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Abstract. In this paper we study local regularity properties of weak
solutions to a class of nonlinear noncoercive elliptic Dirichlet problems
with L1 datum. The model example is{

−∆p(w) + b(x)|Dw|p−1 = f(x) in Ω,

w = 0 on ∂Ω.

Here Ω ⊂ RN is a bounded open subset, N > 1, −∆p is the well known
p-Laplace operator, 1 < p < N , b is a function in the Lorentz space
LN,1(Ω) and f is a function in L1(Ω). We also investigate similar issues
for a lower order perturbation of these problems.
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1. Introduction and main results

Let Ω ⊂ RN be a bounded open subset, N > 1. Let us consider the nonlinear
elliptic differential operator

v 7→ −div(a(x, v,Dv)) +B(x,Dv) (1.1)

where a : Ω×R×RN → RN and B : Ω×RN → R are Carathéodory mappings
such that 

∃ 0 < α ≤ β, 1 < p < N :

a(x, σ, ξ) · ξ ≥ α|ξ|p,
|a(x, σ, ξ)| ≤ β|ξ|p−1,

[a(x, σ, ξ)− a(x, σ, ξ̂)] · (ξ − ξ̂) > 0,

for a.e. x ∈ Ω, ∀σ ∈ R, ∀ ξ ∈ RN , ξ 6= ξ̂,

(1.2)
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and 
∃ b : Ω→ R :

|B(x, ξ)| ≤ |b(x)||ξ|p−1,

for a.e. x ∈ Ω, ∀ ξ ∈ RN .
(1.3)

The model examples of functions a and B we have in mind are a(x, σ, ξ) =
|ξ|p−2ξ and B(x, ξ) = b(x)|ξ|p−1, respectively. The corresponding operator is
a first order perturbation of the well known p-Laplace operator −∆p(v) =
−div(|Dv|p−2Dv).

If b belongs to LN (Ω), the mapping (1.1) defines a pseudomonotone

operator acting from W 1,p
0 (Ω) to its dual space1 W−1,p′(Ω), which, in general,

fails to be coercive. This feature produces specific difficulties in the study of
the Dirichlet problem{

−div(a(x,w,Dw)) +B(x,Dw) = f(x) in Ω,

w = 0 on ∂Ω,
(1.4)

if no additional assumptions (as smallness conditions on the size of ‖b‖LN (Ω))
are required, even if the right-hand side f is a smooth function on Ω, since the
standard theory of pseudomonotone and coercive operators (see [15]) cannot
be applied.

The question of existence of solutions to (1.4) is addressed in [9] in the
linear framework, that is, p = 2, a(x, σ, ξ) = M(x)ξ and B(x, ξ) = E(x) · ξ,
where M is a uniformly elliptic matrix on Ω with L∞(Ω) coefficients and E
is a vector field on Ω such that |E| ∈ LN (Ω). In detail, the authors prove
the existence of a (unique) finite energy weak solution (i.e., which belongs to
H1

0 (Ω)) when f ∈ H−1(Ω). This result is extended to the nonlinear case and
for every value of p ∈ (1, N) in [13].

Regularity results for weak solutions to (1.4) depending on the regularity
of the datum are established in [2], [12] and [14] by means of symmetrization
techniques. In particular, if b ∈ LN (Ω), these results (see also [10]) guarantee
the existence of a weak solution w to (1.4) that satisfies the same regularity
properties achieved in [21], [6] and [7] in the case B ≡ 0, that is2{

w ∈W 1,p
0 (Ω) if m ≥ (p∗)′,

w ∈W 1,(p−1)m∗

0 (Ω) if max
{

1, N
N(p−1)+1

}
< m < (p∗)′,

(1.5)

and {
w ∈ L∞(Ω) if m > N

p ,

w ∈ L[(p−1)m∗]∗(Ω) if max
{

1, N
N(p−1)+1

}
< m < N

p .
(1.6)

If f only belongs to L1(Ω) (or, more generally, f is a Radon measure on
Ω with bounded total variation), the problem is studied in [4] (see also [3] and
[5]). Assuming that b belongs to the Lorentz space LN,1(Ω), the existence of
a renormalized solution w to (1.4) (see also [11], [16] and [17]) is established

1For every 1 < q <∞, q′ denotes the Hölder conjugate of q, that is, q′ = q
q−1

.
2For every 1 ≤ q < N , q∗ denotes the Sobolev conjugate of q, that is, q∗ = Nq

N−q
.
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performing an approximation procedure. This solution satisfies the equation
in (1.4) in the distributional sense and, if p > 2− 1

N ,

w ∈W 1,q
0 (Ω) ∀ 1 ≤ q < N ′(p− 1). (1.7)

The first aim of this paper is to study the behaviour of the solution
obtained in [4] ”far” from the singularities of the datum, in the spirit of [8].
More precisely, we assume that

p > 2− 1

N
, (1.8)

f ∈ L1(Ω), (1.9)

and
∃U ⊂⊂ Ω, m > 1: f ∈ Lm(Ω \ U). (1.10)

As happens in the case B ≡ 0, we expect that, even if w only satisfies (1.7),
there is an improvement in the regularity properties of w and its distributional
gradient Dw depending on the regularity properties of f away from U . The
result is the following.

Theorem 1.1. Assume (1.2), (1.3) with b ∈ LN,1(Ω) and (1.8)-(1.10). Let
V ⊂⊂ Ω be such that V ⊃ U . Then, there exists a weak solution w to (1.4)
such that {

|Dw| ∈ Lp(Ω \ V ) if m ≥ (p∗)′,

|Dw| ∈ L(p−1)m∗(Ω \ V ) if 1 < m < (p∗)′,

and {
w ∈ L∞(Ω \ V ) if m > N

p ,

w ∈ L[(p−1)m∗]∗(Ω \ V ) if 1 < m < N
p .

We emphasize that our result concern solutions obtained as limit of
approximations and that satisfy the equation in (1.4) in the distributional
sense. The enhanced regularity is not true for every distributional solution
to (1.4) when the datum is only a function in L1(Ω). As a matter of fact,
a classical counterexample in [18] shows that there is no uniqueness of the

distributional solution to (1.4) outside W 1,p
0 (Ω). Moreover, the regularity

properties in the statement of Theorem 1.1 are false for the ”pathological”
solution of the quoted counterexample.

Then, we consider the following lower perturbation of (1.4):{
−div(a(x, u,Du)) +B(x,Du) +K(x, u) = f(x) in Ω,

u = 0 on ∂Ω,
(1.11)

where K : Ω× R→ R is a Carathéodory function such that

sup
|τ |≤σ

|K(·, τ)| ∈ L1(Ω) ∀σ > 0, (1.12)
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and 
∃ k ∈ L1(Ω) positive on Ω, λ > 1:

K(x, σ)sign(σ) ≥ k(x)|σ|λ,
for a.e. x ∈ Ω, ∀ t ∈ R.

(1.13)

The model example of function K we have in mind is K(x, σ) = k(x)|σ|λ−1σ.
The existence of a weak solution u that satisfies (1.7), when b ∈ LN,1(Ω),

and (1.5)-(1.6), when b ∈ LN (Ω), is guaranteed also for the problem (1.11),
because of the coercivity properties of the zero order term K(x, u). Moreover,
if k satisfies

∃h > 0: k−h ∈ L1(Ω), (1.14)

then a twofold regularizing effect on u occurs (see [10]): on the one hand, u
satisfies better regularity properties than (1.5)-(1.7); on the other hand, the
regularity properties (1.5)-(1.7) still hold for u even if b 6∈ LN (Ω). In detail,
assuming that b ∈ Lr(Ω) for some p < r < N and f ∈ Lm(Ω) for some
m ≥ 1, the author prove that

u ∈W 1,p
0 (Ω) if m > 1, λ ≥ λ,

u ∈W 1,q̃
0 (Ω) if m > 1, λ < λ < λ,

u ∈W 1,q
0 (Ω) ∀ 1 ≤ q < q̃1 if m = 1, λ > λ,

(1.15)

and {
K(·, u)|u|λ̃−λ ∈ L1(Ω) if m > 1, λ > λ,

K(·, u) ∈ L1(Ω) if m = 1, λ > λ,
(1.16)

where

λ =
(p− 1)(h+ 1)r

(r − p)h
, (1.17)

λ = max

{
[(p− 1)r + p]h+ pr

(r − p)h
,
h+m

(m− 1)h

}
, (1.18)

λ̃ = min

{
(λ− p+ 1)(h+ 1)r

ph+ r
,
λ(h+ 1)m

h+m

}
, (1.19)

q̃ = min

{
(λ− p+ 1)hr

(λ+ 1)h+ r
,

pλhm

(λ+ 1)h+m

}
, (1.20)

q̃1 =
pλh

(λ+ 1)h+ 1
. (1.21)

Thus, it seems natural to investigate what happens locally. In this con-
nection, here we proceed in two slightly different directions. The first one
consists in assuming (1.14) and studying a ”local” version of regularity re-
sults (1.15)-(1.16). The result is the following.

Theorem 1.2. Assume (1.2), (1.3) with b ∈ Lr(Ω) for some p < r < N , (1.9),
(1.10) and (1.12)-(1.14). Assume also that λ > λ and let V ⊂⊂ Ω be such
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that V ⊃ U . Then, there exists a weak solution u to (1.11) such that{
|Du| ∈ Lp(Ω \ V ) if λ ≥ λ,
|Du| ∈ Lq̃(Ω \ V ) if λ < λ < λ,

and
K(·, u)|u|λ̃−λ ∈ L1(Ω \ V ).

We also investigate the regularizing effect of the term K(x, u) on u
replacing assumption (1.14) with its own ”localized” counterpart:

∃U ⊂⊂ Ω, h > 0: k−h ∈ L1(Ω \ U). (1.22)

We remark that, in this case, we have to assume (1.8) and that b ∈ LN,1(Ω),
which is a stronger condition than b ∈ Lr(Ω) with p < r < N . Therefore, the

quantities λ, λ, λ̃ and q̃ which appear in the following statement (as in the
statement of Theorem 3.2 and Lemma 3.4 below), are as in (1.17)-(1.20) but
with r = N .

Theorem 1.3. Assume (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9), (1.12),
(1.13) and (1.22). Assume also that λ > λ, where λ is as in (1.17) but with
r = N . Let V ⊂⊂ Ω be such that V ⊃ U . Then, there exists a weak solution
u to (1.4) such that

|Du| ∈ Lq̃1(Ω \ V ), K(·, u) ∈ L1(Ω \ V ).

Moreover, if f satisfies (1.10), then{
|Du| ∈ Lp(Ω \ V ) if λ ≥ λ,
|Du| ∈ Lq̃(Ω \ V ) if λ < λ < λ,

and
K(·, u)|u|λ̃−λ ∈ L1(Ω \ V ),

where λ, λ̃ and q̃ are as in (1.18)-(1.20) but with r = N .

Let us finally describe the plan of the paper. In Section 2 we first recall
the construction of the weak solution w to (1.4) obtained in [4] by means
of approximations. If {wn} is a sequence of regular solutions to suitable ap-
proximate problems (see (2.3) below) that converges (in some sense) to w, in
order to prove Theorem 1.1 the main point is to get suitable local estimates
on wn and Dwn. Then, the result is deduced immediately putting together
these estimates with the convergence properties of wn. The same outline is
followed in Section 3 to prove Theorems 1.2 and 1.3.

2. Local regularity results for (1.4)

Let f ∈ L1(Ω). We recall that a function w : Ω → R is a weak solution of
(1.4) if w satisfies

w ∈W 1,1
0 (Ω), |a(·, w,Dw)| ∈ L1

loc(Ω), B(·, Dw) ∈ L1
loc(Ω), (2.1)
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and∫
Ω

a(x,w,Dw) ·Dϕ+

∫
Ω

B(x,Dw)ϕ =

∫
Ω

f(x)ϕ ∀ϕ ∈ C∞c (Ω). (2.2)

The existence of a weak solution w to (1.4) is established in [4] assuming
that b belongs to the Lorentz space LN,1(Ω), namely b satisfies∫ |Ω|

0

b∗(σ)σ
1
N
dσ

σ
<∞,

where b∗ is the decreasing rearrangement of b, that is, the decreasing function
defined by

b∗(σ) = inf {τ ≥ 0: |{x ∈ Ω: |b(x)| > τ}| < σ} ∀σ ∈ [0, |Ω|] .
Let us recall the construction of w. Consider the following family of

approximate problems (n ∈ N):{
−div(a(x,wn, Dwn)) +Bn(x,Dwn) = fn(x) in Ω,

wn = 0 on ∂Ω,
(2.3)

where Bn and fn are the truncations at level n of B and f , respectively. More
precisely, we define 

Bn(x, ξ) = Tn(B(x, ξ)),

fn(x) = Tn(f(x)),

for a.e. x ∈ Ω,

(2.4)

where, for any σ > 0, Tσ denotes the function defined by

Tσ(s) = max{−σ,min{s, σ}} ∀ s ∈ R. (2.5)

Clearly, we have that
|Bn(x, ξ)| ≤ min {|B(x, ξ)|, n} ,
|fn(x)| ≤ min {|f(x)|, n} ,
for a.e. x ∈ Ω, ∀ ξ ∈ RN , ∀n ∈ N.

(2.6)

It is well known (see [15] and [21]) that for every n ∈ N there exists a

weak solution wn ∈W 1,p
0 (Ω) ∩ L∞(Ω) to (1.4) and that wn satisfies∫

Ω

a(x,wn, Dwn)·Dv+

∫
Ω

Bn(x,Dwn)v =

∫
Ω

fn(x)v ∀ v ∈W 1,p
0 (Ω). (2.7)

Then, one has that{
{wn} is bounded in M

p∗
p′ (Ω),

{|Dwn|} is bounded in MN ′(p−1)(Ω),

where, for any q > 0, Mq(Ω) denotes the Marcinkiewicz space of all measur-
able functions v : Ω→ R such that

∃C > 0: |{x ∈ Ω: |v(x)| > σ}| ≤ C

σq
∀σ > 0.
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In particular, if p > 2− 1
N , it follows that

{wn} is bounded in W 1,q
0 (Ω) ∀ 1 ≤ q < N ′(p− 1). (2.8)

Hence, there exists a function w that satisfies (1.7) and such that, up to a
subsequence, wn → w a.e. in Ω. Moreover, one has that Dwn → Dw a.e. in
Ω. Thanks to assumptions (1.2) and (1.3), it follows that a(·, wn, Dwn) →
a(·, w,Dw) and Bn(·, Dwn)→ B(·, Dw) in (L1(Ω))N and L1(Ω), respectively.
Therefore, passing to the limit in (2.3), it results that w is a weak solution
to (1.4).

Now, assume that f ∈ Lm(Ω \ U) for some U ⊂⊂ Ω and m > 1. By
means of standard regularization techniques, it is possible to construct a
function ψ ∈W 1,∞(Ω) with 0 ≤ ψ ≤ 1 in Ω, such that

ψ =

{
0 in U,

1 in Ω \ V,
(2.9)

where V ⊂⊂ Ω is such that V ⊃ U . In particular, assumption (1.10) implies
the following condition:

∃ψ ∈W 1,∞(Ω), m > 1:

0 ≤ ψ ≤ 1 in Ω,

fψ ∈ Lm(Ω).

(2.10)

Hence, Theorem 1.1 is an immediate consequence of the following result.

Theorem 2.1. Assume (1.2), (1.3) with b ∈ LN,1(Ω) and (1.8), (1.9) and
(2.10). Then, there exist a weak solution w to (1.4) and η0 > 1 which depends
only on ψ, m, N and p, such that

wψη0 ∈W 1,p
0 (Ω) ∩ L∞(Ω) if m > N

p ,

wψη0 ∈W 1,p
0 (Ω) ∩ L[(p−1)m∗]∗(Ω) if (p∗)′ ≤ m < N

p ,

wψη0 ∈W 1,(p−1)m∗

0 (Ω) if 1 < m < (p∗)′.

Now, we observe that in order to prove Theorem 2.1 it is sufficient to
get suitable estimates on the sequences {wnψη} and {|D(wnψ

η)|} for some
η > 1, since wn → w and Dwn → Dw a.e. in Ω.

2.1. Local estimates on wn

Our starting point is the fact that, by Sobolev inequality3, (2.8) implies that

{wn} is bounded in Ls(Ω) ∀ 1 ≤ s < p∗

p′
. (2.11)

This (global) estimate plays a crucial role in proving the following.

3We recall that, by Sobolev inequality, there exists a positive constant S0 which depends

only on N and p, such that

‖v‖Lp∗ (Ω) ≤ S0‖|Dv|‖Lp(Ω) ∀ v ∈W 1,p
0 (Ω).
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Lemma 2.2. Assume (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9) and (2.10)
with 1 < m < N

p . Then, there exists η1 >
1
p−1 which depends only on ψ, m,

N and p, such that the sequence {wnψη1} is bounded in L[(p−1)m∗]∗(Ω).

Proof. We follow the approach of [6] (see also [8]) and we divide the proof
into four steps.

STEP I. First, let φ ∈ W 1,∞(Ω) be such that 0 ≤ φ ≤ ψ in Ω. We

observe that fφ ∈ Lm(Ω), by (2.10). Then, we fix 1
p′ < γ < [(p−1)m∗]∗

p∗ , δ > 0,

η = p+ p′γ and we choose

vδφ
η =

[
(δ + |wn|)p(γ−1)+1 − δp(γ−1)+1

]
sign(wn)φη

as a test function in (2.7). Notice that m > 1 and γ > 1
p′ implies that

1
p′ <

[(p−1)m∗]∗

p∗ and p(γ − 1) + 1 > 0, respectively. Since

D (vδφ
η) = [p(γ − 1) + 1]Dwn(δ + |wn|)p(γ−1)φη + ηDφvδφ

η−1,

exploiting (1.2), (2.6) and (1.3), we obtain that

α[p(γ − 1) + 1]

∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη

≤ βη‖|Dφ|‖L∞(Ω)

∫
Ω

|Dwn|p−1|vδ|φη−1 +

∫
Ω

|b(x)||Dwn|p−1|vδ|φη

+

∫
Ω

|f(x)||vδ|φη. (2.12)

Thanks to Young inequality, the first term on the right-hand side of (2.12)
can be estimated by

α[p(γ − 1) + 1]

p′

∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη

+

(
βη‖|Dφ|‖L∞(Ω)

)p
pαp−1[p(γ − 1) + 1]p−1

∫
Ω

(δ + |wn|)pγφη−p.

Hence, it follows that

C0

∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη

≤ C1

∫
Ω

(δ + |wn|)pγφη−p +

∫
Ω

|b(x)||Dwn|p−1|vδ|φη

+

∫
Ω

|f(x)||vδ|φη, (2.13)

where C0 = α[p(γ−1)+1]
p and C1 =

(βη‖|Dφ|‖L∞(Ω))
p

p{α[p(γ−1)+1]}p−1 .

STEP II. Without loss of generality, we assume that b 6≡ 0. Let 0 < ε <
‖b‖LN (Ω) and let U0 ⊃ Ω be a cube. We extend b and wn to vanish outside Ω.

By bisection of the edges of U0, we subdivide U0 into 2N congruent subcubes
with disjoint interiors. If there is a subcube U such that ‖b‖LN (U) > ε, then all
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subcubes are similarly subdivided. The process terminates in a finite number
of steps, otherwise there would be an infinite sequence of nested subcubes

Uj+1 ⊂ Uj ⊂ U0 such that |Uj | = |U0|
2jN

and ‖b‖LN (Uj) > ε for every j ∈ N,
which is a contradiction, since ‖b‖LN (Uj) → 0 as j → ∞, by the absolute
continuity of the integral. Thus, there exists a finite number of congruent
subcubes U1, . . . , Ulε ⊂ U0 with disjoint interiors and such that

Ω ⊂ U0 = U1 ∪ . . . ∪ Ulε , (2.14)

‖b‖LN (U1), . . . , ‖b‖LN (Ulε ) ≤ ε. (2.15)

Then, using (2.14), (2.15) and Hölder inequality, we have that∫
Ω

|b(x)||Dwn|p−1|vδ|φη

≤ ε
lε∑
j=1

[∫
Uj

|Dwn|p(δ + |wn|)p(γ−1)φη

] 1
p′
[∫

Uj

(δ + |wn|)p
∗γφ

p∗η
p

] 1
p∗

.

(2.16)

Furthermore, thanks to Sobolev inequality4 and the fact that |Uj | = |U0|
lε

, for
every j = 1, . . . , lε we have that[∫

Uj

(δ + |wn|)p
∗γφ

p∗η
p

] 1
p∗

≤ S
(

lε
|K0|

) 1
N

[∫
Uj

(δ + |wn|)pγφη
] 1
p

+ S

{∫
Uj

∣∣∣D [(δ + |wn|)γφ
η
p

]∣∣∣p} 1
p

.

Hence, the right-hand side of (2.16) can be estimated by

S
(
lε
|Ω|

) 1
N

ε

lε∑
j=1

[∫
Uj

|Dwn|p(δ + |wn|)p(γ−1)φη

] 1
p′
[∫

Uj

(δ + |wn|)pγφη
] 1
p

+Sε
lε∑
j=1

[∫
Uj

|Dwn|p(δ + |wn|)p(γ−1)φη

] 1
p′
{∫

Uj

∣∣∣D [(δ + |wn|)γφ
η
p

]∣∣∣p} 1
p

,

4We recall that, by Sobolev inequality, there exists a positive constant S which depends
only on N and p, such that (see [1])

‖v‖Lp∗ (U) ≤ S
[

1

|U |
1
N

‖v‖Lp(U) + ‖|Dv|‖Lp(U)

]
∀ cube U ⊂ RN , ∀ v ∈W 1,p(U).
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which in turn, by Hölder inequality and (2.14) again, is controlled by

S
(
lε
|Ω|

) 1
N

ε

[∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη
] 1
p′
[∫

Ω

(δ + |wn|)pγφη
] 1
p

+ Sε
[∫

Ω

|Dwn|p(δ + |wn|)p(γ−1)φη
] 1
p′
{∫

Ω

∣∣∣D [(δ + |wn|)γφ
η
p

]∣∣∣p} 1
p

.

(2.17)

Since∣∣∣D [(δ + |wn|)γφ
η
p

]∣∣∣ ≤ γ|Dwn|(δ + |wn|)γ−1φ
η
p

+
η‖|Dφ|‖L∞(Ω)

p
(δ + |wn|)γφ

η−p
p , (2.18)

using Young inequality and the fact that 0 ≤ φ ≤ 1 in Ω, putting together
(2.16) and (2.17) we obtain that∫

Ω

|b(x)||Dwn|p−1|vδ|φη

≤ C2ε

∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη + C3ε

∫
Ω

(δ + |wn|)pγφη−p, (2.19)

where C2 = S
(

1

p′|Ω|
1
N

+
η‖|Dφ|‖L∞(Ω)

pp′ + γ

)
, C3 = S

(
l
p
N
ε

p|Ω|
1
N

+
η‖|Dφ|‖L∞(Ω)

p2

)
.

Now, we choose ε such that C2ε = C0

2 , that is, ε = C0

2C2
. In this way,

from (2.13) and (2.19) we deduce that∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)φη

≤ C4

∫
Ω

(δ + |wn|)pγφη−p + C5

∫
Ω

|f(x)||vδ|φη, (2.20)

where C4 = C3

C2
+ 2C1

C0
and C5 = 2

C0
. Then, in virtue of Sobolev inequality

and (2.18), estimate (2.20) yields{∫
Ω

[(δ + |wn|)γ − δγ ]
p∗
φ
p∗η
p

} p
p∗

≤ Sp0
∫

Ω

∣∣∣D{[(δ + |wn|)γ − δγ ]φ
η
p

}∣∣∣p
≤ C6

∫
Ω

(δ + |wn|)pγφη−p + C7

∫
Ω

|f(x)||vδ|φη,

which in turn, letting δ → 0 and applying dominate convergence Theorem,
implies that(∫

Ω

|wn|p
∗γφ

p∗η
p

) p
p∗

≤ C6

∫
Ω

|wn|pγφη−p + C7

∫
Ω

|f(x)||wn|p(γ−1)+1φη, (2.21)
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where C6 = (2S0)pC4 +
(

2S0η‖|Dφ|‖L∞(Ω)

p

)p
and C7 = (2S0)pC5.

STEP III. By Hölder inequality, we have that∫
Ω

|f(x)||wn|p(γ−1)+1φη ≤ ‖fφ‖Lm(Ω)

[∫
Ω

|wn|[p(γ−1)+1]m′φ(η−1)m′
] 1
m′

.

Since γ < [(p−1)m∗]∗

p∗ implies that [p(γ−1)+1]m′ < p∗γ, by Hölder inequality

again, from (2.21) we obtain that(∫
Ω

|wn|p
∗γφ

p∗η
p

) p
p∗

≤ C6

∫
Ω

|wn|pγφη−p + C8‖fφ‖Lm(Ω)

(∫
Ω

|wn|p
∗γφ

p∗γ(η−1)
p(γ−1)+1

) [p(γ−1)+1]
p∗γ

,

(2.22)

where C8 = |Ω|
1
m′−

p(γ−1)+1
p∗γ C7. Furthermore, since η = p+ p′γ > p′γ implies

that p∗η
p < p∗γ(η−1)

p(γ−1)+1 , exploiting the fact that 0 ≤ φ ≤ 1 in Ω and using Young

inequality, we have that

C8‖fφ‖Lm(Ω)

(∫
Ω

|wn|p
∗γφ

p∗γ(η−1)
p(γ−1)+1

) p(γ−1)+1
p∗γ

≤ C8‖fφ‖Lm(Ω)

(∫
Ω

|wn|p
∗γφ

p∗η
p

) p(γ−1)+1
p∗γ

≤ Cp
′γ

8

p′γ
‖fφ‖p

′γ
Lm(Ω) +

p(γ − 1) + 1

pγ

(∫
Ω

|wn|p
∗γφ

p∗η
p

) p
p∗

.

Thus, from (2.22) we get(∫
Ω

∣∣∣wnφ η
pγ

∣∣∣p∗γ) p
p∗

≤ C9

∫
Ω

∣∣∣wnφ η−ppγ ∣∣∣pγ + C10‖fφ‖p
′γ
Lm(Ω),

where C9 = p′γC6 and C10 = Cp
′γ

8 .
Recalling the choice of η = p+ p′γ, the previous inequality becomes∫

Ω

∣∣∣wnφ 1
p−1 + 1

γ

∣∣∣p∗γ ≤ C11(γ)

(∫
Ω

∣∣∣wnφ 1
p−1

∣∣∣pγ) p∗
p

+ ‖fφ‖
p∗γ
p−1

Lm(Ω)

 , (2.23)

where C11(γ) = max
{

(2C9(γ))
p∗
p , (2C10(γ))

p∗
p

}
. We remark that

C9(γ) = C12γ

{
1 +

γp

[p(γ − 1) + 1]p

}
,

C10(γ) = Cp
′γ

13 |Ω|
p′γ
m′ −

p′[p(γ−1)+1]
p∗

[
γp

p(γ − 1) + 1

]p′γ
,
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where C12 and C13 are positive constants that do not depend on γ. Hence,
C11(γ) depends continuously on γ and satisfies

lim
γ→ 1

p′

C11(γ) =∞, lim
γ→ [(p−1)m∗]∗

p∗

C11(γ) ∈ (0,∞). (2.24)

In particular, passing to the limit as γ → [(p−1)m∗]∗

p∗ in (2.23) and using

dominate convergence Theorem, we deduce that estimate (2.23) holds for

every 1
p′ < γ ≤ [(p−1)m∗]∗

p∗ .

STEP IV. Now, suppose that p [(p−1)m∗]∗

p∗ < p∗

p′ , that is, m < N
N2−Np+p2 ,

and consider estimate (2.23) with γ = [(p−1)m∗]∗

p∗ and φ = ψ:∫
Ω

∣∣∣wnψ 1
p−1 + p∗

[(p−1)m∗]∗
∣∣∣[(p−1)m∗]∗

≤ C11

(∫
Ω

∣∣∣wnψ 1
p−1

∣∣∣p [(p−1)m∗]∗
p∗

) p∗
p

+ ‖fψ‖
[(p−1)m∗]∗

p−1

Lm(Ω)

 . (2.25)

Thanks to (2.11), the right-hand side of (2.25) is uniformly bounded with
respect to n. Therefore, it follows that the sequence {wnψη1} is bounded in
L[(p−1)m∗]∗(Ω), where

η1 =
1

p− 1
+

p∗

[(p− 1)m∗]∗
.

If p [(p−1)m∗]∗

p∗ ≥ p∗

p′ , we perform an iteration argument. The idea is to

start from estimate (2.23) with γ = [(p−1)m∗]∗

p∗ and φ a suitable power of ψ

and apply (2.23) recursively a finite number of times, choosing γ and φ in a
suitable way. We point out that, by (2.24), it is necessary to consider only
values of γ > 1

p′ .

We define γ0 = [(p−1)m∗]∗

p∗ and we choose pγ0

p∗ < γ1 < γ0. Notice that
pγ0

p∗ ≥
1
p′ , therefore γ1 >

1
p′ . If pγ1 ≥ p∗

p′ , we choose pγ1

p∗ < γ2 <
pγ0

p∗ , which, in

particular, satisfies 1
p′ ≤

pγ1

p∗ < γ2 <
pγ0

p∗ < γ1. The process terminates in a

finite number of steps, otherwise there would be an infinite sequence of real

numbers γj > γj+1 >
1
p′ such that5 γj <

(
p
p∗

)[ j2 ]

γ0 for every j ∈ N, which is

a contradiction, since
(
p
p∗

)[ j2 ]

→ 0 as j → ∞. If I ≥ 1 is the first index for

which

pγI <
p∗

p′
, (2.26)

we define

φI = ψ, φi = φ
1+ p−1

γi+1

i+1 i = 0, . . . , I − 1. (2.27)

5For every t ∈ R, [t] denotes the integer part of t.
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By construction, we have that 1
p′ < γI < γI−1 ≤ . . . ≤ γ0 = [(p−1)m∗]∗

p∗ and

0 ≤ φ0 ≤ φ1 ≤ . . . ≤ φI = ψ in Ω. Hence, we set C14 = max{C11(γi), i =
0, . . . , I} = C11(γI) and we consider estimate (2.23) with γ = γ0 and φ = φ0:∫

Ω

∣∣∣∣wnφ 1
p−1 + 1

γ0
0

∣∣∣∣p∗γ0

≤ C14

(∫
Ω

∣∣∣∣wnφ 1
p−1

0

∣∣∣∣pγ0
) p∗

p

+ ‖fφ0‖
p∗γ0
p−1

Lm(Ω)

 . (2.28)

Since pγ0 < p∗γ1, by Hölder inequality and the definition of φi, we have that(∫
Ω

∣∣∣wnφ 1
p−1

0

∣∣∣pγ0
) p∗

p

≤ |Ω|
p∗
p −

γ0
γ1

(∫
Ω

∣∣∣wnφ 1
p−1

0

∣∣∣p∗γ1
) γ0
γ1

= |Ω|
p∗
p −

γ0
γ1

(∫
Ω

∣∣∣wnφ 1
p−1 + 1

γ1
1

∣∣∣p∗γ1
) γ0
γ1

,

which in turn, using (2.23), implies that(∫
Ω

∣∣∣∣wnφ 1
p−1

0

∣∣∣∣pγ0
) p∗

p

≤ (2C14)
γ0
γ1 |Ω|

p∗
p −

γ0
γ1

(∫
Ω

∣∣∣∣wnφ 1
p−1

1

∣∣∣∣pγ1
) p∗γ0

pγ1

+ ‖fφ1‖
p∗γ0
p−1

Lm(Ω)

 . (2.29)

Putting together (2.28) and (2.29), it follows that∫
Ω

∣∣∣∣wnφ 1
p−1 + 1

γ0
0

∣∣∣∣p∗γ0

≤ C14(2C14)
γ0
γ1 |Ω|

p∗
p −

γ0
γ1

(∫
Ω

∣∣∣∣wnφ 1
p−1

1

∣∣∣∣pγ1
) p∗γ0

pγ1

+ ‖fφ1‖
p∗γ0
p−1

Lm(Ω)


+ C14‖fφ0‖

p∗γ0
p−1

Lm(Ω).

Thus, we iterate the previous inequality I times and we obtain that∫
Ω

∣∣∣∣wnφ 1
p−1 + 1

γ0
0

∣∣∣∣p∗γ0

≤ C15

(∫
Ω

∣∣∣∣wnφ 1
p−1

I

∣∣∣∣pγI)
p∗γ0
pγI

+

I∑
i=0

‖fφi‖
p∗γ0
p−1

Lm(Ω)

 , (2.30)

where

C15 = C14 + C14(2C14)
∑I
i=1

γ0
γi |Ω|

∑I
i=0

(
p∗γ0
pγi
− γ0
γi+1

)
.
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By (2.26) and (2.11), the right-hand side of (2.30) is uniformly bounded with
respect to n. Therefore, since p∗γ0 = [(p− 1)m∗]∗ and

φ
1
p−1 + 1

γ0
0 = φ

1
p−1

(
1+ p−1

γ0

)(
1+ p−1

γ1

)
1

= . . . = φ
1
p−1

∏I
i=0

(
1+ p−1

γi

)
I = ψ

1
p−1

∏I
i=0

(
1+ p−1

γi

)
,

from (2.30) we, finally, deduce that {wnψη1} is bounded in L[(p−1)m∗]∗(Ω),
where

η1 =
1

p− 1

I∏
i=0

(
1 +

p− 1

γi

)
. (2.31)

�

In the proof of the next local estimate on wn we follows Stampacchia’s
method (see[21]), which hinges on the following Real Analysis result (see [19]
and [20] for the proof).

Lemma 2.3. Let g(σ) be a nonnegative, nonincresing function defined for
every σ ≥ σ0 and such that

∃ γ, δ, C > 0: g(τ) ≤ Cg(σ)δ

(τ − σ)γ
∀ τ > σ ≥ σ0. (2.32)

Then

i) if δ > 1, it holds that

g(σ0 + τ0) = 0,

where τγ0 = 2
γδ
δ−1Cg(σ0)δ−1;

ii) if δ = 1, it holds that

g(σ) ≤ g(σ0)

eζ0(σ−σ0)−1
∀σ ≥ σ0,

where ζ0 = (eC)−
1
γ ;

iii) if δ < 1 and σ0 > 0, it holds that

g(σ) ≤
2

µ
1−δ

[
C

1
1−δ + (2σ0)µg(σ0)

]
σµ

∀σ ≥ σ0,

where µ = γ
1−δ .

In what follows, for any σ > 0, Gσ denotes the real function of one real
variable defined by

Gσ(s) = s− Tσ(s) ∀ s ∈ R, (2.33)

where Tσ is the truncation at level σ defined in (2.5). Furthermore, for any
n ∈ N and η, σ > 0 we define

An,η,σ = {x ∈ Ω: |wn(x)|ψ(x)η > σ} . (2.34)
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Notice that, by (2.11), |An,η,σ| → 0 as σ →∞, uniformly with respect to n.
Hence, by the absolute continuity of the integral, it follows that

lim
σ→∞

‖b‖LN (An,η,σ) = 0 uniformly with respect to n. (2.35)

Lemma 2.4. Assume that (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9) and
(2.10) with m > N

p . Then, there exists η2 > 1 which depends only on ψ, N

and p, such that the sequence {wnψη2} is bounded in L∞(Ω).

Proof. We follow the approach of [21] (see also [8]). First, we observe that,
since

lim
t→N

p

[(p− 1)t∗]∗ = lim
t→N

p

N(p− 1)t

N − pt
=∞,

for every s ≥ p∗

p′ there exists 1 ≤ t < N
p such that s = [(p− 1)t∗]∗. Therefore,

by Lemma 2.2, for every s ≥ p∗

p′ there exists η1(s) > 1
p−1 such that {wnψη1}

is bounded in Ls(Ω).

We fix s > max
{
p∗

p′ , N
}

and we choose

η2 = 1 + η1(s).

Moreover, we define

Aσ = An,η2,σ ∀σ > 0, ∀n ∈ N, (2.36)

and, exploiting (2.34) and (2.35), we choose σ0 > 0 such that
|Aσ| ≤ 1,

S0

(
1 + η2

p′

)
‖b‖LN (Aσ) ≤ α

2p ,

∀σ ≥ σ0, ∀n ∈ N.
(2.37)

By (1.2), (2.6) and (1.3), the use of v = Gσ (wnψ
η2)ψ(p−1)η2 as a test

function in (2.7) yields

α ‖|Dwn|ψη2‖pLp(Aσ) ≤ βη2p

∫
Aσ

|Dwn|p−1|Dψ||wn|ψpη2−1

+

∫
Ω

|b(x)||Dwn|p−1|v|+
∫

Ω

|f(x)||v|,

which in turn, using Young inequality, implies that

α

p
‖|Dwn|ψη2‖pLp(Aσ) ≤

(βη2p)
p

pαp−1

∥∥|Dψ|wnψη2−1
∥∥p
Lp(Aσ)

+

∫
Ω

|b(x)||Dwn|p−1|v|+
∫

Ω

|f(x)||v|. (2.38)

Thanks to Hölder and Sobolev inequalities, the second integral on the right-
hand side of (2.38) can be estimated as follows∫

Ω

|b(x)||Dwn|p−1|v| ≤ S0‖b‖LN (Aσ) ‖|Dwn|ψη2‖p−1
Lp(Aσ) ‖|D(wnψ

η2)|‖Lp(Aσ) .
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Hence, using Young inequality again and (2.37), we get∫
Ω

|b(x)||Dwn|p−1|v| ≤ α

2p
‖|Dwn|ψη2‖pLp(Aσ)

+
S0η2‖b‖LN (Ω)

p

∥∥|Dψ|wnψη2−1
∥∥p
Lp(Aσ)

. (2.39)

Putting together (2.38) and (2.39), it follows that

C0 ‖|Dwn|ψη2‖pLp(Aσ) ≤ C1

∥∥|Dψ|wnψη2−1
∥∥p
Lp(Aσ)

+

∫
Ω

|f(x)||v|, (2.40)

where C0 = α
2p and C1 = (βη2p)

p

pαp−1 +
S0η2‖b‖LN (Ω)

p . Adding C0 ‖|Dψη2 |wn‖pLp(Aσ)

on both sides of (2.40) and using Sobolev inequality again, we obtain that

C2 ‖Gσ(wnψ
η2)‖p

Lp∗ (Ω)
≤ C0 ‖|Dwn|ψη2‖pLp(Aσ) + C0 ‖|Dψη2 |wn‖pLp(Aσ)

≤ C3

∥∥wnψη2−1
∥∥p
Lp(Aσ)

+

∫
Ω

|f(x)||v|, (2.41)

where C2 = C0

Sp0
and C3 = C1 + C0

(
η2‖|Dψ|‖L∞(Ω)

)p
.

Since σ > max
{
p∗

p′ , N
}
≥ N > p, Hölder inequality implies that∥∥wnψη2−1

∥∥p
Lp(Aσ)

≤
∥∥wnψη2−1

∥∥p
Ls(Ω)

|Aσ|1−
p
s ,

which in turn, recalling that η2 = 1 + η1 and {wnψη1} is bounded in Ls(Ω),
yields

‖wnψη1‖pLp(Aσ) ≤ C4|Aσ|1−
p
s . (2.42)

On the other hand, by Hölder and Young inequalities, we have that∫
Ω

|f(x)||v| ≤ c2
p
‖Gσ (wnψ

η2)‖p
Lp∗ (Ω)

+
1

p′C
1
p−1

2

‖fψ‖p
′

L(p∗)′ (Aσ)

≤ C2

p
‖Gσ (wnψ

η2)‖p
Lp∗ (Ω)

+
1

p′C
1
p−1

2

‖fψ‖p
′

Lm(Ω)|Aσ|
p′( 1

m′−
1
p∗ ). (2.43)

Putting together (2.41)-(2.43) it follows that

C5 ‖Gσ (wnψ
η2)‖p

Lp∗ (Ω)
≤ C6|Aσ|1−

p
s + C7|Aσ|p

′( 1
m′−

1
p∗ ),

where C5 = C2

p′ , C6 = C3C4 and C7 = 1

p′C
1
p−1
2

‖fψ‖p
′

Lm(Ω).

Then, we have that

C5(τ − σ)p|Aτ |
p
p∗ ≤ C5‖Gσ (wnψ

η2) ‖p
Lp∗ (Ω)

≤ C6|Aσ|1−
p
s + C7|Aσ|p

′( 1
m′−

1
p∗ ) ∀τ > σ ≥ σ0.

Since s > N and m > N
p , it holds that 1− p

s > p′
(

1
m′ −

1
p∗

)
. Hence, recalling

that |Aσ| < 1, we obtain that

(τ − σ)p|Aτ |
p
p∗ ≤ C8|Aσ|p

′( 1
m′−

1
p∗ ) ∀τ > σ ≥ σ0,
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that is

|Aτ | ≤ C9
|Aσ|

1
p−1

(
p∗
m′−1

)
(τ − σ)p∗

∀τ > σ ≥ σ0, (2.44)

where C8 = C6+C7

C5
and C9 = C

p∗
p

8 .

Now, assumption m > N
p implies that 1

p−1

(
p∗

m′ − 1
)
> 1. Thus, apply-

ing Lemma 2.3 (part i)) with g(σ) = |Aσ|, from (2.44) we finally deduce that
there exists τ0 > 0 (not depending on n) such that |Aσ0+τ0 | = 0, that is,
|wnψη2 | ≤ σ0 + τ0 a.e. in Ω. �

Remark 2.1. We observe that in order to get inequality (2.44), assumption
(2.10) with m > N

p is not needed, but it is sufficient to assume the weaker

condition 
∃ψ ∈W 1,∞(Ω), m > (p∗)′ :

0 ≤ ψ ≤ 1 in Ω,

fψ ∈Mm(Ω).

(2.45)

As a matter of fact, (2.45) implies that fψ ∈ Lt(Ω) for every (p∗)′ ≤ t < m.
Hence, by Lemma 2.2, setting

s0 =

{
∞ if m ≥ N

p ,

[(p− 1)m∗]∗ if (p∗)′ < m < N
p ,

for every p∗

p′ ≤ s < s0 there exists η1(s) > 1
p−1 such that {wnψη1} is bounded

in Ls(Ω). Moreover, it holds that

∃C > 0:

∫
U

|fψ|(p
∗)′ ≤ C|U |1−

(p∗)′
m ∀measurable subset U ⊂ Ω.

In particular, we have that

‖fψ‖p
′

L(p∗)′ (An,η,σ)
≤ C

p′
(p∗)′ |An,η,σ|p

′( 1
m′−

1
p∗ ) ∀ η, σ > 0, ∀n ∈ N, (2.46)

where An,η,σ is defined in (2.34). Hence, the same argument of the proof of
Lemma 2.4 can be used also in this case to deduce inequality (2.44). The only
things that change are the choice of s and the use of (2.46) instead of Hölder
inequality in (2.43).

Therefore, applying Lemma 2.3 with g(σ) = |An,η2,σ|, γ = p∗ and δ =
1
p−1

(
1
m′ −

1
p∗

)
, we immediately obtain that:

• if (2.45) holds with m > N
p , then {wnψη2} is bounded in L∞(Ω);

• if (2.45) holds with (p∗)′ < m < N
p , then {wnψη2} is bounded in

M [(p−1)m∗]∗(Ω).

Moreover, if (2.45) is fulfilled with m = N
p , which, in particular, implies

that 1
p−1

(
p∗

m′ − 1
)

= 1, thanks to (2.44) and Lemma 2.3 (part ii)), it follows

that

|An,η2,σ| ≤
|An,η2,σ0 |
eζ0(σ−σ0)−1

≤ |Ω|
eζ0(σ−σ0)−1

∀σ ≥ σ0, (2.47)
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where ζ0 = (eC9)−
1
p∗ . Consequently, by a standard device, we deduce that∫

Ω

(
eζ|Gσ0

(wnψ
η2 )| − 1

)
≤ eζ|Ω|
ζ0 − ζ

∀ 0 < ζ < ζ0,

which implies that the sequence
{
eζ|wn|ψ

η2
}

is bounded in L1(Ω).
Recalling that wn → w and Dwn → Dw a.e. in Ω with w weak solution

to (1.4), the previous estimates, together with those given in Lemmas 2.6 and
2.7 below, lead to the following result.

Theorem 2.5. Assume (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9) and (2.45)
with m > (p∗)′. Then, there exist a weak solution w to (1.4) and η0 > 1
which depends only on ψ, m, N and p, such that

wψη0 ∈W 1,p
0 (Ω),

and 
wψη0 ∈ L∞(Ω) if m > N

p ,

eζ|w|ψ
η0 ∈ L1(Ω) for some ζ > 0 if m = N

p ,

wψη0 ∈M [(p−1)m∗]∗(Ω) if (p∗)′ < m < N
p .

2.2. Local estimates on Dwn

The next two lemmas provide estimates on the sequence
{∣∣D(wnψ

η)
∣∣} for

some η > 1.

Lemma 2.6. Assume (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9) and (2.10)
with 1 < m < (p∗)′. Then, there exists η3 > 1 which depends only on ψ, m,
N and p, such that the sequence

{
|Dwn|(p−1)m∗ψη3

}
is bounded in L1(Ω).

Proof. We define q = (p− 1)m∗, γ = q∗

p∗ and

η3 = max

{
q∗η1

m′
+ 1,

pq∗η1

p∗
+ p, q∗η1

}
, (2.48)

where η1 is given by Lemma 2.2. Notice that 1 < m < (p∗)′ implies that
1
p′ < γ < 1. Moreover, we have that [1 − p(1 − γ)]m′ = p∗γ = q∗. Then, we

fix δ > 0 and we choose[
(δ + |wn|)1−p(1−γ) − δ1−p(1−γ)

]
sign(wn)ψη3

as a test function in (2.7). Arguing as in the first part of the proof of Lemma
2.2 (see (2.20)), we get∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ)
ψη3

≤ C0

∫
Ω

(δ + |wn|)pγψη3−p + C1

∫
Ω

|f(x)|(δ + |wn|)p(γ−1)+1ψη3 , (2.49)

where C1 and C1 are positive constants that do not depend on n. By Hölder
inequality, we have that

C0

∫
Ω

(δ + |wn|)pγψη3−p ≤ C0|Ω|1−
p
p∗

[∫
Ω

(δ + |wn|)q
∗
ψ
p∗(η3−p)

p

] p
p∗

,
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and

C1

∫
Ω

|f(x)|(δ + |wn|)p(γ−1)+1ψη3

≤ C1‖fψ‖Lm(Ω)

[∫
Ω

(δ + |wn|)q
∗
ψ(η3−1)m′

] 1
m′

,

which in turn, recalling the definitions of q and η3 and the fact that 0 ≤ ψ ≤ 1
in Ω, imply that

C0

∫
Ω

(δ + |wn|)pγψη3−p ≤ C0|Ω|1−
p
p∗ ‖(δ + |wn|)ψη1‖

p[(p−1)m∗]∗
p∗

L[(p−1)m∗]∗ (Ω)
, (2.50)

and

C1

∫
Ω

|f(x)|(δ + |wn|)p(γ−1)+1ψη3

≤ C1‖fψ‖Lm(Ω) ‖(δ + |wn|)ψη1‖
[(p−1)m∗]∗

m′

L[(p−1)m∗]∗ (Ω)
. (2.51)

Hence, putting together (2.49)-(2.51), by Lemma 2.2, it follows that the quan-
tity ∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ)
ψη3

is uniformly bounded with respect to n.
Now, using Hölder inequality again, we have that∫

Ω

|Dwn|qψη3 ≤
∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ)
(δ + |wn|)q(1−γ)ψη3

≤
[∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ)
ψη3

] p
q∗
[∫

Ω

(δ + |wn|)
pq(1−γ)
p−q ψη3

]1− p
q∗

.

A simple calculation shows that pq(1−γ)
p−q = q∗ = [(p − 1)m∗]∗. Therefore,

recalling the choice of η3 and the fact that 0 ≤ ψ ≤ 1 in Ω, thanks to Lemma
2.2, from the previous inequality we finally deduce the result. �

Lemma 2.7. Assume that (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9) and
(2.10) with m = (p∗)′. Then, there exists η4 > 1 which depends only on ψ, N
and p, such that the sequence {|Dwn|pψη4} is bounded in L1(Ω).

Proof. We define
η4 = p(1 + η1),

where η1 is given by Lemma 2.2 above, and we choose wnψ
η4 as a test function

in (2.7). Arguing as in the first part of the proof of Lemma 2.2 (see (2.20)),
we obtain that∫

Ω

|Dwn|pψη4 ≤ C0

∫
Ω

|wn|pψη4−p + C1

∫
Ω

|f(x)||wn|ψη4 , (2.52)
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where C0 and C1 are positive constants that do not depend on n. Now, the
choice of η4 implies that

C0

∫
Ω

|wn|pψη4−p = C0 ‖wnψη1‖pLp(Ω) . (2.53)

Moreover, the use Hölder inequality and the fact that 0 ≤ ψ ≤ 1 in Ω lead to

C1

∫
Ω

|f(x)||wn|ψη4 ≤ C1‖fψ‖L(p∗)′ (Ω) ‖wnψ
η1‖Lp∗ (Ω) . (2.54)

Hence, from (2.52), (2.53) and (2.54) it follows that∫
Ω

|Dwn|pψη4 ≤ C0 ‖wnψη1‖pLp(Ω) + C1‖fψ‖L(p∗)′ (Ω) ‖wnψ
η1‖Lp∗(Ω) ,

which, thanks to Lemma 2.2, implies the result, since p∗ = [(p− 1)m∗]∗. �

2.3. Proof of Theorem 2.1

Let {wn} be the sequence of weak solutions of the approximate problems (2.7)
constructed above. Closely following the outline of the proof of Theorem 2.1
in [4], we can prove that there exists a weak solution w of (1.4) such that, up
to a subsequence, wn → w and Dwn → Dw a.e. in Ω. Therefore, the result
follows immediately by Lemmas 2.2, 2.4, 2.6 and 2.7 choosing η0 in a suitable
way.

3. Local regularity results for (1.11)

Following the main ideas of the previous section, here we study local regu-
larity properties of weak solutions to (1.11) with datum in L1(Ω).

Let f ∈ L1(Ω). We recall that a function u : Ω → R is a weak solution
of (1.11) if u satisfies

|a(·, u,Du)| ∈ L1
loc(Ω), B(·, Du) ∈ L1

loc(Ω), K(·, u) ∈ L1
loc(Ω),

and
∫

Ω

a(x, u,Du) ·Dϕ+

∫
Ω

B(x,Du)ϕ+

∫
Ω

K(x, u)ϕ =

∫
Ω

f(x)ϕ,

∀ϕ ∈ C∞c (Ω).

The existence of a weak solution u to (1.11) that satisfies (1.7) can
be deduced as in [4] assuming (1.8) and that b ∈ LN,1(Ω), because of the
coercivity properties of the zero order term K(x, u). On the other hand,
if k satisfies (1.14), these assumptions can be weakened, as shown in [10];
moreover, there is an improvement in the regularity properties of u and Du
with respect to (1.7).

In both cases the weak solution u is obtained as limit of a sequence of
regular solutions to the following family of approximate problems (n ∈ N):{

−div(a(x, un, Dun)) +Bn(x,Dun) +K(x, un) = fn(x) in Ω,

un = 0 on ∂Ω,
(3.1)
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where Bn and fn are defined in (2.4). Thanks to Theorem 2.1 in [13] and
Stampacchia’s L∞-estimates (see [21]), for every n ∈ N there exists a weak

solution un ∈W 1,p
0 (Ω) ∩ L∞(Ω) to (3.1) such that K(·, un) ∈ L1(Ω) and

∫
Ω

a(x, un, Dun) ·Dv +

∫
Ω

Bn(x,Dun)v +

∫
Ω

K(x, un)v =

∫
Ω

fn(x)v,

∀ v ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(3.2)
As already remarked in the previous section, by means of standard reg-

ularization techniques, assumptions (1.10) and (1.22) imply the following
conditions: 

∃ψ ∈W 1,∞(Ω), m > 1:

0 ≤ ψ ≤ 1 in Ω,

fψ ∈ Lm(Ω),

(3.3)

and 
∃ψ ∈W 1,∞(Ω), h > 0:

0 ≤ ψ ≤ 1 in Ω,

k−h ∈ L1(Ω).

(3.4)

Hence, Theorems 1.2 and 1.3 are a consequence of the following results.

Theorem 3.1. Assume (1.2), (1.3) with b ∈ Lr(Ω) for some p < r < N , (1.9),
(1.12)-(1.14) and (3.3). Assume also that λ > λ where λ is defined in (1.17).
Then, there exist a weak solution u to (1.11) and η̃0 > 1 which depends only
on ψ, h, m, N , p and r, such that{

uψη̃0 ∈W 1,p
0 (Ω) if λ ≥ λ,

uψη̃0 ∈W 1,q̃
0 (Ω) if λ < λ < λ,

and
K(·, u)|u|λ̃−λψη̃0 ∈ L1(Ω),

where λ, λ̃ and q̃ are defined in (1.18)-(1.20).

Theorem 3.2. Assume that (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9), (1.12),
(1.13) and (3.4). Assume also that λ > λ, where λ is as in (1.17) but with
r = N . Then, there exist a weak solution u to (1.4) and η̃1 > 1 which depends
only on ψ,N, p and s, such that

uψη̃1 ∈W 1,q
0 (Ω) ∀ 1 ≤ q < q̃1, K(·, u)ψη̃1 ∈ L1(Ω).

Moreover, if (3.3) is fulfilled, then there exists η̃2 > 1 which depends only on
ψ, h, m, N and p, such that{

uψη̃2 ∈W 1,p
0 (Ω) if λ ≥ λ,

uψη̃2 ∈W 1,q̃
0 (Ω) if λ < λ < λ,

and
K(·, u)|u|λ̃−λψη̃2 ∈ L1(Ω).

where λ, λ̃ and q̃ are as in (1.18)-(1.20) but with r = N .
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3.1. Local estimates on un and Dun

The following lemmas play the role of Lemmas 2.2, 2.4, 2.6 and 2.7 for the
problem (1.11).

Lemma 3.3. Assume (1.2), (1.3) with b ∈ Lr(Ω) for some p < r < N , (1.9),
(1.12)-(1.14) and (3.3). Assume also that λ > λ, where λ is defined in (1.17).
Then, there exists η̃0 > 1 which depends only on ψ, h, m, p and r, such that

the sequences
{
|Dun|p̃ψη̃0

}
and

{
K(·, un)|un|λ̃−λψη̃0

}
are bounded in L1(Ω),

where λ, λ̃ and q̃ are defined in (1.18)-(1.20) above, and

p̃ =

{
p if λ ≥ λ,
q̃ if λ < λ < λ.

(3.5)

Proof. We fix γ > 1
p′ , δ > 0, η > p and we choose

vδψ
η =

[
(δ + |un|)p(γ−1)+1 − δp(γ−1)+1

]
sign(un)ψη

as a test function in (3.2). Notice that γ > 1
p′ implies p(γ − 1) + 1 > 0. Since

D (vδψ
η) = [p(γ − 1) + 1]Dun(δ + |un|)p(γ−1)ψη + ηDψvδψ

η−1,

exploiting (1.2), (2.6) and (1.3), we obtain that

α[p(γ − 1) + 1]

∫
Ω

|Dun|p(δ + |un|)p(γ−1)ψη +

∫
Ω

K(x, un)vδψ
η

≤ βη‖|Dψ|‖L∞(Ω)

∫
Ω

|Dun|p−1|vδ|ψη−1 +

∫
Ω

|b(x)||Dun|p−1|vδ|ψη

+

∫
Ω

|f(x)||vδ|ψη. (3.6)

Thanks to Young inequality, the first and second integrals on the right-hand
side of (3.6) can be estimated by

α[p(γ − 1) + 1]

2p′

∫
Ω

|Dun|p(δ + |un|)p(γ−1)ψη

+
2p−1

(
βη‖|Dψ|‖L∞(Ω)

)p
p {α[p(γ − 1) + 1]}p−1

∫
Ω

(δ + |un|)pγψη−p,

and

α[p(γ − 1) + 1]

2p′

∫
Ω

|Dun|p(δ + |un|)p(γ−1)ψη

+
2p−1

p {α[p(γ − 1) + 1]}p−1

∫
Ω

|b(x)|p(δ + |un|)pγψη,
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respectively. Hence, from (3.6) we get∫
Ω

K(x, un)vδψ
η ≤ C0

∫
Ω

|Dun|p(δ + |un|)p(γ−1)ψη +

∫
Ω

K(x, un)vδψ
η

≤ C1

∫
Ω

(δ + |un|)pγψη−p + C2

∫
Ω

|b(x)|p(δ + |un|)pγψη

+

∫
Ω

|f(x)||vδ|ψη, (3.7)

which in turn, letting δ → 0 and applying dominate convergence Theorem,
implies that∫

Ω

|K(x, un)||un|p(γ−1)+1ψη

≤ C1

∫
Ω

|un|pγψη−p + C2

∫
Ω

|b(x)|p|un|pγψη

+

∫
Ω

|f(x)||un|p(γ−1)+1ψη, (3.8)

where C0 = α[p(γ−1)+1]
2p , C1 =

2p−1(βη‖|Dψ|‖L∞(Ω))
p

p{α[p(γ−1)+1]}p−1 and C2 = 2p−1

p{α[p(γ−1)+1]}p−1 .

Using Hölder inequality and (1.14), we have that

C3

∫
Ω

|un|pγψη−p ≤ C1|Ω|
p
r

∥∥|un|pγψη−p∥∥
L

r
r−p (Ω)

≤ C1|Ω|
p
r

∥∥k−h∥∥ r−p
(h+1)r

L1(Ω)

∥∥∥k|un| p(h+1)rγ
(r−p)h ψ

(h+1)r(η−p)
(r−p)h

∥∥∥ (r−p)h
(h+1)r

L1(Ω)
, (3.9)

C2

∫
Ω

|b(x)|p|un|pγψη ≤ C2‖b‖pLr(Ω)‖|un|
pγψη‖

L
r
r−p (Ω)

≤ C2‖b‖pLr(Ω)

∥∥k−h∥∥ r−p
(h+1)r

L1(Ω)

∥∥∥k|un| p(h+1)rγ
(r−p)h ψ

(h+1)rη
(r−p)h

∥∥∥ (r−p)h
(h+1)r

L1(Ω)
, (3.10)

and∫
Ω

|f(x)||un|p(γ−1)+1ψη ≤ ‖fψ‖Lm(Ω)

∥∥∥|un|p(γ−1)+1ψη−1
∥∥∥
Lm′ (Ω)

≤ ‖fψ‖Lm(Ω)

∥∥k−h∥∥ 1
(h+1)m′

L1(Ω)

∥∥∥k|un| [p(γ−1)+1](h+1)m′
h ψ

(h+1)m′(η−1)
h

∥∥∥ h
(h+1)m′

L1(Ω)
.

(3.11)

Then, we choose γ and η such that

λ+ p(γ − 1) + 1 ≥ max

{
p(h+ 1)rγ

(r − p)h
,

[p(γ − 1) + 1](h+ 1)m′

h

}
,

η ≤ min

{
(h+ 1)r(η − p)

(r − p)h
,

(h+ 1)m′(η − 1)

h

}
.
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For this purpose, we have to impose that λ > λ, 1
p′ < γ ≤ γ̃ and η ≥ η̃0,

where

γ̃ = min

{
(λ− p+ 1)h(r − p)

p(ph+ r)
,
λh(m− 1) + (p− 1)(h+m)

p(h+m)

}
, (3.12)

η̃0 = max

{
p(h+ 1)r

ph+ r
,

(h+ 1)m

h+m

}
. (3.13)

Thus, we apply Young inequality in (3.9)-(3.11). Putting together the esti-
mates obtained in this way with (3.8) and using (1.13) and the fact that
0 ≤ ψ ≤ 1 in Ω, we deduce that∥∥∥K(·, un)|un|p(γ−1)+1ψη̃0

∥∥∥
L1(Ω)

≤ C3 ∀ 1

p′
< γ ≤ γ̃, (3.14)

where C3 is a positive constant not depending on n. Since λ̃ = λ+p(γ̃−1)+1,
in particular, we deduce that∥∥∥K(·, un)|un|λ̃−λψη̃0

∥∥∥
L1(Ω)

≤ C3. (3.15)

Moreover, going back to estimate (3.7), we also deduce that the quantity∫
Ω

|Dwn|p(δ + |wn|)p(γ−1)

is uniformly bounded with respect to n.
Now, we observe that, if λ ≥ λ, then γ̃ ≥ 1 and, choosing γ = 1, we get

the result with p̃ = p. Otherwise, if λ < λ < λ, then 1
p′ < γ̃ < 1. In this case,

for any fixed 1 ≤ q < p, using Hölder inequality, we obtain that∫
Ω

|Dun|qψη̃0 =

∫
Ω

|Dwn|q

(δ + |wn|)q(1−γ̃)
(δ + |wn|)q(1−γ̃)ψη̃0

≤
[∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ̃)

] q
p ∥∥∥|un|q(1−γ̃)ψη̃0

∥∥∥
L

p
p−q (Ω)

≤
[∫

Ω

|Dwn|p

(δ + |wn|)p(1−γ̃)

] q
p ∥∥k−h∥∥ p−q

p(h+1)

L1(Ω)

∥∥∥k|un| pq(h+1)(1−γ̃)
(p−q)h ψη̃0

∥∥∥ (p−q)h
p(h+1)

L1(Ω)
.

Thus, the right-hand side of the previous inequality is uniformly bounded

with respect to n if pq(h+1)(1−γ̃)
(p−q)h = λ̃, that is,

q =
pλ̃h

(λ+ 1)(h+ 1)− λ̃
= min

{
(λ− p+ 1)hr

(λ+ 1)h+ r
,

pλhm

(λ+ 1)h+m

}
.

�

Lemma 3.4. Assume (1.2), (1.3) with b ∈ LN,1(Ω), (1.8), (1.9), (1.12), (1.13)
and (3.4). Assume also that λ > λ, where λ is as in (1.17) but with r = N .
Then, there exists η̃1 > 1 depending only on ψ, h, N and p, such that the
sequences

{
|Dun|q̃1ψη̃1

}
and

{
K(·, un)ψη̃1

}
are bounded in L1(Ω), where q̃1

is defined in (1.21). Moreover, if (3.3) is fulfilled, then there exists η̃2 > 1
depending only on ψ, h, m, N and p, such that the sequences

{
|Dun|p̃ψη̃2

}
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and
{
K(·, un)|un|λ̃−λψη̃2

}
are bounded in L1(Ω), where λ, λ̃, q̃ and p̃ are as

in (1.18)-(1.20) and (3.5) but with r = N .

Proof. The proof is divided into two steps.

STEP I. We fix 0 < θ < 1
p′ , η > p+ (r−p)h

(h+1)r and we choose

vψη =

[
1− 1

(1 + |un|)p(1−θ)−1

]
sign(un)ψη

as a test function in (3.2). Notice that p(1− θ)− 1 > 0 if and only if θ < 1
p′ .

Since

D (vψη) = [p(1− θ)− 1]
Dun

(1 + |un|)p(1−θ)
ψη + ηDψvψη−1,

exploiting (1.2), (2.6), (1.3) and the fact that |v| ≤ 1, |v|ψη ≤ 1 a.e. in Ω, we
obtain that

α[p(1− θ)− 1]

∫
Ω

|Dun|p

(1 + |un|)p(1−θ)
ψη +

∫
Ω

K(x, un)vψη

≤ βη‖|Dψ|‖L∞(Ω)

∫
Ω

|Dun|p−1ψη−1 +

∫
Ω

|b(x)||Dun|p−1ψη + ‖f‖L1(Ω),

which, using (1.13), implies that

C0

∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣p ψη +

∥∥k|un|λψη∥∥L1(Ω)

≤ C1

∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣p−1

(1 + |un|)(p−1)(1−θ)ψη−1

+ C2

∫
Ω

|b(x)|
∣∣D [(1 + |un|)θ − 1

]
sign(un)

∣∣p−1
(1 + |un|)(p−1)(1−θ)ψη

+
∥∥∥k|un|λ−p(1−θ)+1ψη

∥∥∥
L1(Ω)

+ ‖f‖L1(Ω), (3.16)

where C0 = α[p(1−θ)−1]
θp , C1 =

βη‖|Dψ|‖L∞(Ω)

θp−1 and C2 = 1
θp−1 . Thanks to

Young inequality, the right-hand side of (3.16) can be estimated by

C0

p′

∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣p ψη

+
2p−1Cp1
pCp−1

0

∫
Ω

(1+|un|)p(p−1)(1−θ)ψη−p+
2p−1Cp2
pCp−1

0

∫
Ω

|b(x)|p(1+|un|)p(p−1)(1−θ)ψη

+
1

2

∥∥k|un|λψη∥∥L1(Ω)
+ c3,
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where C3 is a positive constant that does not depend on n. Hence, from (3.16)
we get

C4

∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣p ψη +

1

2

∥∥k|un|λψη∥∥L1(Ω)

≤ C5

∫
Ω

(1 + |un|)p(p−1)(1−θ)ψη−p

+ C6

∫
Ω

|b(x)|p(1 + |un|)p(p−1)(1−θ)ψη + C3, (3.17)

where C4 = C0

p , C5 =
2p−1Cp1
pCp−1

0

and C6 =
2p−1Cp2
pCp−1

0

. Using Hölder inequality and

(1.14), we have that

C5

∫
Ω

(1+|un|)p(p−1)(1−θ)ψη−p ≤ C5|Ω|
p
N

∥∥∥(1 + |un|)p(p−1)(1−θ)ψη−p
∥∥∥
L

N
N−p (Ω)

≤ C5|Ω|
p
N

∥∥(k−1ψ)h
∥∥ N−p

(h+1)N

L1(Ω)

×
∥∥∥k(1 + |un|)

p(p−1)(h+1)N(1−θ)
h(N−p) ψ

(h+1)N(η−p)
h(N−p)

−1
∥∥∥h(N−p)

(h+1)N

L1(Ω)
, (3.18)

and

C6

∫
Ω

|b(x)|p(1+|un|)p(p−1)(1−θ)ψη ≤ C6‖b‖pLN (Ω)
‖(1 + |un|)pγψη‖

L
N
N−p (Ω)

≤ C6‖b‖pLN (Ω)

∥∥(k−1ψ)h
∥∥ N−p

(h+1)N

L1(Ω)

×
∥∥∥k(1 + |un|)

p(p−1)(h+1)N(1−θ)
h(N−p) ψ

(h+1)Nη
h(N−p)

−1
∥∥∥h(N−p)

(h+1)N

L1(Ω)
. (3.19)

Then, we choose θ and η such that

p(p− 1)(h+ 1)N(1− θ)
h(N − p)

≤ λ,

(h+ 1)N(η − p)
h(N − p)

− 1 ≥ η.

For this purpose, we have to impose that λ > λ, θ̃ ≤ θ < 1
p′ and η ≥ η̃1,

where λ is as in (1.17) but with r = N and

θ̃ = 1− (N − p)λh
p(p− 1)(h+ 1)N

,

η̃1 =
[(p+ 1)N − p]h+ pN

ph+N
.

Thus, we apply Young inequality in (3.18) and (3.19). Putting together the
estimates obtained in this way with (3.17) and using the fact that 0 ≤ ψ ≤ 1
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in Ω, we deduce that∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣p ψη̃1 +

∥∥k|un|λψη̃1
∥∥
L1(Ω)

≤ C7 ∀ θ̃ ≤ θ < 1

p′
. (3.20)

where C7 is a positive constant which not depending on n.
Now, for any fixed 1 ≤ q < p, using Hölder inequality, (1.14) and (3.20),

we obtain that∫
Ω

|Dun|qψη̃1 =
1

θq

∫
Ω

∣∣D [(1 + |un|)θ − 1
]∣∣q (1 + |un|)q(1−θ)ψη̃1

≤ C
q
p

7

θq

∥∥∥(1 + |un|)q(1−θ)ψη̃1

∥∥∥
L

p
p−q (Ω)

≤ C
q
p

7

θq
∥∥(k−1ψ)h

∥∥ p−q
p(h+1)

L1(Ω)

∥∥∥k(1 + |un|)
pq(h+1)(1−θ)

(p−q)h ψη̃1

∥∥∥ (p−q)h
p(h+1)

L1(Ω)
.

Thanks to (3.20), the right-hand side of the previous inequality is uniformly

bounded with respect to n if pq(h+1)(1−θ)
(p−q)h ≤ λ, that is,

q ≤ pλh

[λ+ p(1− θ)]h+ p(1− θ)
. (3.21)

Hence, for any 1 ≤ q < q̃1 where q̃1 is defined in (1.21), we can choose

θ̃ ≤ θ < 1
p′ sufficiently close to 1

p′ in such a way that (3.21) is fulfilled.

STEP II. Assume (2.10). Arguing as in the proof of Lemma 3.3, we
deduce that for every γ > 1

p′

C8

∫
Ω

|Dun|p(δ + |un|)p(γ−1)ψη +

∫
Ω

|K(x, un)||un|p(γ−1)+1ψη

≤ C9

∫
Ω

(δ + |un|)pγψη−p + C10

∫
Ω

|b(x)|p(δ + |un|)pγψη

+

∫
Ω

|f(x)|(δ + |un|)p(γ−1)+1ψη. (3.22)

Using Hölder inequality, we have that

C9

∫
Ω

(δ + |un|)pγψη−p ≤ C9|Ω|
p
N

∥∥(δ + |un|)pγψη−p
∥∥
L

N
N−p (Ω)

≤ C9|Ω|
p
N

∥∥(k−1ψ)h
∥∥ N−p

(h+1)N

L1(Ω)

∥∥∥k|un| p(h+1)Nγ
(N−p)h ψ

(h+1)N(η−p)
(N−p)h

−1
∥∥∥ (N−p)h

(h+1)N

L1(Ω)
, (3.23)

C10

∫
Ω

|b(x)|p(δ + |un|)pγψη ≤ C10‖b‖pLN (Ω)
‖(δ + |un|)pγψη‖

L
N
N−p (Ω)

≤ C10‖b‖pLN (Ω)

∥∥(k−1ψ)h
∥∥ N−p

(h+1)N

L1(Ω)

∥∥∥k|un| p(h+1)Nγ
h(N−p) ψ

(h+1)Nη
(N−p)h

−1
∥∥∥ (N−p)h

(h+1)N

L1(Ω)
, (3.24)
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and∫
Ω

|f(x)||un|p(γ−1)+1ψη ≤ ‖fψ‖Lm(Ω)

∥∥∥|un|p(γ−1)+1ψη−1
∥∥∥
Lm′ (Ω)

≤ ‖fψ‖Lm(Ω)

∥∥(k−1ψ)h
∥∥ 1

(h+1)m′

L1(Ω)

×
∥∥∥k|un| [p(γ−1)+1](h+1)m′

h ψ
(h+1)m′(η−1)

h −1
∥∥∥ h

(h+1)m′

L1(Ω)
. (3.25)

Then, we choose γ and η such that

λ+ p(γ − 1) + 1 ≥ max

{
p(h+ 1)Nγ

(N − p)h
,

[p(γ − 1) + 1](h+ 1)m′

h

}
,

η ≤ min

{
(h+ 1)N(η − p)

h(N − p)
− 1,

(h+ 1)m′(η − 1)

h
− 1

}
Hence, we impose that λ > λ, 1

p′ < γ ≤ γ̃ and η ≥ η̃2, where γ̃ is as in (3.12)

but with with r = N , and

η̃2 = max

{
[(p+ 1)N − p]h+ pN

ph+N
,

(h+ 1)m

h+m

}
. (3.26)

The result now follows proceeding as in the proof of Lemma 3.3. �

3.2. Proof of Theorems 3.1 and 3.2

Proof of Theorem 3.1. Let {un} be the sequence of weak solutions of approx-
imate problems (3.1) constructed above. The result is an immediate conse-
quence of Lemma 3.3, since, arguing as in the proof of Theorem 2.3 in [10],
we can prove that there exists a weak solution u of (1.11) such that, up to a
subsequence, un → u and Dun → Du a.e. in Ω. �

Proof of Theorem 3.2. Let {un} be the sequence of weak solutions of approx-
imate problems (3.1) constructed above. Closely following the outline of the
proof of Theorem 2.3 in [4], we can prove that{

{un} is bounded in M
p∗
p′ (Ω),

{|Dun|} is bounded in MN ′(p−1)(Ω).

In order to perform the limit process and deduce the existence of a weak
solution u of (1.11) that satisfies (1.5), we just have to prove that the sequence
{K(·, un)} is uniformly integrable on Ω, since the other terms can be treated
as in the proof of Theorem 2.3 in [4].

We fix σ ≥ 0, τ > 0 and we choose

vτ =
Tτ (Gσ(un))

τ

as a test function in (2.7), where Tτ and Gσ are defined in (2.5) and (2.33),
respectively. Notice that

|vτ | ≤ χAn,σ a.e. in Ω, (3.27)
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where
An,σ = {x ∈ Ω: |un(x)| > σ}, (3.28)

and, for any subset U ⊂ RN , χU denotes the characteristic function of U . By
(1.2), (2.6) and (1.3), we obtain that

α

τ
‖|DTτ [Gσ(un)]|‖pLp(Ω) + ‖K(·, un)vτ‖L1(Ω)

≤
∫

Ω

|b(x)||Dun|p−1|vτ |+
∫

Ω

|f(x)||vτ |.

Dropping the positive term coming from the principal part and using (3.27),
we get

‖K(·, un)vτ‖L1(An,σ) ≤
∫
An,σ

|b(x)||Dun|p−1 + ‖f‖L1(An,σ). (3.29)

By the generalized Hölder inequality, we have that∫
An,h

|b(x)||Dun|p−1 ≤ ‖b‖LN,1(An,σ)

∥∥|Dun|p−1
∥∥
LN′,∞(Ω)

≤ C0‖b‖LN,1(An,σ),

where C0 is a positive constant that does not depend on n. Hence, from (3.29)
we deduce that

‖K(·, un)vτ‖L1(An,σ) ≤ C0‖b‖LN,1(An,σ) + ‖f‖L1(An,σ). (3.30)

We observe that vτ → χAn,σ a.e. in Ω, as τ → 0. Therefore, letting τ → 0
and using Fatou Lemma, estimate (3.30) yields

‖K(·, un)‖L1(An,σ) ≤ C0‖b‖LN,1(An,σ) + ‖f‖L1(An,σ). (3.31)

On the other hand, for any fixed measurable subset U ⊂ Ω and σ > 0,
using assumption (1.12), we have that

‖K(·, un)‖L1(U) ≤ ‖K(·, un)‖L1(U∩{|un|≤σ}) + ‖K(·, un)‖L1(An,σ)

≤

∥∥∥∥∥ sup
|τ |≤σ

|K(·, τ)|

∥∥∥∥∥
L1(U)

+ ‖K(·, un)‖L1(An,σ).

which, together with (3.31), implies that

‖K(·, un)‖L1(U) ≤

∥∥∥∥∥ sup
|τ |≤σ

|K(·, τ)|

∥∥∥∥∥
L1(U)

+ C0‖b‖LN,1(An,σ) + ‖f‖L1(An,σ).

(3.32)
Since |An,σ| → 0 uniformly with respect to n, as σ →∞, for every ε > 0 we
can choose σ sufficiently large in such a way that

C0‖b‖LN,1(An,σ) + ‖f‖L1(An,σ) ≤ ε ∀n ∈ N.
Therefore, from (3.32) it follows that

lim
|U |→0

‖K(·, un)‖L1(U) = 0 uniformly with respect to n.

Now, we can apply Lemma 3.4 and we get the result. �
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