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SAPIENZA UNIVERSITY OF ROME

Abstract
Department of Physics

Doctor of Philosophy

Constraining Inflationary Models Using Cosmological Observables

by Mehdi SHOKRI

In the present thesis, we attempt to find the constraints imposed by recent observa-
tional data on two widely-used inflationary models, including non-minimal infla-
tion and Starobinsky inflation. The first part of the manuscript is dedicated to in-
troducing some theoretical and observational foundations of cosmology which are
necessary for the research chapters and the second part is devoted to present the
results obtained by my published papers.

In the first part, we start by introducing the principles of Einstein’s gravity and the
field equations as the foundation of the standard cosmology. Then, we study the
dynamical universe for different single-component cases and also the present time.
The thermal history of the universe is examined in detail based on the temperature
and time of the universe in each stage. Then, we review the observational proofs
and also shortcomings of the Hot Big Bang model. We introduce the idea of cosmic
inflation and show how inflation can remove the mentioned defects of the Hot Big
Bang model. In the following, we go dipper into cosmic inflation by presenting the
standard inflationary formalism and some common inflationary models. Moreover,
the reheating process and the primordial perturbations generated during the infla-
tionary era are discussed in detail. The thesis is followed by dedicating a chapter
to study the physics of cosmic microwave background radiation as the main source
of inflationary observables. Particularly, we study the primary temperature and po-
larization anisotropies of cosmic background photons generated by inflationary per-
turbations in the early universe and also express how can we use the observables to
constraint our inflationary models.

The second part of the thesis is devoted to the research works carried out during
my Ph.D. course about finding the observational constraints on inflationary mod-
els. The main purpose of the first research work is finding the cosmic microwave
background anisotropies constraints on parameters space of power-law inflationary
potentials in the context of non-minimal coupling of gravity and inflaton. Also, we
study the effects of the presence of the non-minimal coupling term on the predicted
amount of gravitational waves in such models. We carry out the inflationary analy-
sis for the power-law potentials with the non-minimal coupling term in the Einstein
frame as the easier frame which is conformally connected to the Jordan frame as
the non-minimal frame. We consider two main classes of large field potentials, e.g.,
n = 4 and n 6= 4 with integer and fractional values. The inflationary parameters
in both cases are calculated up to the first order of the slow-roll parameters, where
we are assure that the results of the two frames are the same. In order to use the
observational data, we use a model-depended analysis method in which N and ξ as
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the independent parameters driven by modified CosmoMC code can be randomly
sampled in a given range and to calculate the inflationary parameters of the model.
Finally, we provide the final results by the corresponded plots and tables.
Our second research work is dedicated to finding constraints on inflationary param-
eters using a set of recent cosmic microwave background data and under the as-
sumption of the Starobinski model. Also, we consider a particular class of inflation-
ary models that generalize Starobinsky inflation and the possibility of an extension
to ΛCDM described by the Alens parameter. We present the inflationary analysis for
the generalized form of the Starobinsky model and use the conformal transforma-
tion to mapping to the Einstein frame as the conformal frame. Then, we follow the
inflationary analysis in the presence of a new scalar field, which is called scaleron,
created due to using the conformal transformation. We calculate the inflationary pa-
rameters up to the first order of the slow-roll parameters for two main classes, p = 1
or Starobinsky model and p 6= 1 for a generalized case. Similar to the previous
model, we use a model-depended analysis method wherein N and p as the indepen-
dent parameters driven by modified CosmoMC code, can be randomly sampled in
a given range and to calculate the inflationary parameters of the model. Lastly, we
examine the final results by the corresponded plots and tables.

Keywords: Non-minimal inflation, Starobinsky inflation, Jordan frame, Einstein
frame, Power-law potential, Observational constraints.
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1

Chapter 1

Introduction

Alan Guth first introduced the idea of Cosmic Inflation as the accelerating phase of
the early universe to overcome the shortcomings of Hot Big Bang theory, including
flatness, horizon and monopole problems. It provides a good mechanism to pro-
duce the primordial density perturbations as the seed of the structure formation of
the universe and also the tensor perturbations as the main responsible to generate
the primordial gravitational waves. The generated scalar and tensor perturbations
due to the primordial quantum fluctuations can be entitled as the leading cause of
derivation from the homogeneous and isotropic early universe and we are forced to
combine particle physics and cosmology to explain the main features of cosmic in-
flation. Hence, the standard formalism of inflation has been established on the scalar
fields proposed by particle physics. An acceptable inflationary model must supply
the main properties of cosmic inflation, including having a graceful exit from the in-
flationary era to the radiation-dominated epoch, producing the inflationary pertur-
bations pointed out in the above discussion, having the specific amount of number of
e-folds to remove the defects of hot big bang model and proposing a reheating mech-
anism to reheat the universe when inflation ends. The simplest inflationary model
is based on a single scalar field as the sole component of the universe during the in-
flationary era which decays to the other particles at the end of inflation through the
reheating process. Also, hybrid models as a widely used form of multi-filed models
have benn considered in many inflationary scenarios in which an assistant field aids
to inflaton to stop inflation. Besides the standard inflationary models, people also
concern to explain inflation in the context of modified theories of gravity such as
f (R), Braneworld and scalar-tensor gravity theories. Eternal inflation considers the
little bubbles of space which could have randomly stopped inflating instead of end-
ing inflation all at once. Therefore, we can find a wide range of inflationary models
among the cosmological papers.
One of the most crucial parts of inflation is finding an efficient inflationary model
covering all features of cosmic inflation between hordes of models. The inflationary
observations based on the analysis of cosmic background radiation help us to clarify
the puzzle. The relic big bang photons released from the last scattering surface plays
a significant role in modern cosmology since they contain valuable information from
all stages of the universe due to traveling from recombination time to present. In par-
ticular, we focus on the temperature and polarization anisotropies created through
the inflationary perturbations in order to perform a better judgment between differ-
ent inflationary models.
The present manuscript is based on the published papers carried out by me and my
colleagues during a three years Ph.D. course at the physics department of Sapienza
University of Rome under the supervision of Alessandro Melchiorri. We found the
CMB observational constraints on two popular inflationary models, including non-
minimal coupling and R2p inflationary models which are discussed in chapters 5
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and 6, respectively.
Let’s review how is organized the present thesis. In chapter 2, we present some fun-
damental concepts of cosmology that would be useful in the next chapters. Hence,
we start by talking about the main principles of Einstein’s gravity and it follows by
the observational probes of the theory. Then, we examine the Einstein field equations
by using the action principle. For the sake of completeness, we list some essential
solutions to Einstein’s field equations, in particular, the Friedman Robertson Walker
metric describing the homogeneous and isotropic universe. The chapter follows by
analyzing the standard model of cosmology and the appropriated dynamical rela-
tions for different universes, including the single and compound universe. Then,
we provide a detailed discussion about the thermal history of the universe based on
cosmic time and temperature. The chapter ends with an explanation of the strengths
and weaknesses of the hot big bang model. We dedicate the chapter 3 to introduce
the inflation theory and the corresponded issues. We begin with solving the short-
coming of the big bang theory by inflation. Then, we present the standard infla-
tionary analysis based on the single scalar field under the slow-roll approximation.
Also, we study the reheating process occurred at the end of inflation due to decaying
the scalar field. The chapter tracks by reviewing some usual inflationary models. In
the final section of the chapter, we examine the perturbations produced during infla-
tion by using the SVT decomposition in order to divide the perturbations into scalar,
vector and tensor cases. The thesis follows with a brief and useful discussion about
cosmic microwave background radiation in chapter 4. We start with the timeline
of prediction, discovery, and interpretation of cosmic background photons. Then,
we study the temperature anisotropies of cosmic background photons created by
the primary and secondary effects. Finally, we briefly express about E-mode and B-
mode polarization anisotropies of cosmic background photons. We devote chapter
5 to our first research work which is dedicated to finding the CMB anisotropies con-
straints on space parameters of power-law inflationary potentials, in particular, the
coupling constant ξ when gravity non-minimally connects to inflaton. We start with
a brief discussion about the idea of NMC and its corresponded expressions. Then,
we describe the inflationary analysis in Jordan and Einstein frames defined due to
using the conformal transformation, separately. Because of the physical equivalency
of two frames, we continue the inflationary study in the Einstein frame as the easier
frame, for the general form of power-law potentials λϕn wherein n can accept the
integer and fractional values. In order to find the observational constraints on the
parameters space of the model, first, we give a short description of the used analysis
method and then we discuss the final results through the corresponded plots and
tables. In chapter 6, we turn to the description of the second research paper in which
we evaluate the amount of gravitational waves predicted by the Starobinski model
by considering the current uncertainties on ns and the possibility of an extension
to the ΛCDM model parameterized by Alens. First, we begin by studying the R2p

model as a generalized form of the Starobinsky model and perform the inflationary
calculations in the Einstein frame using the conformal transformation. In such the
previous work, we present the analysis method used for our model and then, we
discuss the result for Starobinsky and near Starobinsky cases based on the allowed
values of p by the obtained plots and tables. Finally, in chapter 7, we conclude our
findings and present some remarks and possible prospects for the present works.
Also, in the appendix A, we talk about the conformal transformation as an essential
mathematical tool used in many gravitational situations, especially at the classical
level. First, we introduce the connecting relations of the geometrical quantities in
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Jordan and Einstein frames which are linked to each other by the conformal trans-
formation. Then, we apply the conformal transformation for three important classi-
cal theories of gravity, including f (R) and scalar to tensor gravity as the modified
theories of gravity and also the gravitational theories represented in the presence of
non-minimal coupling term between gravitational and scalar field.





5

Chapter 2

Fundamental Cosmology

The human mind has involved various fundamental questions about the universe
since many years ago. Where do we come from?, What are we?, Where are we going?.
Cosmology deals with these basic puzzles since it studies the situation of the uni-
verse from the creation to the present time and even predicts the future based on the
existing theories. Cosmology talks about very large scales of distance in the range
of Parsec (intergalactic distances), time in the range of billion years (age of the uni-
verse) and mass in the range of 1030 kg (the mass of the sun). In contrast, cosmology
has been entwined with small scales in the early universe where particle physics
and cosmology meet each other. These scales which are known to the Planck scales,
have established on the fundamental constants of physics, the light speed (c), the
reduced Planck constant (h̄) and the gravitational constant (G). In principle, cos-
mology attempts to describe the past, explain the present and predict the future of
the universe via studying the cosmological phenomena in different scales. This goal
can be fulfilled by comparing the theoretical ideas with cosmological observations.
Consequently, using modern technologies to fabricate high precision observational
tools, plays a great role in progressing cosmology. The present chapter dedicates to
explaining the primary concepts of the standard cosmology which are further dis-
cussed in a wide range of cosmological textbooks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

2.1 The Principles of General Relativity

Although gravity is the weakest force among the fundamental forces of nature, it
has the most contribution to structure formation of the universe. In classical physics,
there are two different approaches to describe gravity. Newton’s view based on di-
rect gravitational interaction between objects and Einstein’s view of gravity or Gen-
eral Relativity (GR) talking about the influence of the gravitational fields on sur-
rounded spacetime. In other words, GR deals with the spacetimes which have been
curved because of gravitational fields. The mentioned pictures present a different
concept of gravity. However, due to the correspondence principle, GR approaches to
the Newtonian view in the limit of weak spatial curvature. Let’s review the main
principles of GR as one of the greatest achievements of the human mind [12].

2.1.1 Mach’s Principle

To explain Mach’s principle [13], we start with defining the inertial force acting op-
posite in direction to an accelerating or rotating force in a non-inertial frame. This
means that the inertial forces are detectable in non-inertial frameworks. Imagine a
non-inertial frame moving with a uniform acceleration a relative to an inertial frame
S (see Figure 2.1) as
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FIGURE 2.1: Two frameworks S and Ś are shown as inertial and non-
inertial systems, respectively. The non-inertial system Ś is moving
with a uniform acceleration a relative to the inertial frame S along x

axis.

x → x́ + s, (2.1)

where x and x́ are positions in the inertial and non-internal systems, respectively.
Also, s denotes the displacement in the non-inertial system. By setting Newton’s
second law for a particle with a mass of m under the effect of the force F, we have

F−ma = mẍ. (2.2)

By taking a look at the above expression, one can find that the inertial force reduces
the effects of the non-inertial force. Newton attempted to show the result by a Bucket
of water in a rotating system relative to the absolute space where remains steady
independent from any matter and interactions (for a detailed discussion of Newton’s
original argument, see [14]). Based on the experiment, suppose that a bucket filled
with water is suspended from a fixed point by a rope. The rope twists and then the
bucket releases. The result can be expressed in four different situations:

• First Phase. The bucket begins to rotate because of the twisted rope. But, the
water in the bucket does not turn with and remains steady. (see the picture (b)
of Figure 2.2).

• Second Phase. The frictional force between the bucket and water produces a
centrifugal force. Eventually, the water starts to rotate and the surface becomes
concave. (see the picture (c) of Figure 2.2).

• Third Phase. The bucket will hold gradually, but the water is rotating yet with
a concave surface. (see the picture (d) of Figure 2.2).

• Forth Phase. Water will stop with a flat surface.

Newton explained that the curvature of the surface belongs to the centrifugal effects
of rotating water relative to the absolute space not the bucket rotation since the sur-
face of the water is flat when the bucket is rotating in the first phase and it is curved
when the bucket is in the rest in the third phase. In other words, he believed that the
inertial forces are detectable in a non-inertial system relative to the absolute space
and they are independent of other surrounded matters.
In contrast, the Mach approach says the motion is meaningful when the role of other
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FIGURE 2.2: The result of the Newton bucket experiment can be
divided into four parts. After twisting the rope and releasing the
bucket, first the bucket begins to rotate, but the water is in rest and
the water surface is flat. Second, by frictional effects between bucket
and water, the centrifugal force is produced and then water starts to
rotate with a concave surface. Third, The bucket will stop, but the
water is turning with a curved surface yet. Forth, the water will stop

and there is a flat surface for water.

matters is taken into account since without any matter there is nothing to which
the motion can be refereed. Moreover, the inertial forces are produced due to the
interactions of matters with each other and it means that the inertial forces can be
counted in a non-inertial frame relative to other matters. For the bucket experiment,
Mach believes that the curvature of the water surface is through the motion of water
relative to other matters, not relative to absolute space.
In conclusion, we can summarize Mach’s principles into three laws [15]:

• The motion of a physical system is related to the other matter, not absolute space.

• The inertial forces are detectable in the non-inertial frames relative to the other matters,
not absolute space.

• It is not acceptable to talk about motion and geometry in an empty space. If there is no
matter there is no geometry. It means that space is relative, not absolute.

In the next sections, we will see the footprint of Mach’s principle in the Einstein field
equations.

2.1.2 Equivalence Principle

In the Newtonian gravity, space is Euclidian and independent from matter. It means
that the shortest distance between two points is a straight line. In such a case, gravity
between two gravitational masses mg and Mg acts as

F = −G
Mgmg

r2 , (2.3)

where r and G are the distance between two masses and the universal gravitational
constant, respectively. Also, the negative sign implies that gravity is an attractive
force. On the other hands, regarding the second law of motion, we can attribute an
inertial mass mi to every object which acquires the acceleration a by a specific force
F as



8 Chapter 2. Fundamental Cosmology

FIGURE 2.3: Picture (a) shows the strong equivalence principle be-
tween two physical systems in which the left elevator is settled on
the earth with gravitational acceleration 9.8 ms−2 and the right eleva-
tor is moving upward with acceleration 9.8 ms−2 in the space without
any gravitational field. Picture (b) presents Einstein’s intuition from
general relativity by using the strong equivalence principle for the

photon experiment.

F = mia. (2.4)

The property of an object that determines how strongly it is pulled on by the force of
gravity is equal to the property that determines its resistance to acceleration by any
force. Therefore, we can express the Weak Equivalence Principle (WEP) as the equality
of gravitational and inertial masses.
Also, WEP can be realized in another way. Assume that the Eq. (2.3) shows the
gravitational force between the earth and an object. Therefore, by using the Eqs.
(2.3) and (2.4), we find

a = −
GMg

r2 (
mg

mi
), (2.5)

where Mg is the mass of the Earth. Due to the Galileo experiment, the dropped
objects from towers acquire the same gravitational acceleration 9.8ms−2 regardless
of the mass and composition of the object. Hence, the above equation reveals WEP.
Let us find out how Einstein devised GR from WEP. Imagine that a person who is in
an elevator settled on the earth with gravitational acceleration 9.8 ms−2 and another
person who is in an elevator moving up with acceleration 9.8 ms−2 in the space
without any gravitational field as shown in picture (a) of Figure 2.3. If two persons
drop an apple in their systems, both can realize that two apples are falling with the
same acceleration. The Strong Equivalence Principle (SEP) says that two systems are
equivalent as a consequence of WEP [16]. Now, assume that we flash a light beam
by torch into the second elevator, the person finds out the beam bends downward
through acting force on moving photons. Thanks to the STE, we can substitute the
mentioned system with the first system and conclude that bending the light beam
in a stationary system on the earth can occur only when the path of photons has
been curved by the gravitational field (see the picture (b) of Figure 2.3). Einstein’s
result can be also realized by Fermat’s principle [17, 18] as a fundamental principle
of optics. According to this principle, the light always travels between two points
along a path that minimizes the travel time required. In summary, when we study
the vacuum case, the spacetime is flat and the shortest path between two points is a
straight line. However, in the presence of matter and due to its gravitational effects,
the surrounded spacetime or the path of objects will be curved. Hence, the path
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taken by light is not a straight line.

2.1.3 General Covariance Principle

According to Special Relativity (SR) [19], the physics laws take the same mathemat-
ical form in all inertial reference frames. However, in GR, we extend this principle
to all reference frames, whether inertial or non-inertial. In other words, the form
of physics laws will be invariant under the arbitrary differentiable coordinate trans-
formations. Hence, to formulate the physical laws, we use the tonsorial language,
which is independent of all the reference frames [20].

2.1.4 Correspondence Principle

The correspondence principle was first introduced by Niels Bohr in 1920 to develop
his model of the atom [21]. Then, it used in a more general sense to mean the new
theories of physics require to explain all the phenomena for which a preceding the-
ory was valid. In other words, the new theory must reproduce the result of the
former theory under the corresponded conditions. According to the correspondence
principle, GR reduces to SR when the gravity is absent and also it mimics the New-
tonian gravity in the limit of weak gravitational fields and low velocities. Moreover,
SR reduces to the classical mechanics in the limit of small velocities comparing with
light speed.

2.2 The Evidence of General Relativity

Einstein presented a new approach to gravity in large scales in which the spacetime
is curved through the gravitational field of a massive object and then the curved
spacetime determines how objects move. Like all new theories, the predictions of
GR also required to be tested by observational experiments in order to approve the
theory. Hence, this section devotes to studying the main observational tests of GR
(Note that the first three tests proposed by Einstein [12]).

2.2.1 Perihelion Precession of Mercury

The planets in the solar system are spinning around the sun in an elliptical orbit
in which the closest point of the orbit to the sun is called perihelion. The first clue
of the precession of the perihelion of Mercury’s orbit was proposed by Urbain Le
Verrier in 1859 [22]. The derivation could be expectable somewhat because the Sun
is not a perfect sphere and it is a bit squashed, fatter at the equator, but Le Verrier
by looking at 150 years of observations of Mercury’s orbit, discovered the perihelion
was shifting by 43 arcseconds every century. Einstein’s calculations predicted an
extra 43 arcseconds in perihelion precession for Mercury [12]. This not only resolved
an old mystery in astronomy but strongly proved that Einstein was on the right
track.

2.2.2 Gravitational Lensing

One of the most well-known tests of GR is the gravitational deflection of light or
gravitational lensing in which the light of a star passing near the sun will bend
through the curved spacetime around the sun. Einstein’s calculations showed that
starlight just grazing the Sun’s surface should be deflected by an angle of 1.75 arcsec
[22]. Observationally, it could be measurable by looking at the deflection of starlight
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during a total solar eclipse. In such a case, the gravitational field of the sun is strong
enough to bend the path of light and also stars near the edge of the Sun should be
visible since most of the light from the Sun is blocked by the moon. The first real-
ization of this test performed by Arthur Stanley Eddington to observe the total solar
eclipse in 1919 [23]. He imaged several stars around the eclipse and confirmed pre-
dictions.
After discovering quasars as very distant and bright objects, scientists interested in
renewing the gravitational lensing for the light of quasars from massive objects like
distant galaxies. The result of lensing was the formation of multiple images of the
same galaxy. This occurs because light rays from a distant galaxy that would oth-
erwise diverge may be focused together by lensing. For an observer on the Earth,
it looks as if two similar light rays have traveled along straight lines from different
parts of the sky.

2.2.3 Gravitational Redshift

Einstein’s gravity predicts the wavelength of electromagnetic radiation will lengthen
when it climbs out of a gravitational well produced by a massive object. Hence,
Photon must disburse energy to escape, but it must always travel at the speed of
light, so the missed energy must be found through a decline of frequency or raise of
wavelength. This effect is called gravitational redshift and it was first measured on
earth in 1960-65 by Pound, Rebka, and Snider, who examined gamma rays emitted
and absorbed by atomic nuclei [24].

2.2.4 Gravitational Waves

After discovering GR, Einstein declared that massive accelerating objects such as
neutron stars, black holes, stars orbiting each other would disrupt spacetime so that
waves of distorted space would radiate from the source like the produced waves due
to a stone thrown into a pond [25]. The produced gravitational ripples travel at the
speed of light and carry valuable information about the sources. The main sources
of gravitational waves are colliding black holes, the collapse of stellar cores, coalesc-
ing neutron stars or white dwarf stars, the slightly wobbly rotation of neutron stars
that are not perfect spheres. The first observational proof of gravitational waves oc-
curred in 1974 through discovering some interesting results of a binary pulsar by R.
A. Hulse and J. H. Taylor [26] and then, it motivated other scientists to study pul-
sar radio-emissions in order to find some clues of gravitational waves. But, these
experiments had always come indirectly and not because of actual physical contact.
In 2015, Laser Interferometer Gravitational-Wave Observatory (LIGO) directly de-
tected the distortions in spacetime produced by passing gravitational waves of two
colliding black holes nearly 1.3 billion light-years away [27].

2.3 Field Equations

To formulate GR, we apply the action principle, which is a variational method to
express a wide range of physical laws. The deduction of equations from physical
actions has several advantages. First, it allows the unification with other field theo-
ries which are also formulated in terms of physical actions such as Maxwell’s theory.
Moreover, the action facilitates the identification of the constant quantities through
the study of the symmetries of the actions with the Noether theorem.
Let us start with the form of the Einstein-Hilbert action in GR as [28, 29]
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S =
∫ √

−g
(

1
2κ2 (R− 2Λ) + LM

)
d4x, (2.6)

where κ2 ≡ 8πG = 8π
m2

PL
where G and mPL are the gravitational constant and Planck

mass, respectively. In the above action, Λ is the cosmological constant, g is the de-
terminant of metric gµν and R is the Ricci curvature scalar R ≡ gµνRµν where the
Ricci tensor defines as Rµν = ∂γΓγ

νµ − ∂νΓγ
γµ + Γγ

γλΓλ
νµ − Γγ

νλΓλ
γµ, where the Christof-

fel symbol is expressed by Γγ
µν = 1

2 gγλ(∂νgλµ + ∂µgλν − ∂λgµν). The first term of the
Eq. (2.6) is Einstein-Hilbert’s action as the geometrical part of total action and LM
depicts to the matter sector which determines by the type of component dominated
in the universe. By varying the action (2.6) with respect to the metric, we obtain the
Einstein field equations as

Gµν + Λgµν ≡ Rµν −
1
2

Rgµν + Λgµν = κ2Tµν, (2.7)

where Gµν is the Einstein tensor and Tµν is the energy-momentum tensor given by

Tµν = gµνLM −
2δLM

δgµν
. (2.8)

We note that the conservation law of the energy-momentum tensor ∇νTµν = 0 is
valid as a direct consequence of the Bianchi identities ∇νGµν = 0.

2.4 The Solutions of General Relativity

The solutions of Einstein’s field equations (2.7) are metrics of spacetime which mea-
sure the distance between points in different geometries. By using the metric as
the geometrical tool and also the corresponded matter, one can solve Einstein’s field
equations in order to find the dynamical relations in the context of a cosmological
model. A wide range of solutions are proposed in cosmology [30], here we review
some crucial metrics of GR.

2.4.1 Friedmann–Lemaître–Robertson–Walker Solution

The Friedmann–Lemaître–Robertson–Walker (FLRW) metric is identified as one of
the most distinguished metrics in GR since it forms the structure of the standard
cosmological model. Regarding the cosmological principle which says the universe is
almost homogamous and isotropic in large scale structures, the FLRW metric can be
expressed by [31, 32, 33, 34]

ds2 = −dt2 + a2(t)
(

dr2

1−Kr2 + r2(dθ2 + sin2θdφ2)

)
, (2.9)

where t cosmic time is the time measured by an observer who sees the universe
is expanding uniformly around him. Also, r is the comoving radial coordinate, θ
and φ are the comoving angular coordinates and a(t) is usually a dimensionless
factor hinting the expansion of the universe. K as a constant representing the spatial
curvature constant can take two common dimension notations:

• K with a dimension of length2. In which case r has a dimension of length and
scale factor a(t) is dimensionless.
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FIGURE 2.4: The values of spatial curvature constant K can be found
as: K = +1 for a closed universe, K=+1 for an open universe and
K = 0 is for a flat universe. The recent observations reveal that the

universe is spatially flat at present time.

• K expressed as a set of +1, 0, -1 for negative, zero, and positive curvature,
respectively (see Figure 2.4). In which case, r is dimensionless and a(t) has a
dimension of length.

The properties of possible spatial curvatures introduced in the second notation can
be reviewed as

• Positive Curvature. The sum of the three angles of a triangle is more than 180.
This case is associated with the curvature constant K to +1. A 3D space with pos-
itive curvature has a structure similar to the 2D surface of a sphere wherein if you
travel far enough in any direction, you come back to where you began. Thus space
is finite and the universe is closed.

• Flat space. The sum of angles of a triangle is exactly 180. The conventional geom-
etry of Euclidean is K = 0. It can be considered as the limit of the other two cases
for an infinite radius of curvature. Since it is balanced between the other two, this
is sometimes called a critical universe. For true Euclidean geometry, the topology is
also open. It means that space is infinite in all directions. It is also possible to have
compact topologies in a flat space, which have a finite volume.

• Negative Curvature. The sum of angles of a triangle is < 180. The case of K
= -1 is hard to imagine as it is not even possible to have a 2D surface of constant
negative curvature in Euclidean 3D space. 2D surfaces can have local regions of
negative curvature. The simplest topological case is when the universe is infinite in
all directions, and it is open. In fact, it is more infinite than the Euclidean case.

2.4.2 Black Hole Solution

The Schwarzschild solution describes the gravitational field outside of a mass with
spherical symmetry such as a Black Hole (BH) or any object that is asymptotically
flat, spherically symmetric and static. The Schwarzschild metric is known as the
most straightforward metric of BHs since it is expressed for BHs which are static,
chargeless and rotationless. The usual form of Schwarzschild metric is given by [35]

ds2 = −(1− 2M
r

)dt2 +
1

(1− 2M
r )

dr2 + r2(dθ2 + sin2θd2φ2), (2.10)
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where M is the mass of BH and (t, r, θ, φ) are the polar coordinates. Clearly, in far
distances when r → ∞, the Schwarzschild metric mimics the Minkowski metric in
polar coordinates. It means that the above metric is asymptotically flat. By taking a
look at the metric (2.10), one can realize that there are two singularities: r = 0 which
is a curvature singularity and unavoidable in the BH analysis and r = 2M, which is
a coordinate singularity and removable by changing coordinates. A Schwarzschild
BH can be interpreted with two different regions separated by BH horizon r = 2M is
a null hypersurface. The outer region with r > 2M contains the timelike hypersur-
faces, which metric becomes flat in very far distances. The inner region with r < 2M
includes the spacelike hypersurfaces so that an object falling inside the horizon can
only continue moving to decrease values of r until it reaches the curvature singular-
ity r = 0.
In order to explain the features of a rotating, stationary, axially symmetric BH, we
use the Kerr metric instead of the static Schwarzschild metric. The form of Kerr
metric in the polar coordinates (t, r, θ, φ) is expressed as [36]

ds2 = −dt2 + Σ(
dr2

∆
+ dθ2) + (r2 + a2)sin2θd2φ2 +

2Mr
Σ

(asin2θdφ− dt)2, (2.11)

where

∆ ≡ r2 − 2Mr + a2, Σ ≡ r2 + a2cos2θ. (2.12)

In the above expression, M is BH mass and a depicts the rotational feature of BH.
Also, analogous with the Schwarzschild metric, the Kerr metric is stationary, ax-
isymmetric and asymptotically flat. We can find two singularities in the Kerr metric:
Σ = 0, which is a curvature singularity and ∆ = 0, which is the coordinate singular-
ity and removable. Notice that in the Schwarzschild limit a = 0, the Kerr singulari-
ties approach the singularities of the Schwarzschild metric (2.10). By the coordinate
singularity ∆ = 0, we can find that a Kerr BH has two horizons

r+ ≡ M +
√

M2 − a2, r− ≡ M−
√

M2 − a2, (2.13)

where r+ and r− are the outer and inner horizons, respectively. These horizons sep-
arate a Kerr BH in three different regions. The region with r > r+, which is included
by timelike hypersurfaces wherein the metric becomes flat in the limit of far dis-
tances. The region with r− < r < r+ which contains the spacelike hypersurfaces in
which the objects falling inside of outside region can only continue until reaching
to the inner horizon. The region with r < r− which includes the timelike hyper-
surfaces and also the ring singularity. Notice that the Schwarzschild and Kerr BHs
can be generalized to include non-zero electromagnetic charges, non-zero angular
momentum and non-zero cosmological constant [37, 38, 39, 40, 41].

2.5 The Standard Model of Cosmology

In this section, we describe the dynamics of an expanding universe based on GR
principles and also we investigate the satiation of the cosmos in the presence of
different components of matter.
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2.5.1 Dynamical Universe

In 1922, Alexander Friedmann first presented a dynamical solution of the field equa-
tions (2.7) by using the FLRW metric and the equation of perfect fluid [42]

Tµν = ρuµuν +
p
a2 gµν. (2.14)

In the above expression, p and ρ are the pressure and energy density of the perfect
fluid, respectively and the indexes µ and ν take the values from 0 to 3 so that zero
is the time coordinate and other three values are depended to the space coordinates.
Also, uµ is the four-velocity of a comoving observer for whom space is homogeneous
and isotropic. Due to the conservation law of energy-momentum tensor ∇νTµν = 0,
the time component of the energy-momentum tensor can be found as

ρ̇ + 3H(ρ + p) = 0. (2.15)

By using the FRLW metric and the equation of perfect fluid for the field equations
(2.7), the dynamical relations of an expanding universe take the following form

H2 ≡ (
ȧ
a
)2 =

κ2

3
ρ +

Λ
3
− K

a2 , (2.16)

ä
a
= −κ2

6
(ρ + 3p) +

Λ
3

. (2.17)

The first relation is the Friedmann equation driven from the time component of the
field equation [42]. The second is the Raychaudhuri or acceleration equation driven
from space part ij of the field equation [43]. In the Friedmann equation, H ≡ ( ȧ

a ) is
the Hubble parameter and reveals the changes in scale factor in terms of the pressure
and energy density of the perfect fluid. Also, K is spatial curvature constant (obser-
vations show K = 0 for the present universe) and Λ is the cosmological constant.
From the acceleration equation, one can find the necessary condition to explain in-
flation and dark energy as the accelerating phase of the universe in early and late
times by ρ + 3p < 0 when Λ = 0.
In order to present an exhaustive study of the dynamical universe, it is worth in-
troducing some useful formulas. Let’s begin with equation of state w = p

ρ as a

dimensionless parameter including w = 0 for dust, w = 1
3 for radiation, w = −1 for

the cosmological constant and w = − 1
3 for spatial curvature. By using the equation

of state for the Eq. (2.15), we obtain

ρ(a) = ρ0a−3(1+w) (2.18)

assuming we have normalized a(t0) = 1. This relation informs us how the energy
density changes in terms of scale factor for different components of the universe.
Concerning the above expression for a flat universe (K = 0), the Friedmann equation
can be rewritten as

a(t) = (
t
t0
)

2
3(1+w) (2.19)

where a0 = 1 has used as proper normalization. The above equation expresses the
behavior of the scale factor for different components of the universe. Also, we obtain
the age of the universe t0 as
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FIGURE 2.5: The rate of expansion of the universe is shown for differ-
ent single and mixed component universes. The blue line (de Sitter
universe) refers to the universe filled only by the cosmological con-
stant and the rate of expansion is exponential. The pink line depicts
the present universe occupied by the cosmological constant and cold
dark matter. One can find the rate of expansion has decreased rather
than the de Sitter universe because of the role of dark matter. The
yellow line shows a linear expansion for the Milne universe with the
only curvature. The line of Einstein-de Sitter implies the expansion of
the universe filled only with matter. The green semicircular presents

the closed universe when it is a mixture of matter and curvature.

t0 =
1

1 + w

(
4

3κ2ρ0

) 1
2

(2.20)

and the Hubble constant is expressed by the relation

H0 ≡
(

ȧ
a

)
t=t0

=
2

3(1 + w)
t−1
0 . (2.21)

We note that the Hubble time tH ≡ H−1
0 can be linked to the age of the universe by

tH =
3(1 + w)

2
t0. (2.22)

Another important cosmological parameter is particle horizon that implies the max-
imum distance from which light from particles could have traveled to the observer
in the age of the universe. In a universe described by the FLRW metric, the current
horizon distance is

dhor(t0) =
∫ t0

0

dt
a(t)

(2.23)

and for a spatially flat universe, it yields

dhor(t0) = t0
3(1 + w)

1 + 3w
=

2
H0(1 + 3w)

. (2.24)

By setting the equation of state w of the matter filling the cosmos, we can specify the
above dynamical relations for every epoch of the thermal universe.
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2.5.2 Single Component Universe

In reality, our universe is a mixture of different components with different values
of the equation of state w. However, based on the thermal history of the universe,
the role of one component was dominated in every epoch of the universe. Hence,
studying the dynamical universe with a single component helps us to have a better
insight into the universe.

2.5.2.1 Curvature

As the simplest case, we assume that there is no type of matter (radiation, dust,
cosmological constant) and we deal with curvature only. The Friedmann equation
for this type of universe, which is known to the Milne universe, takes the following
form [44]

ȧ2 = −K. (2.25)

The above expression for positive curvature K = +1 is an unacceptable solution
since it leads to an imaginary value of ȧ. For flat curvature K = 0, we approach an
empty, static and spatially flat universe that recalls us to the Minkowski universe. In
other words, in the case of K = 0, all relations of GR are reduced to SR. A negatively
curved (K = −1) empty universe is expanding with

ac(t) =
t
t0

, (2.26)

which is in agreement with Newtonian physics. If there is no gravitational force
in the universe, the relative velocity of two points is constant and the scale factor
grows linearly with time. Also, the age of this universe is equal to the Hubble time
t0 = H−1

0 .

2.5.2.2 Radiation

According to the thermal history, the universe was dominated by radiation in very
early time through strong interactions of photons with the nuclei of light elements
and electrons. For an universe dominated by radiation, the age of the universe is
t0 = 1

2H0
and the horizon distance is dhor(t0) = 2t0 = 1

H0
. Also, the energy density

changes with the scale factor as ρ = ρ0a−4 and the rate of expansion of the universe
is ar(t) = ( t

t0
)

1
2 .

2.5.2.3 Matter

After ending the radiation dominated period, our universe followed by the matter
dominated era as the longest stage of the universe and filled with either baryonic
and non-baryonic. In such a case, we concentrate on the universe filled with a non-
relativistic matter or dust with w = 0 which is called Einstein-de Sitter universe [45].
The age of such universe t0 = 2

3H0
and the horizon distance is dhor(t0) = 3t0 = 2

H0
.

Also, the variation of energy density with the scale factor is ρ = ρ0a−3 and the
universe is expanding as am(t) = ( t

t0
)

2
3 .
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2.5.2.4 Cosmological Constant

For the sake of completeness, we consider the de Sitter universe referring a universe
filled with cosmological constant w = −1 [8]. For the age of the universe, we can
rewrite the Friedmann equation as

ȧ2 =
κ2

3
ρΛa2, (2.27)

which for w = −1, we obtain

aΛ(t) = eH0(t−t0), (2.28)

where H0 = ( κ2ρΛ
3 )

1
2 . We note that Figure 2.5 shows the rate of expansion for the

mentioned single component universes.

2.5.3 Present Universe

In the previous section, we examined the situation of the universe filled with a single
type of component. However, a real universe has formed from different ingredients
with different contributions throughout the history of the universe. Now, it is worth
studying the constitutive elements of the present universe at the age of of13.7 Gyr.
Given high accuracy observations, most of the present universe has been contained
by dark energy and dark matter (around %95) and the remained portion (around %5)
refers to the ordinary matter as a combination of light elements, stars, neutrinos, and
heavy elements (see Figure 2.6) [46]. Let us explain the components, separately.

2.5.3.1 Dark Energy

Dark Energy (DE) is the late time accelerating phase of the universe that two groups
of researchers, separately discovered it in 1998 through careful study of supernovae
type Ia [47, 48]. What the researchers found was that the Ia supernovae in distant
galaxies were fainter than expected from Hubble’s law, given the measured redshifts
of their host galaxies. The nature of DE is one of the most significant puzzles of mod-
ern cosmology. A matter candidate of DE is the cosmological constant representing
a constant energy density filling space homogeneously. Quantum mechanics pro-
poses that the source of this vacuum energy might be tiny elementary particles that
flicker in and out of existence everywhere throughout the universe. Various attempts
have carried out to calculate how big the effects of this vacuum energy should be,
but so far these attempts had been unsuccessful. In fact, the order of magnitude
of theoretical estimates of the vacuum energy based on the quantum mechanics of
matter and the value required to account for the acceleration of the expansion of
the universe differ by an incredible factor of at least 10120 [49]. Another suggested
strategy to illuminate the DE problem is established on modified theories of gravity
[50, 51, 52]. Some people believe that one can approach the acceleration phase by as-
suming some geometrical modifications in the heart of the Einstein gravity instead
of adding the cosmological constant to the content of the universe. There are a wide
range of modified gravity models among the cosmological literature such as f (R)
gravity which considers a general function of Ricci scalar R instead of R expressed
in the action of GR [53, 54] or Braneworld gravity in which gravity is an interaction
in higher dimensions [55]. Regarding the observations, DE contains around %70 of
the present universe [46].
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FIGURE 2.6: The current content of the universe is formed from Dark
Energy, Dark Matter and ordinary matter, including light elements,

stars, neutrinos, and heavy elements.

2.5.3.2 Dark Matter

After DE, Dark Matter (DM) forms the majority portion of the universe (around %25)
[46]. DM is a mass that does not emit or absorb or reflect electromagnetic radiation
and only can be detected through its gravitational effects. The main observational
evidence of DM is detecting the emitted X-rays or gamma rays radiation from the gas
filling the space between galaxies in the clusters [56]. The nature of DM is unknown
for scientists, but there are some candidates to explain what is DM?. The stellar
remnants such as white dwarfs, neutron stars and massive black holes are addressed
as DM. Moreover, a brown dwarf can be a suitable candidate for DM since it is too
low in mass in order to occur nuclear fusion in their cores. The most important
candidate is Weakly Interacting Massive Particles (WIMPs) which are theoretically
proposed in some extensions of the standard model of particle physics [57]. WIMPs
are massive particles that interact like neutrinos only through weak nuclear and
gravitational forces. The main problem of WIMPs is that they have not been detected
yet.

2.5.3.3 Light Elements

As a consequence of the Big Bang nucleosynthesis period, the universe is full of light
elements such as Hydrogen and Helium. In fact, they are the main source of nuclear
fusion in the core of stars. Moreover, they exist in the space intergalactic and usually
emit in the range of X-ray or infrared. They form the most measurable mass of the
universe (around %4) [46].

2.5.3.4 Stars

Star is a huge ball of gas (Hydrogen and Helium) held together by gravity. The
central core of a star is extremely hot and produces energy by the nuclear fusion
process. Some of the released energy is spent to makes the star glow and part is for
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the temperature of the star surface. Stars form around %0.5 of the content of the
universe [46].

2.5.3.5 Neutrinos

The neutrinos accumulate around %0.3 of the present universe [46]. These particles
are usually released during the nuclear fusion process in stars and because of low
mass, interact weakly with other particles through gravity and weak nuclear forces
[58]. Also, cosmic neutrino background comes from the decoupling of the neutrinos
from hadrons, when the universe had been cold sufficiently [59].

2.5.3.6 Heavy Elements

The least portion of the universe is formed by heavy elements around %0.03 [46].
As we know, the energy of stars comes from the combining of light elements into
heavier elements in a nuclear fusion process. It is generally believed that most of
the elements in the universe heavier than helium are created, or synthesized, in stars
when lighter nuclei fuse to make heavier nuclei. The process is called stellar nu-
cleosynthesis. It requires a high-speed collision, which can only be achieved at a
very high temperature. The minimum temperature required for the fusion of hy-
drogen is 5 million degrees. Elements with more protons in their nuclei require still
higher temperatures. Most of the heavy elements, from oxygen up through iron,
are thought to be produced in stars that contain at least ten times as much matter
as our Sun. After the hydrogen in the core of a star is exhausted, the star can burn
helium to form progressively heavier elements, carbon and oxygen and so on until
iron and nickel are formed. Up to this point, the process releases energy. The forma-
tion of elements heavier than iron and nickel requires the input of energy. During
the explosive nucleosynthesis process, supernova explosions result when the cores
of massive stars have exhausted their fuel supplies and burned everything into iron
and nickel. The nuclei with mass heavier than nickel are thought to be formed dur-
ing these explosions [60].
Now that we know all elements of the universe, it is worth to apply the Friedmann
equation for the present universe. From the general form of the Friedmann equation,
we have

H(t)2 =
κ2

3
ρ(t)− K

a(t)2 , (2.29)

where ρ(t) is the energy density contributed by all components of the universe, in-
cluding the cosmological constant. Let us introduce the density parameter Ω as

Ω ≡ ρ

ρcritical
, (2.30)

where ρcritical ≡ 3H(t)2

κ2 is the energy density of a spatially flat universe. By using the
Eqs. (2.29) and (2.30) at present time, one can find

K = H2
0(Ω0 − 1). (2.31)

Now we can rewrite the Eq. (2.29) as

H(t)2 =
κ2

3
ρ(t)− H2

0
a(t)2 (Ω0 − 1). (2.32)
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Dividing by H2
0 , this becomes

H(t)2

H2
0

=
ρ(t)

ρcritical,0
+

1−Ω0

a(t)2 . (2.33)

In the previous sections, we found the energy density of radiation as ρr = ρr,0/a−4,
matter as ρm = ρm,0/a−3 and cosmological as ρΛ = ρΛ,0=constant based on current
evidence. Eventually, the Friedmann equation (2.33) takes the following form

H(t)2

H2
0

=
Ωr,0

a4 +
Ωm,0

a3 + ΩΛ,0 +
1−Ω0

a2 , (2.34)

where Ωr,0 = ρr,0/ρcritical,0, Ωm,0 = ρm,0/ρcritical,0, ΩΛ,0 = ρΛ,0/ρcritical,0 and Ω0 =
Ωr,0 + Ωm,0 + ΩΛ,0.

2.6 Thermal History of the Universe

Since the Big Bang, the universe has passed through different epochs. Due to the
extreme conditions and the violence of its very early stages, it arguably saw more
activity and change during the first second than in all the billions of years since.

2.6.1 Age of the Universe

Before starting to survey the thermal history of the universe from the Big Bang to the
present time, that would be nice to describe how scientists estimated the age of the
universe. Let’s begin with an approximative approach. We know that the Hubble
parameter reveals the rate of universe expansion and its associated time, which is
called the Hubble time, can be a good approximation of the age of the universe.
The Hubble constant in the present time is H0 = 70 kms−1Mpc−1, then the Hubble
time tH is around 14 Gyr. This is the simplest estimation and there is uncertainty in
obtaining the value of the Hubble constant. On the other hand, the high accuracy
observations accomplished for the oldest objects in the universe show that the age
of the cosmos is between 10-13 Gyr, roughly. This observational fact tells us that we
should be suspicious about the time determined by the Hubble parameter. Now,
we attempt to understand the age of the universe theoretically. Since the longest
period of the universe was dominated by matter, we start with a universe filled by
matter. Then, the rate of expansion in this universe is a(t) = ( t

t0
)

2
3 and from the Eq.

(2.22), the age is linked to the Hubble time as t0 = 2
3 H−1

0 = 9.3 Gyr. The obtained
result is not delicious to us compared with the observational evidence. The key to
solving the problem is referred to Λ as the cosmological constant since we are trying
to estimate the age of the present universe. Hence, we must add the role of DE to
our calculations.
By assuming a spatially flat universe in the presence of Λ, we can access the age of
the universe around 13.7 Gyr which has good agreement with observations of the
oldest stars in the universe [46].

2.6.2 Universe Stages

Let’s review what has happened since the Big Bang to now (see Figure 2.7):

• t < 10−43s, T > 1032K. Immediately after Big Bang, the universe followed by the
Planck era. During this too short period, the temperature, pressure, and energy were



2.6. Thermal History of the Universe 21

FIGURE 2.7: The thermal history of the universe is classified into four
main epochs in terms of time, temperature and energy (e.g. Planck

era, radiation dominated, matter-dominated and DE dominated).

extremely high. Also, the unification or Theory of Everything (TOE) between four
fundamental forces of nature was valid through the critical condition in this epoch.
Moreover, the GR is unable to explain gravity dominated in this period and we re-
quire to build a gravitational theory in the context of quantum mechanics. Such a
theory is known as Quantum Gravity which is unknown for us yet.

• t < 10−36s, T > 1029K. As a result of universe expansion, the temperature dropped
and the universe became a bit cold. Therefore, the required conditions of unification
were not valid and the gravity force took part from the other three forces through
breaking symmetries. This era is called the Grand Unification Theory (GUT) era.

• t < 10−32s, T = 1028 ∼ 1022K. Through more expansion, the universe became colder
and the nuclear force took part from two remained forces. Inflaton as scalar field
driving Inflation, created by the breaking symmetries, happened in this period. Ac-
cording to cosmic inflation, the universe experienced a very huge and short expan-
sion by a factor of the order of 1026. As a consequence of cosmic inflation, the tem-
perature of the universe declined sharply from about 1027 down to 1022 kelvins. By
decaying inflaton at the end of the inflation or reheating process, the universe started
to expand normally.

• t = 10−12 ∼ 10−6s, T > 1012K. In 10−12s after Big Bang, the third breaking symme-
tries occurred through taking part electromagnetic and weak nuclear forces [61, 62,
63, 64, 65, 66, 67]. In this period, the temperature of the universe was high and free
quarks couldn’t form the neutrons and protons. However, the universe was filled by
quark-gluon plasma through the reheating of cosmic inflation.

• t = 10−6 ∼ 1s, T > 1010K. Because of expansion and then dropping the tempera-
ture, free quarks could form the neutrons and protons [68, 69, 70, 71, 72, 73].

• t = 1s, T = 1010K. In one second after starting the universe, background neutri-
nos released or decoupled from the baryonic matter. In other words, the matter
became transparent for Cosmic Neutrino Background (CNB) analogous to the much
later cosmic microwave background released during recombination, around 380,000
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years after the Big Bang. Since neutrinos interact weakly with matter, they can travel
freely to reach to us.

• t = 1 ∼ 10s, T = 1010 ∼ 109K. The majority of hadrons and anti-hadrons annihi-
late each other at the end of the hadron epoch and left leptons (such as the electron,
muons and certain neutrinos) and anti-leptons. The lepton epoch follows a similar
path to the earlier hadron epoch. Initially, leptons and anti-leptons are produced in
pairs. About 10 seconds after the Big Bang, the temperature of the universe falls to
the point at which new lepton/anti-lepton pairs are no longer created and most re-
maining leptons and anti-leptons quickly annihilate each other, giving rise to pairs
of high energy photons.

• t = 10 ∼ 103s, T = 109 ∼ 107K. The Big Bang Nucleosynthesis (BBN) as one of
the most significant stages of the universe that occurred during this period [74, 75,
76, 77]. By dropping the temperature and pressure, protons and neutrons started
to combine and formed the nuclei of light elements such as Hydrogen and Helium
through the nuclear fusion process. The abundance of light elements in the present
universe is referred to as such this era.

• t = 10 ∼ 380kyr, T = 109 ∼ 4000K. The Radiation dominated era happened in this
period. The universe was full of electrons, nuclei, and high energy photons. The
electrons were not able to join to the nuclei to form atoms since the high energy pho-
tons interacted hardly with the matter.

• t = 380kyr, T = 4000K. In 380,000 years after Big Bang, the universe became enough
cold and then the energy of photons decreased dramatically. Electrons could com-
bine with nuclei and first atoms formed in the universe. Also, the cosmic microwave
background photons decoupled from the matter at the last scattering surface and the
matter became transparent for photons [78].

• t = 380kyr ∼ 150Myr, T = 4000 ∼ 60K. The period after the formation of the first
atoms and before the first stars is sometimes referred to as the Dark Age. Although
photons exist (the cosmic background photons released during decoupling and pho-
tons occasionally released by neutral hydrogen atoms, known as the 21 cm spin line
of neutral hydrogen), the universe at this time is literally dark, with no star or galaxy.
The activity in the universe has declined dramatically, with very low energy levels
and very large time scales and the universe is dominated by mysterious DM.

• t = 250Myr ∼ 1− 10Gyr, T = 60K. The first quasars form from gravitational col-
lapse, and the intense radiation emitted by them, reionizes the surrounding uni-
verse. This is the second of two major phase changes of hydrogen gas that happened
in the universe (the first was at the Recombination period). Hence, most of the uni-
verse goes from being neutral back to being composed of ionized plasma [79, 80, 81].

• t = 300− 400Myr ∼ 10Gyr, T = 60 ∼ 19K. Gravity reinforces slight disorders
in the density of the primordial gas and they become more and denser so that the
universe continues to expand rapidly. These small, dense clouds of cosmic gas start
to collapse under their gravity and become hot enough to nuclear fusion reactions
between hydrogen atoms in order to create the first stars. The first stars or metal-free
stars are short-lived supermassive stars (hundred times the mass of the Sun).
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FIGURE 2.8: Edwin Hubble’s original diagram in which the vertical
and horizontal axes refer to the velocity and distance of galaxies from

the observer.

Eventually, through stellar and explosive nucleosynthesis, stars begin to form the
material from previous rounds of star-making. Larger stars burn out quickly and
explode in massive supernova events, their ashes going to form subsequent gener-
ations of stars. Large volumes of matter collapse to form galaxies and gravitational
attraction pulls galaxies towards each other to form clusters and superclusters.

• t = 8.5Gyr ∼ 13.7Gyr, T = 19 ∼ 2.7K. The farthest observable photons are the
cosmic background photons. The expansion of the universe and the recycling of
star materials into new stars are becoming prevalent. Furthermore, matter density
declines relative to DE density, and expansion of the universe begins to accelerate
[47, 48].

2.7 Hot Big Bang Theory

The standard model of cosmology has been established on the Hot Big Bang (HBB)
theory which states the universe began to expand by a huge explosion when the
temperature and energy were extremely high at the early time. Although the Big
Bang theory is the most convenient picture in cosmology to start the universe, it has
to be in good agreement with observations. Hence, it is worth to survey the strengths
and weaknesses of the HBB theory.

2.7.1 Proofs of HBB Theory

First, let us explain some observations that verify the Big Bang theory.

2.7.1.1 An Expanding Universe

Our knowledge from a sky object comes from analyzing the electromagnetic radi-
ation of that object. In fact, the wavelengths of emitted radiation contain various
information about the source. Let’s begin with redshift as an essential observational
parameter

z ≡ λob − λem

λem
, (2.35)
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FIGURE 2.9: The predicted abundance of the BBN from light elements
when the energy density of the ordinary matter varies. One can un-
derstand that the abundance of Helium is relatively insensitive to the

abundance of ordinary matter, above a certain threshold.

where λem is a particular absorption line measured in the lab and λob is the measured
wavelength of the same absorption line from a sky object. If z < 0, the object is
closing to us as an observer and it means there is a blueshift instead of redshift
and for positive values z > 0, the object is faring away from us through a redshift
tilt. The mentioned analysis can be understood in the light of the Doppler effect
in which there is an increase in frequency for observers towards whom the source
is approaching and a decrease in frequency for observers from whom the source is
receding.
In 1929, Edwin Hubble measured the redshift of some galaxies and then estimated
their distances from us. Then, by plotting the redshift versus distance as presented
in Figure 2.8, he found a linear connection between two parameters as [82]

z =
H0

c
r, (2.36)

where H0 is Hubble constant. Also, by using the non-relativistic relation of Doppler
effect z = v

c , the above relation takes the following form

v = H0r, (2.37)

where v is the velocity of the galaxy and r is the distance to us as an observer. From
the previous section, the value of Hubble constant depends on the age and the matter
filling the universe. For the present mixture of matter and at time 13.7 Gyr, the
Hubble constant is H0 = 70 kms−1Mpc−1 [46]. When Hubble measured the redshift
of galaxies, he found that the majority of them show a redshift rather than blueshift.
Thanks to the Doppler effect, they are receding us and this is meaningful only in
an expanding universe not static case. The Hubble expansion can be identified as
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observational evidence of HBB theory which believes the universe began to grow
from a highly dense and pressure state.

2.7.1.2 Abundance of Light Elements

As we know, the ordinary matter makes around %5 content of the universe in which
light elements with %4 has the most significant role at present. The light elements
are known as the main fuel in the core of stars in order to occur the nuclear fu-
sion. Also, they are in stellar and galactic spaces and usually emit in the range of
X-rays or gamma rays through the gravitational effects of DM. The abundance of
the light elements e.g. Helium, Deuterium, and Lithium comes back to the BBN era
in which protons and neutrons combined and released energy by nuclear fusion ac-
tivities. The Big Bang theory predicts that the mass of the universe has been formed
by around %75 Hydrogen, %25 Helium, %0.01 deuterium and smaller quantities
of lithium. The predicted abundance of light elements depends on the density of
ordinary matter in the early universe and also the combination of elements might
be changed during the evaluation of the matter. Since Helium neither decays nor
combines effortlessly to form more massive nuclei, it is relatively insensitive to the
abundance of ordinary matter as presented in Figure 2.9. Hence, we expect that the
measured plenty of Helium at present be the same with theoretical predictions car-
ried out by HBB theory. Recent observations show that the abundance of Helium
in the universe has a good agreement with the HBB prediction [2]. This reality is
recognized as one of the most important observational probes of the HBB theory.

2.7.1.3 Cosmic Microwave Background

The most important evidence of Big Bang theory is detecting cosmic microwave
background as the relic photons of the Big Bang explosion when the universe was
critical in temperature and pressure [78]. According to the history of the universe, in
radiation dominated era, photons were highly energetic and interacted dramatically
with matter so that electrons could not join to nuclei to form atoms. After a while,
because of more expansion, the universe became colder and photons were not able
to interact with the matter. As a result of this, the cosmic background photons re-
leased at the last scattering surface and the first atoms formed through combining
the electrons with nuclei. Now, in 13.7 Gyr after Big Bang, the background photons
are in the range of microwave and low temperature roughly 2.72 Kelvin degrees.
Let us explain the history of cosmic microwave background discovery briefly. Cos-
mologist George Gamow and his collaborators (Ralph Alpher and Robert Herman)
first predicted the cosmic background photons in 1948 [83, 84, 85, 86]. They were
doing research related to Big Bang nucleosynthesis, or the production of elements
in the universe besides the lightest isotope of hydrogen. But the cosmic background
photons first found by accident. In 1965, two researchers with Bell Telephone Labo-
ratories (Arno Penzias and Robert Wilson) were creating a radio receiver and were
confused by the noise it was picking up, so that came uniformly from all directions
of the sky. The unknown noise was cosmic background photons and Penzias and
Wilson received the Noble prize in 1978 because of their discovery [78]. In order to
present more precise analysis, the COBE satellite engaged in detecting the cosmic
background photons in 1990 [87, 88]. COBE measured the temperature of back-
ground photons around 2.72 Kelvin degree and showed the received spectrum of
the cosmic microwave background is similar to black body radiation. Additionally,
it detected the first acoustic peak, acoustical oscillations in the plasma which corre-
sponds to large-scale density variations in the early universe created by gravitational
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FIGURE 2.10: Comparison of the obtained results from COBE ,
WMAP and Planck.

instabilities. The second acoustic peak and even the third were detected by WMAP
deployed in 2001 [89]. After the retirement of WMAP in 2010, the third main mis-
sion carried out by PLANCK satellite in 2009 through precise measurements at the
small angular scales up to now (see Figure 2.10). Also, multiple missions have been
monitoring the cosmic microwave background to provide improved measurements
of the polarization of cosmic background photons by BICEP2 mission [90]. Detailed
information about CMB and its experiments related to inflation will be presented in
chapter 4.

2.7.2 Shortcomings of HBB Theory

Now that we know the strength of HBB theory, it is time to review the defects of the
theory e.g. Flatness, horizon and monopole problems.

2.7.2.1 Flatness Problem

As we expressed in the previous sections, the spatial curvature of the universe can
take three different forms in which K = −1 for an open universe, K = +1 for a
closed universe and K = 0 for a flat universe. The very precise observations reveal
that the present universe is so flat (Ω ' 1) and the present energy density is almost
equal to its critical value. Since the total density departs rapidly from the critical
value over cosmic time, the early universe must have had a density even closer to
the critical density. The flatness problem says that the HBB theory can not present a
clear explanation for this amount of flatness. We can also state the flatness problem
by asking the question that How the universe fines tune the energy density of the
universe to be flat during all time?
Now, let us express the flatness problem by appropriated relations. By using the def-
inition of the density parameter Eq. (2.30), the Friedmann equation can be rewritten
as

1−Ω(t) = − K
a(t)2H(t)2 . (2.38)

The above relation at the present time takes the following form

1−Ω0 = − K
H2

0
, (2.39)

where used the proper normalization a(t0) = 1. The observations of Ia supernova
and cosmic background anisotropy disclose |1 − Ω0| ≤ 0.2. This means that the
present universe is so flat and the energy density is almost equal to the critical value.
Let’s see what happened at an earlier time. By combining the Eqs. (2.38) and (2.39),
we find the following equation
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1−Ω(t) =
H2

0(1−Ω0)

a(t)2H(t)2 . (2.40)

When the universe is dominated by radiation and matter, the Eq. (2.34) can be given
as

H2(t)
H2

0
=

Ωr,0

a4 +
Ωm,0

a3 . (2.41)

By using the above relation and the Eq. (2.40), we have

1−Ω(t) =
(1−Ω0)a2

Ωr,0 + aΩm,0
. (2.42)

Now, it is worth to investigate the above expression for different eras of the uni-
verse. During matter dominated era |1 − Ω(t)|m ∝ t

2
3 , radiation dominated era

|1−Ω(t)|r ∝ t, at the time of radiation-matter equality |1−Ω(t)|rm ≤ 2× 10−4, big
bang nucleosynthesis era |1−Ω(t)|BBN ≤ 3× 10−14 and Planck era |1−Ω(t)|pl ≤
1× 10−60.
The above values in different epochs of the universe show that when we go back-
ward in cosmic time, we access more flatness than the present time and this result is
exactly what that we name flatness problem [91, 92].

2.7.2.2 Horizon Problem

Due to the thermal history of the universe, the cosmic background photons decou-
pled from the matter in 380,000 years after Big Bang at the last scattering surface
and today we are receiving the photons in 2.72 Kelvin degree. Also, we know the
cosmic photons are not completely isotropic since there is a temperature difference
between some cosmic background photons. To explain the horizon problem, let’s
consider an observer on the earth who is receiving two isotropic cosmic background
photons from the last scattering surface separated by 180◦ distance (see the left cir-
cle of Figure 2.11). Also, assume the distance of each photon is a little smaller than
horizon distance (the most distance traveled by a photon in a proper cosmic time
in which the causality principle be valid) related to the proper time. Two photons
are isotropic and this means that they had the chance to exchange the information in
order to be in a thermal balance. The horizon problem says that two photons can not
be in thermal equilibrium. Because, if they want to meet each other to exchange their
information, each of them must travel a distance around twice the horizon distance
in the present proper time and it breaks the
causality principle. The horizon problem can be more interesting when we condemn
ourselves to the proper time at the last scattering surface. At that time, the horizon
distance take the following form

dhor(tls) =
2

H(tls)
. (2.43)

Since the Hubble distance at last scattering surface was 0.2 Mpc, we have dhor(tls) ≈
0.4 Mpc. Hence, points more than 0.4 Mpc apart at the time of last scattering surface
were not in causal connection. Also, we can express this result in terms of angular
separation as
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FIGURE 2.11: Two cosmic background photons separated by 180◦

which can not be causally connected (see the left circle). Two back-
ground photons separated by an angles small as were out of contact

with each other at the last scattering surface (see the right circle).

θhor =
dhor(tls)

dA
≈ 0.03rad ≈ 2◦, (2.44)

where used the angular diameter distance to the last scattering surface dA ≈ 13 Mpc.
The above relation states that the points on the last scattering surface separated by
an angles small as ∼ 2◦ were out of contact with each other (see the right circle of
Figure 2.11) [93, 94].

2.7.2.3 Monopole Problem

The monopole problem is known as a problem connecting cosmology and particle
physics. In the very early universe, there was a unification between four fundamen-
tal forces e.g. gravity, electromagnetic, strong and weak nuclear through the crucial
conditions of the universe. Since the universe started to expand and became colder,
the forces took part in each other step by step. Gravity was the first force separated
from the unification and the universe experienced the phase transition from TOE to
the GUT. As a result of the phase transition, the symmetries broke and topological
defects created in the universe. Monopoles are known as one of these defects created
in the GUT era [95, 96]. The number density of magnetic monopoles, at the time of
their creation, would be

nM(tGUT) ∼
1

(2ctGUT)3 ∼ 1082m−3. (2.45)

The monopole problem says that although the produced monopoles in the GUT era
had high number density, today no monopole has ever been observed [97, 98, 99,
100, 101].
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Chapter 3

Cosmic Inflation

As we expressed in the previous chapter, the HBB theory suffers from some ambi-
guities including flatness, horizon and monopole problems. In fact, the standard
cosmology can not present a clear explanation for the mentioned shortcomings. In
1981, A. H. Guth introduced the idea of cosmic inflation in order to remove the
HBB problems in which the universe experienced a vast and rapid expansion at
the early time [102]. Discovering inflation opened a new window in modern cos-
mology via its role in structure formation of the universe by scalar perturbations
generated during the inflationary era. Also, the produced tensor perturbations are
the main responsible for creating the primordial gravitational waves at the early
time. Hence, the whole chapter is dedicated to investigating the standard modeling
of inflation which is further discussed in a wide range of cosmological textbooks
[5, 11, 103, 104, 105, 106, 107].

3.1 Solution of HBB Problems

For the first section of the present chapter, let’s see how inflation can solve the prob-
lems of HBB theory.

3.1.1 Flatness Problem

Based on the flatness problem, the HBB theory can not explain the extreme flatness
of the early universe. To describe the inflationary solution, consider an ant on the
surface of a balloon. When the balloon is small, it would be obvious that the ant is
standing on a two-dimensional curved surface. Now imagine the balloon is expand-
ing sharply, the ant will see the surface is flat, even though it is actually curved if it
could be seen from large enough distance. Now, if we extend this example to a small
universe inflated by a significant amount, that part of the universe you can observe,
appears to be nearly flat. Let us show the solution by appropriated relations. The
equation

|1−Ω(t)| = 1
a(t)2H(t)2 (3.1)

is the Friedmann equation rewritten by using the definition of density parameter
Ω(t) (2.30) for any universe which is not perfectly flat (only the case of K = −1).
By using the Hubble parameter as H ∝ t−1 and the Eq. (2.19) which states the rate
of expansion of the universe in the presence of different components of the universe
when w 6= 1, the above equation takes the following form

|1−Ω(t)| ∝ t
2(1+3w)
3(1+w) . (3.2)
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FIGURE 3.1: Without inflation, since the cosmic background photons
were not connected causally, they could not be in the thermal equilib-
rium (the left picture). With inflation, the horizon distance increased
sharply and the photons linked each other to form isotropic radiation

(the right picture).

On the other hand, if we consider an exponential expansion for the inflationary era,
for the start of inflation we have

|1−Ω(t)| ∝ e−2Hinit (3.3)

and for the end of inflation

|1−Ω(tend)| = e−2N |1−Ω(tini)|. (3.4)

Notice that the above relation is obtained by using tend = ti +
N
Hi

as a direct result of
the definition of the number of e-folds by

eN ≡ a(tend)

a(tini)
. (3.5)

If we suppose that the universe was extremely curved before starting inflation |1−
Ω(tini)| ∼ 1, the Eq. (3.4) can be found by

|1−Ω(tend)| ∼ e−2N . (3.6)

Based on inflationary observations, if we consider very large e-folds around 70 for
standard inflation, we have

|1−Ω(tend)| ∼ e−140 ∼ 10−60. (3.7)

This is the required amount of flatness for the early universe discussed in the pre-
vious chapter and means that cosmic inflation by an exponential expansion can de-
scribe the extreme flatness of the universe [102].

3.1.2 Horizon Problem

The horizon problem says that the CMB photons decoupled from the last scattering
surface, could not be in thermal equilibrium because the horizon distance in the last
scattering surface was so small and they were not connected causally (see picture (a)
of Figure 3.1).
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Thanks to the idea of inflation, the horizon distance in the last scattering surface
increased significantly and almost whole CMB photons could exchange their ther-
mal information (see picture (b) of Figure 3.1). Now, it is worth to show the result
by the appropriate relations. Since before inflation, the universe was dominated by
radiation, the horizon distance at the beginning of inflation is given by

dhor(tini) = caini

∫ tini

0

dt

aini(
t

tini
)

1
2
= 2ctini (3.8)

and for the end of inflation

dhor(tend) = cainieN
( ∫ tini

0

dt

aini(
t

tini
)

1
2
+
∫ tend

tini

dt
ainieHini(t−tini)

)
, (3.9)

where used eN = a(tend)
a(tini)

. For large values of number of e-folds, the above relation
takes the following form

dhor(tend) = ceN(2tini + H−1
ini ). (3.10)

If we assume the inflation occurred around 10−36s after Big Bang, the horizon dis-
tance at the start of inflation was ≈ 10−28m and for very large e-folds N = 100, the
horizon distance at the end of inflation (3.9) was≈ 1016m≈ 0.8 pc. By comparing the
horizon distances at the start and end of inflation, one can understand that inflation
boosted the horizon distance dramatically from small scales to very large scales and
it could be stretched to the post-inflationary universe in particular at the time of last
scattering [102, 108].

3.1.3 Monopole Problem

As we learned before, the standard model of cosmology can not answer why there
is no monopole in the present universe despite its abundance in the early universe.
The prescription of inflation to remove the monopole problem is that monopoles as
a type of topological defects created at the time of GUT and then disappeared dur-
ing the inflationary period through a large amount of expansion. In other words,
if we determine the number density of monopoles at the time of GUT as n(tGUT) ≈
1082m−3, then after around 100 e-folding of inflation, the number density of monopoles
would be declined significantly as n(tend) = e−300n(tGUT) ≈ 10−49m−3. Because of
this reason, the probability of finding monopoles is very low in the present universe.

3.2 Single Field Model

The most convenient model of cosmic inflation has been established on a single
scalar field, which is called inflaton as the sole component of the universe during the
inflationary era. In particle physics, a scalar field is an unavoidable part of sponta-
neous symmetry breaking whose value varies as a function of position and time. For
example, inflaton created as a product of GUT symmetry breaking or Higgs boson
created as a result of ElectroWeak (EW) symmetry breaking. To formulate cosmic
inflation, let’s begin with writing the form of the Lagrangian for a scalar field whose
behaves similar to a classical particle by

LM =
1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ). (3.11)
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FIGURE 3.2: In the reheating process as the final step of inflation,
inflaton rolls slowly down to the minimum point of potential and
starts to oscillate around this point. Then, it decays to the standard

particles.

By varying the above expression respect to the metric (2.8) and using the energy-
momentum tensor of perfect fluid (2.14), one can find the energy density and pres-
sure of inflaton by

ρ =
1
2

ϕ̇2 + V(ϕ), P =
1
2

ϕ̇2 −V(ϕ), (3.12)

where the first term is the kinetic energy and V(ϕ) is the energy potential that would
be fixed by an inflationary model. The dynamical equations (2.16) and (2.17) are
given by

H2 =
κ2

3

(
1
2

ϕ̇2 + V(ϕ)

)
,

ä
a
= −κ2

3

(
ϕ̇2 −V(ϕ)

)
(3.13)

and the Klein-Gordon equation can be driven by variation of the action (2.6) respect
to the scalar field as

ϕ̈ + 3H ϕ̇ = −dV(ϕ)

dϕ
. (3.14)

Also, the necessary condition to occur cosmic inflation ρ + 3p < 0 can be rewritten
as

ϕ̇2 < V(ϕ) (3.15)

which means during inflation, the potential of the inflaton dominates its kinetic en-
ergy. Also, this shows that the inflationary potential must be sufficiently flat which is
difficult to obtain in a realistic situation [109]. Let’s take a look at the Klein-Gordon
equation (3.14). It presents the equation of motion of a scalar field accelerated by
a force proportional − dV(ϕ)

dϕ and prevented by a frictional force proportional 3H ϕ̇

through the expansion of the universe. By this simulation, inflaton rolls slowly down
from the top of potential to the minimum point so that the acceleration condition
(3.15) merges to

ϕ̇2 � V(ϕ). (3.16)
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Moreover, in order to have a specific amount of expansion during the inflationary
epoch, we set

ϕ̈� 3H ϕ̇. (3.17)

The two above conditions are known as the conditions of the slow-roll approxima-
tion which let us construct analytical solutions, both for the background and the
perturbations. The slow-roll approximation is usually described by the slow-roll
parameters [110]

εV ≡
1

2κ2

(
V ′(ϕ)

V(ϕ)

)2

, ηV ≡
1
κ2

(
V ′′(ϕ)

V(ϕ)

)
, ζV ≡

1
κ2

(
V ′(ϕ)V ′′′(ϕ)

V2(ϕ)

)1/2

,

(3.18)
where the prime denotes to derivation respect to the ϕ. The two quantities εV , ηV
and ζV are referred to as the Potential Slow-Roll (PSR) parameters. It would be
obvious that setting the slow-roll conditions (3.16) and (3.17) leads to εV � 1 and
ηV � 1. However, the opposite is not valid because the smallness of εV and ηV
is only necessary conditions not sufficient to take place inflation. As an alternative
formalism, we can work with the more rigorous approach based on the Hubble pa-
rameter as the Hubble Slow-Roll (HSR) parameters. The slow roll parameters in this
picture can be expressed as [111, 112]

εH = − Ḣ
H2 , ηH = εH − (

˙εH

2HεH
), (3.19)

where dot implies to time derivative. We note that if εH � 1 and ηH � 1, surely the
slow-roll conditions (3.16) and (3.17) are true and in such case, the HSR approxima-
tion implies the PSR approximation.
By setting the slow-roll conditions, the Friedmann and Klein-Gordon equations take
the following form

H2 ' κ2

3
V(ϕ), 3H ϕ̇ ' −dV(ϕ)

dϕ
. (3.20)

Also, the energy density and pressure of inflaton are given as ρ ' V(ϕ) and p '
−V(ϕ) with the equation of state w ' −1. In other words, the inflationary era
mimics the de Sitter universe when the slow-roll approximation is engaged for the
inflationary analysis.
Now that we understood the slow-roll approximation, it is easy to express the num-
ber of e-folds between the start and end of inflation as

N ≡
∫ tend

tini

Hdt = −
√

κ2

2

∫ ϕend

ϕini

(εV)
− 1

2 , (3.21)

where ϕini and ϕend are the values of inflaton at the start and end of inflation, respec-
tively.

3.3 Reheating Process

We learned that inflation takes place when the scalar field rolls slowly down from
the top of the potential to the minimum point of potential (3.16) and also the scale
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factor grows for the specific value of the number of e-folds (3.17). Now, it is worth in-
troducing the reheating process as the final stage of inflation. When inflation ended,
the universe became supercooled through the huge and rapid expansion. Therefore,
it required to acquire energy in order to continue the normal expansion. Let’s see
how it could occur in the standard formalism. Inflation ended when the slow-roll
conditions were broken or inflaton approached the minimum point of potential. In
such a case, inflaton started to oscillate around the minimum point and decayed to
particles of the standard model [113, 114, 115, 116, 117, 118, 119, 120, 121]. This is
the process which is called reheating (see Figure 3.2) [122, 123, 124, 125, 126]. The
next stage of reheating was thermalization in which the particles generated during
the first stage, interacted with each other and came to a state of thermal equilibrium
with the reheating temperature Tr. We note that almost all matters filling the uni-
verse at the subsequent radiation-dominated stage created during this process. Let
us describe the process by appropriated relations.

3.3.1 Evaluation of Inflaton

In order to present a more satisfying explanation of the reheating process, we con-
sider the chaotic inflation V(ϕ) = 1

2 m2ϕ2 where m is the mass of scalar field, during
the following analysis. The dynamical equations are given by

ϕ̈ + 3H ϕ̇ + m2ϕ = 0, (3.22)

H2 =
κ2

6
(ϕ̇2 + mϕ2). (3.23)

By parameterizing the Eq. (3.23) in terms of two independent variables e.g., the
Hubble parameter H and the angular variable θ, we find

ϕ̇ =

√
6
κ2 H sin θ, mϕ =

√
6
κ2 H cos θ (3.24)

and by using the Klein-Gordon equation (3.22), we obtain the dynamics of two in-
dependent parameters as

Ḣ = −3H2 sin2 θ, (3.25)

θ̇ = −m− 3
2

H sin 2θ. (3.26)

By setting the condition at the end of inflation mt � 1, the second term of the Eq.
(3.26) can be neglected and inflaton oscillates with a frequency of w ' m. Also, by
solving the Eq. (3.25) for the Hubble parameter, we obtain

H =
2
3t
(1− sin(2mt)

2mt
)−1, (3.27)

where the second term represents the oscillation of inflaton and is small compared
to unity. Now, by using the Eq. (3.24), the evaluation of the scalar field can be
interpreted by

ϕ(t) ' Φ(t) cos(mt)
(

1 +
sin(2mt)

2mt

)
, (3.28)

where the amplitude of oscillations is provided by
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Φ(t) =

√
8

3κ2
1

mt
. (3.29)

Notice that the behaviour of scale factor can be found from the Eq. (3.27) as

a(t) ∝ t
2
3 . (3.30)

This shows that the energy density of inflaton declines analogous with the energy
density of non-relativistic particles of mass m e.g., a−3.

In summary, we can state that:

The oscillations of inflaton can be explained as a collection of scalar particles, independent
from each other, oscillating coherently at the same frequency m.

For time intervals larger than the oscillating period, the energy and number densities
are related to the amplitude Φ as

ρϕ =
1
2

m2Φ2, nϕ =
1
2

mΦ2. (3.31)

In fact, reheating takes place when the amplitude of oscillations of the inflaton de-
clines much faster than (3.28) and the energy density is converted to the energy den-
sity of other particles and fields.

3.3.2 Decay of Inflaton

By assuming the interaction of inflaton ϕ with a field χ and a spinor field ψ, the
corresponded Lagrangian can be written by

L =
1
2

∂i ϕ∂i ϕ−V(ϕ)+
1
2

∂iχ∂iχ− 1
2

m2
χ(0)χ

2 + ψ̄(iγi∂i−mψ(0))ψ−
1
2

g2ϕ2χ2− hψ̄ψϕ.
(3.32)

where g, h and ξ are small coupling constants, R is Ricci scalar as the spacetime
curvature and V(ϕ) is the effective potential of the inflaton. Also, we suppose that
the potential has a minimum when ϕ = σ and is quadratic in ϕ.

V(ϕ) ∼ 1
2

m2(ϕ− σ)2. (3.33)

By setting the shift ϕ − σ → ϕ as a result of spontaneous symmetry breaking, the
effective potential takes the familiar form 1

2 m2ϕ2 and the Lagrangian acquires the
interaction terms related linearly to the inflaton ϕ as

∆L = −g2σϕχ2 − hψ̄ψϕ. (3.34)

This eventually lead to decaying inflaton to a pair of scalar χ-particles or spinor
ψ-particles

Γ(ϕ→ χχ) =
g4σ2

8πm
, Γ(ϕ→ ψ̄ψ) =

h2m
8π

. (3.35)

where Γ = Γ(ϕ→ χχ) + Γ(ϕ→ ψ̄ψ) is the total decay rate of ϕ-particles.
To present the effects of particle production, we can consider the equation of motion
of inflaton in the presence of the non-gravitational quantum corrections as
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ϕ̈ + 3H(t)ϕ̇ + (m2 + Π(w))ϕ = 0, (3.36)

where Π(w) is the flat space polarization operator with 4-momentum k = (w =
m, 0, 0, 0) for inflaton. By overlooking the time dependance of H and ImΠ, Eq. (3.36)
takes the following solution

ϕ(t) ≈ Φ(t) sin(mt), (3.37)

where

Φ(t) ≈ Φ0 exp
(
− 1

2
(3H +

ImΠ(m)

m
)t
)

. (3.38)

In the case of m � min(2mχ, 2mψ), Π(w) has an imaginary part which can identify
with the decay width thanks to the optical theorem through unitarity:

ImΠ(w) = mΓϕ. (3.39)

The amplitude of the oscillations of the field ϕ decreases as

Φ(t) = Φ0 exp(−1
2
(3H + Γ)t) (3.40)

due to the universe expansion as well as due to particle production.

In summary, we can state that:

The amplitude of inflaton oscillations decreases due to particle production which occurs dur-
ing the decay of the inflaton field.

Let us show the result in another way. The inflaton amplitude Φ(t) obeys the equa-
tion

1
a3

d
dt
(a3Φ2) = −ΓΦ2. (3.41)

By multiplying the latter by m, one can obtain the following equation for the number
density

d
dt
(a3nϕ) = −a3nϕΓ. (3.42)

The above expression implies the Boltzmann equation and shows that the comoving
number density of ϕ particles exponentially decreases with the decay rate of Γ.

3.3.3 Reheating Temperature

During the oscillating phase, the universe behaves in the same way as if it was dom-
inated by non-relativistic particles of mass m : H(t) ∼ 2

(3t) . The inflaton energy
density is then transferred to the relativistic decay products, the energy density of
which decreasing much faster than the energy of the oscillating field ϕ. The reheat-
ing process eventually ends when H < ΓΦ. The reheating time is defined as the time
at which the transition between these two regimes occurs: tr ' 2

(3Γϕ)
. By equating

the inflaton energy density
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FIGURE 3.3: The behavior of potential in three main classes of single
field model. The large field case in which inflaton rolls down from
the top of the potential with a large value and reach to the minimum
point with a small value. The small field case in which inflaton starts
with a small value and reaches to the large value at the minimum
point. The hybrid case in which inflation ends in the presence of an

auxiliary field at a critical point.

ρϕ =
4

3κ2t2
r

(3.43)

with the one of a thermal bath

ρrad =
π2

30
N(Tr)T4

r (3.44)

one can obtain the reheating temperature as 1:

Tr ' 0.2
√

ΓϕmPL. (3.45)

It is remarkable that tr does only depend on the particle theory parameters and not
on the initial value of ϕ.
Notice that some inflationary models consider a preheating stage before the reheating
process so that first, the classical inflaton decays into massive bosons (in particular,
into ϕ-particles) due to an extremely rapid and broad parametric resonance. Then,
these particles decay to the standard particles and eventually, it follows by a ther-
malization stage for the produced particles.

3.4 Some Inflationary Models

Now that we explained the standard mechanism of cosmic inflation, it would be
worth to survey the common inflationary models. There are many inflationary mod-
els proposed in the cosmological literature and it is not possible to cover all in this

1where N(Tr) is the number of relativistic degrees of freedom at the temperature T so that one
should take 1 for each scalar, 2 for each massless vector particle, etc. Notice that in the realistic models,
one may expect N(Tr) ≡ 102 − 103.
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thesis even briefly. Hence, we restrict ourselves to some models with a good com-
munity among inflationary papers. Before moving on the models, let us present a
quick review of the properties of a successful inflationary model.

• A Graceful Entry and Exit. Inflation as an artificial theory patched to the stan-
dard model, must have a successful entry from the Planck period to the in-
flationary era and also a graceful exit from the inflationary era to radiation
dominated epoch. Our knowledge from the start of inflation is not enough
compared to the end of inflation since inflation has emerged from the Planck
era where is the realm of gravity in the context of quantum mechanics.

• Number of e-folds. As we learned, cosmic inflation first presented for remov-
ing the HBB problems through a specific amount of expansion in the early
universe. A unique inflationary model has to offer an acceptable value of the
number of e-folds in a good agreement with observations.

• Perturbations. The most significant part of inflation has been related to the role
of the perturbations generated during the inflationary era so that the scalar
and tensor perturbations are the main responsible for structure formation of
the universe and primordial gravitational waves, respectively.

• Reheating Process. At the end of inflation, inflaton decays to the standard
particles to reheat the supercooled universe. The process is called reheating
discussed in the previous section. The inflationary model should be able to
suggest the reheating mechanism.

3.4.1 Basic Inflationary Models

The single field models are classified into the three following categories due to the
form of inflationary potential [127, 128].

3.4.1.1 Large Field Potentials

In this model, inflaton rolls down slowly with a large value from the top of the poten-
tial and reach to the minimum point of potential with a small value (see the picture
(a) of Figure 3.3). The main generic form of large field models is the polynomial po-
tentials V(ϕ) = V0ϕp in which p = 2 implies to the chaotic inflation V(ϕ) = 1

2 m2ϕ2

where m is the mass of inflaton [129] and p = 4 is associated to the quartic poten-
tial V(ϕ) = λϕ4 as a self-interacting potential. Another widely-noted generic form
of large field case is exponential potential V(ϕ) = Λ4 exp( ϕ

µ ) which has the use-
ful property that both the background evolution and the perturbation equations are
exactly solvable. Large field models are typically specified by a red spectral index
ns < 1 and a tensor-to-scalar ratio ∼ 0.1.

3.4.1.2 Small Field Potentials

This class of models comes from naturally from spontaneous symmetry breaking
and pseudo Nambu-Goldstone modes in which inflaton starts to roll down from
an unstable point V ′(ϕ) = 0 to the minimum point with a large value of inflaton
(see the picture (b) of Figure 3.3). The generic forms of potential are expressed
as V(ϕ) = Λ4(1 + cos( ϕ

µ )) for natural inflation [130] or V(ϕ) = λϕ4 ln(ϕ) for
Weinberg-Coleman potential [131]. Small field models show the very small tensor-
to-scalar ratio r ≤ 0.01 with a red spectral index ns < 1.
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3.4.1.3 Hybrid Potentials

The hybrid model frequently raises when we describe inflation in the context of su-
persymmetry and supergravity [132, 133, 134, 109]. Based on the model, there is a
remained vacuum energy in the minimum point of potential and it means that infla-
tion will continue forever. An assistant field is engaged to terminate the inflationary
era in a point near the minimum of potential and also to prepare a reheating mech-
anism (see the picture (c) of Figure 3.3). Although the auxiliary field is unstable at
a critical field value ϕc, it is stable at large ϕ. Notice that the only inflaton ϕ is the
dynamical scalar field and the assistant field is used only for ending inflation at the
critical point. Hence, the hybrid model is an effective form of single field potentials.
This class of models is characterized by a blue spectral index ns > 1 and a very small
scalar-to-tensor ratio r � 0.01 which are not in good agreement with observations.

3.4.2 Inflation in Modified Theories of Gravity

After discovering the late time acceleration or DE in 1998 [47, 48], people realized
that the standard model is not able to explain the nature of DE. Hence, two main
approaches proposed to overcome the issue. The first was adding the cosmological
constant Λ to the right-hand side of the Eq. (2.7) [49] and the second was assuming
some modifications in the geometry of the universe on the left-hand side of the Eq.
(2.7) which led to introducing the modified theories of gravity [50, 51, 52]. Some of
these modifications are classical and some of them are based on quantum theories
such as string theory. In this section, we introduce some of these theories which have
been widely discussed among cosmological literature and also show how inflation
operates in the context of such theories.

3.4.2.1 f(R) Gravity

The simplest geometrical modification of GR is replacing R with a general function
of the Ricci scalar f(R) in the Einstein-Hilbert action (2.6) by [53, 54]

S =
∫ √

−g
(

f (R)
2κ2 + LM

)
d4x (3.46)

where the Einstein-Hilbert action is recovered for f(R) = R
2 and also, the vacuum

solution can be found for the zeroth order of R. Generally, there are two formalisms
in deriving field equations from the action (3.46). The first is the standard metric for-
malism in which the field equations are obtained by varying the action with respect
to the metric. In this formalism, the Christoffel symbol Γγ

µν depends on the metric
gµν. The second approach is the Palatini formalism in which metric and the Christof-
fel symbol are expressed as independent variables. Although these two approaches
lead to different field equations for a non-linear Lagrangian density in R, they are
identical to each other for the GR action.
Despite the regular inflationary models based on scalar fields, f(R) gravity attempts
to describe inflation without any type of matter and only by considering some ap-
propriate geometrical modifications. The treatment is similar to the DE case in which
f(R) gravity explains DE by changes in geometry instead of adding the cosmologi-
cal constant to the matter content of the universe. The simplest inflationary model
in f(R) gravity proposed by A. A. Starobinsky in 1980 as [108]

S =
∫ √

−g
(
(R + αR2

2 )

2κ2 + LM

)
d4x, (3.47)
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where α > 0. We note that the reheating process in such models is supported by
the oscillating phase of the Ricci scalar. Although the R2 inflation is useful to clarify
inflation and DE, it suffers from some problems when it is inquired by high precision
observational datasets. This motivates us to consider the general form of the model
as R2p in the Einstein frame used the conformal transformation in order to find small
derivations from the R2 model. This case will be treated completely in chapter 6.

3.4.2.2 Scalar-Tensor Gravity

Another simple extension of Einstein’s gravity is the scalar-tensor theory in which an
additional spin-0 (scalar) degrees of freedom is considered in additions to the spin-2
(tensor) degrees of freedom. Therefore, the form of action in GR (2.6) is modified to
[135, 136, 137]

SJ =
∫ √

−g
[

1
2κ2

(
ϕR− w(ϕ)

ϕ
∂µ ϕ∂µ ϕ− 2Λ(ϕ)

)
+ LM(χ, gµν)

]
d4x, (3.48)

where LM(χ, gµν) implies to the Lagrangian of other matters fields minimally cou-
pled to the metric and w(ϕ) and Λ(ϕ) are free functions. Since working in the Jor-
dan frame is very difficult through the non-minimal connection of gravity and scalar
field, it is worth to engage the conformal transformation in order to map the Jordan
frame to the Einstein frame as an easier frame. By using the conformal transforma-
tion gµν = e2Γ(x) ḡµν and corresponding relations, the form of action in the Jordan
frame (3.48) is turned to the action in the Einstein frame as

SE =
∫ √

−ḡ
[

1
κ2

(
R̄
2
− (

1
2

∂̄µψ∂̄µψ + V(ψ))

)
+ e4Γ(ψ)LM(χ; gµν)

]
d4x, (3.49)

where the new form of scalar field ψ(ϕ) and its potential V(ψ) take the following
forms

∂Γ(ϕ)

∂ψ
= −1

2
∂ ln(ϕ)

∂ψ
= (2(3 + 2w(ϕ)))−

1
2 , V(ψ) = e4ΓΛ(ϕ(ψ)). (3.50)

It is easy to find that the action (3.48) depicts the action in GR when gravity and the
new scalar field are minimally connected. Notice that for the case of w = constant
and Λ = constant, the scalar-tensor theory reduces to the Brans-Dicke theory. Also,
the standard mechanism of inflation in the context of the scalar-tensor theories is
based on inflaton as the matter section of the action (3.48). One of the fields might
roll quickly to the minimum of its potential and then the problem reduces to single-
field inflation, either the familiar chaotic inflation in general relativity when ψ = 0
or old extended inflation in Brans-Dicke when inflation disappears [137].

3.4.2.3 Braneworld Gravity

One of the most elegant applications of string theory in cosmology is Braneworld
gravity or extra dimensions theory in which our 4D universe, which is called brane,
is embedded in extra dimensions, which are called bulk [55]. The additional dimen-
sions are compact and spatial. Through such theory, gravity is intrinsically an in-
teraction associated with the bulk since the graviton is the sole particle formed by
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FIGURE 3.4: The RS1 diagram displays that our universe as matter
brane with a negative tension is located at y = yc and the hidden
brane on the bulk is located at y = 0 with a positive tension. The gap
between branes is occupied by an extra spatial dimension as a warped
bulk with a negative cosmological constant. In the RS2 model, the
hidden brane is sent to infinity and our brane is located at y = 0 with
positive tension. Also, the bulk is warped and equipped with the

negative cosmological constant.

the closed strings. Therefore, the GR can be modified by rewriting the action in the
context of extra dimensions. Among the cosmological literature, there are two main
braneworld models. One is the RS1 and RS2 models proposed by L. Randall and R.
Sundrum in 1999 [138, 139] and the other is the DGP model proposed by G. Dvali,
G. Gabadadze and M. Porrati in 2000 [140]. Let us introduce two models, briefly. In
the RS1 model, Our brane as matter brane has a negative tension and one can mea-
sure the Planck mass as 10−19 GeV on matter brane. The large distance between the
hidden brane as electroweak scale (TeV) and the matter brane as Planck scale, can
be explained to be an effect of the curvature of the Anti-De sitter bulk. The extra-
dimensional coordinate is 0 ≤ y ≤ yc where y = Rcθ. Our visible world locates at
the extra dimension coordinate yc = L and the hidden brane with positive tension is
situated at y = 0. The extra dimension has Z2 symmetry about y = 0 and y = L. We
note that a positive tension brane is a place where gravity is stronger than our brane
(see the left diagram of Figure 3.4). The action of the RS1 model is expressed by

SRS1 = SGravity + SMB + SHB, (3.51)

where

SGravity =
M2

5
2

∫
d4x

∫ yc

−yc

dy
√

g5(R5 + 2Λ5), (3.52)

SMB =
∫

d4x
√
−gMBλMB (3.53)

and

SHB =
∫

d4x
√

gHBλHB, (3.54)
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where the subscribe "MB" and "HB" denote to matter brane and hidden brane, re-
spectively. Also, λ is the brane tension. In the RS2 model, there is only one brane
as matter brane at y = 0 with positive tension and the hidden brane at yc is sent to
infinity (see the right diagram of Figure 3.4). The form of action in this model is the
same as the previous model without SHB.
Let’s turn to the DGP model. The model has one brane like RS2, but the main dif-
ference of the model with RS models is that the bulk is Minkowski (flat) not warped
and also without the cosmological constant. Hence, there is no tension on the brane.
Conventional 4D gravity is recovered on scales smaller than a crossover scale. The
form of action in the DGP model is expressed by

SDGP =
M3

5
2

∫
d4x

∫
dy
√

g5R5 +
M2

4
2

∫
d4x
√
−gR +

∫
d4xLM. (3.55)

Notice that the second term of the above action is the induced gravity on the brane
through the interaction of bulk gravitons and brane matter.
Since the interaction of the bulk with our brane produces some effects on our 4-D
universe, we can expect some interesting consequences from extra dimensions in
cosmology. For instance, in order to describe inflation, we can consider a scalar field
on the bulk so that its effects on brane can play the role of inflaton in our universe
[141, 142].

3.4.3 Eternal Inflation

Despite the conventional approach to inflation, eternal inflation remarks that infla-
tion doesn’t require to be held all at once. Instead, little bubbles of space could have
randomly stopped inflating, or come into trajectories which would lead to the end of
inflation. The inside of bubbles would be in a lower energy state and since they are
in an energetically favorable state, they would expand into the inflating outside. If
the universe were not expanding, or if it were expanding slowly, each bubble would
eventually fall into another bubble and the whole universe would be converted to
the lower vacuum energy. But, in a rapidly expanding universe, the space between
bubbles is growing even as the bubbles are themselves growing into that space. If
the expansion is fast enough, the growth of inflating space will be faster than its con-
version into lower-energy bubbles and inflation will never end [143, 106].
How can we inquire about the theory?. Most pairs of bubble universes will never
collide with each other. They are too far apart and the space between them is ex-
panding too fast, but some pairs will form close enough together that they will meet.
The ensuing collision will disturb the space-time inside each bubble so that pertur-
bation may be visible today as a small temperature anisotropy in cosmic microwave
background [144, 145, 146, 147, 148].

3.5 Inflationary Perturbations

As we have seen in the previous sections, the early universe became flat and nearly
uniformed through a vast and rapid expansion as cosmic inflation. However, one
should be careful about the word "nearly" used in the above expression. In fact, the
homogeneity of the early universe has been affected by the presence of primordial
perturbations generated during the inflationary era. The origin of structure forma-
tion of the universe is referred to small seed perturbations which over time, grew
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to become all of the structure we observe. The appearance of the primordial in-
flationary perturbations is also confirmed by detailed measurements of the CMB
anisotropic so that the scalar perturbations are the main responsible for the observed
anisotropy of CMB photons at last scattering time. Moreover, the tensor perturba-
tions produced during inflation, generate the primordial gravitational waves that
are observed through the magnetic polarization of CMB photons. The above consid-
erations about the perturbations, motivate us to devote the present section to explain
the inflationary perturbations which can be found among the great inflationary re-
views [149, 150, 151, 152, 153, 154, 155].

3.5.1 Metric Perturbations

To formulate the inflationary perturbations, we consider a linear perturbation in
scalar field

ϕ = ϕ0(t) + δϕ(t, x), (3.56)

where δϕ(t, x) is a generated perturbation in the scalar field through quantum fluc-
tuations. Since inflaton is the sole component of the universe during inflation, the
perturbations in the energy density of inflaton will lead to perturbations in energy-
momentum tensor. Also, the perturbations in energy-momentum tensor imply to
the perturbations in geometry or the Einstein tensor and metric through the form
of the field equation (2.7). Let’s start with the perturbed FRW metric with the line
element

ds2 = −(1+ 2A)dt2 + 2a(∂iB− Si)dxidt+ a2[(1− 2ψ)δij + 2∂ijE+ 2∂(iFj)+ hij]dxidxj,
(3.57)

where ∂i depicts the spatial partial derivative ∂
∂xi . We will use lower case Latin in-

dices to refer to the 3 spatial coordinates. It will be extremely useful to perform a
Scalar-Vector-Tensor (SVT) decomposition of the perturbations that lead to the lin-
earization of equations of the scalar, vector, and tensor modes, separately (see [156]
for the second order of perturbations). In summary, we will mostly be concerned
about scalar fluctuations and the associated density perturbations due to their role
for structure formation and anisotropy of cosmic microwave background. Vector
perturbations would decay quickly with the expansion of the universe. Tensor per-
turbations are a major prediction of inflation through the generation of the primor-
dial gravitational waves.

3.5.1.1 Scalar Perturbations

The four perturbed terms of scalar part A, ∂iB, ψδij and ∂ijE are constructed from
3-scalars, their derivatives, and the background spatial metric. The intrinsic Ricci
scalar curvature of constant time hypersurfaces can be given by

R =
4
a2∇

2ψ, (3.58)

where ∇2 ≡ δij∂ij is the spatial Laplacian and hence, we refer to ψ as the curva-
ture perturbation. Since the metric perturbations are not uniquely defined, we can
define the new coordinates or the gauge choice. In particular, when we deal with
the perturbed metric, we implicitly choice a specific time-slicing of the spacetime
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and defined specific spatial coordinates on these time slices. Under such a scalar
coordinate/gauge transformation, we have

t −→ t + δt, xi −→ xi + δij∂jδx, (3.59)

where δt and δx define the time slicing and the spatial threading, respectively. Then,
the scalar metric perturbations are transformed as

A −→ Aδ̇t, B −→ B + a−1δt− aδ̇x, E −→ E− δx, ψ −→ ψ + Hδt. (3.60)

We can build a variety of gauge-invariant combinations of the scalar metric pertur-
bations. The longitudinal gauge corresponds to a specific gauge-transformation to a
(zero-shear) frame such that E = B = 0, leaving the gauge-invariant variables

Φ ≡ A− d
dt
[a2(Ė− B

a
)], Ψ ≡ ψ + a2H(Ė− B

a
). (3.61)

Matter perturbations are also gauge-dependent and hence the scalar field, density,
and pressure perturbations follow the transformation relation

δρ −→ δρ− ρ̇δt. (3.62)

By definition of the adiabatic pressure perturbation as

δPad ≡
Ṗ
ρ̇

δρ (3.63)

the non-adiabatic part of the pressure perturbation, or entropy perturbation, is a
gauge-invariant perturbation

δPnad = δP− Ṗ
ρ̇

δρ. (3.64)

The scalar part of the 3-momentum is defined by ∂iδq and this momentum potential
transforms as

δq −→ δq + (ρ + P)δt. (3.65)

Thus, we can obtain the gauge-invariant comoving density perturbation as [157, 158,
159, 160]

δρm = δρ− 3Hδq. (3.66)

Since we can construct the gauge-invariant combinations of perturbations, we make
two further combinations in terms of matter and metric perturbations. Hence, the
curvature perturbation on uniform density hypersurfaces and the comoving curva-
ture perturbation are given by [161, 162]

− ζ ≡ ψ +
H
ρ̇

δρ, R ≡ ψ− H
(ρ + P)

δq. (3.67)

The difference between the two curvature perturbations R and -ζ is proportional to
the comoving density perturbation

− ζ = R+
H
ρ̇

δρm. (3.68)
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For single field inflation with δq = −ϕ̇δϕ, we have

R ≡ ψ +
H
ϕ̇

δϕ. (3.69)

Under the slow-roll approximation, single-field inflation, we obtain δρ
ρ̇ '

δϕ
ϕ̇ and

hence δρm ' 0 and these two curvature perturbations, i.e., R and −ζ, would be
matched together. Another variable used to describe scalar perturbations is the field
perturbation in the spatially flat gauge (where ψ=0) that is gauge invariant

δϕψ ≡ δϕ +
ϕ̇

H
ψ. (3.70)

For single field inflation, this shows a rescaling of the comoving curvature perturba-
tion R in (3.67). We see that what appears as a field perturbation in one gauge is a
metric perturbation in another gauge and vice versa.

3.5.1.2 Vector Perturbations

The vector perturbations Si and Fi are distinguished from scalar perturbations through
their divergence-free feature, i.e., ∂iSi = 0. Under the following gauge transforma-
tion

xi −→ xi + δxi (3.71)

the vector metric perturbations transform as

Si −→ Si + aδ̇xi, Fi −→ Fi − δxi (3.72)

and the combination Ḟi +
Si
a is the vector shear perturbation which is gauge-invariant.

3.5.1.3 Tensor Perturbations

Since the tensor perturbations hij are transverse ∂ihij = 0 and trace-free δijhij = 0,
they are independent of coordinate gauge transformations. These are referred to as
gravitational waves as they are the free part of the gravitational field and evolve
independently of linear matter perturbations. We will decompose arbitrary tensor
perturbations into eigenmodes of the spatial Laplacian, with comoving wavenum-
ber k, and scalar amplitude h(t)

hij = h(t)e(+,×)
ij (x) (3.73)

with two possible polarisation states, + and times.

3.5.2 Field Equations

Now, let’s obtain the field equations of perturbations.

3.5.2.1 Scalar Perturbations

The perturbed Einstein equations δGµν = κ2δTµν connects the metric perturbations
to matter perturbations via the energy and momentum as [163]

3H(ψ̇ + HA) +
k2

a2 [ψ + H(a2Ė− aB)] = −κ2δρ

2
, (3.74)
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ψ̇ + HA = −κ2δq
2

. (3.75)

These can be combined to give the gauge-invariant generalisation of the Poisson
equation

k2

a2 Ψ = −κ2δρm

2
(3.76)

relating the longitudinal gauge metric perturbation (3.61) to the comoving density
perturbation (3.66). The Einstein equations also yield two evolution equations for
the scalar metric perturbations

ψ̈ + 3Hψ̇ + HȦ + (3H2 + 2Ḣ)A =
κ2

2
(δP− 2

3
k2δΠ), (3.77)

(Ė− B
a
) + 3H(Ė− B

a
) +

(ψ− A)

a2 = κ2δΠ, (3.78)

where the scalar part of the anisotropic stress is given by

δΠij = [∂i∂j + (
k2

3
)δij]Π. (3.79)

Equation (3.79) can be written in terms of the longitudinal gauge metric perturba-
tions Φ and Ψ (3.61) by

Ψ−Φ = κ2a2δΠ (3.80)

where we have Ψ = Φ in the absence of anisotropic stresses. The energy-momentum
conservation law gives evolution equations for the perturbed energy and momen-
tum as

δρ̇ + 3H(δρ + δP) =
k2

a2 δq + (ρ + P)[3ψ̇ + k2(Ė +
B
a
)], (3.81)

δ̇q + 3Hδq = −δP +
2
3

k2δΠ− (ρ + P)A. (3.82)

By rewriting the energy conservation equation (3.81) in terms of the curvature per-
turbation on uniform-density hypersurfaces ζ expressed in (3.67), we obtain

ζ̇ = −H
δPnad

(ρ + P)
− Σ, (3.83)

where δPnad is the non-adiabatic pressure perturbation, defined in (3.64). Also, Σ is
the scalar shear along comoving worldlines [159] which can be given relative to the
Hubble rate as

Σ
H
≡ − k2

3H

[
Ė− B

a
+

δq
a2(ρ + P)

]
= − k2

3H2a2 ζ − k2Ψ
3a2H2

[
1− 2ρk2

9(ρ + P)a2H2

]
. (3.84)

Thus ζ is constant for adiabatic perturbations on super-Hubble scales ( k
aH � 1), so

long as Ψ remains finite, in which case the shear of comoving worldlines can be
neglected. If we consider N scalar fields with Lagrangian density
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L = −V(ϕ1, ..., ϕN)−
1
2

N

∑
I=1

gµν ϕI,µ ϕI,ν (3.85)

which are minimally coupled to gravity, then the total energy, pressure and momen-
tum perturbations are obtained by

δρ = ∑
I
[ϕ̇I(δ̇ϕI − ϕ̇I A) + VIδϕI ], (3.86)

δP = ∑
I
[ϕ̇I(δ̇ϕI − ϕ̇I A)−VIδϕI ], (3.87)

δq,i = −∑ ϕ̇IδϕI,i, (3.88)

where VI ≡ ∂V
∂ϕI

. The above relations give the gauge-invariant comoving density
perturbation as

δρm = ∑
I
[ϕ̇I(δ̇ϕI − ϕ̇I A)− ϕ̈IδϕI ]. (3.89)

The comoving density is sometimes used to represent the total matter perturbation,
but for a single scalar field it is proportional to the non-adiabatic pressure (3.64)

δPnad = −
2V,ϕ

3H ϕ̇
δρm. (3.90)

From the Einstein constraint equation (3.76), the above expression will vanish on
large scales ( k

aH −→ 0) if Ψ remains finite. Hence, single scalar field perturbations
become adiabatic in the large scales limit.
The anisotropic stress, δΠ, vanishes to linear order for any number of scalar fields
minimally coupled to gravity. The first-order scalar field perturbations obey the
wave equation

δ̈ϕI + 3Hδ̇ϕI +
k2

a2 δϕI +J VI JδϕJ = −2VI A + ϕ̇I [Ȧ + 3ψ̇ +
k2

a2 (a2Ė− aB)]. (3.91)

3.5.2.2 Vector Perturbations

The divergence-free part of the 3-momentum follows the momentum conservation

δ̇qi + 3Hδqi = k2δPii, (3.92)

where the vector part of the anisotropic stress is given by δΠij = ∂(iΠj). The gauge-
invariant vector metric perturbation is then linked to the divergence-free part of the
momentum by the constraint equation

k2(Ḟi +
Si

a
) = 2κ2δqi. (3.93)

Thus the Einstein equations constrain the gauge-invariant vector metric perturba-
tion to vanish in the presence of only scalar fields, for which the divergence-free
momentum necessarily vanishes.
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Eq. (3.93) shows that vector metric perturbations can be supported only by divergence-
free momenta, but even then eq. (3.92) shows that the vector perturbations are red-
shifted away by the Hubble expansion on large scales unless they are driven by
anisotropic stress.

3.5.2.3 Tensor Perturbations

Since there is no constraint equation for the tensor perturbations, these are the free
gravitational degrees of freedom which refer to the gravitational waves. The spatial
part of the Einstein equations implies to a wave equation for the amplitude of the
tensor metric perturbations (3.73)

ḧ + 3Hḣ +
k2

a2 h = 0. (3.94)

This is similar to the wave equation of a massless scalar field (3.91) in an unperturbed
FRW metric.

3.5.3 Primordial Power Spectra

Around the epoch of BBN, the universe is dominated by radiation composed of
photons and 3 species of relativistic neutrinos. Moreover, there are non-relativistic
baryons coupled tightly to the photons, and the coupled cold dark matter. There is
probably also some form of vacuum energy, or dark energy, which eventually comes
to dominate the energy density of the universe at present. All of these different com-
ponents may have different density perturbations δρi which can be characterized by
the gauge-invariant curvature perturbations

ζi ≡ −ψ− H
ρ̇i

δρi (3.95)

for each component. These individual ζi remain constant on large scales [155] as a
consequence of local energy-conservation for all components and hence δPnad,i = 0.
Even when energy is not separately conserved for each component, it may still be
possible to define a conserved perturbation on large scales concerning some other
locally conserved quantity such as the baryon number so long as the net baryon
number is conserved [164]. Perfect fluid models of non-interacting DE will also have
ζDE = constant on large scales, but scalar field models of dark energy do not, in
general, have a well-defined equation of state and hence ζDE = is not necessarily
constant on large scales.
The total curvature perturbation ζ (3.67) is obtained by the weighted sum of the
individual curvature perturbations

ζ = ∑
i

ρ̇i

ρ̇
ζi. (3.96)

This is often referred to as the adiabatic density perturbation, while the difference
determines the isocurvature density perturbations

Si ≡ 3(ζi − ζγ). (3.97)

By convention, the isocurvature perturbations are defined relative to the photons.
Hence, these are also referred to as entropy perturbations. The factor of 3 arises so
that SB coincides with the perturbation in the local baryon-photon ratio
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SB = 3(ζB − ζγ) =
δ( nB

nγ
)

( nB
nγ
)

. (3.98)

As a consequence of the conservation of the individual ζi, the relative isocurvature
perturbation Si remains constant on large scales. The total curvature perturbation
only remains constant on large scales as the universe evolves from radiation to mat-
ter domination for adiabatic perturbations with Si = 0, in agreement with Eq. (3.83).
The primordial power spectrum of density perturbations in the radiation-dominated
era is given in terms of either ζ ' ζγ or the comoving curvature perturbation R
(3.67). By Combination of Eqs. (3.76) and (3.68), we obtain

R = −ζ − 2ρ

9(ρ + P)
(

k
aH

)2Ψ. (3.99)

Notice that R and -ζ coincide on large scales. The power on a given scale is given
by the k-space weighted contribution of modes with given wavenumber. Thus the
power spectrum of scalar curvature perturbations,R, is commonly given as

PR ≡
4πk3

(2π)3 |R
2|. (3.100)

An alternative notation widely used for the scalar power spectrum is the fractional
density perturbation when adiabatic density perturbations re-enter the Hubble scale
during the matter-dominated era

δ2
H ≡ A2

S ≡
4
25
PR. (3.101)

An isocurvature power spectrum is naturally defined as

PS ≡
4πk3

(2π)3 |S
2|. (3.102)

The cross-correlation between adiabatic and isocurvature perturbations can be given
in terms of a correlation angle of ∆

CRS ≡ R
1
2
RP

1
2
S cos ∆. (3.103)

The tensor power spectrum is denoted by

PT ≡ 2
4πk3

(2π)3 |h
2|, (3.104)

where the additional factor of 2 comes from adding the 2 independent polarizations
of the graviton. Again there is an alternative notation also widely used [11, 153]

A2
GW ≡

1
100
PT. (3.105)

The scale dependence of the scalar power spectrum is given by the logarithmic
derivative of the power spectrum

nR − 1 ≡ d lnPR
d ln k

∣∣∣∣
k=aH

(3.106)

which is evaluated at Hubble-radius crossing, k = aH. Notice that nR = 1 for a
scale-invariant spectrum by convention. Also, the isocurvature spectrum is defined
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nS ≡
d lnPS
d ln k

∣∣∣∣
k=aH

(3.107)

where nS = 0 for a scale-invariant spectrum. Similarly nT = 0 for a scale-invariant
tensor spectrum.

3.5.4 The Power Spectra in Single Field Inflation

In this section, we investigate the spectra of scalar and tensor perturbations for single
field models. By writing the perturbed scalar field equation of motion (3.91) for
a single scalar field in the spatially flat gauge (where ψ = 0) and also using the
Einstein constraint equation, we obtain

δ̈ϕψ + 3Hδ̇ϕψ +

(
k2

a2 + Vϕϕ −
κ2

a3
d
dt

(
a3 ϕ̇2

H

))
δϕψ = 0, (3.108)

where δφψ is gauge-invariant and defined by the Eq. (3.70). By introducing the new

variables v = aδφψ and z = aφ̇
H , the above relations reduces to [163, 162]

v′′ + (k2 − z′′

z
)v = 0, (3.109)

where a prime denotes a derivative with respect to conformal time τ ≡
∫

a−1dt. The
term of effective mass z′′

z can be expressed by [165, 163, 166]

z′′

z
= (aH)2(2 + 5ε− 3η + 9ε2 − 7εη + η2 + ζ2) (3.110)

where

ε ≡ − Ḣ
H2 , η ≡ 2ε− ε̇

2Hε
, ζ2 ≡

(
2ε− η̇

Hη

)
η. (3.111)

By neglecting the time-dependence of the slow-roll parameters and other terms of
second and higher order in the slow-roll expansion, we have

τ ' − 1
(1− ε)aH

,
z′′

z
=

ν2
R − ( 1

4 )

τ2 , (3.112)

where νR ' 3
2 + 3ε− η. Then, the general solution of Eq. (3.109) is expressed as a

linear combination of Hankel functions

v '
√

π|τ|
2

ei(1+2νR)π/4
(

c1H1
νR(k|τ|) + c2H2

νR(k|τ|)
)

. (3.113)

The power spectrum of scalar field perturbations is found by

Pδϕ ≡
4πk3

(2π)3 |
v
a
|2. (3.114)

The power spectrum on small scales (k � aH) and large scales (k � aH) are found
respectively by
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Pδφ ' (
k

2πa
)2, Pδφ '

(
(1− ε)

Γ(νR)H)

Γ(3/2)2π

)2( |kτ|
2

)3−2νR

, (3.115)

where we used the relation H1
ν(k|τ|) → −(i/π)Γ(ν)(k|τ|/2)−ν when kτ → 0 and

Γ(3/2) =
√

π/2. Also, for a massless field in de Sitter (where ε=η=0 and νR = 3/2),
we mimic the familar following relations

Pδφ → (
H
2π

)2 f or
k

aH
→ 0. (3.116)

For the comoving curvature perturbation (3.67), we have R = H
φ̇

δφψ and the equa-
tion of motion (3.108) can be written as

1
a3ε

d
dt
(a3εṘ+

k2

a2R) = 0. (3.117)

For the large-scale limit (k→ 0), we obtain the solution

R = C1 + C2

∫ dt
a3ε

, (3.118)

where C1 and C2 are integration constants. In the majority of single-field inflationary
models, the second term can be identified as a decaying mode and rapidly becomes
negligible after the Hubble exit. Hence, the curvature perturbation becomes con-
stant on super-Hubble scales. Then, by using Eq. (3.115) to set the initial amplitude
shortly after Hubble-exit, we have

PR =

(
H
ϕ̇

)2

Pδϕ ' (
H2

2πϕ̇
)2

k=aH (3.119)

to leading order in slow-roll parameters. This can be written in terms of the value of
the potential energy and its first derivative at Hubble-exit as

PR =

(
κ6

12p2
V3

V2
ϕ

)
k=aH

. (3.120)

Since the curvature perturbation would be conserved on large scales in a single field
model, one can rewrite the above relation at the first Hubble radius crossing with
the one at the second Hubble radius crossing. The energy scale of inflation can be
determined by the COBE normalization PR ' 2× 109 for about 60 e-folds [167]. The
spectral index, nR, is given by

nR − 1 = 3− 2νR. (3.121)

To leading order in the slow-roll parameters we have

nR − 1 = −6ε + 2η. (3.122)

Since the parameters ε and η are much smaller than unity during slow-roll infla-
tion, scalar perturbations generated in standard inflation are close to scale-invariant
(nR ' 1). For nR < 1 and nR > 1, the power spectrum refers to the spectrum red or
blue tilt, respectively. Also, the running spectral index is defined as

αR ≡
d lnR
d ln k

|k=aH (3.123)
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and is written in terms of the slow-roll parameters as

αR = 16εη − 24ε2 − 2ζ2. (3.124)

Since the tensor perturbations describe the propagation of gravitational waves, the
wave equation for tensor perturbations can be written in terms of u = ah/2

√
κ,

where h is the amplitude of the gravitational (3.73)

u′′ + (k2 − a′′

a
)u = 0, (3.125)

where

a′′

a
= (aH)2(2− ε). (3.126)

In terms of the slow-roll parameters, we have

a′′

a
' ν2

T − (1/4)
τ2 , (3.127)

where νT ' 3
2 + ε. Similar to the curvature perturbation, by neglecting the time de-

pendence of slow-roll parameter ε and using the same vacuum normalization (3.115)
for small-scale modes in the asymptotic past, we obtain the tensor power spectrum
(3.104) on large scales as

PT ' 8κ2
(
(1− ε)

Γ(νT)

Γ( 3
2 )

H
2π

)2( |kτ|
2

)3−2νT

. (3.128)

Also, we can use the exact solution to the wave equation (3.94) in the long wave-
length limit

h = D1 + D2

∫ dt
a3 , (3.129)

where the constant amplitude D1 on super-Hubble scales is determined by Eq. (3.128)
shortly after Hubble-exit. Hence, to leading order in slow-roll, we have

PT ' 8κ2
(

H
2π

)2

k=aH
' 2

3

(
Vκ4

π2

)
k=aH

. (3.130)

The spectral index of tensor perturbations nT ≡ d lnPT
d ln k is obtained as

nT = −2ε (3.131)

which is a red spectrum. Also, the running of the tensor tilt defined as αT ≡ dnT
dlnk , is

given by

αT = −4ε(2ε− η). (3.132)

Another important inflationary parameters is the tensor-to-scalar ratio which is ob-
tained as

r ≡ PT

PR
' 16ε. (3.133)

Finally, by combing the Eqs. (3.131) and (3.133), the consistency relation is given by
[163]
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r = −8nT. (3.134)

Notice that the strategy presented for a single field can be used for different infla-
tionary models.
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Chapter 4

Cosmic Microwave Background

No doubt discovering Cosmic Microwave Background (CMB) is one of the most
significant achievements of the human throughout the history of cosmology. CMB
photons are the relic photons of big bang when the universe had a critical condition
in temperature, energy, and pressure. Now, after around 14 Gyr, we are receiving the
photons even very low in temperature and energy. A CMB photon is like a traveler
who has started a very long journey since the big bang and has traversed through
all stages of the universe. Now, he has arrived at us with a backpack filled with
valuable information from different scales of the universe. In this thesis, we devote
the present chapter to explain some important features of CMB since it is recognized
as the main source of inflationary effects. In other words, CMB observations aid us
to perform a better judgment among inflationary models proposed in inflationary
literature.

4.1 Discovery and Detection

After discovering Hubble expansion in 1930 [82], nuclear physicist George Gamow
with Ralph Alpher and Robert Herman started to engage the idea of the hot big
bang to explain the abundances of all elements in the universe [83, 84, 85, 86]. Later
in 1948, Adler and Herman published a paper that predicted the temperature of
the bath of relic photons of the big bang is around 5 Kelvin degrees. But, they did
not present any mechanism to detect this temperature. In the early 1960s, when two
American engineers (Arno Penzias and Robert Wilson) were testing their microwave
detector at Bell laboratory, they experienced a specific and unexpected noise in the
received signal that was identical in all directions of the sky. They were not able to
describe what is the source of this unknown noise. After a while, Penzias explained
the story of the mysterious noise to a radio astronomer Bernie Burke. Later, Burke
heard about a talk by James Peebles describing how Robert Dicke’s group was gear-
ing up to measure radiation left from the early universe. Burke explained Penzias’s
discovery to Dicke and immediately, Dicke called with Penzias to acquire more in-
formation about the received noise. The noise was exactly the relic photons of the
big bang what Dicke’s group was seeking it. Eventually, in 1987, Penzias and Wilson
received the Nobel prize physics because of their accidental discovery [78]. Discov-
ering CMB photons is considered as one of the most significant observational proofs
of HBB theory, as we discussed in the last section of chapter 2.
According to the thermal history of the universe presented in chapter 2, photons in
radiation-dominated time were highly energetic and interacted hardly with matter
so that electrons could not join to nuclei to form atoms. Later, the universe became
colder and photons were not able to interact with the matter and the CMB photons
released from the last scattering surface. At present, the CMB photons are low in
energy and temperature.
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FIGURE 4.1: The CMB spectrum measured by the FIRAS instrument
of the COBE satellite. The plot reveals that the CMB spectrum is very
similar to a blackbody spectrum and the measured temperature of

CMB is around 2.725 Kelvin degrees.

Let’s review the main accomplished experiments on CMB to now. Between 1965
and 1990, the carried out measurements showed that the spectrum of CMB pho-
tons is almost similar to a blackbody spectrum and also, there were some mea-
surements in high frequencies that seemed to indicate as infrared excess. In 1990,
NASA launched the COsmic Background Explorer (COBE) satellite to investigate
CMB and inferred background radiation. The measurements of the Far Infrared
Absolute Spectrophotometer (FIRAS) instrument of the COBE confirmed that the
CMB spectrum is exactly similar to a blackbody spectrum and also the tempera-
ture of CMB photons is around 2.72 Kelvin degrees. Moreover, the Differential Mi-
crowave Radiometer (DMR) instrument of the COBE approved the existence of tiny
anisotropies in CMB photons (see Figure 4.1) [87, 88]. Two main researchers of CMB
measurements, George Fitzgerald Smoot and John Cromwell Mather, received the
Nobel Prize in Physics for their attempts on CMB discovery in 2006. Based on the
achievements of COBE, many experiments performed to illuminate dark points of
CMB. The main goal of these experiments was measurements of the acoustic picks
of CMB anisotropies. The first pick detected by measurements of Balloon Observa-
tions Of Millimetric Extragalactic Radiation ANd Geophysics (BOOMERANG) and
Millimeter Anisotropy eXperiment IMaging Array (MAXIMA) [168, 169, 170]. The
first pick showed that our universe has a spatial curvature nearly flat rather than
curved [171]. The next main experiment accomplished by Wilkinson Microwave
Anisotropy Probe (WMAP) satellite to detect the second and even the third acoustic
picks of CMB anisotropies [89]. Today, the Background Imaging of Cosmic Extra-
galactic Polarization (BICEP2) satellite has been engaged to detect the B-mode po-
larized photons generated during the inflationary era and Planck satellite is the main
responsible for distinguishing B-mode polarized CMB photons from other polarized
photons produced by different mechanisms [90]. In the following sections, we will
present more information about the mentioned effects on CMB.
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4.2 CMB Power Spectrum

The fundamental visible parameter of CMB is the intensity of radiation per unit fre-
quency per polarization at each point of the sky. The polarization state of the radia-
tion in a direction of sky denoted n̂ is described by the intensity matrix 〈Ei(n̂)E∗j (n̂)〉
where E is the electric field vector and the brackets denote time averaging.
The performed experiments on CMB reveal that the spectrum of received photons
is analogous with the spectrum of isotropic blackbody radiation with an average
temperature of T = 2.725 Kelvin degrees [172] across the sky at the 10−5 level and
fractional polarization at the 10−6 level. The observables can be described by a tem-
perature fluctuation matrix decomposed in the Pauli basis [173, 174]

P = C〈E(n̂)E†(n̂)〉 (4.1)

or

P = Θ(n̂)I + Q(n̂)σ3 + U(n̂)σ1 + V(n̂)σ2 (4.2)

where the Stokes parameters (Θ,Q,U,V) are dimension-less. Note that the circular
polarization V is absent cosmologically and under a counterclockwise rotation of the
coordinate axes by ψ, Q± iU −→ e∓2iψ(Q± iU). The temperature and polarization
fields are decomposed as [175, 176]

Θlm =
∫

dn̂Y∗lm(n̂)Θ(n̂) (4.3)

or

Elm ± iBlm = −
∫

dn̂±2Y∗lm(n̂)[Q(n̂)± iU(n̂)] (4.4)

in terms of the complete and orthogonal set of spin harmonic functions, sYlm, which
are eigenfunctions of the Laplace operator on a rank s tensor [177]. For small sections
of sky, the spin-harmonic expansion becomes a Fourier expansion with Ylm −→ eil.n̂

and ±Ylm −→ −e∓2iφl eil.n̂, where φl is the azimuthal angle of the Fouier wavevector
l. Note that the E and B modes are then simply the Q and U states in the coordinate
system defined by l [178], i.e. B-modes have a polarization orientation at 45◦ to
the wavevector. E(n̂) = ∑ ElmYlm(n̂) and B(n̂) = ∑ BlmYlm(n̂) describe scalar and
pseudoscalar fields on the sky.
The main observable of CMB spectrum is the two point correlation between fields
X,X′ ∈ {Θ, E, B}

〈X∗lmX′l′m′〉 = δll′δmm′CXX′
l (4.5)

and are described by power spectra Cl as long as the fields are statistically isotropic.
If parity is also conserved then B has no correlation with Θ or E. Also, the power
spectra contain all of the statistical information about the fields when the fluctua-
tions are Gaussian distributed.

4.3 Primary CMB Anisotropies

Now, we focus on the primary factors of temperature and polarization anisotropies
of CMB photons.
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4.3.1 Temperature Anisotropy

The results of COBE confirmed the temperature anisotropies of CMB photons in
large angular scales in addition to proving the fact that the CMB spectrum is similar
to a blackbody with the average temperature around T=2.72 Kelvin degrees. The
next balloons and satellites engaged in clarifying the physics of CMB anisotropies
and their effects on large scale structure. The most part of temperature anisotropy
produced on the last scattering surface at decoupling time through the adiabatic
density perturbations of the inflationary epoch. According to the thermal history of
the universe presented in chapter 2, before the recombination era and CMB decou-
pling, the universe is filled by the photon-baryon fluid along with DM interacting
only through gravity and weak nuclear activities not electromagnetic. The density
perturbations produced during the inflationary epoch in DM are grown due to the
expansion of the universe and then the gravitational effect is resisted by the pres-
sure of photons in the fluid collapse of the photon-baryon fluid. The pressure acts
as a restoring force. In other words, as an overdensity fluid, the fluid felt into the
potential well of DM is compressed until the collapse is stopped by the photon pres-
sure and then rebounds until the expansion is blocked by the weight of fluid and the
gravity of DM as a rarefaction fluid. The strife between the gravity of DM and the
pressure of photon in the fluid can be simulated as a harmonic oscillator that pro-
duces acoustic or sound waves in the fluid. In some scales where the last scattering
of CMB photons occurs in the sound waves horizon, the oscillation is dragged into
the last scattering surface and CMB photons with different modes acquire different
phases of oscillation. The CMB photons in the overdensity or rarefaction modes are
associated with the peak of the CMB spectrum and behave differently in temper-
ature while the troughs correspond to maximum veracity where the compression
is neutral. In compression mode, the hot CMB photons release energy through the
asserted resistance force against the gravity of DM and turn to the cold spots. In
contrast, the hot CMB photons in rarefaction mode do not require to lose as much
energy in climbing out of a shallower potential well and are known as the hot spots.
Let us explain the phenomenon with more details.

4.3.1.1 Cosmological Parameters

We begin with a review of the cosmological parameters presented in chapter 2 and
expressed in this chapter. The expansion of the universe is described by the scale
factor a(t), close to unity at present, and the Hubble constant H0 ≈ 70 h km sec−1

Mpc−1. The mean densities of different components of the universe control a(t) and
are typically expressed today in units of the critical density Ωi, with an evolution
ρi ∝ a−3(1+wi), where wi = pi/ρi with pi is the pressure. In particular the CMB
photons have wγ = 1/3 and so ργ ∝ a−4 or T ∝ a−1. The quantities Ωih2 are
proportional to the physical density of the species today. We will be interested in
the baryonic component Ωbh2 and the total non-relativistic matter Ωmh2, where the
difference is made up of cold dark matter. We also search for a dark energy [179, 180]
component Ωe, with an equation of state parameter we considered as a cosmological
constant (ΩΛ, wΛ = −1). We represent the total density as Ωtot = ∑i Ωi.

4.3.1.2 Sound Waves

By expansion of the universe, CMB photons start to become cold and eventually
they no longer have sufficient energy to overcome the binding energy of hydrogen
B = 13.6 eV to keep the medium ionized. Then, CMB photons are released and travel
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FIGURE 4.2: Left: the main sources of anisotropy are the effective lo-
cal temperature with a monopole structure (Y00), the Doppler effect
with a dipole structure (Y10) and the quadrupole source of polariza-
tion (Y20) decomposed into plane waves. Right: the projection of the
sources involves a coupling of the plane wave angular dependence or

momenta with that of the source.

to the observer. This era is called recombination and is occurred rapidly around
a∗ ≈ 10−3 at an energy scale of ∼ 1/3 eV as can be seen by the equilibrium Saha
equation

x2
e

1− xe
=

nenp

nHnb
=

1
nb

(
meT
2π

)3/2

e−B/T (4.6)

or

≈ 3× 1015
(

Ωbh2

0.02

)−1(B
T

)3/2

e−B/T (4.7)

where xe is the ionization fraction of hydrogen and we have neglected a small con-
tribution from helium. Notice that the low T/B of the transition, mainly caused by
the low baryon-photon ratio of the universe, is sufficient that photons in the tail of
the blackbody distribution be energetic enough to ionize hydrogen.
The properties of the baryon-photon plasma on the last scattering surface, where
CMB photons are released from matter, directly translate into the observable pri-
mary temperature and polarization anisotropies in the CMB. These properties are
handled by Thomson scattering of photons off of free electrons with a differential
cross-section of

dσ

dΩ
=

3
8π
|Ê′.Ê|2σT (4.8)

where σT = 8πα2/3me is the Thomson cross section, Ê′ and Ê denote the incoming
and outgoing directions of the electric field or polarization vector. By considering
polarization and incoming angle, the comoving mean free path of a photon in the
electrons is

τ̇−1 =
1

neσTa
≈ 2.5

(
xe

Ωbh2

0.02

)−1( a∗
10−3

)2

Mpc (4.9)

which is relatively small by cosmological standards. Overdots here and below rep-
resent derivatives with respect to conformal time. Electrons are coupled to baryons
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by Coulomb interactions and the scales larger than τ̇−1, the photon-baryon plasma
can be considered a nearly perfect fluid [181]. In particular, rapid scattering keeps
the photons isotropic in the baryon rest frame and so sets its dipole moment equal
to the baryon velocity.
Regarding the tight coupling approximation, the CMB is described by the local tem-
perature or monopole, in space Θ00(x), the dipole Θlm(x) and a residual quadrupole
moment Θ2m(x). Besides, the photons experience a gravitational redshift from grav-
itational potentials and gravitational waves.
Now, let us consider the spatial temperature perturbation Θ(x) ≡

√
4πΘ00(x), where

the normalization convention reflects that of Ylm, on a last scattering surface con-
sidered to be infinitely sharp at a comoving distance D∗ (see Figure 4.2). In a flat
universe, the spatial field may be represented by its Fourier harmonics

Θ(n̂) =
∫

dDΘ(x)δ(D− D∗) (4.10)

=
∫ d3k

(2π)3 Θ(k)eik.D∗ n̂ (4.11)

In an spatially curved universe, the plane waves must be replaced by the eigenfunc-
tions of the Laplace operator to account for a change in the relationship between
distance and angle that we discuss below. Also to achieve high precision in the
predictions, the delta function must be replaced by the visibility function τ̇e−τ, the
probability of a photon last scattering in a distance interval dD to account for the fi-
nite duration of recombination. By expanding the plane waves spherical harmonics,
we obtain

Θlm =
∫ d3k

(2π)3 Θ(k)4πil jl(kD∗)Ylm(k̂) (4.12)

The power spectrum of the local temperature anisotropy governed by the spatial
temperature field at recombination, can be expressed by

〈Θ∗(k)Θ(k′) ≡ (2π)3δ(k− k′)PT(k)〉 (4.13)

so that

CΘΘ
l = 4π

∫ dk
k

j2l (kD∗)
k3PT(k)

2π2 (4.14)

Note that the quantity k3PT/2π2 is the contribution per log interval to the variance of
the temperature σ2 =

∫
d3k/(2π)3PT. For a slowly-varying log power, the integral

in Eq. (4.14) can be performed analytically

(l(l + 1))
2π

CΘΘ
l ≡

(
∆2

T
T2

)
≈ k3PT(k)

2π2 |k=l/D∗ (4.15)

and so it is convenient to represent the anisotropy by the rms temperature contri-
bution per log interval ∆T . It is also the contribution to the anisotropy variance
per log interval in l for l � 1. We also define the analogous quantities to de-
scribe the polarization fields (∆P) and the temperature-polarization cross correla-
tions (l(l + 1))CΘE

l /2π).
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4.3.1.3 Fluid Dynamics

As we learned from the previous section, the critical variables are the monopole
or temperature fluctuation Θ(k) ≡

√
4πΘ00(k), the dipole or bulk velocity υγ(k) =

−i
√

4π/3Θ10(k), and the quadrupole or anisotropic stress πγ(k) = −(12/5)
√

4π/5Θ20(k).
For convenience we have chosen the coordinate system in which z‖k so that the
plane waves are azimuthally symmetric and stimulate only the m = 0 mode (see
Fig. 4.2). Likewise, we have suppressed the vector dependence of the bulk velocity
by the same assumption vγ = −iυγ k̂. The analogous quantities for the baryons are
the density perturbation δb and bulk velocity υb. For gravity, we choose a conformal
Newtonian representation (see e.g. [182]) where the gravitational potential pertur-
bations are defined by the Newtonian potential Ψ (time-time metric fluctuation) and
the curvature fluctuation Φ (space-space metric fluctuation ≈ −Ψ).
Covariant conservation of energy and momentum requires that the photons and
baryons satisfy separate continuity equations

Θ̇ = − k
3

υγ − Φ̇, δ̇b = −kυb − 3Φ̇ (4.16)

and coupled Euler equations

υ̇γ = k(Θ + ψ)− k
6

πγ − τ̇(υγ − υb) (4.17)

υ̇b = −
ȧ
a

υb + kΨ + τ̇(υγ − υb)/R (4.18)

where R = (pρ + ρb)/(pγ + ργ) ≈ 3ρb/4ργ is the photon-baryon momentum den-
sity ratio. We have neglected a small correction to the anisotropic stress term in a
curved universe.
The Eqs. (4.16) represent particle number conservation. For the baryons, ρb ∝ nb.
For the photons, T ∝ n1/3

γ , which explains the 1/3 in the velocity divergence term.
The Φ̇ terms come from the fact that Φ is a perturbation to the scale factor and so
they are the perturbative analogues of the cosmological redshift and density dilution
from the expansion. The Euler equations have similar interpretations. The expan-
sion makes particle momenta decay as a−1. The cosmological redshift of T accounts
for this effect in the photons. For the baryons, it becomes the expansion drag on υb
(ȧ/a term). Potential gradients kΨ generate potential flow. For the photons, stress
gradients in the fluid, both isotropic (kδpγ/(pγ + ργ) = kΘ) and anisotropic (kπγ)
counter infall. Thomson scattering exchanges momentum between the two fluids (τ̇
terms).
For scales much larger than the mean free path τ̇−1, the Euler equation may be ex-
panded to leading order in k/τ̇, such that the photons are isotropic in the baryon
rest frame υγ = υb and so the joint Euler equation becomes

d
dη

[(1 + R)υγ] = k[Θ + (1 + R)Ψ] (4.19)

Combining this with the Eqs. (4.16) leads to the oscillator equation [183]

d
dη

[(1 + R)Θ̇] +
k2

3
Θ = − k2

3
(1 + R)Ψ− d

dη
[(1 + R)Φ̇] (4.20)

and a small residual anisotropic stress or quadrupole that tracks the evolution of the
fluid velocity [184]
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πγ =
32k
15τ̇

υγ (4.21)

This dependence reflects the fact that a local quadrupole can arise from a gradient
in the velocity field, for example as photons from two hot crests of a plane wave
fluctuation meet at the trough in between (see Figure 4.2 left), but is suppressed by
scattering.
Eq. (4.20) is the fundamental relation for acoustic oscillations. The change in the
momentum of the photon-baryon fluid is determined by a competition between the
pressure restoring and gravitational driving forces which causes the system to oscil-
late around its equilibrium. Note that the frequency of the oscillation

w2 =
k2

3(1 + R)
= c2

s k2 (4.22)

where cs is the sound speed of the fluid.

4.3.1.4 Initial Conditions

The simplest inflationary models make a set of definite predictions for the initial
conditions of the acoustic oscillations and hence their successful observation pro-
vides strong support for the inflationary paradigm. Quantum fluctuations in the
scalar field that drives inflation imprints a nearly spectrum of Gaussian curvature
(potential) fluctuations k3PΦ/2π2 ∝ kn−1 where n ≈ 1 [185, 186, 187] on a spatially
flat background metric. Gravitational infall into these initial potentials eventually
generates all of the structure in the universe. Quantum fluctuations in the gravita-
tional wave degrees of freedom also produce a nearly scale-invariant spectrum of
fluctuations whose power depends on E4

i where Ei is the energy scale of inflation
[188, 189].
A Newtonian gravitational potential Ψ ≈ −Φ necessarily imparts an initial tem-
perature perturbation since Ψ represents a spatially varying time-time perturbation
to the metric away from coordinates where the temperature is homogeneous. The
perturbation is equivalent to a change in the scale factor since

a ∝ t2/3(1+p/ρ) (4.23)

which then produces a change in the temperature perturbation from the cosmologi-
cal redshift T ∝ a−1 of

Θ = − 2
3(1 + p/ρ)

Ψ (4.24)

or −ψ/2 in the radiation dominated era [190, 191]. We call Θ + Ψ the effective tem-
perature since it also accounts for the redshift a photon experiences when climbing
out of a potential well, also known as the Sachs-Wolfe effect [192]. In the matter
dominated epoch, Θ + Ψ = Ψ/3.
There are three important aspects of these results. First, inflation sets the temporal
phase of all wavemodes by starting them all at the initial epoch. We shall see that
this predicts a coherent set of peaks in the CMB spectrum with a definite phase.
Cosmological defect models predict a more random distribution of acoustic phases
which produces incoherent acoustic phenomena [193, 194, 195]. Defects can be now
be ruled out as a primary mechanism for structure formation in the universe. More
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generally, without inflation or some other modification to the matter-radiation dom-
inated universe, curvature perturbations cannot be generated outside the apparent
horizon and so build up only by the causal motion of matter. This generally entails
at least a delay in temporal phase of the oscillations which is not observed.
Secondly, since the power spectrum of the effective temperature is directly related to
scale-invariant curvature fluctuations from inflation, Eq. (4.15) implies the acoustic
oscillations should also be approximately scale invariant in amplitude in the tight
coupling regime. Observations are in excellent agreement with this fundamental
prediction with tight constraints on the index n = 0.94+0.11

−0.04 (see [196, 197, 198]). We
will therefore base the discussion of the acoustic phenomenology on models with
nearly scale-invariant initial curvature fluctuations as predicted by inflation.
Finally, the scale-invariant gravitational wave background leads to a quadrupolar
distortion in the CMB temperature field just like its effect on a ring of test masses. Be-
cause the quadrupole axes lie in the plane transverse to the wavevector, this quadrupole
anisotropy leads to B-mode polarization as the tight coupling approximation breaks
down. A measurement of B-modes from gravitational waves would determine the
energy scale of inflation Ei but its strong scaling with Ei implies that it can only open
a relatively small window between a few 1015 – few 1016 GeV for possible detection
[199].

4.3.1.5 Silk Damping

The photon diffusion or diffusion damping is a process reducing the anisotropies
in CMB temperature in the early universe and was first proposed by Joseph Silk
in 1968. Therefore sometimes it is called Silk damping. As we learned from the last
section, the CMB photons would be specified as hot and cold spots when the acoustic
waves of photon-baryon fluid created by the gravitational collapse of primordial
density perturbations have been dragged into the last scattering surface. Hence, the
CMB photons with maximum compression are known as cold modes through losing
energy and those with maximum rarefaction are entitled as hot modes. Silk damping
says that when the photons in the fluid transit from the overdense point (maximum
compression) to the underdense (maximum rarefaction), they push electrons along
and these, in turn, pulls on protons by the Coulomb force. Hence, the Silk damping
process acts as a frictional force for the photons and wastes their energy. It means
that the temperature difference between CMB photons in overdense and underdense
points is decreased by the viscosity of the photon-baryon fluid.

4.3.1.6 Acoustic Peaks Information

Now, let’s review the physical information of acoustic peaks.

• First Peak

The reason for the first peak is that sound waves of the right frequency would
have had just enough time to reach maximum compression when the universe
became transparent. The angle we see on the sky depends only on the angular
diameter distance to the surface of last scattering. In turn, the angular diameter
distance depends on how light rays converge or diverge: in a spatially closed
universe (Ωk < 0) they converge, and in a spatially open universe they diverge,
relative to a flat universe. Now, consider two rays that i) both terminate at one
point at redshift z = 0 and ii) end on either side of a region of fixed size at
redshift z ≈ 1100, then compared to a flat universe, a closed universe will
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FIGURE 4.3: The main features of the temperature power spectrum
including the first 5 acoustic peaks and damping tail have been mea-

sured.

give a larger apparent angle, and an open universe will give a smaller appar-
ent angle. This means that the primary information coming from the angular
location of the first acoustic peak reveals some realities about the geometry of
the universe.

• Second Peak

The second peak is much lower the first. To understand this, consider a po-
tential well with masses and springs. In this case, we consider the "springs"
as the pressure and the "masses" as provided by the baryons. The maximum
compression achieved by the masses at the bottom of the potential well de-
pends on the pressure and the mass and is larger for larger mass. In contrast,
the maximum rarefaction is independent of the masses. This implies that if we
were to fix everything but increase the baryon density, the compression peaks
(first, third, fifth, etc.) would increase in height relative to the rarefaction peaks
(second, fourth, sixths, etc.). As a result, the ratio of second to first peak am-
plitude tells us about Ωb, which is the ratio of the baryon density to the critical
closure density.

• Higher Peaks

In a universe filled with only radiation, when a perturbation reached maxi-
mum compression, as it expanded out the photons would continue to redshift
with the universe, hence the gravitational potential would decay away. This
would allow the temperature perturbation to be much greater than it would
otherwise, and hence would enhance the peaks. In contrast, non-relativistic
matter does not redshift and this lead to relatively smaller fluctuations and
smaller peaks.
In the presence of radiation and matter, specially at smaller scale factor, radi-
ation becomes relatively more important. Therefore, higher frequencies (and
thus higher multipoles) should have an enhancement in amplitude. That is
not to say that higher harmonics should have larger amplitudes in an absolute
sense, just that the strength is relatively increased. The actual dependence
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FIGURE 4.4: The temperature power spectrum versus the cosmologi-
cal parameters, including the energy density of the dark energy today
Ωe in units of the critical density, the equation of state parameter of
the dark energy we, the physical baryon density Ωbh2 and the physi-

cal matter density Ωmh2.

of amplitude on multiple is therefore a measure of the total density of non-
relativistic matter in the universe, since that quantity affects the transition be-
tween radiation domination and matter domination. The multipoles of the
peaks are also affected because as you recall the expansion rate of the universe
is different in the relativistic regime (where a ∝ t1/2) from the non-relativistic
regime (where a ∝ t2/3). This also affects the angular size of the universe (as
we see it) for a given physical size or time after the Big Bang.

4.3.2 Polarization Anisotropy

Besides temperature fluctuations, the CMB photons are described with polarization
anisotropies generated by both scalar and tensor perturbations of the inflationary
era. The E-mode polarization (a divergence-free mode) of CMB is created by Thomp-
son scattering of the CMB photons from free electrons in a heated plasma at last scat-
tering time and the B-mode polarization (a curl-free mode) is normally produced by
the gravitational waves generated during cosmic inflation.
The main source of E-mode polarization of CMB can be addressed to the recombi-
nation era through Thompson scattering of CMB photons from free electrons at that
time. Let’s see how could it happen. The primary anisotropy of CMB occurred in
the last scattering surface when the created acoustic oscillation in the photon-baryon
fluid due to scalar perturbations stretched to the recombination era. Therefore, some
of the photons had the opportunities to catch the oscillation and turned to the hot
and cold spots on the last scattering surface. Based on the Thompson scattering,
a photon colliding with a free electron can be E-mode polarized due to the inter-
action of the electric component of the incoming photon with the electron. Then,
the vibrating electron, in turn, emits radiation in all directions with the frequency
of the inbound photon. Now, consider that two isotropic CMB photons interacting
with a free electron are E-mode polarized by Thompson scattering at last scattering
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time. Then, the product radiation remains unpolarized since the isotropic orthog-
onal polarizations balance each other. However, in the presence of a quadrupole
anisotropy for incoming CMB photons, linear polarization is generated by Thomp-
son scattering. An additional mechanism to produce E-mode polarization of CMB
can be found in the reionization epoch where the photons emitted from the first
stars ionize the hydrogen atoms wherein the CMB photons are E-mode polarized by
Thomspon scattering from the liberated electron.
The produced tensor perturbations during the inflationary epoch as the main re-
sponsible for the primary gravitational waves can create B-mode polarization of
CMB photons in addition to E-mode polarization. Hence, they are known as one
of the most important probes of cosmic inflation in modern cosmology. Notice that
the B-mode polarized CMB photons are contaminated by some large scale factors as
foreground effects and this is a great challenge in CMB data analysis. One of these
effects is the gravitational lensing of E-mode polarized photons wherein the polar-
ization of photons crossing from the gravitational well of a massive object, changes
from E-mode to B-mode.

4.4 Secondary CMB Anisotropies

Here, we review some secondary factors of temperature anisotropies of CMB pho-
tons.

4.4.1 Reionization Era

One of the most significant factors of the late time anisotropies occurred during the
ionization era of the universe through the Thompson scattering of CMB photons by
the released electrons from the ionization process of hydrogen. First, let’s review
what happened during the ionization period. As we studied before, in the recom-
bination era, the CMB photons were not able to interact with free electrons due to
losing the energy in an expanding universe and then the electrons found the op-
portunity to combine with the hydrogen and helium nuclei generated during BBN
epoch in order to form the atoms of the light elements. After the decoupling of the
CMB photons in the last scattering surface, the universe entered the dark age where
was unobservable across much of the electromagnetic spectrum and any short wave-
length radiation that might have been emitted was quickly absorbed by the atomic
gas. Gradually, the gravitational collapse of overdense regions on the medium filled
with the light elements caused to form the first sky objects like stars, galaxies, and
quasars. Then, the high energy photons emitted from these structures ionized the
present hydrogen atoms and as a result, electrons released. This process contin-
ued until the bulk of the universe was ionized completely and the light at many
wavelengths could escape from the early galaxies and quasars, revealing the dis-
tant universe that we see today with optical and infrared telescopes. The secondary
anisotropy of CMB happened by Thompson scattering of CMB photons from the free
electrons liberated during the ionization epoch and it created two effects on CMB.
First was erasing the temperature anisotropies occurred in small scales and the sec-
ond was inducing the polarization anisotropies on large scales.

4.4.2 Sunyaev-Zel’dovich Effect

The Sunyaev–Zel’dovich (SZ) effect was first introduced by Rashid Sunyaev and
Yakov B. Zel’dovich in 1969 as a large scale effect producing anisotropies on CMB
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due to the scattering of CMB photons by rapidly moving electrons in the hot gas in
clusters of galaxies. The SZ factor can distort the CMB photons by two main pro-
cesses, including thermal and kinetic effects. In thermal case, the gas falling into the
gravitational potential well of the galaxy clusters is ionized by increasing the tem-
perature and then CMB photons passing through the plasma are inverse Compton
scattered by high energy electrons. The kinetic effect is caused by the motion of the
galaxy clusters concerning the rest frame of the CMB. The motion of the high en-
ergy electrons in the hot intercluster plasma induces a Doppler shift to the scattered
photons.

4.4.3 Integrated Sachs-Wolfe Effect

Proposed by Rainer K. Sachs and Arthur M.Wolfe in 1967, the Integrated Sachs-Wolf
(ISW) effect is known as a large scale factor for CMB anisotropy through the presence
of the gravitational well created from supermassive objects in the late time universe.
Based on GR principles, the gravitational field of supercluster contained from the
numerous galaxies curves the surrounded spacetime significantly. Hence, the CMB
photons crossing through the supercluster are constrained to path this gravitational
well and get a boost in energy when entering the well. Naturally, the photons would
lose that extra energy as they climb back out of the well. In other words, by crossing
the CMB photons through such structure, they are blue and redshifted when they
respectively enter and exit the gravitational potential well. The net effect is zero ex-
cept in the case of a non-static universe. If we restrict our attention to the late time
universe dominated by DE, we can realize that the gravitational well of the super-
cluster would be stretched gradually by the late-time acceleration of the universe.
Hence, the CMB photons existing from the well lose less energy than the value they
gained in entering the well and their temperature would be raised than other CMB
photons.
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Chapter 5

Non-Minimal Large Field
Inflationary Models

As we learned, the standard inflationary models based on the scalar field can be clas-
sified into three main types, including Large field, small field, and hybrid models.
Among these models, the large field case in which inflaton rolls down slowly with
a large value from the top of the potential and approaches to the minimum point of
potential with a small value has been investigated in a wide range of cosmological
literature [200, 201, 202, 203, 204, 205, 206, 207] since it has only one free parameter to
be fixed compared to the other two inflationary models with additional parameters
and also it shows the comparable values of the scalar-to-tensor with observations.
On the other hand, the idea of Non-Minimal Coupling (NMC) between gravity and
a scalar field in many cosmological scenarios has been considered as an unavoid-
able part of the gravitational theory in particular in the presence of some quantum
corrections in curved spacetime and even it is necessary at the classical level for
renormalization of gravity [208, 209, 210]. Hence, the large field inflationary mod-
els in the context of NMC idea have been investigated in many inflationary papers
[211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228,
229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240]. In this chapter, we provide
constraints from CMB anisotropies data on the coupling constant ξ in the context
of inflationary models with a power-law potential as a generator form of large filed
models. Notice that the chapter is based on our research paper published on the
Physics of Dark Universe Journal.

5.1 NMC Idea

Before starting the analysis of our model, let us devote the present section to intro-
duce the idea of NMC. Due to cosmic inflation, the universe experienced a rapid and
huge expansion in early time in which the generated scalar and tensor perturbations
are responsible for structure formation of the universe and primordial gravitational
waves, respectively. The standard formalism of inflation in GR is established on a
scalar field (inflaton) as the sole component of the universe driven inflation and it
decays at the end of inflation to other particles to take place the reheating process.
The form of inflationary action in GR is given by

S =
∫

d4x
√
−g
(

R
2κ2 −

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
, (5.1)

where V(ϕ) is the potential of the inflaton. In the above expression, there is a mini-
mal coupling between the Ricci scalar R as the gravitational sector and scalar field ϕ
as the matter sector. However, according to the NMC idea, we are forced to examine
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the interaction of these two fields in particular when quantum corrections in curved
space-time are considered [241] and even at the classical level, it seems that NMC
idea plays a great role for renormalization of gravitational theory [242, 243, 244].
The effect of NMC can be considered by the term of 1

2 ξϕ2R in the form of inflation-
ary action as

S =
∫

d4x
√
−g
(

R
2κ2 −

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ) +
1
2

ξϕ2R
)

, (5.2)

where ξ is the coupling constant and its value deeply affects the validity of infla-
tionary models [213, 245, 246, 208]. Let’s take a look at the action (5.2) to realize the
critical role of the NMC term in the inflationary analysis. The present form of NMC
term 1

2 ξϕ2R is very conventional among classical theories of ϕ and metric theories of
gravity, but sometimes it can be distractive for inflationary scenario especially when
a mass term for inflaton as 1

2 m2ϕ2 is assumed in the form of action. In such a condi-
tion, the NMC term plays the role of an effective mass for inflaton and leads to some
derivations from slow-rolling down behavior of inflaton [247, 213, 248, 208].
As we pointed out the viability of an inflationary model is strongly affected by bear-
ing of NMC term and in particular by the values of the coupling constant ξ in which
usually the NMC makes it harder to reach inflation with typical potentials used in
the case of minimal coupling [247, 213, 215]. To verify this claim, we can refer to the
role of the NMC term as an effective mass of inflaton when the mass term of inflaton
1
2 m2ϕ2 is considered in the form of action since it can distort the slow-rolling down of
inflaton in our inflationary model. Another reason to support our statement is corre-
sponded to counting the coupling constant as a free parameter in our investigation.
The very common attitude to ξ is that it can be found as a fine-tuning parameter
restricted by observations in order to achieve an inflationary solution. The results
show that for a particular potential, in some range of ξ, we access to inflation and for
other values, we lose the inflationary solution. Although having such a viewpoint
to the coupling constant is beneficial in our model, it can be problematic when some
potentials with constant parameters are considered in the study. The fine-tuning of ξ
by observational datasets to achieve inflation leads to the fine-tuning of the constant
parameters of the potential under consideration and then these parameters might
take the values which are not consistent with their predictions from particle physics.
As an example, we can refer to the self-counting constant in chaotic inflationary
potential V = λϕ4 wherein the constraint coming from observations is λ < 10−12,
but the energy scale predicted by particle physics is much higher. In fact, the con-
straint on λ is reduced by fine-tuning coupling constant ξ [216, 249, 245, 246, 250].
Hence, besides the fine-tuning approach to the coupling constant, one can find some
prescriptions of ξ fixed by particle physics. In such a viewpoint, the value of ξ de-
pends on the nature of the scalar field and the gravitational theory under investi-
gation [208]. Notice that the first attitude to ξ will be used when there is no fixed
value from theoretical predictions. In the next sections, we present the inflationary
paradigm in the Jordan frame as the non-minimal frame and also in the Einstein
frame as the conformal frame by using the conformal transformation discussed in
the appendix A.

5.2 The Inflationary Analysis in Jordan Frame

Now let us introduce the formulation of the inflationary analysis with NMC. We can
start with varying the form of the action (5.2) with respect to the metric gµν as
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(1− κ2ξϕ2)Gµν = κ2Tµν(ϕ), (5.3)

where

Tµν(ϕ) = ∂µ ϕ∂ν ϕ− 1
2

gµν∂γ ϕ∂γ ϕ−V(ϕ)gµν + ξ

(
gµν2ϕ2 − ∂µ∂ν ϕ2

)
(5.4)

and by varying the action with respect to the scalar field ϕ, we obtain the Klein-
Gordon equation as the motion equation of inflaton by

ϕ̈ + 3H ϕ̇ + ξRϕ +
dV
dϕ

= 0. (5.5)

Clearly, in the case of minimal coupling ξ = 0, the above expressions reduce to the
familiar forms of GR. The field equations (5.3) can be rewritten to three different
approaches. First, one can transfer the term of ξϕ2Gµν to the right-hand side and
make the typical form of the Einstein equations as

Gµν = κ2T̄µν(ϕ), (5.6)

where

T̄µν(ϕ) = Tµν(ϕ) + ξϕ2Gµν. (5.7)

In the second approach, we deal with a ϕ-dependent gravitational constant as

Ge f f ≡
G

1− κ2ξϕ2 (5.8)

then the field equation (5.3) takes the following form

Gµν = κ2
e f f Tµν(ϕ), (5.9)

where

κ2
e f f ≡ 8πGe f f (5.10)

Another possibility for the field equation is counting the gravitational constant as a
ϕ-independent coupling. Then, the field equation is given by

Gµν = κ2T̂µν(ϕ), (5.11)

where

T̂µν(ϕ) =
Tµν(ϕ)

1− κ2ξϕ2 . (5.12)

By taking a look at the field equations in two approaches (5.9) and (5.11), one can
find there two singularities for a scalar field in the case of ξ < 0 by

± ϕcritical = ±
1

κ
√
|ξ|

. (5.13)
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These critical values are known as barriers which the scalar field can not cross. No-
tice that by restricting ourselves to the form of (5.3), we can escape from the singu-
larities and all values of the scalar field are approachable in our analysis.
Let’s check the validity of the conservation law for the energy-momentum tensor
when the NMC term. For the field equation (5.11), the conservation law ∇νT̂µν = 0
is consistent as a consequence of the contracted Bianchi identities∇νGµν = 0. How-
ever, for the first form of the field equations (5.3), the contracted Bianchi identities
leads to

∇νTµν = − 2κ2ξϕ

1− κ2ξϕ2 Tµν∇ν ϕ. (5.14)

One can find that the conservation law can be valid when the scalar field ϕ takes the
constant value.
Now that we studied the role of NMC in the inflationary paradigm, it would be
nice to investigate the appropriated dynamical equations. By using the spatially flat
FLRW metric (2.9) and then solving the field equation (5.11) for the scalar field as
perfect fluid matter, we obtain the energy density and pressure of inflaton expressed
in the Eqs. (2.16) and (2.17) by

ρ =
1

(1− κ2ξϕ2)

(
ϕ̇2

2
+ V(ϕ) + 6ξHϕϕ̇

)
, (5.15)

P =
1

(1− κ2ξϕ2)

(
ϕ̇2

2
− 2ξ ϕ̇2 −V(ϕ)− 2ξϕϕ̈− 4ξHϕϕ̇

)
. (5.16)

When ξ = 0, the above expressions are reduced to the Eq. (3.13). In such a case, the
acceleration condition ρ + 3P < 0 is given as

(1− 3ξ)ϕ̇2 −V(ϕ)− 3ξϕ(ϕ̈ + H ϕ̇) < 0 (5.17)

and by using the Klein-Gordon equation (5.5), one can find

(1− 3ξ)ϕ̇2 −V(ϕ) + 3ξ2Rϕ2 + 6ξHϕϕ̇ + 3ξϕ
dV
dϕ

< 0. (5.18)

To present a better analysis, we focus on the case of ξ ≤ 1
6 which covers many

prescriptions proposed by particle physics. Then, the above condition is diminished
to

V − 3ξϕ

2
dV
dϕ

> 0. (5.19)

In order to apply the slow-roll approximation (3.16) and (3.17) for the model in Jor-
dan frame, we use the HSR parameters (3.19). Also, the number of e-folds can be
found by the Eq. (3.21).

5.3 The Inflationary Analysis in Einstein Frame

By using the conformal transformation (A.1) for the action (5.2) with Ω2 = 1+ κ2ξϕ2,
the form of action in the Einstein frame is given by

SE =
∫

d4x
√
−ĝ
(

R̂
2κ2 −

1
2

F2(ϕ)ĝµν∂µ ϕ∂ν ϕ− V̂(ϕ̂)

)
. (5.20)
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Also, the redefined scalar field ϕ̂ in the Einstein frame is connected to inflaton as

F2(ϕ) ≡
(

dϕ̂

dϕ

)2

≡ 1 + κ2ξϕ2(1 + 6ξ)

(1 + κ2ξϕ2)2 (5.21)

and we deal with an effective potential

V̂(ϕ̂) ≡ V(ϕ)

(1 + κ2ξϕ2)2 . (5.22)

When considering the Einstein frame, we need to transform our coordinate system
using,

dT =
√

Ωdt, â =
√

Ωa (5.23)

to obtain the metric in the FRW form. By considering the FRW metric dŝ2 = dT2 −
â2(T)δijdxidxj, the field equations in the Einstein frame take the form

Ĥ2 =
κ2

3

[
1
2

(dϕ̂

dT

)2
+ V̂(ϕ̂)

]
,

¨̂a
â
= −κ2

3

[(
dϕ̂

dT

)2
−V(ϕ)

]
,

d2 ϕ̂

dT2 + 3Ĥ
dϕ̂

dT
+

dV̂
dϕ̂

= 0.

(5.24)
Then the slow-roll conditions can straightforwardly written as,

˙̂ϕ2 � V̂, ¨̂ϕ� 3Ĥ ˙̂ϕ (5.25)

and the slow-roll parameters are defined accordingly

ε̂ ≡ 1
2κ2

V̂ ′(ϕ̂)

V̂(ϕ̂)

2

, η̂ ≡ 1
κ2

V̂ ′′(ϕ̂)

V̂(ϕ̂)
, ζ̂ ≡ 1

κ2

(
V̂ ′(ϕ̂)V̂ ′′′(ϕ̂)

V̂2(ϕ̂)

)1/2

, (5.26)

where primes now imply a derivative with respect to the redefined scalar field ϕ̂.
Since we will calculate the inflationary parameters up to the first order of slow-roll
parameters, we can be assured that the conformal transformation is valid and two
frames provide the same results. Consequently, for the following analysis, we use
the Einstein frames instead of the Jordan frame in order to escape the difficulties of
the NMC term.

5.4 Large Field Potential

The large field models referred to as chaotic inflation, are characterized by the mono-
mial potential V(ϕ) = cϕn wherein the number n is usually a positive integer (it was
realized in [251] that this type of scenario can emerge in the context of supergrav-
ity). One can find that the majority of inflationary models with power-law potential
consider integer powers to investigate the inflationary phase (see the references in
the preface of this chapter). Another possibility to fix n is some interesting fractional
values corresponded to axion monodromy inflation [252, 253, 254, 255, 256, 257]. The
microphysical structure of string theory provides a rather simple and general mecha-
nism for large field inflation, monodromy, in which an underlying periodicity of the
theory ensures that as the inflaton field traverses many cycles with sub-Planckian
period 2π f � MP, the potential energy increases over each cycle, but much of the
remaining physics essentially repeats itself. We point out that the chaotic inflation-
ary potentials with fractional powers are more favored than the simplest versions of
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chaotic inflation. However, these models suffer from a firm field theoretical founda-
tion which seems difficult to be achieved from usual field theories [258, 259]. The
chaotic inflation with a fractional power-law potential in the context of supergrav-
ity is presented in Refs. [260, 261, 262]. Also, the fractional power-law potentials
derived in string theories are presented in [252]. In [201, 203], people studied the
chaotic inflationary models with fractional powers in the framework of strongly
coupled supersymmetric gauge theories. In the following, we consider both types of
powers integer and fractional which have been studied in different inflationary liter-
ature in particular in Planck 2015 and the BICEP2/Keck array data releases [263, 264]
in which p = 1, 2, 3, 4 and p = 2/3, 4/3 are considered for integer and fractional
powers, respectively.
Let’s begin the analysis in the Einstein frame with writing the effective potential for
the general form of power-law potential as

V̂(ϕ̂) =
cϕn

(1 + κ2ξϕ2)2 . (5.27)

Under the slow-roll approximation, the slow-roll parameters (5.26) can be written as

ε̂ =
ξ(n2 + 2n(n− 4)κ2ξϕ2 + (n− 4)2κ4ξ2ϕ4)

2κ2ξϕ2(1 + κ2ξϕ2(1 + 6ξ))
, (5.28)

η̂ =
1

κ2ξϕ2(1 + κ2ξϕ2(1 + 6ξ))2

[
n(n− 1)ξ + ξ

(
3n2(1 + 2ξ)− 2n(5 + 6ξ)− 4

)
κ2ξϕ2

+ξ

(
3n2(1 + 4ξ)− n(17 + 60ξ) + 12

)
κ4ξ2ϕ4 + ξ

(
(1 + 6ξ)(n2 − 8n + 16)

)
κ6ξ3ϕ6

]
(5.29)

and

ζ̂2 =
1

κ4ϕ4(1 + κ2ξϕ2(1 + 6ξ))4[(
n2(n− 1)(n− 2)

)
+

(
6n4(1 + 2ξ)− n3(31 + 54ξ) + 2n2(11 + 18ξ)− 8n

)
κ2ξϕ2 +

+

(
3n4(12ξ2 + 16ξ + 5)− 2n3(108ξ2 + 153ξ + 55) + 4n2(72ξ2 + 63ξ + 41) +

+24n(1 + 4ξ)

)
κ4ξ2ϕ4 +

(
4n4(36ξ2 + 30ξ + 5)− 2n3(612ξ2 + 546ξ + 95) +

+4n2(612ξ2 + 612ξ + 119)− 4n(288ξ2 + 120ξ + 34)− 32(7 + 12ξ)

)
κ6ξ3ϕ6 +

+

(
3n4(72ξ2 + 34ξ + 5)− n3(2376ξ2 + 1152ξ + 175) + 2n2(3744ξ2 + 1944ξ + 317) +

−4n(1296ξ2 + 756ξ + 158)− 192(1 + 9ξ)

)
κ8ξ4ϕ8 +

(
6n4(24ξ2 + 10ξ + 1) +

−n3(1944ξ2 + 822ξ + 83) + n2(8784ξ2 + 3852ξ + 398)− n(13248ξ2 + 6528ξ + 720) +

+288(1 + 6ξ)

)
κ10ξ5ϕ10 +

(
(1 + 6ξ)2(n4 − 16n3 + 96n2 − 256n + 256)

)
κ12ξ6ϕ12

]
. (5.30)

Let us now consider the value of the inflaton field at the end of inflation ϕe and at
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the start of inflation, i.g., at the time of Hubble Crossing, ϕHC. Setting ε̂ = 1 at the
end of inflation, and considering the quantity β2 = κ2ξϕ2

e , using Eq. (5.28) we get

β2 =

(
− (1− n(n− 4)ξ)±

√
1 + 8ξn + 12ξ2n2

)
(2(1 + 6ξ)− ξ(n− 4)2)

. (5.31)

On the other hand, defining m2 = κ2ξϕ2
HC, we can write the slow-roll parameters at

the beginning of inflation as

ε̂ =
ξn + m2(4− n)2

2m2(1 + m2(1 + 6ξ))
, (5.32)

η̂ =
ξ

m2(1 + m2(1 + 6ξ))2

[
n(n− 1) +

(
3n2(1 + 2ξ)− 2n(5 + 6ξ)− 4

)
m2 +

+

(
3n2(1 + 4ξ)− n(17 + 60ξ) + 12

)
m4 +

(
(1 + 6ξ)(n2 − 8n + 16)

)
m6
]

(5.33)

and

ζ̂2 =
ξ2

m4(1 + m2(1 + 6ξ))4[(
n2(n− 1)(n− 2)

)
+

(
6n4(1 + 2ξ)− n3(31 + 54ξ) + 2n2(11 + 18ξ)− 8n

)
m2 +

+

(
3n4(12ξ2 + 16ξ + 5)− 2n3(108ξ2 + 153ξ + 55) + 4n2(72ξ2 + 63ξ + 41) + 24n(1 + 4ξ)

)
m4 +

+

(
4n4(36ξ2 + 30ξ + 5)− 2n3(612ξ2 + 546ξ + 95) + 4n2(612ξ2 + 612ξ + 119) +

−4n(288ξ2 + 120ξ + 34)− 32(7 + 12ξ)

)
m6 +

(
3n4(72ξ2 + 34ξ + 5)− n3(2376ξ2 + 1152ξ +

+175) + 2n2(3744ξ2 + 1944ξ + 317)− 4n(1296ξ2 + 756ξ + 158)− 192(1 + 9ξ)

)
m8 +

+

(
6n4(24ξ2 + 10ξ + 1)− n3(1944ξ2 + 822ξ + 83) + n2(8784ξ2 + 3852ξ + 398) +

−n(13248ξ2 + 6528ξ + 720) + 288(1 + 6ξ)

)
m10 +

(
(1 + 6ξ)2(n4 − 16n3 + 96n2

−256n + 256)
)

m12
]

. (5.34)

The amount of inflation is usually specified considering the number of e-folds N
defined as the logarithm of the ratio of the value of the scale factor at the end and
beginning of inflation,

eN ≡ â(t̂e)

â(t̂HC)
=

a(te)

a(tHC)

Ω(xend)

Ω(xHC)
. (5.35)

where the hat denotes, as usual, the Einstein frame. It is well-know that the number
of e-folds is strongly connected with the amount of perturbations generated during
inflation and. Therefore, to the cosmological parameters describing them. In NMC
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theories, however also the coupling constant ξ enters those definitions. In the fol-
lowing, we will consider several value of the exponential n for the potential V(φ),
for each of them we will derive the relations connecting the coupling constant ξ and
the number of e-folds N to the cosmological parameters r, ns and nrun. We will then
use these relations to obtain constraints on the parameter space of ξ and N using
Planck data.

5.4.1 Case of n = 4

Probably the most famous form of large field inflationary potential is V(ϕ) = 1
4 λϕ4.

It corresponds to the quartic potential where the inflaton has a self-interacting fea-
ture. It is assumed that λ < 1 because otherwise, the interaction would become
so strong that ϕ would not correspond to a physical particle (the non-perturbative
regime). On the other hand, values of λ much smaller than 1 are not usually en-
visaged since they would represent fine-tuning. The slow-roll parameters for this
potential in the Einstein frame are given by Eqs. (5.32) to (5.34)

ε̂ =
8ξ

m2(1 + m2(1 + 6ξ))
(5.36)

η̂ =

4ξ

(
3 + m2(1 + 12ξ)− 2m4(1 + 6ξ)

)
m2(1 + m2(1 + 6ξ))2 (5.37)

and

ζ̂2 =

32ξ2
(

3 + 2m2(−2 + 3ξ)− 15m4(1 + 6ξ)− 6m6(1 + 6ξ)2 + 2m8(1 + 6ξ)2
)

m4(1 + m2(1 + 6ξ))4 .

(5.38)
In order to connect the number of e-folds with the inflaton field and the slow-roll
parameters, we need an expression for the scale factor a(t) during inflation. This can
be found in solving the Fiedmann equation (2.16) without the cosmological constant
under the slow-roll conditions (3.16) and (3.17), which left us with

a(t)
a0

=

(
1 + κ2ξϕ2(t)

1 + κ2ξϕ2
0

)5/4

exp
(
(

1 + 6ξ

8
)κ2(ϕ2

0 − ϕ2(t))
)

, (5.39)

where the subscribe "0" denotes the value of the inflaton field and scale factor at
some time t0. Taking t0 to be the time of the Hubble crossing and using Eq. (5.35),
one obtains

eN = (
1 + β2

1 + m2 )
5/4 exp

(
1 + 6ξ

8ξ
(m2 − β2)

)
(5.40)

for the e-folds number. If we now impose the consistency condition for large-potentials
field m ≥ β, we find the relation

m2 = β2 +
8ξN

1 + 6ξ
. (5.41)

In what follows we restrict our analysis on the effect of non-minimal coupling under
the approximation |ξ| � 1 and ψ� 1 m2 � 1. In this case the slow-roll parameters
rewrite
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ε̂ ' 8ξ

m2 , η̂ '
4ξ

(
3 + m2(1 + 12ξ)− 2m4(1 + 6ξ)

)
m2 (5.42)

and

ζ̂2 '
32ξ2

(
3 + 2m2(−2 + 3ξ)− 15m4(1 + 6ξ)− 6m6(1 + 6ξ)2 + 2m8(1 + 6ξ)2

)
m4 .(5.43)

We can now derive from the above equations the expressions for the scalar spectral
index ns, its running αs = dns/d log k and the tensor-to-scalar ratio r such as

n̂s = 1− 6ε̂ + 2η̂ ' 1− 1
N
(3− 8ξN), (5.44)

α̂s = 16ε̂η̂ − 24ε̂2 − 2ζ̂2 ' 1
N2 (−3 + 96ξN − 64ξ2N2) (5.45)

and

r̂ = 16ε̂ ' 16
N
(1− 8ξN) (5.46)

The above equations can be reduced to n̂s ' 1− 3
N , α̂s ' − 3

N2 and r̂ ' 16
N in the limit

of ξ → 0.

5.4.2 Case of n 6= 4 with n ≥ 1

Following the same strategy, we continue here the analysis of the power-law po-
tentials by considering other values of n. For potential with n 6= 4 we cannot use
Eq. (5.40), therefore we need to restart by the definition of the e-folds number in the
Einstein frame

N = −
√

κ2

2

∫ 1√
ε̂

dϕ̂ (5.47)

which once integrated, gives

eN =
1 + β2

1 + m2

5
4
(

n + (n− 4)β2

n + (n− 4)m2

) (n−4)−n(1+6ξ)
8ξ(n−4)

, (5.48)

where β2 is defined by Eq. (5.31). Assuming again the consistency condition m ≥ β,
we obtain (

n + (n− 4)β2

n + (n− 4)m2

)
' e−2ξN(n−4) f or n 6= 4. (5.49)

With this equation we can specify the expressions for the scalar spectral index ns, its
running αs = dns/d log k, and the tensor-to-scalar ratio r for each of the potential we
are considering in the present work with n 6= 4.

5.4.2.1 Case of V ∝ ϕ

In the case of n = 1 and with the assumption |ξ| � 1, we have from Eq. (5.49)
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m2 ' 1
3

1− (1− 3β2)e−6ξN ' 2Nξ. (5.50)

For the spectral index, its running and the tensor-to-scalar ratio, using Eqs. (5.42)
and (5.43), we have

n̂s ' 1− 1
2N

(3 + 8ξN), α̂s '
1

2N2 (−3 + 6ξN + 4ξ2N2), r̂ ' 4
N
(1− 12ξN).

(5.51)
Also, for ξ → 0 the above equations are reduced to n̂s ' 1− 3

2N , α̂s ' − 3
2N2 and

r̂ ' 4
N .

5.4.2.2 Case of V ∝ ϕ2

The simplest form of chaotic inflation is a non-interacting (free) field with a potential
V = 1

2 µ2ϕ2 where µ is the mass of the inflaton. The field equations have a time-
independent, spatially homogeneous, solution ϕ = 0, which represents the vacuum.
Plane waves, related to oscillations around the vacuum state, correspond after quan-
tization to non-interacting particles ϕ, which have mass µ. Another feature of this
potential is that in the presence of NMC between gravity and inflaton, the mass can
be deformed to an effective mass by the shape of NMC term it is consequently more
difficult to achieve slow-roll inflation. In the case of n = 2 and with the assumption
|ξ| � 1, we have from Eq. (5.49)

m2 ' 1− (1− β2)e−4ξN ' 4ξN. (5.52)

The scalar spectral index, its running and tensor-to-scalar ratio are

n̂s ' 1− 2
N
(1 +

4
3

ξ2N2), α̂s '
2

N2 (−1 + 4ξN − 96ξ2N2), r̂ ' 8
N
(1− 8ξN).

(5.53)
and n̂s ' 1− 2

N , α̂s ' − 2
N2 and r̂ ' 8

N when ξ → 0.

5.4.2.3 Case of V ∝ ϕ3

In the case of n = 3 and with the assumption |ξ| � 1, we have from Eq. (5.49)

m2 = 3− (3− β2)e−2ξN ' 6ξN (5.54)

In this case, the inflationary parameters take the following form

n̂s ' 1− 1
2N

(5− 8ξN), α̂s '
5

6N2 (−3 + 42ξN − 468ξ2N2), r̂ ' 12
N
(1− 4ξN).

(5.55)
For ξ → 0, the above equations are expressed as n̂s ' 1− 5

2N , α̂s ' − 5
2N2 , and r̂ ' 12

N .

5.4.2.4 Case of V ∝ ϕ
2
3

In the case of n = 2/3 and with the assumption |ξ| � 1, we have from Eq. (5.49)

m2 =
1
5

1− (1− 5β2)e−20ξN/3 ' 4
3

ξN. (5.56)
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The first order of spectral index, its running and tensor-to-scalar ratio are therefore

n̂s ' 1− 4
3N

(1+ 4ξN), α̂s '
4

81N2 (−27+ 84ξN + 464ξ2N2), r̂ ' 8
9N

(3− 40ξN).
(5.57)

In the limit ξ → 0, we have n̂s ' 1− 4
3N , α̂s ' − 4

3N2 and r̂ ' 8
3N .

5.4.2.5 Case of V ∝ ϕ
4
3

In the case of n = 4/3 and with the assumption |ξ| � 1, we have from Eq. (5.49)

m2 =
1
2

1− (1− 2β2)e−
16
3 ξN ' 8

3
ξN (5.58)

the inflationary parameters, we have

n̂s ' 1− 1
3N

(5+ 8ξN), α̂s '
5

81N2 (−27+ 48ξN− 704ξ2N2), r̂ ' 16
9N

(3− 32ξN).
(5.59)

The above equations for ξ → 0 are turned to n̂s ' 1− 5
3N , α̂s ' − 5

3N2 and r̂ ' 16
3N .

5.5 Analysis Method

CMB constraints on inflationary parameters can be performed by letting the param-
eters nS, r and αS to vary freely and by then comparing the predictions of a specific
inflationary model with the allowed region of the parameters. Our approach here
is different: an inflationary model is imposed ab initio, and we investigate the con-
straints on the parameters of that specific model. In particular, as we discussed in
the previous section, our inflationary parameters are reduced to two: the number of
e-foldings N and the coupling term ξ. While this kind of analysis is indeed more
model dependent, it may provide constraints that are not achievable in a more gen-
eral study where any value of nS, r and αS is permitted. Given a likelihood that
compare data with theory 1 constraints on cosmological parameters are extracted
using the publicly available version of the Monte Carlo Markov Chain (MCMC)
code Cosmological Monte Carlo (CosmoMC) [266] (Nov2016 version 2), based on
the Metropolis-Hastings algorithm with chains convergence tested by the Gelman
and Rubin method. We compare our theoretical models with data using the 2015
Planck likelihood, containing temperature and polarization spectra and their cross-
correlation. We consider two cases for the Planck data: In the Planck high-` case we
consider only the CMB data at high multipoles ` > 30 and we impose an external
prior on the optical depth τ = 0.055± 0.02, i.e., we remove the large scale tempera-
ture and polarization data. In the Planck TTTEEE case, we consider the full Planck
2015 temperature and polarization dataset, including also the low multipoles and
we disregard the prior on τ. Eventually, those two datasets are combined with the
Bicep-Keck-Planck (BKP) B-mode likelihood [267]. We modified the code CosmoMC
to accommodate N and ξ as independent parameters they are randomly sampled in
a given range, and to calculate the, now, derived parameters as function of the

1The theoretical models are computed using the latest version of the Boltzmann integrator CAMB
[265]

2https://cosmologist.info/
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Parameter Prior
ωb [0.02÷ 0.25]
ωc [0.1÷ 0.3]
θs [0.5÷ 2]
τ [0.01÷ 0.8]

ln(1010As) [3.01÷ 3.2]
N [20÷ 100]
ξ [−0.2÷ 0.2]

TABLE 5.1: Range of the flat prior on the parameters varied in the
MCMC analysis.

inflationary ones throughout Eqs. (5.44) to (5.46) or n = 4 and Eqs. (5.51), (5.53),
(5.55), (5.57) and (5.59) for n 6= 4. Note that in the publicly available version of Cos-
moMC the parameters r, ns and αs are independent. An hard prior is imposed on
the tensor-to-scalar ratio to assure is positiveness since for Nξ > α−1, where α is a
constant value depending on the model we are considering, r is a negative quantity.
The spectral index of tensor perturbations instead is evaluated using the inflation-
ary consistency condition nt = −r/8 as in the standard version of CosmoMC. Along
with the number of e-folds N and the coupling constant ξ, we allow to vary the
baryon ωb = Ωbh2 and the CDM density ωc = Ωch2, the angular size of the sound
horizon at decoupling θs, the reionization optical depth τ and the amplitude As and
the spectral index ns of scalar perturbations. The assumed flat priors on these pa-
rameters are reported in Table 5.1.

5.6 The Results

The constraints on the inflationary parameters from the Planck 2015 data and from
their combination with the BICEP2/Keck Array release are reported in Tables 5.2
and 5.3. In Figures 5.1 and 5.2 we show the contour plots at 68% and 95% C.L. from
the Planck high` and Planck TTTEEE data, respectively. In Figures 5.3 and 5.4 we
show the analogous constraints obtained now with the inclusion of the BKP dataset.
Let us first consider the results obtained from the Planck 2015 datasets (with and
without the low multipoles data) alone. As we can see from the first column of Ta-
bles 5.2 and 5.3 and also Figure 5.1, we found no evidence for a coupling (ξ 6= 0) from
the Planck high-`+τprior data in any of the power-law models considered. Moreover,
by looking at the reported values of the χ2

e f f , we see that models with n > 2 have a
∆χ2 ∼ 4 with respect to models with n = 1, i.e., they provide a worse fit to the data
at about two standard deviations. In practice, the Planck high-` data alone is unable
to rule out significantly models with n = 2, 3, 4. This fact is mainly due to the poor
constraints on the tensor to scalar ratio r achievable from this dataset. It is however
compelling, that all models, except for the n = 2/3 case, shows an indication for
a negative running nrun ∼ −0.001. This result is not due to an actual presence of
running in the data but to the specific correlations between nrun and the other in-
flationary parameters present in the models considered. So one should be careful
in claiming any general indication for nrun from this analysis. However, this shows
either the potential of future measurements of nrun of discriminating between these
models, either the fact that a running at this level could be easily produced and that
it should not be discarded in the analysis of future data.
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As we can see from the second column of Tables 5.2 and 5.3 and also Figure 5.2, the
inclusion of the low multipole CMB data, without a prior on the optical depth, has
the main effect of substantially increasing (by a factor ∼ 2) the constraint on r. The
main consequence of this is that in this case, an indication for a coupling ξ starts to
emerge. If we consider the values reported in Tables 5.2 and 5.3 and also the cor-
responding posteriors plotted in Figure 5.2 (left panel) we see that for models with
n < 2, the indication is slightly above one standard deviation (consider that the pos-
terior on ξ is non-gaussian in this case), while, considering the posteriors ξ in Figure
5.4, right panel, it is above the two standard deviations for n > 2 (and close to two
standard deviation for n = 2). Again, as we pointed out in the previous paragraph,
this indication for ξ 6= 0 is not generic and must be considered valid only for models
with an NMC term and power-law potential with n > 2. Considering the values
of the χ2

e f f we see that they are almost identical for any value of n considered. In
few words, the inclusion of an NMC term at the level of ξ ∼ 0.004 makes models
with n = 2, 3, 4 back into agreement with the full Planck 2015 dataset. Considering
the running, we can also notice that models with n < 2 all show an indication for a
negative running but at the level of nrun ∼ 0.0006. Models with n ≥ 2 show on the
contrary a significantly lower negative running with nrun ∼ 0.001. Again, a future
accurate measurement of nrun could significantly discriminate between inflationary
models.
In the third and fourth columns of Tables 5.2 and 5.3 we report the constraints ob-
tained by combing the Planck 2015 data with the BKP dataset. As expected, the
inclusion of the BKP dataset significantly increase the limits on r. It is interesting to
notice that the constraint on r from the full Planck dataset are similar to those ob-
tained by the Planck high-`+BKP dataset, showing a good agreement between the
low multipole data from Planck and BKP. As we can see from the results reported in
Tables 5.2 and 5.3 and the posteriors in Figures 5.3 and 5.4 the inclusion of the BKP
dataset improves the indication for ξ > 0 obtained from the Planck dataset alone.
We have now from the Planck high-`+BKP dataset an indication for coupling above
one standard deviation for n = 1 and n = 4/3, at about two standard deviation
for n = 2, and, finally, above 95% C.L. for n = 3 and n = 4. When the Planck
TTTEEE+BKP dataset is considered, the indication for ξ is above one standard de-
viation for n = 1 and n = 2/3, at about two standard deviations for n = 4/3 and
above two standard deviations for n ≥ 2.
Considering now the constraints on the running of the spectral index nrun, we see
that while models with n ≤ 2 prefer a running around nrun ∼ −0.001 at the 95%
C.L., models with n > 2 are suggesting an higher value around nrun ∼ −0.006.
These values are both consistent with the latest constraints from Planck (nrun =
−0.007± 0.0068, see [268] and clearly indicates that future constraints on nrun could
significantly constrain models with NMC.
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Chapter 6

R2p Inflationary Models

In addition to the inflationary model based on a single scalar field, the models from
modified theories of gravity are very conventional among the inflationary litera-
ture. One of the most interesting models can be investigated in the context of f (R)
gravity [53, 54] in which one can obtain the acceleration phase in the early stages
of the universe by considering some modifications in geometry instead of the infla-
ton. The most well-known model which gained many successes was proposed by
A. A. Starobinsky in 1980 [108] by introducing the form of R2 wherein the model
has a graceful exit from inflation to the next stage of the universe by reheating phase
[269, 270, 271]. Interestingly the R2 has also a crucial role in solving the shortcom-
ings of f (R) theories which have been proposed as one of the possible alternatives to
the cosmological constant of the concordance Λ Cold Dark Matter (ΛCDM) model
[272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283]. Because of its agreement
with current observations, the Starobinski model is now considered as a "target"
model for several future CMB experiments as, for example, the Simons Observatory
[284], CMB-S4 [285], and the LiteBIRD satellite experiment [286]. Assuming the cur-
rent best-fit values of the scalar spectral index nS from the Planck experiment, the
Starobinski model predicts a tiny tensor amplitude namely r ' 0.003 for 60 e-folds.
The goal of these future experiments is therefore to have enough experimental sen-
sitivity to measure such signal with enough statistical significance with δr < 0.001.
However the prediction of r ' 0.003 is a first approximation that does not consider
several caveats. First of all, there is an experimental uncertainty on the value of nS
derived under ΛCDM and this affect the predicted value for r, since, for example,
for higher values of nS the expected value of r is smaller. Secondly, there is a severe
anomaly in the Planck data on the amount of gravitational lensing present in the
CMB angular spectra. The lensing signal, parameterized by the parameter Alens, is
indeed larger than what expected in the ΛCDM scenario by more than two stan-
dard deviations. Since Alens correlates with nS, the lensing anomaly could affect the
predictions on r. Finally, there is clearly no fundamental reason to believe that the
Starobinski model is the correct inflationary scenario and, for example, several gen-
eralization could be considered.
The main purpose of this chapter is evaluating the amount of gravitational waves
predicted by Starobinski model considering the current uncertainties on nS and the
possibility of an extension to the ΛCDM model parametrized by Alens. Hence, we
consider a minimal generalization of Starobinsky inflation, the so-called R2p mod-
els (with p ≈ 1). These inflationary models were first proposed by [287, 288] in the
context of higher derivative theories and subsequently were applied to inflation pro-
viding a simple and elegant generalization of the R2 inflation [289, 290, 54, 202, 291].
In [292], the authors showed that the tensor-to-scalar ratio r can be raised by some
small derivations of the Starobinsky model. Also, the connection between Higgs
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inflation and Rp form is investigated in [293, 294]. While the introduction of a vari-
able index of the Ricci scalar in the inflationary action complicates the simplicity of
R2 inflation it allows significant deviations from the benchmark value of the tensor
amplitude of the Starobinsky model and could in principle results in a better agree-
ment with data.In this chapter, we provide constraints on Starobinsky inflation and
the more general R2p model using CMB anisotropies data. In particular, we make
use of the publicly available Planck 2015 and Biceps2/Keck array data releases. No-
tice that the chapter is based on our research paper published on the Physics of Dark
Universe Journal.

6.1 The Model

We start with the form of action for R2p inflation as

S f = −
1

2κ2

∫
d4x f (R), f (R) = R− R2p

M4p−2 with p = 1, 2, 3, ... (6.1)

By applying the conformal transformation introduced in appendix A for the above
action, we can move to the Einstein frame with defining a scalar field ϕ which is
called scaleron. Then, the action Eq. (6.1) can be rewrite as

Sϕ =
∫

d4x
√
−g
(
− R

2κ2 +
1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
(6.2)

and the potential can be wrote as

V(y) = V0e−2y(ey − 1)
2p

2p−1 with y =

√
2
3

ϕ

mpl
, (6.3)

where V0 = ( 2p−1
4p )m2

pl M
2( 1

2p )
1

2p−1 and M ' 1013 GeV is the energy scale determined
by the amplitude of the observed power spectrum for primordial perturbations. In
Figure 6.1, we report the behaviour of the potential (6.3) for different values of the
index p, we note that:

• for p > 1 the potential has a maximum ϕm = mpl

√
2
3 ln 2p−1

p−1 but goes asymp-
totically to zero for large value of the scalar field ϕ. Inflation therefore can
happen both for 0 ≤ φ ≤ ϕm and ϕ > ϕm. The behavior of R2p inflation signif-
icantly differs from the Starobinsky model in the latter region and since we are
interested only in small deviations from R2 inflation we neglect the inflationary
behavior in the potential region where ϕ > ϕm.

• for p < 1 the potential increases indefinitely but its decreasing towards zero is
steeper than in R2 model therefore leading to larger tensor-to-scalar ratios.

• for p = 1 we recover the potential of Starobinsky inflation asymptotically ap-
proaching a constant value V0 = 3

4 M2mpl for large ϕ

V(ϕ) =
3
4

M2mpl

(
1− e

−
√

2
3

ϕ
mpl

)2

. (6.4)

In the Einstein frame, the slow-roll parameters can be expressed through the poten-
tial as
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FIGURE 6.1: The potential of R2p inflation for different values of p.

ε =
1

2κ2

(
V ′(ϕ)

V(ϕ)

)2

, η =
1
κ2

(
V ′′(ϕ)

V(ϕ)

)
, ζ2 =

1
κ4

(
V ′(ϕ)V ′′′(ϕ)

V2(ϕ)

)
, (6.5)

where prime denotes to the derivation respect to ϕ. Also, the number of e-folds
between the start and the end of inflation can be defined by

N ≡
∫ te

ti

Hdt '
√

κ2

2

∫ ϕi

ϕe

1√
ε

dϕ. (6.6)

Since the case of p = 1 leads to a singularity for the number of e-folds, we start with
the general form of p 6= 1. Then, the case of p = 1 will be explained separately. The
slow-roll parameters Eqs. (6.5) for p 6= 1 can be found by [295]

ε =

4
(
(p− 1)e

√
2
3

ϕ
mpl − 2p + 1

)2

3(2p− 1)2

(
e
√

2
3

ϕ
mpl ,−1

)2 (6.7)

η =
4

3(2p− 1)2

(
e
√

2
3

ϕ
mpl − 1

)2

(
(2p2 − 4p + 2)e

2
√

2
3

ϕ
mpl +

(−10p2 + 13p− 4)e
√

2
3

ϕ
mpl + 8p2 − 8p + 2

)
(6.8)

and
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ζ2 =
16

9(2p− 1)4

(
e
√

2
3

ϕ
mpl − 1

)4

[(
(p− 1)(4p3 − 12p2 + 12p− 4)

)
e

4
√

2
3

ϕ
mpl

−
(

48p4 − 150p3 + 173p2 − 87p + 16
)

e
3
√

2
3

ϕ
mpl +

(
148p4 − 388p3 + 373p2 − 156p + 24

)
e

2
√

2
3

ϕ
mpl

−
(

168p4 − 380p3 + 318p2 − 117p + 16
)

e
√

2
3

ϕ
mpl . + 4

(
16p4 − 32p3 + 24p2 − 8p + 1

)]
.(6.9)

Notice that by setting the condition ε = 1, we have the value of scaleron for the end
of inflation ϕe. Also, the number of e-folds (6.6) for this case is given by

N = − 3p
4(p− 1)

ln
(
(p− 1)e

√
2
3

ϕi
mpl − 2p + 1

(p− 1)e
√

2
3

ϕe
mpl − 2p + 1

)
(6.10)

and by removing the role of scalar field at the end of inflation, the above equation
can be reduced to

N ' − 3p
4(p− 1)

ln
(
(p− 1)e

√
2
3

ϕi
mpl

1− 2p
+ 1
)

. (6.11)

For our purposes, it is very nice to rewrite the Eq. (6.11) as

e
√

2
3

ϕi
mpl =

(1− 2p)
(p− 1)

(
e
−4N(p−1)

3p − 1
)

with C ≡ e
−4N(p−1)

3p . (6.12)

In order to obtain the inflationary parameters, we require to rewrite the slow-roll
parameters (6.7) to (6.9) at the beginning of inflation as follow

ε =
4C2(p− 1)2

3(C(1− 2p) + p)2 , (6.13)

η =
4(p− 1)

3((1− 2p)C + p)2

(
2C2(p− 1) + pC − p

)
(6.14)

and

ζ2 =
16C(p− 1)2

9((1− 2p)C + p)4

(
4(p− 1)2C3 + p(8p− 7)C2 − p(11p− 9)C + p(3p− 2)

)
(6.15)

Now we can calculate the first order of spectral index, its running and the tensor-
to-scalar ratio which are invariant under the conrformal transformation [296, 297],
by

ns = 1− 6ε + 2η, αs = 16εη − 24ε2 − 2ζ2, r = 16ε, (6.16)

where for the Rp model, we obtain
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ns = 1−
8(p− 1)

(
C2(p− 1)− p(C − 1)

)
3
(
C(1− 2p) + p

)2 , (6.17)

αs = −
32pC(p− 1)2(C − 1)(C − 3p + 2)

9
(
C(1− 2p) + p

)4 , r =
64C2(p− 1)2

3
(
C(1− 2p) + p

)2 . (6.18)

The consistency relations between above equations take the following form

ns − 1 = − (3p− 2)
√

r√
3p

+
8(1− p)

3p
− r(3p− 1)

8p
(6.19)

and

αs =
4(1− p)(3p− 2)

√
r

3
√

3p2
− (15p2 − 20p + 6)r

6p2

− (3p− 2)(8p− 3)r
3
2

16
√

3p2
− (2p− 1)(3p− 1)r2

64p2 (6.20)

Now, let us consider the singular case of p = 1. In this case, the slow-roll parameters
(6.5) are given by

ε =
4

3(e
√

2
3

ϕ
mpl − 1)2

, η = − 4(e
√

2
3

ϕ
mpl − 2)

3(e
√

2
3

ϕ
mpl − 1)2

, ζ =
16(e
√

2
3

ϕ
mpl − 4)

9(e
√

2
3

ϕ
mpl − 1)3

. (6.21)

By using the Eq. (6.6), the number of e-folds in this case is obtained as

N ' 3
4

e
√

2
3

ϕi
mpl . (6.22)

For the spectral index, the running spectral index and the tensor-to-scalar ratio from
Eqs. (6.16) we have

ns = 1− 2
N

, αs = −
2

N2 , r =
12
N2 . (6.23)

We show in Figure 6.2 the scalar spectral index nS (left panel) and its running αS
(right panel) as function of the tensor-to-scalar ratio r for different value of the index
p. We superimpose on the curves drawn according to Eqs. (6.19) and (6.20) the
Planck 2015 bounds on nS to show how the models considered in the present work
can fit with observations of CMB anisotropies. We see from the left panel of Figure
6.2 that for arbitrary small values of r the scalar index saturates to a maximum value
which depends only on p, namely

nS − 1 =
8(1− p)

3p
(6.24)
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FIGURE 6.2: The spectral index (left) and the running spectral index
(right) versus tensor-to-scalar ratio with respect to the different values
of p. The dashed line on the left panel shows the case for p = 1. The
gray band show the 68% and 95% C.L. constraints on the spectral

index from Planck 2015. The black lines show the case p = 1

for 1.01 . p . 1.02, the saturation value falls well within the Planck bound on nS,
this model are therefore well in agreement with Planck data for a tensor-to-scalar
ratio consistent with zero. For p & 1.02 the value of nS is always outside the Planck
bounds, thus we expect these models to be ruled out by current data. Model with
p . 1.01 are within the Planck bounds only for a finite range of values of the tensor
amplitude r these models are not ruled out only if their range is contained in the
Planck upper limit for r < 0.1. For αS we see a similar behavior as r → 0 (right panel
of Figure 6.2), but the saturation value now is zero for every value of the index p
since αS ∝

√
r for r → 0. Therefore we expect that Planck data will be able to give

a bound on p if it is let free to vary while the bounds on r and αS will be consistent
with zero. Conversely for the Starobinsky model we expect to have a bound on r in
the range 10−4 − 10−3 and thus an indication for a non zero running at more than
two standard deviation.

6.2 Comparison with Recent Experimental Data and Expected
Signal

As stated in the previous sections the aim of this chapter is to show how stable are
the prediction of the Starobinsky model on inflationary parameters when a model-
dependent approach is used to sample the cosmological parameter space. The gen-
eral approach when looking at constraints from observations on inflationary models
(see e.g. [298, 299, 300, 264]) is to let the parameters nS, r and αS free to vary assum-
ing them to be independent from one another and then comparing the prediction of
a specific model with the allowed parameter space. On the one hand, this allows to
explore the inflationary sector in a model independent way but has the drawback of
not allowing to sample the whole parameter space of a specific theory. Furthermore
the assumption that nS, r and αS are independent from one another is also in con-
trast with the prediction of any theory of inflation that assumes the validity of the
slow-roll conditions (see e.g Eqs. (6.19) and (6.20)). In this work, we choose
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Parameter Prior
ωb [0.005÷ 0.1]
ωc [0.001÷ 0.99]
θs [0.5÷ 10]
τ [0.01÷ 0.8]

ln(1010As) [2÷ 4]
N [20÷ 100]
p [0.9÷ 1.05]

Alens [0÷ 2]

TABLE 6.1: Range of the flat prior on the parameters varied in the
MCMC analysis.

a different approach: we impose an inflationary model a priori (here, R2p inflation)
and we extract the posterior distribution of the parameters of that specific model.
In particular, we exploit Eqs. (6.16) to reduce the number of inflationary parame-
ters to only two: the number of e-folds, N, and the index, p. While this approach is
more model-dependant, it may results in constraints that are not achievable with the
standard approach in which the inflationary parameter are independently sampled
and any value of nS, r and αS is permitted. The theoretical models are calculated
using the latest version of the Boltzmann integrator Code for Anisotropies in the
Microwave Background (CAMB) [266], and we use publicily available version of the
MCMC code CosmoMC [265] (Nov 2016 version) to extract constraints on cosmo-
logical parameters. To compare our theoretical models with data, we use the full
2015 Planck temperature and polarization datasets which also includes multipoles
` < 30. Eventually we combine the Planck likelihood with the Biceps/Keck 2015 B-
mode likelihood. We modified the code CosmoMC to include the number of e-folds,
N, and the index, p, as new independent parameters and to calculate the inflationary
parameters nS, r and αS throughout Eqs. (6.13) - (6.15). Along with these parameters,
we consider also the baryon ωb = Ωbh2 and the CDM density ωch2, the angular size
of the sound horizon at decoupling θS, the optical depth τ, the amplitude of scalar
perturbations AS and the phenomenological lensing parameter Alens. The flat prior
imposed for these parameters are reported in Table 6.1.

6.3 Results for Starobinsky Inflation

We report the bounds on the inflationary parameters for the Starobinsky model ob-
tained using the full Planck 2015 likelihood (Planck) and its combination with Bi-
cep/Keck 2015 data (Planck+BK14) in Table 6.2. The 68% and 95% C.L. contour
plots are showed in Figure 6.3 instead. Let us start by discussing the results from
the Planck datasets alone (without the inclusion of Alens). As we can see from the
first column of Table 6.2, we found evidence for a non-zero tensor-to-scalar ratio at
the 2-σ level when using the full Planck 2015 data (r0.002 ∼ 0.0036). This result is not
coming from an actual presence of tensor perturbations in Planck data but rather it
is arising from the correlation between r0.002 and nS present in the model considered.
In fact, Planck data are only able to place an upper bound on the value of the tensor-
to-scalar ratio due to the poor polarization data at large scales (r0.002 < 0.11 in a
one-parameter extension of the ΛCDM model) while they are able to place a strong
constraint on the scalar spectral index at the accuracy of∼ 0.6% (nS = 0.968± 0.006)
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when the standard approach is used to sample these parameters. Enforcing a depen-
dence of nS from r0.002 therefore limits the parameter space for the tensor-to-scalar
ratio and force its value to fit in the available range for nS. This situation can be
better understood looking at Figure 6.2, where we show the behavior of the scalar
index as a function of tensor-to-scalar ratio. The same argument can be applied to
the running of the scalar index αS for which we find an evidence to be negative
(αS ∼ 0.0006) at the 3-σ level. Again, we stress that this is not due to an indication of
a running in the data but to the specific correlation which arises in Starobinsky in-
flation between the running and the other inflationary parameters. However these
bounds show either that future measurements of r0.002 and αS have the potential to
rule out the Starobinsky inflation, either that they should be considered in the anal-
ysis of future data being key parameters in studying the feasibility of inflationary
models (see also [301]). We can see from Figure 6.3 and the third column of Table
6.2 that the combination of BK14 and Planck data do not significantly modify the
bounds coming from the Planck datasets alone. The main reason for this is that the
combination of Planck and Biceps2 data is compatible with every value of the tensor-
to-scalar ratio satisfying r0.002 < 0.07 [263] and therefore is not able to improve the
constraints of Planck data alone since the bounds on r0.002 now fall well within this
limit. It is worth noting that, the slight decrease in the best-fit value of r0.002 when
including BK14 is caused by an increase in the best-fit value of the reionization op-
tical depth that requires a smaller scalar spectral index which in turns demand a
smaller tensor ratio and a more negative running. We see from Figure 6.3 and the
second column of Table 6.2 the addition of the parameter Alens leads to changes in
the best-fit of all other parameters while not affecting their bounds. Here, the main
difference with our base model is an increasing in nS of the 0.4% and a reduction
of 1.8% of the scalar amplitude AS. This in turn leads to a reduction of the optical
depth τ from 0.08 to 0.06. To account for this shift, Planck data requires Alens > 1 to
give more smoothing on the acoustic peaks of the scalar spectrum than in the base
ΛCDM model (see e.g. [302, 263] for a more detailed discussion). The parameters N,
αS and r0.002 best-fit values are consequently shifted due to the correlation with nS
introduced by Starobinsky inflation. The combination of Planck and BK14 data do
not significantly modify the situation described here, since again the bound on r0.002
are around an order of magnitude smaller than the sensibility of the two datasets
δr ∼ 10−1. It is worth noting that both for Planck alone and for Planck+BK14 the
inclusion of Alens provides a better fit to the data with ∆χ2 = 4 again underlying the
preference for more lensing power in Planck data.

6.4 Results for Near-Starobinsky Inflation

We report the constraints on the inflationary parameters for general R2p model with
p ' 1 in Table 6.3. The 68% and 95% C.L. contour plots are showed in Figure 6.4
instead. We start again discussing the results from the Planck datasets alone (with-
out the inclusion of Alens) reported in the first column of Table 6.3. As expected the
inclusion of the index p in the analysis does not significantly modify the bounds
on the standard cosmological parameters (Ωbh2, Ωch2, AS, nS and τ) coming from
the Planck datasets alone. Conversely the constraints on inflationary parameters are
largely changed by the inclusion of the index p. When p is varied, the number of
e-folds of inflation are basically unconstrained within the flat range we imposed in
our runs while the 2-σ bound on the tensor-to-scalar ratio is relaxed to only an up-
per bound. We note however that the upper limit on r is halved with respect to the
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bound reported in the Planck 2015 release (r < 0.11), again this is due to the corre-
lation between the inflationary parameters arising in R2p inflationary models. The
bound on αS is also worsen by a factor ∼ 4 leading to a running consistent with zero
nearly at 2-σ level. Interestingly instead we are able to constraints the index p with
an accuracy of the 0.2%− 0.3%. In order to understand why this is happening we
should look again at Figure 6.2. As we can see from the left panel of Figure 6.2, for
arbitrary small value of r, the scalar index saturates to a constant value which is only
a function of the index p (see also Eq. (6.19)). For 1.0 . p . 1.02, the saturation value
of nS falls well within the Planck constraints for r → 0 therefore for these models we
do not find any lower limit on the amplitude of tensor modes. For p > 1.02 the value
of nS is always outside the Planck bound making these models incompatible with
Planck data, instead models with p < 1.0 are compatible with Planck data only for
value of the tensor-to-scalar ratio in the range 10−2 < r < 10−1. This behavior of the
scalar index for different value of p leads to the highly non-Gaussian posteriors for
p and αs of Figure 6.4 and to the disappearance of the lower bound on r. Including
, we again see the shift in the best fit values of AS and nS as for the case where p is
kept fixed leading to a worsening of the limit on r of the 45% and of the constraints
on p of the 20%. We see from the third column of Table 6.3 and Figure 6.4 that the
combination of Planck and BK14 datasets improves sligtly the upper limit on tensor
amplitudes while the other parameter bounds are virtually unchanged. The inclu-
sion of now only changes the bound on αS shifting the best-fit toward zero by the
14% and improving the 2-σ constraints by the same amount. Again we notice that
the inclusion of provides a better fit to the data with ∆χ2 ' 4− 5.
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Chapter 7

Conclusion

As we learned, in modern cosmology, the idea of inflation is known as the most de-
sirable candidate to remove HBB theory weaknesses, including flatness, horizon and
monopole puzzles. Also, it provides the seed of structure formation of the universe
due to the quantum fluctuations of the scalar field as scalar perturbations produced
during the inflation period. Moreover, the scalar perturbations are recognized as
one of the most significant factors of the temperature anisotropies of CMB photons.
In addition to the scalar perturbations, tensor perturbations generated during in-
flation are responsible for composing the primordial gravitational waves which are
detectable by B-mode polarization anisotropies of CMB photons. The simplest de-
scription of cosmic inflation is based on inflaton as a single field coming from particle
physics which decays at the end of inflation into other particles due to a reheating
process. Regarding the potential of the inflaton, we define two main divisions, in-
cluding large field models in which the value of inflaton at the start of inflation is
bigger than its value at the end of inflation and small field models in which the
value of inflaton at the beginning of inflation is smaller than its value when inflation
ends. Another class of basic inflationary models deals with more than one scalar
field to drive inflation, in particular, the hybrid model in which an assistant scalar
field is engaged to aid inflaton in order to terminate inflation. Moreover, the in-
flationary models founded on the modified theories of gravity have been noticed
in recent years, significantly. The eternal inflation also presents an unconventional
approach to inflation by considering some little bubbles of space that could have
randomly held inflating instead of ending inflation all at once. As a consequence of
the above study, one can find a wide range of inflationary models among the cos-
mological papers and the most reliable way to discriminate the models is using the
inflationary observations which come from the analysis of the temperature and po-
larisation anisotropies of CMB photons. Hence, the main aim of the present thesis is
finding the observational constraints on some inflationary models by using the CMB
anisotropies observations.
The main purpose of our first research work was finding the CMB anisotropies con-
straints on parameters space of power-law inflationary potentials, as the main gen-
erator of large field models, in the context of non-minimal coupling of gravity and
inflaton. Also, we studied the effects of the presence of the NMC term on the pre-
dicted amount of gravitational waves in such models. We carried out the inflation-
ary analysis for the power-law potentials with the NMC term in the Einstein frame
as the easier frame which is conformally connected to the Jordan frame as the non-
minimal frame. We considered two main classes of large field potentials, e.g., n = 4
and n 6= 4 with contains integer and fractional values. The inflationary parameters
in both cases presented up to the first order of the slow-roll parameters, where we
are assured that the results of the two frames are the same. In order to engage the
observational datasets for investigation of the model, we used a model-depended
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analysis method wherein N and ξ as the independent parameters driven by modi-
fied CosmoMC code can be randomly sampled in a given range and to calculate the
inflationary parameters of the model. Then, we provided the final results by corre-
sponded plots and tables.

Our results can be summarized as follows:

• If we conservatively consider only the Planck data at high-` plus an external
prior on the optical depth, the bounds on r are rather weak, and we found no
indication for coupling from this dataset.

• If consider the full Planck dataset we obtain an indication for a coupling ξ ∼
0.001 at the level above one standard deviation for power-law potentials with
n = 1, 2/3, 4/3, and a sign for a more substantial coupling in the range ξ ∼
0.002− 0.004 for n = 2, 3, 4 at two standard deviations. These results are con-
firmed and reinforced by the inclusion of the BKP data.

• The models considered also show a significant running nrun. When we con-
sider the full Planck dataset in combination with the BKP dataset we get an in-
dication above two standard deviations for running nrun ∼ −0.0006 for n < 2
and for larger negative running in the range [−0.007 ; −0.001] from n ≥ 2.

Therefore, we not only confirmed that NMC inflationary models with a power law
potential with n ≥ 2 could provide a good fit to current Planck+BKP data but also
obtained constraints on the value of the coupling ξ needed to achieve this result.
Moreover, we found that models with n < 2 predict a negative value of the running
of the spectral index of nrun ∼ −0.0006 while models with n ≥ 2 predict a even more
negative value in the range nrun ∼ −0.0015 : −0.006. Given the current constraints
from Planck on nrun that show a sensitivity of ∆nrun ∼ 0.007 is therefore possible
that near future measurements could significantly constrain power law NMC mod-
els with n ≥ 2.
Our second research work dedicated to finding constraints on inflationary param-
eters using a set of recent CMB data and under the assumption of the Starobinski
model. Also, we considered a particular class of inflationary models that generalize
Starobinsky inflation and the possibility of an extension to ΛCDM described by the
Alens parameter. We presented the inflationary analysis for the generalized form of
the Starobinsky model and used the conformal transformation to transit to the Ein-
stein frame as the conformal frame. Then, we followed the inflationary investigation
in the presence of a new scalar field, which is called scaleron, created due to using
the conformal transformation. We calculated the inflationary parameters up to the
first order of the slow-roll parameters as two main classes, p = 1 or Starobinsky
model and p 6= 1 for a generalized case. Similar to the previous model, we used a
model-depended analysis method wherein N and p as the independent parameters
driven by modified CosmoMC code, can be randomly sampled in a given range and
to calculate the inflationary parameters of the model. Lastly, we examined the final
results by corresponded plots and tables.

We can summarize our results as follows:

• When conservatively considering Starobinsky inflation, corresponding to p =
1, and using the full Planck 2015 likelihood we obtain an upper limit on the
tensor to scalar ratio r > 0.0017 at 95% C.L. and an indication for a negative
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running at more than two standard deviations. While smaller values for r are
allowed, also values of r ∼ 0.006 are now inside the 95% C.L. Interestingly,
models with a larger value of r would also predict a more negative value of the
running αs. The maximum value of αs ∼ −0.001 (see Figure 6.3), however, is
not within the reach of the future CMB-S4 experiment that is expected to have
a sensitivity on the running of ∆αs ∼ 0.0026 [285]. The combination of the
Planck and BK14 datasets leaves our results almost unchanged. As discussed
above, this is related to the fact that our results are coming from the Planck
bound on nS and from assuming inflationary consistency relations between
nS, r and αS and therefore they are not significantly affected from the inclusion
of the BICEP2 B-mode likelihood.

• Considering the phenomenological lensing parameter shifts the best-fit values
of r and αS due to the degeneracy between and the scalar parameters nS and
AS. When is considered, the upper limit is now r > 0.0013 at 95% C.L., i.e., the
amount of gravitational waves predicted is significantly smaller. Future CMB
experiments should, therefore, target to a ∆r ∼ 0.0003 sensitivity if they plan
to falsify the Starobinski model at the level of five standard deviations. This
sensitivity is about a factor two better than the one predicted for the CMB-S4
experiment.

• For a more general R2p inflation and using the full Planck likelihood, we found
no lower limit for the tensor mode amplitude. Conversely, we obtain a tight
constraint on the index p at the 95% C.L. confirming that small departures from
the Starobinsky model are allowed by the Planck data with values in the range
0.962 ≤ p ≤ 1.016. The inclusion of worsen this constraint by the 20%. When
considering the combination of the full Planck dataset with the BK14 dataset
again we do not find any improvement w.r.t. to the Planck datasets alone.
However, including now do not worsen the constraints on p but only shift the
best fit of αS to a less negative value.

We confirmed that Starobinsky inflation provides an excellent fit to the most recent
data, but that uncertainties on ns and on the value of Alens could easily bring the ex-
pected value of r in the region of r ∼ 0.001. If the primordial inflationary background
is at this level, it will not be detectable either by the Simons Observatory [284], that
has an expected sensitivity around ∆r ∼ 0.002, either by the LiteBIRD satellite that
is planned to have a sensitivity of ∆r ∼ 0.001. It will also be barely detectable by
CMB-S4 [285] that is expected to reach a target sensitivity of ∆r ∼ 0.0006. More-
over, the goal of the CMB-S4 mission to "achieve a 95% confidence upper limit of
r < 0.001" [285] can be severely affected if the primordial gravitational waves back-
ground is in the region of r ∼ 0.001. However, values of r could also reach the
r ∼ 0.006 region, allowing, in this case, a statistically significant detection at about
three standard deviations for the Simons Observatory and at about ten standard de-
viations for CMB-S4. In the optimistic case of r ∼ 0.006 we also expect a running of
the spectral index αs ∼ −0.001. Unfortunately this value can’t be detectable even by
future CMB experiments as CMB-S4 (with expected sensitivity of ∆αs ∼ 0.002 [285]),
but it could be reachable when information from future lensing or galaxy clustering
measurements are included. Finally, small departures from the Starobinski model
are also possible and in agreement with observations. In this case, we found no
predicted lower limit to r.
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Appendix A

Conformal Transformation

In this appendix, first, we introduce the conformal transformation as a useful mathe-
matical tool for diverse gravitational scenarios. Then, we apply the conformal trans-
formation for some gravitational theories under consideration.

A.1 Introduction

The conformal transformation plays an essential role in many physics fields e.g. elec-
tromagnetism [303] and quantum theories [304]. Also, it is widely engaged in rel-
ativity and cosmology so that it can be exploited to introduce the conformally flat
spacetimes [305] and even to construct Penrose diagrams [306], which are one of the
most important techniques for the study of black hole physics. Moreover, it is used
for a wide range of gravitational theories which are based on scalar fields through
the dependence of the conformal factor Ω = Ω(x(ϕ)) to scalar field ϕ. This can
be addressed to some modified theories of gravity including the scalar-tensor, non-
linear gravity theories and also the theories dealing with the extra dimensions like
Kaluza-Klein theories [50, 51, 52, 53, 54, 135, 136, 137, 307, 308, 309, 310, 311, 312].
Moreover, the conformal transformation can be engaged to the inflationary models
based on scalar fields in the presence of a non-minimal coupling between gravity
and scalar field [313, 314, 210]. Since working with such theories is followed by
some difficulties compared to GR, we apply the conformal transformation to ease
calculations due to mapping from the Jordan frame as the main frame to the Einstein
frame as the conformal frame. In other words, the conformal transformation is em-
ployed as a mathematical tool to map the equations of a system into mathematically
equivalent sets of equations for easier study. Hence, the physical equivalency of two
frames would be expected as a consequence of mathematical equivalency at the clas-
sical level.
On the quantum level, the equivalence between two frames is disturbed by anomaly
which is essential and manifests itself at the level of the one-loop divergences al-
ready. In a framework of Einstein gravity, the one-loop counterterms vanish on the
classical mass shell and the theory is finite [315]. Indeed this property does not hold
if the matter fields are incorporated [316] or if the two-loop effects are taken into ac-
count [317]. In our new conformal frame, the one-loop S-matrix is not finite because
of the anomaly. This fact can be interpreted as the non-invariance of the measure of
the path integral with respect to (generalized) conformal transformations. Earlier, a
similar objection has been made in a quantum conformal (Weyl) gravity [318, 319]
which is power counting renormalizable. In the case of Weyl gravity, the lack of
renormalizability is caused by anomaly which affects even the one-loop divergences.
The difference is that here, we lack the one-loop on shell renormalizability which is
lost in a new frame. Now, let’s review some applications of the conformal transfor-
mation for gravitational theories at the classical level.
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A.2 Einstein’s Gravity

In order to present the conformal transformation, let us consider an arbitrary mani-
fold M described by two different metrics ĝµν and gµν which are connected confor-
mally if

ĝµν = Ω2gµν (A.1)

where Ω = Ω(x) is the conformal factor and is a non-zero, differentiable function. In
other words, one can find two different coordinates sets on the manifold M with the
metrics ĝµν and gµν which are equivalent mathematically and it leads to the physical
equivalency between two structures. Mathematically, under the conformal trans-
formation, the angles between the vectors and their values are conserved but not
necessarily the lengths. We can translate this property of the conformal transfor-
mation into the relativity language. In fact, by conformal mapping, the lengths of
spacelike and timelike intervals and also their vectors are affected, but it leaves the
light cones unchanged. Thus, two sets have the same casual structure. Through
the conformal connection of two metrics, ĝµν and gµν (A.1), other geometrical pa-
rameters in two frames can also be linked to each other conformally. The conformal
relations between two sets for the Christoffel symbol, Riemann tensor, Ricci tensor
and Ricci scalar are given respectively as [309]

Γ̂α
βγ = Γα

βγ + Ω−1(δα
β∇γΩ + δα

γ∇βΩ− gβγ∇αΩ), (A.2)

R̂ δ
αβγ = R δ

αβγ + 2δδ
[α∇β]∇γ(ln Ω)− 2gδσgγ[α∇β]∇σ(ln Ω) + 2∇[α(ln Ω)δδ

β]

∇γ(ln Ω)− 2∇[α(ln Ω)gβ]γgδσ∇σ(ln Ω)− 2gγ[αδδ
β]g

σρ∇σ(ln Ω)∇ρ(ln Ω), (A.3)

R̂αβ = Rαβ − (n− 2)∇α∇β(ln Ω)− gαβgρσ∇ρ∇σ(ln Ω) + (n− 2)∇α(ln Ω)

∇β(ln Ω)− (n− 2)gαβgρσ∇ρ(ln Ω)∇σ(ln Ω) (A.4)

and

R̂ ≡ ĝαβR̂αβ = Ω−2
(

R− 2(n− 1)2(ln Ω)− (n− 1)(n− 2)
gαβ∇αΩ∇βΩ

Ω2

)
, (A.5)

where n is the dimension of the manifold M. For our 4D universe (n = 4), the Ricci
scalar takes the following form

R̂ = Ω−2
(

R− 62Ω
Ω

)
= Ω−2

(
R− 122(

√
Ω)√

Ω
−

3gαβ∇αΩ∇βΩ
Ω2

)
, (A.6)

where 2 = gρσ∇ρ∇σ. Finally, the Einstein tensor under the conformal transforma-
tion (A.1), takes the following form as

Ĝµν = Gµν +
n− 2
2Ω2

(
4Ω,aΩ,b + (n− 5)Ω,cΩ,cgµν

)
− n− 2

Ω

(
Ω;ab − gµν2Ω

)
. (A.7)
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An important feature of the conformal transformations is that it preserves the Weyl
conformal curvature tensor

Cabcd = Rabcd +
2

n− 2
(ga[dRc]b + gb[cRd]a) +

2
(n− 1)(n− 2)

Rga[cgd]b (A.8)

which means we have Ĉ δ
αβγ = C δ

αβγ and the null geodesics are also conformally in-
variant. Notice that the conservation law of the energy-momentum tensor ∇νTµν =
0 is not conformally invariant unless the tensor is traceless. Also, the Klein-Gordon
equation of a scalar field is not conformally invariant, but its generalization as

2ϕ− (n− 2)
4(n− 1)

Rϕ = 0 (A.9)

is invariant for n ≥ 2.

A.3 Scalar-Tensor Theories of Gravity

One of the most known modifications of GR is the scalar-tensor theories of gravity in
which we consider a scalar field coupled with gravity in the Einstein-Hilbert action.
Thus the form of standard action modifies as presented by the Eq. (3.48). Also, we
pointed out that due to the coupling between gravity and scalar field, we can apply
the conformal transformation to transit from the Jordan frame (main frame) to the
Einstein frame (3.49) as the easier frame for calculations in which we deal with a
new form of scalar field and appropriated potential (3.50). As we know, in the case
of w = constant and Λ = constant, the scalar-tensor theory reduces to the Brans-
Dicke theory and now that would be worth to see how the conformal transformation
work for such theory. Let’s start with the form of action in the Brans-Dicke theory as
[135, 136, 137]

SBD =
∫

d4x
1

2κ2

√
−g
(

ϕR− w
ϕ

∂µ ϕ∂µ ϕ

)
+ SM (A.10)

and by varying the above action respect to the metric, we obtain the field equation
as

Rµν −
R
2

gµν =
κ2

ϕ
Tµν +

w
ϕ2

(
∂µ ϕ∂ν ϕ− 1

2
gµν∂γ ϕ∂γ ϕ

)
+

1
ϕ
(∂µ∂ν ϕ− gµν2ϕ). (A.11)

By using the conformal factor Ω = ϕ

m2
PL

, we can change from the Jordan frame to the
conformal frame with the familiar form of the Einstein action as

SE =
∫

d4x
[

1
2

√
−ĝ
(
(

R̂
κ2 )− ∂̂µ ϕ̂∂̂µ ϕ̂

)
+ exp

(
− 8

√
κ2

8(2w + 3)
ϕ̂

)
LM(ĝ)

]
, (A.12)

where ϕ̂ as the redefined form of scalar field is connected to the Brans-Dicke scalar
field ϕ by
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dϕ̂ =

√
2w + 3

2κ2
dϕ

ϕ
. (A.13)

As we can see, the gravitational sector of the action in the Jordan frame (A.10) is
described by the coupling between gravity R and Brans-Dicke field ϕ. However,
by using the conformal transformation, gravity is expressed only by the redefined
Ricci scalar R̂ and the new free scalar field ϕ̂ takes the role of ordinary matter. We
remind that the conformal transformation applied for a general form of action in
scalar-tensor gravity in the previous chapter.

A.4 Non-Minimally Coupled Theories of Gravity

By using the conformal transformation, we can ease the calculations of cosmological
scenarios equipped with non-minimal coupling term between gravity R and scalar
field ϕ. Based on theoretical considerations, we can not neglect the role of direct
interaction between two fields. Hence the standard gravitational action is modified
by joining a non-minimal term as [313, 314, 210]

S =
∫ √

−g
(
(1− κ2ξϕ2)

R
2κ2 −

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
d4x + SM(gµν, ΨM), (A.14)

where V(ϕ) is the potential describing the scalar field and Smatter is associated with
matter fields other than ϕ. In the non-minimal term ξϕ2R, ξ is known as coupling
constant and its value is crucial for our cosmological aims. By varying the action
respect with the metric, the field equation is given as

(1− κ2ξϕ2)(Rµν −
R
2

gµν) = κ2(T̃µν(ϕ) + T̃µν(ΨM)), (A.15)

where

T̃µν(ϕ) = ∂µ ϕ∂ν ϕ− 1
2

gµν∂γ ϕ∂γ ϕ−V(ϕ)gµν + ξ

(
gµν2ϕ2 − ∂µ∂ν ϕ2

)
, (A.16)

T̃µν(ΨM) = − 2√−g
δSM(ΨM, gµν)

δgµν
, (A.17)

Ω2 = 1− κ2ξϕ2 (A.18)

then, the action in the Einstein frame can be expressed by

S =
∫

d4x
√
−ĝ
(

R̂
2κ2 −

1
2

∂̂µ ϕ̂∂̂ν ϕ̂− V̂(ϕ̂)

)
+
∫

d4xLM(Ω−2(ϕ)ĝµν, ΨM), (A.19)

where V̂(ϕ̂) is the potential of the new scalar field ϕ̂ and is defined as

V̂(ϕ̂) =
V(ϕ)

(1− κ2ξϕ2)2 . (A.20)

Also, two scalar fields are connected by
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dϕ

dϕ̂
=

1− κ2ξϕ2√
1− κ2ξϕ2(1− 6ξ)

. (A.21)

Using the conformal transformation for large field inflationary models with a non-
minimal coupling term will be studied in chapter 5.

A.5 f (R) Theories of Gravity

Another conventional modification of gravity presented to explain DE is f (R) theory.
Based on such gravity, we do not require to consider the cosmological constant to
drive the late time acceleration (even for inflation as early time acceleration) and only
by changing the geometry, we can provide the acceleration phase for the universe.
The f (R) gravity theory is a type of nonlinear gravity since it deals with a general
and nonlinear function of Ricci scalar R. The form of action in this theory is given
by [53, 54]

S =
1

2κ2

∫
d4x
√
−g f (R) +

∫
d4xLM(gµν, ΨM), (A.22)

where Lmatter denotes to matter Lagrangian and Ψmatter implies to matter fields. The
field equations are driven by variation of the action (A.22) respect with metric gµν as

∂ f
∂R

Rµν −
1
2

f (R)gµν −∇µ∇ν
∂ f
∂R

+ gµν2
∂ f
∂R

= κ2TM
µν, (A.23)

where the energy-momentum tensor TM
µν is defined by

TM
µν = − 2√−g

δLM

δgµν
. (A.24)

In order to move to the Einstein frame, we apply the conformal transformation (A.1)
by definition of the conformal factor as

Ω2 = F ≡ e
√

2κ2
3 ϕ (A.25)

and then the form of action in the Einstein frame takes the following form

S =
∫

d4x
√
−ĝ
(

R̂
2κ
− 1

2
ĝµν∂µ ϕ∂ν ϕ−V(ϕ)

)
+
∫

d4xLM(F−1(ϕ)ĝµν, ΨM) (A.26)

where the potential of new scalar field ϕ can be defined by

V(ϕ) =
FR− f

2κF 2 (A.27)

In chapter 6, the discussed transformation will be applied to investigate the R2p

inflationary model as a customary form of the Starobinsky R2 model.





113

Bibliography

[1] R. M. Wald, General Relativity. University of Chicago Press, 1984.

[2] E. W. Kolb and M. S. Turner, The Early Universe. Review of Scientific Instru-
ments, 1990.

[3] P. Peebles, Principles of physical cosmology. Princeton University Press, 1994.

[4] A. R. Liddle, An introduction to modern cosmology. Wiley, 1998.

[5] A. R. Liddle and D. Lyth, Cosmological inflation and large scale structure. Cam-
bridge University Press, 2000.

[6] B. Ryden, Introduction to Cosmology. Addison-Wesley, 2002.

[7] S. M. Carroll, Spacetime and Geometry: An Introduction to General Relativity.
Addison-Wesley, 2001.

[8] S. Dodelson, Modern cosmology. Amsterdam, Netherlands: Academic Press,
2003.

[9] Ø. Grøn and S. Hervik, Einstein’s General Theory of Relativity. Springer-Verlag
New York, 2007.

[10] S. Weinberg, Cosmology. Oxford University Press, 2008.

[11] D. H. Lyth and A. R. Liddle, The primordial density perturbation. Cambridge
University Press, 2009.

[12] A. Einstein, “The foundation of the general theory of relativity,” Annalen der
Physik, vol. 49, p. 769–822, (1916).

[13] E. Mach, “The science of mechanics,” Open Court, La Salle, (1960).

[14] M. Born and G. Leibfried, Einstein’s Theory of Relativity. Courier Dover Publi-
cations, 1965.

[15] H. Bondi and J. Samuel, “The lense–thirring effect and mach’s principle,” Phys.
Lett. A., vol. 228, p. 121–126, (1996).

[16] M. P. Haugen and C. Lämmerzahl, “Principles of equivalence: Their role
in gravitation physics and experiments that test them,” Gyros., vol. 562,
p. 195–212, (2001).

[17] F. Giannoni, A. Masiello, and P. Piccione, “The fermat principle in general
relativity and applications,” [arXiv:math-ph/9906023].

[18] L. Bel and J. Martín, “Fermat’s principle in general relativity,” Gyros., vol. 26,
p. 567–585, (1994).



114 BIBLIOGRAPHY

[19] A. Einstein, “On the electrodynamics of moving bodies,” Annalen der Physik,
vol. 17, pp. 891–921, (1905).

[20] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University
Press.

[21] N. Bohr, “About the serial spectra of the element,” Zeitschrift für Physik, vol. 2,
p. 423–478, (1920).

[22] U. L. Verrier, “Letter from mr. le verrier to mr. faye on the theory of mercury
and on the movement of the perihelion of this planet,” Comptes rendus hebdo-
madaires des séances de l’Académie des sciences, vol. 49, p. 379–383, (1859).

[23] F. W. Dyson, A. S. Eddington, and C. Davidson, “A determination of the de-
flection of light by the sun’s gravitational field, from observations made at
the total eclipse of 29 may 1919,” Philosophical Transactions of the Royal Society,
vol. 220A, p. 291–333, (1920).

[24] R. V. Pound and J. G. A. Rebka, “Gravitational red-shift in nuclear resonance,”
Phys. Rev. Lett.., vol. 3, p. 439–441, (1959).

[25] A. Einstein, “Approximately integration of the field equations of gravitation,”
Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften Berlin,
vol. 1, p. 688–696, (1916).

[26] J. H. Taylor, L. A. Fowler, and P. M. McCulloch, “Overall measurements of rel-
ativistic effects in the binary pulsar psr 1913 + 16,” Nature, vol. 277, p. 437–440,
(1979).

[27] B. P. Abbott et al., “Observation of gravitational waves from a binary black
hole merger,” Phys. Rev. Lett., vol. 116, pp. 061102–061116, (2016).

[28] A. Einstein, “On the general theory of relativity,” Sitzungsber. Preuss. Akad.
Wiss. Berlin, vol. 1915, p. 778–786, (1915).

[29] D. Hilbert, “The basics of physics. 1.,” Gott. Nachr., vol. 27, p. 395–407, (1915).

[30] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact
Solutions of Einstein’s Field Equations. Cambridge University Press, 2003.

[31] A. Friedmann, “On the possibility of a world with constant negative curvature
of space,” Z. Phys., vol. 21, p. 326–332, (1924).

[32] G. Lemaitre, “A homogeneous universe of constant mass and growing radius
accounting for the radial velocity of extragalactic nebulae,” Annales Soc. Sci.
Brux. Ser. I Sci. Math. Astron. Phys., vol. A47, p. 49–59, (1927).

[33] H. Robertson, “Kinematics and world-structure,” Astrophysical Journal, vol. 82,
p. 284–301, (1935).

[34] A. G. Walker, “On the formal comparison of milne’s kinematical system
with the systems of general relativity,” Mon. Not. Roy. Astron. Soc., vol. 95,
p. 263–269, (1935).

[35] K. Schwarzschild, “About the gravitational field of a mass point according to
einstein’s theory,” Sitzungsberichte der Königlich Preussischen Akademie der Wis-
senschaften, vol. 7, p. 189–196, (1916).



BIBLIOGRAPHY 115

[36] R. P. Kerr, “Gravitational field of a spinning mass as an example of alge-
braically special metrics,” Phys. Rev. Lett., vol. 11, p. 237–238, (1963).

[37] H. Reissner, “About the gravitational field of a mass point according to ein-
stein’s theory,” Annalen der Physik, vol. 50, p. 106–120, (1916).

[38] H. Weyl, “To the theory of gravitation,” Annalen der Physik, vol. 54, p. 117–145,
(1917).

[39] G. Nordström, “On the energy of the gravitational field in Einstein’s theory,”
Verhandl. Koninkl. Ned. Akad. Wetenschap. Afdel. Natuurk., vol. 26, p. 1201–1208,
(1918).

[40] G. B. Jeffery, “The field of an electron on Einstein’s theory of gravitation,” Proc.
Roy. Soc. Lond. A., vol. 99, p. 123–134, (1921).

[41] E. Newman, E. Couch, K. Chinnapared, A. Exton, A. Prakash, and R. Torrence,
“Metric of a rotating, charged mass,” Journal of Mathematical Physics., vol. 6,
p. 918–919, (1965).

[42] A. Friedmann, “On the curvature of space„” Z. Phys., vol. 10, p. 377–386,
(1922).

[43] A. Raychaudhuri, “Relativistic cosmology. 1.,” Phys. Rev., vol. 98, p. 1123–1126,
(1955).

[44] E. A. Milne, “A newtonian expanding universe,” The Quarterly Journal of Math-
ematics, vol. 5, p. 64–72, (1934).

[45] A. Einstein and W. de Sitter, “On the relation between the expansion and the
mean density of the universe,” Proceedings of the National Academy of Sciences,
vol. 18, p. 213–214, (1932).

[46] P. A. R. Ade et al., “Planck 2013 results. xvi. cosmological parameters,” vol. 18,
p. 213–214, (2018).

[47] A. G. Riess et al., “Observational evidence from supernovae for an acceler-
ating universe and a cosmological constant,” Astronomical Journal., vol. 116,
p. 1009–1038, (1998).

[48] S. Perlmutter et al., “Measurements of omega and lambda from 42 high red-
shift supernovae,” Astronomical Journal, vol. 517, p. 565–586, (1999).

[49] J. Martin, “Everything you always wanted to know about the cosmological
constant problem (but were afraid to ask),” Comptes Rendus Physique, vol. 13,
p. 566–665, (2012).

[50] S. Capozziello and V. Faraoni, Beyond Einstein Gravity. Springer Netherlands,
2011.

[51] S. Capozziello and M. D. Laurentis, “Extended theories of gravity,” Phys. Rep.,
vol. 509, pp. 167–321, (2011).

[52] S. Nojiri, S. D. Odintsov, and V. K. Oikonomou, “Modified gravity theories
on a nutshell: Inflation, bounce and late-time evolution,” Phys. Rep., vol. 692,
pp. 1–104, (2017).



116 BIBLIOGRAPHY

[53] T. Sotiriou and V. Faraoni, “f(R) theories of gravity,” Rev. Mod. Phys., vol. 82,
p. 451–497, (2008).

[54] A. D. Felice and S. Tsujikawa, “f(R) theories,” Liv. Rev. Relativ., vol. 13, pp. 3–
158, (2010).

[55] R. Maartens and K. Koyama, “Brane-world gravity,” Liv. Rev. Relativ., vol. 13,
pp. 5–223, (2010).

[56] S. W. Allen, A. E. Evrard, E. August, and A. B. Mantz, “Cosmological param-
eters from clusters of galaxies,” Annual Review of Astronomy and Astrophysics,
vol. 49, p. 409–470, (2011).

[57] J. G. de Swart, G. Bertone, and D. J. van Dongen, “How dark matter came to
matter,” Nature Astronomy., vol. 1, pp. 0059–0066, (2017).

[58] E. Amaldi, “From the discovery of the neutron to the discovery of the nuclear
fission,” Nature Astronomy., vol. 111, pp. 1–331, (1984).

[59] B. Follin, L. Knox, M. Millea, and Z. Pan, “First detection of the acoustic oscil-
lation phase shift expected from the cosmic neutrino background,” Phys. Rev.
Lett., vol. 115, pp. 091301–091304, (2015).

[60] D. D. Clayton, Principles of Stellar Evolution and Nucleosynthesis. University of
Chicago Press, (1983).

[61] D. Kirzhnits and A. D. Linde, “Macroscopic consequences of the weinberg
model,” Phys. Lett. B, vol. 42, p. 471–474, (1972).

[62] S. Weinberg, “Gauge and global symmetries at high temperature,” Phys. Rev.
D, vol. 9, p. 3357–3378, (1974).

[63] D. Kirzhnits, “Weinberg model in the hot universe,” JETP Lett., p. 529–531,
(1972).

[64] L. Dolan and R. Jackiw, “Symmetry behavior at finite temperature,” Phys. Rev.
D, vol. 9, p. 3320–3341, (1974).

[65] D. Kirzhnits and A. D. Linde, “A relativistic phase transition,” Sov. Phys. JETP,
vol. 40, pp. 628–640, (1975).

[66] D. Kirzhnits and A. D. Linde, “Symmetry behavior in gauge theories,” Annals
Phys., vol. 101, p. 195–238, (1976).

[67] P. Y. H. A. D. L. M. Dine, R. G. Leigh and D. A. Linde, “Towards the theory of
the electroweak phase transition,” Phys. Rev. D, vol. 46, p. 550–571, (1992).

[68] K. A. Olive, “The thermodynamics of the quark - hadron phase transition in
the early universe,” Nucl. Phys. B, vol. 483-503, p. 190, (1981).

[69] E. Suhonen, “The quark - hadron phase transition in the early universe,” Nucl.
Phys. B, vol. 81-84, p. 119, (1982).

[70] M. Crawford and D. N. Schramm, “Spontaneous generation of density pertur-
bations in the early universe,” Nature, vol. 298, p. 538–540, (1982).

[71] J. Applegate and C. Hogan, “Relics of cosmic quark condensation,” Phys. Rev.
D, vol. 31, p. 3037–3045, (1985).



BIBLIOGRAPHY 117

[72] H. Satz, “The transition from hadron matter to quark-gluon plasma,” Ann. Rev.
Nucl. Part. Sci, vol. 35, p. 245–270, (1985).

[73] G. M. G. Fuller and C. Alcock, “The quark - hadron phase transition in the
early universe: Isothermal baryon number fluctuations and primordial nucle-
osynthesis,” Phys. Rev. D, vol. 37, pp. 1380–1400, (1988).

[74] H. B. R. Alpher and G. Gamow, “The origin of chemical elements,” Phys. Rev.,
vol. 73, p. 803–804, (1948).

[75] W. A. F. R. V. Wagoner and F. Hoyle, “On the synthesis of elements at very
high temperatures,” Astrophysical Journal, vol. 148, p. 3–49, (1967).

[76] S. Sarkar, “Big bang nucleosynthesis and physics beyond the standard model,”
Rept. Prog. Phys., vol. 59, p. 1493–1610, (1996).

[77] D. N. Schramm and M. S. Turner, “Big bang nucleosynthesis and physics be-
yond the standard model,” Rept. Prog. Phys., vol. 70, p. 303–318, (1998).

[78] A. A. Penzias and R. W. Wilson, “A measurement of excess antenna tempera-
ture at 4080-mc/s,” Astrophysical Journal, vol. 142, p. 419–421, (1965).

[79] J. E. Gunn and B. A. Peterson, “On the density of neutral hydrogen in inter-
galactic space,” Astrophysical Journal, vol. 142, pp. 1633–1636, (1965).

[80] R. H. Becker et al., “Evidence for reionization at z ∼ 6: Detection of a gunn-
peterson trough in a z = 6.28 quasar,” Astrophysical Journal, vol. 122, pp. 2850–
2857, (2001).

[81] R. Barkana and A. Loeb, “In the beginning: The first sources of light and the
reionization of the universe,” Phys. Rept., vol. 349, p. 125–238, (2001).

[82] E. Hubble, “A relation between distance and radial velocity among extra-
galactic nebulae,” Proc. Nat. Acad. Sci., vol. 15, p. 168–173, (1929).

[83] G. Gamow, “The origin of elements and the separation of galaxies,” Phys. Rev.,
vol. 74, p. 505–506, (1948).

[84] G. Gamow, “The evolution of the universe,” Nature, vol. 162, p. 680–682,
(1948).

[85] R. A. Alpher and C. R. Herman, “On the relative abundance of the elements,”
Phys. Rev., vol. 74, p. 1737–1742, (1948).

[86] R. A. Alpher and C. R. Herman, “Evolution of the universe,” Nature, vol. 162,
p. 774–775, (1948).

[87] G. F. Smoot et al., “Structure in the cobe differential microwave radiometer
first-year maps,” Astrophysical Journal, vol. 396, p. L1–L5, (1992).

[88] C. L. Bennett et al., “Four-year cobe dmr cosmic microwave background ob-
servations: Maps and basic results,” Astrophysical Journal, vol. 464, p. L1–L4,
(1996).

[89] G. Hinshaw et al., “Three-year wilkinson microwave anisotropy probe (wmap)
observations: temperature analysis,” Astrophysical Journal, vol. 170, p. 288–334,
(2007).



118 BIBLIOGRAPHY

[90] P. A. R. Ade et al., “Detection of b-mode polarization at degree angular scales
by bicep2,” Phys. Rev. Lett., vol. 112, pp. 241101–241113, (2014).

[91] R. Dicke, Gravitation and the Universe: The Jayne Lectures for 1969. American
Philosophical Society.

[92] R. Dicke and P. Peebles, General Relativity: An Einstein Centenary Survey. Cam-
bridge University Press, (1979).

[93] W. Rindler, “Visual horizons in world-models,” Mon. Not. Roy. Astron. Soc.,
vol. 116, p. 662–677, (1956).

[94] C. W. Misner, “The isotropy of the universe,” Astrophysical Journal, vol. 151,
pp. 431–457, (1967).

[95] A. H. Guth and S. Tye, “Phase transitions and magnetic monopole production
in the very early universe,” Phys. Rev. Lett., vol. 44, pp. 631–13, (1980).

[96] D. S. M. B. Einhorn and D. Toussaint, “Are grand unified theories compatible
with standard cosmology?,” Phys. Rev. D, vol. 21, pp. 3295–3298, (1980).

[97] W. O. P. Price, E. Shirk and L. S. Pinsky, “Evidence for detection of a moving
magnetic monopole,” Phys. Rev. Lett, vol. 35, p. 487–490, (1975).

[98] B. Cabrera, “First results from a superconductive detector for moving mag-
netic monopoles,” Phys. Rev. Lett, vol. 48, p. 1378–1380, (1982).

[99] S. A. P. Price, S.-l. Guo and R. Fleischer, “Search for gut magnetic monopoles
at a flux level below the parker limit,” Phys. Rev. Lett, vol. 52, pp. 1265–1268,
(1984).

[100] M. Ambrosio et al., “Search for nucleon decays induced by gut magnetic
monopoles with the macro experiment,” Eur. Phys. J. C, vol. 26, p. 163–172,
(2002).

[101] J. Pinfold, “Moedal becomes the lhc’s magnificent seventh,” CERN Cour.,
vol. 50N4, p. 19–20, (2010).

[102] A. H. Guth, “The inflationary universe: A possible solution to the horizon and
flatness problems,” Phys. Rev. D, vol. 23, p. 347–356, (1981).

[103] A. D. Linde and R. Brandenberger, Inflation and quantum cosmology. Boston
USA Academic, (1990).

[104] A. D. Linde, “Particle physics and inflationary cosmology,” Contemp. Concepts
Phys., vol. 5, pp. 1–362, (1990).

[105] A. H. Guth, The inflationary universe: The quest for a new theory of cosmic origins.
Addison-Wesley, (1997).

[106] S. Winitzki, Eternal inflation. World Scientific Press, (2008).

[107] M. Lemoine, J. Martin, and P. Peter, Inflationary cosmology. Springer-Verlag
Press, (2008).

[108] A. A. Starobinsky, “A new type of isotropic cosmological models without sin-
gularity,” Phys. Lett. B, vol. 91, p. 99–102, (1980).



BIBLIOGRAPHY 119

[109] D. H. Lyth and A. Riotto, “Particle physics models of inflation and the cosmo-
logical density perturbation,” Phys. Rep., vol. 314, p. 1–146, (1999).

[110] A. R. Liddle, P. Parsons, and J. D. Barrow, “Formalising the slow-roll approxi-
mation in inflation,” Phys. Rev. D, vol. 50, pp. 7222–7232, (1994).

[111] D. J. Schwarz, C. A. Terrero-Escalante, and A. A. Garcia, “Higher order correc-
tions to primordial spectra from cosmological inflation,” Phys. Lett. B, vol. 517,
p. 243–249, (2001).

[112] D. J. Schwarz and C. A. Terrero-Escalante, “Primordial fluctuations and cos-
mological inflation after wmap 1.0,” JCAP, vol. 0408, pp. 003–0021, (2004).

[113] M. S. Turner, “Coherent scalar field oscillations in an expanding universe,”
Phys. Rev. D, vol. 28, pp. 1243–1254, (1983).

[114] L. Kofman, A. D. Linde, and A. A. Starobinsky, “Towards the theory of reheat-
ing after inflation,” Phys. Rev. D, vol. 56, p. 3258–3295, (1997).

[115] B. A. Bassett, D. I. Kaiser, and R. Maartens, “General relativistic preheating
after inflation,” Phys. Lett. B, vol. 455, p. 84–89, (1999).

[116] F. Finelli and R. H. Brandenberger, “Parametric amplification of metric fluctu-
ations during reheating in two field models,” Phys. Rev. D, vol. 62, pp. 083502–
083514, (2000).

[117] S. T. B. A. Bassett and D. Wands, “Inflation dynamics and reheating,” Rev. Mod.
Phys., vol. 78, p. 537–589, (2006).

[118] A. Mazumdar and J. Rocher, “Particle physics models of inflation and curva-
ton scenarios,” Phys. Rep., vol. 497, p. 85–215, (2011).

[119] K. Jedamzik, M. Lemoine, and J. Martin, “Collapse of small-scale density
perturbations during preheating in single field inflation,” JCAP, vol. 1009,
pp. 034–040, (2010).

[120] K. Jedamzik, M. Lemoine, and J. Martin, “Generation of gravitational waves
during early structure formation between cosmic inflation and reheating,”
JCAP, vol. 2010, pp. 021–031, (2010).

[121] R. Easther, R. Flauger, and J. B. Gilmore, “Delayed reheating and the break-
down of coherent oscillations,” JCAP, vol. 1104, pp. 027–044, (2011).

[122] A. Albrecht, P. J. Steinhardt, M. S. Turner, and F. Wilczek, “Reheating an infla-
tionary universe,” Phys. Rev. Lett., vol. 48, pp. 1437–1440, (1982).

[123] L. Kofman, A. D. Linde, and A. A. Starobinsky, “Reheating after inflation,”
Phys. Rev. Lett., vol. 73, p. 3195–3198, (1994).

[124] Y. S. J. H. Traschen and R. H. Brandenberger, “Universe reheating after infla-
tion,” Phys. Rev. D, vol. 51, p. 5438–5455, (1995).

[125] V. Kuzmin and V. Rubakov, “Ultrahigh-energy cosmic rays: A window to
postinflationary reheating epoch of the universe?,” Phys. Atom. Nucl., vol. 61,
p. 1028–1030, (1998).



120 BIBLIOGRAPHY

[126] F. Finelli and R. H. Brandenberger, “Parametric amplification of gravitational
fluctuations during reheating,” Phys. Rev. Lett., vol. 82, p. 1362–1365, (1999).

[127] E. W. Kolb, “Dynamics of the inflationary era,” [arXiv:hep-ph/9910311].

[128] S. Dodelson, W. H. Kinney, and E. W. Kolb, “Cosmic microwave background
measurements can discriminate among inflation models,” Phys. Rev. D, vol. 56,
pp. 3207–3215, (1997).

[129] A. D. Linde, “Chaotic inflation,” Phys. Lett. B, vol. 129, pp. 177–181, (1983).

[130] K. Freese, J. A. Frieman, and A. V. Olinto, “Natural inflation with pseudo
nambu-goldstone bosons,” Phys. Rev. Lett., vol. 65, pp. 3233–3236, (1990).

[131] S. R. Coleman and E. J. Weinberg, “Radiative corrections as the origin of spon-
taneous symmetry breaking,” Phys. Rev. D, vol. 7, pp. 1888–1910, (1888).

[132] A. D. Linde and A. Riotto Phys. Rev. D, vol. 56, pp. 1841–1844, (1997).

[133] E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D. Stewar, and D. Wands, “False
vacuum inflation with einstein gravity,” Phys. Rev. D, vol. 49, pp. 6410–6433,
(1994).

[134] A. D. Linde, “Hybrid inflation,” Phys. Rev. D, vol. 49, pp. 748–754, (1994).

[135] V. Faraoni, Cosmology in Scalar-Tensor Gravity. Springer Press, (2004).

[136] Y. Fujii and K. Maeda, Scalar-Tensor Theory of Gravitation. Cambridge Univer-
sity Press, (2007).

[137] I. Quiros, “Selected topics in scalar–tensor theories and beyond,” Int. J. Mod.
Phys. D, vol. 28, pp. 1930012–1930192, (2019).

[138] L. Randall and R. Sundrum, “Large mass hierarchy from a small extra dimen-
sion,” Phys. Rev. Lett., vol. 83, p. 3370–3373, (1999).

[139] L. Randall and R. Sundrum, “An alternative to compactification,” Phys. Rev.
Lett., vol. 83, p. 4690–4693, (1999).

[140] G. Dvali, G. Gabadadze, and M. Porrati, “4D gravity on a brane in 5D
minkowski space,” Phys. Lett. B, vol. 485, p. 208–214, (2000).

[141] G. Dvali and S. H. H. Tye, “Brane inflation,” Phys. Lett. B, vol. 450, pp. 72–82,
(1999).

[142] R. Maartens, D. Wands, B. A. Bassett, and I. Heard, “Chaotic inflation on the
brane,” Phys. Rev. D, vol. 62, pp. 041301–041305, (2000).

[143] A. H. Guth, “Eternal inflation and its implications,” Journal of Physics A, vol. 40,
pp. 6811–6826, (2007).

[144] P. Zhang and M. C. Johnson, “Testing eternal inflation with the kinetic sunyaev
zel’dovich effect,” JCAP, vol. 1506, pp. 046–078, (2015).

[145] C. L. Wainwright, M. C. Johnson, H. V. Peiris, A. Aguirre, L. Lehner, and S. L.
Liebling, “Simulating the universe(s): from cosmic bubble collisions to cosmo-
logical observables with numerical relativity,” JCAP, vol. 1403, pp. 030–085,
(2014).



BIBLIOGRAPHY 121

[146] S. M. Feeney, M. C. Johnson, and H. V. P. J. D. McEwen, D. J. Mortlock, “Hi-
erarchical bayesian detection algorithm for early-universe relics in the cosmic
microwave background,” Phys. Rev. D, vol. 88, pp. 043012–043039, (2013).

[147] M. C. Johnson, H. V. Peiris, and L. Lehner, “Determining the outcome of
cosmic bubble collisions in full general relativity,” Phys. Rev. D, vol. 85,
pp. 083516–083552.

[148] S. M. Feeney, M. C. Johnson, D. J. Mortlock, and H. V. Peiris, “First observa-
tional tests of eternal inflation: Analysis methods and wmap 7-year results,”
Phys. Rev. D, vol. 84, pp. 043507–043542, (2011).

[149] H. Kodama and M. Sasaki, “Cosmological perturbation theory,” Prog. Theor.
Phys. Suppl., vol. 78, p. 1–166, (1984).

[150] A. Linde, “Particle physics and inflationary cosmology,” [arXiv:hep-
th/0503203].

[151] D. H. Lyth and A. Riotto, “Inflation dynamics and reheating,” Phys. Rep.,
vol. 314, pp. 1–146, (1999).

[152] A. Riotto, “Inflation and the theory of cosmological perturbations,” [arXiv:hep-
ph/0210162].

[153] J. E. Lidsey, A. R. Liddle, E. W. Kolb, and E. J. Copeland, “Reconstructing the
inflaton potential—an overview,” Rev. Mod. Phys., vol. 69, pp. 373–410, (1997).

[154] B. A. Bassett, S. Tsujikawa, and D. Wands, “Inflation dynamics and reheating,”
Rev. Mod. Phys., vol. 78, pp. 537–589, (2006).

[155] D. W. K. Malik, “Cosmological perturbations,” Phys. Rep., vol. 475, pp. 1–51,
(2009).

[156] V. Acquaviva, N. Bartolo, S. Matarrese, and A. Riotto, “Second-order cosmo-
logical perturbations from inflation,” Nucl. Phys. B, vol. 119-148, p. 667, (2003).

[157] J. M. Bardeen, “Gauge-invariant cosmological perturbations,” Phys. Rev. D,
vol. 22, pp. 1882–1905, (1980).

[158] V. N. Lukash, “Production of phonons in an isotropic universe,” Sov. Phys.
JETP, vol. 52, pp. 807–814, (1980).

[159] D. H. Lyth, “Large-scale energy-density perturbations and inflation,” Phys.
Rev. D, vol. 31, pp. 1792–1798, (1985).

[160] V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, “Theory of cosmo-
logical perturbations,” Phys. Rev. D, vol. 215, pp. 203–333, (1992).

[161] V. F. Mukhanov, “Gravitational instability of the universe filled with a scalar
field,” Pisma Zh. Eksp. Teor. Fiz, vol. 41, pp. 493–496, (1985).

[162] M. Sasaki, “Large scale quantum fluctuations in the inflationary universe,”
Prog. Theor. Phys., vol. 76, p. 1036–1046, (1986).

[163] V. F. Mukhanov, “Quantum theory of gauge-invariant cosmological perturba-
tions,” Sov. Phys. JETP, vol. 67, pp. 1297–1302, (1988).



122 BIBLIOGRAPHY

[164] D. H. Lyth and D. Wands, “Conserved cosmological perturbations,” Phys. Rev.
D, vol. 68, pp. 103515–103535, (2003).

[165] J. c. Hwang and H. Noh, “Cosmological perturbations in generalized gravity
theories,” Phys. Rev. D, vol. 54, pp. 1460–1473, (1996).

[166] E. D. Stewart and D. H. Lyth, “A more accurate analytic calculation of the spec-
trum of cosmological perturbations produced during inflation,” Phys. Lett. B,
vol. 302, pp. 171–175, (1993).

[167] E. F. Bunn, A. R. Liddle, and M. J. White Phys. Rev. D, vol. 54, pp. 5917–5921,
(1996).

[168] A. Miller et al., “A measurement of the angular power spectrum of the mi-
crowave background made from the high chilean andes,” Astrophysical Journal,
vol. 521, p. L79 – L82, (1999).

[169] A. M. et al., “A measurement of from the north american test flight of
boomerang,” Astrophysical Journal, vol. 536, p. L63 – L66, (2000).

[170] S. Hanany et al., “Maxima-1: A measurement of the cosmic microwave back-
ground anisotropy on angular scales of 10’-5 ,” Astrophysical Journal, vol. 545,
p. L5–L9, (2000).

[171] P. de Bernardis et al., “A flat universe from high-resolution maps of the cosmic
microwave background radiation,” Nature, vol. 404, p. 955–959, (2000).

[172] D. J. Fixsen et al., “The cosmic microwave background spectrum from the full
cobe firas data set,” Astron. J, vol. 473, pp. 576–587, (1996).

[173] J. Bond and G. Efstathiou, “The statistics of cosmic background radiation fluc-
tuations,” Mon. Not. R. Ast. Soc., vol. 226, pp. 655–687, (1987).

[174] A. Kosowsky, “Cosmic microwave background polarization,” Ann. Phys.,
vol. 246, pp. 49–85, (1996).

[175] M. Kamionkowski, A. Kosowsky, and A. Stebbins, “Statistics of cosmic mi-
crowave background polarization,” Phys. Rev. D, vol. 55, pp. 73688–7388,
(1997).

[176] M. Zaldarriaga and U. Seljak, “An all-sky analysis of polarization in the mi-
crowave background,” Phys. Rev. D, vol. 55, pp. 1830–1840, (1997).

[177] E. Newman and R. Penrose, “Note on the bondi-metzner-sachs group,” J. Math
Phys., vol. 7, pp. 863 –870, (1966).

[178] U. Seljak, “Measuring polarization in the cosmic microwave background,” J.
Math Phys., vol. 482, pp. 6–16, (1997).

[179] A. G. Riess et al., “Observational evidence from supernovae for an accelerat-
ing universe and a cosmological constant,” Astron. J, vol. 116, pp. 1009–1038,
(1998).

[180] S. Perlmutter et al., “Measurements of omega and lambda from 42 high-
redshift supernovae,” Astron. J, vol. 517, pp. 565–586, (1999).



BIBLIOGRAPHY 123

[181] P. J. E. Peebles and J. Yu, “Primeval adiabatic perturbation in an expanding
universe,” Astrophys. J, vol. 162, pp. 815–836, (1970).

[182] C. P. Ma and E. Bertschinger, “Cosmological perturbation theory in the syn-
chronous and conformal newtonian gauges,” Astrophys. J, vol. 455, pp. 7–25,
(1995).

[183] W. Hu and N. Sugiyama, “Anisotropies in the cosmic microwave background:
An analytic approach,” Astrophys. J, vol. 444, pp. 489–506, (1995).

[184] N. Kaiser Mon. Not. R. Ast. Soc., vol. 202, pp. Small–angle anisotropy of the
microwave background radiation in the adiabatic theory, (1983).

[185] A. H. Guth and S. Y. Pi, “Fluctuations in the new inflationary universe,” Phys.
Rev. Lett., vol. 49, pp. 1110–1113, (1982).

[186] S. W. Hawking, “The development of irregularities in a single bubble infla-
tionary universe,” Phys. Lett. B, vol. 115, pp. 295–297, (1982).

[187] J. M. Bardeen, P. J. Steinhardt, and M. S. Turner, “Spontaneous creation of al-
most scale-free density perturbations in an inflationary universe,” Phys. Rev.
D, vol. 28, pp. 679–693, (1983).

[188] V. A. Rubakov, M. V. Sazhin, and A. V. Veryaskin, “Graviton creation in the
inflationary universe and the grand unification scale,” Phys. Lett. B, vol. 115,
pp. 189–192, (1982).

[189] V. R. Fabbri and M. D. Pollock, “The effect of primordially produced gravitons
upon the anisotropy of the cosmological microwave background radiation,”
Phys. Lett. B, vol. 125, (1983).

[190] J. Peacock, “The power spectrum of galaxy clustering,” Mon. Not. R. Ast. Soc.,
vol. 253, pp. 1P–5P, (1991).

[191] M. White and W. Hu, “The sachs-wolfe effect,” Astron. Astrophys., vol. 321,
pp. 8–9, (1997).

[192] R. K. Sachs and A. M. Wolfe, “Perturbations of a cosmological model and an-
gular variations of the microwave background,” Astrophys. J, vol. 147, pp. 73–
90, (1967).

[193] A. Albrecht, D. Coulson, P. Ferreira, and J. Magueijo, “Causality, random-
ness, and the microwave background,” Phys. Rev. Lett., vol. 76, pp. 1413–1416,
(1996).

[194] B. Allen, R. R. Caldwell, S. Dodelson, L. Knox, and E. P. S. Shellard, “Cos-
mic microwave background anisotropy induced by cosmic strings on angular
scales z ≤ 15′,” Phys. Rev. Lett., vol. 79, pp. 2624–2627, (1997).

[195] U. Seljak, U. Pen, and N. Turok, “Polarization of the microwave background
in defect models,” Phys. Rev. Lett., vol. 79, pp. 1615–1618, (1997).

[196] L. Knox, N. Christensen, and C. Skordis, “The age of the universe and
the cosmological constant determined from cosmic microwave background
anisotropy measurements,” Astrophys. J Lett., vol. 563, pp. L95–L98, (2001).



124 BIBLIOGRAPHY

[197] X. Wang, M. Tegmark, and M. Zaldarriaga, “Is cosmology consistent?,” Phys.
Rev. D, vol. 65, p. 123001, (2002).

[198] W. J. Percival et al., “Parameter constraints for flat cosmologies from cmb and
2dfgrs power spectra,” Mon. Not. R. Ast. Soc., vol. 337, p. 1068, (2002).

[199] L. Knox and Y. S. Song, “Limit on the detectability of the energy scale of infla-
tion,” Phys. Rev. Lett., vol. 89, p. 011303, (2002).

[200] A. D. Linde, “Chaotic inflation,” Phys. Lett. B, vol. 129, pp. 177–181, (1983).

[201] K. Harigaya, M. Ibe, K. Schmitz, and T. T. Yanagida, “Chaotic inflation with a
fractional power-law potential in strongly coupled gauge theories,” Phys. Lett.
B, vol. 720, pp. 125–129, (2013).

[202] J. Martin, C. Ringeval, and V. Vennin, “Encyclopaedia inflationaris,” Phys. Dark
Univ., vol. 5-6, pp. 75–235, (2014).

[203] K. Harigaya, M. Ibe, K. Schmitz, and T. T. Yanagida, “Dynamical fractional
chaotic inflation – dynamical generation of a fractional power-law potential
for chaotic inflation,” Phys. Rev. D, vol. 90, pp. 123524–123591, (2014).

[204] R. Kallosh, A. Linde, and D. Roest, “Large field inflation and double α-
attractors,” JHEP, vol. 1408, pp. 052–073, (2014).

[205] J. McDonald, “A minimal sub-planckian axion inflation model with large
tensor-to-scalar ratio,” JCAP, vol. 1501, pp. 018–023, (2015).

[206] A. D. Linde, “Gravitational waves and large field inflation,” JCAP, vol. 1702,
(2017).

[207] A. Ito, A. Iyonaga, S. Kim, and J. Soda, “Dressed power-law inflation with
cuscuton,” Phys. Rev. D, vol. 99, pp. 083502–083511, (2019).

[208] V. Faraoni, “Nonminimal coupling of the scalar field and inflation,” Phys. Rev.
D, vol. 53, pp. 6813–6821, (1996).

[209] V. Faraoni, “Does the nonminimal coupling of the scalar field improve or de-
stroy inflation?,” [arxiv:gr-qc/9807066].

[210] V. Faraoni, “Inflation and quintessence with non-minimal coupling,” Phys.
Rev. D, vol. 62, pp. 023504–023539, (2000).

[211] B. L. Spokoiny, “Inflation and generation of perturbations in broken symmetric
theory of gravity,” Phys. Lett. B, vol. 147, pp. 39–43, (1984).

[212] F. Lucchin, S. Matarrese, and M. D., “Inflation with a nonminimally coupled
scalar field,” Phys. Lett. B, vol. 167, pp. 163–168, (1986).

[213] T. Futamase and K. i. Maeda, “Chaotic inflationary scenario in models hav-
ing nonminimal coupling with curvature,” Phys. Rev. D, vol. 39, pp. 399–404,
(1989).

[214] R. Fakir and W. G. Unruh, “Improvement on cosmological chaotic inflation
through nonminimal coupling,” Phys. Rev. D, vol. 41, pp. 1783–1791, (1990).



BIBLIOGRAPHY 125

[215] L. Amendola, M. Litterio, and F. Occhionero, “The phase space view of infla-
tion. 1: The non-minimally coupled scalar field,” Int. J. Mod. Phys. A, vol. 5,
pp. 3861–3886, (1990).

[216] A. S. Salopek, J. R. Bond, and J. M. Bardeen, “Designing density fluctuation
spectra in inflation,” Phys. Rev. D, vol. 40, pp. 1753–1838, (1994).

[217] D. I. Kaiser, “Primordial spectral indices from generalized einstein theories,”
Phys. Rev. D, vol. 52, pp. 4295–4306, (1995).

[218] S. Tsujikawa and B. Gumjudpai, “Density perturbations in generalized ein-
stein scenarios and constraints on non-minimal couplings from the cosmic mi-
crowave background,” Phys. Rev. D, vol. 69, pp. 123523–123537, (2004).

[219] K. Nozari and S. D. Sadatian, “Non-minimal inflation after wmap3,” Mod.
Phys. Lett. A, vol. 23, pp. 2933–2945, (2007).

[220] F. Bezrukov and M. Shaposhnikov, “The standard model higgs boson as the
inflaton,” Phys. Lett. B, vol. 659, pp. 703–706, (2008).

[221] F. Bauer and D. A. Demir, “Inflation with non-minimal coupling: Metric ver-
sus palatini formulations,” Phys. Lett. B, vol. 665, pp. 222–226, (2008).

[222] S. C. Park and S. Yamaguchi, “Inflation by non-minimal coupling,” JCAP,
vol. 0808, pp. 009–0019, (2008).

[223] K. Nozari and S. Shafizadeh, “Non-minimal inflation revisited,” Phys. Scripta,
vol. 82, pp. 015901–015917, (2010).

[224] A. Linde, M. Noorbala, and A. Westphal, “Observational consequences of
chaotic inflation with non-minimal coupling to gravity,” JCAP, vol. 1103,
pp. 013–021, (2011).

[225] M. Artymowski, A. Dapor, and T. Pawlowski, “Inflation from non-minimally
coupled scalar field in loop quantum cosmology,” JCAP, vol. 1306, pp. 010–
023, (2011).

[226] S. Tsujikawa, “Observational tests of inflation with a field derivative coupling
to gravity,” Phys. Rev. D, vol. 85, pp. 083518–083528, (2012).

[227] M. A. Skugoreva, S. V. Sushkov, and A. V. Toporensky, “Cosmology with non-
minimal kinetic coupling and a power-law potential,” Phys. Rev. D, vol. 88,
pp. 083539–083548, (2013).

[228] R. Kallosh and A. Linde, “Non-minimal inflationary attractors,” JCAP,
vol. 1310, pp. 033–045, (2013).

[229] D. C. Edwards and A. R. Liddle, “The observational position of simple non-
minimally coupled inflationary scenarios,” JCAP, vol. 1409, p. 059, (2014).

[230] S. del Campo, C. Gonzalez, and R. Herrera, “Power law inflation with a non-
minimally coupled scalar field in light of planck 2015 data: the exact versus
slow roll results,” Astrophys. Space Sci., vol. 358, pp. 31–36, (2015).

[231] K. Nozari and N. Rashidi, “Testing an inflation model with non-minimal
derivative coupling in the light of planck 2015 data,” Adv. High Energy Phys.,
vol. 2016, pp. 1252689–1252704, (2016).



126 BIBLIOGRAPHY

[232] T. Chiba and K. Kohri, “Consistency relations for large field inflation: Non-
minimal coupling,” PTEP, vol. 2015, p. 023E01, (2015).

[233] N. Yang, Q. Fei, Q. Gao, and Y. Gong, “Inflationary models with non-
minimally derivative coupling,” Class. Quantum Grav., vol. 33, pp. 205001–
205021, (2016).

[234] L. Boubekeur, E. Giusarma, O. Mena, and H. Ramirez, “Does current data
prefer a non-minimally coupled inflaton?,” Phys. Rev. D, vol. 91, pp. 103004–
103008, (2015).

[235] M. Pieroni, “β-function formalism for inflationary models with a non-minimal
coupling with gravity,” JCAP, vol. 1602, pp. 012–027, (2016).

[236] C. Geng, C. Lee, S. Sami, E. N. Saridakis, and A. A. Starobinsky, “Obser-
vational constraints on successful model of quintessential inflation,” JCAP,
vol. 1706, pp. 011–024, (2017).

[237] T. Tenkanen, “Resurrecting quadratic inflation with a non-minimal coupling
to gravity,” JCAP, vol. 1712, pp. 001–011, (2017).

[238] M. Shokri, “A revision to the issue of frames by non-minimal large field infla-
tion,” [gr-qc:1710.04990].

[239] T. Markkanen, T. Tenkanen, V. Vaskonen, and H. Veermäe, “Quantum correc-
tions to quartic inflation with a non-minimal coupling: metric vs. palatini,”
JCAP, vol. 1803, pp. 029–044, (2018).

[240] N. Kaewkhao and B. Gumjudpai, “Cosmology of non-minimal derivative cou-
pling to gravity in palatini formalism and its chaotic inflation,” Phys. Dark
Univ., vol. 20, pp. 20–27, (2018).

[241] N. D. Birrell and P. C. Davies, Quantum Fields in Curved Space. Cambridge
University Press, (1980).

[242] C. G. Gallan, S. Coleman, and R. Jackiw, “A new improved energy-momentum
tensor,” Ann. Phys., vol. 59, pp. 42–73, (1970).

[243] D. Z. Freedman and E. J. Weinberg, “The energy-momentum tensor in scalar
and gauge field theories,” Ann. Phys., vol. 87, pp. 354–396, (1974).

[244] D. Z. Freedman, I. J. Muzinich, and E. J. Weinberg, “On the energy-momentum
tensor in gauge field theories,” Ann. Phys., vol. 87, pp. 95–146, (1974).

[245] R. Fakir and W. G. Unruh, “Induced-gravity inflation,” phys. Rev. D, vol. 41,
pp. 1792–1795, (1990).

[246] R. Fakir and W. G. Unruh, “Quantum creation of universes with non-minimal
coupling,” phys. Rev. D, vol. 41, pp. 3012–3023, (1990).

[247] L. F. Abbott, “Gravitational effects on the SU(5) breaking phase transition for
a coleman-weinberg potential,” Nucl. phys. B, vol. 185, pp. 233–238, (1981).

[248] R. Fakir and W. G. Unruh, “Cosmological density perturbations with modified
gravity,” Astrophysical Journal, vol. 394, pp. 396–410, (1992).



BIBLIOGRAPHY 127

[249] E. W. Kolb, D. S. Salopek, and M. S. Turner, “Origin of density fluctuations in
extended inflation.,” Phys. Rev. D, vol. 42, pp. 3925–3935, (1990).

[250] N. Makino and M. Sasaki, “The density perturbation in the chaotic inflation
with non-minimal coupling,” Prog. Theor. Phys. Suppl., vol. 86, pp. 103–118,
(1990).

[251] M. Kawasaki, M. Yamaguchi, and T. Yanagida, “Natural chaotic inflation in
supergravity,” Phys. Rev. Lett., vol. 85, pp. 3572–3575, (2000).

[252] E. Silverstein and A. Westphal, “Monodromy in the cmb: Gravity waves and
string inflation,” Phys. Rev. D, vol. 78, pp. 106003–06045, (2008).

[253] L. McAllister, E. Silverstein, and A. Westphal, “Gravity waves and linear infla-
tion from axion monodromy,” Phys. Rev. D, vol. 82, pp. 046003–046043, (2010).

[254] R. Flauger, L. McAllister, E. Pajer, A. Westphal, and G. Xu, “Oscillations in the
cmb from axion monodromy inflation,” JCAP, vol. 009, p. 1006, (2010).

[255] N. Kaloper and L. Sorbo, “A natural framework for chaotic inflation,” JCAP,
vol. 102, pp. 121301–121304, (2009).

[256] N. Kaloper, A. Lawrence, and L. Sorbo, “An ignoble approach to large field
inflation,” JCAP, vol. 1103, p. 023, (2011).

[257] N. Kaloper and A. Lawrence, “Natural chaotic inflation and uv sensitivity,”
Phys. Rev. D, vol. 90, pp. 023506–023513, (2014).

[258] L. Alabidi and I. Huston, “An update on single field models of inflation in
light of WMAP7,” JCAP, vol. 1008, pp. 037–042, (2010).

[259] J. Martin, C. Ringeval, and R. Trotta, “Hunting down the best model of infla-
tion with bayesian evidence,” Phys. Rev. D, vol. 83, pp. 063524–063535, (2011).

[260] R. Kallosh and A. Linde, “New models of chaotic inflation in supergravity,”
JCAP, vol. 1011, pp. 011–021, (2010).

[261] F. Takahashi, “Linear inflation from running kinetic term in supergravity,”
Phys. Lett. B, vol. 693, pp. 140–143, (2010).

[262] R. Kallosh, A. Linde, and T. Rube, “General inflaton potentials in supergrav-
ity,” Phys. Rev. D, vol. 83, pp. 043507–043512, (2011).

[263] P. Ade et al., “Planck 2015 results. xiii. cosmological parameters,” Astron. As-
trophys., vol. 594, pp. A13–A75, (2016).

[264] P. Ade et al., “Improved constraints on cosmology and foregrounds from bi-
cep2 and keck array cosmic microwave background data with inclusion of 95
ghz band.,” Phys. Rev. Lett., vol. 116, p. 031302, (2016).

[265] A. Lewis and S. Bridle, “Cosmological parameters from cmb and other data:
A monte carlo approach,” Phys. Rev. D, vol. 66, p. 103511, (2002).

[266] A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of cosmic
microwave background anisotropies in closed friedmann-robertson-walker
models,” Astrophysical Journal, vol. 538, pp. 473–476, (2000).



128 BIBLIOGRAPHY

[267] N. Aghanim et al., “Planck 2015 results. xi. cmb power spectra likelihoods and
robustness of parameters,” Astrophysical Journal, vol. 594, p. A11, (2016).

[268] Y. Akrami et al., “Planck 2018 results. x. constraints on inflation,” [arXiv:astro-
ph/1807.06211].

[269] A. Vilenkin, “Classical and quantum cosmology of the starobinsky inflation-
ary model,” Phys. Rev. D, vol. 32, pp. 2511–2547, (1985).

[270] M. B. Mojic, M. S. Morris, and S. Wei-Mo, “The R2 cosmology: Inflation with-
out a phase transition.,” Phys. Rev. D, vol. 34, pp. 2934–2962, (1986).

[271] L. H. Ford, “Gravitational particle creation and inflation,” Phys. Rev. D, vol. 35,
pp. 2955–2977, (1987).

[272] H. Motahashi, A. A. Starobinsky, and J. Yokoyama, “Phantom boundary cross-
ing and anomalous growth index of fluctuations in viable f(R) models of cos-
mic acceleration,” Prog. Theor. Phys., vol. 123, pp. 887–902, (2010).

[273] H. Motahashi, A. A. Starobinsky, and J. Yokoyama, “Future oscillations around
phantom divide in f(r) gravity,” JCAP., vol. 1106, pp. 006–0017, (2011).

[274] R. Gannouji, B. Moraes, and D. Polarski, “The growth of matter perturbations
in f(R) models,” JCAP., vol. 0902, pp. 034–047, (2009).

[275] H. Motahashi, A. A. Starobinsky, and J. Yokoyama, “f(R) gravity and its cos-
mological implications,” Int. J. Mod. Phys. D., vol. 20, pp. 1347–1355, (2009).

[276] S. Tsujikawa, R. Gannouji, B. Moraes, and D. Polarski, “The dispersion
of growth of matter perturbations in f(R) gravity,” Phys. Rev. D, vol. 80,
pp. 084044–084054, (2009).

[277] H. Motahashi, A. A. Starobinsky, and J. Yokoyama, “Matter power spectrum in
f(R) gravity with massive neutrinos,” Prog. Theor. Phys., vol. 124, pp. 541–546,
(2010).

[278] H. Motahashi, A. A. Starobinsky, and J. Yokoyama, “Cosmology based on f(R)
gravity admits 1 ev sterile neutrinos,” Phys. Rev. Lett., vol. 110, pp. 121302–
121306, (2013).

[279] S. Tsujikawa, “Observational signatures of f(R) dark energy models that satisfy
cosmological and local gravity constraints,” Phys. Rev. D, vol. 77, pp. 023507–
023519, (2008).

[280] S. Appleby and R. Battye, “Aspects of cosmological expansion in f(R) gravity
models,” JCAP, vol. 0805, p. 019, (2008).

[281] A. V. Frolov, “A singularity problem with f(R) dark energy,” Phys. Rev. Lett.,
vol. 101, pp. 061103–061107, (2008).

[282] T. Kobayashi and K. i Maeda, “Relativistic stars in f(R) gravity, and absence
thereof,” Phys. Rev. D, vol. 78, pp. 064019–064027, (2008).

[283] S. A. Appleby, R. A. Battye, and A. A. Starobinsky, “Curing singularities in
cosmological evolution of f(R) gravity,” JCAP, vol. 1006, p. 005, (2010).



BIBLIOGRAPHY 129

[284] J. Aguirre et al., “The simons observatory: Science goals and forecasts,” JCAP,
vol. 1902, p. 056, (2019).

[285] K. N. Abazajian et al., “Cmb-s4 science book, first edition,” [astro-
ph:1610.02743].

[286] A. Suzuki et al., “The litebird satellite mission: Sub-kelvin instrument,” Journal
of Low Temperature Physics, vol. 193, pp. 1048–1056, (2018).

[287] H. Schmidt, “Variational derivatives of arbitrarily high order and multi-
inflation cosmological models,” JCAP, vol. 7, pp. 1023–1031, (1989).

[288] K. i. Maeda, “Towards the einstein-hilbert action via conformal transforma-
tion,” JCAP, vol. 39, pp. 3159–3162, (1989).

[289] V. Muller, H. Schmidt, and A. A. Starobinsky, “Power-law inflation as an at-
tractor solution for inhomogeneous cosmological models,” Class. Quant. Grav.,
vol. 7, pp. 1163–1168, (1990).

[290] S. Gottlober, V. Muller, H. Schmidt, and A. A. Starobinsky, “Models of chaotic
inflation,” Int. J. Mod. Phys. D, vol. 1, pp. 257–279, (1992).

[291] J. Martin, C. Ringeval, R. Trotta, and V. Vennin, “Compatibility of planck and
bicep2 in the light of inflation,” Phys. Rev. D, vol. 90, p. 063501, (2014).

[292] A. Codello, J. Joergensen, F. Sannino, and O. Svendsent, “Marginally deformed
starobinsky gravity,” JHEP, vol. 1502, pp. 050–057, (2015).

[293] R. Costa and H. Nastase, “General f(R) and conformal inflation from minimal
supergravity plus matter,” JHEP, vol. 1406, p. 145, (2014).

[294] G. K. Chakravarty and S. Mohanty, “Power law starobinsky model of inflation
from no-scale sugra,” [hep-ph:1405.1321].

[295] H. Motahashi, “Consistency relation for Rp inflation,” Phys. Rev. D, vol. 91,
p. 064016, (2014).

[296] T. Chiba and M. Yamaguchi, “Extended slow-roll conditions and rapid-roll
conditions,” JCAP, vol. 0810, pp. 021–035, (2008).

[297] J.-O. Gong, J. chan Huang, W. I. park, M. Sasaki, and Y.-S. Song, “Conformal
invariance of curvature perturbation,” JCAP, vol. 2011, pp. 023–023, (2011).

[298] H. C. Chiang et al., “Measurement of cosmic microwave background polar-
ization power spectra from two years of bicep data,” A. J., vol. 711, p. 1123,
(2010).

[299] P. A. R. Ade et al., “Planck 2013 results. xxii. constraints on inflation,” Astron.
Astrophys., vol. 571, p. A22, (2014).

[300] P. A. R. Ade et al., “Planck 2015 results. xx. constraints on inflation,” Astron.
Astrophys., vol. 579, p. A20, (2016).

[301] M. Shokri, F. Renzi, and A. Melchiorri, “Cosmic microwave background con-
straints on non-minimal couplings in inflationary models with power law po-
tentials,” Phys. Dark Univ., vol. 2008, pp. 2212–6864, (2019).



130 BIBLIOGRAPHY

[302] P. A. R. Ade et al., “Planck 2013 results. xvi. cosmological parameters,” A. A.,
vol. 571, p. A16, (2014).

[303] H. Bateman, “The conformal transformations of space of four dimensions
and their applications to geometrical optics,” Proc. London Math. Soc., vol. 8,
p. 223–264, (1910).

[304] H. A. Kastrup, “The transformations of the electrodynamical equations,” An-
nalen Phys., vol. 17, pp. 631–690, (2008).

[305] J. L. Synge, Relativity: The General Theory. Elsevier Science Publishing, (1960).

[306] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-Time. Cam-
bridge University Press, (1973).

[307] I. L. Shapiro and H. Takata, “Conformal transformation in gravity,” Phys. Lett.
B, vol. 361, pp. 31–37, (1995).

[308] I. L. Shapiro, “On the conformal transformation and duality in gravity,” Class.
Quant. Grav., vol. 14, pp. 391–406, (1997).

[309] V. Faraoni, E. Gunzig, and P. Nardone, “Conformal transformations in classical
gravitational theories and in cosmology,” Fund. Cosmic Phys., vol. 20, pp. 121–
173, (1999).

[310] D. F. Carneiro, E. A. Freiras, B. Gonçalves, A. G. de Lima, and I. L. Shapiro, “On
useful conformal tranformations in general relativity,” Grav. Cosmol., vol. 10,
pp. 305–312, (2004).

[311] S. Carloni, E. Elizalde, and S. Odintsov, “Conformal transformations in cos-
mology of modified gravity: the covariant approach perspective,” Gen. Rel.
Grav., vol. 42, pp. 1667–1705, (2010).

[312] M. P. Dabrowski, J. Garecki, and D. B. Blaschke, “Conformal transformations
and conformal invariance in gravitation,” Annalen Phys., vol. 18, pp. 13–32,
(2009).

[313] K. I. Maeda, “Towards the einstein-hilbert action via conformal transforma-
tion,” Fund. Cosmic Phys., vol. 39, pp. 3159–3166, (1989).

[314] D. Wands, “Extended gravity theories and the einstein-hilbert action,” Class.
Quant. Grav., vol. 11, pp. 269–280, (1994).

[315] G. t’Hooft and M. Veltman, “One-loop divergencies in the theory of gravita-
tion,” Ann. Inst. H. Poincare. A, vol. 20, pp. 69–94, (1974).

[316] S. Deser and P. V. Nieuwenhuisen, “Nonrenormalizability of the quantized
dirac-einstein system,” Phys. Rev. D, vol. 10, pp. 411–440, (1974).

[317] A. S. M. H. Goroff, “The ultraviolet behavior of einstein gravity,” Nucl. Phys.
B, vol. 266, pp. 709–736, (1986).

[318] E. S. Fradkin and A. A. Tseytlin, “Renormalizable asymptotically free quantum
theory of gravity,” Nucl. Phys. B, vol. 201, pp. 469–491, (1982).

[319] I. L. Shapiro and A. G. Jacksenaev, “A four-dimensional theory for quantum
gravity with conformal and non-conformal explicit solutions,” Phys. Lett. B,
vol. 324, p. 284, (1994).


	Abstract
	Acknowledgements
	Introduction
	Fundamental Cosmology
	The Principles of General Relativity
	Mach's Principle
	Equivalence Principle
	General Covariance Principle
	Correspondence Principle

	The Evidence of General Relativity
	Perihelion Precession of Mercury
	Gravitational Lensing
	Gravitational Redshift
	Gravitational Waves

	Field Equations
	The Solutions of General Relativity
	Friedmann–Lemaître–Robertson–Walker Solution
	Black Hole Solution

	The Standard Model of Cosmology
	Dynamical Universe
	Single Component Universe
	Curvature
	Radiation
	Matter
	Cosmological Constant

	Present Universe
	Dark Energy
	Dark Matter
	Light Elements
	Stars
	Neutrinos
	Heavy Elements


	Thermal History of the Universe
	Age of the Universe
	Universe Stages

	Hot Big Bang Theory
	Proofs of HBB Theory
	An Expanding Universe
	Abundance of Light Elements
	Cosmic Microwave Background

	Shortcomings of HBB Theory
	Flatness Problem
	Horizon Problem
	Monopole Problem



	Cosmic Inflation
	Solution of HBB Problems
	Flatness Problem
	Horizon Problem
	Monopole Problem

	Single Field Model
	Reheating Process
	Evaluation of Inflaton
	Decay of Inflaton
	Reheating Temperature

	Some Inflationary Models
	Basic Inflationary Models
	Large Field Potentials
	Small Field Potentials
	Hybrid Potentials

	Inflation in Modified Theories of Gravity
	f(R) Gravity
	Scalar-Tensor Gravity
	Braneworld Gravity

	Eternal Inflation

	Inflationary Perturbations
	Metric Perturbations
	Scalar Perturbations
	Vector Perturbations
	Tensor Perturbations

	Field Equations
	Scalar Perturbations
	Vector Perturbations
	Tensor Perturbations

	Primordial Power Spectra
	The Power Spectra in Single Field Inflation


	Cosmic Microwave Background
	Discovery and Detection
	CMB Power Spectrum
	Primary CMB Anisotropies
	Temperature Anisotropy
	Cosmological Parameters
	Sound Waves
	Fluid Dynamics
	Initial Conditions
	Silk Damping
	Acoustic Peaks Information

	Polarization Anisotropy

	Secondary CMB Anisotropies
	Reionization Era
	Sunyaev-Zel’dovich Effect
	Integrated Sachs-Wolfe Effect


	Non-Minimal Large Field Inflationary Models
	NMC Idea
	The Inflationary Analysis in Jordan Frame
	The Inflationary Analysis in Einstein Frame
	Large Field Potential
	Case of n=4
	Case of n=4 with n1
	Case of V
	Case of V2
	Case of V3
	Case of V23
	Case of V43


	Analysis Method
	The Results

	R2p Inflationary Models
	The Model
	Comparison with Recent Experimental Data and Expected Signal
	Results for Starobinsky Inflation
	Results for Near-Starobinsky Inflation 

	Conclusion
	Conformal Transformation
	Introduction
	Einstein's Gravity
	Scalar-Tensor Theories of Gravity
	Non-Minimally Coupled Theories of Gravity
	f(R) Theories of Gravity


