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Abstract

Uncertainty analysis of large coupled systems, such as those formed by con-
crete arch dams, their reservoirs and surrounding foundations, is typically
addressed with Monte Carlo simulations in literature. Although it is a ro-
bust method, the high computational effort required makes it impractical for
everyday engineering. This research investigated the applicability of the so
called metamodels, specifically of the Response Surface Method, as a more
efficient alternative. The goal was to develop polynomial surrogate models
that could estimate diverse structural responses with acceptable precision, al-
lowing for uncertainty quantification at a much cheaper computational cost.
For that end, two case studies located in Italian territory were taken into con-
sideration, namely the Lumiei dam (cupola) and the Pertusillo dam (arch-
gravity). Starting from original documentation, linear and non linear numeri-
cal models of both of them were developed. Cantilever joints were introduced
in the non linear models, located in their real positions, and modelled with
a hard-contact formulation. Material and rock foundation were considered
as linear elastic materials. Dynamic interaction between the main structure
and the reservoir was accounted for with the aid of acoustic finite elements.
Their use and precision were evaluated in detail, comparing the method with
classic approaches such as those of Westergaard and Zangar. Five Design
of experiment techniques were adopted, and the resulting metamodels pre-
cision/ computational cost ratio analyzed. Finally, it was concluded that
metamodels are a valid an efficient alternative for the task proposed, and
furthermore can be used in other applied sciences as well.

Keywords: Arch dams, uncertainty, metamodels.
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Nomenclature

g Gravitational acceleration.

t Time.

ρ Water density.

k Water bulk modulus.

P Water pressure.

Pdyn Hydrodynamic pressure in excess over hydrostatic pressure.

Psta Hydrostatic pressure.

H Height of the dam.

u Vector of displacements along the x coordinate.

v Vector of displacements along the y coordinate.

x Horizontal Cartesian coordinate.

y Vertical Cartesian coordinate.

c Speed of sound in the water.

Q Resultant hydrodynamic thrust.

M Resultant hydrodynamic moment.

S Amplification factor of the resultant hydrodynamic thrust over the dam.

K Amplification factor of the hydrodynamic pressure at the lower point of
the dam.

Ec Nominal elastic modulus of concrete.
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Ecm Average elastic modulus of concrete.

fck Characteristic compression strength of concrete.

Rck Characteristic cubic compression strength of concrete.

fctm Average tensile strength of concrete.

ρc Concrete density.

αc Thermal expansion coefficient of concrete.

νc Poisson’s ratio of concrete.

h Dimensionless elevation as a fraction of the dam height.

ω Imposed angular vibration frequency.

f Imposed vibration frequency.

T Imposed vibration period.

α Imposed vibration amplitude as portion of g.

fs Resonant frequency of empty dam.

ωw Angular resonant frequency of the reservoir.

Ωw Dimensionless vibration frequency as portion of fw.

Ωs Dimensionless vibration frequency as portion of fs.

Le Length of the reservoir.

He Depth of the reservoir.

qs Acoustic impedance of reservoir sediments.

αs Wave reflection coefficient of reservoir sediments.

ρs Reservoir sediments density.

cs Speed of sound in the reservoir sediments.

kd Seismic coefficient.

φ Fluid velocity potential.

b Size of the water mass that influences dam behavior.



Q0 Hydrodynamic thrust at the at the lower point of the dam.

M0 Hydrodynamic moment at the at the lower point of the dam.

Cz Amplification factor of pressures in the theory of Zangar.

Cm Tilt coefficient in the theory of Zangar.

θ Inclination angle of the dam respect to the vertical.
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Introduction

This document describes the process of a research work carried on as part of
a Structural PhD course at the Sapienza University of Rome.

It is articulated in the following way: in Chapter 1, the problem of un-
certainty valuation is described, its antecedents and the difficulties involved.
The state of the art and international regulations related to dams assess-
ment are carefully reviewed. Main difficulties related to dynamic simulation
of large coupled systems are also revised. In Chapter 2 the methodology
of the procedures followed, the applicability of the proposed method and
its limitations are presented. In Chapter 3 the obtained results are reported
and the reliability of metamodels is discussed, as well as the effect of different
factors associated to the problem under study.

Two case studies were taken corresponding to two different dam typolo-
gies, Lumiei (arc dam) and Pertusillo (arc-gravity dam), both located in
Italian territory. After developing numerical models for both, the Response
Surface Method is successively applied to them in order to verify its adequacy
and observe differences in their structural behaviour.

This research is part of a structural monitoring scheme for large dams,
focusing on the dynamics of dam-reservoir systems. The aim is to develop a
reliable and precise method that allows dealing with more complex problems
arising from non-linear behaviour and aging of this type of structures.

I
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Research Motivation

Dams have an important role in human society fulfilling a variety of functions,
such as energy generation, flood regulation, water consumption and irriga-
tion. According to the International Commision of Large Dams, ICOLD,
over 45,000 large dams have been built worldwide [1]. The Italian normative
for dams and water holding structures, “Norme tecniche per la progettazione
e la costruzione degli sbarramenti di ritenuta” (NTD14) [2], defines “Large
Dams” as those of at least 15 m height or 1× 106 m3 of reservoir volume.
There are over 500 of them on Italian territory, most of which were designed
and built more than 50 years ago using empirical formulas and static deter-
ministic analysis, applying the structural knowledge of the time. Given the
severe operating conditions, both the main dikes and their complementary
facilities are subjected to a process of deterioration that must be properly
monitored. A failure event of a dam of significant size, entails extensive eco-
nomic and life losses, as well as ecosystem damage. In that sense, a National
Law issued in 2004 [3] establishes that the structural performance of all large
dams must be examined in the light of the new seismic territory classification.

Structural analysis of water holding structures is a complex task. Through-
out their long lifespan, they are subjected to a wide range of chemical and
physical phenomena that may occur simultaneously. For this reason, tra-
ditionally dikes performance assessment is accomplish through numerical
multhi-physics deterministic analysis. Extensive research related to the effi-
ciency and precision of these techniques has been carried out in the structural
engineering field in recent years. Particularly, dams response is highly influ-
enced by non-linear mechanisms that arise from geometric discontinuities and
material behaviour. In top of that, both the environmental actions and the
structure characteristics themselves can change over time. This variability
have been accounted for trough reliability analysis, using a large number of
deterministic simulations to estimate the probability of failure of the struc-
ture. However, the computational cost associated with this approach is so
high that makes it practically impossible for everyday engineering.

This thesis focuses on the applicability of an alternative approach for the
evaluation of uncertainties related to structural assessment of arch dams.
The concept of Metamodeling have been introduced on the context of proba-
bilistic engineering design. Applied to the topic under study, the basic idea is
to establish a mathematical structure that can estimate the responses of the
structure with an acceptable precision, employing a much lower computa-
tional effort than the finite element technique would. Once this is achieved,
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probabilistic analysis can be performed on the metamodel instead of the
original numerical model, thus reducing by several orders of magnitude the
amount of time needed to asses the reliability of dams.

The procedure for validating metamodels requires a high number of de-
terministic simulations. This leads to the second main objective of this re-
search, namely the study of critical aspects related to simulation of large
water-structure coupled systems, with the goal of developing numerical mod-
els of optimized precision/ computational cost ratio, which are essential in
the present investigation.

To the best of the authors knowledge, there is only one previous research
focused on the applicability of mathematical metamodels for uncertainties
valuation in the dam field. Hariri-Ardebili and Amin [4] analyzed a gravity
dam with linear behaviour, using surface metamodels and considered the
uncertainties distribution of several material parameters and characteristic
values of seismic ground motions. However, there are other examples of the
use of the metamodeling technique for civil structures in literature. These
previous work will be referenced to for the problem under study.
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1. State of the art

1.1 Uncertainties in Dam Engineering

In this section, basic concepts relevant to the subject under study are pre-
sented as introduction to the state of the art. Most of the information pre-
sented is extracted from the book [5] dedicated to Probabilistic Design.

Uncertainty refers to imperfect and/or unknown information, related
both to input and output data of a given system. In the Structural Engi-
neering field, input is conformed by all the external and internal phenomena
(known also as stressors) that can affect the output data, i.e. dam response.
There are 2 main sources of uncertainty:

• Aleatory or stochastic uncertainty, linked to the intrinsic random-
ness of nature processes. E.g.: Earthquakes events (intensity, duration
time, return period), hydrological events (rain intensity, return periods,
run-off coefficients), temperature variation, etc. Aleatory uncertainty
is irreducible.

• Epistemic uncertainty, originated from the lack of information about
the system, given that characterization processes are imperfect (mea-
surements, laboratory tests). E.g.: Material properties, geometry of
the structure, joints positions, etc. Epistemic uncertain can be reduced,
acquiring more knowledge and collecting more data.

Model uncertainty, is an special kind of epistemic uncertainty, as-
sociated to the use of mathematical models to simulate physical phe-
nomenon. E.g.: Validity of assumptions, numerical approximations,
precision of CPU round calculations, etc.

It is known that uncertainty cannot be accounted for in a comprehen-
sive way through classical deterministic analysis, as they only provide the

Rodrigo Rivero Page 3
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response of the structure for a unique set of material parameters and stres-
sors. For this reason, concepts and techniques that were originally developed
in the context of Probabilistic Engineering Design will be used for uncer-
tainty modelling of existing dams. These ideas will be described briefly in
the following paragraphs.

1.1.1 Basics of random variables theory

g(X)X Z

Fig. 1.1: Generic engineering system

Let X be a vector of input variables, and Z a vector of output variables
of a given system, represented in Figure 1.1. Its performance function g(X),
transforms X into Z.

In the context of the problem under study, X can contain both stressors
and model parameters (temperature, module of Young of concrete, water
level, etc.), and Z the responses of the structure, which from now on will
be referred as Engineering Demand Parameters (EDPs). In general, the
performance function is not known as it does not have a closed form formula,
given the complex behavior of large coupled systems under multi-physics
phenomena. For this reason, the numerical simulation techniques typically
used are described as black box models.

According to the theory of functions of random variables, any g(X) that
accepts random input variables will produce random output variables as well.
The task of Uncertainty modeling is to quantify the uncertainty of the perfor-
mance function of an engineering system, given the uncertainty of its inputs.
In practice, this translates into determination of the probabilistic character-
istics of Z provided those of X.

Two fundamental concepts associated to probabilistic frameworks are
Population and Sample. The former is defined as any entire collection of
objects of interest and which data may be collected from. It is also known
as a universal set. Because often a population is too large to study in its
entirety, usually a group of units is selected from it and used to draw con-
clusions about the original set. This is called a sample. The fundamental
requirement for sampling is that every group extracted should be represen-
tative of the general population. This is generally best achieved by random
sampling.
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The probabilistic characteristics of a population can be described by the
following functions:

• Probability density function (PDF).

• Cumulative distribution function (CDF).

The PDF describes the chance property of a random variable. If the PDF
of a random variable X is represented with f , then f(x)dx is the probability
of the value of X to be located in the interval [x, x + dx]. Probability of X
over a finite interval [a, b] can be determined by:

P (a ≤ X ≤ b) =

∫ b

a

f(x)dx (1.1)

Also, a PDF of a continuous variable satisfies the condition∫ ∞
−∞

f(x)dx = 1 (1.2)

which reflects the capability of X of taking any real value.

The CDF, represented here with F , is defined as the probability of X of
being less than or equal to a constant a. So:

F (x) = P (X ≤ a) =

∫ a

−∞
f(x)dx (1.3)

The relationship between PDF and CDF is defined by:

f(x) =
d[F (x)]

dx
(1.4)

For convenience, usually moments of PDF and CDF are use for describing
a variable distribution. The most common are mean and variance.

Mean is defined as the first moment measured about the origin:

m̄X =

∫ ∞
−∞

xf(x)dx (1.5)
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if there are n observations (samples) of the random variableX, (x1, x2, ..., xn),
the sample mean is the average of the observations:

X̄ =
1

n

n∑
i=1

xi (1.6)

As the sample size increases, the sample mean X̄i converges to the popu-
lation mean m̄X . This implies that the sample mean can be used to estimate
the population mean.

Variance is the second moment about the mean. It indicates how the
individual measurements scatter around it. It is defined as:

s̄2 =

∫ ∞
−∞

(x− m̄X)2f(x)dx (1.7)

when there are n observations, the variance of sample is:

s2 =
1

n− 1

n∑
i=1

(xi − X̄)2 (1.8)

Again, as the value of sample variance will converge to population vari-
ance when n approaches infinity. The square root, known as the Standard
deviation, is widely used as its interpretation is straight forward, since it has
the same unit of measure as the variable.

Furthermore, the median of a population is the point that divides the
distribution of the random variable in half. This implies that half of the
measurements in a population will have values that are equal to or larger
than the median. At the median, the CDF of a variable is 0.5.

A percentile value Xa is defined as a value below which probability of the
values less than Xa of the random variable is a. I.e.:

P (X ≤ Xa) = F (Xa) =

∫ Xa

−∞
f(x)dx = a (1.9)
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1.1.2 Functions of several random variables

When two or more random variables are being considered simultaneously,
their joint behavior is determined by their joint probability distribution func-
tion.

Let X and Y be two random independent variables. The joint CDF of
both is defined as:

FX,Y (x, y) = P (X ≤ x, Y ≤ y) =

∫ x

−∞

∫ y

−∞
fX,Y (x, y)dxdy (1.10)

And the joint PDF:

fX,Y (x, y) =
∂FX,Y (x, y)

∂x∂y
(1.11)

If the joint PDF is known, the individual PDFs, called marginal PDFs,
can be obtained:

fX(x) =

∫ ∞
−∞

fX,Y (x, y)dy (1.12)

and,

fY (y) =

∫ ∞
−∞

fX,Y (x, y)dx (1.13)

Similar to the variance of a single random variable, the covariance of two
random variables, denoted as Cov(X, Y ), is the second moment about their
respective means m̄X and m̄Y .

Cov(X, Y ) =

∫ ∞
−∞

∫ ∞
−∞

(X − m̄X)(Y − m̄Y )fX,Y (x,y)dxdy (1.14)

The covariance provides a measure of how the random variables are lin-
early correlated, and it hence indicates the linear relationship between them.
The derived dimensionless quantity correlation coefficient is given by:

rX,Y =
Cov(X, Y )

sXsY
(1.15)
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Values of rX,Y range between −1 and 1, with following interpretation:

• rX,Y = 0 there is no linear relationship between X and Y .

• 0 < rX,Y < 1 there is a positive relationship between X and Y , when
X increases, so does Y .

• −1 < rX,Y < 0 there is a negative relationship between X and Y .

• rX,Y = 1 there is a perfect positive linear relationship between X and
Y , Y increases linearly with X.

• rX,Y = −1 there is a perfect negative linear relationship between X
and Y , Y decreases linearly with X.

Considering a function of several random variables, Z = g(X1, X2, ..., Xn),
if the joint PDF ofX = (X1, X2, ..., Xn) is fX1,X2,...,Xn(x1, x2, ..., xn), then the
CDF of g is given by:

FZ(z) = P (Z ≤ z) =

∫ x1+dx1

x1

...

∫ xn+dxn

xn

fX1,X2,...,Xn(x1, x2, ..., xn)dx1dx2...dxn

(1.16)

Additionally, if all random variables are independent,

fX1,X2,...,Xn =
n∏

i=1

fXi
(xi) (1.17)

Replacing the independent variables X1, X2, ..., XN in Equation 1.16, the
complete CDF of the performance function can be obtained, and from it
other probabilistic characteristics. For a general non-linear function g(X),
the integration boundary is non-linear as well. Given that multidimensional
integration is involved, it is in general very difficult and often impossible to
use the above equation to obtain the CDF of the response variable. In the
context of this research, the performance function (Finite Element Analysis)
is a black box and a closed form of g(X) is not available.

Rodrigo Rivero Page 8



Sapienza University of Rome

1.1.3 Approximate probability integration

As explained on the previous section, the primary task of Uncertainty anal-
ysis is to find the probabilistic characteristics of the output responses, or
EDPs, given those of the input variables. Because direct integration of the
jointed CDF equation is not possible in general, numerical approximation
methods have been developed. There are three categories of them.

The first originated from structural reliability analysis. In the design
context, Reliability is the probability of a product performing its intended
function over its period of usage, and under specified operating conditions.
In the structural context, it is defined as the probability of a structure to not
exceed a defined Limit State (LS) of performance. When the performance
function g(X) reaches certain threshold, the state of the structure changes,
from one LS to another. If this threshold is defined as LSi, then Z = LSi

divides the random variable space into safe and failure (or unsafe) regions.
Because of this, performance function is also called a limit-state function.
For convenience, a threshold of zero is usually used. In that case, the limit
state function becomes g(X)− LSi.

Then, Reliability is expressed by:

R = P (g(X)− LSi) ≤ 0) (1.18)

and the Probability of failure:

pf = 1−R = P (g(X)− LSi) > 0) (1.19)

Two of the most commonly used methods for approximating the proba-
bilistic integral are the First Order Reliability Method and the Second Order
Reliability Method. They operate simplifying the performance function and
transforming the integration boundary, thus reducing the difficulty of straight
integration. Nevertheless, this methods are not applicable for the problem
under study in this research, since g(X) is not known.
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1.1.4 Monte Carlo Simulation

The second category corresponds to the Monte Carlo Simulation (MC), which
is a widely used numerical scheme. The process involves performing random
sampling of the input variables, according to their distributions, and conduct-
ing a large number of experiments on them. After the outputs are observed,
conclusions about Z = g(X) can be drawn based on statistical inference.
Three steps are required in the process:

1. Sampling random input.

2. Evaluating model input.

3. Statistical analysis on model output.

The purpose on sampling in the input random variables X is to represent
distributions of the of input CDFs. There are two steps involved for this
purpose:

1. Generation of random variables that are uniformly distributed between
0 and 1. Normally this is performed with computer algorithms. Vari-
ables generated in this way are called pseudo-random numbers.

2. Transforming the samples of the previous step into values of random
variables Xi that follow given distributions fXi

(xi). This is a numerical
transformation.

In the context of this research, evaluation of the sampled inputs are to
be carried out through finite element simulations. Assuming that there are
N samples, simulations yields N deterministic points of Z.

The final step is the extraction of probabilistic information of output
variables.

The mean:

Z̄i =
1

N

N∑
i=1

zi (1.20)

The variance:

s2z =
1

N − 1

N∑
i=1

(zi − Z̄)2 (1.21)
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If failure is defined by the event g ≥ 0, the probability of failure is:

pf =

∫ x+dx

x

fX(x)dx (1.22)

where X encloses all the input variables X1, X2, ..., Xn and x contains
the corresponding space variables x1, x2, ..., xn.

The equation can be rewritten as

pf =

∫ ∞
−∞

I(x)fX(x)dx (1.23)

where I is an indicator function, defined as

I(X) =

{
1, if g(x) > 0

0, otherwise
(1.24)

According to 1.5, the integral of the right side of 1.23 is equal to the
expected value or average of I(X). Therefore, pf can be estimated by the
average value of I(X):

pf ≈ Ī(X) =
1

N

N∑
i=1

I(X) =
Nf

N
(1.25)

where Nf is the number of samples that have performance function less
than or equal to zero, i.e. g > 0.

Reliability can be estimated by

R = 1− pf =
N −Nf

N
(1.26)

Similarly to the calculation of pf , CDF is given by:

FZ(z) = P (g ≤ z) =
1

N

N∑
i=1

T (xi) (1.27)
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where:

T (X) =

{
1, if g(x) ≤ z

0, otherwise
(1.28)

PDF can be obtained by numerical differentiation of CDF.

Accuracy of Monte Carlo Simulation depends on the number of simu-
lations N. The higher the number of simulations is, the more accurate the
estimate will be. As the number of simulations N approaches infinity, the
solution of Monte Carlo simulation will converge to the true probability that
is under estimation. The percentage error of the estimate of the probability
failure is given by:

e = u1−a/2

√
(1− prf )

Nprf
(1.29)

where prf is the true value of the probability of failure. The equation gives
the error under the (1−a) confidence. It indicates that there is a probability
of (1− a) for the prf to be in the range pf ± epf .

Experience indicates that Monte Carlo method is a robust computational
method. Yet, the required number of samples is often so high that it makes
its applicability for large coupled systems not feasible. For this reason, focus
will be put in alternative sampling methods, in an attempt to reduce the
amount of inputs required to estimate the properties of Y .

1.1.5 Reductive sampling techniques

Several techniques were developed to reduce the number of simulations re-
quired by MC method. Three of them will be analyzed in this research.

The first of them is the Latin Hypercube Sampling (LHS). It is based on
a problem studied by Leonard Euler, which consists on calculating in how
many ways Latin letters can be arranged in a matrix, under the condition
that each letter appears once and only once on each column and row. The
Hypercube is the generalization of this concept, for an arbitrary number of
dimensions. Thus, every sample is the only one for each variable axis in
the hyperplane containing it. Unlike MC, each sample point generated by
LHS depends on the previously generated points. The first algorithm for the
procedure was first described by McKay [6].
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The other two are the low discrepancy sequences developed by Halton in
1964 [7] and Sobol in 1967 [8]. Their scope is to reduce the high dispersion
obtained by random sampling, covering the design space more uniformly and
thus requiring less data points to do so.

1.1.6 Metamodeling

Assuming that there is a precise but unknown relationship between the input
vector X and the output a generic system Z, in the form of:

Z = g(X) + ε (1.30)

where ε refers to the noise with zero mean and variance σ2.

As the evaluation of the performance function is computationally expen-
sive, for an uncertainty analysis purpose a simplified version can be created
to replace it.

A metamodel, surrogate model, or model of a model, is then a mathe-
matical approximation of the implicit simulation code. It represents a closed
form function of the input parameters. If the metamodel is symbolized with
g̃, then the objective is to minimize the error of its estimations, expressed as:

E = (Y − g̃(X))2 (1.31)

Construction of metamodels have three steps:

1. Design of experiments

2. Metamodeling

3. Modeling fitting

There are multiple techniques in every step involved. Each combination
of them refers to a specific metamodeling environment. The most used are
the Response Surface Method, Kriging, Inductive learning and Neural Net-
works with Machine Learning algorithms. This research will investigate the
applicability of Response Surface metamodels.
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1.1.6.1 Design of experiments

In this step, the basic idea is to perform a number of experiments (numeric
simulations) at different design points (or inputs), and then use the corre-
sponding outputs to fit the simplified surrogate model. This process is called
Design of Experiments (DOE), or more precisely, Computer Design of Ex-
periments. Once a surrogate model is established, the uncertainty analysis
methods such as Monte Carlo Simulation, FORM, and SORM, etc. can be
applied for uncertainty analysis.

There are several tasks in DOE, including identifying design points where
the experiments will be performed, and solving the unknown coefficients of
the surrogate model. Generally, metamodels that can accurately represent
the original function with a small number of experiments are favourable.
There are some principles that govern DOE procedures. Ronald Fisher de-
scribed these principles in his book The Design of Experiments in 1935 [9].

There are three central concepts related to DOE:

• Factors: Input variables that influence the output. There are differ-
ent categories of them, the primary factors impact the response in a
relevant manner, the secondary factors do not.

• Design space: Range of variability of each factor.

• Levels: Amount of discrete points of each factor that are to be consid-
ered in the DOE process.

There exist diverse DOE techniques. They differentiate on the combi-
nation of the three characteristics above cited. Those investigated in this
research will be described next.

1.1.6.2 Full Factorial Design

Full Factorial Design (FFD) is the most common and intuitive technique. It
takes every possible permutation of each level of each factor. Usually it is
performed with two or three level of them. If L represents the number of
levels, and k the number of factors, then the sample size is:

NDOE = Lk (1.32)
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FFD is an orthogonal method, because the scalar product of the columns
of any two factors equals zero. Two level FFD, represented in Figure 1.2
allows for a multi-linear polynomial interpolation, while three level FFD,
depicted in Figure 1.3 allows for a multi-quadratic form.

X1

X2

X3

X1

X2

X3

X1

X2

X3

Fig. 1.2: Two level Full Factorial Design for 3 variables

X1

X2

X3

X1

X2

X3

X1

X2

X3

Fig. 1.3: Three level Full Factorial Design for 3 variables

1.1.6.3 Box-Behnken experimental design

The Box-Benhken experimental design (BBED) [10] is an incomplete three
levels FFD. It takes the combination of all possible two-factor, two-level, full-
factorial designs, with, for each 22 design, all other factors held constant at
the reference point, plus one or more center points. In this way, this method
allows an estimation of quadratic therms of a response surface. The authors
of the method gave special tables for its application. [11]. The number
of required experiments are resumed in the Table 1.1. The distribution of
sample points for three variables is depicted in Figure 1.4.

1.1.6.4 Central Composite Design

Central composite design (CCD) utilizes three sets of experimental points:
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k NDOE

3 13
4 25
5 41
6 49

Table 1.1: Number of experiments required by the Box-Behnken experimen-
tal design

X1

X2

X3

X1

X2

X3

X1

X2

X3

Fig. 1.4: Box-Behnken Design for 3 variables

• Two level fractional factorial.

• Center points, whose values are the medians of the values used on the
previous set.

• Axial points outside the design space.

The goal of this technique is to estimate the curvature of the response
function. The outside points are taken symmetrically respect to the center of
the design space. Figure 1.5 depicts the distribution of sample points. The
amount of experiments required in this method are resumed in the Table 1.2.
The distribution of sample points for three variables is depicted in Figure
1.5.

k NDOE

3 15
4 25
5 43
6 77

Table 1.2: Number of experiments required by the Central Composite Design
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X1

X2

X3

X1

X2

X3

X1

X2

X3

Fig. 1.5: Central Composite Design for 3 variables

1.1.6.5 Plackett-Burman experimental design

Plackett-Burman experimental design (PBD) [12] is a economical DOE with
a number of experiments multiple of four. They are well suited for screening
purposes, that is, for detecting the large effects factors. The goal is that
each combination of levels for any pair of factors appears the same number
of times. The number of experiments required is given by:

NDOE = L+ k −MOD(k, 4) (1.33)

where MOD is the remainder of the division of k by 4. In this way, N is
always a multiple of 4. The distribution of sample points for three variables
is depicted in Figure 1.6.

X1

X2

X3

X1

X2

X3

X1

X2

X3

Fig. 1.6: Plackett-Burman Design for 3 variables
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1.1.7 Response Surface Method

Response Surface Method (RSM) was introduced by George Box and his
collaborators in 1951 [13]. The main idea is to use the outputs produced by
experimentation at DOE established points, and then fitting the observed
responses to the input data through a least squares approximation. The
most common empirical models take either a linear form or quadratic form.
A linear model with two factors, X1 and X2, can be written as:

Z = β0 + β1X1 + β2X2 + β12X1X2 + ε (1.34)

where Z is a given EDP, for the given levels of the main factors X1 and X2,
and the therm X1X2 accounts for the interaction between them. ε is called
the residual difference or error, obtained subtracting the observed responses
from the predicted. The constant β0, known with the name of interception
therm, is the response of the metamodel when the inputs are 0. A linear
model with three factors would be:

Z = β0+β1X1+β2X2+β3X3+β12X1X2+β13X1X3+β23X2X3+β123X1X2X3+ε
(1.35)

A second order, quadratic model adds three more terms to the linear
model, namely β11X

2
1 + β22X

2
2 + β33X

2
3 .

Frequently, the interaction effects are not considered in design purpose
DOE applications, because the information they add is low for to the cost of
experimenting.

RSM can be used with a number of objectives, such as:

• Response optimization

• Variability reduction

• Regression modelling

RSM has three important properties, namely:

• Orthogonality: Individual effects of each factor can be estimated in-
dependently, with a minimal noise of interaction effects. It implies for
minimum variance, keeping the factors correlation to a minimum.
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• Rotatability: Design points can be rotated around the center of the
factors space. This allows for multiple combinations of factors levels,
keeping a constant input distribution. Given that the experimenter
does not have any prior information about the characteristics of the
surface, a design that provides equal precision of estimation in all di-
rections is desired.

• Uniformity: As a result of the first two properties, RSM estimation
capability is uniform across the design space.

For convenience, factor and responses are coded before fitting the RSM.
This kind of normalized factors is suited for efficient computer algorithms,
specially for a high number of factors.

vi =
ui − (uUi + uLi )/2

(uUi − uLi )/2
(1.36)

where uUi is the upper limit of the Xi factor, uLi its lower limit, vi a generic
value and xi its coded value. The linear regression version of polynomial
metamodels is:

z = β0 +
m−1∑
i=1

βixi + ε (1.37)

where m depends on the degree of the polynomial, through n = (k +
n)!/n!k! and βi are the coefficients of the polynomial. In a matrix form:

ZN×1 = XN×mβm×1 + εN×1 (1.38)

The unknown parameters can be estimated by least-squares regression
method, minimizing the sum of squares of the differences between the ob-
served and estimated outputs. From Equation 1.37 it becomes clear that the
number of coefficients grows quickly with the degree of polynomial used to
represent the RSM. Given that at the number of outputs required for fitting
has to be at least equal to the number of unknown coefficients, a low degree
polynomial is preferred in general.
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1.2 Arch dams

In this section, concepts related to arch dams and their structural analysis
will be introduced. The most important problems will be described and the
corresponding state of the art will be revised.

Arch dams are constituted of an important mass of concrete with rel-
atively few steel reinforcements within, built in a narrow cannon and sup-
porting the water thrust and other external forces fundamentally through
three structural mechanisms, i.e., an arch effect in the horizontal direction,
and cantilever effect in the vertical direction, and a torsional diagonal effect.
The combination of them allow to carry the forces to the rock foundations
through the abutments.

1.2.1 Loads

Dams are subjected to a wide range of external and internal stressors within
their long life span. Here the most important are summarized:

• Gravitational: Formed by the sum of the weight of the dike and the
complementary structures built on top of it. Some dam codes [14], [2],
require the complete construction process to be considered, taking into
account the closing sequence of the expansion joints.

• Hydrostatic thrust: Its value depends on the level of the reservoir,
which in turn is a function of the operating conditions and the hydro-
logical characteristics of the tributary basins upstream. The thrust on
the downstream face is usually neglected, in favour of slip safety.

• Thermal load: The construction process is to place independent con-
crete blocks that set at a certain temperature and then grouting the
joints between them. Whenever the temperature of the structure is
different from the set temperature, stresses will be generated inside the
material. There is also a thermal absorption in the reservoir, which
implies a significant temperature difference between the upstream face
and the downstream face. This effect is more important the smaller the
separation between the two, that is, for curved dams. There is also a
phenomenon of solar radiation on the face downstream, which depends
on its altitude and orientation, and the time of year.
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• Creep and shrinkage: Rheological phenomena of concrete. They result
in displacements imposed on the material, often simulated as an added
thermal load.

• Uplift: Pressures due to interstitial water at points of discontinuity such
as thermal joints, cracks and foundation joints. They are particularly
important in gravity dams, since they reduce the contact area between
the structure and the rock, affecting sliding and overturning safety.

• Sediment thrust: The maximum level of sediment deposition is estab-
lished in design phase, depending on the solid transport and the man-
agement of the reservoir. Its mechanical effects are three: Hydrostatic
thrust on the face upstream, reduction of water pressure (as a result of
a lower depth of fluid) and refraction of incident hydrodynamic waves.

• Dynamic actions: Generated by seismic events, dynamic tests, local
effects or other events that generate an important effect in a short
period of time, activating the inertia forces.

Experience indicates that the most influential of this phenomenons in
dam structural safety is the last of this list. The spectrum of factors by
which a dam can vibrate is wide; seismic movements, explosions, dynamic
characterization tests, waves generated by floods, landslides on the reservoir,
collisions, local effects of sinks or floodgates, among others.

When this happens, the independent movement of the structure generates
waves of hydrodynamic pressure in the reservoir, which travelling along its
domain, are reflected in its bed and in turn influence the deformations of
the dam. To these two phenomena a third is added; the flexibility of the
foundation rock. The simultaneous exchange of energy is represented in the
Figure 1.7.

Structural
deformations

Hydrodynamic
pressure

Foundation rock
deformations

Fig. 1.7: Components of the dam-reservoir-terrain coupled system
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Consequently, there exists a closed process of interactive type, which must
be solved considering at the same time the three phenomena as parts a dy-
namically coupled system. This type of problems is characterized by its
complexity, both from classical physics and numerical approach.

This work focuses the precise and efficient simulation of Fluid Structure
Interaction phenomenon (FSI). To do this, numerous sources of information
have been consulted in the scientific literature, and international safety regu-
lations regarding dams, their construction conditions, analysis and operation
have been compared. A summary of the most important advances is pre-
sented below.

1.2.2 Analytic Methods for FSI Simulation

1.2.2.1 Theory of Westergaard

The first researcher to take an interest in the problem was Harold Wester-
gaard, in 1933, on the occasion of the construction of the Hoover Dam, in
the USA [15].

In his study, a two-dimensional model of a gravity dam with a full reser-
voir is considered, as schematized in the Figure 1.8, to which the following
calculation hypotheses are applied:

• Infinitesimal in plane movements.

• Rigid dam rigid, with a perfectly vertical face.

• Rigid foundation.

• Compressible, irrotational fluid with no viscosity.

• Full reservoir, with a free surface located at the dam crest level, and
infinite length in the upstream direction.

• Negligible surface waves, ruling out the possibility of overflowing over
the crest.

• Harmonic horizontal acceleration, in a perpendicular to the structure
direction, with a frequency lower than 1 Hz.

The rigidity of the structure implies that each point of it has the same
acceleration at every moment, simplifying the formulation of the problem,
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allowing for it to be decomposed into two other fundamentals; the inertial
effect of the structural mass acting on itself, and the hydrodynamic pressure
in excess over the hydrostatic thrust, due to the pressure waves generated
inside the reservoir.

Bearing in mind that the fundamental period of vibration of a gravity
dam is of the order of fractions of a second, the last hypothesis guarantees
that the phenomena of amplification will be non-existent.

The author analyses the problem by defining the equations of movement
in the fluid and transforming them into stresses applied to the main struc-
ture. First, the potential velocity function φ is defined for all points in the
compressible fluid domain:

∂u

∂t
= −∂φ

∂x
(1.39)

∂v

∂t
= −∂φ

∂y
(1.40)

where, according to Figure 1.8, x e y are orthogonal coordinate directions,
u and v the corresponding displacement vectors and t the time.

The pressure wave function is established according to the velocity po-
tential:

∂2φ

∂x2
+
∂2φ

∂y2
=
ρ

k

∂2φ

∂t2
(1.41)

where ρ is the density of the fluid and k its compressibility module. The
constitutive equation of the environment relates the pressure P with the
velocity potential through:

P = ρ
∂φ

∂t
(1.42)

The boundary conditions for the solution of the wave equation are the
following:

• No hydrodynamic pressure on the surface of the reservoir.

• Null vertical movement at the bottom of it.

• Homogeneous harmonic acceleration for all points on the face of the
dam in contact with the fluid.
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Source: Westergaard article [15]

Fig. 1.8: Westergaard model

• Convergent pressure to a null value for sufficiently large x values.

Which, mathematically equivalent to:

• P = 0, for y = 0

• v = 0, for y = H

• u = − (αgT 2/4π2) cos (2πt/T ), for x = 0

• limx→∞ P = 0

where H is the height of the dam, g the acceleration of gravity, α the am-
plitude of the acceleration expressed as a fraction of g (known also as “seismic
coefficient” [16]) and T the period of the harmonic movement imposed on
the structure.

Solving the system of differential equations with the boundary conditions
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described, the pressure distribution on the upstream face of the dam is ex-
pressed as:

P (y, ω) =
8αγH

π2

n∑
1,3,5,...

1

n2Cn

sin
nπy

2H
(1.43)

Cn =

√
1− 16γH2

n2gkTf2
(1.44)

where ω = 2π/T is the circular frequency of the imposed harmonic motion
and γ = ρg is the specific weight of the fluid.

From Equation 1.43 the following characteristics of the hydrodynamic
pressure distribution are deduced:

• The pressure curve is tangent to the horizontal on the free surface and
tangent to the vertical at the bottom of the reservoir, as shown in
Figure 1.8.

• The maximum pressure occurs at the foot of the dam, where y = H,
and is:

P0 =
8αγH

π2

n∑
1,3,5,...

−1
n−1
2

n2Cn

(1.45)

• The maximum pressure occurs when t = 0, T, 2T,...

The last point implies that the responses of both components; the inertial
forces and the overpressure forces, occur in phase. This allows a different
physical interpretation of the inertial effect of the reservoir. The author calls
this concept “added mass”, imagining that a part of the fluid is added to
the main structure, increasing its mass but not its rigidity, thus elevating the
fundamental period of the system. Equaling the force of inertia produced by
this imaginary mass, with the resulting hydrodynamic pressure, is possible
to calculate the distance b, measured from the dam, to which the mass of
water is added to the structure, for each dy of it:

b =
7

8

√
Hy (1.46)
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On the other hand, the solution diverges when the frequency of the har-
monic movement f = 1/T approaches the natural frequency of the reservoir,
defined as:

fw =
c

4H
(1.47)

c =

√
k

ρ
(1.48)

The factor c is known as the speed of sound in the fluid, in the case of
water c ≈ 1440 m/s.

From a engineering application point of view, it is interesting to know
the resultants of pressures, to be applied on the cantilever section of the
gravity dam, both for the design and verification phase. These are, the total
thrust and the overturning moment over the section under study. Their
values are obtained from Equation 1.43, making the pertinent integrations,
and are expressed per unit of width of the structure. Thus, the thrust Q has
magnitude of force per unit width, and the moment M force magnitude per
distance per unit width:

Q(y, ω) =
16αγH2

π3

(
q −

n∑
1,3,5,...

1

n3Cn

cos
nπy

2H

)
(1.49)

Q0 =
16αγH2q

π3
(1.50)

M(y, ω) = αγH3

(
16qy

π3H
− 32

π4

n∑
1,3,5,...

1

n4Cn

sin
nπy

2H

)
(1.51)

M0 = αγH3

(
16q

π3
− 32

π4

n∑
1,3,5,...

−1
n−1
2

n4Cn

)
(1.52)

q =
n∑

1,3,5,...

1

n3Cn

(1.53)

Westergaard described a simplified way of calculating pressures, replacing
the shape of the exact distribution represented in the Figure 1.8 with that
of a parabolic curve, represented in the Figure 1.9.
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from Equations. (35), (37), and (39), are stated in Table 2 (see, Items, 3, 4, 
5, and 6). 
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Fig. 1.9: Approximate pressure distributions in the Westergaard model

In this way, the following expressions are deduced:

P = Cα
√
Hy ; P0 = CαH (1.54)

Q =
2

3
Cαy

√
Hy ;Q0 =

2

3
CαH2 (1.55)

M =
4

15
Cαy2

√
Hy ;M0 =

4

15
CαH3 (1.56)

The coefficient C is calculated by replacing the value of M0 in Equation
1.56 with the one obtained in Equation 1.52, so that the maximum overturn-
ing moment of both distributions be the same.

1.2.2.2 Theory of von Karman

The next significant work is the one of Theodore von Karman [17]. The main
difference with that of Westergaard, is based on considering the reservoir
water as an incompressible fluid. This allows an important simplification of
the pressure equations in the fluid medium. As Westergaard did, he used the
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concept of “added mass” to obtain the following expressions at the foot of
the dam:

P0 = 0,707α ρH (1.57)

Q0 = 0,555αρH2 (1.58)

M0 = 0,236αρH3 (1.59)

This model was adopted by the Italian regulation of 1959 [18].
The percentage difference with the results of Westergaard theory is of the
order of one digit.

1.2.2.3 Theory of Zangar

In 1952, Carl Zangar [19] used an electrical model, analogous to the two-
dimensional mathematical model of the dam and its reservoir, schematized
in the Figure 1.10. To incompressible fluid hypothesis of von Karman, he
added the variable tilt of the face upstream.

The equation that governs the phenomenon is:

∂2P

∂x2
+
∂2P

∂y2
= 0 (1.60)

Which is analogous to the Laplace equation for ideal electrical systems.
Considering pertinent boundary conditions, the pressure distribution is given
by:

P (y) = αCzγH (1.61)

Cz =
cm
2

[
y

H

(
2− y

H

)
+

√
y

H

(
2− y

H

)]
(1.62)

where cm is a coefficient that depends on the inclination of the structure
upstream, point to point along its height. It is obtained from:

Cm = −0,0073θ + 0,7412 (1.63)
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Fig. 1.10: Zangar analogous model

In this way, considering the maximum values on the section, doing y = H:

P0 = αcmγH (1.64)

S0 = 0,726αcmγH
2 (1.65)

M0 = 0,299αcmγH
3 (1.66)

This model was adopted by the Italian regulation of 1982 [20].

1.2.2.4 Theories derived from Westergaard

George Housner, in 1957 [21] carried out a study to determine the hydrody-
namic pressures in circular and rectangular containers, and later extended
those results for inclined gravity dams. The hypotheses considered are:

• Subdivision of the fluid in thin vertical membranes without mass.

• Movement of the membranes in the direction of soil movement.
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Fig. 1.11: Pressures for different values of θ. Zangar model

• Incompressible liquid.

• Infinitesimal movements.

In this way, the distribution of pressures is influenced by the inclination
value of the dam. The results obtained are similar to those from Zangar.

Housner himself, together with Chwang in 1978 [22], starting from the
work of von Karman, and using the balance of the momentum to solve the
pressure equations, arrived at a result similar to that of Zangar and the
previous one from Housner.

In 1963, Kulmaci [23] considered the hypothesis of random movements in
any direction within the plane of the analyzed section. From this study it is
concluded that the most unfavourable situation is that of horizontal move-
ment perpendicular to the dam, which corresponds to the original hypothesis
assumed by Westergaard.

1.2.2.5 Theory of Chopra

Beginning in 1967, Anil Chopra and his collaborators [24] developed a pro-
cedure known as the “substructure method”, with the aim of removing the
most restrictive boundary conditions existing in the state of the art so far.
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He considered both domains, fluid and structure, as independent systems,
seeking the simultaneous solution of two independent problems:

• The response of the isolated structure.

• The hydrodynamic pressure in the fluid, supposed the dam as rigid.

In this way, hydrodynamic pressure forces are obtained first, to be added
later to the mass and force matrices of the first problem.

The first important novelty comes from introducing a wider range of
soil movement frequency f , that until this point was considered as lower
than 1 Hz. As a result of the evolution of the theory of seismic movements,
for the time in which Chopra began his research, it was discovered that
such hypothesis is not always fulfilled, and therefore was incomplete. The
researcher managed to overcome this limitation, obtaining the solution to
the second problem for the full range of oscillation frequencies of the system.
The solution is expressed as follows:

P (y, t, ω) =
−4αγ

π

[
sinωt

n1−1∑
n=1

(−1)n−1

(2n− 1)
√

ω2

c2
− λ2n

cosλny+

cosωt
∞∑
n=1

(−1)n−1

(2n− 1)
√
λ2n − ω2

c2

cosλny

] (1.67)

λn =
π(2n− 1)

2H
(1.68)

Ωw =
f

fw
; ω = 2πf ; ωw = 2πfw (1.69)

where n1 is the minimum value of n such that λ2n ω
2/c2. Equation 1.67

is reduced to Equation 1.43 when n1 = 1, that is, if ω < ωw, since the term
containing the expression sinωt disappears. This means that the Wester-
gaard solution is valid only when the oscillation frequency is lower than the
fundamental frequency of the reservoir, which was already demonstrated by
Kotsubo [25]. When ω > ωw the sinusoidal term does not disappear, and
represents the response of the system out of phase with the forces of inertia.
In this case, the hydrodynamic pressure can no longer be represented by the
concept of added masses.
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Such a procedure, however, does not account for interaction between the 
dam and reservoir. The extent of coupling between the two systems will 
depend on their relative properties. If the fundamental frequency of the dam is 
much higher than that of the reservoir then a solution based on the previously 
mentioned procedure may be satisfactory. When selecting typical properties 
for concrete gravity dams it becomes apparent that the fundamental frequency 
of the dam may be close to that of the reservoir. The importance of interaction 
in such systems is investigated herein. 

ASSUMPTIONS AND PRELIMINARIES 

Zangar ( 16) concluded that hydrodynamic pressures on a dam with the up
stream face vertical for half or more of the total height will be practically the 
same as when the upstream face is vertical for the full height. Of principal 
interest herein are concrete gravity dams for which the upstream face is 
always vertical or nearly vertical for the major part of the height. On the 
basis of Zangar's conclusions, although they are strictly valid only when the 
compressibility of water is ignored and the dam is rigid, this paper shall be 
limited to dams with a vertical upstream face. 

H 

FIG. !.-RESERVOIR-DAM SYSTEM 

Consider a dam of height H 5 storing a reservoir of depth H (Fig. 1). Let 
this reservoir-dam system be subjected to a ground, motion, normal to the 
upstream face of the dam, defined by time-history of acceleration i1 g( t). The 
deformed shape of the upstream face of the dam at time t is shown in Fig. 1. 
The displacement of point o at the base is ground displacement u gU) and the 
displacements relative to the base are expressed by function '1r (y ,t). It is 
known that earthquakes tend to excite motions of the structure in which the 
fundamental mode of vibration dominates. Therefore, an approximation 

'1r (y ,t) = Ye (t) � (y) .. . . . .... . . . . .. .. . . . .. . .. . . . . . . (1) 
in which Ye (t) = the generalized coordinate for the fundamental mode of the. 
dam and� (y) = the fundamental mode shape. The total horizontal acceleration 
of the upstream face of the dam is 

a ( y, t ) = u g ( t l + Ye (t l � ( y l . . . . . . . . . . . . . . . . . . . . . . . . . ( 2): 
in which the dots denote differentiation with respect to time. 

footnotesize Source: Chopra article citechopra1968earthquake

Fig. 1.12: Chopra model

From these equations it follows that the pressure in the Chopra model is
a function of the frequency of soil movement. Being expressed as a complex
response function, it allows to calculate the response of the system coupled to
any input strong motion record, in the time domain, from a convolution inte-
gral of the Fourier transform of the unit response function. No dissipation of
energy is contemplated, so the response is unlimited for a certain value of Ωw

that does not correspond to the unit, since the frequency of the deformable
coupled system is different from that of the rigid coupled system.

1.2.2.6 Effect of boundary conditions

1. Fluid compressibility: The only authors that have included this effect
are Westergaard and Chopra. It is of fundamental importance, consid-
ering that it is the mechanism that allows to evaluate the interaction of
the dam and the reservoir. Under the incompressible fluid hypothesis,
the response of the system is independent of the oscillation frequency,
canceling the coupling.

2. Length of the reservoir: In analytical methods, the reservoir is con-
sidered as a semi-infinite plane, starting at the dam and extending
upstream. However, Brahtz and Heibron in 1933 [26] and later Busta-
mante in 1963 [27] showed that a reservoir length equal to or greater
than 3 times the height of the dam is sufficient to simulate the phe-
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nomenon with adequate precision.

3. Surface wave: According to Chen’s studies in 1961 [28] and Bustamante
in 1963 [27], the error that is made when ignoring surface waves is of the
order of 5 %, this value being a function of the height of the dam and
the reservoir period. In general, the effect of waves can be neglected
without introducing major errors.

4. Vertical aspect: The most important study in this regard is that of
Zangar. It is concluded that if the dike is vertical in more than half of
its height, the solution is identical to that of a completely vertical dam.
Otherwise, the inclination introduces important modifications and can
not be ignored.

5. Deformability of the dam: It is the most influential factor, together
with the compressibility of the water. A realistic analysis can not
do without this hypothesis, because the characteristics of the coupled
system change with it.

Through the work of Chopra and his collaborators during the following
decades, the method of substructures has been evolving continuously.

The first improvement introduced is the consideration of the flexibility
of the dam, considering it as deformable in the first problem, expressing its
displacements in the modal space as a function of the first mode of vibra-
tion of the isolated structure. Subsequently, it was added to the foundation
considered as elastic, with mass and radiation of energy. The researchers
demonstrated [29] that the radiation mechanisms play a key role in the re-
sponse of the dam.

Another interesting aspect is that of the spatial variation of soil move-
ments [30], which was also important in the response of the coupled system.
However, to be able to consider it, accurate records of previous seismic events
are needed at different points of the foundation and structure, which are of-
ten not available. A complementary source of energy dissipation was added
later; the absorption of energy through the sediments of the riverbed [31]. It
is modeled as a one-dimensional mechanism that refracts the incident wave
at the base of the reservoir, such that only a portion of the incident energy
is reflected. The fundamental parameter that characterizes the absorption
effect of hydrodynamic pressure waves is the admittance coefficient qs, which
depends on the intensive properties of the sediments. The reflection coeffi-
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cient αs is defined as:

αs =
1− qsc
1 + qsc

=
1− (ρc/ρscs)

1 + (ρc/ρscs)
(1.70)

where ρ and c refer to the density and speed of sound in water, respec-
tively, and ρc and cs those corresponding to the sediments.

The reflection coefficient energy absorption and can be interpreted as the
ratio of the amplitude of the reflected wave to that of the incident wave. Its
value can vary between 1 and 0. A value of 1 represents a non-absorption
condition, where all the incident energy is reflected within the reservoir,
while a value of 0 implies a total absorption. Field investigations [32] have
identified values of αs in a wide range, consistently between 0.5 and 0.75.

1.2.3 Numerical methods for FSI simulations

1.2.3.1 Lagrangian Methods

Although the method of substructures is an accurate and robust tool for
the structural analysis of dams, its main disadvantage is that it has limited
application to linear systems. This excludes the possibility of considering
non-linear phenomena, such as the opening / closing and sliding of expan-
sion joints through non-linear contact, cracking concrete, cavitation in the
reservoir, large deformations, non-linear constitutive equations, chemical re-
actions, etc.

For this reason, alternative numerical methods have been developed. A
set of them corresponds to the Lagrangian approach, which makes use of
the finite fluid elements based on the displacement vector. Its main advan-
tage is that when using this type of finite elements, any generic structure
simulation software can be adapted to use them, provided that the move-
ment is infinitesimal, defining a material with zero shear modulus. However,
this last factor generates vibration modes of zero energy (due to the use
of reduced integration methods [33]) and tendency to numerical instability
of type hour-glass that increase with the fineness of the mesh [34], which
generates problems of difficult approach, as the solution diverges with the
convergence of the mesh. This greatly complicates the computational effort
necessary for the extraction of the modes of vibration of the coupled system
and their associated frequencies, which are fundamental in the identification
of the dynamic characteristics of the model.
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1.2.3.2 Eulerian Methods

Gladwell [35] introduced in 1965 the finite elements based on scalar pressure.
Its main advantage is the fact of having only one unknown for each node of the
mesh (pressure, instead of the three displacements present in the Lagrangian
methods). According to Craggs [36], the order of the matrices of the elements
is reduced by two-thirds, maintaining an equivalent precision.

The method proposed in this research work is of the Eulerian
type. Its characteristics will be described in the Chapter 2.

1.2.4 International regulations

The regulations for calculating and operating dams in the following countries
were reviewed: Italy, Switzerland, the United States and Japan. These were
selected for their known seismic activity and their locations (Europe, America
and Asia), in order to obtain a broad panorama, both from the technical and
historical and geographical point of view, of the solutions currently adopted
worldwide. The following documents are cited below:

• Italy: “Norme tecniche per le costruzioni” [37], “Norme tecniche per
la progettazione e costruzione degli sbarramenti di ritenuta (dighe e
traverse)” (NTD14) [2].

• Switzerland: “Documentation de base pour la verification des ouvrages
d’accumulation aux sèismes”” [38].

• USA: “Best Practices in dam and Leeve safety risk analysis ” [39],
“Federal Guidelines for safety” [40], “Time-history dynamic analysis
of concrete hydraulic structures” [14].

• Japan: “The River Law” [16], “Draft of Guidelines for seismic safety
evaluation of Dams” [41]

As mentioned in the section 1.2.2.3, the Italian code NTD14 adopts the
theory of Zangar as a reference for the evaluation of the dynamic effect. It
is recalled that, since the compressibility of the water in it is ignored, the
resulting pressures are constant for any value of the oscillation frequency.
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The Swiss regulation, following the Westergaard theory, adopts the fol-
lowing expression for the coefficient C to be introduced in the equation 1.54:

C =
7

8
ρ (1.71)

The added mass is calculated in a similar way, according to the theory
described in Section 1.2.2.1.

On the other hand, the American norms dictate the possibility of using
three modalities: added masses (according to Westergaard’s theory), incom-
pressible finite elements and compressible finite elements. However, it does
not provide particular indications for the use of the last two methods.

Finally, Japanese regulations, particularly the River Law [16], introduce
the concept of “ Seismic hazard coefficient”, symbolized as kd:

P =
7

8
ρkd
√
Hy (1.72)

The value of kd varies between 0.20 and 0.24 for arc dams and between
0.10 and 0.12 for gravity dams.

In the most recent Japanese regulation, of 2005 [41], no indication is found
regarding the subject under treatment.

With this analysis it is evident that in all cases the adopted solutions are
of the independent type of the oscillation frequency of the structure. This
fact, as will be seen later, results in underestimates of the tensional state of
the dams, both in the design and evaluation phases.

1.2.5 Fluid-structure-foundation interaction

Another important aspect of dams modeling is the interaction that occurs
between the main structure and the surrounding foundation rock under dy-
namic load. There are several ways of accounting for this interaction that
have been investigated.

The first attempt was made by Chopra [42], in which the author consid-
ered a massless flexible foundation rock, treating it as a sub domain in the
substructure method. He found that dam-foundation interaction effects:

• Depend on the ratio Ef/Ec of the foundation elastic modulus and dam
material elastic modulus. As this ratio decreases, the fundamental
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resonant frequency of the dam decreases, and the response of the dam
decreases as well.

• Are quite similar whether the reservoir is full or empty.

• Increase by a small amount the maximum tensile stresses computed
for the dam on rigid foundation, but does not significantly alter the
distribution of stresses over the dam faces.

• Hydrodynamic effects are smaller if dam-foundation rock interaction is
considered [43].

Other authors have also researched on this topic, mainly using FE models
[44], [45] [46], [47]. The results converge into the conclusions above reported.
The effect of a massless model vs a massed model is of importance [29]. Pres-
ence of mass allows also for a damping radiation condition similar to that
established at the end of acoustic domain. This implies sense that a massless
model results in overestimation of stresses over the structure. Yet, the wave
transmission mechanism must be precisely defined, in a deconvolution anal-
ysis [48], [49]. In this way, ground motion can be applied at the contours of
the terrain model, resulting in the recorded ground motions at the free field
surface.

1.2.6 Expansion joints

The main structure of an arch dam is built by casting blocks of an approxi-
mate cubic form of 20 m of height, that are placed one at a time. After the
initial shrinkage due to the internal chemical reactions, the space between
them is grouted, leading the independent cantilevers to be in contact. Conse-
quently, there are three types of geometric discontinuities within the body of
the dam [50], namely, the “foundation contact” formed by the perimeter be-
tween the rock and the abutments; the “lift lines”, horizontal planes between
adjacent blocks within the same cantilever, and the “contraction joints“, de-
signed to allow for relative movement between adjacent monoliths. These
discontinuities cause the whole structure to have an important non-linear
behavior.

Under dynamic load, if the amplitude of motion is big enough, tensile
strength of grout may be exceeded, and the joint may be open. Thus, the
joints can carry a very limited amount of tensile stresses. To account for
this effect, several contact formulations have been introduced through exten-
sive research. Lau [51] defined a “Hard contact” formulation that allowed
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accounting for shear keys effects indirectly. Hariri-Ardebili et al. [52] used a
similar approach.

Alembagheri and Ghaemian [53] used an exponential “Soft contact” for-
mulation that also allowed for modeling discrete cracks. According with this
formulation, contact is composed of two characteristics behaviors, tangential
and normal. Normal behavior is considered as an exponential function of
clearance between the surfaces, meaning that the surfaces begin to transmit
normal pressure once the distance between them is equal or less than a crit-
ical value c0, and rise to a maximum of σ0, when the joints are completely
close. This behavior diminishes numerical problems related to hard contact
formulations. Tangential behavior is related to normal forces through a clas-
sical Coulumb friction model. A maximum allowable shear exists across the
interface of the joint, and when this value is reached, relative sliding begins.
The three variables of the model are µ (material characteristic), σo and co.
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1.3 Summary of State of the art

To the best of the authors knowledge, there is only one previous research
focused on the applicability of mathematical metamodels for uncertainties
valuation in the dam field. Hariri-Ardebili and Amin [4] analyzed a grav-
ity dam with linear behavior, using surface metamodels and considered the
uncertainties distribution of several material parameters and characteristic
values of seismic ground motions. However, there are other examples of the
use of the metamodeling technique for civil structures in literature.

Aleatory uncertainty, specifically to ground motion variability has been
extensively studied in term of the seismic fragility analysis. Epistemic un-
certainty in the material and modeling, on the other hand, is reported in
a limited amount of studies. De Araujo and Awruch [54] carried out the
first published research related to probabilistic seismic analysis of concrete
dams. Material properties and the seismic input were considered as random
variables (RVs) for a gravity dam. MC simulation was used to evaluate the
fragility of the factor safety against sliding. Elingwood and Tekie [55] used
the LHS scheme to sample material and seismic RVs in analysis a concrete
gravity dam. Dam foundation interface was modeled with a perfectly plastic
Mohr-Coulumb law. Recorded ground motions were de-convoluted and ap-
plied to the base of the foundation. Uplift pressure was modeled as a linear
distribution. A two-parameter Darbre’s model (nodal masses in series with
dampers) was used for FSI. Normal distribution was used for compressive
strenght of concrete, and uniform distribution for other 11 parameters. A
total of 12 earthquake records were used for fragility analysis. Mirzahos-
seinkashani and Ghaemian [56] considered only aleatory uncertainty for the
Pine Flat gravity, using a non linear material model. No joints were modeled.
The foundation was assumed as massless, and pressure based FE elements
were used for the reservoir. Two LS were defined: Crack length at the base,
and the total cracked area on the dam face. Ghanaat et al. [57], [58], [59]
developed a series of investigations for a concrete gravity dam, investigating
different seismic and epistemic RVs, using both 2D and 3D models. Alem-
bagheri and Seyedkazemi [60] studied three material parameters for a gravity
dam (Elastic modulus, tensile strength and ultimate tensile strain), using a
damage model. Pushover and dynamic incremental analysis were employed.
Hariri and Saouma [61] performed a sensitivity analysis of a gravity dam with
an interface joint. Fifteen RVs were identified in a “Tornado diagram” is de-
veloped for the system subjected to an intensifying stochastic acceleration.
LHS was used for sampling.
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Yao, Elnashai and Jiang [62] studied only seismic input variability for
a 305 m high arch dam. The dam was modeled with 3 contraction joints,
while the concrete was taken as linear. The added masses approach from
Westergaard model was used to model FSI. 18 ground motions were selected
as RVs. Zhong, Li and Bao [63] considered both seismic and material uncer-
tainties using MC simulations, for a high arc dam. Non linearity of concrete
was modeled. Kadkhodayan et al. took a 203 eter high arc dam as a case
study, with a linear material and the peripheral joint modeled. Foundation
was considered massless and linear. Nine three-component ground motion
record were used as RVs. Hariri et al. [64] selected a high arc dam with
pressure based FE for the reservoir and massless foundations. Nine ground
motions were selected as Rvs, and epistemic variability was neglected. Non
linearity of both joints and materials were modeled. Fragility seismic curves
were derived for the dam.

Simpson et al. [65] summarized the metamodels options for computer
based engineering design. They analyzed polynomial. kriging, artificial neu-
ral networkd and support vector machines, among other procedures. Far-
avelli, in 1989 [66] was the first to apply RSM in structural engineering. Ra-
jashekhar and Ellingwood in 1993 [67] applied RSM for a cantilever beam,
and stated that RSM is much computationally cheaper than MC. RSM have
been widely used for structural reliability and seismic fragility for other kind
of civil structures, such us base-isolated storage tanks [68], masonry bridges
[69], nuclear power plants [70] and for railways bridges [71]. It also has been
successfully applied for rockfills [72] and concrete faced rockfill dams [73].
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2. Methodology

2.1 Research main work flow

In order to achieve the first objective of this research, namely to verify the
applicability of RSM metamodel for non linear arch dams, a series of analysis
were be performed. These steps required are summarized next.

• Deterministic Analysis (DA)

• Sensitivity Analysis (SA)

• Design of Experiments (DOE)

• Metamodeling fitting

• Metamodeling comparison against multi-sampling classical approaches

The first step is related to the second objective of this research. Critical
modelling aspects are appointed in this stage. Two study cases are adopted.
FE models were developed from the original documentation. Simulation of
FSI, terrain interaction and joints non linearity were investigated.

After that, in the second step the most influential factors were identified
through sensitivity analysis. Ranges and adequate EDPs were chosen as well.

In the third step, five DOE techniques were be applied, in order to study
different possibilities of number experiments / estimation precision ratio. The
resultant polynomial models were fitted in the step four through the least
squares method.

Finally, a high number of deterministic analysis, executed on points ob-
tained through different sampling procedures were used to find out the pre-
cision of metamodels developed in the previous stage.
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2.1.1 Factor Analysis

Through classical FE deterministic analysis, using the results of the first step,
and with a review of the theory available in literature, factors that influence
on the EDPs are identified.

The loads considered acting in the dam are three: Own weight, hydro-
static thrust (with a full level reservoir) and a ground motion record. The
first 30 s of the Dinar event are applied to the terrain. A bounding variation
of ±20% is considered for each input factor. Keeping all their mean value,
one factor at a time is modified to take, once its maximum possible value
(thus, 1.2 times its mean value), and once its minimum possible value (0.80
times its mean value). By doing so, a tornado diagram is built at the end
and the influence of factors is read from it.

The rest of the steps are of straight forward application, and details will
be explained in Chapter 3.
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2.2 Case Studies

To have a contrast between different structures, two study cases were se-
lected for this research. The first one corresponds to a Cupola dam (double
curvature dam), with a rough volume of 10× 105 m3, and the second to an
Arch-gravity dam, with a rough volume 4.7× 105 m3, much greater that the
first case study. Their main characteristics will be described in the next
sections.

2.2.1 Lumiei dam

The dam was designed by Eng. Carlo Semenza. The construction began
in 1941 and finished in 1948. Is located in the in the Udine district, Friuli
Venezia Giulia region, in northern Italy. Between the below foundation plane
and the crown there is a difference of 136.15 m. By blocking the Lumiei
stream it rises a 73× 106 m3 reservoir. The artificial lake formed receives the
name of Sauris Lake. Its main use is generation of hydro-electrical energy,
through the Ampezzo Carnico energy central.

2.2.1.1 Structure description

It is built as a thick slab with double curvature, that is, both in horizontal and
vertical direction. In the bottom foundation it is present an asymmetric plug,
which thickness varies between 15.87 m and 14.8 m in its upper level, while
the main body is almost perfectly symmetrical, and of variable thickness as
well. It has 13.68 m at the lower level, and 3.15 m in the crown. Also, the
horizontal arches that form the main body have variable thickness, growing
going from the key to the abutments. In coincidence with the bottom plug
and the pulvinus, there is a continuous perimeter joint. The radial joints
are located with a mean distance of 15 m between each other and has been
closed with cementitious injections after the initial shrinkage.

2.2.1.2 Lumiei Concrete Characteristics

Concrete was initially dosed with 300 kg of cement for m3 with a water/cement
ratio of 0.47 until July 1947, for then becoming 279 kg for m3 and a wa-
ter/cement ratio of 0.53. Mechanical tests were carried to characterize the
material properties, both at the construction site and a laboratory located
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Source: Progetto Dighe

Fig. 2.1: Lumiei Dam - Frontal view

in Padova, using specimens of 20 x 20 x 20 cm.

With the strength characteristics reported on the original documents,
and in according with the empirical correlations established in the Italian
Building Code “Norme Technique per le costruzioni” (NTC 08) NTC08,
the elastic modulus is obtained through:

Ecm = 22,000

[
fcm
10

]0.3
[MPa] (2.1)

fcm = fck + 8 [MPa] (2.2)

fck = 0.83Rck [MPa] (2.3)

where fcm is the concrete elastic modulus, fck is the mean value of the
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Fig. 2.2: Lumiei Dam - Cross-section view
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Condition Normal use
Use Hydro-electrical
Structural type Cupola
End of Construction 1947
Maximum exercise level 980 m s.n.m.
Maximum reservoir level 982 m s.n.m.
Dike height 128 m
Crown length 156 m
Volume of exercise reservoir 70× 106 m3

Volume of full reservoir 73× 106 m3

Area of reservoir surface 139 km2

Volume of main structure 102.62 m3

Table 2.1: Lumiei Dam - Structural description

compressive strength, and Rck the cubic compressive strength.

Assuming a value of 48.50 MPa for Rck, fcm is 48.26 MPa, fck is 40.25 MPa
and Ecm in 35,276.5 MPa, that is, a nominal value Ec of 35,000 MPa.

Also, the tensile strengths are obtained through:

fctm = 0.3 f
2/3
ck [MPa] (2.4)

fcfm = 1.2 fctm [MPa] (2.5)

where fctm is the concrete mean tensile strength and fcfm the flexural
strength. The lesser of the two is adopted, in favour of safety, that is,
3.50 MPa.

Rck 48.50 MPa
fck 40.25 MPa
fcm 40.25 MPa
fctm 3.50 MPa
Ecm 35.28× 103 MPa
Ec 35.00× 103 MPa
ρc 2.4× 103 kg /m3

αc 1.00× 10−5 ◦C−1

According to NTC08, a value of de 1.00× 10−5 ◦C−1 is adopted for ther-
mal expansion coefficient αc, and 2400 kg /m3 for material density ρc.
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Fig. 2.3: Lumiei Dam - Top view
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2.2.1.3 Lumiei Rock characteristics

The cannon upon which the dam rests has been originated from the erosion
of a calcareous rock from. On the river bottom, a modest thick of alluvion
sits. The foundation rock presents optimum compactness and solidness at-
tributes. The value of the elastic modulus is not available anywhere in the
documentation. There were not carried geotechnical tests, as it was not yet
a common practice at the time of the original designing process took place.

2.2.2 Pertusillo dam

The dam was designed by Eng. Carlo Drioli. The construction began in
1957 and finished in 1963. Between the bottom foundation plane and the
crown there is a difference of 105 m. It is located in the in the Spinoso
district, Potenza region, in southern Italy. By blocking the Agri stream it
rises a 105× 106 m3 reservoir. The artificial lake formed receives the name
of Pertusillo Lake. It has multiple uses, serving as a departure point for the
Pugliese aqueduct, one of the biggest systems of drinkable water in Europe.
It is also used for hydroelectric energy generation, and well as for irrigation.

Source: Ministero delle Infrastrutture e dei Trasporti

Fig. 2.4: Pertusillo Dam - Air view
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2.2.2.1 Structure description

The structure presents a “V” profile, extended through the rather wide
canyon. The predominant curvature is on the arch direction, thus horizon-
tally. The pulvinus is almost symmetrically built and totally fixed into the
rock foundation. It has a mean thickness of 10 m. The main body is also sym-
metrical. Also, the horizontal arches that form the main body have variable
thickness, growing going from the key to the abutments.

Source: E.I.P.L.I.

Fig. 2.5: Pertusillo Dam - Frontal view

In coincidence with the the pulvinus, there is a continuous perimeter
joint. The radial joints are located with a mean distance of 15 m between
each other and has been closed with cementitious injections after the initial
shrinkage.

2.2.2.2 Pertusillo concrete characteristics

Concrete was design with low heat concrete dosed with 235 kg of cement for
m3, and then becoming 275 kgfor m3. Some steel reinforcements have been
placed through the independent monoliths, in coincidence with the expan-
sion joints locations, both on the upstream and downstream faces. Through
an analogous process used for the Lumiei Dam, the following characteristic
values were obtained:
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Source: Ministero delle Infrastrutture e dei Trasporti

Fig. 2.6: Pertusillo Dam - Cross-section view

2.2.2.3 Pertusillo Rock characteristics

The dam sits upon a clayey-marly-arenaceous formation. At the time of con-
struction, injections of impermeabilization and strengthen have been made.
There were not carried geotechnical tests, as it was not yet a common practice
at the time of the original designing process took place.

2.2.3 Finite element models developing

In order to perform the series of deterministic analysis that uncertainty valu-
ation requires for validation of the metamodels, finite element technique will
be used in this research.

Taking the original documentation of the 2 cases study as starting point,
using computer aided design software (CAD), geometric models were devel-
oped. The process is quite iterative, since the only available information are
a few arcs at different discrete heights. These arcs were first built, and after
that, the curved surface were interpolated between the known points.

For developing the CAD model of the rock terrain, Lidar satellite im-
ages were employed. These were obtained from the United States Geological
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Condition Normal use
Use Aqueduct, Hydroelectrical, Irrigation
Structural type Arch-gravity
End of Construction 1963
Maximum exercise level 531 m s.n.m.
Maximum reservoir level 532 m s.n.m.
Dike height 95 m
Volume of exercise reservoir 142× 106 m3

Volume of full reservoir 155× 106 m3

Area of reservoir surface 630 km2

Volume of main structure 476.25 m3

Table 2.2: Pertusillo Dam - Structural description

Rck 60.00 MPa
fck 50.00 MPa
fcm 58.00 MPa
fctm 3.51 MPa
Ecm 31.24× 103 MPa
Ec 32.00× 103 MPa
ρc 2.40× 103 kg /m3

αc 1.00× 10−5 ◦C−1

Table 2.3: Pertusillo Dam - Concrete characteristics

Survey (USGS) [74] service, and processing them a Geographic information
system software (GIS), Digital elevation models (DEM) were obtained. Using
this DEM models in combination with the original documentation allowed
to develop a quite detailed CAD model of the terrain around the dam.

From this point, the Finite Element Software Abaqus was used to create
the FE models for analysis. The CAD files were imported, and the mesh
created with the meshing tools available within the software.

The Lumiei dike is modelled as symmetric around its main cross section.
The asymmetry of the bottom plug has been ignored. The main dam has
9 independent monoliths, and the expansion joints that are located between
them have important shear key forms. The terrain is also symmetric in the
valley. The reservoir is considered to have the exact form of the terrain in the
points were the river bottom and water are in contact. However, no direct
interaction is considered between rock and water.
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The Pertusillo Dam has 19 independent cantilevers, as it is a much bigger
dam than Lumiei in terms of volume and length of crown. It is almost
perfectly symmetric, except for a segment of the pulvinus on its upper part.
This asymmetry has been ignored as well. The terrain does not present sharp
curves near the dam and does not present strong asymmetries.

For both study cases, mesh sensitivity analysis were performed, under
static and dynamic loads. After that, FSI were studied in deep, as it was
known to be a critical aspect of modelling. The methodology of FSI investi-
gation will be summarized next.
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2.3 FSI study methodology

The dynamic coupling between a dike and its reservoir can be considered as
an acoustic-structural problem, in which the dam is modelled with classical
Lagrangian finite elements and the fluid with the so-called acoustic finite
elements, which have a single degree of freedom; the scalar pressure. Both
domains exchange energy through a layer of special elements called of inter-
face.

2.3.1 Problem equations

The equilibrium equation for a compressible fluid, in the hypothesis of small
pressure variations, for the more general case, is defined as [75]:

∂P

∂x
+ γd(x, ψi)u̇+ ρ(x, ψi)ü = 0 (2.6)

with the constitutive equation:

p = k(x, ψi)
∂u

∂x
(2.7)

where x is the spatial position of the fluid particle, u̇ is the velocity of
the fluid particle, γd is the drag function representing the losses of energy by
viscosity and ψi allows to consider eventual variables of the medium, such as
salinity, humidity, temperature, etc.

2.3.2 Calculation hypothesis

The assumptions assumed for the fluid medium are the following:

• Linear, compressible and non-viscous medium (γd is null).

• Small pressure variations.

• Constant physical properties throughout the domain geometry (inde-
pendence of ψi).

• Non-existent surface wave.

• Impossibility of cavitation phenomena.
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• Variable reservoir length.

In this way, the equations of the movement are reduced to expressions
analogous to those of the classical solutions, allowing a direct comparison
between these and the proposed numerical method.

2.3.3 Boundary conditions

For the domain of the reservoir, a special condition must be defined at its
end upstream, in order to avoid reflection of the waves (simulating an infinite
reservoir). For finite element models, boundary elements have been used
successfully [76], [47], [77].

Another condition commonly used in the field of research software is the
condition of Sommerfield [78]. The impedance condition at the edge of the
domain of the acoustic medium is governed by:

u̇sal =
1

k1
ṗ+

1

c1
p (2.8)

where u̇sal is the velocity of the acoustic particle in the normal direction
outgoing from the surface of the acoustic medium, ṗ is the rate of change of
the pressure, k1 the coefficient of proportionality between the pressure and
the normal displacement to the surface and c1 the coefficient of proportion-
ality between the pressure and the normal velocity to the surface.

In addition to simulating the infinity of the reservoir in the upstream
direction, this condition can be used to model partial energy absorption in
the bed of the reservoir.

The other boundary conditions of the acoustic domain are:

• No pressure on the free surface of the fluid.

• Dynamic coupling in the water-dam interface. It is simulated by a pair
of surfaces master-slave, whose degrees of freedom are linked through
the equation

nü = n
1

ρ

∂p

∂x
(2.9)

For all the simulations of the present investigation, where it is not stated
otherwise, these are the boundary conditions used.
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2.3.4 Implicit solution vs. explicit solution

The main difference between both methods is found in the integration tech-
nique of the motion equations. In the first case, implicit operators are used,
while in the second case, central difference methods are used.

The use of implicit operators implies that the matrix associated with the
system must be formed and inverted at each time increment, solving the
equations of motion. On the contrary, in the central difference methods, the
displacements and velocities are considered as input data at the beginning
of each interval, so that the mass and stiffness matrices should not be cal-
culated for each increment, resulting in this methodology in a much lower
computational cost.

However, this advantage has an important disadvantage, related to the
stability of the method, which is not always guaranteed. This is linked to
the time necessary for the propagation of the pressure wave in the smallest
elements of the calculation mesh.

In this way, with the propagation speed being relatively high, it will be
necessary to use more detailed calculation meshes and intervals much smaller
than those necessary for the implicit solution. For this reason, implicit
integration methods will be used in this study.

2.3.4.1 Integration method

The integration method used is that of Hilbert-Hughes-Taylor [79], which is
an expansion of the Newmark method (known as β method) [80]. In each
increment, the matrices of mass and rigidity, and their respective inverse, are
calculated through an iterative process, known as Newton’s method, which is
unconditionally stable. In it, there is a dissipation of energy linked not to the
physical damping of the system, but to the process of numerical integration
itself. In particular, the magnitude of such dissipation varies according to
three factors, αd, βd and γd, related through:

βd =
1

4
(1− αd)

2 (2.10)

γd =
1

2
− αd (2.11)

with the set ranges −1
2
≤ αd ≤ 0, βd ≥ 0 and γd ≥ 1

2
.
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The dissipation of energy varies in inverse proportion to the value of αd,
such that, in the limit of minimum energy dissipation:

αd = 0 ; βd =
1

4
(2.12)

similarly, in the limit of maximum dissipation αd = −1/3.
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3. Results

In this section, the main results from this research are presented and dis-
cussed.

First, modelling aspects are studied, and the most interesting results are
reported. In particular, the use of acoustic finite elements is highlighted.
Reservoir dam interaction is studied in deep, defining the problem from the
basic ideal conditions and removing constrictive contour conditions one by
one, in order to have an idea of their individual effects. A comparison with
classic solutions is performed as well.

After that, the probabilistic flowchart is used to assess the applicability
of metamodels to the problem under study. Different DOE techniques and
their resulting metamodels are presented and their capability to estimate
structural responses compared.

For the sake of space, not all the produced results are shown in detail.
When and if it has been considered appropriate, some of them are mentioned
without going into detailed plots and other data showing tools.
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3.1 Models for FSI analysis

As a first approach, a two-dimensional master section is studied for each case
of study. These are obtained by cutting the structures in space with a ver-
tical plane. Subsequently, simulations are performed with three-dimensional
models.

Additionally, a simple two-dimensional ideal model of 1 m height is intro-
duced, used for the comparison of the calculation method with the classical
solutions of literature. The models used in the present investigation are
summarized in Table 3.1.

Code Dam Dimension
I0 Ideal 2D
L2 Lumiei 2D
L3 Lumiei 3D
P2 Pertusillo 2D
P3 Pertusillo 3D

Table 3.1: Codes of used models for FSI

Fig. 3.1: Model I0 - Dam and reservoir mesh
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3.2 Validation of acoustic elements against

classic approaches

The bidimensional idealized model I0 was used, with the objective of evalu-
ating the accuracy of the method, comparing the obtained results with those
corresponding to the closed solutions of literature. In particular, the study
conditions established by Westergaard in his research are used.

Model I0
α 0.10
T 1.00 s
Ec 32.00× 103 MPa
ρc 2.40× 103 kg /m3

νc 0.16
k 2.15× 103 MPa
ρ 1.00× 103 kg /m3

H 1.00 m
He 1.00 m
Le 4.00 m

Table 3.2: Acoustic FE validations conditions

The dam and the terrain are considered rigid. The response to a
simple harmonic movement with an amplitude acceleration α = 0.1, that is,
a = 0.981m/s2, for a reservoir depth He equal to the height of the structure.

Fig. 3.2: Model I0 - Pressure waves transmission within the reservoir

Figure 3.3a shows the distribution of maximum pressures generated by
the vibration described, when t = T = 1s. The pressures of the Westergaard
model are identical to those of Chopra and are superimposed. The solutions
of Zangar and von Karman present slight variations, due to the hypothesis
of incompressibility of the fluid. Those corresponding to the simulation ap-
proach the theoretical solutions in an acceptable manner. The amplification
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Fig. 3.3: Model I0 - Comparison of solutions for ideal conditions
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with respect to the hydrostatic pressure is of the order of 9 %. Figure 3.3b
shows the distribution of the resulting thrusts on each longitudinal section
of the structure. The amplification of the thrusts is greater than the pres-
sures, because the integrals of the pressure functions do not maintain a linear
relationship.
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Fig. 3.4: Model I0 - Maximum pressure over time - Harmonic oscillation

The variation in time of acceleration and maximum pressure, which occurs
at the foot of the dam, are represented in Figure 3.4. It is appreciated that
the dynamic amplification is not activated, because the relationship between
the period of vibration and the resonance of the reservoir 4H/c is very small.
The transient component of the hydrodynamic response is characterized by a
rapid variation caused by the inertia of the resting dam. On the contrary, the
permanent component is in phase with the vibration, in accordance with the
provisions of Westergaard for the range of frequencies far from the resonance
of the structure.
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3.3 Dynamic amplification

The eigenvalues of the reservoir and its natural frequencies were calculated.
The numerical method under study introduces residual intermediate modes
originated by the high amount of degrees of freedom of the calculation mesh.
However, it is clear from the distribution of effective masses represented in
Figure 3.5 that they do not affect the propagation of dynamic waves to an
important extent, since the most important modes coincide with the 1st, 3rd
and 5th fundamental frequencies fwn = c(2n− 1)/4 given by the theory.
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Fig. 3.5: Model I0 - Reservoir eigenfrequencies

According to the theories of Westergaard and Chopra, the maximum am-
plification of the hydrodynamic pressure on the face of the dam corresponds
to a frequency oscillation f equal to that of the fundamental mode of the
reservoir fw = c/4H. To study the phenomenon, an analysis of Frequency
Sweep was performed. This consists of subjecting the system to a harmonic
oscillation of constant amplitude (a = 0.981 m s−2) and variable frequency
in the study range, recording the maximum response of interest, in this case
the pressure at the foot of the dam.

The result is reported in Figure 3.6, in which the variable Ωw = f/fw
is defined. Westergaard’s theory allows calculating the answers only for the
range 0 > Ωw > 1, as already verified by Kotsubo [25]. The solution of
Zangar, adopted by the Italian regulation [2], is independent of Ωw due to
the hypothesis of incompressibility of the fluid, for which no dynamic ampli-
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Fig. 3.6: Model I0 - Sweep Analysis.
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fication is provided by the author.

On the other hand, the theory of Chopra extends the results found by
Westergaard for the full range of frequencies and provides for an unlimited
amplification for Ωw = 1, and smaller amplifications for Ωw = 3, 5, etc..
The results of the simulation are in accord with those found by the author,
with a difference, the answer in the plane (S, Ωw) oscillates around the
theoretical curve, because of the residual modes described above. This effect
is attenuated by the energy dissipated by the deformation of the dam, as will
be seen in Section 3.6.3.

From the foregoing, it is concluded that, in the ideal conditions far from
resonance, the increase of the hydrodynamic thrust with respect to the static
one is of the order of 11 %. For the seismic field, where oscillation frequencies
vary in the 3Hz > f > 30Hz range, the phenomenon occurs much more often
than assumed by classic authors.
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3.4 Numeric solution parameters

The effect of the following variables on the proposed numerical solution is
studied:

• ∆t integration.

• Constant αd of integration.

• Finite element size.

• Length of reservoir.

• Typology of finite elements (Hexahedral and Tetrahedral).

Through the simulations it is verified that step ∆t that allows an accurate
simulation is in the range T/40 > ∆t > T/30. The constant αd influences the
numerical stability of the solution, as shown Figure 3.7. For this reason, for
the phenomenon under study it is recommended the adoption of values that
guarantee a minimum dissipation, in such a way to obtain a more efficient
convergence. For the present investigation, a value of −0.5 is adopted.
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Fig. 3.7: Model A - Effect of constant of integration

A relatively thin mesh is necessary to allow the propagation of dynamic
waves in an acceptable manner. Its accuracy depends on the length of the
acoustic wave in the middle, related in turn to the period T of vibration.
The criterion chosen for the present investigation is to define a minimum
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dimension for the acoustic finite elements, based on a wave with a period
equal to 0.01 s. Given that the field of frequencies under study is always
below the value f = 1/T = 100Hz, the correct modelling of the phenomenon
under study is assured. In consequence:

dimmin = c ∗ T ' 14m (3.1)

Regarding the length of the reservoir, it is found that the response remains
fundamentally unaltered for values of the ratio Le/He greater than 3, as
shown in Figure 3.8. Lesser values lead to non-stringent solutions, regardless
of the energy absorption condition applied to the domain contour.

0 1 2 3 4 5

Dimensionless Reservoir Longitude Le/H

0.04

0.08

0.12

0.16

0.2

S

Fig. 3.8: Model I0 - Effect of reservoir length

Finally, regarding the typology of finite acoustic elements, it is reported
that the hexahedral elements with quadratic expansion are those that present
a faster convergence. However, in the present investigation, tetrahedral ele-
ment models will be used, since they allow the modeling of irregular geometry
domains with greater adaptability and efficiency.
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3.5 Mesh convergency

In order to introduce the elasticity of the dams for the case studies, the
convergence of the calculation mesh is analyzed, for all the models to be used.
Given that the NTD14 does not give any indications for the finite element
model techniques, USA USACE EM 1110-2-6051 [14] was used as guideline
for the mesh generation. All materials were considered as linear elastic, and
no geometric discontinuities of non-linear mechanism were considered in this
stage.

The American normative establishes that for arch dams, 3D models must
be used. Also, “a thin or medium-thick arch dam can be modeled adequately
using a single layer of shell elements through the dam thickness”. A thick
arch dam requires three or more layers of solid elements though the dam
thickness.

Considering these recommendations, a mesh sensitivity analysis was per-
formed for the dam body, considering it as a monolithic body. First, the
effect of the type, amount and disposition of FE elements was investigated,
in a parametric analysis, were different values were assigned to these three
variables, generating different FE models. Static loads were considered to act
upon the structure, the dead weight in a first analysis step, and the hydro-
static thrust in a second one. Crown displacements and stress distribution
over the FE elements were monitored, and the effect of the variables were
captured.

Secondly, the natural frequencies and the fundamental modes of vibration
for the different FE models were determined and compared. Also, crown
displacements under harmonic ground motion were analyzed.

In a first instance, the master sections are taken for the three case studies,
that is, the L2 and P2 models. The effects of the type and finite element
disposition are studied, assigning different values to these three variables
in a parametric analysis. Static loads are used, the own weight and the
hydrostatic thrust, considered the reservoir with a depth equal to the total
height of the dam. The displacements of the crest and the distribution of
stresses in the structure are monitored. The number of elements necessary
for each model were around 600, in order to confine the relative error of
calculation to a value lower than 5 %. The elements tend to increase their
concentration in areas of greater stress gradient, which for the hypothesis of
perfectly rigid foundation, are close to the base considered as fixed.

Through a process analogous to that followed for the two-dimensional
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Dam Type Model Elements Nodes
Lumiei Arc L2 618 259
Pertusillo Arc-gravity P2 779 338

Table 3.3: 2D models characteristics

models, the convergence of the mesh for the three-dimensional models of the
3 case studies is also studied. The final models to be used in the investigation
are summarized in Table 3.4.

Dam Type Model Elements Nodes
Lumiei Arc L3 6527 1868
Pertusillo Arc-gravity P3 8690 2398

Table 3.4: 3D models characteristics

In Figures 3.9 and 3.10 the calculation meshes corresponding to the mod-
els of two and three dimensions, respectively, are observed. Table 3.5 sum-
marizes the amount of structural mass of each model.

Dam Type Model Structural mass
Lumiei Arc L2 3.16× 106 kg
Pertusillo Arc-gravity P2 4.48× 106 kg
Lumiei Arc L3 2.56× 108 kg
Pertusillo Arc-gravity P3 1.20× 109 kg

Table 3.5: Structural masses of dam models
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(a)
Lumiei
Dam

(b) Pertusillo Dam

Fig. 3.9: 2D models

(a) Lumiei Dam (b) Pertusillo Dam

Fig. 3.10: 3D models
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3.6 Effects of flexibility

The results obtained in the simulation are presented below using the method
validated in the previous chapter. The restrictive hypotheses assumed in
literature will be removed one by one, in such a way to carefully study the
effect of each one.

• Elasticity of the structure: It constitutes the most restrictive hypothesis
of all. It is established in order to simplify the analysis of the problem,
by allowing to equalize the vectors of acceleration and velocity of all the
points of the dam. However, despite the structures under study have
high rigidity, its behaviour is far from perfectly rigid. In fact, there are
different dynamic mechanisms that combine in the dynamic range, as
will be seen later.

• Verticality of the face of the dam: Both Westergaard and Chopra study
a dam with a perfectly vertical face. This condition, although useful
for the formulation of closed solutions, almost does not occur in reality.
Zangar introduced the possibility of considering an inclined face, but
his theory is incomplete, due to the incompressibility of the fluid, as
described in the section 3.6.4.

• Non-damped response: The absence of energy dissipation mechanisms
is particularly problematic in numerical simulations. In particular, for
the problem under study, the mechanisms of absorption of dynamic
waves at the end of the reservoir and the energy dissipated by defor-
mation of the structure are fundamental.

• Horizontal component of the movement: With this hypothesis two ef-
fects are neglected: the horizontal thrust of the water due to the hor-
izontal acceleration (for inclined walls), and the vertical acceleration
itself, which generates additional tipping moments on the dam.

• Plane problem: In the particular case of curved dams, there are three-
dimensional mechanisms that can not be considered in the plane mod-
els.
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3.6.1 Modal analysis of dams without reservoir

(a) Lumiei (b) Pertusillo

Fig. 3.11: 2D Models - First vibration mode

Dam Type Model Frequency
Lumiei Arc L2 0.663 Hz
Pertusillo Arc-gravity P2 2.102 Hz

Table 3.6: 2D Models - Eigenfrequencies of empty dams

The primordial behaviour of the bracket in the first vibration mode is
observed in Figure 3.11. The high slenderness of the section in the model L2

causes a reduced rigidity and consequently a very low frequency of vibration.
Figure 3.12 shows the frequency distribution for the first 100 vibration modes.
The trend clearly goes according to the explanation for the fundamental
mode.

3.6.2 Acoustic beating

By varying the frequency of the harmonic oscillation of the dam-reservoir
system, a very particular phenomenon occurs that demonstrates the nature
of the phenomenon, and is a consequence of the interaction of both systems.
For values of f/fs near the unit, where fs is the fundamental frequency of
vibration of the empty dam, the hydrodynamic pressures in the reservoir
present an amplitude that grows indefinitely in a linear manner over time.
This is known as beating.
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Fig. 3.12: 2D Models - Eigenfrequencies of empty dams

The beat occurs when the pulse of the oscillation is close to that of the
structure, initiating an exchange of energy in the coupled system that pro-
duces vibrations in the primary system, instead of suppressing them.
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Fig. 3.13: Beating phenomenon

Figure 3.13 reports the pressure at the foot of the dam for a frequency
f ' 0.9fs. The oscillations suffer linear amplitude modulation in time. It
is possible to plot an envelope of these amplitudes, passing through the zero
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response points. This will have its own period defined by:

Tb =
2π

1− (f/fs)
(3.2)

called beating period.

The phenomenon has been extensively studied in the acoustic field, in
particular by Den Hartog in 1956 [81], from the superposition of two waves
of similar frequencies that join in a different one, called the wave of beat.

3.6.3 Damping

The introduction of this variable is done in order to evaluate the effect of vis-
cous energy dissipation, always present in the structures that deform. Con-
ventionally, damping for concrete structures is set at a 5 % of the critical
value, this being a purely indicative value since the factors that influence the
phenomenon are so many that it is impossible to consider them directly in
practice.

The effect, the quantity and the precise definition of damping, in the case
of dams in particular, depend on the constitutive relationship of the materials
used, and very especially on the non-linear mechanisms present, such as the
opening of joints and cracks in the concrete.

In this research, the dissipation of energy is considered through the classic
Rayleigh formulation. This uses a range of frequencies in which the value of
the coefficient ζ varies according to the limits defined as input values. To do
this, two coefficients are defined, αr and βr, according to the equations:

ζ1 =
1

2

(
αr

ω1

+ βrω1

)
(3.3)

ζ2 =
1

2

(
αr

ω2

+ βrω2

)
(3.4)

where ω1 and ω2 are the natural frequencies of the system, chosen accord-
ing to its properties, ζ1 and ζ2 the associated critical damping coefficients,
generally considered equal.

In this way, the procedure to obtain αr and βr is as follows:

1. Choice of values of ζ1 and ζ2.
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2. Selection of the frequency range to be dampened (from modal analysis).

3. Solution of simultaneous equations.

Analytically, αr and βr are linked to the mass and stiffness of the struc-
ture, respectively.

To evaluate the effect of damping on the beating of the coupled system,
it is decided to compare the dynamic behaviour for different values of ζ =
ζ1 = ζ2.

Figure 3.14 presents the comparison of the response in terms of pressure
at the foot of the dam for ζ equal to 0 %, 1 % and 5 %, for a harmonic
oscillation with frequency f = 0.9fs. It is observed how the beat is attenuated
proportionally with the value of ζ. It follows that for dam-reservoir systems
coupled, the presence of damping, however small, is necessary to avoid the
phenomena of the type described here that, although possible in theory, do
not occur in real life, due to the action of the multiple energy dissipation
mechanisms present in the environment.
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Fig. 3.14: Effect of damping over acoustic beating

3.6.4 Dynamic coupling

Chopra considered the effect of elasticity in his sub-structure method, de-
composing the problem into the following two:

1. Response of the dam ignoring the reservoir.
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2. Hydrodynamic pressure considered the dam as rigid.

The author used the response in coupled frequencies to take flexibility
into account, expressing the field of displacements as a function of the first
vibrating mode of the empty dam.

In this study, however, we seek to obtain the response of the coupled
system in the time domain, by integrating the dynamic equations step by
step, in such a way to include non-linear effects in a later stage. At this
point, the first contour condition studied is included; the viscous damping.
The starting models are the two-dimensional models for the 2 case studies.
The geometries of the corresponding reservoirs are presented, in Figure 3.15.

(a) Model L2

(b) Model P2

Fig. 3.15: 2D Models - Pressure distributions for flexible dams

A frequency scan analysis is performed, studying the response of the
coupled system in the range of interest. Pressures at the foot of the dam are
presented in Figures 3.16a and 3.16b, for rigid and flexible dam conditions,
respectively. It is observed how, when the flexibility is introduced, the first
peaks of pressure are given for values of Ωw less than 1, and in addition,
there are higher amplifications for values greater than Ωw. From here for the
simulations of flexible dams, the quotient Ωs = f/fs is introduced, in order
to generalize the solution of the system fully coupled with respect to the dam
without reservoir.
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Fig. 3.16: 2D Models - Sweep Analysis - Pressure at dam bottom
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It is noticed that the phenomenon is actually more complex than in the
case of the rigid dam studied previously. In particular, the distribution of
pressures on the section is no longer parabolic for any oscillation frequency.
In Figures 3.17g and 3.18g the pressure distributions for the 2 cases are
reported for different values of Ωs.

It is particularly important that for certain situations, points close to the
free surface of the fluid can exert greater pressure on the dam than those
located below them, in disagreement with the classical results adopted by
international regulations. For the specific case of Pertusillo dams, negative
absolute pressures are observed on the face of the structure. This implies the
possibility of cavitation phenomenon, which will be ignored in this study.
However, more in-depth studies are needed in this regard.

From the pressure distributions presented it is evident that not only is it
wrong to consider a constant inertial effect of the reservoir on the dam, as
suggested by Zangar, but the parabolic distribution suggested in the Italian,
Swiss and Japanese regulations is also not on the safety side. Therefore,
to describe the increase in stresses on the structure, it is not enough to
evaluate the amplification of the pressure at the foot of it. It is necessary
to introduce a more significant value, which takes into account the complete
distribution of the pressures on the section. The resultant of them is selected,
the hydrodynamic thrust S =

∫
P (y), for it.

In Figure 3.19, the value of S is observed for different values of Ωs. With
the rigid dam hypothesis, the 2 study cases present a similar response, with
a maximum amplification around 1.2 times the hydrostatic thrust, for a vi-
bration frequency equal to that of the reservoir resonance. However, this
situation changes with the introduction of flexibility. The peaks move to the
left and the first amplification is reached for a value less than Ωs = 1 in
both cases. In addition, higher peaks are observed for higher frequencies. In
particular, the flexibility of the Lumiei dam introduces higher amplifications
for values of f above 2Ωs.

From the foregoing in this section it is concluded that the flexibility of
the structure completely modifies the characteristics of the coupled system,
making it necessary to consider them, in order to obtain responses close to
the real behaviour of the dam-reservoir system.
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(b) f = 0.6fs
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(f) f = 1fsII
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Fig. 3.17: Model L2 - Pressure distribution for flexible dam
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(b) f = 0.6fs
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Fig. 3.18: Model P2 - Pressure distribution for flexible dam
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Fig. 3.19: 2D Models - Hydrodynamic thrusts in Sweep Analysis
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3.6.5 Modal analysis of the coupled system

From the previous section, in particular of Figure 3.19, it is understood that
the fundamental period of the coupled system is not equal to that of the
empty dam, but greater than this. In this section we present the modal
analysis of the coupled system and its differences with respect to those of the
empty dam.

Dam Model fs fw fa (fs − fa)/fs
Lumiei L2 0.663 Hz 2.798 Hz 0.405 Hz 38.91 %

Pertusillo P2 2.102 Hz 3.562 Hz 1.570 Hz 28.29 %

Table 3.7: 2D Models - Natural frequencies of the dam-reservoir system

Different increase ratio of system vibration period are observed. This is
due to the mass distributions of each case study. In particular, the arch-
gravity dam suffers the least variation. Its relatively high stiffness, coupled
with its smaller height (103 m against the 131 m of Lumiei), are the causing
such situation.

3.6.6 Interpretation of modal coupling

The complete system can be seen as the union of two simple systems with
their fundamental periods (elementary oscillators). The set possesses two
degrees of freedom, and each of them is associated with its own vibration
mode with the corresponding own periods.

For the phenomenon under study, the dam period is known through modal
analysis, available through empirical formulations available in literature or
any basic software of structures. The reservoir period is obtained through
Chopra theory Tw = 4H/c(2n− 1). In general:

• T1 6= Ts

• T2 6= Tw

where T1 and T2 are the first two periods of vibration of the coupled
system, Ts the period of the empty dam and Tw that of the reservoir. Two
limit cases are identified for the response of the system:
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1. limfw/fs→0: Corresponds to a dam with a frequency much greater than
that of the reservoir, that is, relatively rigid with respect to the reser-
voir. In this case, the problem can be dealt with with the classic solu-
tions, since the lack of flexibility greatly simplifies the interaction.

2. limfw/fs→∞: Corresponds to the opposite case, that is, as if the fluid
were incompressible with respect to the structure. Here it is possible
to break down the problem into the two fundamentals proposed by
Chopra.
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3.7 Height of the reservoir

In this section, the effect of the filling degree of the reservoir on the dynamic
behaviour of the system is studied. In general, the depth of a reservoir dam
at a given time depends on two factors, the first related to the flows that are
taxed in the water course on which the structure is located, and the second
with the operating conditions of the reservoir (power generation, drinking
water consumption, flood control, etc.)

With the intention of covering a range of situations close to that which
occurs in practice, 3 scenarios were considered for each case study.

• The first corresponds to a totally full reservoir, associated with a flood
event that supposes a filling level above the normal operation level.
He = H.

• The second belongs to an intermediate point between the first and the
last. He = 0.85H

• The last scenario supposes the opposite situation, that is to say, to a
minimum volume, that the norms normally establish in the order of a
65 % of the height of the dam, based on the ecological flow, necessary
to protect the fish fauna. He = 0.65H

The results of the simulations are presented in Figure 3.20. In general,
the period of the coupled system increases with the water level, due to a
greater amount of mass in the system, for the same rigidity. On the other
hand, amplifications at high frequencies increase for intermediate fill values.
In both cases, the amplifications for the first peak remain or decrease with
respect to the full dam.
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Fig. 3.20: 2D Models - Effect of reservoir depth
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3.8 Vertical vibration

The next boundary condition to be evaluated is the direction in which the
oscillation occurs. Although normally the most important vibrations are
developed perpendicular to the master section of the dam, there are vertical
accelerations caused by these.

Figure 3.21 shows a direct comparison between the amplifications gen-
erated by horizontal and vertical oscillations, respectively. The former are
clearly superior, by an order of magnitude.

In addition, it is evident that the same modes of vibration are activated
for both directions of oscillation, as observed in the peaks that coincide on
the axis Ωs.
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Fig. 3.21: 2D Models - Effect of oscillation direction
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3.9 Dissipation of energy by the sediments in

the reservoir bed

This section presents the effects of energy absorption caused by the presence
of deformable sediments in the reservoir bed. Numerous models exist in lit-
erature, of diverse relative complexity, for the simulation of the phenomenon.

In the present investigation, it was chosen to evaluate the process by
means of an acoustic surface with an assigned impedance, as a function of
assigned values of the dissipation coefficient αr. Five notable values were
chosen, presented in Table 3.8.

αr Acoustic impedance
1.00 ∞
0.90 27.36× 106 kg/s* m2

0.70 79.30× 105 kg/s* m2

0.50 42.00× 105 kg/s* m2

0 14.00× 105 kg/s* m2

Table 3.8: Correspondence between values of αr and acoustic impedances

Figure 3.22 shows the effect for each value of αr for each dam. In the case
of the more flexible dam, Lumiei, no changes are observed in the periods of
the coupled system. For the Pertusillo dam moderate variations are detected.

Though its determination is complex. is safe to say that considering an
average value of αr seems to be enough in order to simulate realistic pressures.
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Fig. 3.22: 2D Models - Effect of sediments energy absorption
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3.10 Three-dimensional models

Three-dimensional models of the case studies were built, respecting the ge-
ometries of the reservoirs. Through a process analogous to the one followed
for the two-dimensional models, the convergence of the calculation meshes,
the influence of the location and the types of elements used were studied.
Figure 3.23 shows the first vibrating mode of each dam. It is observed that
the fundamental mechanism is different in both cases.

Lumiei, presents an antisymmetric mode with respect to the main section
on the ridge. This is particularly interesting for transverse vibrations, in the
tangential sense to the horizontal arcs. On the other hand, Pertusillo presents
a symmetrical way in the radial sense, typical of a structure of high flexibility
fixed on its extremes.

In Table 3.9 the fundamental frequencies of empty dams, reservoirs and
coupled systems are presented. Lumiei goes from being the most flexible dam
to being the most rigid. Pertusillo, also increases its rigidity considerably.

Dam Model fs fw fa (fs − fa)/fs
Lumiei L3 6.887 Hz 2.885 Hz 2.885 Hz 58.11 %

Pertusillo P3 4.773 Hz 4.655 Hz 3.521 Hz 26.23 %

Table 3.9: 3D Models - Natural frequencies of the dam-reservoir system

From the amplifications represented in Figure 3.25 it is understood that
if the dams are considered rigid, the main mechanism is similar to the two-
dimensional case, but with certain differences due to the geometry of the
acoustic domain. On the other hand, if they are considered flexible, the
amplifications are slightly higher with respect to the two-dimensional case,
eliminating the peaks corresponding to higher values of Ωs. This means that
it is the first mode of the coupled system that is activated most effectively.
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(a) Lumiei (b) Pertusillo

Fig. 3.23: 3D Models - First vibration mode
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(a) Lumiei Dam

(b) Pertusillo Dam

Fig. 3.24: 3D Models - Transmission of acoustic waves within the reservoir
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Fig. 3.25: 3D Models - Hydrodynamic thrusts in Sweep Analysis
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3.11 Added Masses

In order to obtain an idea of the precision of the method in comparison
with the classics, simulations were performed by adding point masses to
the two-dimensional models, in such a way to simulate the hydrodynamic
forces. These masses were calculated according to the Westergaard model,
introduced in Section 1.2.2.1.

Figure 3.26 shows the differences between both procedures. In general,
the aggregate point masses are on the safety side, overestimating the hy-
drodynamic thrusts. The amplifications are similar for frequencies less than
fw, but diverge for higher values. This is because the masses are calculated
using the Westergaard model, which is limited to the aforementioned range.
Therefore, for frequencies greater than fw the method loses precision and
although, for rapid estimates it is a useful procedure, it must always be sup-
ported by some more detailed numerical method such as that proposed in
the present investigation.

Rodrigo Rivero Page 93



Sapienza University of Rome

0 1 2 3 4

Dimensionless Frequency Ωs [-]

0.2

0.4

0.6

0.8

1

1.2

1.4

S
[-

]

(a) Lumiei Dam

0 1 2 3 4

Dimensionless Frequency Ωs [-]

0.2

0.4

0.6

0.8

1

1.2

1.4

S
[-

]

Acoustic elements

Added masses

(b) Pertusillo Dam

Fig. 3.26: 2D Model - Added masses method
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3.12 Rock mesh

For modelling the foundation rock and surrounding terrain, a parametric
analysis was performed, considering 4 parameters; the 3 dimensions of the
terrain portion and the ratio Kt = Ec/Ef , that is, the elastic modulus of the
concrete divided by the elastic modulus of the foundation rock. The dam
was considered fixed to the terrain through the abutments, and the rock was
considered fixed in space through fixed links located on its contour. In this
way, varying the value of the parameters above mentioned, different models
of different dimensions were considered. Under static load for the dam and
the terrain, stresses and strains were monitored. The aim was to find suitable
ratios of H/L/B such that the portion of terrain modelled did not influence
the behaviour of the dam through local effects.

The following conclusions are drawn from this analysis:

• Quadratic elements converge quicker to a stable solution.

• Tetrahedral elements are more suitable to model geometric irregulari-
ties.

• 3 elements seem to be the lower limit to catch up the bending behaviour
of the dam on the radial direction (through the thickness).

• In agreement with the USA code recommendations [14], if Kt ≥ 1 a
terrain portion of Ht = Bt = Lt = H, where H is the height of the
dam, seems to be enough to avoid local effects. If 0,25 ≤ Kt ≤ 0,5 a
portion with Ht = Bt = LT = 2H is required.
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3.13 Joints modelling

Given that dams are built deep into foundation rocks, with important ex-
cavation volumes, perimeter joints can be considered as fixed on the terrain
in the tangential direction. Still, their tensile strength is limited, not being
able to transmit tensile stresses during dynamic events. However, in order to
limit computational cost and favour convergence, in this research the perime-
ter joints are considered as completely fixed on the foundation. By doing so,
the possibility of sliding is discarded, which actually is a good approxima-
tion to reality, but tensile stresses become unrealistic high on the upstream
face of the dam. However, the accurate description of stress distribution is
not the main scope of this research, but to check the capability of meta-
models to estimate selected EDPs for linear and non-linear models with an
acceptable precision. On the other hand, joints opening and sliding between
cantilevers are simulated with a Hard contact algorithm, with a mean value
of the friction coefficient µ of 1.0.

Figures 3.27 and 3.28 compare stresses distribution in linear and non
linear models. As explained above, non linear model results in a slight in-
crement of tensile and compressive stresses. Figures 3.29 and 3.30 gives an
analogous comparison for dynamic loads. The same trend is identified. Fig-
ure 3.31 shows the maximum joints opening for static and for the reference
dynamic input. Crest displacements, on the other hand, have a higher range
of variation. For the monolithic model, an absolute value of 16 cm is reported,
whereas a value of 35 cm is reported for the jointed model.
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(a) Tensile Stresses

(b) Compressive Stresses

Fig. 3.27: Persutillo Monolithic Dam - Stresses for Static Loads
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(a) Tensile Stresses

(b) Compressive Stresses

Fig. 3.28: Persutillo Jointed Dam - Stresses for Static Loads
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(a) Tensile Stresses

(b) Compressive Stresses

Fig. 3.29: Persutillo Monolitic Dam - Stresses for Dynamic Loads
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(a) Tensile Stresses

(b) Compressive Stresses

Fig. 3.30: Persutillo Jointed Dam - Stresses for Dynamic Loads
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(a) Joint opening for Static Loads

(b) Joint opening for Dynamic Loads

Fig. 3.31: Pertusillo Jointed Dam - Joints openings
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3.14 Deterministic reference analysis

Deterministic analyses are carried on for the models reported in Table 3.10.
Their reservoir are constructed with acoustic elements using results obtained
in the FSI study as guidance. Quadratic elements are used both for the
structure and terrain.

Three loads are imposed to the dam, two statics and one dynamic; own
weight, hydrostatic with a full reservoir and the strong motion record de-
picted in 3.32. Maximum principal tensile and compressive stresses and
maximum crown accelerations and displacements are monitored for the linear
models. For the jointed models, joints sliding and opening are monitored in
top of the mentioned linear EDPs.

Code Dam Joints
A Lumiei No
B Pertusillo No
C Lumiei Yes
D Pertusillo Yes

Table 3.10: Models used for Uncertainty analysis
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Fig. 3.32: Dinar Strong Motion record
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3.15 Sensitivity analysis

A bound variation of ±20% is considered for each input factor. This are
selected through a careful review of the results obtained until this point.
Input parameters and their design space are described in Table 3.11.

Symbol DL Mean UL
Ec 28× 103 MPa 35× 103 MPa 42× 103 MPa
νc 0.18 0.22 0.26
ρc 2000 kgm3 2500 kgm3 3000 kgm3
µ 0.80 1.00 1.20
ζc 0.04 0.05 0.06
Ec 25.2× 103 MPa 31.5× 103 MPa 37.8× 103 MPa
νf 0.18 0.22 0.26
αr 0.40 0.50 0.60

Table 3.11: Bound variation of input parameters for SA

Ec: Concrete elasticity modulus, νc: Concrete Poisson ratio, ρc: Concrete
mass density, µ: Concrete coefficient of friction, ζc: Concrete critical damping
ratio, Ec: Foundation elasticity modulus, νf : Foundation Poisson ratio, αr:
Reservoir coefficient of reflectivity.

Results are reported in form of tornado plots, for each model in for each
monitored EDP. It is clear that different EDPs are influenced more or less
by different input parameter, thus there is no a clear trend between input
and outputs a priori. Also, variability range of joints opening is wider for the
model with less joints, and narrower for joints slippage. Crest displacement
is more variable for jointed models. Yet, again the range is bigger for the
model with less joints.

Three design factors are selected for the Lumiei dam and five for the
Pertusillo dam. They are summarized in Table 3.12.

Model Factors
A Ec, Ef , ρc
B Ec, Ef , ρc, ζc, αr

C Ec, ρc, µ
D Ec, ρc, ζc, αr, µ

Table 3.12: Factors selected for DOE
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Fig. 3.33: Tornado Diagrams - Model A
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Fig. 3.33: Tornado Diagrams - Model A
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Fig. 3.34: Tornado Diagrams - Model B
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Fig. 3.34: Tornado Diagrams - Model B
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Fig. 3.35: Tornado Diagrams - Model C
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Fig. 3.35: Tornado Diagrams - Model C
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Fig. 3.36: Tornado Diagrams - Model D
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Fig. 3.36: Tornado Diagrams - Model D
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3.16 Design of experiments

In this section, the five DOEs in study are applied in order to obtain the
design factor combinations.

The amount of experiments for each model and DOE technique is sum-
marized on Table 3.13. For each DOE procedure there is a maximum degree
of polynomial that can be fitted trough least squares. Whenever is possi-
ble, linear, quadratic and cubic polynomials are fitted, in order to further
understand the effect of the polynomial degree. Figure 3.51 depicts the rate
of grow of NDOE for the 5 DOEs presented. It is clear that Full Factorial
designs are not feasible for an important number of factors. FFD3 reaches
the thousand experiments for k = 8.

Model FFD3 FFD2 BBOX CCD PBD
A 27 8 13 15 4
B 243 32 41 43 8
C 27 8 13 15 4
D 243 32 41 43 8

Table 3.13: Amount of DOE experiments for each model
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Fig. 3.37: Number of experiments required by each DOE technique
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3.17 Sampling for uncertainty analysis

LHS, Halton and Sobol sequences are used to sample input factors in this
research. Distributions patterns are depicted in Figure 3.38. It is clear
that Halton and Sobol schemes produce much more consistent samples, and
consequently the design space can be covered with less data points.

1000 samples were collected with each scheme for the linear models. The
uniformity of distribution were checked using the mean of the output of every
sample. These are reported in Figures 3.39 and 3.40. LHS needs a higher
number of experiments to stabilize around the mean of the design space.
Sobol and Halton need around 250 simulations only.

On the other hand, for non linear models only Halton sequence was uti-
lized, because of its efficiency. This is represented in Figures 3.41 and 3.42.
Also in this case, the sampling mean stabilizes with around 250 simulations,
even for the case of k = 5.

Rodrigo Rivero Page 113



Sapienza University of Rome

−1 0 1
X1

−1

0

1

X
2

(a) Monte Carlo Sampling

−1 0 1
X1

−1

0

1

X
2

(b) Latin Hypercube Sampling

Fig. 3.38: Sampling sequences
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Fig. 3.38: Sampling sequences
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Fig. 3.39: Model A - EDPs sampling convergence
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Fig. 3.40: Model B - EDPs sampling convergence
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Fig. 3.41: Model C - EDPs sampling convergence
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Fig. 3.42: Model D - EDPs sampling convergence

Rodrigo Rivero Page 119



Sapienza University of Rome

3.18 Validation of metamodels

Using the outputs EDPs obtained at the DOE simulation points, one meta-
model for each DOE technique and for each EDP was constructed and fitted
with least squares on the DOE step. The coefficients are not reported here
for the sake of brevity. Using this fitted polynomials, outputs corresponding
to a big number of samples, generated on the previous section, are estimated
for validation.

Considering that the number of metamodels is equal to the product of
DOE procedures, EDPs responses and possible polynomials degrees, it would
be cumbersome to report all the combinations here. Hence, not all of them
will be reported, but only the quadratic version of them, whenever possible,
and the linear version otherwise.

Estimations are reported in a series of scatter plots. The abscissas cor-
respond to predicted values, whereas the actually observed values are on the
ordinate. The closer the scatter points are to the 45 degrees line, the more
accurate the prediction is.

Slippage of joints seems to be the most disperse EDP, followed by crest
accelerations, joint openings, and tensile stresses. Displacements are the least
disperse values, and can be accurately predicted.
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Fig. 3.43: Model A - Maximum Crest Acceleration estimation
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Fig. 3.43: Model A - Maximum Crest Acceleration estimation
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Fig. 3.43: Model A - Maximum Crest Acceleration estimation
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Fig. 3.44: Model B - Maximum Tensile Stress estimation
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Fig. 3.44: Model B - Maximum Tensile Stress estimation
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Fig. 3.44: Model B - Maximum Tensile Stress estimation
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Fig. 3.45: Model C - Maximum Joints Opening
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Fig. 3.45: Model C - Maximum Joints Opening
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Fig. 3.45: Model C - Maximum Joints Opening

Rodrigo Rivero Page 129



Sapienza University of Rome

27.90 32.91 37.92

Estimated [mm]

22.89

27.90

32.91

37.92

O
b

se
rv

ed
[m

m
]

(a) Quadratic FFD3

27.90 32.91 37.92

Estimated [mm]

22.89

27.90

32.91

37.92

O
b

se
rv

ed
[m

m
]

(b) Quadratic FFD2

Fig. 3.46: Model D - Maximum Joints Slippage
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Fig. 3.46: Model D - Maximum Joints Slippage
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3.18.1 Goodness of fitting

The R2 Normal Regression Parameter is used to asses the goodness of fitness
(GOF) of the multi-linear metamodels.

In general FFD3 gives the most accurate metamodels, for every EDP. Yet,
as explained before, the amount of experiments it requires simply makes it
impractical for several variables. On the other hand, FFD2 is not satisfactory
for non linear models. It fails to predict acceleration in linear models as well.
This is because, as the DOE only considers extreme values, cannot estimate
the curvature of the hipersurface response. CCD fails to predict accelerations
for linear models as well. The reason is not clear. It would seem that the
acceleration EDP generates a particularly curve RSM with a high curvature.
PBD behaves surprisingly well for the number of experiments it requires.
Using only 8 design points, it can roughly describe the distribution of joints
opening and slippage. This is specially useful for quick evaluations of as a
check tool. Box Behnken design seems to be the most accurate for the number
of experiments method, reaching the same order of accuracy as FFD3. It can
describe the curvature of every RSM in this research. For this reason, it is
concluded this is the recommended DOE technique for arch dams.

Next the R2 parameter is presented for each EDP estimated on the pre-
vious section.

Quadratic polynomials have better accuracy compared to the correspon-
dent linear versions depending on the DOE technique. In general, their
capacity for estimating is similar for linear models. Also, cubic polynomials
are not better predictors in any case. This is caused by the overfitting effect,
which means that the model commits so much to the sample data that it
trades-off its capacity for adapting to the new samples used for validation.
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3.18.2 Application of RSM in uncertainty analysis

Once a metamodel is fitted and validated, it can be used in any uncertainty
quantification. As a brief example, 100× 103 analysis are performed on a
BBOX metamodel, to find out the probability of exceedance of the maximum
crest displacement, and compared with the one obtained from the 3000 FE
simulations.
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Fig. 3.51: Model A - CDF of Maximum crest displacement of experiments
required by each DOE technique

With this simple example it becomes clear that metamodels developed
with Box Behnken technique are specially suited for estimating structural
responses of dam-reservoir coupled systems. For uncertainty analysis, the
calculation time with metamodels is negligible compared to the corresponding
for FE models, and the resultant precision is considered to be acceptable.

This allows to conclude that metamodels constitute a valid an powerful
tool for arc dams safety probabilistic evaluation.
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4. Conclusions

The present investigation is based on the use of metamodels for uncertainty
analysis of concrete arch dams. The Response Surface Method is presented
and proposed for the task.

In order to evaluate its applicability, two case studies were taken into
consideration. As a previous step, aspects regarding to simulation of fluid
structure interaction and non linear joints has been studied in depth, in order
to develop finite element models suited for a big number of deterministic
analysis, required for validation of the metamodels. Acoustic finite elements
were introduced and their usage has been studied in known problems from
dam literature. After that, restrictive hypothesis were removed one by one,
to evaluate their effects on the resultant thrust over the dam.

In particular, the need to introduce three-dimensional models for curved
dams is evident, because the behaviour of these is strongly dependent on
mechanisms that act in space. The effect of the energy absorption in the
bottom of the reservoir is another important characteristic, since it signif-
icantly reduces the pressures on the face of the structure. Although it is
difficult to measure, it seems sufficient to consider an intermediate value of
acoustic impedance. The effect of two commonly ignored conditions, the rel-
ative depth of the reservoir and the direction of the oscillation imposed on
the structure were also analyzed. The first one turned out to be of medium
importance, since it modifies the periods of the coupled system and induces
important variations in the amplification of the hydrodynamic thrust. The
second can be ignored safely for curved dams. In addition to these other
factors were studied, related to the numerical simulation of the phenomenon
under study. It was found that the beating of acoustic waves occurs when
no energy dissipation mechanism is considered. The effect of joints between
cantilevers was also analyzed. The increment on structural displacements re-
sulting from their inclusion is notorious. Nevertheless, perimeter joints were
not modelled, in order to reduce computational effort required on the next
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phase.

At a later stage, four models were considered, two monolithic and their
jointed versions. Two static loads and a strong motion were imposed as loads
to the structure. A sensitivity analysis was executed, to identify primary fac-
tors corresponding to different outputs. It turned out that input factors affect
different structural outputs in a well differentiated manner. Next, different
Design of Experiment techniques were adopted, and after carrying on the
simulation at those design points, linear, quadratic and cubic polynomials
metamodels were fitted. Over seven thousand deterministic analysis were
run in order to provide a framework for validation. Precision were discussed
for different metamodels, output responses and polynomial degrees. In gen-
eral, it was found that the Box Behnken design of experiments technique
is well suited for building metamodels for arc dams. The obtained level of
precision was roughly equal to the achieved with full factorial designs. It
was also found that all the selected output parameters, namely, maximum
crest displacement, maximum crest acceleration, maximum principal tensile
stress, maximum principal compressive stress, maximum joint opening and
maximum joint slippage were satisfactorily estimated by quadratic Response
Surface metamodels developed with Box Benhken design. The probability
of exceedance of the maximum acceleration at the crest of an arch dam was
calculated as an example application.

Finally, it is concluded that the proposed method is consistent for un-
certainty modelling of both linear and non linear arc dams and other large
coupled systems as well. The main advantage they provided is to save compu-
tational effort on a great amount. Metamodels are not exclusive of structural
engineering, and can be used in any applied science to estimate responses of
complex systems, to improve designs, check prototypes, identify important
input factors interactions, among other uses.
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l’eau sour le construction hydrotechnique massive, sommises aux oscil-
lations,” – Reveu de la Riviste National pour la recherche scientifique,
vol. 74, 1964.

[24] A. K. Chopra, “Hydrodynamic pressures on dams during earthquakes,”
Journal of the Engineering Mechanics Division, vol. 93, no. 6, pp. 205–
224, 1967.

[25] S. Kotsubo, “Dynamic water pressure on dams during earthquakes,” in
Second world conference on earthquake engineering, 1960, pp. 799–814.

[26] H. Brahtz and C. Heilbron, “Discussion of water pressures on dams
during earthquakes,” Trans. ASCE, vol. 98, pp. 452–460, 1933.

[27] J. Bustamante, E. Rosenblueth, I. Herrera, and A. Flores, “Presion
hidrodinamica en presas y depositos,” Boletin Sociedad Mexicana de
Ingenieria Sismica, vol. 1, no. 2, 1963.

[28] C.-C. Chen, “The effect of dynamic fluid pressure on a dam during
earthquakes,” Journal of Applied Mathematics and Mechanics, vol. 25,
no. 1, pp. 211–219, 1961.

[29] A. Chopra, “Earthquake analysis of arch dams, factors to be consid-
ered,” Journal of Structural Engineering, vol. 138, no. 2, pp. 205–214,
2012.

[30] L. Zhang and A. K. Chopra, “Computation of spatially varying ground
motion and foundation-rock impedance matrices for seismic analysis of
arch dams,” vol. 91, no. 6, 1991.

[31] G. Fenves and A. K. Chopra, “Effects of reservoir bottom absorption on
earthquake response of concrete gravity dams,” Earthquake engineering
& structural dynamics, vol. 11, no. 6, pp. 809–829, 1983.

[32] Y. Ghanaat and B. B. Redpath, “Measurements of reservoir-bottom
reflection coefficient at seven concrete damsites,” 1995.
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