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Abstract

Some physical systems are characterized by regimes in which entropy is a decreasing
function of the internal energy, meaning that they can achieve “negative absolute
temperature”. Such states have been experimentally realized in various contexts,
from two-dimensional hydrodynamics to nuclear spins and Bose condensates, and
many important theoretical results are available. The usage of negative values of
the temperature, however, is not universally accepted, and during the last years a
stimulating debate about the possibility to include this formalism in the framework
of Statistical Mechanics has been attracting the attention of many authors.

Motivated by the open questions on this topic, in the present Thesis we study a
class of Hamiltonian systems characterized by bounded kinetic terms; these models
achieve negative temperature in their high-energy regimes, therefore they provide a
preferential tool for the analytical and numerical investigation of such states.

First we characterize the equilibrium properties of these models. We discuss the
possibility to achieve thermalization between systems at negative temperature, the
consequent validity of a Zeroth Principle of Thermodynamics also for these states,
and the non-trivial case of long-range interactions, inducing inequivalence between
statistical ensembles. Then, aiming at a consistent generalization of Einstein rela-
tion and Langevin formalism to cases with negative temperature, we address the
problem of Brownian motion of slow particles characterized by bounded kinetic
terms, coupled to suitable thermal baths. Classical topics of out-of-equilibrium
Statistical Mechanics, such as response theory and Fourier transport, are also con-
sidered for this particular class of Hamiltonian systems.

The aim of this project is to show that negative temperatures give a consistent
description of the statistical properties of the chosen class of mechanical models;
moreover, the introduction of this formalism is shown to be a necessary condition
for the extension of usual results of Statistical Mechanics to these systems. This
systematic study is expected to provide a useful analogy for more realistic phys-
ical models, and a deeper understanding of the fundamental aspects of negative
temperature.
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1

Introduction

Since the pioneering work of Boltzmann, Gibbs, Maxwell and the other founders,
who had the great intuition to make use of the tools of probability theory to explain
the thermodynamic properties of gaseous systems, Statistical Mechanics has devel-
oped in many directions. Methods originally introduced in the context of kinetic
theory, and successfully employed to the theoretical description of empirically known
laws of Thermodynamics, are now applied to a variety of physical systems with very
different properties, in fields ranging from Quantum Mechanics to Astrophysics.

Of course, the extension of the known results of Statistical Mechanics to new
classes of systems is rarely straightforward; the price to pay is often represented by
the generalization of existing techniques and formalisms to cases with new properties
and issues. It is well known, for instance, that the study of quantum systems can
be only carried out if the symmetry properties of fermions and bosons are taken
into account; the theory of glasses deals, by definition, with systems for which no
ergodicity property holds; models characterized by long-range interactions (as those
encountered in Astrophysics), or by a relatively small number of degrees of freedom,
usually display non-additive thermodynamic potentials, resulting in the failure of
ensemble equivalence.

Among the others, Statistical Mechanics has been also applied to systems ad-
mitting so-called “negative absolute temperature” states, i.e. equilibrium states
in which an increase of the internal energy corresponds to a decrease of the en-
tropy [156]. This situation typically occurs when the phase-space volume accessible
to the system is bounded. Examples of models with these properties are represented
by vortices in two-dimensional domains [144], nuclear spins [152] and Bose conden-
sates in optical lattices [159]. On the other hand, it is easy to understand that
usual matter, characterized by kinetic energy contributions which are quadratic in
the momenta, cannot be found in such states.

Although the idea of negative temperature was formulated (to the best of our
knowledge) already 70 years ago [144], and despite many evidences presented, in
the last decades, to substantiate the validity of the concept, a long-lasting debate
on the possibility of extending the dominion of Statistical Mechanics to these states
is still going on. In recent years, the discussion has been reinvigorated by the
publication of new experimental results; some authors suggest that the emergence
of negative temperature is just a drawback of the usual definition of entropy, and
it could be “solved” by adopting a different convention which leads to only positive
values of temperature [18, 82]; others claim that these states should be regarded as
out-of-equilibrium states, for which no temperature can be defined [161, 177].

The aim of this Thesis is to investigate the statistical properties of a class of
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Hamiltonian systems with bounded kinetic terms, which admit negative tempera-
ture states. We reconsider several classical results of Statistical Mechanics in the
light of the possibility of negative temperature, with the purpose to show that no
severe contradictions emerge; instead, the introduction of this formalism reveals
necessary in order to get a consistent thermostatistical description of such systems.

In Chapter 1 we will briefly review some results about negative temperature; a
synthetic report of the main positions, among the community, about the possibility
of extending Statistical Mechanics to such states allows us to explain the motivation
of this thesis.

Chapter 2 is devoted to the study of negative temperature at equilibrium. After
some general considerations on the Hamiltonian systems in which such states can
be observed, we introduce a particular class of models with bounded kinetic terms,
whose properties will be analyzed in different contexts. Through the study of ther-
malization between a large system and a small “thermometer”, we show the validity
of the Zeroth Principle of Thermodynamics also at negative temperature. We also
study a non-trivial case with long-range interactions and ensemble inequivalence.
Some of the results of this Chapter are presented in Refs. [10] and [135].

In Chapter 3 we consider the possibility to derive a Langevin-type equation
for systems with general forms of the kinetic energy, comparing our derivation with
numerical simulations. We consider in particular a case in which the thermal bath is
represented by a Hamiltonian system moving much faster than the considered degree
of freedom, and a case where this role is played by a large number of Ising spins
evolving trough a Glauber dynamics. Such results also hold at negative temperature.
These problems are discussed in Refs. [12] and [15].

In Chapter 4 we present some attempts to study classical problems of non-
equilibrium Statistical Mechanics in systems with negative temperatures as those
described in Chapter 2. We focus on response theory and Fourier transport. Some
of the results presented here are discussed in Ref. [135], others are part of a work
(in preparation) in joint collaboration with S. Iubini.

Chapter 5 is dedicated to a discussion on the computational and technical as-
pects of the work presented in this Thesis. We discuss some of the algorithms used
for simulations and data analysis. Particular attention is devoted to a procedure
to extrapolate a Langevin equation from time series of data; the power (and the
limits) of this method are illustrated through two examples of its application to
actual research problems. Such cases are discussed in Refs. [9] and [13].
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Chapter 1

Background and motivation

Far from being mere mathematical curiosities, equilibrium states at negative ab-
solute temperature (NAT) can be observed in many important physical systems,
characterized by a bound on the available phase space. Several experimental evi-
dences seem to suggest that NATs have to be taken into account in order to properly
describe equilibrium properties of such systems. Nonetheless, in recent years a stim-
ulating debate, still ongoing, on the nature of negative temperatures has attracted
the attention of the Statistical Physics community.

In this Chapter we briefly review some important examples in which NAT states
naturally appear. We also discuss the main points of the debate on negative-
temperature states, aiming at showing the rich variety of opinions among the com-
munity. The work contained in this Thesis is then presented as an answer to some
of the raised questions.

1.1 Examples of systems allowing negative temperature
Classical physical systems that are investigated by Statistical Mechanics can be
usually described by Hamiltonians of the form

H(p,q) =
∑
i

p2
i

2mi
+ U(q) (1.1)

where (p,q) are the canonical coordinates. They give a quite accurate description
of ordinary matter, which is encountered in everyday life, as gases and liquids.
It is well known (and it will be discussed in some detail in Section 2.1) that the
microcanonical entropy, for such kind of systems, is a non-decreasing function of
the energy. From the thermodynamic relation

T−1 = ∂S

∂E
(1.2)

one concludes that temperature is always non-negative for these systems, and this
is the reason why negative temperature states are rarely discussed in textbooks.

A completely different scenario emerges when the methods of Statistical Me-
chanics are applied to models with generalized Hamiltonians (classical or quantum)
that do not include the standard quadratic kinetic terms in Eq. (1.1): in this case
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the number of available states can be a decreasing function of the energy, and the
absolute temperature defined by Eq. (1.2) can assume negative values.

1.1.1 Point vortices in two dimensions

To the best of our knowledge, the concept of negative absolute temperature was
originally introduced by Lars Onsager in his famous work on the statistical hydro-
dynamics of inviscid fluids in two dimensions [144]. It was already well known,
from the work of Kirchhoff, Ruth and Lin [119], that the motion of vortices in two
dimensions, in absence of viscosity, could be described by the following Hamilton
equations: {

kiẋi = ∂yiH
kiẏi = −∂xiH ,

(1.3)

where ki is the vorticity (positive or negative) of the i-th vortex, while xi and yi are
their spatial coordinates. The Hamiltonian is defined as

H = − 1
2π
∑
i>j

kikj log rij , (1.4)

being rij =
√

(xi − xj)2 + (yi − yj)2 the Euclidean distance. In this system the
conjugate variables describing each degree of freedom are the corresponding spatial
coordinates on the x and y directions. The energy of the system ranges form −∞,
when a pair of vortices with opposite signs coincide, to +∞, when vortices with the
same vorticity occupy the same position.

The above description still holds when the dynamics is constrained inside a
closed spatial domain A, with the only difference that additional terms must be
added to the Hamiltonian in order to take into account the image forces arising
between the particles and the boundaries. This corresponds to replacing− log rij/2π
with G(rij), where G(z) is the Green function of the Laplacian operator in the
dominion A. Onsager noted that in this case the phase-space of the system (which
coincides with the configuration space AN , where N is the number of considered
vortices) is bounded. As a consequence, the following inequality holds:∫ E

−∞
dE′ ω(E′) ≤ µ(A)N ∀E ∈ R , (1.5)

where µ is the usual Lebesgue measure and ω(E) is the density of states

ω(E) =
∫
AN

∏
j

dxjdyj δ(E −H(x,y)) . (1.6)

Since ω(E) is always positive, Eq. (1.5) states that it cannot be a non-decreasing
function of E. In particular, it can be shown that, after an initial regime in which
ω′(E) > 0, there is a maximum at some finite energy Em, after which ω(E) is always
decreasing. We can define the microcanonical entropy of the system as

S(E) = kB logω(E) , (1.7)
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so that the (inverse) temperature associated to this model reads

β = 1
kB
∂ES(E) = ω′(E)

ω(E) . (1.8)

Since ω(E) changes the sign of its slope for E > Em, it is clear that the above
quantity needs to be negative in that regime. The value of Em can be deduced by
imposing upper and lower bounds for the wave numbers of the fluid [181].

Further investigations on the same model showed that it is possible to derive a
canonical distribution for a small portion of the system even at negative tempera-
ture; in the same context, an attempt to solve the BBGKY hierarchy for the distri-
bution of the vorticity was discussed, using the Vlasov approximation [138]. Similar
studies were done in the context of guiding-center plasma, that can be modeled with
the same equations of point vortices in two-dimensional hydrodynamics [175, 176].

In the 70’s, early numerical simulations of Eq. (1.3) supported the picture that
negative temperature would signal the emergence of a new ordered phase at high
energies [138]. Nowadays modern computational tools allow for much more extensive
simulations of the vortices dynamics, and the underlying physical mechanisms can
be efficiently observed and studied [198, 197]. As predicted by Onsager, in the
β < 0 regime, negative and positive vortices separate into two large clusters. The
energetic cost of the negative-temperature configuration is very high, since each
pair of vortices with equal sign, at small distance, gives a positive contribution to
the total energy of the system. Let us notice that energy tends to be transferred
from small-scale structures (wandering pairs of opposite-sign vortices) to a large-
scale configuration (two clusters containing almost all vortices). This mechanism is
somehow opposite to what usually happens in three-dimensional turbulence, where
energy is carried from large to small spatial scales: this phenomenon is therefore
called “inverse energy cascade”.

In more recent years, the above theory has been adopted and studied in the
context of quantum superfluids [174, 76, 190]. In particular it has been shown
by numerical simulations that isolated Bose-Einstein condensates, under suitable
conditions, relax towards the ordered phase at negative temperature described by
Onsager. The mechanism behind the formation of large clusters of equal sign vor-
tices is the so-called “evaporative heating”. From time to time, pairs of opposite-sign
vortices happen to melt together and disappear, while their energy is transferred
to the other vortices through the produced sound waves. During such process the
energy of the system is conserved, but the entropy of the vortices decreases, due to
the disappearing of a pair [174].

Experimental evidences of inverse energy cascade and of hydrodynamics states
at negative temperature have been reported in two very recent works [66, 97]. The
two research groups have realized, independently of each other and using different
methodologies, experimental setups that allow for the observation of vortices in
superfluid Bose-Einstein condensates. In both cases, steady large-scale clusters of
vortices with equal sign are observed, certifying the validity of Onsager’s interpre-
tation in the context of quantum superfluids.
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1.1.2 Systems of nuclear spins

Just one year after the work by Onsager, the concept of negative absolute temper-
ature was also introduced in a completely different context. At that time, novel
investigation techniques based on magnetic resonance allowed physicists to char-
acterize the nuclear magnetization of crystals subjected to strong external fields.
Purcell, Pound and Ramsey, in particular, conduced a series of experiments on
crystals of lithium fluoride (LiF).

First, they observed that the thermal equilibration between the nuclear spins
and the crystal lattice occurred in some minutes, while the spin-spin relaxation pro-
cess had typical relaxation times of 10−5 seconds [150]. Such time-scale separation
allowed them to define a “spin temperature” characterizing the thermal state of
the nuclear spins only, intended as a thermally isolated system: this possibility was
already discussed in Ref. [38]. Then, in a famous experiment, Purcell and Pound
were able to reverse adiabatically the magnetization of a small LiF crystal, initially
at equilibrium in a strong external field. After this operation, the nuclear spins
stayed for several seconds in a condition of internal equilibrium at high energy, such
that the magnetization of the crystal was opposite to the external field [152]. From
the point of view of Statistical Mechanics, the realized equilibrium state could be
described by a negative value of the (spin) temperature, as stressed by the authors.

Also in this case, as for the two-dimensional vortices studied by Onsager, the
possibility to achieve negative absolute temperature is related to the finiteness of
the phase-space. This concept was clarified by Ramsey in a pioneering work on
negative temperatures, see Ref. [156], which is (to the best of our knowledge) the
first systematic attempt to generalize the bases of Statistical Mechanics to negative-
temperature cases. In this paper Ramsey enumerates the essential requirements for
negative temperature:

1. the elements of the considered system must be in thermal equilibrium;

2. the possible energy of the allowed states of the system must be bounded;

3. the system must be thermally isolated from all other systems which do not
satisfy conditions (1) and (2).

Actually condition (2) holds only for discrete systems, as the nuclear spins studied
by Ramsey. We will come back to this point in Chapter 2. Ramsey also stresses
that in order to consider negative temperature, Kelvin-Planck formulation of the
Second Law of Thermodynamics needs to be modified in the following way:

It is impossible to construct an engine that will operate in a closed
cycle and produce no effect other than (1) the extraction of heat from
a positive temperature reservoir with the performance of an equivalent
amount of work or (2) the rejection of heat into a negative-temperature
reservoir with the corresponding work being done on the engine.

All the alternative formulations do not need to be modified.
A rigorous analysis on the concept of spin temperature was then performed by

Abragam and Proctor [1]; by reviewing the corpus of experimental results available
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at that time, the authors showed that the introduction of such notion not only is
justified under suitable conditions, but it also brings to novel predictions when the
intensity of the external field is comparable with that of the spin-spin interactions.
In this sense its introduction is necessary to have a coherent description of the
system on mesoscopic time scales.

In the experiments by Purcell and Pound recalled above, a negative temperature
state was signaled by the fact that the spin magnetization and the external field
had opposite signs. In more recent years, it was possible to prove the emergence of
negative temperature also by looking at the ferromagnetic/antiferromagnetic order-
ing of the spins [142]. In the case of silver (see Ref. [78]) the Hamiltonian of nuclear
spins {Ij} assumes the form

H = −
∑
〈ij〉

JijIiIj +Hdip − ~B ·
∑
i

γiIi (1.9)

where the first term is the dominating spin-spin energy, due to the nearest-neighbors
interactions, which depends on a positive coupling constant Jij [163]. The energy
related to the remaining spin-spin interactions Hdip is smaller by a factor 3. Finally,
the last term accounts for the Zeeman effect when the crystal is subjected to an
external field B (here γi is the gyromagnetic ratio). In Ref. [78] the authors showed
that it is possible to realize an equilibrium state, in the sense discussed above, such
that the order of the spins is ferromagnetic even if the coupling is antiferromagnetic,
a clear hint of the NAT state reached by the system.

Quite recently, the consistency of an equilibrium description through spin tem-
perature (positive or negative) has been tested through optical magnetometry tech-
niques, measuring the polarization of a system of spins as a function of the external
field and comparing it to the theoretical predictions [193].

1.1.3 Cold atoms in optical lattices

In the last decades there has been an increasing interest in quantum systems of
so-called “cold atoms” trapped by optical lattices. It is well known from quantum
mechanics that atoms lightened by a coherent beam of photons will emit them
back in random directions; this process results in an average increase of momentum
by h/λ along the light beam direction, where h is the Planck constant and λ the
wavelength of the incident beam [6]. A kind of viscous friction can be induced
on atoms by using counterpropagating lasers whose frequency is resonant with the
lowest side of the absorption spectrum; in this case each atom will scatter only
photons propagating in the direction opposite to its velocity (the others having too
small frequency to be absorbed, due to Doppler effect). The net effect is a damping
force that decelerate the particles, resulting in a cooling of the gas [47].

Among the several studies that can be performed on the “cold” atoms prepared
with this technique, a very active branch of research is represented by experiments
with optical lattices, i.e. grids of laser beams able to confine cold atoms exploiting
Stark effect [95]. Such setup can be used to induce a thermalization of cold atoms
at negative temperature, due to the peculiar band structure of the system: it can
be shown that the number of available states in the “valence” band is, for suitable
choices of the parameters, a decreasing function of the energy [139]. Of course, to
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prevent leaks of atoms (and energy), which would spoil the negative-temperature
equilibrium, one has to check carefully that the tunneling effect between the “va-
lence” and the “conduction” band has a negligible rate.

The Bose-Hubbard (quantum) Hamiltonian provides a simple quantitative model
for bosonic atoms in optical lattices [68]:

H = −J
∑
〈i,j〉

(b†ibj + b†jbi) +
∑
i

εin̂i + 1
2U

∑
i

n̂i(n̂i − 1) (1.10)

where bi and b†i are the annihilation and creation operators for bosonic atoms at
lattice site i, satisfying the boson commutation relation [bi, b†j ] = δi,j , while n̂i = b†ibi
counts the number of such atoms. The first sum in Eq. 1.10 is extended to couples
of first-neighbor sites only, so that parameter J determines the hopping between
adjacent spots; U accounts for the repulsive force between atoms in the same site
and εi is a site-dependent energy offset. Such constants can be tuned by varying
the parameters of the optical lattice, an operation that can be performed with high
precision [95, 158]. A typical case is that of a quadratic confining potential, i.e.

εi = V0r2
i (1.11)

where r is the spatial position of the i-th site. The model described by Eqs. (1.10)
and (1.11) admits negative temperature if U and V0 are negative: with such choice
of the parameters, states at higher energy are characterized by smaller entropy. It
can be shown that thermalization at negative temperature can be expected in this
case, due to the symmetry relating the case U < 0, V0 < 0 to a corresponding model
with U > 0, V0 > 0 [157].

Let us notice an important qualitative difference between this physical system
and those discussed in the previous paragraphs (Onsager vortices, spins systems):
the present model does not allow for positive-temperature states, due to the negative
sign of the quadratic potential [139]. The scenario is somehow opposite to that of
ordinary matter with quadratic kinetic terms, briefly mentioned at the beginning
of this Section (we will discuss it in more detail in the next Chapter).

From an experimental point of view, realizing a system which only admits neg-
ative temperature states is a non-trivial task, since cold atoms have to be initially
prepared in a T > 0 state. Following a strategy initially proposed by Mosk [139],
in Ref. [158] a possible method is illustrated, based on the following steps:

1. prepare the system in a positive temperature state, with external parameters
J 6= 0, U > 0, V0 > 0;

2. suddenly increase the intensity of the optical lattice, so that J drops to zero
and atoms cannot change their site anymore;

3. slowly reverse the external and interaction potentials: U → −U , V0 → −V0;

4. switch J back to its initial value.

The above procedure has been realized in a famous experiment, whose results are
presented in Ref. [23]. In that context it has been possible to observe the momentum
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distribution of the cold atoms at the end of the process, and it has been verified
that it corresponded to the one expected for a negative-temperature equilibrium
state [157].

1.1.4 The DNLS equation

One of the most widely used models in non-linear physics is the so-called Discretized
Non-Linear Schrödinger (DNLS) equation. In one of its possible formulations, it
reads:

iżj =
(
Λ|zj |2 + ξj

)
zj −

zj−1 + zj+1
2 (1.12)

where {zj} are complex variables, while Λ and {ξj} are constant parameters. The
above expression can be obtained by discretizing the Schrödinger equation for a
quantum particle in presence of a suitable external potential, whence its name. This
model is of particular interest because of its ability to develop discrete breathers,
i.e. stable, localized excitations characterized by periodic oscillations; this non-
trivial behavior is due to the combined effect of the discrete form of Eq. 1.12 and
of nonlinear terms, which oppose to the decay of the breathers [34, 60].

First introduced in biophysical contexts, this equation is a prototype for the
lattice dynamics in presence of nonlinear interactions, and it is able to describe
localization effects in a wide range of physical situations [103]. A large field of
application for the DNLS equation is nonlinear optics: it is well known, for exam-
ple, that such model can be used to describe the emergence of solitons for light
propagating in optical waveguides [55].

The DNLS equation can also be employed to describe the dynamics of Bose-
Einstein condensates (BEC) in one-dimensional optical lattices, as argued by Trom-
bettoni and Smerzi [184]. The relation between the DNLS equation and the Bose-
Hubbard model, Eq. (1.10), is detailed in Ref. [60]. The argument is based on
the fact that when the limit J/U � 1 is considered, in which the hopping process
dominates over the interactions, it is reasonable to assume that the ground-state
configuration of the Bose-Hubbard model can be approximated by a product of on-
site states; with a suitable ansatz on its form, a time-dependent variational principle
can be applied to determine a (classical) effective mean-field Hamiltonian for the
complex order parameter zj = 〈bj〉:

H =
∑
j

(
U

2 |zj |
4 + εj |zj |2

)
− J

2
∑
j

(z∗j zj+1 + z∗j+1zj) . (1.13)

The order parameters satisfy the Poisson brackets {z∗j , zk} = iδj,k/~, and they
provide a proper set of canonical coordinates. The corresponding equation of motion
is given by Eq. (1.12), where λ = U/J , ξj = εj/J and time has been rescaled as
τ = Jt/~. The dynamics is characterized by two first integrals, namely the total
energy and the norm A =

∑
j |zj |2.

Trombettoni and Smerzi analyze the evolution of Gaussian wave-packets sub-
jected to the DNLS dynamics, showing that, depending on the initial parameters of
the packet, both static and mobile breathers can emerge. Such localized states can
be induced on BECs trapped in optical lattices exploiting the dissipation of atoms
at the boundaries, as discussed in Ref. [120].
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In 1999 Rasmussen et al. [159] discussed the statistical properties of the DNLS.
A grand-canonical approach, in which A plays the role of the total number of
particles, allows to characterize the (a, h) parameter space, where a = A/N is an
average excitation norm and h = H/N is the energy density: for each couple (a, h),
the corresponding inverse temperature β can be calculated. With this approach
one shows that there exists a region of the parameter space such that β < 0. In
successive papers, it has been shown that such β < 0 states are actually metastable,
and that the system will eventually reach, after astronomical times, an equilibrium
state in which a background state at β = 0 and a delta-shaped excitation including
all the remaining energy are superimposed [167, 87].

The negative-temperature states in BECs have been extensively studied by using
numerical simulations [87]. The system evolves toward a state with a finite density
of breathers. Very slow coarsening processes are observed, which are expected to
lead the system to its final configuration described above. The metastable nature of
such intermediate states, in which the system appears “frozen” for extremely long
times, has been recently investigated through suitable stochastic models [92].

The DNLS equation has been also used as a prototypical model to study negative-
temperature states out of equilibrium [90, 88]. In particular, it has been shown that
a DNSL chain at contact with a heat reservoir at positive temperature and to a
pure dissipative bath reaches long-lasting states showing that the typical features
of the β < 0 regime [93]. This phenomenon has still to be completely understood
from a theoretical point of view, and poses interesting questions about the role of
negative-temperature states in non-equilibrium Statistical Mechanics.

1.2 The dispute about negative temperature

The concept of negative temperature, since its introduction in the seminal papers
by Onsager, Purcell, Pound and Ramsey, has always inspired debates about the
right way, if any, of extending classical results of Statistical Mechanics to negative
temperature cases. The reformulation of the Kelvin-Planck version of the Second
Principle discussed in Section 1.1.2, and the bound on Carnot efficiency, see Sec-
tion 1.2.2 below, are examples of typical controversial points.

In recent years a stimulating debate about the nature of negative temperature
states, and their proper statistical description, has interested a considerable part of
the Statistical Mechanics community [178]. Some authors argued that the use of
negative temperature could be avoided by adopting a different definition of entropy
(the so-called “volume entropy” already discussed by Gibbs in its classical treatise
on Statistical Mechanics [70]), which has in turn interesting mechanical proper-
ties [18, 52, 36]. Other people investigated the conceptual problems that are found
in extending the theory of thermodynamic cycles to systems allowing negative tem-
perature [161, 37]. Finally, it has also been argued that negative temperature states
should be always considered as out of equilibrium, so that no temperature, neither
negative nor positive, can be defined to describe their thermal condition [177]. Such
proposals, on the other hand, have been criticized by those who believe that nega-
tive temperatures can be safely included in the Statistical Mechanics theory, with
small adaptations, and that their usage reveals useful or even necessary [62, 41, 179,
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2].
A detailed report on the discussion is out of the scope of this introductory

chapter: in the following we will only outline a brief summary of it, which can be
useful to understand the motivation of the research presented in this Thesis.

1.2.1 Two definitions of entropy

Let us consider a generic physical system, described by some HamiltonianH (X; {Ai}),
where X is the vector of the canonical coordinates, living in a 2N -dimensional space,
and the variables Ai, i = 1, ..., n, with n� N , represent some tunable parameters of
the system (volume, external magnetic field...). We suppose that H is bounded from
below, so that we can define the phase-space volume confined by the hypersurface
at constant energy E:

Γ(E; {Ai}) =
∫
H(X;{Ai})<E

dX . (1.14)

The density of states ω(E; {Ai}) is nothing but its derivative with respect to the
energy,

ω(E; {Ai}) = ∂Γ
∂E

. (1.15)

The usual definition of entropy in Statistical Mechanics, commonly attributed to
Boltzmann (and engraved on its tombstone), reads

SB(E; {Ai}) = kB lnω(E; {Ai}) , (1.16)

where kB is the Boltzmann constant. Even if Eq. (1.16) is actually due to Planck [132],
the wording “Boltzmann entropy” is usually adopted, and we will conform to this
tradition. SB is clearly a (logarithmic) counter of the number of states available to
the system in the microcanonical ensemble, at fixed energy E. As pointed out in
Ref. [52], for dimensional consistency Eq. (1.16) needs to be rewritten as

SB(E; {Ai}) = kB ln[ε ω(E; {Ai})] , (1.17)

where ε is a constant which has physical dimensions of an energy. Of course the
presence of ε is irrelevant when considering the derivatives of SB, i.e. the physically
measurable quantities). The corresponding inverse temperature,

βB = 1
kBTB

= 1
kB

∂SB
∂E

(1.18)

has the following, fundamental property [85]: when two systems S1 and S2 are
brought in (weak) thermal contact, once equilibrium is reached, βB is the same for
both systems. As a consequence, TB is the proper temperature one has to consider
in deriving the canonical distribution from a microcanonical description [100, 41].

In his classical treatise on Statistical Mechanics [70], Gibbs discusses an alter-
native definition of entropy, sometimes called “volume entropy”:

SG(E) = kB ln[Γ(E)] . (1.19)
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This form of the entropy and the corresponding temperature,

TG = 1
S′G(E) , (1.20)

have indeed remarkable properties.

1. Exact validity of thermodynamic relations.
First Law of Thermodynamics expresses energy conservation as

dE = dW + δQ , (1.21)

i.e. it states that the amount of energy dE acquired by the system during
an infinitesimal transformation is given by the sum of the work dW done
on the system and of the heat δQ absorbed during such transformation. By
definition, the macroscopic work done on the system can be written as

dW =
∑
i

〈
∂H
∂Ai

〉
dAi (1.22)

where 〈·〉, under the assumption of ergodicity, is an average on the micro-
canonical ensemble. Second Principle assures, on the other hand, that a state
function S, the thermodynamic entropy, exists such that

δQ = TdS (1.23)

for reversible transformations. Thermodynamic consistency requires therefore
that relations

1
T

= ∂S

∂E
(1.24)

and
T
∂S

∂Ai
= −

〈
∂H
∂Ai

〉
(1.25)

hold. It can be shown [36] that the above equations are verified exactly (i.e.,
also for a finite number of particles) only if S is a function of Γ(E). Defini-
tion (1.19) can then be deduced from the particular case of ideal gas.

2. Adiabatic invariance
Suppose that parameters {Ai} vary in time, and that such transformation has
a typical time τ ; since H is now time-dependent, E is no more a conserved
quantity. A function I(E(t); {Ai(t)}) is called adiabatic invariant, in the me-
chanical sense, if its evolution tends to a constant behavior in the limit τ →∞.
As discussed in Ref. [52], an adiabatic process in the mechanical sense (very
slow variation of the parameters {Ai}) is also adiabatic in the thermodynamic
sense (no exchange of heat between the system and the environment) if and
only if

dE

dt
=
∑
i

〈
∂H
∂Ai

〉
dAi
dt

, (1.26)
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i.e. if the whole energy variation can be associated to some form of external
work done on the system. But this is only true if S is constant along the
transformation, i.e. if S is an adiabatic invariant in the mechanical sense. As
a consequence, to recover an exact analogue between Mechanics and Thermo-
dynamics, the mechanical definition of entropy must be an adiabatic invariant.
It can be proved that SG possesses such property [102, 35]. This is exactly
true also for finite systems.

3. Equipartition theorem
A well-known result of Statistical Mechanics states that〈

xi
∂H
∂xi

〉
= kBT , (1.27)

where xi is any canonical coordinate. For quadratic Hamiltonians Eq. (1.27)
implies that energy is equally distributed, on average, among the different
degrees of freedom (Equipartition theorem). In deriving such result (see e.g.
Ref. [85]) one actually makes use of Gibbs’ definition of entropy: Eq. (1.27) is
thus exactly verified only if one considers T = TG.

4. Helmholtz theorem
A fundamental property of thermodynamic entropy, expressed by Eq. (1.23),
states that dS is an exact differential, i.e. that T−1 is an integrating fac-
tor for δQ. Helmholtz was able to identify a mechanical analogue of S for
one-dimensional monocyclic systems, i.e. Hamiltonian models in which each
energy E corresponds to only one possible closed trajectory, of the form

HH(p, q;V ) = p2/2m+ φ(q;V ) (1.28)

where (p, q) are the canonical coordinates, m is the mass of the particle and
φ an external potential depending on the parameter V . The corresponding
“entropy” SH is indeed the one-dimensional version of SG, depending only on
the phase-space area enclosed by the trajectory at energy E [36]. As discussed
in Ref. [64], chapter IX, the Helmholtz theorem had an important role in the
early development of Statistical Mechanics, being one of the starting points for
Boltzmann’s project of deriving Thermodynamics from classical Mechanics. A
generalization of Helmholtz theorem to many degrees of freedom, which makes
use of SG, is given in Ref. [36].

Based on the above observations, Berdichevsky, Kunin and Hussain in 1991
proposed to substitute the usual definition of entropy with SG [18]. An immediate
consequence of this choice is that SG is a monotonically non-decreasing function of
the energy, so that TG cannot be negative, by definition. In this way the authors
intended to solve Onsager’s “paradox” of negative temperature in vortex motion
(see Section 1.1.1). The same proposal was put forward by Dunkel and Hilbert in
2014, on the basis of thermodynamic consistency [52], and taken up by following
works [82, 79, 36].

In the above mentioned papers many examples were considered in which SB fails
to describe systems with a small number of degrees of freedom N . However, it has
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been pointed out that the examined properties of SG can be appreciated only in the
case of systems with a small number of degrees of freedom, of limited interest for
Statistical Mechanics [179], since, as soon as N � 1, for all systems with quadratic
kinetic energy SB and SG provide indistinguishable results [85]. Critics of Gibbs’
definition of entropy often argue that the choice between SB and SG should be based
on the analysis of systems in which the two descriptions give considerably different
results also in the thermodynamic limit, as the ones discussed in the first part of
this Chapter. Some authors stress that SG is unable to catch the indisputable
qualitative differences between the positive and negative TB regimes, such as the
high-energy order emergence in systems of Onsager vortices [137], cold atoms [169]
or nuclear spins [62, 2]. Indeed, as pointed out in Ref. [192], SG is a constant
function of the energy, in the thermodynamic limit, for all states corresponding to
TB < 0, so that TG is infinite for all such states; moreover, this limit behavior is
reached exponentially fast in N , where N is the number of particle, so that the SG
description is only useful, for such systems, when just a few particles are considered.
A striking example of this failure of SG is discussed in Ref. [25], in which a phase
transition at high energy can be only predicted by relying on SB.

Other authors remark that TG violates the Zeroth Principle of Thermodynamics.
Using TG, one can indeed exhibit examples in which heat flows from hotter to colder
systems, also in the thermodynamic limit [169, 62]. Authors of Ref. [79], however,
reply that in the microcanonical ensemble the “right” state variable is the energy,
and therefore one should not wonder if temperature is unable to determine the
direction of heat flux once two initially isolated systems are put into contact.

Finally, critics of Gibbs’ definition of entropy stress that SG is unphysical in
the following sense: it is a function of a phase-space volume region which includes
states that the system is not allowed to visit, because of energy conservation [169].
As a consequence, it is impossible to measure TG in an experiment or in a molecular
dynamics simulation using its definition, even assuming ergodicity; to deduce TG
one can rely on the equipartition theorem, which, as discussed before, is based on
SG. However, the hypotheses of such theorem are typically not verified for systems
which admit negative TB, so that in those cases TG is not a physical observable [41].
On the other hand, the “Boltzmann” temperature TB can be always deduced from
the fluctuations of proper observables [41, 164].

1.2.2 Thermodynamic cycles and efficiency larger than 1

One of the most challenging points when one tries to extend usual Thermodynamics
to cases with negative temperature is represented by thermodynamic cycles. The
possibility to design a thermodynamic engine operating between two temperatures
T1 and T2 with T2 < T1 < 0, or even T2 < 0 < T1, would imply efficiencies larger
than one in modulus; for this reason, several works have been devoted to the study
of this topic.

In his famous paper on negative absolute temperatures [156], Ramsey mentions
that Carnot cycles can be designed for spins systems subjected to an external field
B (such as that described by Eq. (1.9)). B can be continuously varied, at a very
slow rate, so that the system can be considered in thermal equilibrium at any time:
such external parameter plays the role assumed by the volume in the case of ideal
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gases. In principle, we can perform reversible transformations at fixed temperature,
positive or negative, as well as adiabatic transformations in which the system does
not exchange heat with the environment. It is therefore possible, as in the well-
known case of ideal gases, to perform Carnot cycles.

Let us first consider the case in which the temperatures of the two reservoirs
have the same sign. The efficiency of a Carnot cycle is defined as

η = 1− Q2
Q1

= 1− T2
T1

(1.29)

where Q1 is the heat absorbed at temperature T1 and Q2 is that released at tem-
perature T2 (we are assuming that T1 is hotter than T2, i.e. we are either in the
0 < T2 < T1 or in the T2 < T1 < 0 case). As argued by Ramsey, the fact that for
T2 < T1 < 0 the efficiency can be negative, and even less than −1, means that work
must be done on the system in order to maintain the cycle: this behavior is opposite
to the positive-temperature case, in which the absorbed heat is converted into work
by the engine. The whole scenario is consistent with the “generalized” version of
the Kelvin-Planck formulation of the second principle, enunciated by Ramsey itself
(see Sec. 1.1.2), stating that at negative temperature the complete transformation
of work into heat (and not the reverse) is forbidden. In a later paper by Landsberg a
precise correspondence is established between heat pumps at negative temperatures
and heat engines at positive ones [110].

The above considerations can appear counterintuitive at a first sight, but they
reveal to be completely consistent and lead to no paradoxes. The case in which
T1 and T2 have different signs is a bit more complicated. Ramsey notes that, for
systems of nuclear spins, no way is known to operate adiabatic transformations
between temperatures of opposite signs, since the experimental techniques that are
usually employed to achieve negative values of β rely on a non-quasistatic inversion
of the external magnetic field. However it is not clear, a priori, whether an adiabatic
transformation between positive and negative temperature would be forbidden in
any system, or in spin systems only [187].

An attempt to answer the question is due to Schöpf [170]: after a systematic
theoretical analysis of the possible thermodynamic cycles, only based on the First
and Second Principles of Thermodynamics, he concludes that any adiabatic trans-
formation linking states at negative and positive temperature would result in some
inconsistencies. His proof is a reductio ad absurdum based on the careful analy-
sis of the possible shape of the transformations in the state-variable space. In a
subsequent work [188] it has been shown that one of the proofs is incomplete, and
that the Third Law of Thermodynamics has also to be assumed. A proof for the
case with bounded energy is given in Ref. [183]. Under reasonable hypotheses, it is
shown that if one considers a thin enough region around the β = 0 surface, in the
state-variables space, entropy is constant, and maximal, at β = 0. An immediate
consequence is that such surface cannot be crossed by an isoentropic transformation.

Even if quasi-static Carnot cycles between temperatures with opposite signs
are forbidden, their non-quasistatic versions can be still operated. A systematic
discussion can be found in Ref. [111]. The efficiency of such engines, according to
Eq. (1.29), is larger than one. This result could appear paradoxical. However, one
should keep in mind that Eq. (1.29) is derived under the assumption that heat is



16 1. Background and motivation

absorbed by the system at temperature T1 and released at temperature T2, which is
not possible if they have opposite signs. In that case (see Ref. [37]) heat is absorbed
at both temperatures and completely converted into work (or, for a heat pump,
released to both reservoirs), so that the efficiency

η = W

Q
(1.30)

is actually always equal to 1.
Of course, the above result does not provide a way to convert heat into work:

as correctly pointed out, e.g., in Ref. [177], the amount of work that is necessary to
realize a negative-temperature bath largely exceeds the one that can be obtained in
this way. Experimental realizations of such cycles have been performed in quantum
systems [7].

1.2.3 NAT states as non-equilibrium states

The possibility of realizing thermodynamic cycles with efficiency larger than 1, dis-
cussed in the previous Section, is one of the main source of skepticism and concern
about negative temperature. Some authors, even among those who recognize the
validity of the “Boltzmann” entropy SB, question that one can speak about equi-
librium when referring to systems at negative temperature; basically, such authors
claim that the only proper equilibrium states are those corresponding to points on
the branch of S(E) with positive slope [177, 30].

An argument which is often used against the legitimacy of negative temperature
states is their instability; with this term some authors mean that once coupled to
the external environment, any system H initially at negative temperature is doomed
to release energy until it reaches some positive value of T [161]. This behavior is
due to the fact that the global system composed by H and the environment does
not admit T < 0 (assuming that the environment is made of ordinary matter:
see the discussion in Sec. 2.1.1). This observation is completely correct (see also
Section 2.3 and Ref. [26]), however one should also recall that in all experimental
studies about negative temperature states the relaxation times of the considered
systems are much smaller than the typical time-scales on which heat is exchanged
with the surrounding environment; it is then generally argued that for time interval
small enough the system can be considered as isolated [150, 139].

It has also been noted that, at least in systems interacting with external fields
and with negligible internal interactions, the negative-temperature description can
be avoided by suitable modifications of the thermodynamic formalism [30]. In par-
ticular, if one explicitly describes the external field as an additional work term,
which does not participate in the internal energy of the system, negative temper-
atures do not appear. Such conclusions are similar to those discussed in Ref. [1],
where it is established that the introduction of a (possibly negative) “spin tempera-
ture” does not lead to novel predictions in the case of high external field. However,
in the same paper it is also shown that when the external field is of the same order
of the internal interactions, the concept of spin temperature has to be taken into
account in order to make sensible predictions; it is not clear whether the formalism
suggested in Ref. [30] can be also extended to such cases, predicting, for example,
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the emergence of ferromagnetic order in presence of antiferromagnetic couplings,
which has been experimentally observed [78].

Finally, other authors argue that since negative temperature states are not spon-
taneously present in nature, and they can only be prepared trough sudden trans-
formations which are not quasi-static, they should be always considered as out-of-
equilibrium states for which no temperature can be defined. This interpretation is
consistent and preserves, of course, the original Kelvin-Planck formulation of Sec-
ond Principle [177]. However, the introduction of NATs, with the consequent slight
modifications of the known formulations of Thermodynamics, allows a simple and
efficient descriptions of several interesting phenomena in modern physics: unless un-
pleasant byproducts are found (e.g. deep contradictions or paradoxes), opposition
to the use of NATs seems questionable.

1.3 Motivation

The long-lasting debate on the concept of negative temperature, briefly reported
in the previous Section, has raised several interesting questions which need to be
addressed. As it is clear from the above discussion, the experimental realization
of NAT states is often a challenging task; however, considerable insight into the
conceptual aspects of negative temperature can be obtained through the study of
simple theoretical models, whose statistical properties can be studied either analyt-
ically or numerically. Such line of research can give a valuable contribution to the
debate on a conceptual level, since the results are easily reproducible and hardly
questionable, and their interpretation is usually straightforward.

In the next Chapter we will introduce and discuss a class of Hamiltonian models,
characterized by a kinetic energy term with a bounded, non-quadratic form. The
thermodynamic behavior of such systems can be studied numerically and, in some
cases, also analytically. In this Thesis we will mainly deal with these models. As
discussed in the following, if one adopts the Boltzmann’s definition of entropy (1.16)
and the corresponding temperature, such systems can achieve negative temperature
states.

Using the mentioned class of models we will be able to address the study of
important topics of Thermodynamics and Statistical Mechanics such as Zeroth Law
and thermometry, ensemble (in)equivalence, fluctuation/dissipation relations, re-
sponse theory, Fourier transport. As we will see, in all the mentioned contexts,
both in and out of equilibrium, the introduction of negative temperature will be
not only useful, but also necessary in order to achieve a consistent thermostatistical
description of the presented results.

In Ref. [79] the authors state that Ising models are bad benchmarks for es-
tablishing the conceptual validity of a given thermostatistical description, since in
nature it does not exist any evidence of Hamiltonians bounded from above; Ising-like
systems are, in the words of the authors, ad-hoc truncations of more fundamental
Hamiltonians which are not bounded from above, and therefore it is not advisable
to consider them when trying to address fundamental questions. We are aware that
the same critique can be addressed to the class of models analyzed in this Thesis.
Let us stress, however, that our aim here is not to demonstrate that the Boltz-
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mann’s entropy (1.16) is a better choice than the Gibbs’ one (1.19) for the models
with unbounded spectrum, usually studied by classical Thermodynamics. On the
contrary, we aim at showing that the use of SB allows for an extension of the realm
of Statistical Mechanics to systems with bounded Hamiltonians: the consequent
introduction of negative temperature does not lead to any paradox nor contradic-
tion, and offers, in our opinion, a coherent thermostatistical picture. We hope to
convince the reader that such systems can be actually studied in the framework of
Statistical Mechanics, and to shed some light on the physical meaning of negative
temperature in the different problems that are considered in this Thesis.
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Chapter 2

Systems with bounded phase
spaces: equilibrium properties

In this Chapter we discuss some aspects of negative temperature equilibrium states,
by investigating the statistical properties of Hamiltonian systems living in bounded
phase-spaces.

First, we sketch some general considerations about the conditions for the emer-
gence of NAT in separable Hamiltonian systems. This preliminary analysis allows
us to introduce a class of simple mechanical models that will be used to illustrate
the main ideas discussed in this Thesis. Next, we introduce the possibility to define
and use a thermometer able to measure also negative temperature, thus revealing
the connection between the statistical and the thermodynamic definitions of tem-
perature even in this regime. Finally, we study the equilibrium features of a system
with long-range interactions, which violates ensemble equivalence; it is shown, ana-
lytically and numerically, that such non-trivial metastable condition can be reached
also in a NAT regime.

2.1 General conditions for negative temperature

As already mentioned in Sec. 1.1, mechanical systems whose energy quadratically
depends on the Hamiltonian coordinates cannot display negative-temperature equi-
librium distributions; therefore, in order to model and study these thermodynamic
states, we need to focus our attention on a wider class of mechanical systems. We
will consider Hamiltonian models of the form:

H(p,q) =
N∑
i=1

ki(pi) + U(q) (2.1)

where (qi, pi), i = 1, ..., N are pairs of canonical coordinates, while ki(p) and U(q)
are smooth functions of their arguments. X = (q,p) is therefore a point of a suitable
2N -dimensional space Ω. The Hamilton equations that rule the evolution of this
system read

q̇i = ∂ki
∂pi

ṗi = −∂U
∂qi

. (2.2)
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In the following we will refer to qi as the “position” and to pi as the “momentum”
of the i-th degree of freedom, extending the terminology of the Newtonian case to
these generalized mechanical systems. The Hamiltonian terms depending on the
momenta can thus be interpreted as generalized kinetic energies and, consistently,
we require that their functional forms ki(p) satisfy the following conditions:

• ki(p) = ki(−p) ∀i, i.e. all ki are even functions of their argument;

• k′i(p) ≥ 0 if p ≥ 0;

• ki(0) = 0.

From a physical point of view, the first requirement means that the energy of the
system does not change under time-reversal transform t → −t,qi → qi,pi → −pi;
the second one is equivalent to asking that the velocity q̇i has the same sign of the
corresponding momentum pi (even if, in general, they are not proportional); the
third one has no consequences on the dynamics, and it only states that the energy
of a system of non-interacting particles at rest is equal to zero, in analogy with the
Newtonian case.

Let us remark that in Eq. (2.1) we did not consider terms depending on more
than one momentum coordinate pi, nor terms that couple positions and momenta.
In the following we will only deal with Hamiltonian systems of this kind, but it
should be stressed that negative temperatures can be found in models with more
general properties, e.g. the DNLS equation mentioned in Section 1.1.4: indeed, it
can be shown that the DNLS can be written in a classical Hamiltonian form, in
which positions and momenta are coupled [88].

Let us define the phase-space volume delimited by the hypersurface at constant
energy E as

Γ(E) =
∫
H(X)<E

dX ; (2.3)

where the synthetic notation dX ≡ dp1...dpN dq1...dqN has been adopted. In the
following we will assume, without lack of generality, that Γ(E) is a well-defined
quantity ∀E ≥ 0 and that it vanishes at E = 0. We will also assume that no
integrals of motion other than the total energy are present in the dynamics, so that
the microcanonical state of the system is completely specified by E and by the
parameters of the Hamiltonian. The density of states is thus defined as

ω(E) = ∂EΓ(E) =
∫

Ω
dXδ(H(X)− E) (2.4)

and the microcanonical entropy reads

S(E) = lnω(E) . (2.5)

Here and in the following we consider units such that the Boltzmann constant is
unitary, kB = 1.

Inverse temperature β is given by

β = ∂ES(E) ; (2.6)

as already discussed, β(E) assumes negative values if and only if ω(E) is, locally, a
decreasing function of E.
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2.1.1 Role of the interacting potential

If an Hamiltonian system of non-interacting particles

H0(p) =
∑
i

ki(pi) (2.7)

is characterized by a non-decreasing entropy S(E) and some of the ki(p) have no
upper bound, adding an interacting potential will not introduce negative temper-
ature. In order to understand that, we consider the density of states at energy E
of

H(X) = H0(p) + U(q) . (2.8)

Such quantity can be written as

ω(E) =
∫

Ω
dX δ(H(X)− E)

=
∫

Ω
dX

∫ min(E,Umax)

0
du δ(u− U(q))δ(H0(p) + u− E)

=
∫ min(E,Umax)

0
duωq(u)ωp(E − u)

(2.9)

where Umax is the maximal energetic contribution associated to the qi, possibly
infinite, and ωq, ωp can be seen as the contributions to the density of states due to
the positions and momenta, respectively. Let us note that in the above calculation
we made implicit use of the hypothesis that H0(p) is unbounded.

If we consider some value of the energy E′ > E, the following inequality holds:

ω(E) =
∫ min(E,Umax)

0
duωq(u)ωp(E − u) ≤

≤
∫ min(E′,Umax)

0
duωq(u)ωp(E′ − u) = ω(E′) ,

(2.10)

since the integrand is positive and ωp(E) is non-decreasing by hypothesis. As a
consequence, system H(X) only admits positive temperatures.

The above argument can be repeated in a quite similar way if we want to add
degrees of freedom to an unbounded Hamiltonian which cannot reach negative tem-
peratures. It can be easily shown that there is no way to induce negative tem-
perature states by coupling it with some other Hamiltonian system. This simple
observation will be better discussed in Section 2.3.

As an immediate (and important) example, we can consider the case of quadratic
kinetic energy. First, we recall that the phase space volume of the ideal gas

H0(X) =
∑
i

p2
i

2mi
(2.11)

confined in a box of length L is given by

V (E) = (2π)N/2LN

Γ(1 +N/2)E
N/2 (2.12)
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where the formula for the volume of an N -dimensional sphere with radius
√

2E has
been used (here Γ represents the Euler Gamma-function, and N = Dn where D is
the number of spatial dimensions and n the number of particles). As a consequence,
the density of states verifies

ω(E) ∝ E
N
2 −1 , (2.13)

i.e. it is an increasing function of the total energy as soon as N > 2. In the light of
the above, we can also state that, no matter what kind of interacting potential is
considered, an Hamiltonian system with quadratic kinetic energy terms will never
admit negative temperature at equilibrium. Furthermore, coupling it to a different
Hamiltonian system will never lead to a negative temperature equilibrium state.

2.1.2 Momentum distribution

The following simple argument allows to deduce the momentum distribution of a
single particle (see also Ref. [41]). Let us consider the Hamiltonian model defined
by Eq. (2.1). The microcanonical probability density function (p.d.f.) for the j-th
momentum is given by

ρj(p|E) = 1
ω(E)

∫
Ω
dX δ(H(X)− E)δ(p− pj)

= 1
ω(E)

∫
Ω̃
dX̃ δ

(
H̃(X̃) + kj(p)− E

)
= ω̃(E − kj(p))/ω(E)

= exp
[
S̃(E − kj(p))− S(E)

]
(2.14)

where
X̃ = (q1, ..., qN , p1, ..., pj−1, pj+1, ..., pN ) (2.15)

is the generic point of the reduced phase-space Ω̃ obtained by excluding the coor-
dinate pj , and

H̃(X̃) = H(X)− kj(pj) (2.16)

is the part of Hamiltonian (2.1) which does not depend on pj . The corresponding
quantities ω̃ and S̃ are defined accordingly.

We can now expand Eq. (2.14) assuming that kj(p) is much smaller than the
total energy: this expansion is always legitimate if kj(p) is bounded from above by
some constant kmax and E � kmax. We get

ρj(p|E) ' exp
[
S̃(E)− dS̃(E)

dE
kj(p)− S(E)

]
∝ exp [−βkj(p)]

(2.17)

(assuming dS̃/dE ' dS/dE ≡ β in the thermodynamic limit).
Let us notice that this expression does not exclude the possibility that Hamilto-

nian systems with unbounded energy assume negative temperature at equilibrium:
it is sufficient for the domain of the corresponding coordinates to be bounded, so
that the normalization of the p.d.f. is well-defined.
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Let us also stress that in the above derivation we assumed that the energy of the
system was much larger than those related to the momenta of the single particles.
Of course this assumption is reasonable in the thermodynamic limit, when one
considers a set of identical particles. Still, some – quite pathological – cases (see
Section 2.1.4) violate such assumption, and the above result cannot be stated in a
more general form.

2.1.3 Bounded energy: an unnecessary condition for NAT

In his fundamental paper about the Statistical Mechanics of negative tempera-
tures [156], Ramsey states that an upper bound on the energy of the system is
a necessary condition for observing negative temperature equilibrium states. The
statement is correct in the context of the paper, since only the case of quantum
systems with discrete degrees of freedom is examined (as it is natural for the study
of nuclear spin systems). On the other hand, if one is interested in the statistical
properties of systems described by continuous coordinates, the condition of a bound
on the total energy is not needed anymore: as observed by Machlup [126], the only
requirement is the existence of the average energy 〈H〉 in the canonical ensemble at
infinite temperature, i.e. negative temperature states can be observed if

〈H〉β=0 =
∫
dE e−βEω(E)E

∣∣∣
β=0

=
∫
dE ω(E)E <∞ , (2.18)

even if E is unbounded.
From the microcanonical point of view, we know for sure that systems with

unbounded energy living in bounded phase spaces verify

lim
E→∞

Γ(E) = Γmax <∞ (2.19)

so that ω(E), by continuity, has to be a decreasing function of its argument for some
energy interval. This is therefore a sufficient condition for negative temperature
states. As an example, we can consider the following Hamiltonian:

H(X) =
N∑
i=0

tan2(pi) +
N−1∑
i=0

tan2
(
qi+1 − qi

2

)
. (2.20)

with pi, qi ∈ (−π/2, π/2): the total energy can assume arbitrarily large values, but,
due to the bound on the phase space, Γmax = π2N , and NAT states can actually
appear.

2.1.4 Bounded phase space

In the light of the above discussion, one could expect that a bounded phase-space
is a necessary condition for NAT states in the microcanonical description. Strictly
speaking, this guess is false. In principle, one could imagine a model with ω(E)
slowly decreasing such that Γ(E) =

∫ E
0 ω(E′)dE′ → ∞, e.g. ω(E) ∝ E−α with

0 < α ≤ 1.
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Let us consider, for instance, the particular case of a Hamiltonian characterized
byN bounded degrees of freedom and a single particle with quadratic kinetic energy,
labeled with the subscript 1, i.e.

H(X) = p2
1

2 +H0(X0) (2.21)

where the condition H0(X0) ≤ E0 holds. Here X0 is the vector including all canon-
ical coordinates except p1.

Let us compute Γ(E) in the case E > E0:

Γ(E) =
∫
H(X)<E

dp1 dX0

=
∫ E0

0
dE′

∫
H(X)<E

dp1 dX0δ(H0(X)− E′)

=
∫ E0

0
dE′

∫
Ω0
dX0δ(H0(X0)− E′)

∫ p̃(E−E′)

−p̃(E−E′)
dp1 .

(2.22)

In the last expression, Ω0 is the (bounded) dominion where X0 is defined, while
p̃(E) =

√
2E is the (positive) single-particle momentum corresponding to an energy

E for kinetic terms with the usual quadratic shape. We have therefore

Γ(E) = 2
√

2
∫ E0

0
dE′
√
E − E′ω0(E′) , (2.23)

where
ω0(E′) =

∫
Ω0
dX0δ(H0(X0)− E′) . (2.24)

Taking the derivative of Eq. (2.23) w.r.t. E one gets the density of states

ω(E) = dΓ
dE

=
√

2
∫ E0

0
dE′

ω0(E′)√
E − E′

, (2.25)

which, in the limit E � E0, is proportional to E−1/2: it is a decreasing function of
the energy and, as a consequence, the system can achieve negative temperature.

Let us note, however, that in this particular setting the energy of the system
is almost completely stored in the quadratic kinetic term, which is a quite peculiar
situation (not very meaningful from the point of view of Statistical Physics).

2.2 Systems with bounded kinetic terms: a useful class
of models

One of the aims of the present Thesis is to show, through the study of suitable
Hamiltonian systems, that the introduction of NAT does not lead to any form of
paradox, and that it provides a useful tool for the statistical descriptions of systems
with bounded phase spaces. To this end, we will focus on Hamiltonian systems that
satisfy the following conditions:
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1. The phase space accessible to the system is bounded; we have shown (see
Section 2.1.4) that it is possible to build mechanical models which admit
NAT even if the total accessible phase space is infinite, but such cases seem
to be quite peculiar and cannot be considered, in our opinion, paradigmatic
of the statistical behavior occurring on real physical systems.

2. The Hamiltonian can be splitted into the sum of a kinetic and a potential con-
tribution. This, of course, is not a requirement to achieve NAT (important
physical examples such as the DNLS equation are not included in this cate-
gory); however, due to the simple argument discussed in Sec. 2.1.2, in these
systems temperature can be easily measured by looking at the momentum
distribution.

3. The kinetic terms are bounded from above: even if this requirement is not
strictly necessary to achieve NAT states (as shown in Sec. 2.1.3), we stress
that the choice of unbounded kinetic terms may lead to considerable tech-
nical difficulties in numerical simulations. The main reason is that if k(p)
reaches infinite values in a finite domain for p, q̇ = k′(p) can assume arbitrar-
ily high values in such domain, making very difficult to control the precision
of numerical simulations of the dynamics.

4. We also choose to consider periodic boundary conditions on the domain of
the {pi} (in other words, we consider momenta living on a torus). In this
way we are sure that the dynamics of the system is always well-defined, i.e.
the dynamics never leads the system out of the domain in which it is defined.
Another way to reach the same goal would have been that of choosing k(p)
in such a way that k′(p) → ∞ at the boundaries; again, this choice leads to
instability on the numerical simulations, whose outcomes would be difficult to
control.

2.2.1 The model

In the light of the above discussion, we restrict ourself to the class of mechanical
models whose Hamiltonians have the form

H(p,q) =
N∑
i=1

[1− cos pi] + U(q) (2.26)

where both positions and momenta live on the torus [−π/2, π/2) with periodic
boundary conditions, i.e. they are angular variables. This class of Hamiltonian
systems has been introduced in Ref. [41], and the form of the kinetic energy is quite
similar to that experimentally observed in a celebrated work about systems of cold
atoms [23], discussed in Section 1.1.3. A system with this form of the kinetic energy
is also briefly discussed in Ref. [82].

The proposed form of the kinetic energy is of course artificial, meaning that it
does not reproduce any known dynamics of real particles; nevertheless, the study of
this simple model can improve the understanding of general mechanisms that also
hold for more realistic systems allowing NAT states. Let us also notice that:
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• the volume of the phase-space accessible by the system is bounded;

• the total kinetic energy is always positive and it is bounded from above by
the value 2N ;

• for small values of the total energy, the kinetic terms can be approximated by
p2
i /2, i.e. we recover the usual expression of the kinetic energy for particles

with unitary masses;

• the velocity of the i-th particle, q̇i = sin pi, is also bounded in this model, and
it has the same sign of the momentum (even if it is not a monotonic function
of the latter).

In some cases it will be useful to consider some dependence of the single-particle
dynamics on generalized “masses”. In particular, the possibility to tune such masses
can be used to produce an effective time-scale separation on the evolutions of dif-
ferent oscillators (see Section 3.2). To impose additivity of both kinetic energy and
momentum of particles with the same velocity, it can be shown that kinetic terms
have to be written in the following way:

H =
∑
i

mic
2 [1− cos(pi/mic)] + U(q) (2.27)

where c is a constant with the physical dimensions of a velocity (in the following we
put c = 1) and the constants {mi} play the role of generalized masses. This topic
will be discussed in some detail in Section 3.1.

2.2.2 Measuring β

In the following we will often deal with numerical simulations of Hamiltonian sys-
tems of the form (2.26); since the measure of the inverse temperature β is a crucial
point in all considered cases, we briefly examine here the proper ways for determin-
ing it from the dynamics. Technical aspects about the integration algorithms are
discussed in Chapter 5.

In Hamiltonian systems with the usual kinetic energy
∑
i p

2
i /2m one would ex-

ploit the equipartition theorem [125, 85] and measure T = 1/β as the (temporal)
average 〈p2

i /m〉 – assuming that the ergodic hypothesis holds. Of course in this case
the form of the physical observable to study has to be different, since the kinetic
energy is not quadratic.

One could be tempted to measure 〈p sin(p/m)〉, as suggested by the equipartition
theorem, which asserts that

〈xi
∂H
∂xj
〉 = δijT (2.28)

where xi and xj are generic canonical variables. As already discussed in Section 1.2,
the temperature appearing in Eq. (2.28) is the so-called “Gibbs temperature”, whose
physical meaning is quite different from TB, the Boltzmann temperature, and which
can never assume negative values. Since TB and TG are related (see Ref. [82]),
computing TB as a function of TG could still appear as a feasible option; however,
as discussed in Ref. [41], in this case the hypotheses of the equipartition theorem
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are not fulfilled and not even TG can be measured in this way. Indeed, the usual
derivation of Eq. (2.28) is based on the fact that the l.h.s. of Eq. (2.28) can be
written as

1
ω(E)

∂

∂E

[∫
H<E

dpdq ∂

∂xj
[xi(H− E)]− δij

∫
H<E

dpdq ∂

∂xj
(H− E)

]
(2.29)

where the first term is assumed to vanish, due to the fundamental theorem of
calculus. However, this is only true if the boundary of the integration domain
coincides with the closed curve H = E: if, instead, the phase space is bounded, the
domain H < E can be also delimited by the boundary of the phase space itself, and
nothing can be said about the considered term.

Even if the Equipartition theorem does not hold, it can be proved that there
exists a mechanical observable whose ensemble average gives the microcanonical
(inverse) temperature, assuming that ergodic hypothesis holds [164, 165]:

β = 〈∇ ·
( ∇H
||∇H||2

)
〉 . (2.30)

The above result is very important from a conceptual point of view, but of
course it can be difficult to apply it to the study of systems with many degrees of
freedom. A much easier way is to study the form of the single-particle momentum
distribution, and to infer β through a numerical fit on the functional form

ρ(pj) = N exp [βmj cos(pj/mj)] (2.31)

where N is the normalization constant. In Fig. 2.1(A) we show some histograms of
the momenta of single particles, in molecular dynamics simulations of model (2.26)
with mj = 1 ∀j and

U(q) = K
N∑
i=0

[1− cos(qi − qi+1)] , q0 ≡ qN+1 ≡ 0 , (2.32)

for different values of the total energy E. The value of β is inferred from a fit on
the p.d.f. with the functional form (2.31). In Fig. 2.1(B) we plot the inferred values
of β as a function of the specific energy ε = E/N : the analytical relation

ε(β) = 1− I1(β)
I0(β) +K

[
1− I1(βK)

I0(βK)

]
, (2.33)

which is derived in Appendix 2.A is nicely reproduced. Here In(x) is the n-th
modified Bessel function of the first kind. Let us stress that, here and in the
following, the particular choice for the value of K (or other parameters appearing
in the potential term) is not crucial to the possibility of observing the discussed
phenomenology.

At small energies the system reduces to a chain of harmonic oscillators, and the
momentum p.d.f. is similar to a Gaussian profile, centered in zero. This condi-
tion corresponds to positive-temperature states. When the energy exceeds a certain
threshold, the volume of the phase-space region that can be accessed by the system
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Figure 2.1. Measuring β from the momentum p.d.f.. Panel (A): histograms of the single-
particle momentum distribution (points), for different values of the total energy of the
system; solid lines are best fits for the functional form (2.31), from which we compute
the values of β reported in the legend. The profiles are obtained by averaging over all
particles. Panel (B): caloric curve β(ε) inferred from simulations (circles) compared to
the analytical relation (2.33). Here K = 0.5, N = 128, total integration time for each
profile T = 3 · 105. Details on the integration algorithm are discussed in Section 5.1.

starts decreasing; β becomes therefore negative, with a consequent change of con-
cavity for the momentum p.d.f.. In particular, the maximum of the distribution is
shifted from p = 0 to p = ±π.

A practical alternative is to study the single-particle observable

〈cos(pj/mj)〉 =
∫
dpj ρ(pj) cos(pj/mj)

= I1(βmj)
I0(βmj)

.
(2.34)

If the dynamics satisfy reasonable ergodicity conditions, the above quantity can be
measured by averaging over long-time series of data from numerical simulations.
Since B(x) = I1(x)/I0(x) is an odd function, it can be inverted to find β.

2.3 Thermometers and “thermodynamic” negative tem-
perature

So far, we have discussed negative temperature only from the point of view of
Statistical Mechanics, i.e. we have shown that in particular classes of systems
the volume of the accessible phase-space region (and, as a consequence, the total
entropy) is a decreasing function of the total energy of the system. In this Section we
try to show that NATs are well-defined also within a thermodynamic perspective;
to this end, we will discuss the possibility to extend the operative definition of
“thermodynamic” temperature, related to the concept of thermal equilibrium and
to the Zeroth Law, also to Hamiltonian systems with bounded kinetic terms. In
other words, we will face the problem of designing a thermometer that is able to
measure negative temperature. The results presented in this Section are contained
in Ref. [10]. A similar study (on a lattice system) has been addressed in Ref. [26].
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2.3.1 Zeroth Law and the definition of temperature

Let us assume that the macroscopic state of a system is entirely described by a set
of n observables {α1, ..., αn} (e.g. volume, pressure, magnetization...), with n much
smaller than the total number of microscopic degrees of freedom. If such quantities
do not change appreciably in time on a macroscopic scale, the system is said to
be in a condition of thermodynamic equilibrium [85]. Moreover, if two systems A
and B are put at thermal contact (i.e., they have the possibility to exchange heat)
and, nonetheless, the corresponding macroscopic observables {αAi } and {αBi } do not
change in time, A and B are in thermal equilibrium with each other.

Zeroth Law of Thermodynamics states that if two systems A and B are, sep-
arately, in thermal equilibrium with a third system C, they are also in thermal
equilibrium with each other [100]. Thermal equilibrium is thus a reflexive, tran-
sitive and symmetric property, which determines an equivalence relation between
thermodynamic systems. As a consequence, Zeroth Law implies the existence of
a function Θ – the “thermodynamic” temperature – which identifies the different
classes of equivalence, assuming equal values for two different systems if they are at
thermal equilibrium [151]. A well known result of equilibrium Statistical Mechan-
ics [85] assures that, if a thermodynamic temperature Θ can be defined (i.e., if the
considered bodies reach thermal equilibrium once they are put at contact), such
quantity has to be an invertible function of β = dS/dE, whence the link between
Thermodynamics and Statistical Mechanics.

The thermodynamic temperature can be measured through a thermometer, i.e.
a device with the following properties:

1. it exists a physical observable of such device, function of the thermodynamic
temperature only, which can be used to determine the value of Θ (at least on
a suitable scale);

2. once put in contact with the system to measure, the thermometer will reach
a thermal equilibrium in a finite time, without perturbing the temperature of
the system in a significant way.

The very operative definition of temperature, in classical Thermodynamics, relies
on the possibility to design a thermometer able to quantify such observable. In what
follows we will show that for systems with bounded kinetic terms, as those discussed
in Section 2.2, we can give a definition of temperature in the thermodynamic sense,
through the introduction of a suitable model of “thermometer”.

2.3.2 Simulating a minimal model for a thermometer

We want to verify that it is possible to design, at least in principle, a device able
to measure the temperature of a system both at positive and negative temperature.
The possibility of such “universal” thermometer will be tested through molecular
dynamics simulations on simple Hamiltonian models. In particular, we will con-
sider the case in which a system S of the type (2.26) is able to exchange energy
with another system T , so that they eventually reach thermal equilibrium; if such
coupling does not perturb the initial thermodynamic state of S, we could use T to
“measure” the thermodynamic temperature of S.
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To this end, we will enforce molecular dynamics simulations on a Hamiltonian
system composed of two interacting subsystems:

S : HS({Pi, Qi}) , i = 1, ..., NS
T : HT ({pj , qj}) , j = 1, ..., NT ,

(2.35)

with NS � NT . Due to the last requirement, it is reasonable to expect that the
coupling between S and T will not lead to a significant perturbation of the initial
thermodynamic state of S, and system T should reach, after a sufficiently long
time, a temperature very close to the one initially assumed by S. Of course the
interaction term between the two systems,

Hint(q,Q) = ε
NT∑
i

Vint(qi −Qi), ε� 1 (2.36)

where Vint is some two-particles interaction potential, has to be small for the same
reasons. In the following, we always choose

Vint(x) = 1− cos(x). (2.37)

The total Hamiltonian of the system we are going to simulate reads:

Htot(P,p,Q,q) = HS(P,Q) +HT (p,q) +Hint(Q,q) . (2.38)

In our numerical experiments we apply the following protocol:

1. We initialize S in a typical thermal state.

2. We initialize T in a thermal state at a different temperature.

3. We set ε = 0, so that no interaction is present between S and T , and we let
the total system evolve for some time τ0 (much larger than the characteristic
times of the subsystems’ dynamics) according to the Hamiltonian evolution
defined by (2.38).

4. By measuring β in the two subsystems, we verify that they are (separately)
at equilibrium.

5. We set ε to a nonzero value, as to couple the two subsystems.

6. We let the total system evolve again and we measure β for S and T in time.

If the temperature of S is constant and it is reached by that of T in a finite time,
we conclude that the thermometer is able to measure the temperature of S without
perturbing it.

Our numerical simulations are based on a Verlet-like algorithm, with time step
chosen to be 5 × 10−3, in order to keep relative energy fluctuations < 10−4. For
more details, see Section 5.1. Let us just stress that our numerical simulations are
fully deterministic, i.e. without coupling with external reservoirs or thermostats.
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2.3.3 Characterization of S

We are interested in the thermodynamic properties of systems of the form (2.26).
A possible choice for S is represented by the following Hamiltonian:

HS(P,Q) =
NS∑
i=1

(1− cosPi)+
J

2NS

NS∑
i,j=1

(1− cos(Qi −Qj))+K
NS∑
i=1

(1− cos(Qi −Qi−1))

(2.39)
with Q0 ≡ QNS , J � K, (Qi, Pi) ∈ [−π, π)2 (with periodic boundary conditions).

The form of the kinetic energy, and the reasons why it is particularly convenient
for numerical studies, have been examined in Sec. 2.2. About the interaction po-
tential let us remark that, if we choose J = 0, it reduces to the one discussed in
Ref. [41] and briefly treated in Section 2.2; in this case we get a one-dimensional
chain of “generalized” oscillators. At large energy the exchange of heat among the
degrees of freedom of such kind of models is strongly depressed [121]. Therefore in
order to avoid very slow exchange of energy, a small non local interaction contribu-
tion has been introduced. Indeed, when J > 0, we introduce a perturbation that
has the same form of the interaction potential in the well-known HMF model [5]
(a paradigm for long-range interacting systems). Such term has the mere aim of
avoiding long-living metastable situations.

Remarkably enough, the equilibrium properties of systems with Hamiltonian (2.39)
can be deduced analytically, in the thermodynamic limit, making use of large-
deviation techniques. First we need to find the canonical equipartition function
ZN (β), and then one has to compute the free energy per particle through the limit
−βf(β) = limN→∞ logZN/N . At that point, the thermodynamics of the system is
fully described. This analysis is detailed in Appendix 2.B.

2.3.4 Thermometer with quadratic kinetic terms

First, we make the “naive” attempt to measure the temperature of system (2.39)
by using a thermometer with the usual, quadratic kinetic energy, which is expected
to mimic the behavior of a thermometer made of ordinary matter.

It is useful to recall an argument to show that the coupling of a system A at
negative temperature with a system B which only admits positive values of β always
produces a system with final positive temperature. Indeed, at the initial time, before
A and B are put at contact, the total entropy reads

SI = SA(EA) + SB(EB), (2.40)

while, after the coupling, it becomes

SF = SA(E′A) + SB(E′B), (2.41)

where E′A +E′B = EA +EB and, within our assumptions, E′A is determined by the
equilibrium condition that SF takes the maximum possible value [85], i.e.

βA = ∂SA(E′A)
∂E′A

= βB = ∂SB(E′B)
∂E′B

. (2.42)
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Figure 2.2. Entropy of the system SS(E) (left panel), and of the thermometer ST (E) (right
panel), as a function of E. Before the coupling, the system’s energy EI

S corresponds to
a negative temperature, TI < 0; after the thermalization, due to the coupling with the
thermometer with “Newtonian” kinetic energy, the total system’s temperature must be
necessarily positive, and a huge transfer of energy from S to the thermometer occurs,
in such a way that EI

S + EI
T ' EF

S + EF
T . Figure from Ref. [10].

Since βB is positive for every value of E′B, the final common temperature must also
be positive. In Fig. 2.2 we show schematically the mechanism for the energy transfer.
The result could also be expected on the basis of the discussion in Section 2.1.

In the light of the above, using as thermometer a system with “Newtonian”
kinetic energy, which can only assume positive β, will result in an heavy perturbation
of the system to measure (even if the size of the thermometer is much smaller than
that of S).

We have checked this argument by running molecular dynamics simulations
using a thermometer with Hamiltonian given by

HT (p,q) =
NT∑
i=1

p2
i

2 +
N−1∑
i=1

[1− cos(qi+1 − qi)] . (2.43)

We compute the temperature of the thermometer by looking at the usual average
〈p2〉. The temperature of the system is instead measured by fitting the histograms
of the momenta; in particular, we plot cos(p) vs log[ρ(p)], where ρ(p) is the empirical
distribution of the momenta of all particles in a certain time interval, and we make
a linear fit to extrapolate the value of β (see also Ref. [41]). We repeat the operation
for many consecutive time windows, in order to obtain a plot of β as a function of
time t. We could also use a running observable, for instance the one discussed in
Section 2.2, but with this direct inspection of the empirical distributions in time we
are also able to verify that the system evolves through states of quasi-equilibrium
(i.e., that temperature is well defined at any time).

Figure 2.3 shows the scenario predicted by the previous simple thermodynamic
arguments. In the plots the value of β as a function of the time is displayed both
for S and T , starting from the instant in which the coupling ε is turned on. In the
left plot we see that, if the initial equilibrium state of S is at negative temperature,
an energy flux from the system S to the thermometer T occurs. This is coherent,
of course, with the usual interpretation of negative temperature as “hotter” than
positive temperature, and with the mechanism illustrated in Fig. 2.2. Such flux
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Figure 2.3. Inverse temperature β as a function of time, for the system (2.39) and the
thermometer (2.43). In the left (right) panel the β corresponding to the initial energy
of the system is negative (positive). β(t) is computed for the system from a fit on the
single particle momentum p.d.f.: we consider the histogram of the measured momenta
from time t to time t+∆t, with ∆t = 50000 in this case, and we get the value of β from
the slope of log[ρ(p)], as explained in Ref. [41]. Thermometer’s inverse temperature
has been determined, as usual, by β = 〈p2〉−1. Parameters: NS = 1000, NT = 30,
K = γ = 0.5, J = 0.05 ε = 0.1. Figure from Ref. [10].

ends only once thermal equilibrium is reached, i.e. when the system has released an
amount of energy large enough to be in a positive-energy state. It is clear that the
amount of exchanged energy is macroscopic even if the size of the thermometer is
very small with respect to that of S (i.e. NT < NS). This heavy perturbation of the
system to measure indicates a catastrophic failure of model (2.43) as a candidate
for a “universal” thermometer.

As a side remark, let us note that system S reaches an equilibrium with the
thermometer T by passing through a β = 0 state. This observation is quite obvious
in the light of the above qualitative discussion, but it is useful to stress that while the
states β = ±∞ (corresponding to T = 0) cannot be attained starting from systems
at finite temperature, β = 0 can be actually reached: some authors, indeed, claim
that such states are both unattainable, and this assumption is used to assert that
the introduction of NAT leads to (apparent) paradoxes [161].

The right panel shows that no issue is encountered when the initial state of S
is at positive temperature: in that case the temperature measured by T quickly
reaches the original temperature of S, which is not considerably modified by the
coupling with the thermometer.

2.3.5 A proper thermometer (with bounded kinetic terms)

Let us now look at what happens when we consider a thermometer with bounded
phase space of the kind (2.1), e.g. the one described by the following Hamiltonian:

HT (p,q) =
NT∑
i=1

(1− cos pi) +
NT −1∑
i=1

γ [1− cos(qi+1 − qi)] . (2.44)

In this case the total system, composed by S and T , is still a Hamiltonian model
of the kind (2.1) living in a bounded phase space, and therefore we expect that it
is able to assume negative temperatures.
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Figure 2.4. Inverse temperature β as a function of time, for the system (2.39) and the
thermometer (2.44), both measured by the distribution fitting procedure explained in
Fig 2.3. In the left (right) panel the β corresponding to the initial energy of the system
is negative (positive). Parameters as in Fig. 2.3. Figure from Ref. [10].

If the size of the thermometer is small with respect to that of the system (i.e.,
if NT � NS), we can also expect that just a small exchange of energy, compared
to the total energy stored in S, is needed in order to reach thermal equilibrium.
This is due to the fact that this time the subsystem T can reach any value of the
temperature, both positive and negative, so that it does not act as a “sink” for the
energy of S anymore. As a consequence, the thermodynamic state of S, and its
temperature, should not be perturbed too much by the coupling with T .

Also in this case we run molecular dynamics simulations of the coupled system
and we measure the inverse temperature β through the analysis of the empiri-
cal distributions of the momenta of single particles, for consecutive time intervals.
Fig. 2.4 shows, as expected, that thermometer (2.44) is able to reach (and measure)
the temperature of the system. In the left panel we show a case in which the ini-
tial temperature of S is negative, while in the right one the system starts from a
positive β. In both cases the temperature measured by the thermometer quickly
reaches that of S and fluctuates around it, with an amplitude which is expected to
depend on NT and on the time-window chosen for the measure of β.

The above results show that equilibrium negative temperature are meaningful
also in the sense of Thermodynamics. A class of mechanical systems has been
shown to exist such that the thermodynamic temperature Θ is well-defined, i.e. it
is possible to design a suitable model of thermometer which can be used to measure it
unambiguously. In the light of the above, the claim that negative-temperature states
should be regarded as out-of-equilibrium (see e.g. Ref. [177]) appears inconsistent,
in our opinion, with the usual definition of thermal equilibrium.

2.4 Negative temperature in absence of ensemble equiv-
alence

Long-range interacting systems are an open research field in Statistical Mechan-
ics, both for their practical interest and for the conceptual issues related to the
non-additivity of thermodynamic potentials. It is well known, for example, that
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microcanonical and canonical ensemble can be inequivalent if the internal energy of
a system is not additive, and the usual results of Statistical Mechanics cannot be
straightforwardly applied [32].

In this Section we study a simple Hamiltonian model with bounded kinetic terms
and a mean-field potential. We will show that the equivalence of microcanonical and
canonical ensemble fails; the energy regime in which the two statistical descriptions
are not equivalent is characterized by negative temperature. This analysis is useful
to show the non-trivial phenomenology that can be encountered, also for systems
living in bounded phase spaces, when long-range interactions are involved. In par-
ticular it provides a striking example in which NATs cannot be trivially mapped into
corresponding equilibrium states at positive temperature with specular properties.
The results presented in this Section are discussed in Ref. [135].

2.4.1 Long-range interactions and ensemble inequivalence

It is a known fact that in physical systems with long-range interactions the equiv-
alence of statistical ensembles can fail [50, 32]. This happens when equilibrium
states described by the microcanonical p.d.f. exist, which do not correspond to any
state described by the canonical one: in other words, the average of a macroscopic
observable can give different results, at the same temperature T , if the system is
isolated or closed. This phenomenon can be observed in a large variety of physi-
cal contexts including self-gravitating systems, perfect fluids in two dimensions and
spin models with mean field interactions [145, 124, 123, 43, 44, 155, 84].

For long-range interacting systems, inequivalence of statistical ensembles is due
to the lack of additivity of the total energy E, which can result in a change of
concavity for the entropy S(E) (i.e., negative specific heat): since the Legendre-
Fenchel transform that relates the free energy F (T ) to S(E) is not invertible in
this case, there is no one-to-one correspondence between the microcanonical and
the canonical description [182, 146]. In particular, it can be shown that the caloric
curve T vs E in the canonical ensemble can be obtained from the microcanonical
analogue through the Maxwell construction, i.e. by replacing the free energy with
its convex envelope. The situation is somehow reminiscent of that arising in van
der Waals equation for non ideal gases, obtained by a mean field approach, where
the pressure is a non-monotonic function of the volume: Maxwell construction was
indeed introduced in this context, in order to describe the coexistence of two different
phases in the “unphysical” region at negative compressibility [125, 85].

In the following, we check the validity of the above scenario for Hamiltonian sys-
tems with bounded kinetic terms, belonging to the class introduced in Section 2.2.
Let us remark that systems with ensemble inequivalence and negative temperature
can be found, for instance, in the context of plasma physics. In Ref. [176] a guiding-
center model for a plasma in a cylindric domain is studied; it is shown that the
system is equivalent to a two-dimensional point vortices system, and equilibrium
solutions for the corresponding mean-field Vlasov equation are studied. In a high-
energy range, corresponding to a negative temperature regime, statistical ensembles
are shown to be non-equivalent. Rigorous results on the Statistical Mechanics of
point vortices in bounded domains have been proven [105, 28, 29], relating the in-
equivalence of statistical ensembles to the non-uniqueness of the solution, at high
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energy and for some kind of bounded domains in two dimensions, of the mean-field
equation describing the system. Recently, the problem of equivalence of statisti-
cal ensembles for systems of point vortices on a spherical surface has been also
addressed [106].

2.4.2 A mean-field model with bounded kinetic terms

Let us consider a Hamiltonian system of the form (2.26) consisting of N degrees of
freedom described by conjugated coordinates {pi, qi}, i = 1, ..., N . The generalized
positions are, also in this case, angular variables. The total Hamiltonian reads:

H(p,q) =
N∑
i=1

(1− cos pi)−Nv(m) (2.45a)

v(m) = J

2m
2 + K

4 m
4 + const. (2.45b)

where m is the modulus of the “magnetization” vector defined as

m(q) ≡ 1
N

(
N∑
i=1

cos qi ,
N∑
i=1

sin qi

)
. (2.46)

J and K are parameters that can assume, in general, both positive and negative
values; the additive constant in Eq. (2.45b) is actually unessential for the dynamics:
in the following we will choose it in such a way that the minimal energy achievable
by the system is zero.

The potential term defined by Eq. (2.45b) is the one that characterize the so-
called “Generalized Hamiltonian Mean Field” (GHMF) model [27] describing the
mean field interactions between magnetized rotators. The GHMF is an extended
version of the Hamiltonian Mean Field model [5] that includes also a quartic de-
pendence on the magnetization; among other interesting properties, this system is
paradigmatic for the study of inequivalence between canonical ad microcanonical
ensembles and has been extensively studied in past years [22, 32, 11]. Let us note
that the bounded phase space and the long-range interactions are two features that
our model shares with two dimensional vortex systems in bounded domains [144,
176, 128].

Hamiltonian H depends on the angular positions through the magnetization
modulus m, which is maximal (m = 1) when all the rotators are parallel and
vanishes if their angular positions are homogeneously distributed in [−π, π); the N
factor in front of the potential is needed in order to ensure the extensivity of the
system (Kac’s prescription). Let us stress that for the system (2.45a) it is possible
to write down an analytical computation of the equilibrium properties using large
deviation approaches [146]: the procedure is quite similar to the one presented in
Ref. [32], and it is explicitly carried out in Appendix 2.C.

2.4.3 Negative specific heat at negative temperature

Molecular dynamics simulations have been performed in order to study the func-
tional dependence of the inverse temperature β on the energy E of the system.
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Figure 2.5. Equilibrium caloric curve β(E/N) for model (2.45a) with J = 0.5, K = 1.4.
Analytical prediction (red solid line) and results of molecular dynamics simulations
(black circles) are shown. Parameters: N = 1000, ∆t = 0.25, T = 108. The caloric
curve of the GHMF model with the same parameters (dash-dotted blue curve) is shown
for comparison. Figure from Ref. [135].

We used a second-order symplectic Velocity Verlet-like integrator (see Section 5.1),
choosing the integration step ∆t so as to observe total-energy relative fluctuations
∆E/E ' O(10−5). Since we are interested in equilibrium properties, the total
integration time T has always been chosen to be much longer than the typical char-
acteristic times of the system. In order to fix initial conditions with the desired
value of the total energy, some care has to be devoted to the fact that our kinetic
terms are bounded; first, one has to choose the angular positions in such a way that
0 < E−Nv(m) < 2N , e.g. by repeated uniform extractions over a suitable interval;
once the above constraint is satisfied, momenta can be randomly extracted in such
a way that the sum of the kinetic terms amounts to the residual energy. We also
include a small external potential vext(q) = cos(q1), acting only on the first particle,
in order to break the angular symmetry of the magnetization m. All interesting
observables are computed as temporal averages:

〈A(X)〉 ' 1
T

∫ T
0
A(X(t))dt . (2.47)

In particular, we can measure the observable defined by Eq. (2.34), and infer β by
inverting such relation.

In Fig. 2.5 we show the theoretical caloric curve β(E/N) for a choice of J and
K that leads to inequivalence of statistical ensembles (namely, to the existence of
microcanonical equilibrium states with negative specific heat which have no canon-
ical counterpart). In this case both J and K are positive, so that the interacting
potential has a minimum for m = 1 (“ferromagnetic” limit).

Let us notice that the values of β measured in numerical simulations through
the observable (2.34) show a very good agreement with the analytical prediction.

The figure also shows the difference between the system we are considering and
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Figure 2.6. Equilibrium caloric curve for model (2.45a) with the same parameters of
Fig. 2.5, but J = −0.5, K = −1.4. Insets: single-particle momentum distributions
corresponding to the two cases pointed by the arrows; green solid lines represent best
fits for the equilibrium p.d.f. (2.17). The fragment of the curve in the dashed rectangle
is the same shown in Fig. 2.7. Figure from Ref. [135].

the corresponding GHMF model with the same parameters. At low energies the
behavior of the two systems is quite similar, due to the fact that the kinetic terms
are equal up to order O(p3

i ) when energies are small. The scenario changes for large
values of E/N : in this case, the “bounded phase-space” version of the GHMF model
can reach equilibrium states with β ≡ dS/dE < 0, while the original GHMF model
behaves like an ideal gas whose (positive) β asymptotically tends to zero (infinite
temperature).

Fig. 2.6 shows a different example, in which both J and K are chosen to be
negative; in this case v(m) is minimum at m = 0 (“antiferromagnetic” limit). As it
can be seen in the figure, in a certain energy range, negative microcanonical specific
heat and negative values of β coexist – meaning that microcanonical and canonical
ensembles are inequivalent for some negative temperatures. The microcanonical
specific heat of the corresponding GHMF model is, instead, always positive, and
the statistical ensembles are always equivalent. In the insets of Fig. 2.6 we also show
the single-particle momentum distribution in a couple of cases (one at positive and
one at negative β): the empirical distribution and the analytical expression for the
p.d.f. given by Eq. (2.17) are in excellent agreement.

Let us now focus on the energy range in which statistical ensembles are in-
equivalent in this case. Fig. 2.7 shows the detail of this region. In panel (a), the
microcanonical caloric curve is compared to the results of numerical simulations.
The dashed line is the Maxwell’s construction, which individuates the transition
temperature 1/β∗ in the canonical ensemble [182]: all the microcanonical equilib-
rium states with energies corresponding to the Maxwell’s construction (red circles
in the figure) are metastable or unstable [32] and have no equivalent counterpart in
the canonical ensemble. The microcanonical caloric curve also shows a first order
phase transition, which can be understood by looking at panel (b): the systems
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goes from a regime with m = 0 to a magnetized phase with m > 0.

2.4.4 Checking ensemble inequivalence

Ensemble inequivalence can be checked through numerical simulations. The idea
is to prepare the system at a certain inverse temperature β and to compare the
equilibrium properties that are obtained

1. by a symplectic deterministic integrator which preserves the energy of the
system;

2. by a stochastic simulation which mimics the presence of a thermal reservoir
at a fixed temperature β, allowing for energy fluctuations.

The integration method used in the first case is the same used before, and detailed
in Section 5.1. The latter is based on a different approach, i.e. it simulates a
Langevin dynamics at temperature β. The possibility to define proper Langevin
equations also for negative values of β is discussed in the next Chapter. The details
of the integration algorithm are presented in Section 5.2. We fix the diffusivity
constant D that appears in the generalized Langevin Equation (5.10) in such a way
that 1/|β|D, the typical time-scale of the stochastic dynamics, is comparable to the
characteristic times of the system.

Of course the first strategy is expected to reproduce the statistical properties
described by the microcanonical ensemble; the second one corresponds instead to
the canonical ensemble at inverse temperature β.
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Figure 2.8. Showing ensemble inequivalence in the antiferromagnetic case J = −0.5,
K = −1.4. (a) Distribution of the single-particle momentum in the microcanonical
ensemble (solid red curve) and the corresponding canonical one (dashed blue curve) for
E/N = 1.84. (b) Distribution of the single-particle position, in the same conditions of
panel (a). (c-d) Same as (a-b), but for E/N = 1.94. Parameters: N = 1000, T0 = 107,
T1 = 2.5 · 106, D = 0.02. Figure from Ref. [135].

We start from an initial condition whose energy corresponds to an unstable
microcanonical state, and we let the system evolve through a molecular dynamics
simulation for a long time T0. So far the system is isolated, and we can measure
the inverse temperature β of the corresponding microcanonical state by studying
the above discussed observable. The final configuration is then taken as the initial
condition for the two different evolution protocols described above: we run two
independent simulations for an additional time T1, and we measure mechanical
observables at equilibrium in these conditions. Of course the energy of the system
is conserved in the first case, while in the stochastic simulation we fix the value of
β to be the same observed during the first part of the evolution.

The results of our simulations are shown in Fig.2.8 for two choices of the initial
energy that lead to unstable microcanonical states, namely E/N = 1.84 (panels
(a) and (b)) and E/N = 1.94 (panels (c) and (d)). In the left part of the figure,
the single-particle momentum distributions, microcanonical and canonical, are dis-
played: in both cases the plots are almost identical, meaning that our simulation
protocol is able to mimic a canonical ensemble with the same temperature of the
starting isolated state. On the right panels we show the corresponding distributions
for the angular positions, from which we observe a striking difference between the
two physical situations.

Panel (b) clearly shows that the zero-magnetization state which is attained in the
microcanonical ensemble for E/N = 1.84 is lost when the constraint on the energy is
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relaxed: if we only fix the temperature, i.e. if we reproduce the situation described
by a canonical ensemble, the system eventually moves to a stable state at higher
energy, with finite magnetization. Conversely, in panel (c) we show that starting
from an unstable magnetized state, if we only fix the temperature, the system
will end up in a zero-magnetization state. This is a clear evidence of ensemble
inequivalence.

The fact that such inequivalence appears at negative temperature signals, as
it is also evident from the caloric curve in Fig. 2.6, that the properties of the
microcanonical entropy in the NAT branch are qualitatively different from those in
the low-energy regime. Let us just notice that this is a striking example in which the
high-energy properties of the model cannot be inferred from the low-energy regime
by exploiting simple symmetry relations: in order to get a full understanding of the
model at high energy, the introduction of negative temperature is mandatory. This
observation is somehow significant, since among many physicists there is a diffuse
feeling that NAT states are always “specular” to the positive-temperature ones, so
that the introduction of the negative-temperature formalism is a cumbersome way
to obtain results that could be deduced with simpler approaches. While this is true
for some simple spin systems [1, 30], there is no general rule in this sense, as the
present case clearly shows.
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Appendix to Chapter 2

2.A Derivation of Eq. (2.33)

Here we derive the caloric curve for model (2.26) with potential (2.32). For the sake
of clarity, we consider the case mj = 1 ∀j.

First we compute the canonical partition function

ZN (β) =
∫
dp dq e−βH(p,q)

=
∫
dp e−β

∑
i
[1−cos pi]

∫
dq e−β

∑
i
[1−cos(qi−qi+1)]

= eN [ln 2−β(1+K)]
{
I0(β)I0(Kβ)

4π2

}N (2.48)

where we have introduced the modified Bessel functions of the first kind,

In(x) = 1
2π

∫ π

−π
dθex cos θ cos(nθ) . (2.49)

The free energy per particle reads

f(β) = − lim
N→∞

1
βN

lnZN (β) = 1 +K − 1
β

ln
[
I0(β)I0(βK)

8π2

]
, (2.50)

and we can infer a relation between the specific energy ε and the inverse temperature
as

ε = d(βf)
dβ

, (2.51)

from which we straightforwardly obtain Eq. (2.33).

2.B Statistical properties of model (2.39)

In this Appendix we study the statistical properties of model (2.39). The simultane-
ous presence of a long-range term (which can be written as a mean-field interaction)
and a short-range potential can be treated by using the transfer operator strategy
that has been discussed in Ref. [33] in a similar context.
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As a preliminary step, let us notice that the “long-range” interaction term of
the Hamiltonian can be also written as

J

2NS

NS∑
i,j=1

(1− cos(Qi −Qj)) =

= JNS
2

1−

 1
NS

NS∑
i=1

cosQi

2

−

 1
NS

NS∑
i=1

sinQi

2
 .

(2.52)

Taking into account the above consideration, Z(β,N) can be factorized into two
terms:

• a kinetic part, i.e.

ZK(β,N) =
∫ π

−π
dp1...dpN exp

[
−β

N∑
i=1

(1− cos pi)
]

; (2.53)

• a configurational one, i.e.

ZC(β,N) =e−βJN/2
∫ π

−π
dQ1...dQN exp

 βJ
2N

(
N∑
i=1

cosQi

)2

+ βJ

2N

(
N∑
i=1

sinQi

)2
× exp

[
−βK

N∑
i=0

(1− cos(Qi+1 −Qi))
]
.

(2.54)

The kinetic contribution to f(β) can be easily computed from (2.53) in terms of the
modified Bessel functions of the first kind (see Eq. (2.49)); one gets

−βfK(β) ≡ lim
N→∞

1
N

logZK = −β + log (2πI0(β)) .

The strategy to determine ZCβ,N has been outlined in Ref. [33], where a model
with a similar interacting potential has been extensively studied. The result for
β > 0 is

−βfC(β) ≡ lim
N→∞

1
N

logZC

=− βK − βJ2 −min
m≥0

(
m2

2βJ − log[λ(m,Kβ)]
) (2.55)

where λ(z, α) is the maximum eigenvalue of the symmetric integral operator

(Tz,αψ)(Q) =
∫ π

−π
dQ′ exp

[1
2z(cosQ+ cosQ′) + α cos(Q−Q′)

]
ψ(Q′). (2.56)

In the following we will explicitly derive the case β < 0, with the same strategy
which has been used in Ref. [33] for β > 0.
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From Eq. (2.54), by mean of a standard Hubbard-Stratonovich transformation,
we get

ZC(β,N) = Ne−βJN/2

2π|β|J

∫
dρxdρy exp

[
− N

2|β|J (ρ2
x + ρ2

y)−NβK
]
×

×
∫ π

−π
dQ1...dQN exp

i N∑
j=1

(ρx cosQj + ρy sinQj) + βK
N∑
j=1

cos(Qj+1 −Qj)

 =

= Ne−βJN/2

2π|β|J

∫ ∞
0

dρ

∫ π

−π
dφ ρ exp

[
−N ρ2

2|β|J −NβK
]
×

×
∫ π

−π
dQ1...dQN exp

iρ N∑
j=1

cos(Qj − φ) + βK
N∑
j=1

cos(Qj+1 −Qj)

 ,
(2.57)

where we have introduced “polar” coordinates for the plane (ρx, ρy). Now we shift
all the integration variables {Qj} by an angle φ, then we can rewrite the last term
in a symmetric fashion and recover the functional form of the integral operator T
introduced above, so that

ZC(β,N) = Ne−βJN/2

2|β|J

∫ ∞
0

dρ2 exp
[
−N ρ2

2|β|J −NβK
]
Tr
[
T Niρ,βK

]
' Ne−βJN/2

2|β|J

∫ ∞
0

dρ2 exp
[
−N ρ2

2|β|J −NβK +N log[λ(iρ,Kβ)]
]
(2.58)

(reminding Q1 ≡ QN+1). The last equality holds in the thermodynamic limit,
N � 1. Note that since Tiρ,βK is not an Hermitian operator, its eigenvalues will
be in general complex numbers: therefore λ(z, α) has to be defined, in this case, as
the eigenvalue with the maximum modulus. Finally, one can use steepest-descent
method to reduce the calculation of the integral to a minimization problem, that
can be solved numerically.

2.C Study of model (2.45a)
In this Appendix we sketch the strategy we have employed to determine the equi-
librium properties of model (2.45a). The problem can be addressed by mean of
the methods of large-deviations theory, which turn out to be particularly useful in
presence of mean-field interactions [182]. Our argument follows quite closely the
usual derivation that can be done for the GHMF model (see, e.g. [32]), with an
ad-hoc handling of the non-quadratic “kinetic” terms.

Let us just recall that large deviation approaches can be exploited to study the
thermodynamic behavior of a Hamiltonian system of N particles (described by the
state X = (p,q)) if it is possible to write the total Hamiltonian as

H(X) = H̄(µ1(X), ..., µn(X)) , (2.59)

where µj(X) =
∑N
i=1 gj(qi, pi)/N , j = 1, ..., n are n � N mean quantities, for a

suitable choice of H̄.
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In such a case the following relation holds:

S(E) = ln
∫ ∏

j

dµ̄jδ(H̄(µ̄1, ..., µ̄n)− E) exp[Ns̄(µ̄1, ..., µ̄n)] (2.60)

where s̄ is the so-called “entropy of macrostates”:

s̄(µ̄1, ..., µ̄n) = 1
N

ln
∫

Ω
dXδ(µj(X)− µ̄j) . (2.61)

Furthermore, large deviation theory ensures that the entropy of macrostates can be
computed, in the N � 1 limit, as

s̄ = inf
λ1,...,λn

∑
j

λjµ̄j + lnZ(λ1, ..., λn)
N

 (2.62)

with
Z(λ1, ..., λn) =

∫
Ω
e
−N
∑

j
λjµj(X)

dX . (2.63)

In the present case, defining

κ = 1
N

N∑
i=1

(1− cos(pi)) (2.64)

we can write Eq. (2.45a) (apart from unessential constants) as

H

N
= κ− J

2 (m2
x +m2

y)−
K

4 (m4
x + 2m2

xm
2
y +m4

y) (2.65)

wheremx andmy are the components of the magnetization vector m (see Eq. (2.46)).
The entropy of macrostates is equal to:

s̄ = inf
λκ
{κλκ − λκ + ln I0(λκ) + ln(4π2)}+

+ inf
λx,λy
{λxmx + λymy + ln I0

(√
λ2
x + λ2

y

)
}

= (κ− 1)Binv(1− κ) + ln I0(Binv(1− κ))+
+ ln(4π2)−mBinv(m) + ln I0(Binv(m))

(2.66)

where In(x) is the n-th modified Bessel function of the first kind (see Eq. (2.49))
and Binv(x) is the inverse function of I1(x)/I0(x). Let us notice that s̄ depends
actually only on κ and m =

√
m2
x +m2

y. Now we can evaluate the microcanonical
entropy S(E) by using its relation with s̄(κ,m). The r.h.s. of Eq. (2.60) in the
N � 1 limit can be estimated through a constrained extremal problem, namely as
the supremum of s̄(κ,m) with the condition

H̄(κ,mx,my) = E . (2.67)

It can be shown that such problem is fulfilled by the value m̃ of the magnetization
that verifies the following condition:

Binv(m̃) = (Jm̃+Km̃3)Binv
(

1− E

N
− J

2 m̃
2 − K

4 m̃
4
)
. (2.68)
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Once m̃ is known (Eq. (2.68) can be solved by numerical methods) the corresponding
value of κ can be found from Eq. (2.67) and we finally get

S(E) = Ns̄(κ̃, m̃) . (2.69)

In a similar way we can derive the free energy of the system:

F (β) = inf
κ,m

{
H(κ,m)− N

β
s̄(κ,m)

}
. (2.70)
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Chapter 3

Langevin Equation (also) at
negative temperature

In this Chapter we face the problem of describing the coarse-grained dynamics of
systems with generalized kinetic energy via effective stochastic equations. Our aim
is to understand whether it is possible to define a Langevin Equation (LE) also for
systems with non-quadratic kinetic energy, and in particular for the Hamiltonian
models introduced in the previous Chapter. We will see that stochastic coarse-
grained descriptions of the dynamics hold also when negative temperatures are
involved, and we will comment on the physical meaning of this finding.

In addition, this kind of study allows to clarify some aspects of NAT states, pro-
viding, in particular, a possible answer to the question about the physical meaning
of a thermal bath at negative temperature, recurrent in the literature. On the other
hand, the ability of a modified LE to reproduce the action of a thermal reservoir
with generalized kinetic energy turns out to be quite useful in numerical simulations
on this kind of systems, as discussed in Section 5.2.

The results presented in this Chapter are discussed in Ref. [12] and Ref. [15].

3.1 Generalizing the Langevin Equation
In his celebrated paper about Brownian motion, Langevin addressed the problem
of properly describing the irregular behavior of pollen particles suspended in wa-
ter [114]. Following Einstein [54], he assumed that both the colloidal particle and
the molecules of the fluid could be modeled as material points with masses M and
m � M respectively. The irregular motion of the heavy particle is due to the
collisions with the molecules of the liquid, which are assumed to be uncorrelated.
To account for the discontinuous action of the hitting molecules, Langevin relied
upon the introduction of a stochastic term in the evolution equation of the colloid,
namely a white Gaussian noise ξ(t) = (ξ1(t), ξ2(t), ξ3(t)) such that

〈ξi(t)〉 = 0
〈ξi(t)ξj(t′)〉 = δ(t− t′)δij .

(3.1)

He supposed that the impulsive force acting on the colloid was proportional to
this noisy function ξ. On the other hand, he argued that the interaction with



50 3. Langevin Equation (also) at negative temperature

the fluid resulted into an average damping force exerted on the colloidal particle,
proportional to its velocity (Stokes law). The combination of the above effects leads
to the celebrated Langevin Equation (LE)

Ṗ = −γP +
√

2γkBTξ (3.2)

which characterizes the evolution of the momentum P = MQ̇ of the heavy colloid
(Q being its position in the three-dimensional space). Here γ is the friction term due
to the interaction of the colloidal particle with the fluid, while T is the temperature
and kB is the Boltzmann constant. The noise amplitude is determined by the
Einstein assumption that the interested particle is at thermal equilibrium with the
fluid, so that equipartition theorem holds and

〈P 2/M〉 = 3kBT . (3.3)

Eq. (3.2) clearly shows that Brownian motion is the result of the competing actions
of a damping force and a thermal noise. It seems reasonable that such mechanism
should hold, under appropriate modifications, also for Hamiltonian systems with
non-standard, generalized forms of the kinetic energy K(P ), and in particular for
the systems with bounded kinetic terms discussed in Section 2.2. In these cases there
is no reason for the damping force to be proportional to the momentum, since the
Equipartition Theorem does not hold, as discussed in Section 2.2.2. In particular, in
what follow we will be interested to the possibility of deriving Langevin Equations
also for systems at negative absolute temperature.

3.1.1 Generalized masses

As it will be discussed in the following, a necessary (but not sufficient) condition
for the dynamics of a particle to be described by some coarse-grained Langevin-
type equation is that a time-scale separation occurs between the dynamics of the
observed degree of freedom and the decorrelation times of the thermal bath. A
natural way to achieve such time-scale separation in systems with non-standard
kinetic terms is to introduce a parameter which tunes the inertia of each degree of
freedom, a “generalized mass”. Then we can take the limit in which this parameter
is much larger for the observed particle than for the others.

Such mass term should satisfy the following, reasonable additivity condition.
Let us call k(p,m) the functional form of the kinetic energy, which is assumed to
fulfill all conditions detailed in Section 2.1. Let us consider n identical particles of
mass m moving with the same momentum; suppose that they are stuck together,
in such a way that they form a new particle with mass nm and momentum np. We
require that the kinetic energy of this new particle, which is equal to nk(p,m), can
be expressed as k(np, nm).

It is easy to verify that this condition is satisfied by any kinetic energy of the
form

k(p,m) = mf

(
p

m

)
, (3.4)
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where f(x) is a regular function which satisfies the conditions detailed in Section 2.1.
Indeed, the total kinetic energy of the n particles is given by

nk(p,m) = nmf

(
p

m

)
= nmf

(
np

nm

)
= k(np, nm) , (3.5)

i.e. it is equal to the kinetic energy of a single particle with mass and momentum
n times larger.

The classical Newtonian kinetic energy is written in the form 3.4, with f(x) =
x2/2. Similarly, the relativistic kinetic energy in special relativity can be reconduced
to such functional dependence, choosing f(x) =

√
x2c2 + c4, where c is the velocity

of light in vacuum. In the following we will always consider examples in which the
functional dependence on the masses is described by Eq. (3.4).

3.1.2 A Smoluchowski-like approach

Once the dependence of the kinetic terms on the generalized masses has been estab-
lished, one can try to generalize classical approaches to derive effective equations
similar to Eq. (3.2). In this Section we will make a first attempt based on a gen-
eralization of the strategy proposed by Smoluchowski in his famous paper about
Brownian motion [194, 40]. The idea is to consider a system composed by a heavy
particle and many light molecules, which interact only through elastic collisions; we
can compute the average momentum that the heavy particle exchanges in a small
time interval, assuming to be in an equilibrium condition. In this way one has an
explicit expression for the drift term.

Let us write the total Hamiltonian of a one-dimensional system as

H(P,Q,p,q) = Mk(P/M) +
∑
i

mk(pi/m) + U(Q, {qi}) , (3.6)

where the kinetic terms have been already written in the form (3.4) and all prop-
erties required in Section 2.1 are assumed to hold. Let us also require that k′(x)
is invertible, as it happens in the “Newtonian” case k(x) = x2/2. In the above
Hamiltonian (P,Q) are the coordinates of the slow degree of freedom, characterized
by a mass M , while (pi, qi) represent the i-th light molecule, with mass m � M .
The interacting potential U accounts for the collisions between the heavy particle
and the light molecules:

U(Q,q) =
∑
i

u(|Q− qi|) , (3.7)

where the function u(x), defined on the positive axis, is differentiable, decays to
zero within some finite range σ and verifies limx→0u(x) =∞.

First, let us consider the case in which a small molecule collides with the large
particle when the latter has zero velocity. During the collision both total energy
and momentum are conserved. As a consequence, in the limit of infinite M , if the
heavy particle is fixed, the momentum p of the light molecule changes its sign. In
this case the exchanged momentum is given by ∆ = 2p: this is analogous to what
happens in classical Mechanics, and it is a consequence of the assumed symmetries
of the kinetic terms. If we consider the case in which M is large but finite, and the
heavy particle is allowed to move with a small but non-zero velocity, we can expect
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that ∆ = 2p + ε, where |ε| � |p|. The energy conservation before and after the
collision implies

mk

(
p

m

)
−mk

(−p− ε
m

)
= Mk

(
P + 2p+ ε

M

)
−Mk

(
P

M

)
. (3.8)

Exploiting |ε| � |p| � |P | and the symmetries of k(x), the above equation can be
expanded to obtain

− εk′
(
p

m

)
' 2pk′

(
P

M

)
, (3.9)

whence
∆ ' 2p(1− V/v) (3.10)

where V = Q̇ = k′(P/M) and v = q̇ = k′(p/m) are the velocities of the two
considered particles.

Eq (3.10) can be used to derive an expression for the average drift of the momen-
tum P of the slow particle, conditioned to its initial value. Following Smoluchowski,
the average variation of P in an infinitesimal time interval can be written as〈

dP

dt

∣∣∣P〉 ' ∫ ∞
−∞

dv f(v)ρ|v − V |∆(v, V ) (3.11)

where f(v) is the equilibrium distribution of the velocities for the light particles and
ρ is their spatial density, supposed homogeneous. Indeed, the number of particles
with velocity v which collide with the heavy one in a time interval dt is, on aver-
age, f(v)ρ|v − V |dt; multiplying by the corresponding contribute to the exchanged
momentum and integrating over all possible values of v gives the total drift.

We can change the integration variable into g = v − V ; then we make an ex-
pansion assuming the limit in which V is very small compared to v and we finally
obtain 〈

dP

dt

∣∣∣P〉 ' −4V ρ
∫ ∞
−∞

dgf(g)|p̃(g)| (3.12)

where p̃(x) is the inverse function of k′(x/m). The above equation shows that it
is possible to write the average drift as the product of V , the velocity of the slow
particle, and a term only depending on the properties of the bath.

The above generalization of the Smoluchowski approach gives an explicit expres-
sion for the Stokes force also in cases with non-quadratic kinetic terms. However,
in our derivation we used the fact that k′(x) is a invertible function, an hypothesis
that is not verified, for instance, by models belonging to the class discussed in Sec-
tion 2.2. Moreover, the assumption of elastic collisions is not compatible, in general,
with systems at negative temperature, i.e. those we are actually interested in: in a
β < 0 equilibrium condition, it can be expected qualitatively that the particles tend
to maximize the total energy by sticking together, so that the picture described
above cannot be applied.

3.1.3 A stochastic argument

In order to obtain a suitable generalization of the LE for the systems with the
bounded kinetic terms introduced in Section 2.2 we cannot always rely on the
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Smoluchowski approach discussed before. An alternative strategy is based on the
assumption that the action of the bath can be described as a systematic part and
a delta-correlated noise independent of the value of P .

Let us consider the general case of a Hamiltonian system

H(P,p, Q,q) = K(P ) +
∑
i

K̃(pi) + U(Q) + V(Q,q) (3.13)

where (P,Q) are the canonical coordinates of a “slow” degree of freedom, while
(pi, qi) represent the generalized momenta and positions of particles with a much
faster dynamics. In a system with the usual quadratic kinetic energy, Q could
represent the position of a particle with a mass much higher than the others; as
discussed in Section 3.1.1, this notion can be generalized to other forms of K(P ).

We can interpret U(Q) as the external potential which the slow particle is sub-
jected to, while V(Q, {qi}) takes into account the interactions occurring among dif-
ferent degrees of freedom. For the sake of simplicity we consider here only Hamil-
tonian systems in one dimension, but all the results could be straightforwardly
generalized to the multi-dimensional case. Let us also stress that in what follows
we will limit our analysis to Hamiltonians of the form (3.13), in which the kinetic
energy is the sum of single-particle contributions only depending on the momentum.

The Hamilton equations describing the motion of the slow degree of freedom
read: {

Q̇ = ∂PK(P )
Ṗ = −∂QU(Q)− ∂QV(Q, {qi})

(3.14)

At this stage we introduce the hypothesis that the dynamics of the slow particle
can be approximated by an effective, memoryless stochastic equation of the form{

Q̇ = ∂PK(P )
Ṗ = −∂QU(Q) + Γ(P ) +

√
2Dξ(t) .

(3.15)

Here the term Γ(P ) can be seen as a generalization of the Stokes force, while D is a
constant which determines the amplitude of the noise. In this way we are ignoring
the details of the interactions between the slow and the fast degrees of freedom. We
are implicitly assuming that the dynamics of the slow process is Markovian on the
considered time scale: let us notice that this assumption is not a direct consequence
of the time-scale separation between the typical characteristic times of the dynamics
of Q and of those of qi, which however is a necessary condition. Furthermore, we
are assuming that the amplitude of the noise term,

√
2D, does not depend on the

momentum (i.e., we are only considering non-multiplicative processes).
The possibility to perform such averaging procedure on rigorous mathemati-

cal grounds is a non-trivial, largely studied problem in the field of dynamical sys-
tems [71, 107]: the above approximation should be therefore viewed as an ansatz,
whose validity needs to be checked a posteriori. The results that are discussed in
the following are expected to hold only in physical situations in which the above
hypotheses are verified.
We aim at finding some kind of generalized Einstein relation between the con-
stant D and Γ(P ). Let us introduce the steady probability density f(Q,P ) (to
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be determined) of the considered degree of freedom, and the corresponding steady
probability currents:{

JQ(Q,P ) = f(Q,P )∂PK(P )
JP (Q,P ) = −f(Q,P )∂QU(Q,P ) + Γ(P )f(Q,P )−D∂P f(Q,P ) .

(3.16)

In terms of the above quantities, the Fokker-Planck equation corresponding to
Eq. (3.15) reads:

∂QJQ(Q,P ) + ∂PJP (Q,P ) = 0 . (3.17)

We assume now that the system is in thermal equilibrium (which is the same hypoth-
esis done by Einstein and Langevin when applying the equipartition theorem (3.3)).
We require therefore that detailed balance is satisfied, i.e. that the irreversible part
of JP vanishes, so that

Γ(P )f(Q,P )−D∂P f(Q,P ) = 0 . (3.18)

Exploiting the factorization of the equilibrium distribution f(Q,P ) = fQ(Q)fP (P ),
and the form of the momentum-dependent term,

fP (P ) ∝ e−βK(P ) , (3.19)

one easily finds from Eq. (3.18):

Γ(P ) = −Dβ∂PK(P ) = −γQ̇ . (3.20)

The last equation states that, if the hypotheses discussed above are satisfied, the
Stokes law is proportional to (minus) the velocity Q̇ = ∂PK(P ), no matter what
the form of the kinetic energy is. Furthermore, the ratio γ between such generalized
viscous force and the velocity of the particle is fixed by

γ = Dβ . (3.21)

This last equation can be seen as a generalization of the Einstein relation to cases
with non-quadratic kinetic energy.

A couple of observations are in order. First, let us notice that in the usual,
Newtonian case K(P ) = P 2/2M , the Einstein relation is recovered, as it should.
Second, in the above discussion we never assumed that the parameter β had to
be positive. We can expect that for systems with bounded kinetic terms as those
discussed in Section 2.2, which admit negative temperature, relation (3.21) holds
also at β < 0.

3.2 LE at negative temperature: case with “mechani-
cal” baths

In the previous Section we addressed the problem of deriving a proper Langevin
equation for the slow degree of freedom in Hamiltonian systems described by Eq. (3.13),
where the kinetic term can assume a non-quadratic form. We deduced a generalized
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version for the Einstein relation (3.21), which is expected to hold also at negative
temperature, since in our derivations we never assumed β > 0 explicitly. Now we
want to verify such result by numerically simulating Hamiltonian systems which
can model the interaction between a slow degree of freedom and a thermal bath.

The possibility to model thermal baths through mechanical systems, in suitable
limits, is well known. In the 60’s several papers showed that the motion of a single,
heavy particle inside a chain of many harmonic oscillators with mass m could be
rigorously described by a Brownian motion, in the limit M/m� 1 (where M is the
mass of the heavy particle) [162, 186, 180, 131, 59]. These results were generalized
by Zwanzig, who could extend such rigorous approach to nonlinear systems coupled
to baths of harmonic oscillators [200].

If the kinetic terms are not quadratic, the results just mentioned cannot be
rigorously proven; however, it is reasonable to expect that in systems composed by
one heavy particle and many light molecules, in the sense discussed in Section 3.1.1,
a qualitatively similar situation appears. We can simulate the dynamics of such kind
of system and study the behavior of the slow degree of freedom, in order to verify,
a posteriori, whether the generalization of the LE discussed in the previous Section
applies. In particular, we will consider a case in which also negative temperature
can be achieved. The methodology that will be used in this Section is discussed in
some detail in Section 5.3, where it is applied to an exactly solvable case as those
mentioned above and some technical and conceptual issues are discussed.

3.2.1 A preliminary example

As a preliminary example, let us consider the mechanical system described by the
following Hamiltonian:

H(P,p, Q,q) = P 4

4M3 +
∑

i=±1,...,±N

p4
i

4m3
i

+ k

2

N+1∑
i=−N

(qi−qi−1)2, q−N−1 ≡ qN+1 ≡ 0 ,

(3.22)
i.e. a chain of 2N+1 generalized oscillators with quartic kinetic terms. All oscillators
have generalized mass m, apart from the central one (characterized by momentum
P and position Q ≡ q0), whose inertia is given by some M � m; the kinetic terms
depend on the masses in the way identified by Eq. (3.4).

Our aim is to show that the generalized Einstein relation (3.21) holds in this
case with non-standard kinetic terms. To this end, we perform molecular dynamics
simulations of the whole system (3.22) and we measure P , the momentum of the
heavy particle. Assuming that the dynamics of P can be approximated by a Markov
process, it must be described by a LE of the form

Ṗ = F (P ) +
√

2D(P )ξ (3.23)

where ξ is a white Gaussian noise with unitary variance. If this is the case, we
should be able to infer the functional form of F (P ) and D(P ) from the study of the
conditioned moments

A(P0,∆t) =
〈
P (t+ ∆t)− P (t)

∆t

∣∣∣P (t) = P0

〉
(3.24)
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Figure 3.1. Effective behavior of the slow particle in model (3.22). Left panel shows the
p.d.f. of P , measured in simulations. The solid red line is the best fit with the expected
functional dependence, Eq (3.26), which gives a value of the parameter β close to 0.446.
The right panel shows the result of the numerical analysis detailed in Section 5.3 to
infer the diffusivity D(P0) = lim∆t→0B(P0,∆t), where B is defined in Eq. (3.25). The
solid red line is a constant fit. Black lines are guides for the eyes. Parameters: M = 50,
k = 2500, 2N = 2000.

and

B(P0,∆t) =
〈

[P (t+ ∆t)− P (t)]2

2∆t

∣∣∣P (t) = P0

〉
(3.25)

respectively, in the limit of ∆t → 0 [65, 63]. The procedure we use to reconstruct
numerically the coefficients of the Langevin equation is detailed in Section 5.3, as
well as the range of applicability of this method and possible practical issues related
to its usage.

We have to verify that the hypotheses discussed in Section 3.1.3 are fulfilled.
First, we need to check that the action of the bath (represented here by the chain
of particles with mass m) maintains the heavy particle at equilibrium at some
inverse temperature β; then, assuming that the process is Markovian, we measure
the amplitude of the noise induced on such particle through formula (3.25), taking
the limit ∆t → 0, and we verify that it does not depend on P (i.e., the noise is
additive). Such checks are shown in Fig. 3.1. The left panel of the figure shows the
histogram of P during the simulation; this distribution can be fitted through the
equilibrium Boltzmann p.d.f.

ρ(P ) = e−βP
4/4M3∫∞

−∞ dP e
−βP 4/4M3 =

√
2β1/4e−βP

4/4M3

Γ(1/4)M3/4 (3.26)

in order to achieve the value of β. Here Γ(x) is the Euler Gamma function. The
right panel shows the diffusivity as a function of the momentum. No clear trend
appears with our analysis, and it seems reasonable that a model in which D it is
independent of P should catch the essential features of the dynamics. If this is the
case, the hypotheses for the derivation presented in Section 3.1.3 are satisfied, and
Eq. (3.20) should be verified.

This is indeed what we find with the analysis shown in Fig. 3.2. Here we com-
pare the results of our procedure to reconstruct the drift term from data with the
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Figure 3.2. Drift term F (P ) for the coarse-grained dynamics of the heavy particle in
model (3.22), in the same conditions of Fig. 3.1. Circles represent the results of the
numerical analysis detailed in Section 5.3, i.e. the limit lim∆t→0A(P,∆t). The solid
red line is determined by Eq. (3.20), where the parameters are inferred from the analysis
shown in Fig. 3.1 (no fitting).

expected curve
F (P ) = −βD(P/M)3 , (3.27)

where β and D are those inferred in Fig. 3.1. The agreement is very good, meaning
that, provided that a thermal bath satisfies some reasonable requirements, a precise
relation between the viscous term and the diffusivity can be established, also for
systems with non-quadratic kinetic energy.

3.2.2 A “mechanical” bath with bounded kinetic terms

In order to test the possibility of a LE at negative temperature, in this Section we
study a model of generalized oscillators of the form (3.13), characterized by the ki-
netic energy introduced in Section 2.2. This deterministic model can be investigated
through molecular dynamics simulations. In the spirit of the data-driven analysis
already applied in Section 3.2.1, we use long-time series of data for the momentum
P of the slow particle to infer numerically the terms of the LE which approximates
its dynamics to the best extent. We can then verify that Eq. (3.21) holds, both for
positive and negative values of β.

Also in this case we want to study the effective motion of a “heavy” oscillator
subjected to the action of a thermal bath of “light” particles. In the following, we
will model the bath as a chain of N generalized oscillators with equal masses m:

Hchain(p,q) =
N∑
i=1

m

[
1− cos

(
pi
m

)]
+ ε

N+1∑
i=1

[1− cos(qi − qi−1)] (3.28)

where (pi, qi) is the i−th pair of canonical coordinates, and qN+1 ≡ q0 ≡ 0. The
kinetic energy is modeled on the one introduced in Section 2.2, and we have set
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c = 1. A constant parameter ε tunes the intensity of the mutual interaction between
neighbor particles. Let us notice that the kinetic terms depend on the masses in the
way prescribed by Eq. (3.4). Of course this system can assume both positive and
negative temperature, depending on its internal energy, as discussed in Section 2.1.

We couple the above chain to a slow degree of freedom (P,Q) with massM � m
and the same form of the kinetic term. The total Hamiltonian reads

H(P,Q,p,q) = Hchain +M [1− cos(P/M)] + k

bN/nc∑
i=1

[1− cos(Q− qi·n)] , (3.29)

where n is an integer parameter in the range 1 � n � N and bxc represents
the integer part of x. In other words, the heavy particle is only coupled to those
oscillators whose label is an integer multiple of n.

One could wonder if it is necessary to deal with this kind of coupling, instead
of simply replacing the central particle of chain (3.28) with an heavier intruder, as
in the case discussed in Section 3.2.1; the reason for this choice is twofold. First,
since interaction terms are now bounded, heat exchange between the various parts
of the chain is much slower: a more “connected” geometry surely enhances the
thermalization process, and the system is expected to reach equilibrium at the
temperature of the reservoir on relatively fast time scales. Secondly, it is reasonable
that the composition of several interactions with different particles of the system
will result in an uncorrelated noise for the heavy particle; the thermal noise is then
expected to be memoryless, as required for the argument discussed in Section 3.1
to be valid.

3.2.3 An effective Langevin equation for both positive and negative
temperature

The Hamiltonian chain (3.28) represents a “deterministic” bath. The total sys-
tem (3.29) can be simulated through the usual generalized Verlet algorithm dis-
cussed in Section 5.1. We measure the trajectory of the observable P , then we
apply the strategy already used in Section 3.2.1 and detailed in Section 5.3: we
assume as working hypothesis that in the limit M/m� 1 and N � 1, the variable
P can be described by a Langevin equation with the shape

Ṗ = F (P ) +
√

2Dξ (3.30)

where ξ is a white noise such that 〈ξ(t)ξ(t′)〉 = δ(t − t′); then we compute the
conditioned moments (3.24) and (3.25), and take the limit ∆t→ 0.

The results of such extrapolation procedure are shown in Fig. 3.3, where we
consider two different values of the total energy of the system, corresponding to two
different β with opposite sign. In both cases, D is quite constant with respect to
the momentum, therefore equation (3.20) is expected to apply; indeed, F (P ) seems
to match quite well our phenomenological prediction

F (P ) = −βD sin(P/M) . (3.31)

Let us notice that relation (3.21) holds both at positive and at negative temper-
ature. In particular, as it is clear from the figure, passing from positive to negative
β the proportionality factor between F (P ) and ∂PK(P ) changes its sign.
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Figure 3.3. Drift and diffusivity evaluated with the discussed data-driven approach
(points) and corresponding fits (solid lines). Left: β ' +0.11. Right: β ' −0.10.
Drift terms are fitted with sinusoidal functions, diffusivities with constant values. Pa-
rameters of the simulations: M = 8, m = 1, k = 0.5, N = 600, n = 15. Figure from
Ref. [12].
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Figure 3.4. Autocorrelation functions of the velocity in the original dynamics (circles)
and in the coarse-grained model (solid lines) at β = 0.11 (left) and β = −0.10 (right).
In the insets, probability density functions of P in the two cases, both for the original
dynamics (boxes) and for the reconstructed model (solid lines). Figure from Ref. [12].

Of course there is a natural pragmatic way to verify the goodness of the effective
stochastic equation provided by the above approach: we can compare the behavior
of some observable in the original dynamics and in the coarse-grained one. To this
end, we simulate the stochastic process (3.30) with the reconstructed parameters
by using a standard stochastic integration algorithm (see Ref. [127] for details).

In Fig. 3.4 we show the velocity autocorrelation functions of the original dy-
namics and those that are obtained through a stochastic simulation of the LE.
The similarity between the two curves is a good indicator that the reconstructed
coarse-grained dynamics actually catches the relevant features of the slow particle’s
evolution, including the typical time-scales. Similarly, the stationary p.d.f. of P
obtained by a stochastic simulation of the LE is compared to its histogram in the
original, compete deterministic dynamics, and the agreement is very good also in
this case.
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3.2.4 Some remarks

If the generalized Einstein relation (3.21) holds for β < 0, it means that F (P ), in
such regime, must be positive when P > 0 and negative when P < 0, contrary
to what happens at positive temperature. In other words, the Stokes force gives
energy to the particle, instead of subtracting it. At first sight this behavior may
appear very unphysical. However, one has to remember that systems with β < 0
are characterized by an entropy which decreases when the energy increases; ran-
dom fluctuations due to thermal noise are expected to increase the entropy of the
considered system, so that their average effect is to subtract heat from it. In order
to maintain thermal equilibrium, the viscous term must compensate this loss, by
providing energy to the system.

A similar situation arises in the context of bi-dimensional hydrodynamics. Sev-
eral studies have shown that also in that case the effective dynamics of a single vortex
can be described by a stochastic equation which respects a generalized Einstein re-
lation [46, 45, 197, 197]; since the statistical properties of two-dimensional vortices
can be described by models which admits negative temperature states (as briefly
discussed in Section 1.1.1), it is not surprising that such relation holds true also for
β < 0. The physical interpretation is on the lines of that sketched above [197]

The fact that it is possible to write down a Langevin-like equation with β < 0,
which properly reproduces the behavior of a slow degree of freedom subjected to
the action of a bath, sounds quite relevant in the context of the long-lasting debate
about negative temperatures, briefly accounted for in Section 1.2. On the one hand,
we stress that the above results can be only understood in terms of negative β: if the
alternative thermostatistical description based on SG is adopted, the straightforward
extension of the Einstein relation (3.21) to cases with bounded kinetic terms cannot
be done. On the other hand, the above results show that it is possible to design
thermal baths at negative temperature, so that the notion of thermal equilibrium
at some negative temperature seems completely justified.

Finally, let us note that the LE described in this section can be used to mimic
the action of a thermal bath in stochastic simulations, i.e. it provides a practical
way to simulate the canonical ensemble. In Section 5.2 an example of algorithm
based on this finding is developed.

3.3 LE at negative temperature: case with spin baths

The reasoning in Section 3.1 provides a general relation between D and γ, but it is
not sufficient to determine γ (or D) from the knowledge of the Hamiltonian. When
the nature of the bath is specified, one may try perturbative methods in the limit
of large scale separation to derive the parameters of the effective equation. In the
following we consider an analytically tractable case, where the thermal bath is con-
stituted by a large number of Ising spins kept at a fixed temperature (which can be
both positive or negative) by a stochastic dynamics. The “slow” degree of freedom
is an oscillator characterized by the generalized kinetic energy discussed before. All
spins feel a magnetic field which depends on the position of the oscillator: if the
typical frequency of the oscillator is much slower than the rate of the stochastic dy-
namics, a Chapman-Engsok expansion of the Fokker-Planck equation of the particle
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can be performed. This analysis shows that Eq. (3.21) is verified also in this case,
but now the diffusivity explicitly depends on the position of the oscillator.

The results presented in this Section are discussed in Ref. [15]. A fruitful collabo-
ration with Prof. Antonio Prados, who elaborated the analytical approach sketched
in the following, is acknowledged.

3.3.1 A spin bath with a stochastic dynamics

We consider the following Hamiltonian for a slow particle with canonical coordinates
(P,Q) coupled to a thermal bath composed of N Ising spins σ ≡ (σ1, σ2, ..., σN ):

H(P,Q,σ) = K(P ) + U(Q)− µλ(Q)
N∑
j=1

σj . (3.32)

The particular form of the kinetic energy K(P ) is not important to the analytical
derivation we will discuss in this Section, so we will not specify it for the moment;
U(Q) is the external potential felt by the particle, while the last term rules the
interaction with the spins. In the case discussed here, the particle interacts with the
bath through the total magnetization of the spins

∑N
j=1 σj ; each spin σj can assume

only the values +1 or −1. They feel an external field µλ(Q), where parameter µ is
a constant which scales like O(N−1/2), while λ(Q) is a function of the oscillator’s
position only. Let us stress that this kind of models have some relevance in the
biophysical context, in which the spins are employed to model some internal degrees
of freedom of macromolecules [21, 20, 166].

The dynamics of the oscillator is determined by the usual Hamilton equations.
The spin bath experiences instead a stochastic evolution which keeps it at a fixed
equilibrium temperature, the widely used Glauber dynamics [72]. The basic idea is
that each spin changes its sign with a rate depending on the inverse temperature β
and on the external field, in such a way that the conditioned equilibrium distribution

P(σj = ±1|Q) = e±βµλ(Q)

2 cosh[βµλ(Q)] = 1
2{1± tanh[βλ(Q)]} (3.33)

is achieved. Due to the particular form of the Hamiltonian, each spin evolves inde-
pendently of the others, once the position Q of the oscillator is given.

We denote by Rj the operator that flips the j-th spin, leaving the remainder
unchanged. Starting from the generic spin configuration σ, the rate of transition
to the configuration σ′j = Rjσ, in which the j-th spin has been flipped, is given by

ω(σ → σ′j |Q) = α

2 {1 + σj tanh[βλ(Q)]} , (3.34)

where α is a parameter which fixes the overall velocity of the process with respect
to the typical time scales of the oscillator’s dynamics. In the following we will adopt
the compact notation

Wj(σ|Q) ≡ ω(σ → σ′j |Q) . (3.35)

Let us notice that the detailed balance (at fixed Q) is automatically satisfied, since

P(σ|Q)Wj(σ|Q) = P(σ′j |Q)Wj(σ′j |Q) (3.36)
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by construction.
We can write a Liouville-master equation for the time evolution of the joint

p.d.f. P(Q,P,σ, t):

N∑
j=1

(Rj − 1)Wj(σ|Q)P(Q,P,σ, t) =

=
[
∂t +K′(P )∂x +

(
−U ′(Q) + µλ′(Q)

∑
i

σi

)
∂p

]
P(Q,P,σ, t) .

(3.37)
In the limit α → 0 (infinitely slow Glauber dynamics), the l.h.s. vanishes and the
above relation reduces to the usual, “collisionless” Liouville evolution equation for
the p.d.f. of the canonical coordinates of an Hamiltonian particle.

If, instead, α is finite, there is a net probability current due to the evolution of
the spins, ∑

j

P(Q,P,σ′j , t)Wj(σ′j |Q)− P(Q,P,σ, t)
∑
j

Wj(σ|Q) , (3.38)

which is exactly the l.h.s. of Eq. (3.37).

3.3.2 Analytical derivation of the LE

We will study Eq. (3.37) with the aim of deriving an effective LE for the slow degree
of freedom, averaging over the effect of the spin bath. First, we derive an equation
for the marginal probability f(Q,P, t) for the particle variables,

f(Q,P, t) =
∑
σ

P(Q,P,σ, t) , (3.39)

valid when the spins are much faster than the particle. Then we obtain a Fokker-
Planck equation for f , whence we can deduce the LE we are searching for [65].

The strategy that we will follow is based on the Chapman-Enskog method [42],
originally introduced to derive the hydrodynamic equations of a gas from the Boltz-
mann equation. The idea is to expand the dynamical equation for the p.d.f. in
powers of some small parameter ε. In our case, since we are interested in the α� 1
limit (i.e., spins much faster than the oscillator), a reasonable choice is given by

ε = α−1 . (3.40)

In this way we will be able to find the first terms of the expansion for the drift and
the diffusivity of the LE.

The canonical distribution

Peq(Q,P,σ) = 1
Z
e−βH(Q,P,σ) , (3.41)

where Z is the partition function, is a time-independent solution of the dynami-
cal equation (3.37) (see Refs.[21, 200] for a proof of an H-theorem for this kind of
system, specifically for quadratic K(P ), U(Q) and linear λ(Q), although these par-
ticular shapes are not required in the proof). Since the spins are fast, they will be
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close to equilibrium at all times. This time-scale separation allows us to introduce
the following expansion for the solution of Eq. (3.37),

P(Q,P,σ, t) = Peq(σ|Q)f(Q,P, t) +
∞∑
l=1

εlP(l)(Q,P,σ, t) , (3.42)

where the conditioned equilibrium distribution for the spins is given by

Peq(σ|Q) = e
βµλ(Q)

∑
j
σj

2N{cosh(βµλ(Q)]}N (3.43)

and we assume that ∑
σ

P(l)(Q,P,σ, t) = 0 , ∀l ≥ 1 . (3.44)

Let us notice that if assumption (3.44) is fulfilled, f(Q,P, t) is the exact marginal dis-
tribution of the particle. Then we can expand the dynamical equation for f(Q,P, t),
following the Chapman-Enskog approach, as

∂tf =
∞∑
l=0

εlF (l)(Q,P, t) . (3.45)

Now we insert the above expressions for P(Q,P,σ, t) and ∂tf into Eq. (3.37), we
consider each order of the ε expansion separately and, after some calculations, we
find the following equations:

ε0 : ŴPeq(σ|Q)f(Q,P, t) = 0 (3.46a)
ε1 : ŴP(1)(Q,P,σ, t) = Peq(σ|Q)F (0)+

+
[
K ′(P )∂Q +

(
−V ′(Q) + µλ′(Q)

N∑
i=1

σi

)
∂P

]
Peq(σ|Q)f(Q,P, t) (3.46b)

ε2 : ŴP(2)(Q,P,σ, t) = Peq(σ|Q)F (1) + ∂tP(1)(Q,P,σ, t)+

+
[
K ′(P )∂Q +

(
−V ′(Q) + µλ′(Q)

N∑
i=1

σi

)
∂P

]
P(1)(Q,P,σ, t) . (3.46c)

In the above equations we introduced the operator

Ŵ = 1
α

N∑
j=1

(Rj − 1)Wj(σ|Q) , (3.47)

characterized in Appendix 3.A. Note that, with this definition, the matrix elements
of Ŵ do not scale with α (or ε). One can exploit the mathematical properties
of Ŵ to solve Eq. (3.46): a sketch of the solution is presented in Appendix 3.B.
Eq. (3.46a) is always verified, due to detailed balance. Eq. (3.46b), first order in ε,
gives

F (0) = −K′(P )∂Qf +
{
U ′(Q)− µλ′(Q)N tanh[βµλ′(Q)]

}
∂P f

' −K′(P )∂Qf +
{
U ′(Q)− µ̃2βλ(Q)λ′(Q)

}
∂P f

(3.48)
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in the thermodynamic limit, where we have introduced the rescaled coupling con-
stant

µ̃ = N1/2µ , (3.49)

which is of order 1 due to the original assumption on the scaling of µ. The O(ε2)
equation leads to

F (1) =
(
µ̃λ′(x)

)2
∂p
(
βK ′(p)f + ∂pf

)
. (3.50)

Taking into account the above expressions for F (0) and F (1), we can truncate
Eq. (3.45) to the first order in ε. We obtain the following Fokker-Planck equation
for f :

∂tf = −∇ · (Af) + 1
2∇ · (∇ · Bf) (3.51)

where ∇ = (∂Q, ∂P ) and

A =
(

K′(P )
−U ′R(Q)− βK′(P )D(Q)

)
B =

(
0 0
0 2D(Q)

)
. (3.52)

In the above equations, UR is the “renormalized” potential

UR = U − β

2 µ̃
2λ2(x) , (3.53)

which reduces to the original potential when µ̃→ 0, i.e. when the interaction with
the spin bath is negligible. The additional term, which comes from the coupling with
the reservoir, results in a systematic force acting on the oscillator. The quantity
D(Q), i.e. the diffusivity of the dynamics of P , has the form

D(Q) = εµ̃2[λ′(Q)]2 . (3.54)

Let us notice that D(Q) is always positive, as it should.
The LE for Γ = (Q,P ) can be straightforwardly obtained from the corresponding

Fokker-Planck equation (3.51):

∂tΓ = A+ Bξ (3.55)

where ξ = (ξ1, ξ2) is a two-dimensional delta-correlated Gaussian noise verifying
〈ξi〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′).

3.3.3 Numerical simulations

In order to check the consistency of the previous theoretical approach, we perform
numerical simulations of the complete dynamics (3.37) in the α � 1 limit (fast
spins): our aim is to compare the actual values of significant observables to those
predicted by the coarse-grained description provided by the Fokker-Planck equa-
tion (3.51) (or, equivalently, by the LE (3.55)). Specifically, we consider a case in
which the kinetic energy of the slow oscillator is given by

K(P ) = 1− cosP , (3.56)
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Figure 3.5. Equilibrium p.d.f. of the particle variables (Q,P ). The top (bottom) panels
correspond to β = 2 (β = −2). Histograms are computed from numerical simulations
of the microscopic dynamics (3.37); red solid lines are the best fits to the Boltzmann
distribution (3.58). Parameters: N = 104, α = 10, µ = 10−2, dt = (αN)−1. Figure
from Ref. [15].

i.e. it is the same discussed in Section 2.2, while the external potential and the
coupling with the bath read, respectively,

U(Q) = (1− cosQ)2 λ(Q) = sinQ . (3.57)

In our simulations, the spins are started from an unmagnetized configuration
in which σj = ±1 with equal probability. Then, for each time-step dt thereof, our
algorithm performs two actions:

1. it evolves the state (Q,P ) of the particle through a (deterministic) Velocity
Verlet integration step (described in Section 5.1);

2. it chooses one spin with uniform probability, and “tries” to flip it according
to the Glauber dynamics (3.34).

The waiting time between two extractions of the same spin is, on average, Ndt; as
a consequence, the probability to flip the spin once it has been selected is given by
NdtWj(σ|Q); in order to keep it of the order of unity, we choose dt ∼ O[(αN)−1].

As a first check for the validity of our description, we verify the renormalization
of the potential that arises in our theoretical framework. Specifically, we check the
shape of the equilibrium p.d.f. for the particle variables (Q,P ), which is given by

feq(Q,P ) = 1
Z

exp{−β[K(P ) + UR(Q)]} . (3.58)

Making use of Eq. (3.53), we find that the renormalized potential UR(Q) is

UR(Q) = (1− cosQ)2 − β

2 µ̃
2 sin2Q . (3.59)
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equation (blue diamonds), with a time-step h = 10−4. Other parameters as in Fig. 3.5.
Figure from Ref. [15].
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For positive temperatures, UR(Q) corresponds to a bistable potential with symmet-
ric minima at some Q ∈ [−π, π) verifying cosQ = 2/(2 + βµ̃2), and maxima at
Q = 0,±π, whereas for negative temperatures UR(Q) has only one minimum at
Q = 0 and attains its maximum value at Q = ±π. Thus, the most probable value
of Q – given by the maximum of exp[−βUR(Q)] – changes discontinuously from
Q = ±µ̃

√
β for β = 0+ to Q = ±π for β = 0−.

In Fig. 3.5, we show the histograms of Q and P at equilibrium, for two values
of the temperature with opposite signs: the agreement between the numerical and
the theoretical results are excellent. By fitting each plot with the corresponding
Boltzmann factor, we infer values of the parameter β that are compatible with the
original ones used in the simulations, within the confidence interval for the fit.

Second, we check the accuracy of the derived LE for describing the dynamics of
the particle variables. We want to compare the behavior of dynamical quantities in
the original dynamics to that of the same observables in a coarse-grained model ruled
by Eq. (3.55). With this aim, we numerically integrate such LE using a standard
algorithm for stochastic differential equations [127]. The variant of the algorithm
that has been chosen for such simulations is accurate up to order O(h3/2), where h
is the time-step for the integration.

Several time-dependent quantities which can be computed from the Fokker-
Planck equation (3.55) are compared with those obtained by simulating the original
Liouville-master equation (3.37). In Fig. 3.6, we look into time correlation functions
at equilibrium, namely, into the autocorrelations of sinQ and sinP , for two different
values of β with opposite sign. In Fig. 3.7, we study the relaxation to equilibrium of
some dynamical observables. In particular, we have evaluated 〈cosQ〉 and 〈cosP 〉,
conditioned to fixed initial values of the particle variables Γ(0) ≡ (Q(0), P (0)). Also
in this case, we consider a case with positive β and one at negative temperature.
The asymptotic values of the observables, computed analytically, are also shown for
reference. As the figures show, in all cases the agreement is very good.

3.3.4 Some remarks

The results presented in Section 3.3.2 provide an exact analytical form for the gen-
eralized Klein-Kramers equations of a stochastic process which can take place also
at NAT, when the parameter β for the considered bath is negative. The simulations
discussed in Section 3.3.3 are in good agreement with the analytical predictions.

Remarkably, also in this case it is possible to find a generalized Einstein relation
of the form (3.21), as it is clear from the P -dependent part of the drift term for P
in Eq. (3.55). An interesting difference from the examples discussed before is given
by the fact that in this case D is a function of Q. This is of course a consequence
of the particular nature of the bath, and of the way in which it interacts with the
considered slow particle.

The above consideration raises a subtle issue. In this case an analytical deriva-
tion shows that D is not constant during the dynamics, even if it does not depend
on P . In other words, it would not be possible to write down a one-variable LE for
P only, since its dynamics is not Markovian. How can we be sure that in the previ-
ously discussed examples (see Section 3.2) D was not a function of Q? The question
is legitimate, since our data-driven method for the inference of the diffusivity (see
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Figs. 3.1 and 3.3) is based on the assumption that D can only depend on P . If this
hypothesis was not verified in the first place, the observed profiles of D(P ) would be
an average over the position of some function D(2)(Q,P ). Of course, this scenario
could be excluded with a 2-variable version of the approach used in Section 3.2
(similar generalizations are discussed in Sections 5.4 and 5.5). In the specific cases
discussed before, however, the system presents translational invariance in the ther-
modynamic limit (rotational invariance when the generalized positions are angles),
and an explicit dependence on Q would break this symmetry. As a consequence, D
must be constant. As far as we know, however, there is no systematic procedure to
be sure, a priori, that the set of coordinates chosen for the coarse-grained represen-
tation is described by a Markovian dynamics, and one is usually forced to compare,
a posteriori, the outcomes of the effective description and the original dynamics to
check the level of accuracy of the considered approximation. This point is discussed
in Section 5.4 in a particular case.

Another interesting point is represented by the renormalization of the poten-
tial (3.53), which is again an effect of the coupling with the spin bath. The ad-
ditional potential depends on the temperature, and in particular it can assume
qualitatively different shapes depending on the sign of β (see example shown in
Fig. 3.5). This is another situation in which the presence of negative temperature
leads to scenarios which cannot be straightforwardly reconduced to corresponding
positive-temperature cases.
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Appendix to Chapter 3

3.A Properties of operator Ŵ
In this Appendix we discuss some properties of the operator Ŵ defined by Eq. (3.47).
Such characterization will be useful for the solution of Eq. 3.46, which will be carried
out in Appendix 3.B.

Let us consider the space of spin configurations σ, where we define the following
scalar product:

〈f, g〉 =
∑
σ

1
Peq(σ|Q)f(σ)g(σ) . (3.60)

First, we show that Ŵ is self-adjoint with respect to this scalar product. To this
end, consider

〈f, Ŵ g〉 =
∑
σ

1
Peq(σ|Q)f(σ)Ŵg(σ)

=
∑
σ

1
αPeq(σ|Q)f(σ)

 N∑
j=1

ω(σ′j → σ)g(σ′j)−
N∑
j=1

ω(σ → σ′j)g(σ)

 .
(3.61)

Due to detailed balance,

ω(σ′j → σ)Peq(σ′j |Q) = ω(σ → σ′j)Peq(σ|Q) , (3.62)

so that the first term in the r.h.s. of Eq. (3.61) can be also written as

N∑
j=1

∑
σ

1
αPeq(σ′j |Q)f(σ)ω(σ → σ′j)g(σ′j) . (3.63)

Now we observe that the sum over the configurations σ can be equivalently replaced
by a sum over σ′j , once j has been fixed, since there is a one-to-one correspondence
between the realizations of σ and those of σ′j . Then we can exchange the role of
the two dummy indexes σ and σ′j ; the resulting expression can be substituted into
Eq. (3.61) to give

〈f, Ŵ g〉 =
∑
σ

1
αPeq(σ|Q)g(σ)

N∑
j=1

[
ω(σ′j → σ)f(σ)− ω(σ → σ′j)f(σ)

]
=
∑
σ

1
Peq(σ|Q)g(σ)Ŵf(σ) = 〈Ŵf, g〉 ,

(3.64)
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which shows that Ŵ is self-adjoint.
Let us now consider a generic function f(σ) defined on the space of spin config-

urations. We have∑
σ

Ŵf(σ) =
∑
σ

1
Peq(σ|Q)P

eq(σ|Q)Ŵf(σ)

= 〈Peq(σ|Q), Ŵ f(σ)〉 = 〈ŴPeq(σ|Q), f(σ)〉 = 0 ,
(3.65)

where we have used the self-adjointness of Ŵ just discussed and the detailed balance
property ŴPeq(σ|Q) = 0. In other words, Ŵf(σ) is orthogonal to the equilibrium
distribution Peq(σ|Q) with respect to the scalar product (3.60) for every choice of
f(σ).

Let us also stress that Peq(σ|Q) is the only solution of Ŵf = 0, but for mul-
tiplicative constants, since it is the only equilibrium distribution for the dynamics
associated to Ŵ (an H-theorem can be shown to hold in this case; see Ref. [21] for
details).

3.B Sketch of the solution of Eqs. 3.46

In this Appendix we briefly sketch the strategy that can be employed to solve
Eqs. 3.46. First, let us observe that Eq. 3.46a is always verified, due to detailed
balance.

The l.h.s. of Eq. 3.46b can be written as ŴP(1)(Q,P,σ, t). In the light of the
discussion outlined in Appendix 3.A, such function is orthogonal to Peq(σ|Q) and,
as a consequence, also the r.h.s. verifies the same property, i.e.:

F (0)(Q,P, t)+

K′(P )∂Q − U ′(Q)∂P + µλ′(Q)
∑
σ

N∑
j=1

σj∂P

Peq(σ|Q)f(Q,P, t) = 0 .

(3.66)
The above equation leads to Eq. (3.48). Such expression for F (0) can be inserted
again into Eq. 3.46b to obtain, after some straightforward calculations,

ŴP(1)(Q,P,σ, t) = µλ′(Q)
(
βK′(P )f + ∂P f

)∑
j

(σj − 〈σ〉eq)Peq(σ|Q) . (3.67)

The above equation characterizes the first-order term of the expansion of P(Q,P,σ, t).
We can search for solutions of the form

P(1)(x, p,σ, t) = µλ′(x)
(
βK ′(p)f + ∂pf

)
Φ(σ|x) , (3.68)

where Φ(σ|x) satisfies

ŴΦ(σ|x) = Peq(σ|Q)
N∑
j=1

(σj − 〈σ〉eq) . (3.69)

It is easy to verify that the r.h.s. of the above equation is an eigenfunction of
Ŵ , with eigenvalue -1. Eq. (3.44) assures that Φ is orthogonal to Peq(σ|Q) (and
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therefore to the kernel of Ŵ , as discussed in Appendix 3.A): we can conclude that

Φ(σ|x) = −
N∑
j=1

(σj − 〈σ〉eq) , (3.70)

which, once substituted into Eq. (3.68), gives the searched expression for P(1).
Now we can apply the same strategy to the third of equations (3.46). Its l.h.s.

is orthogonal to Peq(σ|Q) and, as before, the sum over all spin configurations of
the r.h.s. has to vanish, too. This observation leads, through some straightforward
calculations, to

F (1) = 1
α
N
(
µλ′(Q)

)2 [1− tanh2 (βµλ(Q))
]
∂P
(
βK′(P )f + ∂P f

)
, (3.71)

which in the thermodynamic limit reduces to Eq. (3.50).
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Chapter 4

Negative temperature out of
equilibrium

In this Chapter we present some results for the behavior of Hamiltonian systems
living in bounded phase spaces in typical out-of-equilibrium conditions. We aim
at showing that negative temperatures correctly describe the high-energy regime of
these models also in the context of non-equilibrium Statistical Mechanics.

First, we study some cases in which the system is driven out of equilibrium by
a time-dependent perturbation, showing how response theory applies to states de-
scribed by negative β. Then, the problem of Fourier transport along one-dimensional
chains in presence of negative-temperature baths is investigated.

Some of the results presented in Section 4.1 are discussed in Ref. [135]. Results
of Section 4.2 are part of a work (in preparation) in collaboration with S. Iubini.

4.1 Linear response theory
The classical theory of linear response accounts for the effect of small perturbations
on Hamiltonian systems initially in equilibrium [75, 129]. Let us consider a me-
chanical model described by some Hamiltonian H0(p,q), and let us assume that
at time t0 it stays in an equilibrium state, whose p.d.f. is given by f0(p,q). At
time t0 the Hamiltonian is perturbed by an additional term −F(t)A(p,q), where
A is some function of the canonical coordinates, while F(t) can be seen as a time-
dependent external field. We are interested in the time-dependent behavior of the
generic mechanical observable B(p,q).

The Fluctuation-Dissipation Relation (FDR) [31, 129] assures that the average
deviation from the equilibrium value, 〈∆B(t)〉 = 〈B(t)− B(t0)〉, has the form

〈∆B(t)〉 =
∫ t

t0
dt′R(t− t′)F(t′) , (4.1)

where R(t), the “response function”, reads

R(t) = β〈Ȧ(t0)B(t)〉eq . (4.2)

In the above expressions, 〈·〉 represents the average over the perturbed, time-
dependent p.d.f. of the state, while 〈·〉eq is the average over f0(p,q). Let us stress
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that Eq. (4.2) is deduced under the assumption that the equilibrium state of the sys-
tem is properly described by a canonical distribution f0(p,q) ∝ exp[−βH0(p,q)] at
inverse temperature β. The importance of the above result lies in the link between a
non-equilibrium quantity (the time-dependent response to an external perturbation)
to an average over equilibrium fluctuations. Let us notice that Eq. (4.1) reduces to
the Kubo relations in the t→∞ limit.

The FDR can be generalized to cases in which the system does not obey a
Hamiltonian dynamics, provided that its evolution is mixing and that the invariant
measure is smooth and nonvanishing [56, 129]. Let us assume that the system is
described by a vector X. At time t0, an instantaneous infinitesimal perturbation
X → X′ = X + δX(t0) occurs. The average displacement of the observable B(X)
from its unperturbed trajectory at time t is given by

δB(t) = −
∑
j

〈
B(X(t))∂ ln ρ(X)

∂Xj

∣∣∣
t=t0

〉
δXj(t0) , (4.3)

where · indicates an average over several realizations of the perturbation at time t0,
on states initially distributed according to the invariant measure ρ(X); average 〈·〉
is instead computed on ρ(X) itself. The above formulation reduces to Eq. (4.1) in
the case of Hamiltonian dynamics.

In what follows, we examine some cases in which a small perturbation is applied
to a system at negative temperature.

4.1.1 External field

Let us consider the following Hamiltonian

H(p,q; t) =
N∑
i=0

[1− cos pi] + k
N+1∑
i=1

[1− cos(qi − qi−1)]− λ(t)
N∑
i=1

sin qi , (4.4)

where {pi} and {qi} are the usual canonical coordinates, defined on [−π, π), and
q0 ≡ qN+1 ≡ 0. If the generalized positions are orientations of spins rotating on
a xy plane, we can interpret the mechanical observable M(q) =

∑
i sin qi as the

extensive y-axis magnetization. The time-dependent parameter λ(t) assumes then
the meaning of an external field.

If the external field is small, we can predict the behavior of the magnetization
using the classical response theory. For instance, we can imagine that the system
evolves according to the unperturbed Hamiltonian until some time t0 (i.e. λ(t) = 0
for t < t0); then, at time t0, a small external field is switched on, and its intensity
is kept constant for very long times. In other words, we are considering the case

λ(t) = hΘ(t− t0) , (4.5)

where Θ(x) is the Heaviside step-function and 0 < h � 1. According to Eq. (4.1),
the average deviation of M(t) = M(q(t)) from its unperturbed equilibrium value is
given by the FDR

〈∆M(t)〉 = βh

∫ t

t0
dt′〈Ṁ(t0)M(t′)〉eq . (4.6)
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Figure 4.1. Magnetization of the system (4.4) after the external field has been switched
on at time t0 = 0. Symbols represent the variation M(t) −M(t0) with respect to the
intensity of the small constant field h = 0.02, averaged over N = 104 realizations and
divided by the number of total particles N . Black solid lines are computed according to
linear response theory (Eq. (4.6)) performing simulations in the unperturbed equilibrium
state. N = 128, k = 0.5, τ = 300.

Let us notice that the inverse temperature β appearing in the previous equation
can assume negative values.

We perform numerical simulations in order to check the validity of the above
scenario. First we initialize the system in a (microcanonical) equilibrium state at
some energy E. The system is evolved with the unperturbed Hamiltonian (λ = 0) for
a total timeN τ , where τ is much longer than the typical time-scales of the dynamics:
we get N trajectories of length τ for the unperturbed equilibrium dynamics at
energy E. Now we simulateN “alternative” dynamics, starting from the microscopic
configurations at tn = nτ , n = 0, ...,N −1; this time we take λ = h, and we consider
the deviation from the corresponding unperturbed trajectory. Finally, we average
over the N realizations.

The results of our simulations are shown in Fig. 4.1. We also report the pre-
diction of linear response theory, computed through equilibrium simulations at the
same energies. Two qualitatively different scenarios appear when considering posi-
tive and negative temperatures. In the first case, the system is already “magnetized”
at equilibrium, since the spins are aligned in the same direction, on average, due to
the interaction terms; however 〈M〉eq, which measures the alignment of the rotators
to the y-axis, is zero for symmetry reasons. When the field is turned on, each spin
tends to reach the minimum of the external potential, qi = π/2. In the case of
negative temperature, the spins are initially in a state such that neighbor rotators
tends to have a relative angular distance of π, maximizing the total energy. The
response is then smaller in modulus, and the sign of the magnetization is opposite
to that of the field in this case.

Let us notice that the agreement between the numerical results and linear re-
sponse theory is quite good, also in the case of negative β.
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Figure 4.2. Average response of the velocity sin pj of the j-th particle to a small perturba-
tion, at time t0 = 0, of the i-th rotator’s momentum by a small quantity δp = 0.01. Two
cases are considered, one at positive (left) and one at negative β (right); the average
deviations from the unperturbed velocity are plotted (with different symbols) for j = i,
j = i + 1 and j = i + 2. Black solid lines are theoretical predictions from Eq. (4.7),
computed through equilibrium simulations. N = 128, N = 104, k = 0.5, τ = 300,
i = 50.

4.1.2 Local perturbation

Another typical case that can be studied with linear response theory is that of a
small perturbation of a single degree of freedom. For instance, it can be interesting
to study how a small, instantaneous “kick” on a particle (a sudden variation of
its momentum) affects its velocity at later times, and how such effect propagates
through the system.

Let us consider again Hamiltonian (4.4), in absence of external field (i.e. λ(t) =
0). At time t0, the i-th particle’s momentum is instantaneously changed by a small
quantity δp, and we study the average response on the velocity of the j-th particle,
sin pj , as a function of time. Eq. (4.3) reduces in this case to the generalized FDR

δ sin pj = β〈sin(pj(t)) sin(pi(t0))〉δpi . (4.7)

Let us notice that, also in this case, the above expression is derived assuming a
canonical distribution at inverse temperature β.

Again, we perform numerical simulations at equilibrium, at fixed energy, com-
paring the unperturbed trajectories to those obtained by suddenly adding δp = 0.01
to the momentum of the i-th particle. Fig. 4.2 shows the average velocity response
of three particles (the perturbed one, the first and the second neighbors) after the
perturbation, compared with the theoretical expectation given by Eq. (4.7). The
perturbed rotator experiences, obviously, an immediate deviation from the original
velocity, while the maximum average deviations of its neighbors happen after some
delay.

The linear response theory gives accurate predictions also in this case, and also
when the system is prepared at negative temperature. In the latter case, the re-
sponse to a positive perturbation of the momentum is clearly negative for the ve-
locity; this can be easily explained by remembering that at negative temperature
the momentum distribution is peaked in pi = ±π. The success of Eq. (4.7) shows



4.1 Linear response theory 77

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  10  20  30  40  50

R
e

s
p

o
n

s
e

Time

Theory
〈δ A〉(t)/δpj(0)

Figure 4.3. Check of the FDR for system (4.8) by a direct measure of the velocity
response to a momentum perturbation δp (red diamonds) and comparison with the
theory, Eq. (4.7) (blue circles). The case with specific energy E/N = 1.9, corresponding
to β = −2.6, is considered. Parameters: J = −0.5, K = −1.4 N = 250, M = 105,
τ = 50, δpi(0) = 0.01. Figure from Ref. [135].

the necessity of adopting negative values of β in order to get a consistent response
theory in the high-energy regime.

4.1.3 A case in absence of ensemble equivalence

A non-trivial case in which the applicability of response theory could appear ques-
tionable is represented by the Hamiltonian described in Section 2.4, namely

H(p,q) =
∑
i

(1− cos pi)−
J

2Nm
2 − J

4Nm
4 (4.8)

where m is the modulus of the intensive “magnetization”

m =
(

1
N

∑
i

cos qi,
1
N

∑
i

sin qi

)
. (4.9)

As discussed in Chapter 2, this system shows ensemble inequivalence at negative
temperature, in a suitable energy range. Here we are interested in the study of FDR
in such regime.

We consider again a small perturbation of the i-th momentum, and we study
the response of velocity. In this case the only meaningful velocity to consider is that
of the i-th particle itself, since the mean-field interaction which rules the dynamics
does not allow to consider proper “neighbors”. The FDR is still given by Eq. (4.7),
where the equilibrium average is now computed considering Hamiltonian (4.8).

The numerical strategy is the same as before, and again we consider the aver-
age deviation from the unperturbed trajectory. The results are shown in Fig. 4.3,
for a choice of the total energy corresponding to an unstable state (i.e., a proper
microcanonical state which does not correspond to any canonical equilibrium state).

Also in this case, not surprisingly, the correct β to consider in order to recover
linear response theory is negative. Let us notice that this is true even if the canonical
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distribution does not correctly describe the equilibrium state considered here, due
to ensemble inequivalence.

4.2 Energy transport and Fourier’s law at negative tem-
perature

One of the main topics of irreversible thermodynamics and out-of-equilibrium Sta-
tistical Mechanics is represented by thermal conduction. It is empirically well known
that energy can flow through matter under the action of a temperature gradient;
this principle is established by Fourier’s law

J = −κ∇T (4.10)

where J is the heat flux and κ is a tensor, the thermal conductivity. Although
the above law has been experimentally verified in innumerable cases, its full under-
standing, especially for low-dimensional systems, is still lacking; in particular, it has
not been possible, so far, to derive it directly from first principles [117, 51, 115].

During the last decades, a large number of models have been proposed to study
thermal conduction. The typical framework is constituted by a one-dimensional
chain, whose extremities are able to exchange heat with thermal baths at different
temperatures. Many numerical techniques have also been investigated to reproduce
the action of such reservoirs; a recent account can be found in Ref. [115].

One of the most interesting phenomena emerging in this context is anomalous
transport, which is encountered when κ does not reach finite values as the size of
the chain tends to infinity. It has been recognized that this behavior is typical of
systems ruled by momentum-conserving dynamics; the divergence of κ in the limit of
infinite size can be related to energy superdiffusivity, nonintegrable power-law decay
of the heat flux autocorrelation and superexponential relaxation of spontaneous
fluctuations; such phenomena are expected to obey proper hyperscaling laws, which
could allow a classification into universality classes [116, 118, 16]. Systems whose
dynamics does not conserve momentum, on the other hand, tend to show normal
transport [117].

A noticeable exception to the above scheme is represented by Hamiltonian chains
of rotors: even if the total (angular) momentum of such models is a conserved
quantity, this property does not seem to hinder the possibility of normal transport,
at least for not-too-low temperatures (i.e., when the model is far enough from its
integrable limit at low energies). It has been argued that this behavior could depend
on the periodicity of positions, whose continuous passage from π to −π and vice
versa is equivalent to an instantaneous “kick” in the opposite direction [69, 67, 89].

In the following, we will first discuss a stochastic simplified model, which should
mimic the dynamics of a chain of nuclear spins coupled to two thermal baths at
its extremities. Then we will consider a Hamiltonian system strictly related to the
rotors model, i.e. a variant with bounded kinetic terms. Our motivation for the
study of these setups is the possibility to investigate thermal conduction at negative
temperature.
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4.2.1 Exclusion process on a spin chain: a simplified model for
Fourier transport

First, let us study a simple model mimicking the dynamics of N magnetic spins
{σi = ±1}, with i = 1, ..., N , on a one-dimensional lattice. The chain is subjected
to the action of two thermal baths, which fix the temperatures at the extremities.
An external field h is present, so that the energy of the chain is simply given by

E = nh− (N − n)h = (2n−N)h (4.11)

where n is the number of positive spins.
Locally, the dynamics of the system is expected to conserve energy. As a conse-

quence, the i-th spin can “flip” from +1 to −1 (or vice-versa) only if the (i+ 1)-th
or the (i − 1)-th spin experience a simultaneous change with opposite sign. The
resulting evolution is equivalent to an exclusion process (EP) in which the i-th site
is considered “occupied” by a particle if the spin is positive, while it is “empty” if
the spin is negative. Particles can move to an adjacent site only if it is empty. In
numerical simulations, the stochastic nature of the process is mimicked by choos-
ing, at each time step, one ordered pair of adjacent sites, with uniform probability
among the 2N − 2 possible couples. If the first site of the couple is occupied and
the second is empty, the particle moves from the first to the second site; in all other
cases, nothing happens. A generalization of this dynamics has been used, e.g., in
Ref. [91] to provide a toy model for the study of discrete breathers in the DNLS
equation.

If the distribution of the values for the i-th spin was determined by an equilib-
rium dynamics at inverse temperature β, its average magnetization would result

mi = P(+1)− P(−1) = e−βh − eβh

e−βh + eβh
= − tanh(βh) , (4.12)

where P(±1) is the probability of extracting a spin value ±1. The above relation
provides a natural definition for a local (inverse) temperature,

βi = −atanh(mi)
h

. (4.13)

In order to study the problem of heat transport along the chain, we need to im-
pose fixed temperatures at the extremal sites of the unidimensional lattice. To this
end, the leftmost spin is extracted with an equilibrium distribution corresponding
to some inverse temperature βL, while the rightmost one is kept at inverse tem-
perature βR with the same mechanism. The extremal temperatures can assume, of
course, negative values. Let us notice that, besides the (potentially relevant) practi-
cal difficulties, this situation could be reproduced, in principle, in real experiments
on nuclear spins.

In our simulations, one time unit consists of 2N − 2 trials of the exclusion
process, so that, irrespectively of their signs, both extremal spins have, on average,
one chance to flip during a unitary time interval (if the adjacent spin has opposite
value). The number of time units between two successive extractions of the extremal
spins is determined by an exponential distribution γe−γt, where the parameter γ
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Figure 4.4. Temperature profiles in a spin chain ruled by an EP, for different values of γ.
Left panel: βL = −1, βR = −3. Right panel: βL = −2, βR = 1. Insets show how the
current of particles depends on γ. Total integration time T = 107 (after the stationary
state has been reached), N = 128, h = 1.

fixes the rate of such Poisson process. The simulations are initialized with random
initial conditions, in which each spin can be +1 or −1 with equal probability. We
let the system evolve until a stationary state is reached. Then we start measuring,
for each site of the chain, the magnetization mi, averaging over a (long) time T .
We infer a local temperature using Eq. (4.13).

Fig. 4.4 shows some temperature profiles for two different situations involving
negative temperature: in the left panels βL and βR are both negative, while in
the right one they have opposite signs. Let us notice that the external baths are
actually able to fix the temperatures of the extremal sites only if γ is large enough.
The choice of the rate is a delicate point when working with stochastic baths [117].
Some insight can be obtained from the study of the current of particles of the EP
(which corresponds to an energy flux in the spin-system picture). For each pair of
adjacent sites (i, i+ 1), we define

Ji = wi→i+1 − wi+1→i (4.14)

where wi→j is the rate of the transition of a particle from site i to site j in the EP.
The corresponding energy flux in the spin dynamics is simply h(2Ji − 1). Being
the current associated to a locally conserved quantity, 〈Ji〉 = J is independent of
site in the stationary state. The insets of Fig. 4.4 show that such current crucially
depends on γ, and a plateau is reached for values O(1). This is reasonable, since
the EP that determines the internal movements along the chain involves each of
the extremal spins just once in a time unit: larger update frequencies are, in this
sense, useless. Values of γ much smaller than one, on the other hand, do not assure
a current large enough for the stationary process between the two temperature to
be sustained.

Figure 4.5 shows several temperature profiles, with various choices of βL and
βR. Let us notice that in each case the (inverse) temperature continuously change
from the value assumed at the left extremity to the rightmost one. When these
values have opposite signs, the profile passes through a state of local equilibrium
at vanishing β (i.e., infinite temperature). This is an additional evidence of the
fact that β is the “right” variable to consider when dealing with systems which can
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assume both positive and negative temperature.

4.2.2 A Hamiltonian chain between two baths

Let us now discuss the much more complex case in which the chain is represented
by an Hamiltonian system, whose evolution is ruled by a deterministic dynamics
(with the only exceptions of the extremal baths, whose dynamics is stochastic). We
will deal with the already discussed model

H(p,q) =
N+1∑
i=0

(1− cos pi) + ε
N+1∑
i=1

[1− cos(qi − qi−1)] , (4.15)

where the canonical coordinates {pi, qi} are, as usual, angular variables. The label
i represents the site in which the corresponding degree of freedom is located. This
model is a version with bounded kinetic terms of the chain of Hamiltonian rotators
which has been studied in several works on Fourier transport [69, 67].

This time the 0-th and (N + 1)-th particles are not fixed; instead, they are
subjected to a stochastic dynamics which fixes their temperature. From a compu-
tational point of view, this requirement is fulfilled by mean of the quasi-symplectic
algorithm discussed in Section 5.2, which is able to integrate the generalized Klein-
Kramers equation (

q̇
ṗ

)
=
(

∂piH
−∂qiH −Diβi∂piH+

√
2Diξ(t) ,

)
(4.16)

and reduces to the Verlet algorithm when Di = 0 (i.e., when there is no stochas-
tic bath and the Hamilton equations are recovered). As discussed in Chapter 3,
the above dynamics is the proper generalization of the LE for systems with non-
quadratic kinetic energies. In the following, we will consider the case Di = 0
∀i : 1 ≤ i ≤ N , choosing instead a nonvanishing value for D0 = DN+1 = D. We
fix the time-step for the integration in such a way that, setting D = 0 (completely



82 4. Negative temperature out of equilibrium

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0  20  40  60  80  100  120

β

Site

D = 0.01

D = 0.1

D = 1

D = 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0  2  4  6

D=0.01

〈q. i(
t)

q. i(
0
)〉

Time

 

 

 

 

 

 

 0  2  4  6

D=0.1

 

Time

 

 

 

 

 

 

 0  2  4  6

D=1

 

Time

i=0
i=24
i=74

i=129
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of the bulk; three cases are considered, for different choices of D. Parameters: ε = 0.5,
N = 128.

deterministic dynamics) energy is conserved up to relative fluctuations of order
10−5.

As in the EP discussed before, there is a natural way to define a local tem-
perature for this system; as mentioned in Section 2.2, we can measure a suitable
function A(pi) of the i-th momentum (e.g., cos pi) and infer the value of β from its
average over long times, inverting the relation which expresses 〈A〉 as a function of
β. Of course, this is only true if the chain is locally at equilibrium; as a preliminary
check, we have to verify that the i-th momentum distribution is correctly described
by ρ(pi) ∝ exp(β cos pi).

As discussed also for the simple case of the EP mimicking the spin dynamics,
the choice of the typical rates of the baths is a crucial point for the simulations.
In Fig. 4.6 (left) we show some different temperature profiles that can be obtained
through the described setup by simply varying the parameter D (which fixes a
typical time scale for the evolution of the reservoirs). When D is too small (case
D = 0.01 in the figure), the action of the baths fails to maintain the extremal
particles at the corresponding temperature. On the other hand, when the parameter
is too high (D = 10 in the considered case), the extremal particles are found at the
right temperature, but they are unable to establish a local equilibrium at that
β with the neighbors. This is a known issues of stochastic baths, which is also
encountered in cases with quadratic kinetic terms [117]. Good choices for the rates
of the baths should lead to autocorrelation times of the same order of the those
of the “bulk. Fig. 4.6 (right) shows the velocity autocorrelation functions of the
extremal particles, compared to those of some rotators inside the chain, for three
values of D, whence it is clear that this parameter should be chosen between 0.1
and 1.

4.2.3 Heat flux

As in the case of the EP, some more quantitative information about the range for
D can be obtained from the study of the heat flux. Let us observe that in the
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considered system the momentum transport is expected to be null on average (as
it can be verified numerically), so energy current and heat flux coincide.

The proper definition of energy current through an Hamiltonian chain with the
usual, quadratic kinetic energy is discussed in Ref. [117]; the idea is to exploit the
continuity equation, resulting from the local conservation of energy, to individuate a
suitable mechanical observable with the meaning of an energy flux. Let us generalize
this result to cases with non-quadratic kinetic terms.

Let us consider the Hamiltonian model

H(p,q) =
N∑
i=1
Ki(pi) +

N−1∑
i=1
Ui(qi+1 − qi) . (4.17)

We will restrict to cases, as the one discussed in this Section, in which the i-th
particle is located in the i-th site, and qi does not indicate a translational displace-
ment along the direction of the chain, but instead an internal degree of freedom or
a position on a plane perpendicular to the chain itself (e.g., the angle of the i-th
rotator). All pairs of adjacent sites are at the same distance a.

We can define the local energy associated to the i-th site as

hi = Ki(pi) + 1
2 [Ui(qi+1 − qi) + Ui−1(qi − qi−1)] (4.18)

where the 1/2 factor in front of the potential terms implies that the energy contri-
bution due to the interaction between adjacent sites is equally divided among the
two. Taking the derivative of the above expression w.r.t. time, and bearing in mind
the Hamilton equations, we get

ḣi = 1
2U
′
i(qi+1 − qi)[K′i+1(pi+1) +K′i(pi)]+

− 1
2U
′
i−1(qi − qi−1)[K′i(pi) +K′i−1(pi−1)] .

(4.19)
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We can compare the above expression with the discretized continuity equation

ḣi + Ji − Ji−1
a

= 0 , (4.20)

where a, the lattice spacing, can be chosen to be unitary without loss of generality.
Ji is the energy flux between the i-th and the (i+ 1)-th site. We get

Ji = −1
2U
′
i(qi+1 − qi)[K′i(pi) +K′i+1(pi+1)] . (4.21)

In the specific case of Hamiltonian (4.15), where the functional forms of the kinetic
and interaction terms do not explicitly depend on the site, the above equation leads
to

Ji = −ε2 sin(qi+1 − qi)[sin pi + sin pi+1] . (4.22)

In Fig. 4.7 we show the values of J = 〈Ji〉 (we drop the dependence on the index
i since in the stationary state there is no dependence on the site, as expected) versus
the choice of D. We notice that a maximum is found around D ' 101/2 for typical
values of the external baths, this result being quite independent of the length of the
chain. A qualitatively similar behavior is encountered also in different models, as
the Fermi-Pasta-Ulam-Tsingou chain subjected to Langevin stochastic baths [117].

Figure 4.8 shows several temperature profiles obtained with a choice of D close
to the one that maximizes the energy flux, and the corresponding values of 〈Ji〉.
Not surprisingly, in the stationary state their value does not depend on the site, but
only on the temperatures of the baths. Also for this Hamiltonian chain, as for the
EP discussed before, when the signs of βL and βR are opposite, the temperature
profile passes continuously from positive to negative values, crossing the β = 0 line.

It can be interesting to study the scaling of the flux with the size of the chain
(i.e., the number of its particles), e.g. to understand, for instance, if we are in
presence of normal or anomalous heat transport. In Fig. 4.9 we plot the conductivity,
operatively defined as

κ = JN

β−1
L − β

−1
R

, (4.23)
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versusN . Three cases are considered, for three different average β: the temperatures
of the baths are given by βR,L = (1 ± 0.05)β. While for β ' 1 and β ' 2 the
conductivity seems to reach a finite value for infinite N , the behavior is completely
different in the case β = 4. This could be reminiscent of the transition between
anomalous and normal transport in rotators chains, observed for T ' 0.3÷ 0.4 [67];
however, the data available at now do not allow for a definitive answer on this point.

4.2.4 Some remarks

Even if the considered model (4.15) may appear not particularly interesting per se,
it shows that thermal conduction at negative temperature, and between thermal
baths whose temperatures have opposite signs, are possible in principle.

The continuous transition between positive and negative values of β in the
temperature profiles, through β = 0, seems to suggest that a generalization of
Fourier’s law to cases with both signs of the temperature is meaningful. In par-
ticular, Eq. (4.10) may be rewritten in terms of β in this context, to avoid the
discontinuity that is encountered at T = ±∞. The β gradient has, on the other
hand, an immediate interpretation, since it determines the local entropy increase
associated to an infinitesimal displacement of energy. The formulations with T and
β are of course equivalent in all interesting cases with only positive temperature.

An important case-study for energy transport is represented by the DNLS equa-
tion briefly discussed in Section 1.1.4. Several works have studied its behavior in
out-of-equilibrium conditions, when the extremities are at contact with thermal
baths, or characterized by purely dissipative conditions. The rich phenomenology
that is observed, which includes the emergence of breathers (typical of negative-
temperature states) also when only baths with β ≥ 0 are involved, steel needs to be
completely understood; however, the coupled transport of heat and momentum is
recognized to play a major role [90, 88, 93]. The set-up discussed here, and possible
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modifications aiming at allowing the transport of a second conserved quantity, could
provide useful analogies for the understanding of such non-trivial phenomenology.



87

Chapter 5

Computational and technical
aspects

Many of the results discussed in the previous Chapters are based on numerical sim-
ulations and data-processing methods. This Chapter is devoted to a careful analysis
of the techniques employed throughout this Thesis, both from a mathematical and
from an applicative point of view.

First, we review the basic properties of the symplectic integration algorithm
we applied for molecular dynamics simulations of Hamiltonian systems. We also
generalize such algorithm in order to include thermal baths, possibly at negative
temperature. Then we focus our attention on the strategy used in Chapter 3 to infer
from numerical data the LE which approximates a given process to the best extent,
discussing some practical aspects of its application. The motion of a heavy particle
in a harmonic chain, whose description in terms of LE is well-known, is analyzed
with this procedure as a first check. Finally we switch to two less trivial cases: the
activated dynamics of a simple polymer model moving in a two-well potential, from
which the role of Markovianity for the applicability of the method is evident, and the
actual experimental case of rotational diffusion in granular medium, whose study
allows to fully appreciate the power, and the limits, of the discussed technique.

5.1 A symplectic algorithm for Hamiltonian systems
with generalized kinetic energy

Here we review some basic results from the theory of symplectic integrators. A
detailed exposition of the topic can be found, e.g., in Refs. [61] and [77].

Given an open set D ∈ R2N , a differentiable function f : U → R2N is said to be
symplectic if its Jacobian matrix M , defined as Mij = ∂jfi, verifies

MTJM = J , (5.1)

where
J =

(
0 IN
−IN 0

)
. (5.2)

In the above equation, IN is the N ×N identity matrix.



88 5. Computational and technical aspects

Let us call X = (q,p) the vector of positions and momenta of a Hamiltonian
H, so that the evolution equations can be rewritten as

dX
dt

= J∇H . (5.3)

For a generic Hamiltonian defined on a 2n-dimensional phase-space let us introduce
the flow

ϕt(X0) = X(X0, t) , (5.4)

being X(X0, t) the position of the phase-space that the system occupies after a
time t, if it starts in X0 at time 0. Exploiting formulation (5.3) of the Hamilton
equations, it is easy to prove a well-known theorem (Poincaré [148]) which assures
that ϕt is symplectic for any time t.

5.1.1 Symplectic algorithms

In Statistical Physics, molecular dynamics simulations are often employed to sample
the phase-space of a certain system at fixed energy E; assuming ergodicity, an
average of some mechanical observable over long time-trajectories of the system is
equivalent to a microcanonical average at energy E. Let us remark that, strictly
speaking, ergodicity in generic Hamiltonian systems does not hold; however one can
fairly assume its validity for a certain class of interesting functions, those obtained
as averages over a large number of particles [104]. As a consequence, an important
point in the choice of the integration algorithm concerns its ability to conserve
energy up to very long times in Hamiltonian systems.

It has been shown [17] that conservation of total energy is strictly related, in
numerical integration algorithms, to symplecticity. Let us call h the time-step, and
let us assume that each iteration is constituted by a transformation fh such that:

1. its Jacobian matrix M verifies condition (5.1);

2. fh reduces to the identity in the limit h→ 0;

3. the error with respect to the true dynamics is of order O(hn+1), i.e.

|fh(X0)−ϕh(X0)| ' O(hn+1) ,

with n ≥ 1(in this case the algorithm is said to be “of order n”).

If the above conditions hold, it can be proved that energy conservation holds, within
an error O(hn), up to times exponentially long in h−1.

Moreover, the dynamics described by such update, leaving apart the effects
related to numerical roundoff error, is exponentially close to the flow ϕ̃t(X0) of
some Hamiltonian H̃, which differs from the original Hamiltonian H only up to
terms of order O(hn). In particular, it can be shown that

|f (k)
h (X0)− ϕ̃kh(X0)| < C1e

−C2/h
(
eC3kh − 1

)
, (5.5)

where f (k)
h is the transformation obtained by the composition of k iterations fh, i.e.

the result of the simulation at time t = kh, while C1, C2 and C3 are constants of
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order 1. The above result implies that such distance possibly diverges only after
k ' h−2 iterations, corresponding to times of order h−1. Let us stress that after
such (quite long) time the trajectory of the simulation could possibly diverge from
that of the original system; also in this case, however, the dynamics will stay on the
constant-energy surface, up to an error O(hn), due to the previous result on energy
conservation.

5.1.2 The generalized Verlet algorithm

One of the most popular symplectic integrators is the so-called “Verlet algorithm” [191].
In its version for separable Hamiltonians with generic kinetic terms,

H(p,q) = K(p) + U(q) , (5.6)

it reads 
p? = p0 − h

2 ∇qU(q0)
qh = q0 + h∇pK(p?)
ph = p? − h

2 ∇qU(qh)
or


q? = q0 + h

2 ∇pK(p0)
ph = p0 − h∇qU(q?)
qh = q? + h

2 ∇pK(ph)
(5.7)

(“Velocity Verlet Update” and “Position Verlet Update”, respectively). The sub-
scripts 0 and h identify the values of the canonical variables before and after the
integration step, while p? and q? are temporary variables.

To show that the above integrators are symplectic, let us first notice that they
can be obtained as compositions of the two Euler algorithms{

pk = p0 − k∇qU(q0)
qk = q0 + k∇pK(pk)

and
{

qk = q0 + k∇pK(p0)
pk = p0 − k∇qU(qk) ,

(5.8)

choosing k = h/2. A well-known result from Hamiltonian theory states that a
transformation f : (p,q)→ (P,Q) is symplectic if and only if

Q · dP + p · dq = d(P · dq + F2) for some function F2(P,q)

or, equivalently,

P · dQ + q · dp = d(p · dQ− F3) for some function F3(p,Q) .

It is easy to show that both Euler integrators verify such condition, the first with
F2(P,q) = hH(P,q), the second with F3(p,Q) = hH(p,Q). They are thus sym-
plectic and, as a consequence, also their compositions (5.7) share this property.

Verlet algorithm is second order. To prove this property, it is sufficient to observe
that (5.7), up to order O(h2), reads

qh ' q0 + h∇pK(p0)− h2

2 ∇p [∇pK(p0) ·∇qU(q0)]

ph ' p0 − h∇qU(q0) + h2

2 ∇q [∇pK(p0) ·∇qU(q0)] ,
(5.9)

which is exactly the O(h2) Taylor expansion of the Hamilton dynamics.
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5.2 Quasi-symplectic algorithms for LE with general-
ized kinetic energy

In this Section we introduce a stochastic Verlet-like integrator that can be used to
simulate Hamiltonian systems with generic kinetic terms, subjected to a thermal
bath at fixed β. This algorithm is also considered in Ref. [135].

We search for a simulation scheme able to reproduce the “generalized” LE dis-
cussed in Section 3.1.3

Ẋ =
(
q̇
ṗ

)
=
(

∂pK
−∂qU −Dβ∂pK +

√
2Dξ(t)

)
(5.10)

where ξ(t) is a white noise with unitary variance and D is a positive constant. Here
we consider a one-dimensional dynamics; the discussion can be straightforwardly
generalized to the multi-dimensional case.

Since in the limit D = 0 the dynamics reduces to that of an isolated Hamiltonian
system, it is quite natural to ask that the algorithm becomes symplectic in this
limit. This problem has been addressed in Ref. [133] for the case of quadratic
kinetic energy: in the following we apply the same reasoning to a wider class of
Hamiltonian systems.

It can be shown [83] that the integration of Eq. (5.10) over a time-step h leads
to errors of order h3/2 if the deterministic and the stochastic parts are evolved
independently. In order to improve the stability of the algorithm one can alternate
the integrations of position and momentum during the single time-step of total
length h, as it happens in the usual Position Verlet discussed in the previous Section.
We first evolve the position for a time-interval h/2, then the momentum advances
for a time h, and finally we evolve again the position for the remaining half time-step
h/2.

Specifically, the integration of the position for half time-step h/2 can be trivially
written as

qh/2 ' q0 + ∂pK(p0)h2 +O(h2) (5.11)

where (q0, p0) is the state for the considered degree of freedom at time t0.
We are left with the problem of evolving the momentum for a time-step h; we

have to solve the following stochastic differential equation:

ṗ = F0 −Dβ∂pK(p) +
√

2Dξ(t) (5.12)

where F0 = −∂qU(qh/2). If K(p) = p2/2m, an exact solution of such equation can
be found; in the general case we can rely on the approximation

∂pK(p) ' ∂pK
∣∣∣
p0

+ ∂2
pK
∣∣∣
p0

(p− p0) +O[(p− p0)2] . (5.13)

Substituting the above expression into Eq. (5.12) we get an equation of the form

dp = (A+Bp)dt+
√

2Ddw , (5.14)
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where we are neglecting terms of order dt2 and

A = −∂qH
∣∣∣
q?
−Dβ

(
∂pK

∣∣∣
p0
− ∂2

pK
∣∣∣
p0
p0

)
B = −Dβ∂2

pK
∣∣∣
p0

(5.15)

are constant during the integration step. The above equation can be solved [65].
Combining the above evolutions for position and momentum, the final result is

a Position Verlet-like integration scheme:
q? = q0 + ∂pK

∣∣∣
p0

h
2

ph = eBhp0 + A
B (eBh − 1) +

√
2DN

(
1

2B (e2Bh − 1)
)

qh = q? + ∂pK
∣∣∣
ph

h
2 ,

(5.16)

where N (x) is a random Gaussian variable with zero mean and variance x. An
equivalent Velocity Verlet-like algorithm can be found by inverting the integration
order.

5.3 Inferring LEs from data
In this Section we discuss the numerical method that has been employed in Chap-
ter 3 to infer drift and diffusivity terms for Langevin Equations of some quantity
from data. The basic idea is to exploit well-known relations between such functions
and suitable conditioned moments of the stochastic dynamics. This approach has
been used in several contexts, ranging from physics to biology and finance [63, 147,
14].

5.3.1 Method

Let us consider a Markovian stochastic process x(t), whose dynamics is described
by the Langevin Equation

ẋ = F (x) +
√

2D(x)ξ , (5.17)

where ξ(t) is a delta-correlated noise with zero mean and unitary variance. Here
we consider the one-dimensional case, but, as it is shown in the next sections, the
discussion can be easily generalized to the multi-dimensional case. It is well known
that the drift term F (x) and the diffusivity D(x) can be computed, in principle,
from the temporal evolution of x by using the relations [65]

F (x0) = lim
∆t→0

1
∆t 〈∆x|x(t0) = x0〉 (5.18a)

D(x0) = lim
∆t→0

1
2∆t

〈
[∆x− F (x)∆t]2

∣∣∣x(t0) = x0
〉
, (5.18b)

where ∆t is a time interval and

∆x = x(t0 + ∆t)− x(t0) . (5.19)
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In other words, we can estimate the numerical value of the Langevin coefficients as
functions of x0 by looking at the average behavior of the trajectory after it passes
through x0. In what follows we face the problem of the practical application of the
above idea to discrete temporal series of data x(kdt), where dt is the time-step and
k is an integer, as those typically produced by a numerical simulation or acquired
during a real experiment.

A first issue comes from the fact that we need to evaluate averages which are
conditioned to the realization of the event x(t) = x0, i.e. a condition which, strictly
speaking, is verified with zero probability if the trajectory is discretized in time.
This problem can be clearly bypassed by discretizing also the space. Specifically,
let I = (a, b) be a typical range for the considered stochastic process x(t), i.e., such
that the time which x(t) spends outside the interval I is negligible with respect to
that of the whole trajectory. We can divide I into n smaller intervals I1, I2, ..., In
of equal length; every N time steps the algorithm checks in which interval the
variable x(t) is situated, namely for what j (if any) the relation x(t) ∈ Ij holds;
then it measures the value of x(t + ∆t) − x(t) (for several ∆t). In order to avoid
correlations, the delay Ndt between two measures has to be chosen ≥ τ , where τ is
a typical decorrelation time of the considered dynamics. At the end of the process,
conditioned averages on the r.h.s. of equations (5.18) can be computed as functions
of both j and ∆t; the dependence on j is then replaced by that on the central value
of the corresponding bin. Let us stress that such approximation is meaningful if the
drift and diffusivity terms are not expected to vary too much on a scale (b− a)/n.

Once the quantities on the r.h.s. of Eqs. (5.18) have been estimated as functions
of x0 and ∆, we are left with the problem of inferring the limit ∆t → 0. One
could be tempted to take a very small value of ∆t, say ∆t � τ , and evaluate
the conditioned averages for that value. For instance, one could consider the time
interval between two subsequent data acquisitions. In most cases, however, this
choice needs some additional care; indeed, physically meaningful processes can be
usually approximated as a stochastic process of the form (5.17) only on suitably
large time scales, while for shorter times the motion is deterministic. It is well
known that the autocorrelation functions CD(t) and CL(t) in a deterministic and
in a Langevin process, respectively, can be expanded as

CD(t) = 1− t2

τ2
D

+O(t3) (5.20a)

CL(t) = 1− t

τL
+O(t2) , (5.20b)

for small times t. Comparing the two expressions, one finds that the differences
between CD and CL are not negligible, at least until some typical time τM ∼ O

(
τ2
D
τL

)
.

This observation is a clear hint that a deterministic motion cannot be approximated
as a stochastic process on time-scales smaller than such τM . This threshold is
sometimes called “Markov-Einstein time” [63].

At a practical level, a good strategy consists in evaluating the quantities (5.18)
(for a fixed starting value x0) as functions of the time interval ∆t, then looking at
their behavior in a range τM < ∆t < τ , fitting it with some low-order polynomial
and extrapolating the limit ∆t → 0 from the inferred function. In the following
Section we illustrate this procedure with an example.



5.3 Inferring LEs from data 93

5.3.2 A first test on a Hamiltonian system

First, we will test our procedure on a Hamiltonian system which is well-known to
reproduce the Brownian motion in the thermodynamic limit, i.e. a harmonic chain
with an heavy “intruder”:

H = P 2

2M +
∑

i=±1,...,±N

p2
i

2m + k

2

N+1∑
i=−N

(qi − qi−1)2, Q ≡ q0 . (5.21)

Here (pi, qi), i = −N, ...,−1, 1, ..., N are the canonical coordinates of the “light”
particles, with equal masses m, while (P,Q) are those of the heavy intruder of
mass M � m; k is the elastic constant. We consider fixed boundary conditions
q−N−1 ≡ qN+1 ≡ 0. The above model, and other similar harmonic chains, have
been analytically studied since the 1960’s and represent one of the few examples
in which stochastic differential equations can be exactly derived starting from first
principles [162, 186, 59, 200].

Hamiltonian (5.21) is integrable, so that the energy assigned to each normal
mode at the beginning of the dynamical evolution is conserved; as a consequence, if
the system is initialized in such a way that energy is shared among only few degrees
of freedom, thermodynamic equilibrium will never be reached and the Langevin
description (3.2) will necessarily fail. If, conversely, the system starts at equilibrium,
it can be rigorously shown that the dynamics of P is approximated by a Markovian
stochastic process, whose autocorrelation function reads

C(t) ' exp
(
−2
√
km

M
t

)
+O(m/M) . (5.22)

In order to check the validity of the extrapolation method discussed in the
previous Section we can perform computer simulations of system (5.21) and compare
the effective behavior of the slow particle with the stochastic description given by
Eq. (5.17). We numerically simulate Hamiltonian (5.21) with a standard velocity
Verlet update, choosing the time-step in such a way that the relative fluctuations on
the total energy are of order O(10−5). We start from equilibrium initial conditions.
The numerical integration of the whole system results in a discretized time-series
of P (t), from which we can extrapolate F (P ) and D(P ) following the procedure
discussed above.

Fig. 5.1 shows the conditioned averages (5.18) as functions of ∆t, for several
starting values P0. As discussed before, at very small time scales the process is
not expected to be described by a LE, so that it is reasonable to fit the data on
intermediate time-scales. Fig. 5.2 shows the functional forms of drift and diffusivity
extrapolated from the δt→ 0 limit of the fitting functions found in Fig. 5.1. As ex-
pected, the drift linearly depends on the momentum and the diffusivity is constant.
By the way, relation (3.21) is also verified.

To check the goodness of our extrapolation method one could, of course, compare
the results to the analytical predictions valid for M/m→∞ in the thermodynamic
limit. In this case, anyway, the resulting deviation of the measured values from the
theoretical ones would be affected not only by the actual errors in the extrapolation
procedure, but also by the fact that considering P (t) as a stochastic process is by
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Figure 5.1. Evaluation of the conditioned moments on the r.h.s. of Eq. (5.18). We
numerically compute such quantities as functions of ∆t (points), then we fit the curves
with low-order polynomials (solid lines) and we consider the limits for ∆t → 0. Left:
r.h.s. of Eq. (5.18)a, linear fit. Right: r.h.s. of Eq. (5.18)b, parabolic fit. Different
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M = 200, m = 1, k = 2500, 2N = 2000, β ' 1.0. Figure from Ref. [12].
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itself an approximation. At least in the case of the harmonic chain, however, we
can do better than this: since the conditioned p.d.f of P is known, there is an easy
way to compute the Langevin parameters from data without performing the limit
∆t→ 0, and we can compare these values to the results of the previous method in
order to estimate the precision of the extrapolation.
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Figure 5.3. Evolution of D0(∆t) with the time interval. The red line is the result of a fit
with the functional form (5.25). Figure from Ref. [12].

To this end, let us note that since the conditioned p.d.f. of P is given by [162]:

f(P (t+∆t)|P (t)) = 1√
2πkBTM(1− C(∆t)2)

exp
{
− [P (t+ ∆t)− P (t)C(∆t)]2

2kBTM(1− C(∆t)2)

}
,

(5.23)
we can explicitly compute the averages in equation (5.18), assuming that the Marko-
vian limit holds and that the autocorrelation function actually verifies C(∆t) =
exp(−∆t/τ) for some τ . For the diffusion term we get

1
∆t〈∆P (∆t)2|P (t) = P 〉 = D0(∆t) +D1(∆t)P 2 (5.24)

where

D0(∆t) = kBTM

∆t
(
1− e−2∆t/τ

)
, D1(∆t) =

(
1− e−∆t/τ

)2

∆t P 2 . (5.25)

We can fit our data with the previous formulae: in particular, from the fit of D0(∆t)
(Figure 5.3), we can infer both T and τ and calculate the corresponding values of
drift and diffusion for Brownian motion [65],

F (P ) = −P/τ , D(P ) = 2MkBT/τ .

The resulting values and the previously extrapolated coefficients differ by less than
3%, which is a quite satisfactory precision for our qualitative analysis.

In order to check that the reconstructed LE actually reproduces the behavior
of the slow particle, we can do an additional check: we can compute the steady
probability density and the autocorrelation function in this new coarse-grained dy-
namics and compare them to the original, deterministic evolution. In this simple
case, since the dynamics is linear, we can determine such observables analytically
once we know F (P ) and D; in more complex cases one can rely on numerical sim-
ulations of the stochastic process. Fig. 5.4(a) shows both quantities in the original
and in the reconstructed dynamics: the agreement is quite good. Finally, we have



96 5. Computational and technical aspects

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4

C
(t

)

t

Deterministic
Stochastic

 0

 0.01

 0.02

 0.03

-40 -20  0  20  40

P

ρ(P)

 0

 0.01

 0.02

 0.03

-40 -20  0  20  40

P

ρ(P)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01  0.1  1

C
(t

)

t

CZ(t)
Cv(t)
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to check that time-scale separation hypothesis is valid, i.e. that the “thermal noise”

ζ(t) = Ṗ (t)− F (P (t)) (5.26)

decorrelates much faster than P . The autocorrelation functions of the two quantities
are shown in Fig. 5.4(b): the time-scale separation is evident.

5.3.3 Some remarks on the method

The method discussed here is quite general and can be applied in a variety of
contexts. However one should always keep in mind that the success of this technique
relies on the possibility to approximate a given series of data x(t) as a Markovian
stochastic process described by the LE (5.17), at least on suitably large time-scales.
This point is not trivial at all.

First, let us stress that the presence of a mechanism which induces time-scale
separation between a fast “noise” and a slow systematic drift is not sufficient, in
general, to imply the Markovianity of the process. The dynamics could keep some
memory of the previous values of the considered variable, resulting in a failure of
the described procedure. A typical scenario of this kind happens when we deal with
a two-dimensional Markov process and we focus only on the time series of a single
component of the vector.

It is easy to understand that the first, crucial step when one tries to build an
effective stochastic equation from data is the selection of the “right” set of variables,
i.e. a vector of quantities whose coupled evolution can be fairly approximated by a
memoryless stochastic process. This observation can be found in the seminal work
by Onsager and Machlup on fluctuations and irreversible processes [143].

Several systematic methods have been developed to give a partial answer to this
problem. The most widely used is principal component analysis (PCA) [98], which
searches for independent linear combinations of available observables with maxi-
mal variance. Dynamic mode decomposition (DMD) [185], variational approach of
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conformation dynamics (VAC) [141], time-lagged independent component analysis
(TICA) [136] are some of the many, related, techniques used to project the evolu-
tion of the coordinates describing the full system into a smaller set of relevant vari-
ables [109]. This is usually done by considering linear combinations of the original
ones and exploiting the methods of linear algebra. In recent years, neural networks
and deep learning techniques have been applied to enhance such algorithms; specif-
ically, they can select combination of nonlinear functions (from libraries of possible
candidates) to encode original data into a space with reduced dimension [195, 24].

However, no matter if the set of variables is chosen by a systematic approach
or based on physical intuition, the best way to be sure that the dynamics could
be actually approximated by a Markov process in lower dimension is to check, a
posteriori, that the inferred LE fairly reproduces interesting dynamical observables.
The next Section is devoted to the illustration of a concrete example in which these
remarks are crucial.

5.4 A case with two variables: a simple model for poly-
mer translocation

So far we have discussed an algorithmic procedure to infer a LE from series of
data and, to check its validity, we have applied it to an exactly solvable case. Now
we will examine its applicability to a far less trivial case, where the considered
process describes an activated dynamics. In this context, the role played by the
Markovianity assumption results completely clear; in particular, for some choices
of the external parameters it will be necessary to enlarge the set of considered
variables, in order to achieve a satisfactory description. The results presented here
are discussed in Ref. [9].

5.4.1 Model and simple remarks

Let us consider the problem of a polymer crossing the barrier of a double-well en-
ergy profile, which is related to the transport of biomolecules across nano-scale
pores [19, 101, 134, 86, 3, 171]. In many practical situations channels are so narrow
that the transport dynamics of biopolymers and ions occurs on a single axis, thus,
as a matter of fact, it can be considered one-dimensional [48, 122, 4, 96]. In this
crude approximation, the polymer is composed by a chain of N beads (point par-
ticles), interacting via nearest-neighbors forces and subjected to a thermal noise at
temperature T .

The nanopore is portrayed as a region of the translocation axis where the poly-
mer feels the effect of an energy barrier, which acts independently on each particle
and separates the left-side and right-side of the pore [140, 3, 149]. As customary,
in this kind of phenomenology we can assume the evolution of each monomer to be
accessible on time-scales long enough to neglect the effect of inertia. Accordingly,
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the polymer beads are governed by the overdamped Langevin dynamics:

γẋ1 = −V ′(x1) + U ′(x2 − x1) + ξ1

γẋi = −V ′(xi) + U ′(xi+1 − xi)− U ′(xi − xi−1) + ξi

γẋN = −V ′(xN )− U ′(xN − xN−1) + ξN (5.27)

with i = 2, . . . , N − 1, where xj is the position of the j-th bead. V represents
here the external potential, due to the nanopore action on the chain. U is the
nearest-neighbor interparticle potential that is chosen to be an even and convex
function of xi − xi−1 − σ, where σ is the equilibrium distance between consecutive
particles. Each ξi is a Gaussian noise, with average 〈ξi(t)〉 = 0 and correlation
〈ξi(0)ξj(t)〉 = 2γTδijδ(t), where γ is a dimensional constant, that we will put equal
to 1 in the following.

In order to study the collective dynamics of the polymer we need to identify
proper reaction coordinates (RCs) that describe the state of the system, and then
we have to infer effective equations for their evolution.

A natural choice seems to be the center of mass Q of the polymer, which roughly
indicates the spatial position of the chain:

Q = 1
N

N∑
i=1

xi . (5.28)

Its dynamical equation is obtained by just summing up Eqs. (5.27) for all the par-
ticles and dividing by N ,

Q̇ = − 1
N

N∑
i=1

V ′(xi) +

√
2T
N

ηQ (5.29)

where the reciprocal elimination of internal forces has been taken into account,
as well as the mutual independence of the noises {ξi} that combine into a delta-
correlated Gaussian noise with zero mean and such that 〈ηQ(0)ηQ(t)〉 = δ(t).

By posing xi = Q+ ui, Eq. (5.29) can be recast as

Q̇ = − 1
N

∑
i

V ′(Q+ ui) +

√
2T
N

ηQ . (5.30)

The above equation is formally exact, but it is not very useful in this form, since it
depends on all the ui terms.

The simplest approximation that can be done to achieve a closed form for
Eq. (5.30) is to assume that the force term due to the external potential can be
written as a (possibly complicated) function of Q only. In this case, a one-variable,
memoryless model of the kind

dQ

dt
= F (Q) +

√
2DηQ , (M1)

should catch the relevant features of the macroscopic evolution of the system, where
D = T/N . Assuming that the above approximation holds, the specific form of F (Q)
can be inferred from data with the method discussed in Section 5.3.
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Let us notice that Eq. (M1) describes a Markovian stochastic process for the
variable Q, and it is expected to give a reasonable approximation of the real dynam-
ics only when the knowledge of Q suffices to determine the macroscopic state of the
system. For instance, Eq. (M1) gives a good approximation of the real dynamics in
the limit of high-rigidity chain.

In general, however, the above one-variable model will not be valid, meaning that
it will not be possible to find any form of F (Q) able to reproduce the dynamical
properties of the original system in an accurate way. This is due to the fact that
the dynamics of Q, in general, is not Markovian: in order to achieve a satisfactory
coarse-grained description, one possibility is to modify Eq. (M1) by introducing
memory-dependent terms, which in some cases can be found analytically by mean
of projection methods [199, 200, 74]. To avoid such dependence on memory kernels,
which are often difficult to manipulate, the only possibility is to search for (at least)
a second RC of the system, such that the vector composed by Q and this new
variable obeys a Markovian dynamics.

The additional RC can be individuated through the methods briefly mentioned
in the previous Section, or it can be suggested by physical intuition. In our case,
if the bond fluctuations are large enough, it is reasonable that the elongation L =
xN − x1 have a role in the macroscopic dynamics. We can then guess an effective
model of the form: 

dQ

dt
= FQ(Q,L) +

√
2DQ ηQ

dL

dt
= FL(Q,L) +

√
2DL ηL .

(M2)

Again, assuming that the dynamics of (Q,L) is fairly described by a Markov process,
the best choices for FQ, FL, DQ, DL can be found with the data-driven approach
discussed before. However, one has then to verify that the chosen RCs are ac-
tually “valid” macroscopic variables, i.e. that the coarse-grained dynamics (M2)
reproduces the macroscopic features of the original system.

In the remaining part of this Section, we will try to implement this program
in a specific case. In particular we will show that, as expected, the stiffness of the
polymer plays an important role in the choice of the right set of RCs.

We consider now the case in which the external potential V (x) in Eq. (5.27)
is a double-well. This simple model allows us to study some properties of ther-
mally activated barrier crossing as, for instance, the dependence of the jump rate r
on the physical parameters. The general problem of activated dynamics has been
extensively studied since the seminal work by Kramers, and the reaction-rate the-
ory provides many analytic methods to compute jump times in different contexts
(see Ref. [80] and reference therein). Important results have been derived also for
polymeric chains [99, 172, 171].

The external potential reads, in this case,

V (x) = B2

4 (x2 −A2)2 (5.31)

where A and B are suitable constants. The typical dynamics of the center of mass,
Q(t), is therefore characterized by jumps over the barrier separating the two minima
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of the potential (two-state model). For the interaction potential we choose the form
U(r) = K(r − σ)2/2.

In the following, we will always consider the limit Nσ ' A, i.e. the case in which
the equilibrium length of the polymer is comparable to the half distance between
the well minima: it is reasonable to expect that in these conditions the value of the
bond rigidity affects the qualitative behavior of the chain in a relevant way.

Our aim is to show that for high values of K the model described by Eq. (M1)
suffices to reproduce the quantitative macroscopic behavior of the system; whereas,
as soon as K becomes comparable to B2A2/σ, the evolution of Q is no more Marko-
vian and any attempt to describe it through model (M1) is doomed to failure. How-
ever, if the phase-space is expanded by including a suitable additional RC, it is still
possible that the evolution of the new RCs vector turns out to be Markovian, so
that a dynamical description based on Eq. (M2) can be accurate enough.

The validity of such scenario can be tested by using the data-driven approach
discussed in the previous Section. We first perform numerical simulations of the
whole system by using a Stochastic Runge-Kutta algorithm [83] and measuring the
relevant RCs of the system at every time step. As a first attempt, from long time-
series of such data we build an effective stochastic equation for Q only, in the form
of Eq. (M1); then we apply the extrapolation procedure to the dynamics of the
two-dimensional vector (Q,L), obtaining an M2-like model. The “goodness” of M1
and M2 is tested by measuring the Kramers’ transition times of the reconstructed
models and comparing the corresponding jump rates to the original ones.

5.4.2 1-variable model

Before applying the mentioned extrapolation method to infer numerically the func-
tional form of the terms appearing in Eq. (M1), let us derive analytically an effective
equation for Q for the high-stiffness limit, K � B2A2/σ. In this case we can as-
sume that the position of two consecutive beads is fixed and equal to σ. Due to
the simple form of the external potential V (x), the drift term in Eq. (5.30) can be
exactly computed in this case:

− 1
N

N∑
i=1

V ′(Q+ ui) = −B
2

N

N∑
i=1

[
(Q+ ui)3 −A2(Q+ ui)

]

= −B
2

N

N∑
i=1

[
3Qu2

i +Q3 −A2Q
]
.

(5.32)

where we have used the fact that, due to the rigidity of the polymer,
∑
i u

3
i =∑

i ui = 0.
Now we substitute the explicit expression for the relative positions of the polymer

beads, ui = (2i−N − 1)σ/2, and after straightforward algebra we get

− 1
N

N∑
i=1

V ′(xi) = −B2Q

(
Q2 −A2 + σ2

4 (N + 1)(N − 1)
)

= −B2Q
(
Q2 −A2

eff

) (5.33)
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Figure 5.5. (A): drift term F (Q) of model (M1) as reconstructed from data (points) and
fitted with a 9-th degree odd polynomial (solid lines), for three different values of K.
(B): Effective potential obtained by integration of F (Q). Parameters for the simulations
of the complete system: A = 10, B = 0.1, T = 30, σ = 1, using a time-step dt = 10−5.
Simulations on model (M1) have been run with a time-step dt = 10−4.

with

Aeff = A

√
1− L2(N + 1)

4A2(N − 1) , (5.34)

where we have used the definition of the polymer length for the rigid case, L =
(N − 1)σ. Let us notice that the above drift corresponds to an effective potential

Veff(Q) = B2

4 (Q2 −A2
eff)2 , (5.35)

i.e. a “rescaled” version of the original external potential (5.31).
We can now use the theory of escape times [65] to estimate the jump rate r for the
effective potential (5.35). The average waiting time between two consecutive jumps
can be computed through the formula [65]

τ = 1
D

∫ A

−A
dy eV (y)/D

∫ y

−∞
dz e−V (z)/D

= 1
D

∫ A

−A
dy e

B2
4D [y4−2A2

effy
2]
∫ y

−∞
dz e−

B2
4D [z4−2A2

effz
2]

(5.36)

where D = T/N is the diffusivity associated to Q. The jump rate r is then found
as

r = 1
τ
. (5.37)

The above equations, which are only valid in the rigid-rod limit, will be a useful
touchstone to evaluate the level of accuracy of the model inferred numerically.

We apply now the extrapolation method to infer the right functional forms
for the terms of the Langevin equation (M1), assuming that the dynamics of Q
is Markovian and a 1-variable description in the form of model (M1) holds. We
find that D (not shown here) is always basically constant and equal to T/N , as
it would be expected if the process was Markovian, while the drift shows a more
complex shape (Fig. 5.5A); we fit the data by a 9-th degree, odd polynomial, then
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we integrate the resulting function in order to get an effective potential, which is
reported in Fig. 5.5B for several values of K. In the large-K limit, as expected, we
recover a quartic effective potential: terms of higher order become relevant when
the bond stiffness is low, and their effect is to flatten the potential barrier between
the two wells.

As mentioned above, the validity of Eq. (M1) relies on the assumption that the
evolution of Q is Markovian, which has to be checked. First, one can define and
measure the following quantity:

ζ(t) = Q̇(t)− F (Q(t)) , (5.38)

which represents the “noise” of Eq. (M1), if the dynamics of Q is Markovian. We can
compare the autocorrelation time of ζ(t) and verify that it is much shorter than any
characteristic time-scale of the dynamics of Q. In our case, ζ(t) always decorrelates
on the scale of the time-step of the integration algorithm, dt (see Fig. 5.6A).

This first check suggests the existence of a clear time-scale separation between
the dynamics of the center of mass and its “noise”. However, this does not imply
that the original dynamics of Q has to be Markovian: in order to check that,
we also have to verify the consistency with the original dynamics. If the one-
variable description is able to catch the relevant features of the whole system, we can
conclude, a posteriori, that the evolution of Q was Markovian also in the complete
dynamics; if not, a different description has to be taken into account.

Fig. 5.6B shows, for several values of the rigidity, the jump rates measured
in the original dynamics and those observed in the reconstructed model, using a
standard stochastic integration algorithm (the one discussed in Ref. [127], up to
order dt3/2). In the high-K limit the simple rigid-rod approximation (5.36) holds,
there is no dependence on K and the agreement between the jump rates of M1 and
of system (5.27) is excellent. As the polymer becomes softer, even if a significant
improvement on Eq. (5.36) can be observed, the relative error between M1 and
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the true dynamics exceeds 30%: this is a clear hint that a 1-variable description,
even if inferred directly from data, cannot reproduce all the relevant features of the
dynamics. This is due to the fact that our implicit assumption on the Markovianity
of the process is wrong.

5.4.3 2-variables model

The failure of model (M1) for small values of K, revealed by the discrepancies
between the reconstructed and the original jump rate, suggests the necessity to go
beyond a single variable description in order to achieve satisfactory results. As
discussed in Section 5.4.1, a reasonable attempt to recover a Markovian dynamics
is to consider the elongation of the polymer, L, as a second RC for our model, and
we postulate the validity of an evolution equation of the form (M2).

Following again the strategy discussed in Section 5.3, we provide numerical
values for FQ, DQ, FL and DL in the (Q,L) space, which have to be fitted using
suitable functional forms. Due to the symmetries of the system, FQ(Q,L) has to be
odd with respect to the variable Q, while FL(Q,L) should be even. Fig. 5.7 shows
the results obtained by fitting the following polynomial form:

FQ(Q,L) = Q
[
c

(Q)
10 + c

(Q)
12 L2 + c

(Q)
13 L3

]
+Q3

[
c

(Q)
30 + c

(Q)
32 L2 + c

(Q)
33 L3

]
FL(Q,L) = c

(L)
00 + c

(L)
01 L+ c

(L)
03 L

3 + c
(L)
21 Q

2L .

(5.39)

The agreement between the actual data and the proposed functional form is
good enough to hope that the guessed model catches the most relevant features of
the dynamics. The diffusivity terms DQ and DL are again fitted by constant func-
tions. Once model (M2) is determined, we can check the reliability of its stochastic
evolution by a direct comparison with the original dynamics.

A first, important benchmark is given by the ability of the model to reproduce
the static properties of the system, namely the joint probability distribution in the
(Q,L) space. This test is reported in Fig. 5.8 (left) for different values ofK, showing
a reasonable qualitative agreement even in the non-trivial case of low bond stiffness:
in particular, the stretching occurring when the polymer crosses the barrier is clearly
reproduced.
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The requirement of a variable accounting for the elongation of the polymer can
be easily understood by looking at such figure. When K is high, and the system is
well approximated by the rigid-rod model, the region of the phase space explored
by the dynamics is a thin strip around the equilibrium value L ' (N−1)σ. As soon
as the rigidity condition is relaxed, and the system is allowed to vary its length in a
significant way, a two-lobe distribution takes place: L tends to be smaller than the
rest length of the chain when the polymer occupies one of the two minima of the
double-well potential, while it significantly increases during the transition across
the barrier. This particular shape of the scatter plot indicates that the typical
pathways in the space (Q,L) include a non-negligible deformation in L, which can
be straightforwardly interpreted as follows: when the rigidityK is low, the transition
across the barriers of the polymer occurs with a concomitant stretching of the bonds,
presumably those that instantaneously lay on top the barrier. As a consequence,
any Markovian effective description involving only the center of mass is completely
insufficient to fairly approximate the dynamics of the system.

The improvement of our effective description when also L is taken into account
can be fully appreciated by looking at dynamical observables as the jump rate r.
Fig. 5.8 (rigth) displays the relative errors between the values of r obtained in the
reconstructed models M1, M2 and in the original dynamics. As already discussed,
the 1-variable model fails when the polymer is soft, while the accuracy of M2 does
not seem to be affected in this limit. Let us notice, on the other hand, that for
K � A2B2/σ the reconstructed model (M2) is less reliable than the 1-variable
version: this is likely a consequence of the larger number of parameters involved,
which leads to a lower degree of precision on their determination with the discussed
method.
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5.5 Application to an experimental case: rotational dif-
fusion in granular material

We conclude this Chapter with an example in which the method discussed in Sec-
tion 5.3 is exploited in a real experimental situation. The procedure has been ap-
plied to the study of rotational diffusion in granular medium: from long time-series
of measures of the angular velocity, the algorithm is able to infer the LE which
approximates the dynamics to the best extent. Two cases are discussed: in the
low-density limit, the application is straightforward; in the high-density regime, the
introduction of a second variable is necessary (and not always sufficient) to recover
Markovianity. The results presented here are discussed in Ref. [13].

5.5.1 Experiment

At first glance, granular materials share many properties with condensed “molec-
ular” matter [94, 8], but such similitudes hide a crucial difference: grains, being
macroscopic, dissipate energy through friction (in enduring contacts or rapid colli-
sions). For this reason equilibrium statistical physics may only suggest qualitative
ideas for fluidized steady states and dramatically fails in the extreme case of static
or quasi-static regimes. The liquid state of granular matter, which is in the mid-
dle between fast “granular gases” and slow “granular glasses”, feels stronger the
need for a coherent theoretical framework. An important insight is provided by
experiments, where such a liquid state is obtained through some mild shaking of
the container [49, 196, 168]. In the setup described below our focus is on regimes
where the longest relaxation time is reasonably smaller than the total experimental
time, so that the system can be said to be in a steady state. In a word we are not
interested, here, in the solid or glassy states [53, 81, 113].

A recent experimental study [168] has offered a new picture for dense granular
flows in a wide range of time-scales, from 10−3 s up to 103 s and more, revealing
an unexpectedly rich scenario. In the experimental setup, sketched in Fig 5.9A the
“impurity” was constituted by an immersed blade who could rotate around a fixed
vertical axis under the kicks from the grain of a vibrofluidized granular medium.
The dynamics of the angular velocity ω(t) of the blade and its absolute angular
position θ(t) =

∫ t
0 dsω(s), was studied in different regimes of density and intensity

of vibration. In Fig 5.9B, the velocity power density spectrum (VPDS),

S(f) = 1
2πtTOT

|
∫ tTOT

0
ω(t)ei(2πf)tdt|2, (5.40)

is presented and its salient features are highlighted in two opposite limits, which are
the gas and the cold liquid. We remind that the VPDS is the Fourier transform of
the velocity autocorrelation function and that its f → 0+ limit is the self-diffusion
coefficient, i.e. D∞ = π limf→0+ S(f). We also recall that relations exist, under
certain approximations, between the VPDS and the intermediate scattering function
which - in liquids - is typically accessed through neutron scattering experiments
[154].

In the gas limit (low packing fraction and high energy per grain) the probe
velocity autocorrelation is close to a simple exponential decay ∼ e−t/τgas , ruled by
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Figure 5.9. Experimental results A: Sketch of the experiment reported in Ref. [168].
B: Experimental data of the VPDS for the gas case and the “cold liquid” case, together
with predictions (dashed lines) from the incomplete model discussed in Ref. [168]. C:
Experimental data of the MSD for both cases, together with dashed lines useful as
guides for the eye. Figure from Ref. [13].

a single relaxation time τgas: in this limit the VPDS takes the form of a Lorentzian

S(f) = T

πγ

1
1 + (2πIf/γ)2 . (5.41)

In the - roughly speaking - opposite limit, that of a “cold liquid” (high packing
fraction ' 30−35% and low energy per grain), the observed VPDS strongly deviates
from the Lorentzian. Ignoring a mechanical resonance due to the mounting plate
at ∼ 102Hz, it displays four different regions: at high frequency (region IV) S(f)
decays with a negative power law equal or smaller than 2; in region III it shows
a smooth parabolic maximum (centered near ∼ 10Hz), reminiscent of a harmonic
confinement (“cage”) typical of molecular and granular liquids [39, 130, 160, 57];
in region II it stabilizes on a short plateau, which suggests a loss of memory (as in
the plateau of the Lorentzian which marks the onset of normal diffusion); finally
region I, perhaps the most surprising one, shows a diverging S(f) for f → 0+,
signaling a problem with the finiteness of the self-diffusion coefficient D∞. A few
longer experiments (12 hours) were conducted, showing a slow crossover toward
a new higher plateau at very low frequencies. The study of the mean squared
displacement (MSD), see Fig 5.9C confirmed that the four regions of the cold liquid
case correspond, respectively, to short-time ballistic (free) motion (IV), dynamical
arrest due to caging (III), later relaxation of the cage (II) and “final” superdiffusive
behavior (I), very rarely observed in previous works on granular systems [81, 113,
189, 153]. A universal scenario for anomalous diffusion is lacking [108], but certainly
it is the signal of an enduring memory.

This rich scenario can be reproduced quite accurately by proper stochastic mod-
els [168, 112]. If the studied variable (namely, the angular velocity of the probe as
a function of time) is a continuous Markov process, the procedure should be able
to “automatically” find the best functional form for the corresponding Langevin
Equation (provided that the sampling frequency is high enough). In the following
we will examine a case, the gas limit, in which this scheme can be applied quite
straightforwardly; in the cold-liquid limit, on the contrary, some additional consid-
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erations from physics will be needed – and not always sufficient – in order to get a
satisfactory description.

5.5.2 Gas limit

Let us consider first a “dilute gas” case: the container is filled with 350 grains, cor-
responding to a packing fraction of φ = 5%; the shaking intensity is Γ = z̈/g = 39.8,
where z̈ stands for the vertical acceleration and g = 9.81m/s2 is the gravitational
acceleration. The measuring set-up records the angular position θ(t) of the blade
with a sampling rate of fs = 2000Hz, so that we can compute the angular velocity
ω(t) = θ̇(t) with a temporal resolution of ∆tmin = 1/f = 0.5ms. Analyzing a long
time series (1 hour) of data, we would like to infer the parameters F (ω) and D(ω)
of Eq (5.17).

In Fig 5.10 we plot the average quantities that appear on the r.h.s. of Eq (5.18),
for several values of the time interval ∆t. As discussed in Ref. [63] and recalled in
the previous section, when studying data series resulting from deterministic physical
processes, the Markovian approximation can be considered true only at suitable
time scales, namely for τME � ∆t � τ , where τME is the Markov-Einstein time
and τ is a characteristic time for the autocorrelation function of the considered
process. As a consequence, the limits on the r.h.s. of Eq (5.18) should be evaluated
as extrapolations of the trend presented by data in a suitable time-scale range
(∆t ∈ [0.005, 0.015]s in our case, shaded region in Fig 5.10). We can perform a
linear extrapolation using the least-square method: the vertical intercept of the
resulting graph is our guess for the limit ∆t→ 0. In order to evaluate a confidence
interval for such value, one could estimate the uncertainty of each point of the graph
and then consider the error propagation on the vertical intercept; however, since the
data are not independent, this method is expected to underestimate the uncertainty.
A safer way to compute the confidence interval is the “jackknife method” [58]: here
we divide our sampled data into n = 100 blocks, then we repeat the analysis n
times, discarding one block at each turn, and we compute the confidence interval
from the distribution of the resulting n different expected values.

Taking the ∆t→ 0 limit of the extrapolated linear trends, we have an estimate
for the drift coefficient F (ω) and for the diffusivity D(ω): as it is shown in Fig 5.11
(bottom), the former has a linear dependence F (ω) = −Aω on the angular velocity,
while the latter can be approximated as D(ω) = D1 + D2ω

2. Of course, our pro-
cedure gives more accurate results when the angular velocity is smaller, i.e. when
a bigger volume of data is available for the averages (see Fig 5.11 (top)). Let us
notice that the quadratic corrections to the diffusivity are only relevant when |ω|
is quite large, i.e. when our estimate is less reliable because of the low volume of
data. For this reason, in the following we neglect such corrections and apply the
constant approximation D(ω) = D. Model (5.17) reduces then to the well known
Ornstein-Uhlenbeck process [65], so that all interesting physical observables can be
computed analytically.

In Fig 5.11 (top) we observe a fair agreement between the predicted stationary
probability distribution of ω and the experimental one. Table 5.1 summarizes the
expected values for the parameters of the model, and the corresponding uncertain-
ties. In Fig 5.12 we compare the experimental VPDS and MSD with the theoretical
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Figure 5.10. Gas limit: extrapolation Extrapolation of the limits on the r.h.s. of
Eq (5.18), for several values of ω(t0), in order to compute drift (panel A) and diffusivity
(panel B) in the gas limit. Each linear fit (solid lines) has been computed - by means of
a classical least-square method - considering only the data in the shaded range, within
the vertical lines. Figure from Ref. [13].
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Table 5.1. Gas limit: parameters Expected values and uncertainties for the parameters
of the reconstructed model in the gas limit.

Parameter Value
F (47.82± 0.42)s−1

D (581.6± 5.8)s−3
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are compared with the reconstructed model (red lines). Black lines are guides for the
eyes. Figure from Ref. [13].

ones for the reconstructed Ornstein-Uhlenbeck process, finding a good agreement.
The gas limit can be fairly approximated by this model, as already discussed in
[168]. It is useful to recall that the characteristic time of the Ornstein-Uhlenbeck
process (i.e. the decay of the velocity autocorrelation) is proportional to the mean
free time between particle-blade collisions and in certain conditions can be quanti-
tatively predicted [73]. We stress that if one considers also the quadratic corrections
and performs numerical simulations, the outcomes are almost identical, at least in
this case.

5.5.3 Cold liquid limit

In the following we analyze a regime which is somehow “opposite” to the gas limit
seen above: in this case we consider N = 2600 beads and a shaking intensity
Γ = 39.8; the packing fraction is φ = 36%. Again, f = 2000Hz and the experiment
has a duration of 1 hour.

As already understood in Ref. [168, 112], in this case the rich phenomenology of
the system cannot be described by a single-variable approach, since the dynamics
of the granular matter involves at least two clearly separate time scales. Before
enforcing the extrapolation procedure, we should be able to identify a “fast” variable
and a “slow” one in order to understand how the model depends on them.

A quite straightforward way to define a variable that describes the slow behavior
of the probe is to consider a running average with a Gaussian window function:

θ0(t) = 1√
2πσ

∫
dt′ e−

(t′−t)2

σ2 θ(t′ − t) . (5.42)
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The fast component can be found, of course, as θ1(t) = θ(t)− θ0(t) (see Fig 5.13A).
The value of the characteristic time σ (here σ = 0.3s) is suggested by the shape
of S(f), see Fig. 5.9: we need to filter out the features in regions III and IV, but
we also demand that the interesting dynamics in region I is reproduced by the new
variable; taking 2σ ' O(1)s seems therefore a legitimate choice. In the following
we will show that varying the parameter does not affect the results of our analysis
significantly, as long as σ is chosen to be of the same order of magnitude. Of course,
any other choice for the kernel in Eq (5.42) could be made, provided that it canceled
the fast oscillations of θ(t) (i.e. provided that it had a Fourier transform decaying
fast enough).

Let us notice that, following the physical interpretation proposed in Ref. [112],
θ0 can be seen as the center of mass of the itinerant “cage” at every time, while θ1
has the meaning of the angular distance between θ0 and the probe itself.

First, we can use the extrapolation analysis seen before in order to determine a
proper Langevin equation for the slow variable ω0 = θ̇0. In this case the significative
∆t range can be found at a much slower time scale (namely, ∆t ∈ [1.5, 6]s): as a
consequence, the volume of available data considerably shrinks, but it is still pos-
sible to estimate the dependence of the drift term on the slow angular velocity. In
particular one finds (Fig 5.13B) that F (ω0) = −A0ω0 is an acceptable approxima-
tion. As in the previous case, we approximate the diffusivity term with a constant,
D0(ω) = B0, neglecting the deviations for large |ω0|.

We are left with the problem of finding a model for the observed variable ω(t).
In Fig 5.13C we show that the drift coefficient of ω depends significantly not only
on ω itself, but also on θ1 = θ−θ0. A linear function of both arguments, F (ω, θ1) =
−A1ω−A2θ1, turns out to provide a fair description of the data. Again we consider
a constant value for the diffusivity, D(θ1, ω) = B.

The reconstructed model reads as follows:

ω̇(t) = −A1ω(t)−A2[θ(t)− θ0(t)] +
√

2Bη(t) (5.43a)
ω̇0(t) = −A0ω0(t) +

√
2B0η0(t) (5.43b)

θ̇(t) = ω(t) (5.43c)
θ̇0(t) = ω0(t) (5.43d)

where η(t) and η0(t) are Gaussian noises with unitary variance.
The power density spectrum of ω(t) for model (5.43) can be determined analyt-

ically:

S(f̂) = 1
π

A2
2B0 +A2

0Bf̂
2 +Bf̂4

A2
0A

2
2 + [A2

2 +A2
0A

2
1 − 2A2

0A
2
2]f̂2 + [A2

1 − 2A2 +A2
0]f̂4 + f̂6

(5.44)

where f̂ = 2πf . Once S(f̂) is known, the MSD can be found as

〈[∆θ(t)]2〉 =
∫ t

0
dt′
∫ t

0
dt′′〈ω(t′)ω(t)〉 = 2

∫ t

0
dt′(t− t′)Cωω(t′) (5.45)

where Cωω(t), the autocorrelation function of ω(t), is the Fourier anti-transform of
S(f̂). In Fig 5.14 we compare the above analytical expressions to the experimental
data.
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The VPDS shows a fair agreement in the high-frequency regime, f � 1Hz, and
in the low-frequency one f � 1Hz; in the intermediate range (region II in the nota-
tion of [168]) there is a clear discrepancy between the model and the experimental
data, maybe due to decorrelations of the slow variable that are not caught by the
model. However, we stress that the difference concerns a frequency range which is
almost inessential for the dynamical properties of the system, whose characteristic
frequencies lay in regions I and III of the spectrum (see Fig 5.9B): this is completely
evident when considering the MSD evolution (Fig 5.14B), that is very well repro-
duced by the model despite the discrepancy on S(f̂). Let us note that changing
σ by a factor 4, from 0.2s to 0.8s, does not affect the results of our analysis in a
significative way.

Finally, let us consider an experiment with N = 2600, Γ = 26.8, φ = 45%:
even if the number of beads is the same as in the previous case, the lower shaking
intensity entails that the accessible volume for the beads is lower, i.e. the actual
packing fraction increases. The system is therefore in a “more concentrate” state.
The duration of the experiment has also been raised (12 hours), and we have chosen
σ = 0.3s for the analysis.

Fig 5.15A and Fig 5.15B show the VPDS and the MSD in this case, compared
to those that can be inferred through the method discussed above. Even if the
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high-frequency regime is well reproduced by the model, our description fails on the
long-time scale; in particular, the MSD of the reconstructed model shows a linear
dependence on time for t ' 50s, while the experimental one is still quadratic on
that scale.

The failure of the method could be ascribed to the choice of Gaussian noise in
the equation for the slow variable: if the evolution of ω0 was ruled by a Lévy process,
an alternative analysis should be considered [173]. Let us evaluate, a posteriori, the
noise of the slow variable as:

ζ0(t) = ω0(t+ ∆t)− ω0(t)
∆t − F0(ω0(t)) . (5.46)

Fig 5.15C shows that the distribution of ζ0 can be fairly approximated with a
Gaussian; furthermore, the amplitude of the noise is very close to that of the recon-
structed model. Hence, we can guess that the hypothesis of Gaussian noise is quite
reasonable, and the discrepancy between the experimental data and the inferred
model could need a different explanation.

Table 5.2 summarizes the expected values for the parameters of model (5.43),
and the corresponding uncertainties, for the two considered cases in the cold liquid
limit. Also in this case the confidence intervals have been computed using the
jackknife method on n blocks of sampled data: we have chosen n = 100 for the fast
variables, n = 10 for the slow ones.

Table 5.2. Cold liquid: parameters Expected values and uncertainties for the param-
eters of model (5.43) in the cold liquid limit.

Parameter Γ = 39.8 Γ = 26.8
A1 [s−1] 200.3± 4.4 252.0± 6.3
A2 [s−2] 5.76 · 103 ± 2.4 · 102 8.55 · 103 ± 4.5 · 102

B [s−3] 161.1± 3.9 107.3± 3.1
A0 [s−1] 0.352± 0.034 0.1317± 4.9 · 10−3

B0 [s−3] 2.43 · 10−4 ± 2.1 · 10−5 8.82 · 10−5 ± 2.7 · 10−6
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Conclusions

As discussed in Chapter 1, there are many examples of physical systems showing
negative temperatures, whose level of order increases when the internal energy is
incremented. Nonetheless, a certain feeling of skepticism persists among many
physicists when equilibrium states with β < 0 are considered. In this Thesis we
tried to show that NAT states naturally emerge in models with suitable properties,
and they must be taken into account to get a full description of the thermostatistical
properties of such systems.

First, we have faced the study of negative temperature starting from the frame-
work of classical Hamiltonian systems. We have discussed some properties that
allow NAT states in mechanical models, and we have identified a class of systems,
characterized by bounded kinetic terms, which is particularly suitable for analytical
and numerical studies on negative temperature.

We have shown that it is possible to treat negative temperature also in the
sense of Thermodynamics: we can design a device (a “thermometer”) which is
able to classify the equilibrium states of Hamiltonian systems living in bounded
phase spaces, even when their equilibrium states correspond to negative values of
β. Our numerical experiments also reproduce the behavior that is expected when
a system with negative temperature is coupled to a thermometer made of ordinary
matter. We have also discussed a non-trivial case in which the presence of mean-field
interactions leads to ensemble inequivalence at negative temperature. This example
shows that in some models the descending branch of the entropy is characterized by
properties that are qualitatively different from the positive-temperature ones, and
such phenomenology can be only appreciated by including the study of the NAT
regime.

The possibility of negative temperatures also needs to be taken into account
when one considers the mesoscopic fluctuations of a single degree of freedom sub-
jected to the action of a thermal bath. We have discussed the possibility to introduce
effective stochastic equations in the form of a generalized LE also in cases with non-
quadratic kinetic terms. Consistency arguments have been exploited to find out
the form of a Langevin-like equation; we have checked its validity by numerically
simulating the action of thermal baths on slow particles.

We focused in particular on two kinds of thermal baths. First, we modeled the
action of the reservoir through a Hamiltonian systems with bounded kinetic terms,
belonging to the class discussed before, which admits negative temperatures. When
the energy of such bath is large enough, a mechanism of negative dissipation for the
particle interacting with the bath is observed; such behavior is correctly described
by the introduction of negative values of β into a generalized Einstein equation.
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Then, we obtained similar results considering a thermal bath composed by Ising
spins, ruled by a stochastic dynamics which fixes their temperature.

Our results, just like other studies conduced in the context of two-dimensional
hydrodynamics, show that coarse-grained descriptions of systems living in bounded
phase-spaces require the introduction of negative temperature; far from leading to
inconsistencies or paradoxes, NATs provide a natural and handy interpretation of
the effective motion observed at high energy for such kind of systems.

Finally, we have discussed two typical non-equilibrium topics: the response of a
system to an external perturbation and the heat transport along a unidimensional
chain. We have shown that the usual results from linear response theory can be
applied to cases with negative temperature. This is particularly relevant since the
FDR can be used, in general, to give an operative definition of the inverse tem-
perature β of the system, through the measure of responses and autocorrelation
functions: the presence of negative temperature does not hinder this possibility
(even in absence of ensemble equivalence). About Fourier transport at negative
temperature, the numerical simulations of simply tractable models (an exclusion
process for a stochastic spin dynamics along a unidimensional lattice and the dy-
namics of a Hamiltonian chain with thermal baths at the extremes) has revealed
important conceptual aspects on negative temperature out of equilibrium: in par-
ticular, the possibility of heat transport between baths at negative and positive β
seems relevant to us, as it clearly shows that negative and positive temperatures can
coexist in a non-equilibrium situation, being connected through a locally vanishing
value of β.

In his comment to a paper by Berdichevsky, Kunin and Hussain [18], where the
adoption of Gibbs’ entropy was proposed for the description of Onsager’s vortices,
so to avoid negative temperature, Montgomery wrote that the appropriate question
for statistical mechanics would appear to be not how quantities can be formally
redefined to make this novel region as similar looking as possible to spatially uniform
thermodynamics, but rather how to characterize the strikingly different behavior of
the high-energy regime [137]. We completely agree with this point of view: since
negative temperatures properly describe observable states of some physical systems,
accounting for their peculiar properties, one should not avoid their introduction
unless severe inconsistencies arise; and the results of this Thesis seem to suggest
that, at least for the Hamiltonian models considered here, a statistical description
in terms of negative temperatures is consistent and quite robust.

In this Thesis we have limited our attention to a particular class of Hamiltonian
systems. We are aware, of course, that definitive answers on the consistency of
Statistical Mechanics at negative temperatures may only come from the study of
more realistic models, a potentially much more challenging task. Much work has
still to be done to understand the non-trivial properties that emerge in their high-
energy regimes. We hope however that the results presented here can provide some
intuition about the fundamental mechanisms which rule negative temperature; such
insight could reveal useful to the comprehension of more realistic systems as well.
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