition (Fig. 25). To assess whether this phenotype was 

confirmed even in the presence of the dag1 mutation, we measured 

hypocotyl length of seedlings grown in the dark. As expected, both 

the wrky18 and the dag1 single mutants showed a reduced 



Veronica Ruta 

Pag 68  

hypocotyl length compared to the wild type. Interestingly, the 

hypocotyl length of the double mutant wrky18dag1 was similar to 

the wild type, indicating that the simultaneous presence of both 

mutations complemented the hypocotyl shorter phenotype of the 

single mutants in the dark (Fig. 29). 
 

 
 

Fig. 29. Hypocotyl length of wrky18dag1 double mutant in the dark. 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown in 

the dark. The values are the mean of three independent biological replicates, 

presented with SD values. Significant differences were analysed by t-test 

(*P≤0.05).  

 

 

4.1.2 ABA effect on hypocotyl elongation  
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ABA is known as a growth-inhibiting hormone, and it has been 

shown to repress hypocotyl growth [115]. Since the wrky mutants 

displayed ABA-resistance for seed germination, we wondered 

whether the WRKY6 and 18 could be involved in ABA-mediated 

repression of hypocotyl elongation. We measured hypocotyl length 

in the wrky6dag1 and wrky18dag1 double mutant seedlings grown 

under Red light in the presence of increasing ABA concentrations 

(0, 1, 10, 100 μM).  

In the control (no ABA), the parental double mutant lines showed 

the opposite phenotype previously described: slightly longer 

hypocotyls for wrky6 and wrky6dag1, shorter ones for dag1. The 

response to ABA was measured as the ratio of hypocotyl length on 

ABA respect to the control, for each line. 

In the presence of increasing concentrations of ABA, both the 

wrky6 and wrky6dag1 mutant lines showed a reduced sensitivity to 

ABA, respect to the wild type and similarly to the dag1 mutant line 

(Fig. 30). 
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Fig. 30. ABA effect on wky6dag1 hypocotyl elongation under Red light. 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown 

under Red light, in the presence of increasing ABA concentrations. The values, 

normalised to the control sample for each line, are the mean of two independent 

biological replicates, presented with SD values. Significant differences were 

analysed by t-test (*P≤0.05). 

 

The hypocotyl length of both wrky18 and wrky18dag1 mutants was 

not reduced by ABA like the wild type one, similarly to the dag1 

mutant, thus suggesting that inactivation of WRKY18 results in 

reduced sensitivity to the inhibitory effect of ABA for hypocotyl 

growth (Fig. 31). 
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Fig. 31. ABA effect on wky18dag1 hypocotyl elongation under Red light. 
Hypocotyl length of 5 days-old double mutant and parental seedlings grown 

under Red light, in the presence of increasing ABA concentrations. The values, 

normalised to the control sample for each line, the mean of two independent 

biological replicates, presented with SD values. Significant differences were 

analysed by t-test (*P≤0.05). 

 

 

To evaluate if light could play a role in the resistance to ABA 

inhibition of hypocotyl length, we measured hypocotyl length of 

the wrky6dag1 and wrky18dag1 double mutant seedlings grown in 

dark in the presence of increasing ABA concentrations (0, 1, 10, 

100 μM). The response to ABA was measured as the ratio of 

hypocotyl length on ABA respect to the control, for each line 

(Figs. 32-33).  
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Fig. 32. ABA effect on wky6dag1 hypocotyl elongation in the dark. 

Hypocotyl length of 5 days-old double mutant and parental seedlings grown in 

the dark, in the presence of increasing ABA concentrations. The values, 

normalised to the control sample for each line, are the mean of two independent 

biological replicates, presented with SD values. Significant differences were 

analysed by t-test (*P≤0.05). 
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Fig 33. ABA response in wky18dag1 and elongation in the dark. 
Hypocotyl length of 5 days-old double mutant and parental seedlings grown in 

the dark, with increasing concentration of ABA. The values, normalised to the 

control sample for each line, are the mean of two independent biological 

replicates, presented with SD values. Significant differences were analysed by t-

test (*P≤0.05). 
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4.2 Desiccation tolerance  
 

Desiccation Tolerance (DT), defined as the ability of the seed to 

re-induce germination after dehydration without lethal damage, is 

restricted to the early stages of the seed germination process [110]. 

Since DAG1 is involved in seed dormancy and germination and is 

necessary to control ABA levels in seeds, we verified whether it 

may play a role even in DT establishment. To this end, we set-up a 

protocol to assess the capacity to re-establish DT, by applying a 

mild osmotic stress with a PEG solution; following this treatment, 

we measured the germination rate for four days. The seeds were 

treated at stages II-III of germination (see Fig. 5), when the radicle 

protrusion begins. We proved that dag1 mutant seeds partially lost 

the capacity to re-induce germination after dehydration, as shown 

in figure 34. Indeed, the germination rate of dag1 seeds was 

significantly lower than the wild type, consistent with the reduced 

ABA content of dag1 dry seeds respect to the wild type [147]. 

These data suggest that the reduction of ABA in dry seeds could 

trigger a decrease of the capacity to re-induce germination after 

exposure to drought stress in dag1 seeds. 
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Fig. 34. Re-establishment of DT in dag1 seeds. 

Germination rate after three days of PEG-treatment. The values are the mean of 

three independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 

 

 

Consistently, analysis of pDAG1::GUS transgenic line revealed an 

increase activity of the DAG1 promoter during the treatment, 

suggesting an involvement of DAG1 in the re-establishment of DT 

(Fig. 35).  
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Fig. 35. Expression of pDAG1::GUS during the principal steps of re-

establishment of DT. 

Histochemical analysis of pDAG1::GUS seeds and seedlings. Activity of 

pDAG1::GUS (a)  at stage III, (b) 3 days in a PEG solution, (c) 24 hours under 

the hood and (d) 2 days after imbibition. 

 

4.2.1 Effect of simultaneous inactivation of DAG1 and 

WRKY6/18 on the re-establishment of DT  
 

ABA plays a pivotal role in the Desiccation Tolerance process, as 

ABA signalling mutants, like ABA INSENSITIVE 4, 5 (ABI4, 5), 

are more tolerant to dehydration after germination; they germinate 

even after dehydration, whereas the wild type is no longer able to 

germinate under the same conditions. Considering the close 

relationship between WRKY6 and 18 with the ABA signaling 

pathways, we wondered if inactivation of wrky6/18 could re-

a b 
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establish the capacity to germinate after dehydration. Our analysis 

revealed that wrky6 seeds were less tolerant to dehydration respect 

to the wild type; consistently, the wrky6dag1 double mutant 

showed a more severe phenotype, as wrky6dag1 seeds were more 

sensitive to the treatment than the wrky6 single mutant seeds (Fig. 

36). Conversely, wrky18 mutant recovered the capacity to 

germinate like wild type seeds; a similar phenotype was displayed 

by the double mutants, since there was no significant difference in 

the percentage of germinated seed respect to the control, 

suggesting that lack of WRKY18 in a dag1 mutant background can 

restore to ability to germinate after dehydration (Fig. 37). 
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Fig. 36. Re-establishment of DT in wrky6 and wrky6dag1 mutant seeds. 

Germination rate after three days of PEG-treatment. The values are the mean of 

three independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 

 

 
 

 

 

 

 
 

 

 

Fig. 37. Re-establishment of DT in wrky18 and wrky18dag1 mutant seeds. 

Germination rate after three days of PEG-treatment. The values are the mean of 

three independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 
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4.3 Cold response 
 

To investigate the response of DAG1, WRKY6 and 18 in the 

response to cold, drought and salt we have collaborated with Prof. 

Julio Salinas, who has long experience in this field. These 

experiments have been performed in his laboratories, taking 

advantages of the facilities, which are available in those 

laboratories.  

 

4.3.1 Cold response: phenotypes 

 
To investigate the ability to cold acclimate of the dag1, wrky6 and 

18 mutants, we performed cold acclimation (CA) and non-

acclimation (NA) experiments on 14 days-old plants both in vitro 

(plates) and in pots. Usually plants are not tolerant to freezing, 

however acclimation (exposure of seedlings to 4°C for 7 days) 

makes seedlings more tolerant to freezing. Double mutant and 

parental seedlings were transferred at 4°C for 7 days to acclimate 

(CA Cold-Acclimated condition). As a control the same lines were 

directly transferred to freezing temperature (NA Non-Acclimated 

condition). Subsequently, the seedlings were exposed to a freezing 

temperature (-6°C for NA and -10°C for CA); then the survival 

rate was measured after 10 days of recovery under control 

conditions. Interestingly, acclimated dag1, wrky6 and wrky6dag1 
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mutant seedlings were significantly more tolerant to freezing 

temperature than the wild type; on the contrary, the same mutants, 

under non-acclimated conditions, did not show significant 

differences respect to the wild type (Figs. 38-39).  

 

 

Fig. 38. dag1 and wrky6 seedlings are more tolerant to acclimated freezing. 

Top: Double mutant and parental 14 days-old acclimated seedlings were 

transferred at -10°C for 6 hours. The survival percentage was measured after ten 

days. The values are the mean of three independent biological replicates, 

presented with SD values. Significant differences were analysed by t-test 

(*P≤0.05). 
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Bottom: Representative cold-acclimated plants 7 d after being exposed to -10°C 

for 6 h. 

 

 

 

 
 

Fig. 39. dag1 and wrky6 seedlings do not show increased tolerance to non-

acclimated freezing. 

Double mutant and parental 14 days-old non-acclimated seedlings were 

transferred at -6°C for 6 hours. The survival percentage was measured after ten 

days. The values are the mean of three independent biological replicates, 

presented with SD values. 
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As for the wrky18 and wrky18dag1 mutant seedlings, although the 

single mutant was not tolerant to freezing in both conditions (CA 

and NA), the double mutant acclimated seedlings displayed a more 

tolerant phenotype, pointing out that lack of DAG1 affects the 

response to cold acclimated freezing (Fig. 40). On the other hand, 

we did not observe significant differences in the tolerance to 

freezing in non-acclimated seedlings (Fig. 41). 

These results suggest a negative role of DAG1 in the freezing 

tolerance, and a possible involvement of WRKY6 in the same 

process, at least in our experimental conditions. 

 

 
Fig. 40. wrky18dag1 mutant seedlings are more tolerant to acclimated 

freezing. 

Double mutant and parental 14 days-old acclimated seedlings were transferred at 

-10°C for 6 hours. The survival percentage was measured after ten days. The 
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values are the mean of three independent biological replicates, presented with 

SD values. Significant differences were analysed by t-test (*P≤0.05). 

 

 

 
Fig. 41. dag1 and wrky18 seedlings do not show increased tolerance to non-

acclimated freezing. 

Double mutant and parental 14 days-old non-acclimated seedlings were 

transferred at -6°C for 6 hours. The survival percentage was measured after ten 

days. The values are the mean of three independent biological replicates, 

presented with SD values. 
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Similar results were obtained also with freezing tolerance assays 

performed in plates (Fig. 42-43). 

     

                      
Fig. 42. DAG1 inactivation results in increased freezing tolerance in vitro. 

14 days-old seedlings were acclimated at 4°C for four days before freezing at -

10 °C for six hours. Wild type on the left, dag1 mutant seedlings on the right.  
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Fig. 43. Acclimated dag1 and wrky6 showed increased freezing tolerance in 

vitro. 

14 days-old seedlings were acclimated at 4°C for four days before freezing at -

10 °C for six hours. (a) dag1, (b) wrky6dag1, (c) wrky6, (d) wild type, (e) 

wrky18, (f) wrky18dag1.  
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4.3.2 Cold response: whole seedling expression analysis 
 

To investigate if the expression of DAG1 and WRKYs is modulated 

after cold exposure, we performed a RT-qPCR analysis to measure 

the expression levels. The expression of DAG1 and WRKY6 and 18 

was analysed in wild type 11 days-old seedlings transferred at 4°C 

for 3, 8 and 24 hours. DAG1 expression level was sharply 

increased after 8 hours of cold treatment and was still induced after 

24 hours (3.5 fold) respect to the control condition (Fig.44). A very 

similar induction after 8 and 24 hours was observed for WRKY6 

expression level (Fig. 45). The WRKY18 gene, although the wrky18 

mutation does not affect freezing tolerance, showed an increased 

expression; indeed, WRKY18 transcript level was 3-fold higher 

than the control even after 3 hours treatment, and showed a 

continuous increased expression up to 24 hours (6.5- and 14.5-fold 

after 8 and 24 hours, respectively) (Fig. 46). 
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Fig. 44. DAG1 transcript level is increased by cold treatment. 

The relative expression of DAG1 was measured in 11 days-old seedlings treated 

at 4°C for 3, 8 and 24 hours. The values are the mean of three independent 

biological replicates, presented with SD values. Significant differences were 

analysed by t-test (*P≤0.05). 
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Fig. 45. WRKY6 transcript level is increased by cold treatment. 

The relative expression of WRKY6 was measured in 11 days-old seedlings 

treated at 4°C for 3, 8 and 24 hours. The values are the mean of three 

independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 

 

 
Fig. 46. WRKY18 transcript level is increased by cold treatment. 

The relative expression of WRKY18 was measured in 11 days-old seedlings 

treated at 4°C for 3, 8 and 24 hours. The values are the mean of three 

independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 
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4.3.3 Cold response: tissue-specific expression analysis 
 

An in silico analysis through the eFP Browser database 

(bar.toronto.ca) confirmed that DAG1 expression level increased in 

response to low temperature; in particular this analysis revealed an 

increase of DAG1 transcript levels localised in roots following cold 

treatment. To substantiate these data we performed a RT-qPCR 

analysis of 11 days-old cotyledons and roots from cold-treated 

seedlings. DAG1 transcript level was significantly increased in 

roots after 3 and 8 hours cold treatment (Fig. 47). This kinetics was 

consistent with the expression results on the whole seedlings which 

showed an increase of DAG1 expression at 8 and 24 hours of cold 

treatment, suggesting a root-specific role of DAG1 in response to 

cold stress. Conversely DAG1 expression was not increased in 

cotyledons, thus corroborating the in silico analysis (Fig. 48). 
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Fig. 47. DAG1 transcript level is increased by cold treatment in roots. 

DAG1 relative expression was measured in roots of 11 days-old wild type 

seedlings treated at 4°C for 3, 8 and 24 hours. The values are the mean of three 

independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 
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Fig. 48. DAG1 transcript level is not increased by cold treatment in 

cotyledons. 

DAG1 relative expression was measured in cotyledons of 11 days-old wild type 

seedlings treated at 4°C for 3, 8 and 24 hours. The values are the mean of three 

independent biological replicates, presented with SD values. Significant 

differences were analysed by t-test (*P≤0.05). 

 

4.3.4 Cold response: DAG1 targets in roots 

 
Since DAG1 directly controls expression of WRKY18 and SAUR67 

genes [152], we wondered whether DAG1 might regulate these 

genes also in the response to cold stress. Therefore, we performed 

an expression analysis of WRKY18 and SAUR67 in dag1 mutant 

roots following treatment at 4°C for 3, 8 and 24 hours. 

Interestingly, expression of the WRKY18 gene was significantly 

increased in dag1 mutant roots after 8 hours of cold treatment (Fig. 

49).  

Expression of the SAUR67 gene decreased in dag1 roots even in 

normal conditions (20°C), In addition, SAUR67 was early induced 

in wild type roots under cold treatment (4-fold), whereas in dag1 

roots the expression level did not increase, clearly indicating that 

DAG1 is necessary to induce SAUR67 expression in response to 

cold treatment (Fig. 50).  
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Fig. 49. DAG1 negatively controls expression of WRKY18 under cold 

treatment in roots. 

The relative expression of WRKY18 was measured in roots of 11 days-old wild 

type and dag1 seedlings treated at 4°C for 3, 8 and 24 hours. The values are the 

mean of two independent biological replicates, presented with SD values. 

Significant differences were analysed by t-test (*P≤0.05). 
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Fig. 50. DAG1 positively controls expression of SAUR67 under cold 

treatment in roots. 

The relative expression of SAUR67 was measured in roots of 11 days-old wild 

type and dag1 seedlings treated at 4°C for 3, 8 and 24 hours. The values are the 

mean of two independent biological replicates, presented with SD values. 

Significant differences were analysed by t-test (*P≤0.05). 

 

 

4.3.5 Cold response: DAG1 promoter activity (pDAG1::GUS) 

and DAG1 stability 
 

To investigate DAG1 promoter activity in response to low 

temperature, we used the transgenic line pDAG1::GUS for 

histochemical analyses. This analysis was performed on 14 days-
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old seedlings, treated at 4°C for 3, 8 and 24 hours. The 

histochemical qualitative assay revealed that the DAG1 promoter is 

induced after 8 hours under low temperature, thus corroborating 

the expression analysis. In addition, it revealed that GUS staining 

was not confined in roots, but was present in the vascular tissue of 

the whole seedlings (Fig. 51). 

 

 

 
 

Fig. 51. The DAG1 promoter is induced by cold treatment. 

Histochemical analysis of pDAG1::GUS 14 days-old seedlings, following 

treatment at 4°C for 8 hours. Activity of pDAG1::GUS at 20°C (left) and at 4°C 

(right). 

 

It was previously shown that the DAG1 protein in seeds is 

controlled by GA, through the proteasome 26S [147]. Therefore, 
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by using the functional transgenic line dag1DAG1-HA [138], we 

assessed whether DAG1 was regulated at post-translational level in 

response to cold treatment, DAG1 protein level did not show any 

significant difference at 4°C respect to 20°C, thus suggesting that 

the DAG1 protein stability is likely not to be controlled under low 

temperature (data not shown). 

To deeply investigate this new role of DAG1 in response to cold 

stress, we performed a genome-wide analysis, through RNA-seq 

assay, by comparing the transcriptome of dag1 cold-treated plants 

with untreated dag1 plants. These samples will be compared to 

cold-treated and untreated wild type plants. 
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5. Inhibition of polycomb repressive complex 2 activity reduces 
trimethylation of H3K27 and affects development in 

Arabidopsis seedlings. [197] 

5.1 Treatment of seeds with the RDS3434 inhibitor reduces 

H3K27me3 levels in Arabidopsis seedlings 

 

The RDS 3434 inhibitor has been shown to be specifically active 

against EZH2 in human leukemia cells, where it induced heavy cell 

death in a dose-dependent manner [198]. To assess the efficacy of 

the RDS 3434 inhibitor on Arabidopsis seeds, we grew wild type 

seeds on a medium supplied with increasing concentrations of RDS 

3434 (30, 60, 120 μM), or with its solvent DMSO (control), for 5 

days. Immunoblot analysis of total proteins of RDS 3434- or 

DMSO-treated 5 days-old seedlings was performed with specific 

antibodies against H3K27me3. Measurement of the amount of 

proteins marked by H3K27me3 showed that the RDS 3434 

inhibitor was effective in a dose-dependent manner: while with 30 

μM RDS 3434 the slight decrease (16%) of H3K27me3 marked 

proteins compared to the control was not significant, at 60 and 120 

μM they were reduced by, respectively, 45 and 62% (Fig. 52).  
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Fig. 52. Treatment with RDS 3434 results in a dose-dependent decrease of 

the total amount of H3K27me3 marked proteins.  

Immunoblot of 5 days old wild type (Ws-4) seedlings directly grown with 

increasing concentrations (30, 60, 120 μM) of RDS 3434 or DMSO as control. 

Total proteins were probed with H3K27me3 specific antibodies, and H3 was 

used as loading control. Western blot (top) and densitometric analysis (bottom). 
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The protein levels are the mean of three biological replicates, presented with SD 

values. Significant differences were analyzed by t-test (*P ≤ 0.05, **P ≤ 0.01). 

 

 

CLF is one of the two EZH2 enzymes that play a crucial role 

during Arabidopsis seedling development; therefore we wondered 

whether the addition of the inhibitor could further affect 

H3K27me3 levels in a clf mutant. An immunoblot of DMSO- and 

RDS 3434 (120 μM)-treated clf-29 mutant seedlings compared to 

the DMSO- and RDS 3434-treated wild type (Col) was performed. 

This analysis revealed that treatment with the inhibitor reduced by 

30% the amount of proteins marked by H3K27me3 RDS 3434-

treated clf seedlings (Fig. 53a), thus corroborating our results. In 

addition, the ratio of DMSO-treated clf-29/WT H3K27me3 protein 

level confirmed the decrease of H3K27me3 level in clf-29 

compared to the wild type (Fig. 53b). 
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Fig. 53. Treatment with RDS 3434 reduces H3K27me3 protein level in the 

curly leaf-29 mutant. 

a, b Immunoblot of 5 days-old clf-29 seedlings directly grown with RDS 3434 

(120 μM) or DMSO as control (a), and of DMSO- or RDS 3434-treated wild 

type (Col) and clf-29 seedlings (b). Total proteins were probed with H3K27me3 

specific antibodies, and H3 was used as loading control. Western blot (top) and 

densitometric analysis (bottom). In (b) is shown the relative H3K27me3 protein 
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level (bottom left), and the ratio of DMSO- and 120 μM RDS 3434-treated clf-

29/WT (bottom right). Results were obtained from two independent replicates 

with SD values. Significant differences were analyzed by t-test (*P ≤ 0.05). 

  
 

5.2 The RDS 3434 inhibitor is selectively active against the 
PRC2 (EZH2) complex  

 

It is known that, in analogy with animal systems, in Arabidopsis 

the function of the PcG complex is counteracted by the Trithorax 

Group (TrxG) complex, which catalyzes the trimethylation of 

lysine 4 of histone 3 (H3K4me3) [199]. We thus verified whether 

treatment with RDS 3434 caused not only a reduction of the 

H3K27me3 repressive mark, but also an increase of the H3K4me3 

activator mark. Immunoblot analysis with specific antibodies 

against H3K4me3 revealed that treatment with RDS 3434 

produced, compared to the control, a small but significant increase 

in the total amount of H3K4me3 marked proteins at 30 and 120 

μM inhibitor (Fig. 54a), consistent with the notion that these 

antagonistic marks are, in small part, mutually exclusive [200, 

201]. To demonstrate that RDS 3434 inhibition was specific for the 

PRC2 (EZH2) complex over other methyltransferases, we 

performed an immunoblot analysis with antibodies against 

H3K36me3, an activating epigenetic mark catalyzed by the SET 

DOMAIN GROUP 8 (SDG8) [202]. This analysis showed that the 
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H3K36me3 total protein level was not significantly affected even 

at the highest concentration of RDS 3434 (Fig. 54b), thus 

suggesting that this inhibitor functions only on the EZH2 

metyltransferase. 

 

 
 

Fig. 54. Reduction of the H3K27me3 mark causes an increase of the 

antagonistic mark H3K4me3. 

 a, b Immunoblot of 5 days-old wild type (Ws-4) seedlings directly grown for 5 

days in the presence of increasing concentrations (30, 60, 120 μM) of RDS 3434 

or DMSO as control. Total proteins were probed with: H3K4me3 (a) or 

H3K36me3 (b) specific antibodies. H3 was used as loading control. Western 
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blot (top) and densitometric analysis (bottom). The protein levels are the mean 

of two biological replicates, presented with SD values. Significant differences 

were analyzed by t-test (*P ≤ 0.05, **P ≤ 0.01). 

 

5.3 Treatment with RDS 3434 increases the expression level of 
PRC2 target genes 

 

Since PRC2 is a transcriptional repression system, inhibition of 

EZH2 and consequent decrease of H3K27me3 levels should result 

in the transcriptional derepression of PRC2 target genes. Thus, we 

assessed whether treatment with the RDS 3434 inhibitor would 

actually affect the expression of two independent Arabidopsis 

PRC2 target genes: DOF AFFECTING GERMINATION 1 

(DAG1), and WRKY70, respectively encoding a Dof and a WRKY 

transcription factor (TF). DAG1 encodes a negative regulator of 

seed germination [138, 144, 203], which is marked by H3K27me3 

in seeds and seedlings [147] and had been shown to be upregulated 

in mutant plants lacking PRC2 [150]. WRKY70 encodes a TF 

involved in the cross-talk between salicylic acid- and jasmonic 

acid-dependent defense signaling, and has been reported to be a 

target of both PRC2 and Trithorax (Trx) [204, 205]. We performed 

an expression analysis (RT-qPCR) on RNA extracted from RDS 

3434-treated (30, 60,120 μM) and DMSO-treated 5 days-old 

seedlings. As shown in Fig. 55a-b, the expression level of both 
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DAG1 and WRKY70 significantly increased upon treatment with 

RDS 3434 in a dose-dependent fashion - respectively 1.9- and 2.3-

fold the level of the control for DAG1 (60 and 120 μM RDS 3434), 

and 4.2-, 5.8- and 12.1-fold for WRKY70 (30, 60,120 μM RDS 

3434). Under the same experimental conditions, the expression 

level of SMALL AUXIN UP RNA 14 (SAUR14), which is not a 

PRC2 target gene [206], was not affected by treatment with RDS 

3434, thus confirming the efficacy of this inhibitor only for PRC2 

(Fig. 55c). We then assessed whether treatment with the inhibitor 

would actually result in loss of the H3K27me3 repressive mark in 

the PRC2 target loci DAG1 and WRKY70. To this end, we 

performed chromatin immunoprecipitation (ChIP) assays with 

H3K27me3-specific antibodies, or without antibodies as negative 

control, on samples derived from RDS 3434 (120 μM)-treated and 

DMSO-treated 5 days-old seedlings. We measured the enrichment 

of H3K27me3 by amplification, through quantitative (qPCR), of 

one region in the body of both DAG1 and WRKY70 genes, 

because the H3K27me3 epigenetic mark is usually restricted to the 

transcribed regions of target genes [207, 208]. Interestingly, in 

samples derived from RDS 3434 (120 μM)-treated seedlings, the 

level of H3K27me3 in the DAG1 and WRKY70 genes was 

significantly decreased (Fig. 55 d-e), consistently with their 

increased expression levels. 
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Fig. 55. Inhibition of EZH2 results in an increased expression of two PRC2 

target genes.  

a, c Relative expression level of the PRC2 target genes, DAG1 (a) and WRKY70 

(b), and of the non-target gene SAUR14 (c), in wild type (Ws-4) seedlings 

directly grown for 5 days in the presence of increasing concentrations (30, 60, 

120 μM) of RDS 3434 or DMSO as control. Relative expression levels were 

normalized with the GAPDHa (At3g26650) gene, and are presented by the ratio 
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of the corresponding mRNA level in the control, which was set to 1. d, e 

Chromatin from samples derived from 5 days-old seedlings grown in the 

presence of 120 μM RDS 3434 or DMSO as control, immunoprecipitated with 

antiH3K27me3 antibodies, or without antibodies as a negative control. The 

amount of DNA for DAG1 (d) or WRKY70 (e) was measured by qPCR. The 

values of fold enrichment were normalized to input. All the primers used are 

listed in Table 1. The results were obtained from two independent replicates 

with SD values. Significant differences were analyzed by t-test (*P ≤ 0.05, **P 

≤ 0.01). 

 

5.4 Reduction of the H3K27me3 mark affects seed germination 
and root development  

 

The transcriptional control mediated by PRC2 is crucial during 

seed germination, as it silences seed specific genes thus allowing 

proper seedling growth and development [150, 199]. Therefore, we 

assessed whether treatment with the inhibitor RDS 3434 would 

affect germination of seeds. As shown in Fig. 56 a, treatment with 

the inhibitor caused a significant reduction of the germination rate 

at 24 h after imbibition (HAI) - 26.5 and 34.3%, at 60 and 120 μM 

RDS 3434, respectively. On the other hand, seedling growth of 

treated and untreated samples was very similar (Fig. 56 b), ruling 

out the possibility that the observed reduction of H3K27me3 upon 

treatment with RDS 3434, may pleiotropically affect seedling 

growth and development.  
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Fig. 56. Inhibition of EZH2 results in delayed seed germination.  

a. Seed germination assays of wild type (Ws-4) seeds imbibed in the presence of 

RDS 3434 (60, 120 μM) or DMSO as control. Germination rate was scored at 

24, 36, 48 and 120 HAI (Hours After Imbibition). Data represent the mean of 

two independent biological replicates each performed in duplicate (25 seeds per 

replica). Significant differences were analyzed by t-test (*P ≤ 0.05, **P ≤ 0.01). 

b. 5 days-old wild type (Ws-4) seedlings directly grown for 5 days in the 

presence of increasing concentrations (60, 120) of RDS 3434 or DMSO as 

control. 
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Similarly, 5 days-old seedlings of clf or swn single mutants do not 

show severe developmental defects, since only clf adult plants are 

characterized by dwarfism and early flowering, whereas swn 

mutants display very weak phenotypes [209, 210]. Since treatment 

with RDS 3434 further reduces H3K27me3 level in clf-29 

seedlings, we assessed whether seed germination of mutant seeds 

would be affected by treatment with RDS 3434 (120 μM). 

Interestingly, clf-29 mutant seeds treated with the inhibitor showed 

a 50% reduction of the germination rate at 24 HAI (Fig. 57). 

However, treatment with the inhibitor did not result in more severe 

phenotypes during seedling development (Fig. 57b). It has been 

proposed that PRC2 controls primary root growth, since lack of the 

EZ catalytic subunits CLF and SWN results in short meristem and 

decreased primary root length [211].  
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Fig. 57. Treatment with RDS3434 of clf-29 mutant seeds affects seed 

germination.  

a. Seed germination assays of clf-29 mutant seeds imbibed in the presence of 

RDS 3434 (120 μM) or DMSO as control. Germination rate was scored at 24, 

36, 48 and 120 HAI (Hours After Imbibition). Data represent the mean of two 

independent biological replicates each performed in duplicate (25 seeds per 

replica). Significant differences were analyzed by t-test (*P ≤ 0.05, **P ≤ 0.01). 
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b. 5 days-old clf-29 mutant seedlings directly grown for 5 days in the presence 

of RDS 3434 (120 μM) or DMSO as control. 

 

 

 

 

Therefore, we assessed whether treatment with the RDS 3434 

inhibitor results in root developmental defects. Although treatment 

with 60 and 120 μM RDS 3434 inhibitor did not affect root growth 

(data not shown), a higher dose (240 μM) resulted in a reduced 

number of root meristematic cells. Consistently, the expression 

domain of ROOT CLAVATA HOMOLOG1 (RCH1), a gene 

specifically marking the root meristematic zone [212], is reduced 

in RDS 3434-treated plants compared to the control, as visualized 

by a RCH1- GFP transcriptional fusion (Fig. 58 a-b). A decrease in 

meristem size can be caused by a reduced division rate or by a 

more rapid elongation/differentiation (i.e. exit from the meristem) 

of meristematic cells. To distinguish between these two 

possibilities, we first visualized root meristem cells in the G2–M 

phase in RDS 3434-treated and untreated plants harboring the D-

Box CYCB::GUS construct, a marker of the G2-M transition 

[213]: no difference in the cell division potential could be detected 

(Fig. 58 c). To detect possible variation in cell 

elongation/differentiation, we measured the length of the first 
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elongated and of the fully differentiated cells in both treated and 

untreated plants. Whereas the length of fully elongated cells was 

unvaried, the first elongated cells were longer in RDS 3434-treated 

plants (Fig. 58 d-e), indicating that RDS 3434 affects root 

meristem activities controlling the elongation/differentiation 

potential.  

 

 

 

 
 

Fig 58. Inhibition of EZH2 affects root development.  

a. Confocal microscopy images of RCH1::GFP roots from 5 days-old seedlings 

grown in the presence of RDS 3434 (240 μM) or DMSO as control. Blue and 

white arrowheads indicate the Quiescent Center (QC) and the cortex Transition 

Boundary (TB), respectively. b. Root meristem cell number. c. Quantification of 
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GUS spots per meristem in treated and untreated of CYCLINB1;1pro:CDB-GUS 

roots. d, e. Length of the first elongated cell (d), and of the differentiated cell (e) 

(n = 30). Data represent the mean of two independent biological replicates, 

presented with SD values. Significant differences were analyzed by t-test (*P ≤ 

0.05, **P ≤ 0.01). 

 

 

                                  

 

 

 

 

 
 

 

 
 

 

 
 

 
 

 

 
 



Veronica Ruta 

Pag 112  

DISCUSSION 
 

DOF affecting germination 1 (DAG1) is a plant-specific 

transcription factor that, during the seed-to-seedling transition, 

controls the hormonal balance between the phytohormones GAs 

and ABA, to induce dormancy and repress germination of seeds 

[147]. DAG1 acts through direct repression of the GA biosynthetic 

gene GA3ox1 and the ABA catabolic gene CYP707A2 [138, 144, 

147]. 

DAG1 plays a role also in the control of hypocotyl elongation: lack 

of DAG1 results in shorter hypocotyls compared to the wild type. 

Recently, through a genome-wide approach, we proved that DAG1 

promotes hypocotyl elongation acting on the ABA, ethylene and 

auxin signaling pathways [152]. Indeed, our analysis reveals that 

the relative expression of a number of SMALL AUXIN 

RESPONSIVE (SAUR) genes, known as positive regulators of 

hypocotyl elongation [153], decreases in dag1 mutant hypocotyls, 

coherently with the positive role of DAG1 in hypocotyl elongation. 

It is known that ABA, a growth-inhibiting hormone, represses 

hypocotyl elongation by acting on gibberellin and auxin pathways 

[115]. Consistently, DAG1 acts through a negative control of ABA 

signaling: in dag1 hypocotyls the expression of genes involved in 

this pathway is increased [152].  
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Remarkably, we have also identified seven WRKY-encoding genes 

which are up-regulated in dag1 hypocotyls. Our findings show that 

DAG1 represses the expression of these WRKY genes in 

hypocotyls independently of light conditions. The WRKY are plant 

specific transcription factors known for their pivotal role in biotic 

stress response, and recently their role in abiotic stress response is 

also emerging in literature [154, 163, 166]; among the seven 

WRKY encoding genes identified, we have focused our attention 

on WRKY6 and WRKY18 for their strong correlation with ABA-

signaling and ABA-mediated processes [174, 175]. 

Since ABA is the main phytohormone involved in plant response 

to abiotic stress, we decided to further investigate a potential 

involvement of DAG1 in ABA-mediated processes and in the 

molecular mechanisms of stress response. In addition, we have 

investigated the relations between DAG1, WRKY6 and 18 in these 

processes and molecular pathways. 

 

DAG1 and WRKY6/18 cooperate to control light-dependent 

hypocotyl growth  

Our recent studies revealed that DAG1 promotes hypocotyl growth 

regardless of light conditions; indeed dag1 hypocotyl length is 

reduced compared to the wild type in Red light as well as in the 

dark.  
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The results presented here on WRKY6, which is known as a 

positive regulator of ABA-signaling during seed germination and 

early seedling development [175], suggest a new putative role of 

WRKY6 in hypocotyl elongation, as the absence of this protein 

results in longer hypocotyls, regardless of light conditions. 

Wrky6dag1 seedlings grown under red light, display wrky6-like 

hypocotyls, longer than the wild type. Conversely, in the absence 

of light, wrky6dag1 hypocotyls are shorter than the wild type, and 

similar to dag1, thus suggesting that WRKY6 activity might be 

controlled by a light-dependent upstream factor. 

Interestingly, it has been recently shown that WRKY36 is also 

involved in hypocotyl elongation [214]. WRKY36 is likely to 

promote hypocotyl elongation by directly repressing the expression 

of HY5, encoding a key transcription factor, which positively 

controls photomorfogenesis [215]. UVB light, a photomorphogenic 

signal which controls photomorphogenesis, triggers the nuclear 

localization of UV RESISTANT LOCUS 8 (UVR8), which, once 

in the nucleus, interacts with WRKY36 to prevent it from binding 

DNA, thus releasing WKY36 repression on HY5 promoter. As a 

result, UVB promotes HY5 transcription, therefore inhibiting 

hypocotyl elongation [214]. 

As for the relationship between DAG1 and WRKY18, although we 

have proved that DAG1 directly represses WRKY18 expression, we 

cannot draw a conclusion on the epistatic relationship between 
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DAG1 and WRKY18. It is noteworthy to point up that WRKY18 

interacts with the two closely related WRKY40 and WRKY60 

proteins, to alternatively cooperate or play antagonistic roles in the 

control of the ABA INSENSITIVE 4 and 5 genes, encoding two 

main positive regulators of ABA signaling [92]. The WRKY60 

encoding genes is not among the Differentially Expressed Genes in 

dag1 hypocotyls, therefore DAG1 is likely to act directly on the 

WRKY18 gene, and possibly on the WRKY40 ([152]; this thesis). 

This could imply that the action of DAG1 on WRKY18 is partially 

masked by the effect of at least the WRKY60 protein. More 

phenotypic and molecular analysis on multiple mutants, lacking 

also WRKY 40 and WRKY60, will be necessary to unveil the 

molecular mechanism underlying their function on hypocotyl 

elongation. 

Consistent with previous results on dag1 hypocotyl response to the 

growth inhibitory effect of ABA [115], our results revealed a 

reduced sensitivity to ABA treatment for hypocotyl growth of the 

wrky6dag1 and wrky18dag1 double mutants. 

Similarly to DAG1, the Dof CDF5 protein has been recently 

demonstrated to promote hypocotyl growth. CDF5 is the target of 

both the PSEUDO-RESPONSE REGULATORS 9/7/5 (PRR9/7/5) 

and PIF 3/4/5 proteins, which antagonistically regulate the 

promoter of CDF5 [216]. The PRR repressors, which have a key 

role in the regulation of the clock-mediated processes [217], are 
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also negative regulators of hypocotyl elongation [218]; indeed 

PRR proteins target growth-related genes, which are also directly 

induced by the PIF proteins. CDF5, once induced by the PIF 

factors, promotes expression of a number of growth-promoting 

genes. 

In the dark, DAG1 expression is induced by PIF1 in seeds, 

therefore it will be interesting to further analyse the relation 

between DAG1 and CDF5, and a putative control of DAG1 

through the circadian clock. 

 

DAG1 is more sensitive to Desiccation Tolerance 

The effects of DT are confined in a narrow temporal window 

delimited by the radical protrusion; at the appearance of the first 

root hairs, the seeds become sensitive to dehydration and lose the 

ability to re-establish DT [109, 110]. To study this process, we set 

up a protocol to measure the capacity of the seeds to re-induce 

germination after a mild osmotic stress through PEG treatment. 

DAG1 induces dormancy by controlling the ABA/GA ratio, and 

given the close relationship between dormancy and DT, we 

investigated the effect of DT on dag1. Our results clearly establish 

that the dag1 mutants are significantly less tolerant to desiccation, 

and these finding are consistent with the lower ABA levels in dag1 

dry seeds compared to the wild type [147]. The analysis of wrky6 

reveals that lack of WRKY6 protein results in a significantly lower 
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capacity to re-induce germination after dehydration in germinated 

seeds, and the simultaneous absence of DAG1 and WRKY6 

proteins in the double mutant results in an additive phenotype 

compared to the single mutants phenotype, thus suggesting that 

DAG1 and WRKY6 possibly act in parallel branches of the 

molecular pathway controlling this process. Conversely, wrky18 

mutant recovers the capacity to germinate, although mutant seeds 

germinate slower than the wild type control; a similar phenotype is 

displayed by the double mutant, which, after 120 hours, do not 

show significant difference in the percentage of germinated seed 

respect to the control, that lack of WRKY18 in a dag1 mutant 

background can restore to ability to germinate after dehydration.  

 

DAG1 is a new element of the molecular pathway of the Cold 

Acclimation response 

Plants have to frequently cope with changing environmental 

conditions. ABA also plays a pivotal role in the stress response by 

triggering mayor changes in gene expression and adaptive 

physiological responses. Among the ABA-related stresses that 

were studied in this thesis project, the most notable is the cold 

response. Low temperature is one of the most relevant factors 

limiting the distribution of plant species [1, 39], and as such, cold 

acclimation plays a major role in plant survival [1]. The principal 

actors in the freezing tolerance are the C-repeat Binding Factors1-3 
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(CBF1-3) proteins, which act as positive regulators of cold 

acclimation; the CBF genes are rapidly and transiently induced 

after exposure to cold[41, 47, 55].  

Interestingly, our results prove that dag1 mutant plants are 

significantly more tolerant to freezing temperatures respect to the 

wild type. This phenotype is dependent on the cold acclimation 

treatment, because non-acclimated dag1 mutant plants are sensitive 

to freezing as the wild type, thus corroborating the specificity of 

the putative involvement of DAG1 in this process. Consistently, 

the steady-state level of DAG1 messenger is increased by low 

temperature, and this increase of DAG1 transcript level is likely to 

be mainly in roots, although not strictly root-specific.  

Interestingly, the sub-family of CYCLING DOF FACTOR (CDF1-

5) transcriptional repressors, has been involved in freezing 

tolerance, downstream of the GIGANTEA (GI) protein, which 

plays a crucial role in a number of diverse signaling pathways, 

besides clock regulation, like light signaling and stress responses. 

Although cdf mutants do not show a phenotype following cold 

treatment, it was shown that the increased stability of CDF proteins 

in a gi mutant background, led to increased tolerance to cold stress 

[219]. 

Besides other hormones, namely ABA, Ethylene and GAs, recently 

it has been shown of BRs in the regulation of cold tolerance. In 

particular, it has been proposed that the BZR1 transcription factor 
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positively regulates the cold response in two different ways: one 

CBF-dependent pathway, with BZR1 directly binding the CBF 

promoters, and the second CBF-independent. Interestingly, it was 

suggested that BZR1 could modulate the expression of WRKY6, 

which the Authors proposed as a positive regulator of the process 

[61].  

Our results demonstrate that the wrky6 mutant is more tolerant to 

freezing compared to the control, thus suggesting a negative role 

for WRKY6 in cold tolerance. This apparent discrepancy could be 

due to the different experimental conditions: indeed, while our 

plants were grown in soil and have been treated at 4°C for 1 week, 

Li and collaborators performed all their experiment with seedlings 

grown in vitro. It has been already shown that different 

experimental conditions - soil or plates - could result in different 

cold responses [59].  

As for WRKY18, our results did not show an evident role of this 

protein in the response to freezing, not even under CA conditions. 

Nevertheless, the expression analysis of the DAG1 direct targets 

WRKY18 and SAUR67 in dag1 mutant roots following cold 

treatment, revealed that WRKY18 is induced by cold treatment and 

its transcript level is negatively controlled by DAG1 under this 

condition. Surprisingly, our results show that SAUR67 is required 

in the cold response, since SAUR67 was early induced in wild type 
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roots under cold treatment, and DAG1 is necessary for its 

induction, as in dag1 roots the expression level did not increase.  

Taken together these results suggest a negative role of DAG1 in 

the cold tolerance, specifically in the CA pathway.  

To deeply investigate this function of DAG1, we performed a 

genome wide analysis, through RNA-seq assay, by comparing the 

transcriptome of dag1 cold-treated plants with untreated dag1 

plants. These samples will be compared to cold-treated and 

untreated wild type plants. The results of this analysis will allow to 

unveil new molecular elements of the CA pathway of the response 

to cold; in addition it will also elucidate the role of DAG1 in this 

pathway with respect to the CBF factors. 

 

A tool to inhibit PRC2 activity and study its effect on 

developmental and stress-mediated responses 
Epigenetic regulation of gene expression, mediated by post-

translational modification of histones or DNA methylation, has a 

crucial role in genome defence but also in the control of 

developmental processes as well as in the response of organisms to 

environmental cues. Polycomb group proteins (PcG) are key 

epigenetic regulators of development; these proteins, assembled in 

large complexes, establish and maintain gene repression [220]. 

PcG proteins are grouped into two complexes: POLYCOMB 

REPRESSIVE COMPLEX 1 (PRC1) and 2 (PRC2).  
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In Arabidopsis, there are 12 homologs of the Drosophila PRC2 

subunits and, in particular, the histone methyltransferase EZ is 

encoded by three homologs (CURLY LEAF, 

MEDEA and SWINGER; CLF, MEA and SWN), which share a 

highly conserved SET domain, responsible of the catalytic activity 

[183]. Different combinations of the four subunits result in three 

PRC2-like complexes: the EMBRYONIC FLOWER (EMF), 

VERNALIZATION (VRN) and FERTILISATION 

INDEPENDENT SEED (FIS), which function in different 

developmental processes and responses to environmental stimuli, 

although sharing some target genes [184, 185].  

PRC2, which represses its targets by trimethylation of histone 3 

lysine 27 (H3K27me3), has a key role in the control of stress 

response; indeed, loss of CLF results in a reduced resistance to 

drought [221] suggesting that different PRC2 members have 

distinct functions in regulating stress responses. It has been 

demonstrated that CLF interacts with the plant-specific coiled-

coiled protein named BLISTER (BLI) [222], which promotes the 

resistance to cold stress  [223]. Kleinmanns and collegues 

proposed a model in which BLI, associated with PCR2, regulates 

stress-responsive genes in Arabidospsis; indeed, it has been shown 

that BLI negatively controls ABA-responsive PRC2 target genes to 

promote resistance to cold and drought stresses [220].  
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PRC2 also plays a crucial role in the embryo-to-seedling [150, 224, 

225] and vegetative-to-reproductive developmental phase 

transitions [226, 227]. PRC2 is essential for endosperm formation, 

since it controls the parent-of-origin specific expression of a 

number of genes: lack of the maternal PRC2 function results in 

derepression of target genes, causing endosperm over-proliferation 

and eventually seed abortion [187, 228]. This has severely 

hampered studies on the function of PRC2 during seed 

development. In mammals, studies on PRC2 function have 

benefited of the development and use of inhibitors of the catalytic 

subunit EZH2, among which RDS 3434 whose effectiveness has 

been proven on the oncogenic human monocyte cell line U937 

[198]. Since the catalytic subunit EZH2 is highly conserved 

between mammals and plants, we tested the effectiveness of RDS 

3434 in Arabidopsis and found that indeed it inhibits PRC2-

mediated H3K27me3 methylation also in this organism.  

Previous genome-wide analyses comparing the global H3K27me3 

profile in clf-28 or clf-29 mutant seedlings, revealed a decreased 

level of H3K27me3 in the mutant lines compared to the wild type 

[229-231]. Consistently, our immunoblot analysis shows a 

decrease of H3K27me3 levels in clf-29 compared to the wild type, 

and reveals that treatment with RDS 3434 further reduces the 

amount of proteins marked by H3K27me3 in the clf-29 mutant 

background. It has already been previously demonstrated that the 
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lack of both the catalytic CLF and SWN subunits results in delayed 

germination: clf-28 swn-4 double mutant seeds germinate within 4 

DAI (Days After Imbibition), while wild type seeds germinate 

within 2 DAI [150]. Similarly, seeds of the double mutant atmib1a 

atmib1b, which lacks the E3 ubiquitin ligase subunit BMI of the 

PRC1 complex [232, 233], reach full germination at 6 DAI 

whereas the corresponding wild type seeds germinated at 3 DAI 

[199]. Additionally, treatment with RDS 3434 affects seed 

germination in a dose-dependent fashion, as wild type seeds treated 

with RDS 3434 show a significant reduction of the germination 

rate within the first 36 h compared to untreated seeds; this 

phenotype is even more pronounced in the clf-29 mutant 

background, thus corroborating the effectiveness of RDS 3434 as 

an inhibitor. It need to be pointed out that the clf-29 single mutant 

has been previously characterised for early flowering phenotype, as 

well as for the curly leaves and dwarf adult plants [234, 235]. In 

addition, the null clf-50 allele, regardless of the different genetic 

background (Ws), displayed similar enhanced phenotypes with 

the swn-1 weak allele [226]. Furthermore, it has been shown 

that clf-29 display an increase in the number of meristematic root 

cells [211, 236], conversely to the swn-7 allele which has a shorter 

root with no difference in meristem size [211]. The clf-28 swn-

7 double mutant lacking both EZH2 subunits [211], and 

the fertilization independent endosperm 2 (fie) mutant, which lacks 
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the Arabidopsis homolog of the DROSOPHILA EXTRA SEX 

COMBS (ESC) PRC2 subunit [150], have shorter roots and 

smaller meristems with fewer meristematic cells than wild type. 

Seedlings treated with RDS 3434 display a decrease of both root 

meristem size and meristematic cell number, due to an effect of the 

inhibitor on the elongation/differentiation potential of meristematic 

cells. In Drosophila and in animal stem cells the function of the 

PRC2 complex is counteracted by the Trithorax Group (TrxG) 

proteins, which catalyse the trimethylation of lysine 4 of histone 3 

(H3K4me3) that acts as a transcriptional activator epigenetic mark 

[237-241]. In Drosophila and mammals, the silencing effect of 

H3K27me3 is counteracted by the inductive action of H3K4me3 

[239, 240]. In Arabidopsis, genome-wide analysis of H3K4me3 

and H3K27me3 reveals that only a number of genes are targets of 

both these antagonistic chromatin marks [207, 208]. Among these 

genes, key regulators of flower development in the vegetative-to-

reproductive transition have been shown to be transcriptionally 

regulated by H3K4me3 and H3K27me3 [242]. As for the seed-to-

seedling transition, a switch from an activated to a repressed state 

associated to H3K4me3 and H3K27me3, respectively, has been 

reported for a number of seed developmental genes during 

germination and early seedling development [147, 199]. However, 

the antagonism between these two epigenetic marks in Arabidopsis 

is still controversial [243] and it has been recently proposed that 
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Trx proteins cooperate with the PRC2 proteins to repress seed-

specific genes during germination and seedling development [244]. 

In addition, comparative analysis of wild type and fie mutant 

seedlings lacking a functional PRC2 reveals a genome-wide 

absence of the H3K27me3 mark in the fie mutant; of the 

H3K27me3 mark-free PRC2 target genes in fie seedlings, only a 

limited number are transcriptionally induced and associated with 

the H3K4me3 activating mark [150]. In agreement with these 

results, we show that removal of the repressive mark H3K27me3 

involves the establishment of the activating mark H3K4me3 only 

to a certain degree, since RDS 3434-treated seedlings show only a 

slight, although significant, increase in the level of H3K4me3-

marked proteins. Besides being effective in Arabidopsis, we also 

show that the RDS 3434 inhibitor functions only on the 

H3K27me3 epigenetic mark; indeed, this compound does not 

inhibit the methyltransferases of the SET DOMAIN GROUP 8 

(SDG8), which catalyses trimethylation of H3K36 [245], as the 

entire bulk of H3K36me3 is not significantly different in treated 

samples compared to the untreated control. In addition, expression 

of the non-PRC2 target gene SAUR14 (see below) is unchanged in 

treated samples compared to the control, thus corroborating the 

selectivity of this inhibitor.  

We proved that the use of a pharmacological approach in plants is 

efficient to inhibit PRC2; although we focused our studies on the 
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seed-to-seedlings transition, RDS 3434 could represent a powerful 

tool to further investigate the effects of the transcriptional control 

mediated by PRC2 in plants, even in the response to abiotic 

stresses. 

 

 
Materials and Methods:  

 

Plant material and growth conditions  

All Arabidopsis thaliana lines used in this thesis were usually 

grown in a growth chamber at 22 °C with 16/8-h day/night cycles 

and light intensity of 300 μmol/m-2 s-1 as previously described 

[203], unless otherwise noted. Seeds were surface sterilized and 

plated on MS agar (halfstrength MS, 0.8% agar, pH 5.7) and 

stratified at 4°C for three days in the dark. The wild type lines 

(Ws-4 and Col-0) wrky6-2 (SALK_012997C) and wrky18-1 

(SALK_093916C) have been obtained from the European 

Arabidopsis Stock Centre (arabidopsis.info). The wrky6dag1 and 

wrky18dag1 double mutants were generated by crossing wrky6/18 

and dag1 single mutants, and homozygous lines were confirmed by 

PCR amplification.  

The clf-29 mutant line is in Col-0 (SALK_ N521003), and was 

kindly provided by Dr. Miguel de Lucas. The marker lines RCH1:: 

GFP and CYCLINB1; 1pro:CDB-GUS are in Col-0 ecotype and 
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were previously described [246, 247]. As for the treatment with 

RDS 3434, wild type seeds were sown on medium supplied with 

increasing concentrations of RDS 3434 (30, 60, 120 μM), or with 

an equal volume of its solvent DMSO (Dimethyl sulfoxide), as 

control.  

 

Germination assay 

For the germination assay wild type and mutant seeds were sown 

directly on five layers of filter paper 595 (Schleicher & Schüll, 

Dassel, Germany), soaked with 5 ml water. Seeds were stratified 3 

days at 4°C, unless otherwise noted, then grow in a growth 

chamber at 22°C. 

For germination assays in the presence pf RDS 3434, triplicate sets 

of 25 seeds were surface sterilized and plated on agar (0.8%) with 

increasing concentrations of inhibitor (60, 120 μM) or with an 

equal volume of its solvent DMSO as control.  

Germination rate was scored based on the number of seeds 

showing radicle emergence. Seeds were harvested from mature 

plants grown at the same time, in the same conditions, and stored 4 

weeks. All germination assays have been performed with at least 

two seed batches.  

 

Phenotypic analysis  
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For hypocotyl elongation, the samples were first grown in white 

light for 24 hours, then exposed to continous monocromatic Red 

light (660nM) (mounting Heliospectra LX60 lamp) in a growth 

chamber at 22°C, or wrapped in several aluminium sheets for four 

days (Dark condition). Hypocotyl length was measured after four 

days. For ABA treatment, seeds were sown on MS agar with one 

layer of filter paper 595, then, 48 hours after light exposure, 

seedlings were transferred to plates containing different ABA 

concentrations (0,1,10,100 μM)(Duchefa 0941). Hypocotyl length, 

were measured using IMAGEJ software.  

Root analyses were performed on roots from five days old 

seedlings, grown on MS agar supplemented with 0.5% sucrose for 

3 days, then transferred to the same medium in the presence of 

RDS 3434 (240 μM) or with an equal volume of its solvent DMSO 

as control, for 2 days. For light DIC microscopy, samples were 

mounted on a media containing chloral hydrate (SigmaAldrich): 3 

parts glycerol: 1 parts water. Images were acquired utilizing 

Nomarski optics under a Zeiss Axio Imager.A2 microscope with a 

dry 40X objective. For all the analyses, at least 30 samples were 

analyzed and statistically treated. Root meristem size was 

measured based on the number of cortex cells in a file extending 

from the quiescent center to the first elongated cortex cell excluded 

as previously described [247]. Images were obtained using a 

confocal laser scanning microscope (Zeiss LSM 780). The length 
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of both the first elongated cell and differentiated cell was measured 

using image J.  

 
The re-establishment of Desiccation Tolerance assay 

50 seeds of each genotype were sown directly on five layers of 

filter paper 595(Schleicher & Schüll, Dassel, Germany), soaked 

with 5 ml water. The seeds were stratified for 2 days at 4°C in the 

dark. The plates were transferred in a growth chamber under 

standard conditions. Seeds are at stage II (radicle protrusion) [109] 

were transferred in a PEG solution and kept in the dark for three 

days. Seeds were rinsed with sterile water under a hood in the dark, 

then sown on a Petri dishes on 5 dry filters, and left for 24 hours 

under a hood flow to allow complete dehydration. Subsequently, 

seeds were soaked with 5 ml of sterile water and transferred under 

standard conditions. Germination was checked every day up to 

fourth days. Three independent biological replicas are performed. 

 

Abiotic stress treatments - Cold treatment 

(According to [248]) 

Seeds were surface-sterilized, germinated and grown under 

standard conditions (20 °C under long-day photoperiods [16 h 

light, of cool-white fluorescent light, photon flux of 90 μmol m−2 

s−1]) in pots containing a mixture of organic substrate and 
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vermiculite (3/1, v/v) or in Petri dishes containing Murashige and 

Skoog medium supplemented with 1% sucrose (GM) and solidified 

with 0.9% (w/v) plant agar. Low-temperature treatments were 

performed by transferring plants growing in pots or Petri dishes 

under standard conditions to a growth chamber set at 4 °C for 1 

week under a long-day photoperiod (16 h of cool-white fluorescent 

light, photon flux of 40 μmol m−2 s−1). For freezing tolerance 

assays, seeds from the different genotypes, each one coming from 

the same parent and collected at the same time, were sown in soil-

containing pots and allowed to develop for 2 weeks under control 

conditions. Afterwards, several plants from each pot were removed 

in order to have a similar number (≈15) of individuals uniformly 

developed and distributed in all pots. Constitutive freezing 

tolerance was assessed by exposing plants to 4 °C for 30 min in 

darkness and subsequently decreasing the temperature at a rate of 

−1 °C per 30 min until reaching −6 °C. Six hours later, temperature 

was increased to 4 °C at the same rate and thawing was allowed for 

12 h before returning plants to control conditions under long-day 

light regime for recovering. To determine freezing tolerance �after 

cold acclimation, plants were acclimated at 4 °C for 7 d under 

long-day photoperiod and subsequently subjected to freezing in the 

dark by progressively decreasing the temperature (−1 °C per 30 

min) until attaining the desired freezing temperature. After 

exposing plants to the appropriate freezing temperature for �6h, 
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temperature was gradually increased to 4 °C (+1 °C per 30 min). 

Twelve hours later, plants were transferred to 20 °C under long-

day light regime for recovering. In all cases, survival rate was 

evaluated after 10 d of recovering.  

GUS analysis 

Histochemical staining of pDAG1::GUS seeds during the re-

establishment of DT assay, or of pDAG1::GUS in 14 days-old 

seedlings treated at 4°C for 8 hours was performed according to 

[249] except that seedlings were incubated at 37°C for 12 hours. 

Microscopic analyses were carried out under an Axioskop 2 plus 

microscope (Zeiss).  

 

Expression analysis  

(According to [152]) 

For RNA extraction, four days-old wild type and mutant seedlings, 

grown under monochromatic Red light or in the dark, were 

harvested and immediately frozen in liquid nitrogen. For 

hypocotyls about 1000 seedlings grown in this condition have been 

dissected, then hypocotyls were frozen in liquid nitrogen in the 

dark. For expression analysis in the presence of the inhibitor, five 

days-old seedlings, grown in the presence of increasing 

concentrations of RDS 3434 (30, 60, 120 μM) or with an equal 
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volume of its solvent DMSO as control, were frozen and grinded 

with liquid nitrogen. 

Total RNA was isolated by grinding the tissues in liquid nitrogen. 

The samples were then vortexed for 3min in the presence of an 

extraction bufer (0.1 MLiCl, 0.1M Tris-HCl [pH 8], 0.01M EDTA, 

1% sodium dodecyl sulfate-phenol-chloroform mixture (1:1:1). 

Tree phenol-chloroform extractions were then performed. RNA 

was precipitated overnight at 4 °C with 1 volume of 4M LiCl, 

followed by a second precipitation with 0.1 volume of sodium 

acetate, pH 5.2. RT-qPCR assays were performed with SYRgreen I 

master using the LightCycler® 480 instrument (Roche, 

http://www.roche.com). A total of 1 μl of the diluted cDNA was 

used, along with the specific primers, listed in Table1.  Relative 

expression levels were normalized with PP2A (At1g69960) 

reference gene, or with the GAPDH (At3g26650) reference gene, 

which is not marked by H3K27me3. 

For RNA extraction of cold-treated samples, whole seedlings, roots 

or cotyledons from 11 days-old mutant and wild type seedlings 

were collected at 3, 8, 24 hours after the cold exposure. The total 

RNA was obtained using Purezol reagent (Bio-Rad) according to 

the manufacturer’s instructions. RNA samples were treated with 

DNase I (Roche) and quantified with a Nanodrop 

spectrophotometer (Thermo Scientific). cDNA was synthesized 

from each sample with the iScript cDNA synthesis kit (Bio-Rad), 
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and qPCRs were performed with SsoFast EvaGreen Supermix 

(Bio-Rad) in a Bio-Rad iQ2 thermocycler. In all cases, the relative 

expression values were calculated using the At4g24610 gene as a 

reference. All reactions were carried out in triplicate employing 

three independent RNA samples (According to [248]). 

 

Chromatin Immunoprecipitation (ChIP) assay 

(According to [152]) 

ChIP assay was performed with 5 days old-seedlings of the 

transgenic line overexpressing the DAG1-HA chimeric protein in a 

dag1 mutant background and with the dag1 mutant as a negative 

control, or wild type seedlings, grown in the presence of RDS 3434 

120 μM or with an equal volume of its solvent DMSO as control. 

Seedlings (about 1gr) were washed with water, then resuspended 

with 3ml extraction buffer 1 (0.4M sucrose, 0.01M Tris-HCl [pH 

8], 5 mM β-mercaptoethanol, 1mM PMSF, 1x protease inhibitors) 

and treated with 37% formaldehyde for 10min under vacuum. The 

reaction was stopped with glycine 0.125M. Samples were then 

harvested with a miracloth membrane and immediately frozen and 

ground in liquid nitrogen. Extraction buffer was added to the 

samples (30 ml) then filtered on a miracloth membrane. After a 

centrifugation (4000 g, 20 min), the pellet was resuspended in 1ml 

extraction buffer 2 (0.25M sucrose, 0.01M Tris-HCl [pH 8], 10mM 

MgCl2, 1%Triton x-100, 5mM β-mercaptoethanol, 1mM PMSF, 
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1x protease inhibitors). After 10min on ice, samples were 

centrifuged (12000g, 10min, 4°C). The pellet was resuspended in 

0.3ml extraction buffer 3 (1.7M sucrose, 0.01M Tris-HCl [pH 8], 

2mM MgCl2, 0.15%Triton x-100, 5mM β-mercaptoethanol, 1 mM 

PMSF, 1x protease inhibitors), then samples were centrifuged 

again (1 h, 16000 g, 4 °C). The chromatin pellet was resuspended 

in 0.3 ml lysis buffer (0.05M Tris-HCl [pH 8], 0.01 MEDTA, 1% 

SDS, 1 mM PMSF, 1x protease inhibitors). Chromatin was sheared 

by sonication. To an aliquot of each sample (0.1ml) was added 

0.9ml ChIP buffer (1.1% Triton, 1.2 mM EDTA, 16.7 mM Tris-

HCl [pH 8], 167 mM NaCl, 1 mM PMSF, 1x protease inhibitors). 

The immunoprecipitation was performed using HA-probe antibody 

(Y-11, sc-805 Santa Cruz), or against H3K27me3 (Millipore #07–

449), or without antibodies as negative control, overnight at 4°C. 

After reverse cross-linking, the enriched DNA levels were 

quantifed by qPCR using specific primer sets (Supplementary 

Table 2). The Fold enrichment of a specific region was calculated 

respect to the negative control without antibody.  

 

Protein extraction and Immunoblot analysis  

(According to [197]) 

Five days-old seedlings, grown in the presence of increasing 

concentrations of RDS 3434 (30, 60, 120 μM), or with an equal 

volume of its solvent DMSO as controls, were grinded with liquid 
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nitrogen and dissolved in Chromatin Buffer Extraction (Sucrose 

0,4 M; Tris Hcl pH 8 10 mM; β-mercaptoethanol 5 mM; PMSF 0,1 

mM; Protease inhibitor cocktail 1X, Sigma-Aldrich P9599). The 

nuclei were pelleted at 4000 rpm for 20 min, at 4 °C, and dissolved 

in 800 μl ddH2O. The proteins were precipitated with 150 μl of 

NaOH/ β-mercaptoethanol (138, 7 μl 2 N NaOH and 11,25 μl β-

mercaptoethanol) and then with 55% TCA solution, for 15 min in 

ice. Following centrifugation for 20 min at 14000 rpm, 4 °C, the 

pellet was dissolved in HU Buffer (Urea 8 M; SDS 5%; TrisHCl 

pH 6,8200 mM; EDTA 0,1 mM; DTT 100 mM; bromophenol blu) 

and boiled for 10 min at 65 °C. Proteins were separated on a 12% 

SDS-polyacrylamide gel (Bio-Rad) and blotted on a PVDF 

Immobilon-P Transfer membrane (Millipore). Detection of 

proteins was performed with specific antibodies against 

H3K27me3 (Millipore #07–449), H3K4me3 (Abcam- ab8580) or 

H3K36me3 (Abcam-ab9050), and against histone H3 (Biorbyt 

orb10805) as a loading control. The anti-rabbit IgG conjugated to 

peroxidase was used as a secondary antibody and the signal was 

detected with ECL system. The values are the average of two 

biological replicates (except the immunoblot for H3K27me3 that 

was performed with three biological replicates), presented with SD 

values. Significant fold enrichments were analyzed by t-test (*P ≤ 

0,05).  
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Statistical analysis 
Two-tailed Student’s t-test was used to evaluate statistical 

significance. 

Table 2. Primers used in this study  
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