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ABSTRACT

Context. The Love number h2 describes the radial tidal displacements of Mercury’s surface and allows constraints to be set on the
inner core size when combined with the potential Love number k2. Knowledge of Mercury’s inner core size is fundamental to gaining
insights into the planet’s thermal evolution and dynamo working principle. The BepiColombo Laser Altimeter (BELA) is currently
cruising to Mercury as part of the BepiColombo mission and once it is in orbit around Mercury, it will acquire precise measurements
of the planet’s surface topography, potentially including variability that is due to tidal deformation.
Aims. We use synthetic measurements acquired using BELA to assess how accurately Mercury’s tidal Love number h2 can be deter-
mined by laser altimetry.
Methods. We generated realistic, synthetic BELA measurements, including instrument performance, orbit determination, as well as
uncertainties in spacecraft attitude and Mercury’s libration. We then retrieved Mercury’s h2 and global topography from the synthetic
data through a joint inversion.
Results. Our results suggest that h2 can be determined with an absolute accuracy of ±0.012, enabling a determination of Mercury’s
inner core size to ±150 km given the inner core is sufficiently large (>800 km). We also show that the uncertainty of h2 depends
strongly on the assumed scaling behavior of the topography at small scales and on the periodic misalignment of the instrument.
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1. Introduction

Knowledge of Mercury’s interior is key to understanding its
formation and thermal evolution. Geodetic measurements are
effective in constraining models of Mercury’s interior structure.
For example, the high density of 5429.30 kg m−3 (Margot et al.
2018) and the quadropole moments of the gravity field show
that the planet possesses a large metallic core, and Earth-based
radar observations of its spin state have proven that the core and
silicate shell are mechanically decoupled (Margot et al. 2007,
2012). Measurements of tides (Mazarico et al. 2014b; Verma &
Margot 2016; Genova et al. 2019) and global contraction (Byrne
et al. 2014) can further constrain interior models (Padovan
et al. 2014; Knibbe & van Westrenen 2015). Recent modeling
efforts are in agreement on Mercury’s being composed of a
solid outer shell of about 400 km thickness and a large metallic
liquid core (Hauck et al. 2013; Padovan et al. 2014; Knibbe &
van Westrenen 2015; Margot et al. 2018; Steinbrügge et al.
2018a; Genova et al. 2019). However, the existence and size of
a potential solid inner core is still uncertain (Margot et al. 2018,
and references therein). Recently, Genova et al. (2019) found
evidence for a solid inner core whose radius is probably between
0.3 and 0.7 times that of the outer core. Better observational
constraints on the inner core size are essential to understanding

Mercury’s thermal evolution (Hauck et al. 2018), thereby gather-
ing information on the evolution of its orbital state and capture in
a 3:2 resonance (Noyelles et al. 2014; Knibbe & van Westrenen
2017), as well as the workings of its dynamo (Christensen 2006).

In October 2018, the European Space Agency (ESA) and
the Japanese Aerospace Exploration Agency (JAXA) jointly
launched the BepiColombo mission to Mercury (Benkhoff et al.
2010). In December 2025, the Mercury Planetary Orbiter (MPO)
and the Mercury Magnetospheric Orbiter (MMO) will separate
and enter their respective orbits around the innermost planet.
One of the instruments aboard the MPO is the BepiColombo
Laser Altimeter (BELA, Thomas et al. 2007; Hussmann et al.
2018). BELA will measure the global topography of Mercury
with an average accuracy of 2 m and at a horizontal resolution
that varies as a function of latitude, reaching less than 250 m
at the poles and less than 3 km at the equator. It will also mea-
sure the surface roughness, local slope, and albedo at the laser
wavelength of 1064 nm (Steinbrügge et al. 2018b). Apart from
exploring the surface, BELA will also facilitate further insights
into Mercury’s deep interior by measuring the h2 tidal Love num-
ber and contributing to the determination of Mercury’s 88-day
libration amplitude φ0.

The h2 tidal Love number describes the radial component of
the surface displacement caused by solar tides. The displacement
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Fig. 1. Map of the peak-to-peak amplitude of radial displacement ur of
Mercury’s surface due to tides, assuming h2 = 0.85.

ur is proportional to the second-degree tidal potential V2 as

ur(θ, λ, t) = h2
V2(θ, λ, t)

g
, (1)

where g = µ'/R
2 = 3.70 m s−2 is the gravitational attraction

at the surface, µ' = 22 031.78 km3 s−2 (Folkner et al. 2014)
is Mercury’s gravitational parameter, R = 2439.7 km (Archinal
et al. 2011) is the radius of Mercury, θ and λ are co-latitude and
longitude, and t is time. The Love number h2 is a bulk quan-
tity that can be computed from radial profiles of density, shear
modulus, and viscosity (Segatz et al. 1988; Moore & Schubert
2000). Model calculations predict 0.77 < h2 < 0.93 (Steinbrügge
et al. 2018a). For h2 = 0.85, the peak-to-peak amplitude of
the resulting surface displacement ur reaches the maximum of
2.13 m at (θ = 90◦, λ = 0◦/180◦), the minimum of 0.11 m at
(θ = 29◦/151◦, λ = 0◦/180◦), and 0.67 m at the poles (Fig. 1).
These small amplitudes make the detection of the displace-
ment very challenging. Both h2 and the Love number k2, which
describes the change of the gravitational potential due to tides,
are highly sensitive to the thickness and rheology of the mantle
and only weakly depend on the properties of the core. However,
forming the ratio h2/k2 and the linear combination 1 + k2 − h2,
also called the diminishing factor, alleviates the resulting trade-
offs (Wu et al. 2001; Wahr et al. 2006; van Hoolst et al. 2007;
Steinbrügge et al. 2018a). These derived quantities are rather sen-
sitive to the inner core size, which could be inferred to ±100 km
given error-free measurements of k2 and h2 if the inner core
radius exceeds 800 km (Steinbrügge et al. 2018a). To distinguish
between a small and a large inner core, h2 would have to be
measured with an absolute accuracy of 0.05 (Steinbrügge et al.
2018a). Other than on Earth, h2 has previously only been mea-
sured on the Moon (Mazarico et al. 2014a; Thor et al. 2018). The
tidal signal has not yet been detected in measurements by the
Mercury Laser Altimeter (MLA, Cavanaugh et al. 2007) aboard
the MErcury Surface, Space ENvironment, GEochemistry, and
Ranging (MESSENGER) mission (Solomon et al. 2007). The
incomplete coverage, a comparably small volume of data, and
the limited measurement accuracy of the instrument hinder the
successful retrieval of h2.

Due to the eccentricity of its orbit and the triaxiality of the
inertia ellipsoid, Mercury is predicted to librate at its 88-day
orbital period with an amplitude of (Peale 1972),

φ0 =
3
2

B − A
Cm

(
1 − 11e2 +

959
48

e4 + ...

)
, (2)

where e is the eccentricity and A and B are the equatorial
moments of inertia. Since the core is decoupled from the outer

shell and does not participate in the 88-day libration, only the
polar moment of intertia of the outer shell Cm contributes to
the denominator in Eq. (2). Peale (1976) proposed a method
for determining the ratio between the polar moments of inertia
of Mercury’s outer shell and the whole planet Cm/C from four
quantities: the amplitude of its 88-day librations φ0, the obliq-
uity, and the quadropole moments J2 and C22 of the gravity
field. This moment of inertia ratio reveals the mass distribu-
tion within the core. The 88-day libration amplitude is currently
the limiting factor on the accuracy of the moment of inertia
ratio (Margot et al. 2018). In Eq. (2), the influence of a solid
inner core on the libration amplitude is not considered. If the
radius of Mercury’s solid inner core is larger than 1000 km, cou-
plings between the inner core and the solid shell could noticeably
influence the libration of the latter (van Hoolst et al. 2012). Fur-
thermore, the libration amplitude of the solid shell depends on
the radial density structure of the core (Dumberry et al. 2013).
Margot et al. (2007, 2012) found φ0 = 38.5 ± 1.6 arcsec using
Earth-based radar measurements. Stark et al. (2015a) used a
MESSENGER-based digital elevation model (DEM) and MLA
data to find a very similar result of φ0 = 38.9± 1.3 arcsec, equiv-
alent to 460 ± 15 m at the equator. While these two methods are
based on surface observations and therefore directly assess the
libration of the solid outer shell, gravity allows for the measure-
ment of the libration amplitude of the whole planet, with a larger
uncertainty, however, of 2.9 arcsec (Genova et al. 2019). See
Stark et al. (2018) for an overview of measurements of Mercury’s
rotation.

In this study, we simulate BELA measurements and investi-
gate the expected accuracy with which the tidal Love number h2
would be retrieved. The most straightforward way for determin-
ing tidal elevation changes appears to be the comparison of data
taken at different phases of the tidal cycle at points where differ-
ent ground tracks intersect. However, Steinbrügge et al. (2018b)
found that the determination of h2 from a crossover analysis is
not likely to be possible with sufficient accuracy in the nom-
inal one-year mission. One reason why the crossover analysis
is less promising is that for the near-polar orbit of the MPO,
crossover points are abundant only at high latitudes, where the
tidal amplitude reaches only one third of the maximum value at
the equator (Fig. 1). Another reason is the highly acute angles
at which the ground tracks intersect due to the slow rotation of
Mercury. Instead of using crossovers explicitly, we solve simulta-
neously for h2 and the static global topography. In this inversion,
the emphasis is on retrieving the Love number h2, not on obtain-
ing an optimal elevation model, which is only a by-product in
this analysis. Accurate elevation models are, of course, required
for geomorphologic analyses. The basic method of a joint inver-
sion has been pioneered by Koch et al. (2008, 2010). Koch et al.
(2008) parametrized the topography using spherical harmonics
but found that the method is computationally too expensive to
reach sufficient resolutions. Koch et al. (2010) then parametrized
the topography on an equirectangular grid, using cubic B-splines
in latitude direction and step functions in longitude direction,
but without considering neither error sources in the orbit and
pointing of the spacecraft nor the uncertainty in Mercury’s spin
state. Here, we use an expansion in 2D cubic B-splines to inves-
tigate the retrieval accuracy for h2. Our simulations include the
orbit of the spacecraft, the instrument performance, the sur-
face topography, the orbit determination, and attitude knowledge,
focusing particular attention on potential systematic biases that
may affect the results. Previously, we (Thor et al. 2018) applied
the same method to data from the Lunar Orbiter Laser Altime-
ter (LOLA) and retrieved a value for h2 for the Moon, which is
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Table 1. Three power laws used for the simulation of small-scale topography in this study, characterized by the parameters a and b.

Case a [m2] b L Resolution [km] Gaussian noise [m]

1 3.1 × 1010 −3.3 900 8.5 3.8
2 4.6 × 108 −2.65 450 17.0 10.1
3 1.05 × 107 −2 250 30.7 36.2

Notes. These power laws are used from spherical harmonic degree L to 7999. The resolution is half the equivalent Cartesian wavelength to spherical
harmonic degree L. Gaussian noise represents power contained in even higher degrees.

in good agreement with the value obtained by crossover analysis
(Mazarico et al. 2014a).

2. Simulation of measurements

For our simulated laser range measurements, we attempt to
account for the most relevant sources of random or systematic
errors in a realistic way. We use a topography model for Mercury
that is expanded in spherical harmonics up to a degree of 7999,
corresponding to a resolution of 958 m. Due to computational
limitations, surface roughness at a smaller scale is treated as
a random contribution for each individual range measurement.
The spacecraft ephemeris and the associated errors in the radial
and horizontal components have been obtained from numerical
simulations of the Mercury Orbiter Radio science Experiment
(MORE). For the instrument range error, we assume a random
noise which is independent from shot to shot. The location of
the laser footprints is affected by a random pointing jitter, a
systematic pointing error, and an error in the assumed libration.

In our simulated measurement campaign, the nominal opera-
tion of the MPO begins on March 15, 2026, 4:00 a.m. UTC. Our
simulation of the orbit commences with an initial state provided
by ESA mission analysis at that epoch. We base the propaga-
tion of the orbit on the Hgm005 model of Mercury’s gravity
field (Mazarico et al. 2014b), including perturbations by the Sun,
tides, and solar radiation pressure. The MPO will have an ellip-
tic orbit with 400 km altitutde at pericenter and 1500 km at
apocenter at the start of the science phase.

We simulate nadir-pointing measurements of BELA at a
2 Hz shot frequency. Instrument performance, surface albedo,
slope, and roughness, as well as solar noise all influence the
signal-to-noise ratio (S/N) of the measurement (Gunderson et al.
2006; Gunderson & Thomas 2010). The S/N affects whether
BELA can successfully detect the laser return from ground. Per-
formance modeling has shown that for moderate slopes up to
20◦ and an albedo of 0.19, the probability of false detection is
close to zero when the spacecraft altitude is below 1050 km
(Steinbrügge et al. 2018b). This is also considered as the nominal
maximum operation altitude for BELA. We adapt this thresh-
old for our simulation as a pessimistic scenario, leaving us with
30 282 149 measurements in the one-year nominal mission. The
range error is similarly determined by the S/N and is almost
never larger than 2 m (Steinbrügge et al. 2018b). We simulate
the range error by adding Gaussian noise with a conservative
standard deviation of 2 m to each measurement.

For known spacecraft altitude, the dominant signal contained
in the measured altimetric range is the static surface topography.
We generate a synthetic topography of Mercury in three steps.
First, we use a global DEM derived from stereophotogrammet-
ric data acquired by the Mercury Dual Imaging System (MDIS,
Hawkins et al. 2007; Becker et al. 2016) aboard MESSENGER
to generate a spherical harmonic model up to degree L. Second,

we extrapolate the spherical harmonic model following a power
law alb up to degree 7999, where l is the spherical harmonic
degree, and a and b are parameters (see Table 1). The spherical
harmonic coefficients are randomly distributed around zero with
variance σ2 = alb(2l + 1)−1. The spherical harmonic model is
transformed into a regular equispaced grid using Féjer quadra-
ture (Schaeffer 2013) and sampled at each measurement location
using Lagrange interpolation. Third, Gaussian noise is used to
model the topographic power contained in degrees 8000 and
higher. The amplitude of this contribution has been determined
under the assumption that the spectral power distribution from
l = 8000 to infinity is the same as for L < l < 8000.

It is well known that planetary topography at large scales can
be described using power laws, reflecting the fractal nature of
topography (Turcotte 1987). Previous studies often found that a
power law with an exponent −2.5 < b < −2 approximates the
variance spectrum of topography well (Bills & Kobrick 1985;
Balmino 1993; Ermakov et al. 2018). At smaller scales, how-
ever, it is uncertain if a single power law can be an appropriate
representation of topography (Landais et al. 2015). Global data
sets have limited resolution and the distribution of morpholo-
gies over the surface is inhomogeneous. Therefore, we consider
three power laws which are extrapolations of the real topogra-
phy of Mercury at different scales for our simulations (see Fig. 2
and Table 1). Figure 3 shows large-scale topography and ran-
dom noise for case 1 (b = −3.3) over the time frame of one orbit
of the MPO. The MDIS topography defines most of the large-
scale topography. The exponent b = −3.3 is in agreement with
the spectral slope of the MDIS topography in the spectral range
of 800 < l < 1000, where the results can be considered reliable.
We use this as our baseline case. However, to account for a possi-
bly rougher topography at small scale, we also consider the less
optimistic cases 2 and 3 which feature spectral slopes that are
less steep.

The Mercury Orbiter Radio science Experiment (MORE)
determines the orbit of the MPO (Milani et al. 2001; Iess et al.
2009; Imperi et al. 2018). Ground antennas track the MPO
with a multifrequency radio link providing range and range
rate measurements accurate to 20 cm and 0.04 mm s−1, respec-
tively, at 10 s integration time. The set of synthetic observables
used in this simulation comprehends only range-rate measure-
ments (every 10 s) and the Italian Spring Accelerometer (ISA,
Iafolla et al. 2010) readings, to cope with mismodeling of all
non-gravitational accelerations (Lucchesi & Iafolla 2006). The
MPO’s trajectory is retrieved as a solution of the orbit determi-
nation process (Tapley et al. 2004, Chap. 4). We used a weighted
least-squares filter with a constrained multi-arc approach, con-
sisting of a partitioning of the orbit in consecutive one-day arcs
(Imperi et al. 2018). The estimated parameters include the space-
craft state vectors (position and velocity) at the center of the arc,
gravity spherical harmonic coefficients up to degree and order
50, the k2 tidal Love number, coefficients describing Mercury’s
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obliquity and libration, reaction wheels desaturation maneuvers,
and calibration parameters for the ISA. The ISA error, driven
by thermal variations of the sensing elements, consists of a
low frequency (Mercury orbital period, 88 d) and a high fre-
quency (BepiColombo orbital period, 2.3 h) contribution. The
first component is modeled by a bias and a bias rate. A new
set of these parameters is estimated for every arc. The sec-
ond component is modeled as a sinusoid at the BepiColombo
orbital period. The amplitude of this sinusoid is estimated as
a global parameter for the full one-year data set (Iafolla et al.
2007). This approach, followed in Imperi et al. (2018), shall
suppress the residual systematic accelerations to a level below
2 × 10−8 m s−2, which corresponds to a range rate signal well
below the expected accuracy (Iess et al. 2009). Residual non-
gravitational accelerations at these levels would not introduce
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Fig. 4. The radial variance component σR, the variance component σN
normal to the spacecraft orbital plane, and the transversal variance com-
ponent σT of the initial positions for each one-day arc. The figure agrees
with Fig. 4 of Imperi et al. (2018).

any statistically significant bias in the estimated parameters. The
numerical simulations of Mariani (2017, Sect. 5.2) also support
this assertion. Because ISA readings will not be available during
the desaturation maneuvers, additional coefficients describing
these maneuvers are estimated.

Unlike range, the range rate (or Doppler) measurements are
differential, thus largely immune from systematic errors. In order
to account for the uncertainties in the MPO’s trajectory and to
provide an ensemble of trajectories to be used in the generation
of BELA synthetic observables, we perturb the six components
of the spacecraft state vectors of each arc with 100 error realiza-
tions. The errors δl in the state vectors are samples of random
variables following a multivariate Gaussian distribution,

f (δli) =
1√

(2π)6 det Pi

exp
(
−1

2
δl>i P−1

i δli
)
,

where Pi is the covariance submatrix of the spacecraft state
vector of the ith arc. The standard deviation of the spacecraft
position at the center of each arc is shown in Fig. 4. The per-
turbed initial condition vectors are then propagated up until the
beginning of the next arc, thus providing a member of the ensem-
ble of possible MPO trajectories. The difference between these
perturbed trajectories and the reference trajectory represents the
orbit determination error. It is on the order of a few centimeters
in radial direction and meters in transverse and normal directions
(Fig. 5), and it is degraded substantially when maneuvers occur
during periods without tracking. In fact, after orbit insertion, the
MPO will perform daily maneuvers for reaction wheel desatura-
tion and attitude control, but no more orbit maneuvers (Benkhoff
et al. 2010). In Fig. 5, the first desaturation maneuver occurring
during the navigation passage is estimated well, while the sec-
ond one is outside the tracking pass and its estimation is limited
by the level of the inter-arc constraints (1 m in position). The lat-
eral components of the orbit determination error affect the laser
range because the altimeter samples the topography at a different
location than the assumed one. Hence, this effect depends on the
local topographic slope. The range signal caused by the lateral
orbit determination error is typically significantly larger than the
radial orbit determination error, which directly affects the range
(Fig. 3).

The BELA requirement for the attitude knowledge of the
instrument is 20 arcsec. We simulate a 20 arcsec systematic
error representing a thermal effect and a 2 arcsec jitter. This
is a worst-case assumption because a constant pointing offset,
which is less critical for the h2 estimation, is likely to dominate
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Fig. 5. Propagated formal standard deviations of position as a function
of time for a typical one-day arc. Quantities σR, σN, and σT indicate
the radial component, the component normal to the spacecraft orbital
plane, and the transversal component, respectively. The light blue and
light red zones depict the X-band (navigation) and Ka-band (scientific)
tracking periods, respectively. The black dashed lines indicate the two
reaction wheels desaturation maneuvers present on each arc.

the total attitude knowledge uncertainty. The systematic point-
ing error is simulated as 20 arcsec × cos M, where M is the
mean anomaly of Mercury. It mimics a thermal effect as it is
correlated with the Sun-Mercury distance. The direction of the
systematic pointing error is randomly chosen but kept constant
over the whole mission. The direction of the pointing jitter is
randomly chosen for each measurement and its amplitude has
a standard deviation of 2 arcsec. The pointing affects the range
measurements because the altimeter samples the topography at
a different location resulting in a range error on a sloped sur-
face. The additional increase in range due to a longer laser path
when pointing slightly off-nadir is negligible at an off-nadir
angle of 20 arcsec. With increasing spacecraft altitude, the point-
ing error causes a larger effect. In Fig. 3, the altitude ranges
from 1050 km over 400 km back to 1050 km. In our model,
for topography case 1, the standard deviation of the range sig-
nal caused by pointing misalignment is 3.2 m at perihelion and
aphelion.

The second-degree tidal potential is given by (Murray &
Dermott 1999),

V2(θ, λ, t) = −µ�R2

2r3(t)

(
3 cos2 ψ(θ, λ, t) − 1

)
, (3)

where µ� = 132712440041.9394 km3 s−2 (Folkner et al. 2014) is
the standard gravitational parameter of the Sun, r is the distance
between the center of mass of Mercury and the Sun, and ψ is
the Mercury-centric angle between the location of the footprint
(θ, λ) and the Sun. We access the DE430 ephemerides (Folkner
et al. 2014) which allow for the computation of r and ψ with high
accuracy using Spacecraft, Planet, Instrument, Camera-matrix,
Events (SPICE) kernels (Acton et al. 2018). Higher degrees
of the tidal potential are negligibly small. Mercury’s 3:2 spin-
orbit resonance causes a permanent tidal bulge which peaks at
35 cm at (0◦ N, 0◦ E). We remove the static potential responsible
for this tidal bulge using Mercury’s averaged orbital elements
a = 57.90909 × 106 km and e = 0.2056317 (Kaula 1964; Stark
et al. 2015b). Finally, we use the remaining dynamic potential
V2 to compute ur(t) at each measurement location using Eq. (1)
and an a priori h2 = 0.8. The tidal displacement measured by
the altimeter within one orbit of the spacecraft (Fig. 3) can reach
a range of up to 1.4 m when the spacecraft orbits along zero
longitude close to perihelion.

We simulate the 88-day libration of Mercury using the des-
cription of Mercury’s resonant rotation by Stark et al. (2015b).

The amplitude error of the libration is randomly generated and
represents the current uncertainty level of 1.3 arcsec. This is a
conservative value because the BepiColombo mission is likely
to provide an updated estimate with lower uncertainty. A 1.3 arc-
sec libration translates into a lateral signal of 15 m at the equator,
which has a radial effect of up to a few meters. At the poles, the
libration has no effect. The correlation between libration and sys-
tematic pointing signal in Fig. 3 is due to the similar lateral shift.
The right ascension and declination of Mercury will be deter-
mined by MORE with uncertainties <0.2 arcsec, corresponding
to an error of <3 m on the surface (Imperi et al. 2018), assum-
ing that the core and solid shell have the same pole. Therefore,
the error caused by the uncertainty of the pole orientation is
negligible and not considered in this study.

3. Solution strategy

For the simultaneous retrieval of h2 and global topography from
the simulated data, we follow the strategy of Koch et al. (2010).
A single observation

Tk(θk, λk, tk) = Tstat(θk, λk) + ur(θk, λk, tk) + ek (4)

= Tstat(θk, λk) + h2
V2(θk, λk, tk)

g
+ ek, (5)

at co-latitude θk, longitude λk, and time tk is modeled to contain
the static topography Tstat at that location, the surface displace-
ment ur, and measurement and model errors ek. Here, (θk, λk)
is the simulated spacecraft position, which, in the presence of
orbit and pointing errors and an uncertainty in the libration, is
slightly offset from the actually sampled position on the ground.
The static topography is parametrized as an expansion in local
basis functions,

Tstat(θk, λk) =
I∑

i=1

J∑
j=1

ci j fi(θk) f j(λk), (6)

where fi(θk) and f j(λk) are the basis functions and I and J are
their number in latitude and longitude direction, respectively,
and ci j are the basis function coefficients. Koch et al. (2010) used
step functions for the basis functions in latitudinal direction fi
and compared the use of step functions, piecewise linear func-
tions, and cubic B-splines for the basis functions in longitudinal
direction f j. They achieved the best results when applying cubic
B-splines and recommended for them to be applied in both direc-
tions for further studies. Here we apply cubic B-splines, given by
Koch et al. (2010), Eqs. (11) and (14)–(17), as basis functions in
both directions. The splines are defined on an equirectangular
grid, onto which the topography is projected. The grid cell size
is 360◦/J. Since the cells are square, J = 2I. Because the 2D
cubic splines are only non-zero within the 16 surrounding grid
cells, each spline coefficient ci j is only influenced by measure-
ments Tk from 16 grid cells. Compared to spherical harmonics,
cubic splines are advantageous because of their locality, which
allows for a much higher topography resolution (Steinbrügge
et al. 2019). At the same time, splines are smooth enough to
model planetary topography well, thus providing a good com-
promise between global spherical harmonic basis functions on
the one hand, and step functions as entirely local basis functions
on the other hand.

We solve the observation equation (Eq. (4)) simultaneously
for the coefficients ci j describing the static topography and for
h2 with a regularized least-squares inversion, minimizing

(Ax − T)>(Ax − T) + αx>Rx,
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Fig. 6. Standard deviation, bias and RMSE of h2 from 100 random
realizations as a function of grid resolution for topography case 1 (see
Table 1).

where x is the parameter vector containing the coefficients ci j
and h2, T is a vector containing the K observations Tk, A is
the design matrix resulting from Eq. (4), R is a regularization
matrix, and α is the regularization parameter. The regulariza-
tion serves to stabilize the solution in areas that suffer from
limited observations and minimizes the second derivative of the
topography at the grid points (θi, λ j),

∇ · ∇Tstat(θi, λ j) =
i+1∑

r=i−1

j+1∑
s= j−1

crs∇ · ∇S rs(θi, λ j)

=

i+1∑
r=i−1

j+1∑
s= j−1

crs

(
∂2

∂θ2 S rs(θi, λ j) +
1

sin2 θ

∂2

∂λ2 S rs(θi, λ j)
)
, (7)

where S i j(θ, λ) = fi(θ) f j(λ) are the 2D cubic B-spline basis
functions. We set the regularization parameter α = 10−6K/(IJ),
which allows for a stable solution of the linear equation system,
while keeping the inevitable bias on the h2 result small.

4. Results

We generated 100 independent random realizations of measure-
ments as described in Sect. 2. They differ in the topographic
model at degrees l > L, direction of the systematic attitude error,
synthetic determined orbit, and all other randomly generated
error sources. From each of these, we solved for h2 (Sect. 3)
using topographic grids of different resolutions. From the result-
ing 100 h2 values, we computed standard deviation, bias, and
root-mean-square error (RMSE; Fig. 6). We first focused on the
results achieved using the topography model of case 1. At reso-
lutions lower than 16 grid points per degree, there is a noticeable
bias in the results that can be explained by our usage of the
MDIS topography model up to degree L = 900. Since there is
only a single realization of MDIS topography model, the results
of 100 random realizations are not distributed evenly around the
a priori value of h2 but around a value which is specific to this
single random realization. When the topography is modeled by
a sufficiently fine grid (&15 grid points per degree) during the
solution, the true topography can be almost entirely captured,
causing the bias to vanish. Which resolution is sufficiently fine,
depends on the degree L up to which only a single topogra-
phy realization is used. The RMSE provides a measure of the
1σ uncertainty at which h2 can be retrieved from the data. It
continually decreases with increasing resolution and reaches its
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Fig. 7. Uncertainty of h2 from simulations as a function of resolution of
the topographic grid and its decomposition into the components caused
by each of the error sources. The uncertainty is given by the RMSE
from 100 random realizations of model and measurement errors. The
RMSE induced by pointing jitter and the lateral component of the orbit
determination error are both <0.0004 at all resolutions.

minimum at the highest investigated resolution of 28 grid points
per degree at a value of ±0.012.

Next we investigate the influence of different error sources on
the uncertainty of h2 in the topography case 1 (Fig. 7). To make
the assessment, we generate synthetic data sets where only a sin-
gle error source is simulated and all other error sources vanish.
These simulations include a single realization of topography up
to L = 7999 because the lateral components of orbit and point-
ing errors and the uncertainty in Mercury’s libration only cause
a range error when combined with topographic variation. The
bias caused by this specific topography realization is subtracted
before computing the RMSE presented in Fig. 7. The uncer-
tainty induced by the simulated large-scale topography decreases
strongly with increasing resolution as more of it is modeled by
the topographic grid. Still, the main source of uncertainty at
all resolutions up to 24 grid points per degree is the incom-
plete representation of the large-scale topography by the splines.
This shows the importance of choosing a realistic model for the
large-scale topography. The uncertainty induced by systematic
misalignment of the instrument becomes the main contributor
for resolutions from 24 grid points per degree. At such high reso-
lutions, the cross-track distance will often be larger than the grid
resolution. The solution is overparametrized and can therefore fit
the perturbed measurements very well instead of smoothing out
the perturbations. This is a likely cause for the increase in uncer-
tainty with a denser topographic grid. This trade-off between
large-scale topography error and systematic pointing error will
eventually lead to an optimal topographic grid resolution. We
note that this optimal resolution depends strongly on some of the
assumptions taken, such as the power law used for representing
topography at intermediate and small scales, the magnitude of
the pointing error, and the specific measurement geometry. For
example, we found that an increase of the amplitude of the sys-
tematic pointing error by a factor of five will cause an increase in
pointing-related h2 uncertainty by a factor of five, resulting in an
optimal resolution at about 14 grid cells per degree. If future real
data indicates that the pointing error may be large, one should
consider adjusting the grid resolution accordingly. Since usually
the pointing error is unknown, a weighted average of solutions
for different resolutions provides a good estimate of h2.
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All other error sources are small in comparison to the large-
scale topography and systematic pointing errors. The largest
of them is the uncertainty in Mercury’s libration amplitude,
followed by the random noise representing range error and small-
scale topography, orbit determination, and finally, pointing jitter.
Even though the magnitude of the random noise is much larger
than the magnitude of the systematic pointing error and the libra-
tion (Fig. 3), the resulting uncertainty is smaller. This shows that
the retrieval is only weakly influenced by strong normally dis-
tributed noise, but strongly affected by small systematic effects.
Similarly, the h2 uncertainty resulting from radial errors in the
orbit determination on the order of centimeters is larger than
the uncertainty resulting from the lateral component of the orbit
determination, which has a magnitude on the order of meters, by
a factor of about 3.

Fortunately, we find that none of the modeled error sources
cause a systematic bias in the h2 results. However, we note that
a much larger than expected systematic pointing error would
have the potential to cause such a bias. The longer measured
range caused by misalignment by an angle p with respect to
the nadir case leads to an error of (1/cos p − 1)h on a surface
with zero slope, where h is the spacecraft altitude. This error
becomes large at perihelion and aphelion, when extreme temper-
atures cause maximum misalignment. Similarly, the measured
tidal displacement reaches maxima at perihelion and aphelion.
The maximum tidal displacement is measured over the equator
when h ≈ 400 km. For the case of p = 20 arcsec, this corre-
sponds to a radial error of only 1.9 mm, but for p = 100 arcsec,
the radial error is 4.7 cm. These radial errors cause a systematic
bias of h2 of 0.0012 and 0.027 for p = 20 arcsec and p = 100 arc-
sec, respectively. While the bias in the former case, representing
the maximum expected error, is negligibly small, the latter case
illustrates the necessity of high pointing stability. We note that
this systematic bias is independent of the grid resolution.

All results discussed so far were obtained using topography
case 1 (Table 1). The h2 uncertainties retrieved from case 2 and
case 3 at a resolution of 24 grid points per degree are ±0.017
and ±0.041, respectively. These values are significantly larger
because the topography is less smooth. These cases would bene-
fit from using a topographic grid with higher resolution, because
the imperfect modeling of the topography dominates the h2
uncertainty.

5. Discussion and conclusions

The results show that the small-scale topography of Mercury
is the primary obstacle in accurately measuring its solid body
tides. This does not come as a surprise because our initial aim
was to detect dm-range radial displacements in measurements
taken at different, not perfectly known locations on the surface.
While splines model the topography at large scales well, their
resolution is not sufficient to model topography at small scales
below 1.5 km, which therefore contributes to the measurement
uncertainty. This is a fundamental limitation of the measurement
method. For simulations, a suitable description of topography
at these scales is essential. From Preusker et al. (2017, Fig. 10)
we estimate that the MDIS DEM has an effective resolution of
at least 15 km, equivalent to L = 511. This justifies using the
MDIS topography spectrum to degree L = 450 in topography
case 2 and to degree L = 250 in topography case 3. The effective
resolution of the MDIS DEM is not globally uniform and may
be lower in the southern hemisphere, where images were taken
from higher altitudes than in the northern hemisphere. Figure 10
of Preusker et al. (2017) represents a location close to the equator

that might represent an average. To our knowledge, no mech-
anism could cause a flattening of the slope of the spectrum at
higher degrees. On the contrary, it seems likely that the spectrum
becomes even steeper at higher degrees, as the spectrum derived
from the MDIS DEM suggests (Fig. 2). Planetary topography
spectra have been found to follow regionally different power laws
at scales >10 km, but power laws with an exponent b ≈ −3.4 at
scales <10 km (Aharonson et al. 2001). The power law exponent
b = −3.3 used in topography case 1 represents this most likely
behavior at small scales.

Nevertheless, even for the two topography cases with flatter
slopes, the uncertainty is <0.05, which is the necessary condi-
tion to further constrain interior models. An h2 determination
with an accuracy of 0.05 would permit a distinction between
a small and a large inner core, whereas an accuracy of 0.01
would allow for a determination of the size of the inner core to
about ±150 km (Steinbrügge et al. 2018a). This value is close to
the accuracy limit imposed by other uncertainties in the model
of Steinbrügge et al. (2018a). Ultimately, only the global laser
altimetric data set acquired by BELA will reveal the spectral
slope of Mercury’s topography, which is one of the factors in
the obtainable accuracy of h2 determination.

So far, we have used a conservative estimate of instrument
performance when assuming that the altimeter only takes mea-
surements at a spacecraft altitude of 1050 km or less. We also
carried out a test considering all measurements up to a space-
craft altitude of 1500 km. This modified experiment uses N =
51 800 617 measurements and yields a minimum uncertainty of
±0.012, which is reached at a resolution of 24 grid points per
degree. This shows that an improved instrument performance
does not produce significantly better results in terms of h2. A
reason for this behavior may be that the pointing error, one of
the two dominant error sources, increases with spacecraft alti-
tude. However, in terms of global topography coverage a better
performance of BELA is highly desirable.

The MORE radio science investigation will provide a highly
accurate estimate of the combined pole orientation of solid inner
core and outer shell. If there is evidence for a significant devi-
ation between the orientations of the two poles, future research
should investigate the impact of the pole position knowledge on
the h2 determination.

An extension of the nominal one-year orbital phase of the
MPO by another year might be possible. We also simulate a
two-year mission, during which a total of N = 59 630 203 mea-
surements would be taken. The resulting uncertainty is ±0.010,
marking a noticeable improvement over the one-year case. Fur-
ther extensions of the mission may improve the determination of
h2 even more.

Apart from constraining Mercury’s inner core size by mea-
suring its Love number h2, BELA data will also enable a more
accurate determination of Mercury’s 88-day libration amplitude
φ0 and obliquity, which provide additional insights into the inte-
rior structure. While the estimation of the retrieval accuracy
of φ0 from BELA is out of the scope of this study, improved
determination from either BELA data alone or a combination of
BELA data and imagery can be expected. Stark et al. (2015c,a)
derived the current best estimate of the 88-day libration ampli-
tude by co-registering MLA tracks and a terrain model derived
from MDIS stereo images. Imperi et al. (2018) also found that
the 88-day libration amplitude can be determined with an uncer-
tainty of 0.13 arcsec by BepiColombo’s gravity experiment.
The global altimetric coverage achieved with BELA measure-
ments and the reliable orbit determination by MORE will allow
for a more accurate determination of geodetic parameters of
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Mercury and, therefore, improve the results of Peale’s exper-
iment (Peale 1976). Both a measurement of h2 and improved
results from Peale’s experiment would deepen our understanding
of Mercury’s interior structure and evolution.
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