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Abstract

Copy-move forgeries are very common image manipulations that are often carried out with malicious intents. Among
the techniques devised by the ‘Image Forensic’ community, those relying on scale invariant feature transform (SIFT)
features are the most effective ones. In this paper, we approach the copy-move scenario from the perspective of an
attacker whose goal is to remove such features. The attacks conceived so far against SIFT-based forensic techniques
implicitly assume that all SIFT keypoints have similar properties. On the contrary, we base our attacking strategy on
the observation that it is possible to classify them in different typologies. Also, one may devise attacks tailored to each
specific SIFT class, thus improving the performance in terms of removal rate and visual quality. To validate our ideas,
we propose to use a SIFT classification scheme based on the gray scale histogram of the neighborhood of SIFT
keypoints. Once the classification is performed, we then attack the different classes by means of class-specific
methods. Our experiments lead to three interesting results: (1) there is a significant advantage in using SIFT
classification, (2) the classification-based attack is robust against different SIFT implementations, and (3) we are able to
impair a state-of-the-art SIFT-based copy-move detector in realistic cases.

1 Introduction

Counter-forensics, the study of methods to mislead foren-
sic techniques by concealing traces of manipulations, is
becoming a hot research topic [1]. As a matter of fact, this
discipline rapidly became a benchmark for the security of
image forensic techniques, whose correct behaviors may
be intentionally obstructed by an adversary (or attacker)
interested on covering traces of malicious tampering.
Nowadays, for example, it is possible to conceal traces of
contrast enhancement, compression, or resampling [2-4].
In [1], two categorizations of counter-forensic schemes (or
attacks) are proposed: according to when, in the image
acquisition chain, an attack takes place (integrated or
post-processing, i.e., during or after the acquisition) and
according to whether the countered forensic algorithm is
known or unknown to the attacker (targeted or universal
attack, respectively). Regardless of its category, an attack
should respect some constraints while attempting to mis-
lead a certain forensic technique, such as preserving the
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visual quality of the forged image and the integrity of the
semantic message conveyed by the content.

Copy-move forgery, whereby a portion of the image is
copied and pasted once or more times elsewhere into the
same image, is one of the most common ways of manip-
ulating the semantic content of a picture. Usually, the
original and the forged portions share similar statistical
and semantic properties. As a consequence, it is possible
to exploit such similarities to detect the presence of the
manipulation. In the past years, literature has proposed
several copy-move detectors [5], which often are conven-
tionally summarized into two categories: methods based
on blocks and methods based on keypoints. The former
methods first divide the image into overlapping blocks and
then extract some features which are ordered and used to
match similar blocks, according to certain criteria of sim-
ilarity [6,7]. The latter methods extract highly descriptive
robust points of an image, to each of which a univocal
features vector is assigned. Such vectors are then used
to match similar points across images (or regions within
them). Among such methods, the most recent and effec-
tive ones [8,9] are those based on scale invariant feature
transform (SIFT) [10]. The capability of SIFT to discover
correspondences between similar visual contents, in fact,
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allows the forensic analysis to detect even very accurate
and realistic copy-move forgeries.

The research community has recently started to
approach copy-move detection from the perspective of
the attacker, whose goal is to hide the features caus-
ing similar blocks or keypoints to match. Chrislein et al.
[11] studied the robustness of several detectors against
common image processing and observed that block-based
methods are not robust against geometric manipulations
(e.g., resampling, cropping), lossy compression, and noise
addition. Nguyen et al. [12] successfully impaired three
well-known block-based detectors by combining some of
these manipulations into a simple yet effective counter-
forensic scheme (see [12]). The same results, however,
cannot be replicated with SIFT-based detectors inheriting
the intrinsic robustness against geometric transforma-
tions from Lowe’s algorithm. To devise more sophisticated
schemes, it is necessary to understand the security of
SIFT algorithm. The first study in this direction is the one
by Hsu et al. [13], in which, initially, the impact of sim-
ple attacks is analyzed, and then a method to strengthen
SIFT keypoints is proposed. Following this work, Do et
al. [14-16] focused on a SIFT-based content-based image
retrieval (CBIR) [17] scenario and devised a number of
interesting attacks.

The aim of the previous works is to modify the SIFT
feature descriptor of keypoints, but they do not consider
the complete removal of the keypoints. To the best of our
knowledge, the only work in this sense is [18], where an
attack based on local warping techniques derived from
image watermarking was proposed. All the studies car-
ried out so far have demonstrated that devising methods
to attack SIFT features is not a trivial task. SIFT features
are robust not only against several nonmalicious process-
ing, but also against tampering attempts. Most attacks, in
fact, pay a high cost in terms of visual quality degradation.
Moreover, the attempt to remove SIFT keypoints can alter
the content in such a way that new keypoints are created,
thus complicating even more the problem.

The methods for countering SIFT-based forensic anal-
ysis proposed so far have been applied indifferently to all
the keypoints of an image. In this paper, we present a new
counter-forensic strategy (targeted and post-processing,
according to the terminology of [1]) that permits to
improve the performance of the existing approaches. We
demonstrate that it is possible to discriminate between
SIFT keypoints and to devise attacks that are tailored to
the characteristics of the keypoints.

Specifically, we have chosen a classification criterion
based on first-order statistics, which is the pixel histogram
of the gray scale neighborhoods centered in the SIFT key-
points. On top of such classification, we have built an
iterative attacking algorithm. At each step, our algorithm
classifies the keypoints and then attempts to delete them
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with class-tailored attacks, ideally until their complete
removal.

We compared the proposed method against other
attacks [13-16] and demonstrated the benefits brought
by SIFT classification in terms of keypoint removal and
visual quality. We also demonstrated that the proposed
method is also capable of impairing SIFT detectors dif-
ferent than the one used during the attack. We then
applied our method to a realistic scenario of copy-move
forgery detection with the goal to disable the detector
described in [9]. We have successfully completed this task
by eliminating only the keypoints having matches across
the copy-moved regions that were used to detect the
manipulation. Finally, we have explored the possible inter-
actions between the proposed method and the existing
block-based copy-move countermeasures.

The paper is organized as follows: section 2 briefly
reviews the SIFT algorithm and the copy-move detectors
based on it. Section 3 describes the rationale underly-
ing the SIFT classification and the algorithm which has
been used to perform it. Section 4 introduces the frame-
work, putting in practice the principles previously intro-
duced. Section 5 experimentally validates the framework
by means of three important results of the proposed
method: (1) the advantage of SIFT classification with
respect to blind attacks, (2) the robustness against differ-
ent implementations of the SIFT algorithm, and (3) the
effectiveness in a copy-move detection scenario. Section 6
concludes the paper.

2 SIFT-based copy-move forgery detection
In this section, we briefly review the SIFT technique and
describe the copy-move detectors based on the technique.

2.1 Scale invariant feature transform

SIFT features have become extremely popular in pat-
tern recognition applications due to their robustness with
respect to partial occlusion, clutter, and geometric trans-
formations [10]. The idea behind this kind of visual local
features is to model a complex object or a scene by a
collection of salient points.

In a nutshell, SIFT features of an image are detected at
different scales using a scale-space representation imple-
mented as an image pyramid. The pyramid levels are
obtained by Gaussian smoothing and sub-sampling of the
image resolution, while interest points are selected as local
extrema (min/max) in the scale space.

The detection of extrema usually produces numerous
candidate keypoints. However, not all the candidates pos-
sess the robustness and the stability required to become a
keypoint, and thus, they need to be discriminated. To this
end, the SIFT algorithm performs two checks against two
different thresholds, whose commonly accepted values
were experimentally set by Lowe in [10]. The first check
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verifies whether the contrast value of the keypoint’s neigh-
borhood is sufficiently large. The second check verifies
whether a keypoint is distant enough from an image edge
(edges are considered unstable). If either of the checks
fails, the candidate keypoint is rejected. It is worth noting
that such thresholds represent the principal vulnerability
of the SIFT algorithm, as we will see in section 4. Attacks
against SIFT, in fact, locally alter the image in such a way
that either a real keypoint falls below one of the thresholds
(false negative) or a fake keypoint raises above one of the
thresholds (false positive).

The keypoints that passed both the previous tests guar-
antee invariance to scaling and affine transformations. At
this point, the algorithm assigns to each of them a canon-
ical orientation in order to also guarantee rotation invari-
ance. This task is performed by means of a histogram
of gradient orientations computed in the neighborhood
of the keypoint (defined by a specific window). Finally,
a unique fingerprint, called descriptor, is computed in
order to identify univocally a keypoint. Therefore, a SIFT
keypoint is completely described by the following infor-
mation: x; = {x,y, 0, o, f}, where (x, y) are the coordinates
in the image plane, o is the scale of the keypoint, o is the
canonical orientation, and f is the final SIFT descriptor.

2.2 Copy-move detection

In pattern recognition, the SIFT operator usually is
applied to two images: a target and a test image. In the
case of copy-move forgery detection, the SIFT operator is
applied to one image only. In fact, in a copy-move forgery,
the copied part is within the same image (see images of
Figure 1). For this reason, the keypoints extracted in that
region will be quite similar to the original ones; there-
fore, a matching between SIFT features can be used to
discover which part was copied and which geometric
transformation was applied.

In the past years, different techniques have been pro-
posed by the scientific community to address the problem
of copy-move forgery detection in digital images. Most
of the methods divide the image into overlapping blocks
and then extract some peculiar features that can reveal
whether some of the blocks have been duplicated or not
[5]. Depending on the amount and on the characteristics
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of the paired blocks, a decision about forgery is then
made. Unfortunately, such methods are hardly robust
against rotation and scaling operations, which are very
common in copy-move forgeries. The SIFT features allow
to overcome such limitations, thanks to their intrinsic
robustness against geometric transformations. Among the
most recent SIFT-based copy-move detection techniques,
we are interested in the one proposed by Amerini et al.
[9], which is able to detect and estimate the geometric
transformation applied in a copy-move forgery attack also
dealing with the case of multiple copy-move forgeries.

In a nutshell, the technique in [9] works as follows (see
Figure 1). Given an image I, the method extracts the key-
points X = {xj,...,X,} and their SIFT descriptors D =
{fi,-...fu}. The best candidate match for each keypoint
x; is found by identifying its nearest neighbor among the
other n—1 keypoints, i.e., the keypoint with the minimum
Euclidean distance descriptors.

For the sake of clarity, given a keypoint, a similarity
vector S = {di,ds,...,d,_1} is defined with the sorted
Euclidean distances with respect to the other descriptors.
The keypoint is matched only if d1/d, < T (fixed empir-
ically to 0.6). By iterating on each keypoint in X, a set of
matched points is obtained.

Although this set already provides a draft idea of the
presence of cloned areas, a clustering procedure is run
in order to improve accuracy. To understand whether an
area has been cloned or not, an agglomerative hierarchi-
cal clustering is performed on spatial locations, i.e., (x,%)
coordinates, of the matched points. Such method creates
a hierarchy of clusters which can be represented by means
of a tree structure. Briefly, the clustering algorithm works
as follows: (1) each keypoint is assigned to a cluster, (2)
the reciprocal spatial distances among clusters are com-
puted, (3) the closest pair of clusters is found, and (4)
the obtained pair is merged into a single cluster. Conse-
quently, if two (or more) clusters are detected with at least
4 pairs of matched points linking a cluster to another, then
the corresponding regions are considered cloned. When
an image has been classified as non-authentic, the method
can also determine which geometric transformation was
applied between the original area and its copy-moved
version by employing an affine homography.

Features - - Geometric
. Hierarchical .
Image Extraction and ) Transformation Output
R Clustering R
| Matching | Estimation |

Figure 1 Overview of the method proposed in [9]. SIFT matched pairs and clustering.
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3 Classification of SIFT keypoints

In this section, we first describe the classification method,
then we introduce the classes that we have defined, and
finally, we provide some visual examples of each class.

3.1 Therationale behind the classification

In principle, we would imagine that the classification
relies on the visual content surrounding the keypoints.
Although this task could be performed in more than one
way (e.g., textures, edges, shapes), we chose to analyze
the gray scale histogram of a relatively small region sur-
rounding the keypoint. More specifically, among all the
characteristics of an image histogram, we chose the num-
ber of modes since they provide valuable information
about the local image content. The idea is that, in gen-
eral, the effectiveness of an attack may be strictly related
to the properties of the keypoint we attempt to remove. As
an example, suppose that the neighborhood of a keypoint
contains a straight vertical edge; a local warping attack,
such as the one in [18], would probably succeed in deleting
it. Unfortunately, after the attack, the edge would not be
straight anymore and the bending effect would be clearly
visible. Perhaps a Gaussian smoothing attack may delete
the keypoint as well, arguably with a significantly lower
impact on quality.

For the rest of the paper, we will make two assump-
tions: we will work on gray scale images and will consider
only the SIFT keypoints originated by the first scale of the
image (s = 0). The reasons behind the latter assumption
are the following: (1) the keypoints of the first octave are
the most difficult to remove, and (2) for the sake of clar-
ity, we work with a significant yet not excessive amount of
keypoints.

3.2 SIFT keypoint classification algorithm

In order to classify the keypoints, we have adapted the his-
togram analysis method proposed by Chang et al. in [19],
which was originally designed for image segmentation
based on histogram thresholding. The original algorithm
relies on the assumption that the histogram of large nat-
ural gray scale images can be modeled as a mixture of
Gaussians f as follows:

n+1 Pi 7% (k;'f‘i)2
f(k)—i; Tt 1)

where k = 1...256 are the samples of the mixture, n + 1
is the number of histogram segments, and (P;, m;, aiz)
are respectively the weight, the mean, and the variance
of the i-th Gaussian. The classifier is designed to esti-
mate the model parameters in order to minimize |f — H],
where H corresponds to the original histogram. In a nut-
shell, it proceeds as follows. First, H is smoothed to reduce
the number of unstable local extrema. Then, the local

Page 4 of 17

minima are determined and the segments between con-
secutive pairs of minima are initialized. For each segment
i, the calculation of the parameters (P;, mi,aiz) consists
of two steps: the estimation of a unique optimal window
w* with minimum skewness near the center of the seg-
ment and the estimation of the Gaussian parameters in w*,
which are then refined by means of a maximum likelihood
criterion. Finally, the thresholds used to segment the his-
togram are computed by relying on the refined Gaussian
parameters.

Here, we are interested more in the number of modes
rather than in the thresholds for segmenting H. We can-
not rely directly on the number of Gaussians compos-
ing the mixture since Chang et al’s algorithm tends to
over-segment the histograms, thus creating rather flat
segments with very small weight. Therefore, the original
technique required some adjustments in order to fit our
application. Given a keypoint, the classification was modi-
fied as follows: (1) we initialize the number of modes equal
to the n + 1 contributes of the mixture (where # has been
computed by means of Chang’s method), (2) we estimate
all the Gaussian parameters and determine the weight of
the largest contribution, namely Ppax, and (3) we suppress
all the contributions 1 < i < n+1 such that P; < 0.2-Pppax,
thus obtaining the number of histogram modes M. It goes
without saying that if M = 1, the histogram is considered
unimodal, if M = 2 bimodal and if M > 2 multimodal.

The choice of the size N of the neighborhood used
for the classification is closely related to Chang et als
algorithm. N should be large enough in such a way that
the hypothesis of Gaussianity holds. At the same time, it
should not be so large to include the statistics of content
that is too far from the support of the keypoint. According
to our experiments, a good trade-off is obtained by letting
N = 32.

3.3 Classes of keypoints

By relying on the method described previously, we have
classified the 32 x 32 neighborhoods of several thousands
of keypoints extracted from natural images with different
visual content (landscapes, people, buildings). Our obser-
vations confirmed that the histograms tend to cluster into
well-defined groups. We defined three of them: unimodal,
bimodal, and multimodal (number of modes > 2). Inter-
estingly, these classes correspond to very different visual
contents: uniform flat regions with low variance tend to
have a unimodal histogram, edges and geometric shapes
correspond to bimodal histograms, and regions with high
variance (which resemble some sort of noise) usually have
a multimodal histogram. Figure 2 provides an example
of a keypoint belonging to each of the three classes. The
first row shows the visual content of the neighborhood;
the second row shows its gray scale histogram. For this
example, we have used an image representing a landscape.
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Figure 2 Example of visual contents (first row) and histograms (second row) for the three classes of keypoints. From left to right: unimodal,
bimodal, and multimodal.

150 200 250

200

The unimodal, bimodal, and multimodal contents repre-
sent respectively a water surface, the top of a building, and
some foliage.

4 Theattack

In this section, we first describe the various attacks and
then explain how they have been combined to remove
SIFT keypoints and to invalidate the copy-move detec-
tion algorithm. Even if the classifier works on a fairly large
neighborhood of the keypoint, the attacks are carried out
on an 8 x 8 region (still centered on the keypoint), in
order to reduce the visual impact of each attack. In the
following, we will refer to this region with the term ‘patch’

4.1 The proposed framework

Before discussing in depth the attacks, it may be useful to
briefly introduce our framework (see Figure 3). It relies on
an iterative procedure. At the beginning (first iteration),
an original gray scale image G (or a region within it) is
fed to the system, which starts by detecting the SIFT key-
points, and then, for each keypoint, the neighborhood of
size 32 x 32 centered on the keypoint is extracted and
classified accordingly to its gray scale histogram. Depend-
ing on the class of each keypoint, the corresponding
8 x 8 patch is manipulated by means of a class-tailored

attack. Finally, the manipulated patches are inserted back
into the image in their original positions. The procedure
moves to the next iteration and halts only when particular
requirements are met (e.g., percent of deleted keypoints,
maximum iterations, minimum allowed visual quality).

4.2 Single attacks

The first attack is the smoothing attack. A light Gaussian
smoothing flattens the pixel values of an image in such a
way that its potential keypoints at the level of difference
of Gaussians (DoG) are reduced. On the other hand, an
excessive smoothing has a very noticeable impact on the
visual quality. The intensity of the attack can be controlled
with the parameters (%, 0), i.e., the size and the standard
deviation of the Gaussian kernel. In our experiments, we
have found out that # = 3 and o0 = 0.7 represent a
good compromise between the amount of deleted key-
points and the overall visual quality following the attack.
This attack has also been used in [15].

The second attack is the collage attack, which is a vari-
ant of the method first used in [13]. It consists on the
substitution of the original patch with another patch of
the same size. The new patch should not contain a key-
point and needs to be as similar as possible to the original
one according to some similarity criteria. To implement
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Figure 3 Proposed attack scheme. SIFT keypoints are detected and classified; the neighborhood of each keypoint is attacked with a specific
class-tailored attack and then inserted back into the image. The procedure continues until the specified conditions are met.

the attack, we created a database of about 120,000 patches
not containing keypoints, extracted from a data set of 80
images characterized by very heterogeneous visual con-
tents. We chose to measure the similarity by means of the
histogram intersection distance, which has been widely
used in the past in image retrieval applications [20]. Let
Horig and Hgp, be, respectively, the histograms of the orig-
inal patch and of a patch stored in the database; the
intersection distance dj,; is evaluated as follows:

Y-r min ( Horig (), Hab (/) )
Zle Hap (j)

where j indicates the j-th bin of the histogram and L =
256 indicates the number of bins. Now, let patch,;, and
patch,;, be respectively the original patch and the most
similar counterpart stored in the database (i.e., the patch
whose histogram is at minimum din); to avoid visible
artifacts along the borders, we do not reinsert patch,;,
directly into the original image. Instead, we reinsert the
following linear combination:

dint Horig: Hgp) = (2)

= W - patch 3)

where W is an empirical 8 x 8 weighting matrix, whose
elements w;; €[0,1] are set to 1 along the patch borders
and progressively decrease to 0 near the center, as shown
in Figure 4.

The third attack is the removal with minimum distor-
tion (RMD) attack proposed by Do et al. in [15]. The
idea behind this technique is to calculate a small patch
€ that, added to the neighborhood of a keypoint, allows
its removal. The coefficients of ¢ are chosen in such
a way that the contrast around the keypoint (at DoG

patch,,.,, orig T (L = W) - patch,;,

level) is reduced, thus invalidating the check performed
by SIFT algorithm on all potential keypoints. Moreover,
it is requested that the coefficients locally introduce the
minimum visual distortion.

In a nutshell, the RMD attack works as follows. Let x =
(x,7,0) be a keypoint and let D(x) be the DoG in x; the
patch € is obtained by resolving the following optimization
problem:

€ = arg Ming.py o pe-+5 ( llel?), (4)

Figure 4 Weighting window 8 x 8 of Equation 3. The coefficients
decrease from 1 (white) along the borders to 0 (black) near the center.
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where § is a parameter that allows to control the intensity
of the attack. Let C be the contrast threshold set by the
SIFT algorithm (usually by default C = 0.03); the attack
reduces |D(x)| by |§] in such a way that the altered value
drops below C.

The size of ¢ depends on the spatial support of the
targeted keypoint: the larger the support, the stronger
the attack. The final altered DoG region is then D(x +
u,y + v,0), with both u and v belonging to the interval
[ —6+/2ho, 6ﬁho] and 1 = 2%. To be compliant with our
system, we introduced two small variants into the original
method: first, we limited the size of € to a maximum of
8 x 8 also for those keypoints with larger spatial support;
second, we used the same weighting window of Equation 3
to replace the original neighborhoods.

4.3 Combined attack

Sometimes, an attack may introduce new keypoints in
its attempt to delete those already present (see [14]).
In such cases, a single iteration of the attack is not
enough since, now, one needs to deal also with the newly
introduced keypoints. For this reason, we arranged our
attacks into an iterative procedure with a pseudocode
illustrated in the following (see Algorithm 1). The purpose
of the attack is to iteratively remove SIFT keypoints until
one of the following requirements is met: the algorithm
reaches the maximum number of allowed iterations (max-
Iter); the desired number of keypoints has been removed
from the image (minRemoval, ideally 100%). Practically,
at each iteration, we compute the keypoints and clas-
sify them. For the first part of the iterations (1 to K =
10 by default), we attack all the classes with smoothing
attack, while in the second part (K + 1 to maxlter), we
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attack the unimodal and multimodal keypoints by means
of collage attack and the bimodal ones by means of RMD
attack. From now on, to measure the effectiveness of an
attack (or of a single iteration of it), we will use the term
removal rate, that is, the percent of keypoints that have
been removed from an image with respect to their original
number before the attack.

The rationale behind the algorithm is the following. The
smoothing attack can be effective on all the classes, regard-
less of their content, since it reduces the population of
keypoints without a significant loss of quality. The key-
points that survive to this first round of the attack are
somehow ‘harder’ to remove and require more power-
ful countermeasures (i.e., collage and RMD), and here,
the keypoint classification plays its basic role. The collage
is not suitable for those patches that contain geometric
edges (i.e., the bimodal ones) since the histogram sim-
ilarity does not take into account the shapes contained
in the keypoint neighborhood. Therefore, we manipulate
the bimodal keypoints with RMD, which does not present
this problem. On the contrary, the collage attack can be
applied both to uniform patches, such as the unimodal,
and to noisy patches, such as multimodal, without an
excessive visual quality degradation.

Before we move to the next section, it is important to
point out that, in the attempt to remove a keypoint, an
attack could obtain the opposite result, that is, to alter the
image in such a way that a new keypoint is generated. In
our implementation, we chose not to keep track of this dif-
ferent category of keypoints but rather to deal with them
in the same way as the original ones. This means that the
keypoints introduced during an iteration i are classified
and attacked again at the following iteration i + 1.

Algorithm 1
1: procedure CLASSIFICATION_BASED_ATTACK(originallmage, maxIter, minRemoval)
2: ] «~1
3 K <10
4 removal_rate <— 0
5 attackedImage <« originallmage
6: while (j < maxliter and removal_rate < minRemoval) do
7 keypoints = calculateSIFT( attackedImage )
8 kp_classes = classifySIFT( keypoints)
9 if (j <K) then
10: attackedImage <— smoothingAttack( kp_classes)
11: else
12: attackedImage < collageAttack (unimodal, multimodal )
13: attackedImage < RmdAt tack( bimodal )
14: end if
15: removal_rate < calculate_removal_rate( originallmage, attackedImage )
16: ] (—] +1
17: end while

18: end procedure
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5 Experimental analysis

The goal of this section is twofold: first, to highlight the
benefits introduced by the classification step with respect
to a class-unaware attack; while performing such task,
we also demonstrate the effectiveness of the attack pro-
cedure against various SIFT software; second, to address
a specific forensic scenario by countering the copy-move
detection technique described in [9].

5.1 Image data sets

The experimental analysis has been carried out on two
distinct sets of images. To demonstrate the effective-
ness of our technique and its robustness against different
SIFT implementations, we have used the UCID database
[21]. Such data set, which is a well-known benchmark
amongst the image retrieval research community?, con-
sists of 1,338 uncompressed (TIFF) color images, with
contents depicting landscapes, cityscapes, people, and
man-made objects. The rather large size of this collection
allowed us to make conclusive statements on the perfor-
mance of the proposed technique. Finally, to demonstrate
the capability of our method to impair a SIFT-based copy-
move detector, we have used a set of 10 images containing
a realistic copy-move forgery.

5.2 Classification-based SIFT keypoints removal

In the following tests, the keypoints have been computed
by means of VLFeat, the Vedaldi, and Fulkerson’s imple-
mentation of SIFT [22] (DoG peak and edge thresholds
set respectively to 4 and 10). The 1, 338 images composing
the UCID database, which we used for our experiment,
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contain a total of 385,750 keypoints at the first octave,
distributed as shown in the histogram of Figure 5.

We organized the experimental procedure as follows.
We set a target removal rate of 100% (i.e., perfect removal)
and a maximum number of iterations (i.e., maxIter= 40).
We then separately attacked each image by means of four
methods: the classification-based attack of section 4.3, the
iteration of RMD (8 = 2), the iteration of smoothing
(0 = 0.7, h = 3), and the iteration of collage. We iterated
each attack until we reached either 100% removal rate or
the 40-th iteration. Once the algorithm halted, we evalu-
ated the removal rates actually achieved on each image.
We organized these values in four histograms, whose
envelopes are shown in Figure 6 (results for removal rates
below 50% are omitted for the sake of clarity).

Two observations can highlight the superior perfor-
mance of the classification-based method: (1) it grants a
minimum removal rate of 80% practically on the whole
data set; (2) in general, it provides the highest removal
rate. As an example, let us focus our attention on removal
rates greater than 90%: the classification-based method
achieved such goal on 1,149 images out of 1,338 (cor-
responding to 86% of the data set), followed by collage,
which achieved the same results on 468 images (35% of
the data set). RMD and smoothing proved to be the less
effective attacks, with 147 (11% of data set) and 12 (0.9% of
data set), respectively. It is also worth noting that only the
classification-based approach was able to reach the per-
fect removal, although only on a limited number of images
(32, corresponding to 2.7% of the data set).

The number of deleted keypoints is not the only impor-
tant metric for evaluating the performance of the attacks.

300

250

200

UCIDv2 database images

200 400 600 800

1000
Keypoints at scale = 0 (total=385750)

Figure 5 Histogram of the number of keypoints at first octave for images belonging to UCID database.

| | | |
1200 1400 1600 1800 2000




Amerini et al. EURASIP Journal on Image and Video Processing 2013,2013:18

http://jivp.eurasipjournals.com/content/2013/1/18

Page9of 17

160H """ Collage

Number of images

200 . T T T
—Classification 3 |

180H = = = SMOOthing |- bl -
------ Rmd

Removal rate (%)

Figure 6 Effectiveness of classification-based attack with respect to the state of the art of class-unaware techniques (UCID database).

To be really effective, in fact, an attack also needs to pre-
serve the image quality. Therefore, to evaluate the impact
on visual quality, we selected the images belonging to each
bin of the histograms that led to Figure 6, and we have
averaged the peak signal-to-noise ratio (PSNR) over all the
attacked patches. The results for high removal rates are
summarized in Table 1, where we omitted rates greater
than 90% since averaging on a small number of images
did not produce significant results. Clearly, smoothing
is the attack with the lowest impact on image quality,
but such an advantage comes at the price of the low-
est removal rates. Amongst the remaining techniques, the
classification-based method provides the best quality. One
may wonder about the causes behind the poor perfor-
mance of collage and RMD: for the former, they may be
related to the size or the quality of the database or to the
similarity criterion; as for the latter, they are undoubtedly
related to the nature of the attack itself. RMD, in fact,
although very powerful, covers the original patches with
very unpleasant ‘dots’ rather than replacing them with
something more similar content-wise. Consequently, this
effect quickly deteriorates the local quality, specially for
those keypoints with large spatial support.

Figure 7 provides a visual comparison of the three most
effective methods. The artifacts introduced by RMD (third

from left) and collage (fourth from left) are more notice-
able than those inserted in the picture by the classification-
based attack (second from left). Such phenomena are
particularly visible between the ears of the dog.

Finally, it is also interesting to evaluate the computa-
tional burden of each technique. Within a single iteration
of an attack, the main contribution to the time complex-
ity comes from cycling through all the keypoints, while
the detection of the SIFT features generally has a neg-
ligible impact. In Figure 8, the average execution time
for a single image is shown: the higher complexity of
the collage attack (triangular marker) is the consequence
of several comparisons with the database of patches not
containing keypoints and becomes evident for removal
rates above 75%. The comparisons are still required by
the classification-based attack (star marker) but limited in
terms of iterations (25 instead of 40) and of classes of key-
points (2 instead of 3). All the tests have been performed
on Matlab® on a desktop configuration with 2 GHz
dual-core processor, 4 GB RAM, 32-bit Windows OS.

5.3 Robustness against different SIFT implementations
There exist a number of different implementations of the
algorithm, often performing differently in terms of results
such as the number or the spatial location of keypoints.

Table 1 Average patch PSNR (dB) vs removal rate for the four attacks

60% 65% 70% 75% 80% 85% 90%
Classification 36.66 36.60 36.59 36.57 36.56 36.55 36.40
Smoothing 41.83 4179 41.87 4198 41.85 41.28 40.55
RMD 29.57 29.46 29.31 29.01 28.77 2840 27.99
Collage 3034 3031 30.27 30.24 30.12 29.87 29.71
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25.6 dB), and collage (91%, 35.1 dB). Results refer to the whole image.

Figure 7 Detail of an attacked region. From left to right: original, proposed (98% removed with average patch PSNR of 37.8 dB), RMD (94%,

Although it is not the aim of this work to assess the
fidelity to Lowe’s original code of the various imple-
mentations, these software should not be ignored when
evaluating the robustness of our attack. In fact, one may
rightly wonder whether the proposed approach is only
capable of impairing the adopted implementation of SIFT
by exploiting its weaknesses (and its specific parameters).
This should not happen in a realistic counter-forensic sce-
nario, where the attacker typically does not know which
SIFT implementation the forensic analyst will be using.

Consequently, to evaluate the robustness of the
classification-based attack, we have selected the following
four SIFT implementations:

e VLFeat [22]. To the best of our knowledge, this is
the ‘reference library’ for the SIFT-based forensic and
counter-forensic related works. Other than the
present work, [9,14-16] are also based on it. This
software is written in C language and can be
downloaded from http://www.vlfeat.org.

e SIFT Legacy [23] (also known as MATLAB/C and
SIFTC++). Although this is basically the predecessor

of VLFeat and has been superseded by it, such
software is still used (see [18]). It can be downloaded
from http://www.vlfeat.org/~vedaldi/code/sift.html.

e Rob Hess SIFT library [24].Itis writtenin C
and uses the well-established OpenCV computer
vision library. It can be downloaded from http://
blogs.oregonstate.edu/hess/code/sift/. There also
exists a Java porting of this code.

e Jift (byJun Liu). Arguably the less famous
implementation, it is written in C++ and uses the
VXL computer vision library. It can be downloaded
from http://www.cs.man.ac.uk/~liuja/#downloads.
There also exists an OpenCV porting of this
code.

5.4 Test of robustness

In the next experiments, we attacked again the 1,338
images of the UCID database but only by means of the
classification-based attack (maxIter = 40, minRemoval
= 100). Our goal now is to evaluate the behavior of the
proposed method in those cases where the attacker and
the forensic analyst may be relying on different versions

300
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260 = Rmd
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Figure 8 Average processing time for a single image vs removal rate on the UCID database.
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Table 2 Main parameters of the employed SIFT implementations

Octaves Thresholds
Number Initial Intervals Contrast Edge Peak
VLFeat 1 0 3 X 10 4
SiftLegacy 1 0 3 0.03 10 4
RobHess 1 0 3 0.04 10 0.8
Jift 1 0 3 0.03 10 0.8

In Vedaldi and Fulkerson’s VLFeat the minimum amount of contrast to accept a keypoint is controlled by the peak threshold (hence the x symbol in the table).

of SIFT. In order to obtain fair results, the attack proce-
dure was not tweaked to the characteristics of the various
detectors: the only constraint we imposed to the tools
at our disposal is to work on the first octave, in compli-
ance with our starting assumptions. We left unchanged all
the other parameters (see Table 2) with values that cor-
respond most of the times to those suggested by Lowe in
[10].

For each image, we proceeded as follows: (1) we com-
puted the original keypoints with all the SIFT imple-
mentations, (2) manipulated the image with the VLFeat
classification-based attack, and (3) evaluated the removal
rate according to the number of final keypoints detected
by each version of SIFT. Similarly to the procedure that
led to plots of Figure 6, we organized all the values into
histograms, whose envelopes are shown in Figure 9.

As one may expect, the best results were achieved
against the VLFeat-based detector (91.8% average
removal), followed by SiftLegacy (80%) and Jift
(75%). Unfortunately, our method did not seem to be
effective against RobHess: averagely, only 9.5% of the

detected keypoints were removed. Furthermore, on 216
images out of 1,338 (about 16% of data set) new key-
points were introduced by the attack’s iterations (see
negative removal rates of Figure 9). A more accurate anal-
ysis revealed that this specific implementation of SIFT
often tends to calculate several keypoints in spatial loca-
tions different from those detected by the remaining tools.
Therefore, the classification-based attack was not actually
carried out on the keypoints that RobHess is calculating,
whose neighborhoods remained unaltered.

By relying on such new information, we improved the
base framework of section 4.1: rather than employing just
one SIFT detector, we tried to combine both VLFeat
and RobHess detectors during the classification-based
attack. As a consequence, at each iteration we classi-
fied and attacked the union of the keypoints provided by
the two tools. The curves of Figure 10 were obtained by
following the same procedure of the previous case.

Not only the attack is now dramatically more effec-
tive against the RobHess implementation (76.7% aver-
age removal), but the performance remained basically the

250 ‘ ‘ .
— VLFeat vs VLFeat
--- VLFeat vs SiftLegacy
------ VLFeat vs RobHess
200H -~ VLFeat vs Jift -
@ i
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Figure 9 Robustness of the VL.Feat-based proposed method. Curves correspond to the envelopes of removal rate histograms, obtained by
analyzing the manipulated UCID database by means of four different SIFT versions.
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Figure 10 Robustness of the VLFeat+RobHess-based proposed method. Curves correspond to the envelopes of removal rate’s histograms,
obtained by analyzing the manipulated UCID database by means of 4 different SIFT versions.

same against VLFeat (91.5%), SiftLegacy (79.8%) and
Jift (71%). From the latter test, we can conclude that it
may be worth investigating the case in which an attacker
can select a combination of more than one SIFT detector
before removing the keypoints since this would bring the
attacker and the analyst on the same level, thus opening
new interesting scenarios.

As an example, let us consider the face2.jpg test image
shown in Figure 11 (left). On the original image, VLFeat
and RobHess detect respectively 58 and 24 keypoints. If
we attack the image with the classification-based method
relying only on VLFeat, we obtain the results of Figure 12
(top), where we omitted iterations 26 to 40 because the
number of keypoints remained constant. We can see that,
according to VLFeat, there is only 1 keypoint left in the
attacked image. However, if we let RobHess analyze the
same image, 15 keypoints are detected. Let us now carry
out again the attack, this time relying on both VLFeat
and RobHess (Figure 12 bottom). Clearly, the number of
keypoints is higher now (82), as they are the union of the

keypoints detected by the two implementations. However,
the attack shows the same trend as before, but this time, it
is also effective against RobHess.

It is interesting to point out that this improvement did
not come at the cost of visual perceptivity. As Figure 11
can confirm, the quality loss of the combination of
VLFeat and RobHess with respect to VLFeat alone,
in terms of PSNR of the final image, is barely noticeable:
44.12 vs 45.84 dB for the full image and 36.56 vs 37.75 dB
for the average over all the patches.

5.5 Copy-move counter-forensics

In a copy-move scenario, the aim of an attacker is to
avoid the detection of matched SIFT keypoints link-
ing the cloned patches. For the sake of simplicity, we
can assume to deal with two copy-moved patches with-
out loss of generality. Therefore, our objective is now
to hide the traces of the manipulation by altering only
the source and destination patches. As a consequence,
we will now deal with a significantly lower number of

original, VLFeat only, and VLFeat+RobHess.

Figure 11 Visual comparison of the impact of the classification-based attack on test image face2.jpg (40-th iteration). From left to right:
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Figure 12 Number and classes of keypoints for each iteration of the attack on test image face2.jpg. VLFeat only (top) and
VLFeat+RobHess (down). In the latter case, the total amount of keypoints is the union of the keypoints detected by the two techniques. The

of even iterations.

keypoints with respect to the attack carried out on the
whole image. As a matter of fact, if the manipulation is
wisely distributed over the two patches in such a way
that a mismatch in their SIFT descriptions is introduced,
one does not even need to delete all the keypoints of the
patches.

To this aim, we have slightly modified the procedure
of section 4.3 in such a way that, at each iteration, only
one keypoint of each match at a time is manipulated.
Let N be the number of matches revealed by the copy-

move detector; first, we randomly choose % matches and

try to erase them by attacking the corresponding key-
points in the source patch; we then select the remaining
% matches and try to erase them by attacking the cor-
responding keypoints in the destination patch. Although
we did not exploit such advantage here, it is interesting
to point out that it is not always strictly necessary to
completely remove all the matched keypoints. Copy-move
detection methods, in fact, usually require at least three
matches to detect a forgery.
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Attack

Image(matches) Classification-based Smoothing RMD Collage

After (%) Iter PSNR After (%) Iter PSNR After (%) Iter PSNR After (%) Iter PSNR
h (37) 0(700%) 14 41.2 12 (67.6%) 40 394 5 (86.5%) 40 30.7 3(91.9%) 40 286
I (66) 0(700%) 20 399 29 (56.1%) 40 47.7 21 (68.2%) 40 256 6 (90.9%) 40 33.7
13 (150) 0 (700%) 23 48.1 103 (31.3%) 40 57.8 0 (700%) 26 41.2 7 (95.3%) 40 43.1
la (47) 0(100%) 15 428 11(73.2%) 40 421 9 (78.0%) 40 274 2(95.1%) 40 322
I5 (23) 0(100%) 31 47.0 8 (65.2%) 40 445 8 (65.2%) 40 253 0(100%) 9 280
Is (56) 0 (700%) 17 458 27 (51.8%) 40 41.1 7 (87.5%) 40 263 3 (94.7%) 40 333
I7 (55) 0 (700%) 28 343 10 (81.8%) 40 409 10 (81.8%) 40 262 1(98.2%) 40 284
Is (32) 0(700%) 15 45.0 8 (75.0%) 40 387 1(96.8%) 40 30.1 293.8%) 40 294
Iy (52) 0(700%) 19 458 21 (59.6%) 40 48.6 10 (80.8%) 40 253 2 (96.2%) 40 335
ho (53) 0 (700%) 21 44.2 16 (69.8%) 40 46.7 22 (58.5%) 40 294 3(94.3%) 40 320
Average 100% 21 434 63.1% 40 45.1 80.3% 39 288 95.0% 37 322

Iter, iteration. Left matches are listed according to the relative iteration.

Table 3 confirms that the conclusions drawn for the
general case of section 5.2 still hold for the copy-move sce-
nario. The classification-based method represents again
the best trade-off between the rate of removal (all matches
deleted with the lowest number of iterations) and the per-
ceptual quality (average PSNR of 35.2 dB which is second
only to the smoothing attack).

Figure 13 shows image I7’s copy-moved regions follow-
ing the four attacks. It can be observed that the detector
is fooled by the classification-based attack (see Figure 13 -

bottom right image) because the duplication of the
skyscraper is not recognized. On the contrary, the detec-
tor is still able to reveal the forgery in the other three
cases: smoothing (10 matches, 40.9 dB), collage (1 match,
28.4 dB), and RMD (10 matches, 26.2 dB).

5.6 Block-based and SIFT-based copy-move detection
Copy-move forgery detection is not carried out only by
means of SIFT-based methods. For this reason, in this

bottom right: classification-based.

Figure 13 Matches of the copy-moved regions of image I after the four attacks. Top left: smoothing; top right: collage; bottom left: RMD;
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section we propose a brief qualitative analysis of the per-
formance of the classification-based attack in the presence
of a block-based approach. More specifically, we have
employed the following two detectors: the block-based
one devised by Fridrich et al. in [6], which relies on the
similarity of low frequency DCT coefficients, and the
SIFT-based one of [9]. We selected the forged image of
Figure 14a, where a person has been removed from the
picture by duplicating a portion of the sandy region. Start-
ing from it, we hid the copy-move forgery by means of the
following counter-forensic techniques: the classification-
based attack and the geometric attack proposed in [12].
According to the authors, the attack of [12] proved to
be effective against a number of block-based detectors
(including [6]). It consists of a crop of 3 pixels (column-
wise and row-wise), followed by two JPEG compressions
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(qualities 70 and 60), and a final resampling (bicubic
interpolation) back to the size of the original image.

We ran the two detectors on the manipulated images,
and the results we obtained are show in Figure 14: the
first image of each row represents a manipulation, while
the second and third images represent the detection
performance of the block-based and SIFT-based tools,
respectively. Both techniques succeeded in revealing the
presence of tampering before the attacks were carried
out. Following the geometric attack (Figure 14d), only
the block-based detector was successfully impaired. Vice
versa, the classification-based attack (Figure 14g) hid the
manipulation only to the SIFT-based detector. Unlike the
single application of either of the two countermeasures,
their cascade (Figure 141) was effective against both detec-
tors, regardless of the order of the attacks.

(a) Copy-moved

(d) geometric attack [12] on (a)

(g) Classification attack on (a)

(j) Cascade of (d)-(g) on (a)

(b) Block-based detection [6]

(c) SIFT-based detection [9

(e) Block-based detection

(f) SIFT-based detection

(h) Block-based detection

(i) SIFT-based detection

(k) Block-based detection

(1) SIFT-based detection

Figure 14 Block-based copy-move detector [6] vs SIFT-based copy-move detector [9]. (a, b, c) On copy-move forged image, (d, e, f)
following the geometric attack of [12], (g, h, i) following the classification-based attack, and (j, k, I) following the cascade of the two attacks.
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The interpretation of such results is straightforward:
SIFT features have been devised in such a way to be
robust against geometric manipulations, which obviously
fail at impairing a SIFT-based copy-move detector. On
the other hand, the classification-based attack is designed
to preserve the local visual quality of the image. There-
fore, the artifacts introduced into the image do not alter
the features analyzed by the block-based detector. As a
consequence, the two different counter-forensic schemes
(and possibly others) should cooperate with each other in
order to be effective against a wider spectrum of detection
techniques.

6 Conclusions

In this paper, we presented a counter-forensic scheme
to counter a SIFT-based copy-move detector. The goal
is to remove SIFT keypoints with the lowest possible
impact on visual quality. To do so, we first classified SIFT
keypoints depending on the histogram of their neigh-
borhood. We then used attacks specifically tailored to
each class. Results were better than those obtained by
always using the same attack regardless of keypoint’s prop-
erties. The proposed scheme was applied to a realistic
copy-move scenario and succeeded in disabling a state-
of-the-art SIFT-based detector. Several aspects could be
further investigated, the most interesting of which is the
injection of fake keypoints into the cleaned image. In
fact, an image that does not contain SIFT keypoints (or
very few of them) is suspicious: such absence could be
taken as a clue of tampering, thus leading to a counter
detector with a very straightforward implementation. As
a matter of fact, in a copy-move scenario, the side effect
of the classification-based attack tends to be less notice-
able, mainly for two reasons: (1) only half of the keypoints
are removed from each patch, and (2) some keypoints
are actually not removed but altered in such a way that
their previous match is canceled. Nonetheless, our attack
could greatly benefit from an additional module introduc-
ing plausible fake keypoints and triggering false positives
during the SIFT detection. Moreover, it could be useful to
study more in depth the interactions between the counter-
measures against SIFT-based and block-based copy-move
detectors. Finally, it would also be interesting to apply
our attack to a content-based image retrieval scenario in
order to assess its effectiveness against SIFT-based search
engines.

Endnote

3The UCID database can be freely downloaded from
http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.
html
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