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Abstract. Visual recognition systems are meant to work in the real
world. For this to happen, they must work robustly in any visual domain,
and not only on the data used during training. Within this context, a
very realistic scenario deals with domain generalization, i.e. the ability
to build visual recognition algorithms able to work robustly in several
visual domains, without having access to any information about target
data statistic. This paper contributes to this research thread, proposing
a deep architecture that maintains separated the information about the
available source domains data while at the same time leveraging over
generic perceptual information. We achieve this by introducing domain-
specific aggregation modules that through an aggregation layer strategy
are able to merge generic and specific information in an effective manner.
Experiments on two different benchmark databases show the power of
our approach, reaching the new state of the art in domain generalization.

1 Introduction

As artificial intelligence, fueled by machine and deep learning, is entering more
and more into our everyday lives, there is a growing need for visual recognition
algorithms able to leave the controlled lab settings and work robustly in the wild.
This problem has long been investigated in the community under the name of
Domain Adaptation (DA): considering the underlying statistics generating the
data used during training (source domain), and those expected at test time (tar-
get domain), DA assumes that the robustness issues are due to a covariate shift
among the source and target distributions, and it attempts to align such distri-
butions so to increase the recognition performances on the target domain. Since
its definition [19], the vast majority of works has focused on the scenario where
one single source is available at training time, and one specific target source is
taken into consideration at test time, with or without any labeled data (for an
overview of previous work we refer to section 2). Although useful, this setup
is somewhat limited: given the large abundance of visual data produced daily
worldwide and uploaded on the Web, it is very reasonable to assume that several
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source domains might be available at training time. Moreover, the assumption
to have access to data representative of the underlying statistic of the target
domain, regardless of annotation, is not always realistic. Rather than equipping
a seeing machine with a DA algorithm able to solve the domain gap for a specific
single target, one would hope to have methods able to solve the problem for any
target domain. This last scenario, much closer to realistic settings, goes under
the name of Domain Generalization (DG, [10]), and is the focus of our work.

Current approaches to DG tend to follow two alternative routes: the first
tries to use all source data together in order to learn a joint, general representa-
tion for the categories of interest strong enough to work on any target domain
[11]. The second instead opts for keeping separated the information coming from
each source domain, trying to estimate at test time the similarity between the
target domain represented by the incoming data and the known sources, and use
only the classifier branch trained on that specific source for classification [14].
Our approach sits across these two philosophies, attempting to get the best of
both worlds. Starting from a generic convnet, pre-trained on a general knowledge
database like ImageNet [17], we build a new multi-branch architecture with as
many branches as the source domains available at training time. Each branch
leverages over the general knowledge contained into the pre-trained convnet
through a deep layer aggregation strategy inspired by [27], that we call Domain-
Specific Aggregation Modules (D-SAM). The resulting architecture is trained so
that all three branches contribute to the classification stage through an aggrega-
tion strategy. The resulting convnet can be used in an end-to-end fashion, or its
learned representations can be used as features in a linear SVM. We tested both
options on two different architectures and two different domain generalization
databases, benchmarking against all recent approaches to the problem. Results
show that our D-SAM architecture, in all cases, consistently achieve the state of
the art.

2 Related Works

Most of work in DA has focused on single source scenarios, with two main re-
search threads. The first deals with features, aiming to learn deep domain repre-
sentations that are invariant to the domain shift, although discriminative enough
to perform well on the target [3,4], [13], [22]. Other methods rely on adversarial
loss functions [5], [23], [20]. Also two-step networks have been shown to have
practical advantages [24,1]. The second thread focuses on images. The adversar-
ial approach used successfully for feature-based methods, has also been applied
directly to the reduction of the visual domain gap. Various GAN-based strate-
gies [6] have been proposed for generating new images and/or perturb existing
ones to mimic the visual style of a domain and reducing the discrepancy at the
pixel level [2], [21], [18]. Recently, some authors addressed the multi-source do-
main adaptation problem with deep networks. The approach proposed in [26]
builds over [5] by replicating the adversarial domain discriminator branch for
each available source. Moreover these discriminators are also used to get a per-
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plexity score that indicates how the multiple sources should be combined at test
time as in [16]. A similar multi-way adversarial strategy is used also in [28], but
this work comes with a theoretical support that frees it from the need of respect-
ing a specific optimal source combination and thus from the need of learning the
source weights.

In the DG setting, access to the target data is not allowed, thus the main
objective is to look across multiple sources for shared factors in the hypothesis
that they will hold also for any new target domain. Deep DG methods are
presented in [14,15] and [10]. The first works propose a weighting procedure on
the source models, while the second aims at separating the source knowledge into
domain-specific and domain-agnostic sub-models. A meta-learning approach was
recently presented in [11]: it starts by creating virtual testing domains within
each source mini-batch and then it trains a network to minimize the classification
loss, while also ensuring that the taken direction leads to an improvement on
the virtual testing loss.

Over the last years, it has emerged a growing interest on studying modules
and connectivity patterns, and on how to assemble them systematically. Some
studies showed how skipping connections can be beneficial for classification and
regression. In particular, [8] showed how skipping connections concatenating all
the layers in stages is effective for semantic fusion, while [12] exploited conceptu-
ally similar ideas for spatial fusion. An unifying framework for these approaches,
on which to some extent we build, has been recently proposed in [27]. There
the authors proposed two general structures for deep layer aggregation, one it-
erative and one hierarchical, that capture the nuances of previous works while
being applicable in principle to any convnet.

We leverage on this work, proposing a variant of iterative deep aggregation
leading to a multi branch architecture, able to conjugate the need for general
representations while retaining the strength of keeping information from different
sources separated in the domain generalization setting.

3 Domain Specific Aggregation Modules

In this section we describe our aggregation strategy for DG. We will assume to
have S source domains and T target domains, denoting with Ni the cardinality
of the ith source domain, for which we have {xij , yij}

Ni
j=1 labeled samples. Source

and target domains share the same classification task; however, unlike DA, the
target distribution is unknown and the algorithm is expected to generalize to
new domains without ever having access to target data, and hence without any
possibility to estimate the underlying statistic for the target domain.

The most basic approach, Deep All, consists of ignoring the domain mem-
bership of the images available from all training sources, and training a generic
algorithm on the combined source samples. Despite its simplicity, Deep All out-
performs many engineered methods in domain generalization, as shown in [10].
The domain specific aggregation modules we propose can be seen as a way to
augment the generalization abilities of given CNN architectures by maintaining
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Fig. 1. Architecture of an aggregation module (purple) augmenting a CNN model.
Aggregation nodes (yellow) iteratively process input from Θ’s layers and propagate
them to the classifier.

a generic core, while at the same time explicitly modeling the single domain
specific features separately, in a whole coherent structure.

Our architecture consists of a main branch Θ and a collection of domain
specific aggregation modules Λ = {λ1...λn}, each specialized on a single source
domain. The main branch Θ is the backbone of our model, and it can be in
principle any pre-trained off-the shelf convnet. Aggregation modules, which we
design inspired by an iterative aggregation protocol described in [27], receive
inputs from Θ and learn to combine features at different levels to produce clas-
sification outputs. At training time, each domain-specific aggregation module
learns to specialize on a single source domain. In the validation phase, we use
a variation of a leave-one-domain-out strategy: we average predictions of each
module but, for each ith source domain, we exclude the corresponding domain-
specific module λi from the evaluation. We test the model in both an end-to-end
fashion and by running a linear classifier on the extracted features. In the rest
of the section we describe into detail the various components of our approach
(section 3.1-3.2) and the training protocol (section 3.3).

3.1 Aggregation Module

Deep Layer Aggregation [27] is a feature fusion strategy designed to augment a
fully convolutional architecture with a parallel, layered structure whose task is
to better process and propagate features from the original network to the clas-
sifier. Aggregation nodes, the main building block of the augmenting structure,
learn to combine convolutional outputs from multiple layers with a compres-
sion technique, which in [27] is implemented with 1x1 convolutions followed by
batch normalization and nonlinearity. The arrangement of connections between
aggregation nodes and the augmented network’s original layers yields an archi-



Domain Generalization with Domain-Specific Aggregation Modules 5

tecture more capable of extracting the full spectrum of spatial and semantical
informations from the original model [27].

Inspired by the aggregations of [27], we implement aggregation modules as
parallel feature processing branches pluggable in any CNN architecture. Our ag-
gregation consists of a stacked sequence of aggregation nodes N , with each node
iteratively combining outputs from Θ and from the previous node, as shown in
Figure 1. The nodes we use are implemented as 1x1 convolutions followed by
nonlinearity. Our aggregation module visually resembles the Iterative Deep Ag-
gregation (IDA) strategy described in [27], but the two are different. IDA is an
aggregation pattern for merging different scales, and is implemented on top of
a hierarchical structure. Our aggregation module is a pluggable augmentation
which merges features from various layers sequentially. Compared to [27], our
structure can be merged with any existing pre-trained model without disrupting
the original features’ propagation. We also extend its usage to non-fully con-
volutional models by viewing 2-dimensional outputs of fully connected nodes as
4-dimensional (N x C x H x W) tensors whose H and W dimension are collapsed.
As we designed these modules having in mind the DG problem and their usage
for domain specific learning, we call them Domain-Specific Aggregation Modules
(D-SAM).

3.2 D-SAM Architecture for Domain Generalization

The modular nature of our D-SAMs allows the stacking of multiple augmenta-
tions on the same backbone network. Given a DG setting in which we have S
source domains, we choose a pre-trained model Θ and augment it with S ag-
gregation modules, each of which implements its own classifier while learning to
specialize on an individual domain. The overall architecture is shown in Figure
2.

Our intention is to model the domain specific part and the domain generic
part within the architecture. While aggregation modules are domain specific,
we may see Θ as the domain generic part that, via backpropagation, learns
to yield general features which aggregation modules specialize upon. Although
not explicitly trained to do so, our feature evaluations suggest that thanks to
our training procedure, the backbone Θ implicitly learns more domain generic
representations compared to the corresponding backbone model trained without
aggregations.

3.3 Training and Testing

We train our model so that the backbone Θ processes all the input images, while
each aggregation module learns to specialize on a single domain. To accomplish
this, at each iteration we feed to the network S equal sized mini-batches grouped
by domain. Given an input mini-batch xi from the ith source domain, the cor-
responding output of our function, as also shown graphically in Figure 2, is:

f(xi) = λi(Θ(xi)). (1)
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Fig. 2. Simplified architecture with 3 aggregation nodes per aggregation module. The
main branch Θ shares features with S specialized modules. At training time, the ith
aggregation module only processes outputs relative to the ith domain.

We optimize our model by minimizing the cross entropy loss function LC =∑
c

yxi
j ,c

log(pxi
j ,c

), which for a training iteration we formalize as:

L(Θ,Λ) =

S∑
i=1

LC((λi ◦Θ)(xi)). (2)

We validate our model by combining probabilities of the outputs of aggre-
gation modules. One problem of the DG setting is that performance on the
validation set is not very informative, since accuracy on source domains doesn’t
give much indication of the generalization ability. We partially mitigate this
problem in our algorithm by calculating probabilities for validation as:

pxv
j

= σ(

S∑
i=1,i6=v

λi(Θ(xvj ))), (3)

where σ is the softmax function. Given an input image belonging to the k
source domain, all aggregation modules besides λk participate in the evaluation.
With our validation we keep the model whose aggregation modules are general
enough to distinguish between unseen distributions, while still training the main
branch on all input data.

We test our model both in an end to end fashion and as a feature extractor.
For end-to-end classification we calculate probabilities for the label as:

pxt
j

= σ(

S∑
i=1

λi(Θ(xtj))), (4)
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When testing our algorithm as a feature extractor, we evaluate Θ’s and Λ’s
features by running an SVM Linear Classifier on the DG task.

4 Experiments

In this section we report experiments assessing the effectiveness of our DSAM-
based architecture in the DG scenario, using two different backbone architectures
(a ResNet-18 [7] and an AlexNet [9]), on two different databases. We first describe
the datasets used (section 4.1), and then we proceed to report the model setup
(section 4.2) and the training protocol adopted (section 4.3). Section 4.4 reports
and comments upon the experimental results obtained.

4.1 Datasets

We performed experiments on two different databases. The PACS database
[10] has been recently introduced to support research on DG, and it is quickly
becoming the standard reference benchmark for this research thread. It consists
of 9.991 images, of resolution 227×227, taken from four different visual domains
(Photo, Art paintings, Cartoon and Sketches), depicting seven categories. We
followed the experimental protocol of [10] and trained our models considering
three domains as source datasets and the remaining one as target.

The Office-Home dataset [25] was introduced to support research on DA
for object recognition. It provides images from four different domains: Artistic
images, Clip art, Product images and Real-world images. Each domain depicts
65 object categories that can be found typically in office and home settings. We
are not aware of previous work using the Office-Home dataset in DG scenarios,
hence we decided to follow also here the experimental setup introduced in [10]
and described above for PACS.

4.2 Model setup

Aggregation Nodes. We implemented the aggregation nodes as 1x1 convolu-
tional filters followed by nonlinearity. Compared to [27], we did not use batch
normalization in the aggregations, since we empirically found it detrimental for
our difficult DG targets. Whenever the inputs of a node have different scales, we
downsampled with the same strategy used in the backbone model. For ResNet-18
experiments, we further regularized the convolutional inputs of our aggregations
with dropout.

Aggregation of Fully Connected Layers. We observe that a fully con-
nected layer’s output can be seen as a 4-dimensional (N, C, H, W) tensor with
collapsed height and width dimensions, as each unit’s output is a function of the
entire input image. A 1x1 convolutional layer whose input is such a tensor coin-
cides with a fully connected layer whose input is a 2-dimensional (N, C) tensor,
so for simplicity we implemented those aggregations with fully connected layers
instead of convolutions.
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Fig. 3. Exemplar images for the PACS (left) and Office-Home (right) databases, on
selected categories. We see that for both databases, the variations among domains for
the same category can vary a lot.

Model Initialization. We experimented with two different backbone mod-
els: AlexNet and ResNet-18, both of which are pre-trained on the ImageNet 1000
object categories [17]. We initialized our aggregation modules Λ with random
uniform initialization. We connected the aggregation nodes with the output of
the AlexNet’s layers when using AlexNet as backbone, or with the exit of each
residual block when using ResNet-18.

4.3 Training setup

We finetuned our models on S = 3 source domains and tested on the remaining
target. We splitted our training sets in 90% train and 10% validation, and used
the best performing model on the validation set for the final test, following the
validation strategy described in Section 3. For preprocessing, we used random
zooming with rescaling, horizontal flipping, brightness/contrast/saturation/hue
perturbations and normalization using ImageNet’s statistics. We used a batch
size of 96 (32 images per source domain) and trained using SGD with momentum
set at 0.9 and initial learning rate at 0.01 and 0.007 for ResNet’s and AlexNet’s
experiments respectively. We considered an epoch as the minimum number of
steps necessary to iterate over the largest source domain and we trained our
models for 30 epochs, scaling the learning rate by a factor of 0.2 every 10 epochs.
We used the same setup to train our ResNet-18 Deep All baselines. We repeated
each experiment 5 times, averaging the results.

4.4 Results

We run a first set of experiments with the D-SAMs using an AlexNet as back-
bone, to compare our results with those reported in the literature by previous
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works, as AlexNet has been so far the convnet of choice in DG. Results are
reported in table 1. We see that our approach outperforms previous work by a
sizable margin, showing the value of our architecture. Particularly, we underline
that D-SAMs obtain remarkable performances on the challenging setting where
the ’Sketch’ domain acts as target.

We then run a second set of experiments, using both the PACS and Office-
Home dataset, using as backbone architecture a ResNet-18. The goal of this set
of experiments is on one side to showcase how our approach can be easily used
with different Θ networks, on the other side to perform an ablation study with
respect to the possibility to use D-SAMs not only in an end-to-end classifica-
tion framework, but also to learn feature representations, suitable for domain
generalization. To this end, we report results on both databases using the end-
to-end approach tested in the AlexNet experiments, plus results obtained using
the feature representations learned by Θ, Λ and the combination of the two.
Specifically, we extract and l2 normalize features from the last pooling layer of
each component. We integrate features of Λs modules with concatenation, and
train the SVM classifier leaving the hyperparameter C at the default value. Our
results in table 2 and 3 show that the SVM classifier trained on the l2 normalized
features always outperforms the corresponding end- to-end models, and that Θs
and Λs features have similar performance, with Θs features outperforming the
corresponding Deep All features while requiring no computational overhead for
inference.

Table 1. PACS end-to-end results using D-SAMs coupled with the AlexNet architec-
ture.

Deep All [10] TF [10] MLDG [11] SSN [14] D-SAMs

art painting 64.91 62.86 66.23 64.10 63.87
cartoon 64.28 66.97 66.88 66.80 70.70
photo 86.67 89.50 88.00 90.20 85.55
sketch 53.08 57.51 58.96 60.10 64.66

avg 67.24 69.21 70.01 70.30 71.20

Table 2. PACS results with ResNet-18 using features (top-rows) and end-to-end ac-
curacy (bottom rows).

art painting cartoon sketch photo Avg

Deep All (feat.) 77.06 77.81 74.09 93.28 80.56
Θ (feat.) 79.57 76.94 75.47 94.16 81.54
Λ (feat.) 79.48 77.13 75.30 94.30 81.55
Θ + Λ (feat.) 79.44 77.22 75.33 94.19 81.54

Deep All 77.84 75.89 69.27 95.19 79.55
D-SAMs 77.33 72.43 77.83 95.30 80.72
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Table 3. OfficeHome results with ResNet-18 using features (top rows) and end-to-end
accuracy (bottom rows).

Art Clipart Product Real-World Avg

Deep All (feat.) 52.66 48.35 71.37 71.47 60.96
Θ (feat.) 54.55 49.37 71.38 72.17 61.87
Λ (feat.) 54.53 49.04 71.57 71.90 61.76
Θ + Λ (feat.) 54.54 49.05 71.58 72.03 61.80

Deep All 55.59 42.42 70.34 70.86 59.81
D-SAMs 58.03 44.37 69.22 71.45 60.77

5 Conclusions

This paper presented a Domain Generalization architecture inspired by recent
work on deep layer aggregation. We developed a convnet that, starting from
a pre-trained model carrying generic perceptual knowledge, aggregates layers
iteratively for as many branches as the available source domains data at training
time. The model can be used in an end-to-end fashion, or its convolutional layers
can be used as features in a linear SVM. Both approaches, tested with two
popular pre-trained architectures on two benchmark databases, achieve the new
state of the art. Future work will further study deep layer aggregation strategies
within the context of domain generalization, as well as scalability with respect
to the number of sources.
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