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Chapter 1

Introduction

1.1 Motivations, presentation and aims

Applied Sciences field is doubtless one of the most promising and interesting
contexts modern research is based on. As well as the advances made in each specific
scientific framework, which go hand in hand with the impressive and constantly
faster pace of technological development in recent years, a major contribution to
the improvement of research results can be recognized in the mutual cooperation
among different disciplines in approaching problems. In this scenario, a signifi-
cant role is played by Applied Mathematics, whose transverse nature lends itself
to accomplish the purpose of properly meeting and supporting other subjects re-
quirements.

In this thesis, special emphasis is laid on the great progress achieved in the
biomedical field through a fruitful cooperation with mathematics: specifically,
mathematical modeling turns out to be a powerful tool of analysis experimental
study might rely on in order to pursue investigation concerning cancer research.
Nowadays, indeed, trials in cancer are one of the most challenging, interdisciplinary
contexts and the possibility of improving strategies for approaching the subject to
deliver better and faster results is at the order of the day. A lot of effort is partic-
ularly made with the aim of developing suitable models that could account for the
processes leading to production and spread of cancerous cells. Although such tech-
niques are bound by limitations that mathematical abstraction inevitably brings
with it, recognition of their indispensability and relevance is increasingly growing
among research groups: the remarkable contribution in terms of predicting cell
evolution, potentially even diagnosing and forecasting treatments, is an effective
research path worth being deeply investigated.

A valuable support to mathematical modeling, especially for biomedicine and
cancer research, is provided by scientific computing: as a matter of fact, the pos-
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6 CHAPTER 1. INTRODUCTION

sibility of performing even more reliable simulations with the help of suitable
software and powerful devices, is playing a remarkable role for getting more de-
tailed results both in the processing and post-processing phases. Indeed, after a
preliminary stage consisting in framing the phenomenon object of study within
the proper theoretical framework and in providing the resulting formalization, the
discretization step is to be properly carried out by means of the most up-to-date
procedures, thus producing best quality results for ensuring fruitful subsequent
assessments and inspections by experts in the biomedical field. In this respect,
the contribution made by investigating multidimensional configurations becomes
extremely valuable to support experimental data, that is why, in this thesis, a lot
of effort is spent on performing two-dimensional and three-dimensional simulations
as well. Ultimately, the mathematical approach consists of three distinct aspects:
analytical framing, numerical treatment and data post-processing, which are the
stages to be referred to throughout the whole dissertation.

Concerning the conceptual point of view, in order to get the best contextual-
ization, the so-called Systems Biology paradigm [2, 61, 62, 92] will be often relied
on for approaching some biological problems. This kind of analysis turns out to
change the reductionist perspective (breaking an entity down in order to approach
the entire system through its elementary components) research is frequently ruled
by: it allows to deal with complex biomedical dynamics by assuming the system
as a whole, specifically, through an holistic idea by virtue of which the biomedical
processes analysis cannot be exhausted considering the system as the mere sum of
its components. That is why, instead of focusing on the role of individual agents,
the main purpose is to define how essential components interact to characterize the
collective dynamics. With particular reference to oncology, the Systems Biology
approach is aimed to seize complexity in the genesis of cancer [12].

The thesis is organized as follows: after a brief summary concerning the main
mathematical topics and tools, the core of the work essentially consists in intro-
ducing and analyzing two biomedical contexts related to cancer research. The first
one involves the Epithelial-to-Mesenchymal Transition and its reverse process, the
Mesenchymal-to-Epithelial Transition [92] (EMT and MET in short), which are
crucial steps at the base of morphogenesis and, consequently, critical phenomena in
terms of malignant features acquiring or losing for cancerous cells1 (see Chapter 2);
the second one takes into account the so-called Warburg effect [97, 98] and frames a
biomedical stage in which the carcinogenesis has already occurred, thus focusing on
tumour cells spreading within a healthy tissue (see Chapters 3). The dissertation
is provided with a final section devoted to a further mathematical modeling theme

1The mathematical investigation has been greatly motivated by fruitful discussions with the
researchers of the Systems Biology Group Lab [113] headed by prof. Bizzarri and settled at the
Department of Experimental Medicine, Sapienza University of Rome (Italy), within the project
Phase Transitions in Biology through Mathematical Modelling.
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(see Chapter 4), which goes beyond the purely biomedical framework: indeed, on
the heels of the thematic affinity concerning some mathematical topics to be relied
on in the following, such as traveling waves, the geophysical field will be referred to
in order to perform simulations about the earthquakes occurrences [14, 71]. The
aim of this geophysical analysis also consists in exhibiting a further and effective
proof about the versatility applied mathematics is characterized by, specifically in
such a socially relevant field.

For the ease of the reader, the current section ends providing a synthetic and
exhaustive framing concerning each of the main themes introduced above.

EMT-MET

From a biomedical point of view, cell phenotypic differentiation is a crucial
step for determining cancer onset and evolution. Concerning EMT, indeed, it is
important to point out that this kind of transition allows epithelial cells, charac-
terized by cohesion and strong junctions, to become scattered and acquire motility,
namely the mesenchymal-like state, thus defining a potentially very suitable sce-
nario in terms of malignant features spreading, as depicted in Figure 1.1. The
possibility of inducing MET, namely the reverse process, by means of some exter-
nal stimuli, is giving rise to perform promising studies at the base of which lies
the ultimate ambition to revert an apparently already sealed fate for cells having
acquired malignant features.

Figure 1.1. Epithelial and mesenchymal cells features and associated biomarkers (the
image is taken from [105]).
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In this work, taking advantage of mathematical modeling, EMT-MET analy-
sis is carried out by exploiting a simplified one-dimensional hyperbolic-parabolic
PDE model. The epithelial and mesenchymal phenotypes are the unknown func-
tions and the main purpose consists in establishing the existence of traveling waves
by means of numerical simulations. With the aim of estimating the propagating
fronts speed, the so-called LeVeque-Yee formula [52] is invoked and used to vali-
date an analytical identity specifically set up for such a PDE system provided with
a nonlinear function assumed to be S-shaped. One of the most interesting results
arising from the model object of investigation, lies in the possibility of reproducing
the property of being invasive or not, according to the dependence on two control
parameters, the relaxation time τ and the invasiveness parameter λ respectively,
whose influence is carefully checked through a sensitivity analysis. Numerical sim-
ulations, based on finite difference schemes [77, 78], are carried out by employing
an Implicit-Explicit strategy. Both data processing phase and graphical results
post-processing are performed by using Matlab [106].

Speaking about the perspectives, it would be interesting trying to develop a
solid theoretical counterpart in order to prove the existence of traveling waves
in the general framework τ > 0: in this respect, a possible strategy might take
advantage of singular perturbation techniques, taking as reference the parameter
τ . Moreover, the possibility of setting up a realistic quantitative model, capable
of going beyond the detection of qualitative features, is extremely challenging and
worth being deeply explored.

Warburg effect

The phenomenological context concerning the Warburg effect relies on the ex-
perimental results achieved by Otto Warburg [97] in the 1920s, which essentially
prove that tumour cells lean on anaerobic glycolysis, regardless of the available
oxygen amount, for adenosine triphosphate production, thus causing lactic acid
fermentation, as shown in Figure 1.2. Such a behaviour leads to the so-termed
acid-mediated-invasion-hypothesis, whose mathematical modeling is realized by
means of a three-equations-based reaction-diffusion system known as Gatenby-
Gawlinski model [30, 32]. The main feature for mathematical investigation is the
traveling waves existence [10, 11, 26, 32, 33, 34, 35, 93, 94].

In this dissertation, the Gatenby-Gawlinski model structural aspects are deeply
investigated: in the one-dimensional case, taking into account a finite volume ap-
proximation (refer to [100], for instance) set up through an Implicit-Explicit strat-
egy as far as the time discretization, considerable numerical and computational
effort is made to show the onset of propagating fronts and estimate the associated
wave speed by invoking the LeVeque-Yee formula. Furthermore, reasonable as-
sumptions are considered in order to define some system reductions and numerical
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Figure 1.2. Difference between normal and cancer cells metabolism: healthy cells ex-
ploit oxidative phosphorylation to produce energy, while cancer cells employ anaerobic
glycolysis (the image is taken from [107]).

evidence of the sharpness [84] of the fronts is provided for a one-equation-based
reduction (see Chapter 3). All these results, achieved in the one-dimensional frame-
work, are performed through Matlab.

For the full model case, two-dimensional as well as three-dimensional configu-
rations are considered too: important qualitative aspects related to experimental
observations are emphasized by means of a finite element approach [78] performed
taking advantage of the COMSOL Multiphysics environment [108]. Concerning
the post-processing stage for the three-dimensional graphical results, the choice
has fallen into leaning on ParaView [109].

Future works might be conceived in order to further investigate the Gatenby-
Gawlinski model on unstructured meshes, taking advantage of the general deriva-
tion with variable spatial mesh size proposed in this thesis for the finite volume
strategy. Moreover, as concerns the system reductions field, it is currently under
examination the possibility of extending the sharpness investigation with the aim
of getting analytical and numerical results for the two-equations-based reduction.
Finally, on the heels of the achievements reached through the multidimensional
framework analysis, it is promising trying to improve the computational effective-
ness by invoking the parallel computation paradigm.

Geophysical context: earthquakes simulations

The geophysical field concerning earthquakes phenomena is explored by means
of the so-called Burridge-Knopoff model [14], namely a spring-block model, defined
by a system of ODEs provided with a discontinuous right hand side, which is
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direct consequence of the stick-slip dynamics [13], whose contextualization on an
earthquake fault is depicted in Figure 1.3.

Figure 1.3. Stick-slip dynamics on a fault: the steady accumulation of stress charac-
terizes the stick-phase, while the release of tension, through a seismic event, happens in
the slip-phase (the image is taken from [110]).

In this thesis, numerical simulations are performed by relying on a Predictor-
Corrector strategy [77], with the aim of proving the almost convergence prop-
erty [8, 54] of the wave speeds for the Burridge-Knopoff model with velocity-
weakening friction [15, 16, 17]. The propagating fronts speed approximation is
computed by exploiting a suitable rearrangement of the LeVeque-Yee formula and
numerical evidence of the almost convergence property is provided along with a
consistent phenomenological explanation within the seismological context. Simula-
tions are carried out employing the Fortran language, due to the increasing compu-
tational effort required as the size of the differential system grows up significantly,
depending on the number of blocks involved; finally, the Matlab environment is
considered for the post-processing phase of graphical results.

As far as the work perspectives, it is challenging trying to fathom the model
with the aim of looking for other evidence related to the propagating fronts theory.
Such an attempt is expected to be fruitful, due to the belonging of the model to a
class of systems capable of producing traveling waves, as pointed out in [71].
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1.2 Mathematical framework and tools

From a mathematical point of view, all the results related to the biomedical
and geophysical problems mentioned in Section 1.1, are contextualized within the
traveling waves theory, which is the analytical reference point the numerical core
of the thesis is based on. Indeed, starting from the propagating fronts research
area, by means of mathematical modeling, it is possible to set up a fruitful ground
to carry out several and interesting numerical investigations. Furthermore, tak-
ing advantage of specific tools concerning scientific computing, qualitatively and
quantitatively significant results are provided for processing data.

Nonlinear-reaction-diffusion models are taken into account for the PDE field
and, as regards the numerical framework, the time discretization strategy essen-
tially relies on the IMEX approach, namely Implicit-Explicit algorithms, thus re-
sulting, for instance, in explicit approximations for nonlinear contributions and
implicit treatments for the linear ones (see Chapter 2): the IMEX choice turns
out to be very effective and showing its full potential is one of the key aims of this
work. As a matter of fact, these methods allow to employ less expensive time steps
compared to full explicit strategies, thus considerably reducing the computation
effort without preventing results accuracy. Finally, concerning the spatial dis-
cretization, a wide variety of techniques is considered, embracing finite difference,
finite element and finite volume schemes [77, 78, 100]. Actually, huge emphasis is
placed on pursuing numerical investigations throughout the whole work: indeed,
numerical strategies prove itself to be a very powerful tool to approach traveling
fronts theory, due to it is often not possible to count on exact solutions.

With the aim of introducing the traveling waves analytical framework, a pro-
totype example, whose solution can be explicitly computed [46], is now pro-
vided. Specifically, a scalar reaction-diffusion equation is taken into account, where
u(x, t) ∈ R is the unknown function and f(u) is a reaction term, such as f ∈ C2(R),
satisfying for some α ∈ (0, 1) the following hypothesis:

• f(0) = f(α) = f(1) = 0,

• f ′(0), f ′(1) < 0,

• f(s) 6= 0 ∀s 6∈ {0, α, 1}.

A fitting choice for a reaction part whose trend perfectly matches the above re-
quirements, consists in assuming a cubic form, namely f(u) = u(u − α)(1 − u),
thus leading to the bistable equation:

∂u

∂t
=
∂2u

∂x2
+ u(u− α)(1− u). (1.1)
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As regards the equation (1.1), let us assume
´ 1

0
f > 0: the need for investigations

about traveling fronts is justified as the question, concerning the way the transition
from the steady state 0 towards the steady state 1 happens, arises. In this scenario,
it is natural trying to look for a solution behaving as a propagating front of the
form

u(x, t) = φ(ξ) = φ(x− ct),

being φ : R→ R an increasing function such as φ(−∞) = 0, φ(+∞) = 1 and c ∈ R
the correspondent wave speed. By imposing that φ is a solution of (1.1), we get a
nonlinear differential equation that reads as

φ′′ + cφ′ + φ(φ− α)(1− φ) = 0,

which can be comfortably rewritten to become a system of first-order equations as
follows {

φ′ = ψ

ψ′ = −cψ − φ(φ− α)(1− φ).
(1.2)

At this stage, supposing ψ = Dφ(1− φ) with D ∈ R to be determined (see [46]),
the second equation in (1.2) looks like

D2φ(1− φ)(1− 2φ) + cDφ(1− φ) + φ(φ− α)(1− φ) = 0,

which, after standard manipulations, leads to

(1− 2D2)φ+D2 + cD − α = 0.

The identity above is satisfied selecting c = (2α − 1)/
√

2 and D = 1/
√

2, thus
producing the following Bernoulli differential equation:

φ′ =
1√
2

(φ− φ2), (1.3)

whose solution can be achieved imposing θ(ξ) := 1/φ(ξ), resulting in the family of
functions

θ(ξ) = exp

(
−ξ + C√

2

)
+ 1. (1.4)

Finally, taking advantage of (1.4), it is possible to infer that the solution for the
bistable equation (1.1) is a traveling wave, whose speed is given by c = (2α−1)/

√
2,

belonging to the family

u(x, t) =
1

exp

(
−x− ct+ C√

2

)
+ 1



1.2. MATHEMATICAL FRAMEWORK AND TOOLS 13

where a specific function might be selected by assigning a Cauchy problem for (1.1).
The bistable equation is doubtless an interesting study case and a useful refer-

ence within the traveling fronts theory, but as said before, dealing with most of the
problems arising from applications often involves being able to rely on numerical
analysis, thus resulting in approximations and estimates. Concerning the traveling
waves context, besides computing an approximated solution for the propagating
fronts, estimating the associated wave speed is crucial as well. In this respect, the
LeVeque-Yee formula [52], mentioned in Section 1.1, turns out to be one of the key
topics discussed in the thesis: its use within the reaction-diffusion system envi-
ronment (see Chapters 2 and 3) and the rearrangement proposed (see Chapter 4)
to fit the ODE field, constitute original and effective applications for a tool being
borrowed from the conservation laws context. Some guidance about its derivation
is provided below.

Let us suppose to be interested in quantifying the wave speed at time t for
a traveling wave, namely u(x, t), by means of the LeVeque-Yee approximation,
which is a space-averaged estimation. Starting from the analytical counterpart
(see Chapter 2 for details), if φ is meant to be a differentiable function suitable to
describe the traveling front profile, we can stateˆ

R

[
φ(ξ + h)− φ(ξ)

]
dξ = h

(
φ+ − φ−

)
,

where h is an increment, φ+ and φ− are the asymptotic states for the function φ
(heteroclinic traveling fronts). Given ∆t > 0, by setting h = −c∆t, we get an
integral equation for the propagation speed that reads as

c =
1

[φ]∆t

ˆ
R

[
φ(ξ)− φ(ξ − c∆t)

]
dξ ,

where [φ] := φ+ − φ−.
At this stage, as previously observed in the bistable equation case, it is impor-

tant to recall that a traveling front profile is related to the actual solution through
the change of variable ξ = x−c t . Thus, in discrete form, the space-averaged wave
speed estimation for the function u(x, t) over a uniform spatial mesh at time tn,
being ∆x and ∆t the fixed spatial and time steps respectively and uni an approxi-
mation of u(xi, t

n), is given by

cn =
∆x

[u]∆t

∑
i

(
uni − un+1

i

)
, (1.5)

with [u] := u+−u−, where u+ and u− are the stationary states of u(x, t). Particular
emphasis is to be given to a crucial point: the effectiveness of estimation (1.5) lies
in its independence of the dynamics of the solutions produced by the underlying
equation, that means independence from (1.1) in the bistable case. As a result,
the LeVeque-Yee formula is always numerically computable.
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Scientific computing tools: the COMSOL Multiphysics en-
vironment

The last part of this introductory chapter is devoted to describe the COM-
SOL Multiphysics environment, which turns out to be a very powerful resource
in order to perform multidimensional simulations whose outcomes might be ex-
tremely useful in terms of experimental comparison, especially in the biomedical
field. In this respect, the COMSOL software is employed for two-dimensional and
three-dimensional simulations of the Gatenby-Gawlinski model in Chapter 3 and,
concerning the graphical post-processing of three-dimensional data, a full volu-
metric representation is provided through a transparency technique implemented
exploiting ParaView as visualization platform.

COMSOL Multiphysics allows benefiting from the advantages of an interactive
environment specially designed for quickly accessing resources and tools by invok-
ing advanced numerical methods based on finite element strategies. The range
of applications encompasses mechanical, electromagnetic, fluid flow, heat trans-
fer, acoustics, optics modeling and much more. It is possible both accounting for
specific physics-based problems and taking advantage of the flexibility and gener-
alization provided by the Equation-Based Modeling section, which allows building
multiphysics models that suit best for the user. This last tool has widely been
exploited in this work, due to the possibility of having complete control over the
models underlying the biomedical context, which means capability of tailoring
them to specific requirements and adding complexity according to user’s tastes
and needs.

(a) two-dimensional grid (b) three-dimensional grid

Figure 1.4. Example of finite element mesh generation with COMSOL: triangular (a)
and tetrahedral (b) meshes.
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The COMSOL environments also allows to carefully take care of everything
concerning the finite element mesh generation and refinement: in Figure 1.4, as
an example, meshes suitably realized for arranging multidimensional biomedical
simulations (see Chapter 3) are depicted, specifically, the case of triangular and
tetrahedral grids for radial symmetric experimental domains.

As far as the models setting up, it is possible relying on weak and strong
formulations for both stationary and time-dependent problems, where appropriate
employing Discontinuous Galerkin methods, or selecting among different kinds
of finite elements such as Lagrange, Hermite, Argyris and choosing a suitable
polynomial degree for interpolation. Finally, as regards the step size for the time
evolution of the numerical solutions, the time-dependent solver leans on Runge-
Kutta, Generalized Alpha and Backwards Differentiation Formula (BDF) methods.
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Chapter 2

Mathematical modeling of
EMT-MET1

2.1 Introduction

Epithelial-to-Mesenchymal Transition (EMT) and its reverse process
Mesenchymal-to-Epithelial Transition (MET) are crucial steps during tis-
sues and organs remodeling, a phenomenon at the basis of what is generally called
morphogenesis. Epithelial and mesenchymal cells exhibit different phenotypes,
the former being characterized by tight junctions and cohesion, while the latter
being more scattered and with a high degree of motility [95, 104]. As such, their
emergences are also recognized as critical events which enable/forbid cancer cells
in acquiring/losing malignant features.

Altogether, EMT and MET display dynamical behaviours which resemble those
observed in physical systems during abrupt macroscopic changes between qualita-
tively separated stable states, also known as phase transitions [20]. A characteristic
element to be taken into consideration is that even gradual variation in a few con-
trol parameters and unknowns density can switch cells into specific and distinct
phenotypes.

The description of the interplay between the two phenotypes, namely epithelial
and mesenchymal, has been largely explored using various strategies and tools
(see [63, 103] and references therein). The most traditional approach is based
on a bottom-up procedure, supposed to be paramount for describing how global
structures are the result of underlying microscopic counterparts. However, in the
last decades, such point of view has been widely disputed, leaving the space to

1The contents are collected in [57]; a further manuscript concerning the topics of the chapter
is in preparation for the special issue ‘Where are the biological sciences going?’, Organisms.
Journal of Biological Sciences.

17
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different approaches based on special types of modeling programmes [9]. Indeed,
it has been proposed that critical events are the result of emerging properties at a
scale that is larger than the microscopic ones, according to the influence of external
constraints. Therefore, a different approach should be applied, based on what it is
now a well-established discipline, following the Systems Biology perspective [92].
More specifically, instead of focusing on the role of individual genes, proteins or
other local pathways in biological phenomena, its aim is to characterize the ways
molecular parts adopt for interacting with each other to determine the collective
dynamics of the system as a whole. Recently, the Systems Biology approach has
been successfully extended to the field of oncology, with the ambitious idea of
grasping complexity in the genesis of cancer [12].

We propose a simplified mathematical model which is, in principle, capable
to catch the basic qualitative behaviour of EMT and MET, in an uncomplicated
setting. We stress that the presence of a (single) nonlinear term is crucial, since
it guarantees the existence of propagating fronts through the emergence of several
stationary states. Incidentally, we observe that the same kind of mechanism can
be considered for the description of wound healing experiments [7].

Entering the heart of the matter, we focus here on a diffusive variation of the
ODE model originally proposed in [92] which, after an appropriate adimensional-
isation, reads as{

τ∂tu = v − u
∂tv = ∆xv − v + λg(u)

for x ∈ Rd, t > 0, (2.1)

with some positive parameters τ, λ and a saturating-type reaction function g, which
is typically assumed to be S-shaped: concrete examples are provided by

g(u) =
up

1 + up
= 1− 1

1 + up
, (2.2)

with p ≥ 2. Roughly speaking, the variable u can be interpreted as the density
of cells exhibiting an epithelial phenotype, while the variable v is the density for
the mesenchymal phenotype, its motility described by the presence of the Laplace
operator ∆x in the second equation2. The main advantage of system (2.1) is
to collect into two constants, namely τ and λ, the global characteristics of the
physical model: the first corresponds to a relaxation time and the latter describes
invasiveness of the tumour cells. On that account, such a model does not claim to
provide a quantitative biological description, but only a qualitative one; the main

2The interpretation of the unknowns provided in [92] is actually different: the variable u
refers to the E-cadherin boundary values and v stands for the coherency. Being the latter too
vague to be rigoroursly quantified, here we have opted for an alternative meaning in terms of
cells phenotypes, which appear to be experimentally more robust and, ideally, measurable.
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point is to show that the invasion process could be, in principle, reversible and that
such reversion could be measured by means of a limited number of parameters. A
realistic quantitative model would require a more tailored definition of the objects
under examination.

This chapter is structured as follows. In Section 2.2, we present the general form
of the mathematical model and deduce its corresponding adimensionalisation [92].
After a brief discussion on the basic properties of the underlying kinetic mechanism,
that is relative to the description of space-independent solutions, we consider the
special case of planar solutions, then concentrating the attention to traveling wave
solutions for which an identity for the propagation speed of the front is determined.
Section 2.3 addresses the computational analysis of the one-dimensional version of
the model, choosing an implicit-explicit finite difference algorithm (the linear terms
are discretized implicitly and an explicit approximation is reserved to the nonlinear
term). Several numerical simulations are performed by considering the so-called
LeVeque-Yee formula as a reference for the evaluation of propagation speed. In
addition, we perform a sensitivity analysis with respect to the parameters τ and
λ, collecting the conclusions of the analysis performed.

2.2 A simple PDE model for phase transitions

Let Ω denote a domain in Rd with smooth boundary ∂Ω. We consider the
initial-boundary value problem for the system of partial differential equations{

τ∂tu = αv − βu
γ∂tv = ε2∆xv − µv + λg(u)

for x ∈ Ω, t > 0, (2.3)

with some external parameters τ, α, β, γ, ε, λ, µ and a structural function g to be
specified later on. This system is determined by the (non-negative) initial condi-
tions

u(x, 0) = u0(x), v(x, 0) = v0(x), (2.4)

and the zero-flux boundary conditions

∇xu · n
∣∣
∂Ω

= 0, ∇xv · n
∣∣
∂Ω

= 0, (2.5)

where n denotes the exterior normal vector of the boundary ∂Ω. We remark that
assumption (2.5) is biologically meaningful especially when dealing with in vitro
experiments settled on a Petri dish, for example. However, for the mathematical
analysis, the requirement on boundary data for the unknown u is not needed,
because its dynamics is described by an ODE model.
The reaction function g in (2.3) is assumed to be a transformation of [0,+∞) into
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itself and, additionally, it satisfies the following hypotheses:
H1. it is sufficiently smooth, strictly increasing and such that g(0) = 0;
H2. it is convex in [0, ū] and concave in [ū,+∞) for some ū > 0;
H3. it converges toward a given positive (saturating) limit g∞ at +∞.

2.2.1 Adimensionalization

We apply to system (2.3) the rescaling

ũ =
u

U
, ṽ =

v

V
, s =

t

T
, y =

x

X
,

so that it becomes {
τ̃ ∂sũ = ṽ − ũ
∂sṽ = ∆yṽ − ṽ + λ̃g̃(ũ)

where

V =
βU

α
, T =

γ

µ
, X =

ε
√
µ

and τ̃ =
µτ

βγ
, λ̃ =

αλ

βµ
,

together with g̃(ũ) :=
1

U
g(Uũ), and choosing the constant value U for g̃ to be

equal to 1 at +∞, that is
U = g∞ := g(+∞).

Hence, from now on, we study the solutions to the adimensionalized hyperbolic-
parabolic system (2.1), where, for the sake of readability, we consider the original
variables (x, t), the parameters τ, λ and unknowns (u, v), also assuming g(+∞) =
1, with the initial-boundary conditions described in (2.4)-(2.5).

It is worth noticing that first equation in (2.1) can also be rewritten as a
truncated first order Taylor expansion of the delayed expression

u(x, t+ τ) = u(x, t) + τ∂tu(x, t) + o(τ) ≈ u(x, t) + τ∂tu(x, t).

Moreover, system (2.1) is equivalent to the one-field equation for the unknown u
given by

τ∂ttu+ (1 + τ)∂tu = ∆x(u+ τ∂tu)− u+ λg(u), (2.6)

which is a third order hyperbolic equation for the scalar variable u. Viceversa, the
system (2.1) is also equivalent to an integro-differential parabolic equation for the
unknown v given by

∂tv = ∆xv − v + λ g

(
u0(x)e−t/τ +

1

τ

ˆ t

0

e−(t−s)/τv(x, s) ds

)
,
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which is obtained by solving the first equation in (2.1) with respect to u and then
coupling with the second condition for the variable v.

Incidentally, let us observe that system (2.1) is positivity preserving, meaning
that if the initial data u0 and v0 are non-negative, the same is true for the solutions
to the corresponding initial-boundary value problem. Indeed, the two equations
of the system, considered separately, are scalar equations; thus, they both satisfy
a comparison principle : in particular, the solution u to the linear ODE model

τ∂tu+ u = F (x, t) ≥ 0, u(x, 0) = u0(x) ≥ 0,

is non-negative, and similarly the solution v to the linear parabolic operator

∂tv −∆xv + v = G(x, t) ≥ 0, v(x, 0) = v0(x) ≥ 0,

is non-negative (with both conditions being satisfied by the model under analysis).

2.2.2 Space independent solutions

To start with, let us consider space independent solutions, so that system (2.1)
reduces to

τ
du

dt
= v − u, dv

dt
= −v + λg(u), (2.7)

which coincides with the ODE model originally proposed in [92]. Analogous mod-
els are already present in the literature since decades: among others, we quote [38]
and its descendants, where the FitzHugh-Nagumo system is proposed in the context
of axon signalling, with variables u and v describing approximately the potential
of the nerve axons and a (qualitative) feature of the ionic channels opening/closure
mechanism, respectively. Of course, the action of the variable u inside the equa-
tion for v is completely different with respect to the model presented in this work:
indeed, we attempt at simulating a different type of cellular mechanism, character-
ized by a cooperative-type coupling, for which each variable positively contributes
to the increase of the other. Finally, in [44] a similar system based on the mass
action law is considered in the context of wound healing experiments [7], with
the variables u and v describing, respectively, the area of dead tissue and the
spatially-evolving section of the wound.

The main interest in the model presented in this work is the form of the reaction
function g, as in (2.2), which is supposed to have a saturating Hill shape. Ideally,
such a formula can be recovered by applying some variation of the Michaelis-
Menten reduction from a more involved enzyme-type model (see [36, 64, 99], for
instance) and this kind of shape is sometimes also referred to as the Langmuir
adsorption model function [59]. Numerical simulations will be provided in Sec-
tion 2.3.3 for the special case p = 2, for which the modeling function g is said to
have a Holling type III response form [43].
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Next, we concentrate on the steady states of the ODE system (2.7), which are
also steady stationary states of the original PDE system (2.1). Time independent
solutions are couple of real numbers such that v− u = 0 and v− λg(u) = 0, hence
they correspond to values ū such that

h(ū;λ) := ū− λg(ū) = 0. (2.8)

Under the additional assumptions on the alternating convexity/concavity of g in-
troduced above (see H1, H2 and H3 at the beginning of Section 2.2), it is possible
to distinguish three different configurations depending on the value taken by the
external parameter λ (refer to Figure 2.1).

Figure 2.1. Graphs of the straight line v = u (continuous, gray) and the reaction

function v = λg(u), with g(u) =
u2

1 + u2
, for λ = 1.5 (dotted), λ = 2.0 (dashed) and

λ = 2.5 (continuous).

Specifically, there is a (strictly) positive threshold value λ? > 0, such that:
1. for λ < λ?, the point (0, 0) is the unique intersection of the straight line

v = u with the curve v = λg(u), which corresponds to a stable equilibrium for the
underlying ODE system;

2. for λ = λ?, there are two intersections with abscissae u = 0 and u = u? > 0
(unstable state);

3. for λ > λ?, there are three intersections for u = 0, u = u− and u = u+ such
that 0 < u− < u+, with the extremal values which correspond to stable equilibria
and the intermediate one that is unstable for the underlying ODE system.

The threshold λ?, which separates the two limiting regimes, is given by the
unique value such that

h(u?;λ?) = u? − λ? g(u?) = 0 and
dh

du
(u?;λ?) = 1− λ?

dg

du
(u?) = 0,
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for some u? > 0. Hence, it holds λ? =
u?
g(u?)

and
1

λ?
=
dg

du
(u?), so that finally we

obtain the pointwise identity

u?
dg

du
(u?) = g(u?).

Example 2.2.1. We consider an example of reaction function (2.2) with p = 2.
For this case, the intersection values ū in (2.8) are explicitly computable: upon
substitution, for λ ≥ 2, we infer that h(ū;λ) = 0 if and only if ū(ū2− λū+ 1) = 0,
that is ū ∈ {0, u−(λ), u+(λ)} with

u±(λ) =
1

2

(
λ±
√
λ2 − 4

)
.

For 0 < λ < 2, h(ū;λ) = 0 for physically admissible solutions if and only if
ū = 0. In particular, the threshold value is λ? = 2.0, corresponding to the abscissa
u? = 1 (refer to Figure 2.2). As for the general case, the value u+(λ) is monotone
increasing with respect to the invasiveness parameter λ, and it holds

u+(λ) = λ+ o(1) as λ→ +∞.

Figure 2.2. Graphs of the function h(u;λ) = u−λg(u), with g(u) =
u2

1 + u2
, for λ = 1.7

(dotted), λ = λ? = 2.0 (dot-dashed), λ = 2.1 (dashed), λ = λ0 = 2.175063 (continuous,
gray) and λ = 2.25 (continuous).
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2.2.3 Stability of steady states

We start by dealing with the limiting regime τ = 0 in system (2.7). Denoting
by H(·;λ) the primitive with respect to the first argument of the function h(·;λ)
and by G the primitive of g, we deduce that

H(v;λ) =

ˆ v

0

[
u− λg(u)

]
du =

1

2
v2 − λG(v), (2.9)

which is called the potential of the function h defined in (2.8), because the dynam-
ical system (2.7) with τ = 0 is equivalent to the scalar equation (ODE in gradient
formulation)

dv

dt
= −∂vH(v;λ) . (2.10)

Note that there exists a unique positive λ0 and its corresponding u0 := u+(λ0) such
that the two wells of the potential H have the same depth (refer to Figure 2.3).
For the prototype reaction function (2.2) with p = 2, the values λ0 and u0 are
explicitly computable by applying the iterative Newton method, so that

u0 ≈ 1.5149946 and λ0 ≈ 2.175063 > λ? = 2.0 .

Such configuration is particularly relevant, as it will be further discussed later on.

Figure 2.3. Graphs of the potential H(u;λ) associated with g(u) =
u2

1 + u2
for λ = 1.7

(dotted), λ = λ? = 2.0 (dot-dashed), λ = 2.1 (dashed), λ = λ0 = 2.175063 (continuous,
gray) and λ = 2.25 (continuous).
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For τ = 0, the stability of the equilibria for equation (2.10) is readily checked,
being determined by the sign of the derivative of the function h(·;λ) in (2.8) with
respect to the first argument: when this derivative is positive, the equilibrium is
stable, and when negative, the equilibrium is unstable.

For τ > 0, the situation is only slightly more complicated. Indeed, the lin-
earization of equation (2.6) for space independent solutions at some equilibrium ũ
reads

τ
d2u

dt2
+ (1 + τ)

du

dt
+ ∂uh(ũ;λ)u = 0

and the corresponding characteristic values are

µ±(τ) =
1

2τ

[
−(1 + τ)±

√
(1− τ)2 + 4τλ

dg

du

]
.

In particular, it is readily checked that µ− is always strictly negative (with order
1/τ) and µ+ is negative (with order 1) if and only if

∂uh(ũ;λ) = 1− λdg
du

(ũ) > 0,

matching completely the limiting regime τ → 0+.

2.2.4 Planar solutions

Next, let us consider special solutions possessing planar symmetry – labelled
as the original unknowns with an abuse of notation – given by u(k · x, t) and
v(k · x, t), for some vector k ∈ Rd with unit norm. Substituting this assumption
in system (2.1), we infer the one-dimensional PDE model{

τ∂tu = v − u
∂tv = ∂xxv − v + λg(u)

(2.11)

with the zero-flux boundary conditions (2.5) reducing to

∂xv(a, t) = ∂xv(b, t) = 0 for Ω = (a, b) . (2.12)

In the case Ω = R, system (2.11) is expected to possess special solutions consisting
in a rigid motion with some velocity c of a fixed configuration (U, V ), according
to the following definition.

Definition 2.2.1. A solution (u, v) of the special form (u, v)(x, t) = (U, V )(ξ),
with ξ := x − c t and asymptotic states (U, V )(±∞) = (U±, V±) with (U−, V−) 6=
(U+, V+) is called a propagating front.
The function (U, V ) is the profile of the front and c is its speed.
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The ODE model for traveling wave solutions deduced from (2.11) reads

c τ
dU

dξ
+ V − U = 0,

d2V

dξ2
+ c

dV

dξ
− V + λg(U) = 0. (2.13)

In particular, being the system (2.13) autonomous, the profiles (U, V ) – whenever
they exist – are determined up to translations in the variable ξ (the so-called
translational invariance of traveling fronts). Moreover, it is customarily assumed

that
dV

dξ
→ 0 as ξ → ±∞, because that is actually the case for solutions with

(constant) asymptotic states.

2.2.5 An identity for the wave speed

For τ = 0, the existence and stability of a heteroclinic orbit connecting the two
stable states is a well known result (see [27] and references therein). Moreover,
the corresponding speed is uniquely determined by the location of the asymptotic
states. In such a singular limiting regime, the model (2.11) reduces to a ”fake”
two-dimensional system, being actually equivalent to the scalar reaction-diffusion
equation ∂tv = ∂xxv − ∂vH(v;λ), where H(·;λ) is given in (2.9). Whenever the
potential H exhibits two wells, which is the case if and only if λ > λ? (refer to
Figure 2.3), it can be shown that there exists a propagating front connecting the
two minima of H, thus corresponding to the extremal zeros of h, with speed that
is linked to the difference of depth of the wells. Indeed, for τ = 0, multiplying the

reduced ODE for traveling waves (2.13) by
dV

dξ
and integrating over R, we infer

the identity

c(0, λ) =
H(V+;λ)−H(V−;λ)´ +∞
−∞ (dV/dξ)2 dξ

=
H(u+;λ)´ +∞

−∞ (dV/dξ)2 dξ
for all λ ≥ λ?, (2.14)

where V± = V (±∞) indicate the asymptotic states, with V− = 0 and V+ = u+,
since H(0;λ) = 0.

For τ > 0, we can mimic the same procedure obtaining a generalization of the
above identity.

Proposition 2.2.1. Assume that τ > 0 is chosen so that system (2.11) supports
traveling wave solutions connecting (0, 0) with

(
u+(λ), u+(λ)

)
. Then, the speed of

propagation c(τ, λ) satisfies the identity

c(τ, λ) =
H(u+;λ)

´ +∞
−∞

[
τλ
dg

du
(dU/dξ)2 + (dV/dξ)2

]
dξ

. (2.15)
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Proof. Multiplying the first equation of system (2.13) by λ
dg

dξ
and the second by

dV

dξ
, we deduce

c τλ
dg

dξ

dU

dξ
+ λ

dg

dξ
V − λdg

dξ
U = 0,

d2V

dξ2

dV

dξ
+ c

(
dV

dξ

)2

− V dV

dξ
+ λg

dV

dξ
= 0,

which can be rewritten as

c τλ
dg

du

(
dU

dξ

)2

+ λ
dg

dξ
V − λdg

du
U
dU

dξ
= 0

and

c

(
dV

dξ

)2

+
d

dξ

[
1

2

(
dV

dξ

)2

− 1

2
V 2

]
+ λg

dV

dξ
= 0.

Then, summing up these two equations and recalling that G is a primitive of g,
we conclude that

c

[
τλ
dg

du

(
dU

dξ

)2

+

(
dV

dξ

)2
]

+
d

dξ

[
1

2

(
dV

dξ

)2

− 1

2
V 2 + λG(U) + λ

(
V − U

)
g(U)

]
= 0,

since a straightforward application of the integration by parts formula provides

ˆ
u
dg

du
du = u g(u)−

ˆ
g(u) du = u g(u)−G(u) + constant.

Finally, integrating with respect to ξ ∈ R, under the assumption that
dV

dξ
→ 0

as ξ → ±∞, we obtain the equality (2.15) for U− = V− = 0 and U+ = V+ = u+

because H(0;λ) = 0 from its definition (2.9).

It is worth comparing the general identity (2.15) with its reduced version (2.14).
Moreover, we stress the fact that identity (2.15) cannot be regarded as an equality,
since the right-hand side of the formula depends on the derivatives of the front
profile, which in turn depends on the velocity itself.

There exists a critical value λ0, strictly greater than λ?, such that system (2.11)
possesses a special traveling wave which is actually a stationary solution (U, V ) =
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(U(x), V (x)) with null velocity. Such value separates positive and negative speeds
of propagation, and it is determined by the requirements

h(u0;λ0) = u0 − λ0 g(u0) = 0 and H(u0;λ0) =
1

2
u2

0 − λ0G(u0) = 0.

The first condition above translates the fact that u0 is a zero of the function h(u;λ),
hence a singular point of the potential H(u;λ), and consequently a candidate for
the asymptotic state u+ in Proposition 2.2.1.
The second one corresponds to the requisite that the two wells of H have same
depth (refer to Figure 2.3) and implies that c(τ, λ0) = 0 from identity (2.15).
Specifically, the values u0 6= 0 and λ0 are such that

G(u0)− 1

2
u0 g(u0) = 0 and λ0 =

u0

g(u0)
.

In this framework, one can compute the stationary traveling front (U, V ) by us-
ing the standard construction of a steady heteroclinic orbit for the double-well
potential with wells of equal depth [27].

We conclude this section by recalling that an analytical proof of the existence
of propagating fronts for the system (2.11) is still an open problem, in the general
case λ > λ?, and currently under investigation.
A reasonable conjecture states that, given any couple of parameters τ, λ with
τ > 0 and λ > λ?, there is a unique propagation speed c(τ, λ) for the possible
profile connecting the two stable steady states (0, 0) (on the left) and (u+, u+) (on
the right).

For the limiting case λ = λ?, the behaviour is well-described by the Zeldovich
equation (more details are provided at the end of Section 2.3.3). Therefore, we
expect that a variation of the results presented in [91] should hold, suggesting the
presence of a single heteroclinic profile with a given critical (strictly positive) speed
c?, which is exponential decreasing to 0, together with a family of algebraically
decaying profiles with speeds c > c?.

2.3 Numerical experiments

In this section, we perform simulations of system (2.11)-(2.12) to reproduce
the special type of planar solutions to system (2.1) described in Section 2.2.4, and
we discuss extensively the numerical results.

As regards the numerical strategy, we have tested different approaches and
finally decided to employ an implicit-explicit finite difference algorithm. Such a
choice allows adopting less expensive time steps compared to fully explicit schemes,



2.3. NUMERICAL EXPERIMENTS 29

which are instead heavily conditioned by the restrictions that stability requires.
On the other hand, it avoids further computational efforts needed in the case of a
fully implicit scheme, specifically dealing with large algebraic systems arising from
the discretization of the non linear term inside the second equation. As a matter
of fact, our numerical algorithm discretizes implicitly all the linear terms, so only
an implicit treatment of the reaction function g is considered. We observe that
this technique does not prevent the results from keeping their quantitative and
qualitative accuracy.

2.3.1 Discretization algorithm

We firstly consider a spatial discretization, leading to a semi-discrete version
of system (2.11). Denoting by dx the spatial mesh size, and employing a standard
numerical treatment for the Laplacian, we get

τ
duj
dt

= vj − uj
dvj
dt

=
vj+1 − 2vj + vj−1

dx2 − vj + λg(uj)

where uj and vj are synthetic notations for the pointwise approximation of u(jdx, t)
and v(jdx, t), j ∈ Z, in which time dependence is continuous.

Afterwards, we introduce a semi-implicit time discretization with time step dt,
by assuming that u(jdx, ndt) and v(jdx, ndt), together with their approximations
unj and vnj , n ∈ N+, are evaluated at discrete spatio-temporal points. Therefore,
the fully discrete scheme becomes

τ
un+1
j − unj

dt
= vn+1

j − un+1
j

vn+1
j − vnj

dt
=
vn+1
j+1 − 2vn+1

j + vn+1
j−1

dx2 − vn+1
j + λg(unj )

(2.16)

with suitable initial and boundary conditions. By means of consistency and stabil-
ity arguments, it is possible to prove that the numerical method introduced above
is convergent: specifically, that strategy turns out to be first order accurate in time
and second order in space (see [78], for instance).

After some algebraic manipulations, we deduce a matrix equation for (2.16) as
follows,(1 + τ−1 dt

)
I −τ−1 dt I

O
(
1 + dt

)
I +

dt

dx2 D

(un+1

vn+1

)
=

(
un

vn + λg(un) dt

)
, (2.17)
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where I and O denote, respectively, the identity and the null matrice, and D =(
−δi+1,j + 2δi,j − δi,j+1

)
is the standard discrete Laplacian, with δi,j the Kronecker

delta function of discrete variables i and j.
By taking advantage of the block-matrix structure in (2.17), we notice that a
matrix equation for vn+1 can be defined and separately solved, due to the low

blocks independence from un+1. Indeed, by imposing A := (1 + dt)I +
dt

dx2 D, we

solve the tridiagonal linear system Avn+1 = vn + λg(un) dt and, then, we use the
function vn+1 to update un+1 from the upper blocks. Such backward substitution
technique avoids to operate on the whole matrix equation (2.17), thus allowing to
save computational time.

For the experimental simulations, in order to collect information about the
numerical error produced by the scheme (2.16), we detect a sample solution of
system (2.11) which would play the role of an ”exact” solution, by considering
an extremely fine spatio-temporal mesh (precisely, we take dt = 5.0 × 10−3 and
dx = 1.25 × 10−2). It is important to point out how the structure of matrix
A lends itself well to invoke the Thomas algorithm [78], which is a method of
linear complexity with respect to the problem size. Actually, as it is possible to
recognize by checking the results in Table 2.1, the computational time increases
almost linearly with the size of matrix A (for example, by halving the mesh size,
namely doubling up the matrix size, the corresponding computational time also
approximately doubles up).

All numerical tests are carried out by fixing dt = 5.0 × 10−2 and dx = 1.0 ×
10−1, which satisfy the so-called parabolic CFL condition [78], and the numerical
solutions are compared to the sample solution by means of L∞- and L2-norm error
analysis (refer to Table 2.1 where these values are highlighted in bold).

2.3.2 Numerical evaluation of the propagation speed

In order to provide a numerical approximation of the propagation speed, we
refer to the approach originally proposed in [52], and already successfully applied
to reaction-diffusion systems in [51, 70].

Let us provide a brief recasting of the basic idea behind such method: given
a differentiable function φ with asymptotic states φ± = φ(±∞), the following
identity holds

ˆ
R

[
φ(x+h)−φ(x)

]
dx = h

ˆ
R

ˆ 1

0

dφ

dx
(x+ θh) dθ dx = h

ˆ 1

0

ˆ
R

dφ

dη
(η) dη dθ = h [φ] ,

for some h ∈ R, where [φ] := φ+ − φ−, which is obtained by simply interchanging
the order of integration. In particular, for an increment h equal to −c dt, the above
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Table 2.1: Error estimates at final time T = 100 for three different temporal mesh
sizes dt = 2.5× 10−2 (first table), 5.0× 10−2 (second table) and 1.0× 10−1 (third
table).

dx L∞-error L2-error CPU time
2.5× 10−2 1.56× 10−2 6.1× 10−3 230.63
5.0× 10−2 1.82× 10−2 7.1× 10−3 190.20
1.0× 10−1 2.34× 10−2 9.2× 10−3 53.69
2.0× 10−1 3.42× 10−2 1.34× 10−2 26.61
4.0× 10−1 5.72× 10−2 2.23× 10−2 10.61

dx L∞-error L2-error CPU time
2.5× 10−2 3.31× 10−2 1.30× 10−2 118.95
5.0× 10−2 3.57× 10−2 1.39× 10−2 56.70
1.0× 10−1 4.09× 10−2 1.59× 10−2 27.92
2.0× 10−1 5.16× 10−2 2.02× 10−2 13.92
4.0× 10−1 7.47× 10−2 2.91× 10−2 5.61

dx L∞-error L2-error CPU time
2.5× 10−2 6.67× 10−2 2.60× 10−2 57.53
5.0× 10−2 6.93× 10−2 2.70× 10−2 27.63
1.0× 10−1 7.45× 10−2 2.91× 10−2 13.88
2.0× 10−1 8.52× 10−2 3.32× 10−2 6.91
4.0× 10−1 1.08× 10−1 4.20× 10−2 2.75

identity provides

c =
1

[φ] dt

ˆ
R

[
φ(x)− φ(x− c t)

]
dx. (2.18)

Assuming that φn+1
j is an approximation – in the sense of a propagating front –

of φ(xj − c tn), with xj = jdx and tn = ndt, we numerically compute the integral
in (2.18) by means of the midpoint algorithm and we deduce the LeVeque-Yee
formula for the discrete wave speed, namely

cnLY :=

∑
j

(
φnj − φn+1

j

)
dx

[φ] dt
. (2.19)

Such approximation is indeed exact whenever φnj is related to a traveling wave
solution φ with constant velocity c and asymptotic states φ±. In general, the
value cnLY in (2.19) can be regarded as a space-averaged propagation speed, which
stabilizes to c when φnj converges to the given traveling profile φ.
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Because system (2.11) has two dynamical variables u and v, the respective
speed values can be computed through the LeVeque–Yee formula (2.19) as

cnu,LY :=

∑
j

(
unj − un+1

j

)
dx

[u] dt
and cnv,LY :=

∑
j

(
vnj − vn+1

j

)
dx

[v] dt
, (2.20)

thus furnishing two (possibly distinct) values cnu,LY and cnv,LY .

There are two possible approaches to validate the approximation (2.20) for
experimental simulations, either by comparison with a variation of the Rankine-
Hugoniot relation for reaction-diffusion equations [53], or rather by putting to-
gether with the identity (2.15). Note that, in both the last methods, the dynamics
of system (2.11) is explicitly taken into account to evaluate the propagation speed;
differently, for establishing the formula (2.20), the dynamics of the couple (u, v)
issued from the PDE model is never used. We regard at this property as an
irreproachable advantage of the LeVeque-Yee formula.

More precisely, we call a variation of the Rankine–Hugoniot relation simply the
result of a separate integration of the balance laws constituting the one-dimensional
system (2.11). Assuming the special type of solutions u(x, t) = U(ξ) and v(x, t) =
V (ξ), with ξ = x−c t, by integrating with respect to x the first and second equation
of system (2.13), we obtain

cu,RH =
1

τ [u]

ˆ
R

(
U − V

)
dx and cv,RH =

1

[v]

ˆ
R

[
V − λg(U)

]
dx ,

where [u] = U+ − U− and [v] = V+ − V− with the asymptotic states from Defini-
tion 2.2.1.
A standard discretization of the above integrals produces

cnu,RH =

∑
j

(
unj − vnj )dx

τ [u]
=

∑
j

(
unj − un+1

j )dx

[u] dt
= cnu,LY ,

where we have used the first equation of (2.16). Analogously, for the second
equation it holds

cnv,RH =

∑
j

[
vnj − λg(unj )

]
dx

[v]
=
(
1 + dt

)∑j

(
vnj − vn+1

j

)
dx

[v] dt
=
(
1 + dt

)
cnv,LY ,

thanks to the property of null summation of the discrete Laplacian in (2.16).
This computation shows that – apart from a multiplying factor of order dt – the
variation of the Rankine-Hugoniot relation and the LeVeque-Yee formula are equiv-
alent and, therefore, they cannot be considered as a reliable test for establishing
the validity of each other.
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On the other hand, comparing the formula (2.20) with the exact identity (2.15)
is more favorable, as a consequence of the fact that an independent procedure is
required for obtaining a discrete version of (2.15).
Here, we rely on the results provided in Figure 2.4 to support the validity of the
LeVeque-Yee formula (2.20).

(a) λ = 2.1 (b) λ = 2.25

Figure 2.4. Comparison between the function t 7→ c(t) for t ∈ (0, 35) as given by the
exact identity (2.15) (continuous) and the estimation by the LeVeque-Yee formula (2.20)
(dashed) relative to the values λ = 2.1 (a) and λ = 2.25 (b).

The errors exhibited in the simulations about the (constant) asymptotic speed
values have actually a size of order 10−3 and, hence, these numerical results are
widely acceptable. Similar experimental errors are also shared by different ranges
of the parameter λ and are omitted.

2.3.3 Computational results

In the limiting case τ = 0, the model (2.11) reduces to a standard parabolic
reaction-diffusion equation for the mesenchymal phenotype, whose dynamical be-
haviour is well-known (see [27] and references therein).

As already discussed in Section 2.2, no invasion is possible for 0 < λ < λ?
and a complete Mesenchymal-to-Epithelial Transition (MET) represented by the
regression to the steady state (0, 0) is always the final fate of the solution (u, v).
Then, increasing λ and trespassing the first threshold λ?, but staying below the
second threshold λ0, translates into the presence of traveling waves with positive
speed, thus corresponding again to the case of MET regression. Finally, for choices
of λ > λ0, the traveling wave passes from positive to negative values of the speed,
corresponding to the case of a possible invasive regime, which is typical of an
Epithelial-to-Mesenchymal Transition (EMT).
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The general case τ > 0 follows the same qualitative analysis with respect to
the parameter λ.
In particular, for the reaction function (2.2) with p = 2, the thresholds λ? and λ0

can be explicitly computed and are given by

0 < λ? = 2.0 < λ0 = 2.175063 .

For λ < λ?, the situation is straightforward, since any positive initial datum
generates a solution that converges to (0, 0) as t → +∞ with exponential rate.
Then, we concentrate on the regime λ ≥ λ?.
The numerical results reported below describe only the profile for the component u,
the profile of v being qualitatively very similar. Here, we limit the presentation to
the evolution dynamics exhibited by the Riemann problem, but we can guarantee
that also much more oscillating initial data show the same kind of large-time
behaviour. In addition, we provide different graphical representations of numerical
solutions with the same scale in the vertical axis, so that the height and width of
the front profiles can be compared between different simulations.

The discussion of the critical case λ = λ? = 2.0 is postponed to the final part
of this section.

λ = 2.1 ∈ (λ?, λ0) – For this choice of the parameter λ, numerical evidence
of the existence of a traveling front is obtained. Moreover, being the stable state
u+(λ) closer to the critical state corresponding to the threshold value λ?, the
solution exhibits a regressive (MET) behaviour, namely the front travels toward
the right-hand side with positive speed (refer to Figure 2.5).

Figure 2.5. Regressive regime (MET) for λ = 2.1 . Numerical simulation of the traveling
wave solution to the Riemann problem at times t = 0 (dotted), t = 10 (dash-dotted),
t = 30 (dashed) and t = 50 (continuous).
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λ = λ0 ≈ 2.175063 – Since the two wells of the potential function (2.9) have the
same depth for this value of λ (refer to Figure 2.3), system (2.11) possesses a sta-
tionary solution with the required asymptotic behaviour for τ = 0. In particular,
the dynamics is independent from the relaxation parameter τ and the existence
of a traveling wave in the regime τ > 0 is a straightforward consequence of the
observation that the fronts are actually steady states. For a short time-scale, the
solution to the Riemann problem converges to a smoothed version of the jump
from u = 0 to u = u+(λ0). Thus, for the sake of shortness, we do not present any
numerical simulation for such a simple dynamics.

λ = 2.25 > λ0 – Again, numerical evidence of the existence of propagating
fronts emerges as the long-time behaviour of the solution to the Riemann problem
(refer to Figure 2.6). The traveling wave has now a negative speed, so that we are
in a situation for which invasion (EMT) is possible, at least for Riemann initial
data. For more general initial data, a sort of competition between different parts
of the solution starts playing a crucial role in the determination of the large-time
behaviour.

As far as λ increases, the numerically computed speed of the propagating front
increases in absolute value and, thus, invasive EMT regimes are more and more
probable (see Section 2.3.4).

Figure 2.6. Invasive regime (EMT) for λ = 2.25 . Numerical simulation of the traveling
wave solution to the Riemann problem at times t = 0 (dotted), t = 10 (dash-dotted),
t = 30 (dashed) and t = 50 (continuous).

Finally, we come back to the case of the threshold value λ?.
λ = λ? = 2.0 – As previously observed, the behaviour of the solutions in

this limiting case should be described analogously to what is done in [91] and its
descendants for the equation

∂tu = ∂xxu+ u2(1− u), (2.21)
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whose characteristic is the presence of a multiple (second-order) zero at 0. We
note that equation (2.21) is sometimes referred to in the literature as the Zeldovich
equation and it typically arises in the description combustion phenomena (see [37],
for instance).

In this framework, there exist infinitely many traveling wave solutions (up to
translations), with one profile for any given speed greater than or equal to some
positive threshold value c? (which has an explicit representation exactly when the
specific equation (2.21) is considered). The distinguishing feature of the profile U?
associated to the speed c? is that it is the unique profile with an exponential decay
to both the asymptotic states. On the contrary, whenever c > c?, the decay to the
unstable state has merely an algebraic rate. We conjecture the same to be true
also for the bi-dimensional system (2.11), although at the moment we are not able
to give an analytical proof of such a statement.

Figure 2.7. Critical regime for λ = λ? = 2.0 . Numerical simulation of the traveling
wave solution to the Riemann problem at times t = 0 (dotted), t = 10 (dash-dotted),
t = 30 (dashed) and t = 50 (continuous).

Here, we limit the presentation to numerical results of the large-time behaviour
determined by Riemann initial data, with asymptotic states given by (0, 0) and
(u+(λ?), u+(λ?)). The emergence of a traveling wave solution is apparent, propa-
gating to the right-hand side with some speed c? > 0 (refer to Figure 2.7).

2.3.4 Sensitivity analysis with respect to τ and λ

We finally turn our attention to the sensitivity of the numerical solutions to
system (2.11) with respect to the parameters τ and λ, which is measured by
considering as principal unknown the speed of propagation of the traveling fronts
as evaluated by the LeVeque-Yee formula (2.20).
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Relaxation time τ . The dependence from the relaxation parameter τ is very
smooth and it does not manifest any special feature from a numerical point of view
(refer to Figure 2.8).

Figure 2.8. Graphs of c(·, λ) as a function of the relaxation parameter τ ∈ [0, 1] for
λ = 2.1 (dots), λ = λ0 = 2.175063 (dashed line) and λ = 2.25 (continuous), computed
at the final time T = 100.

Monotonicity of the propagation speed with respect to τ can be conjectured as
a computational evidence, at least in the range of values under consideration. For
τ > 0 and λ ∈ (λ?, λ0), the graph of the function is monotone decreasing, while the
monotonicity is reversed in the complementary regime λ > λ0. The two regimes
are separated by the threshold value λ0 = 2.175063 , which indeed corresponds
to the emergence of a stationary solution. This translates into the fact that both
regression (MET) and invasion (EMT) are slowed down when τ increases, and that
modification is actually relevant, since the regression/invasion speed changes by
a percentage greater than 50% when τ passes from 0 to 1. Hence, the relaxation
time τ has a (smoothly) distributed delay-type impact on the dynamics, and this
feature has to be taken into account while building more quantitative models.

Invasiveness parameter λ. As expected, the dependence from the parameter λ
is more interesting, the results exhibiting a strong variation in the vicinity of the
threshold value λ? (refer to Figure 2.9).

As a matter of fact, the function c(τ, ·) is monotonically decreasing, that repro-
duces – at least numerically – the experimental observation of propagating fronts
expecting to become more and more invasive as λ increases (namely, the preemi-
nent motion is toward the left for our choice of the Riemann data). In particular,
the graph of the variation function ∂λc(τ, ·) suggests that ∂λc(τ, λ) → −∞ as
λ→ λ?.
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(a) c(τ, ·) (b) ∂λc(τ, ·)

Figure 2.9. Graphs of c(τ, ·) (a) and its variation ∂λc(τ, ·) (b) as functions of the
invasiveness parameter λ ∈ [2, 2.5] for τ = 0 (dots) and τ = 1 (continuous), computed
at the final time T = 100.

We conclude this section by recalling that, as a consequence of the convex-
ity/concavity assumptions on the reaction function g, for any λ > λ? the sys-
tem (2.11) possesses two stable steady states (0, 0) and (u+(λ), v+(λ)), and there-
fore it is expected to support a propagating front connecting these asymptotic
values (see Section 2.2.3). It is particularly interesting to remark how the simple
PDE model (2.11) integrates the typical property of propagating fronts of be-
ing/not being invasive merely thanks to the use of two control parameters τ and
λ. Moreover, we have determined explicit transition thresholds λ? and λ0 which
separate regression regimes (MET) from invasive ones (EMT), and these parame-
ters are indeed independent from the value of the relaxation time τ . Also, in the
limiting case τ = 0, system (2.11) reduces to a standard scalar reaction-diffusion
equation and, thus, a possible strategy for obtaining a complete and rigorous proof
of the existence of traveling waves could be based on singular perturbation tech-
niques (with respect to the parameter τ).



Chapter 3

Study of the Gatenby-Gawlinski
model1

3.1 Introduction

Nowadays, cancer research is one of the most active and interdisciplinary inves-
tigation fields. A lot of effort is made in order to improve the actual strategies and
get significant results: this is certainly a very challenging point, but it is interest-
ing to notice how, more and more often, new answers are developed changing the
point of view the entire research is ruled by and employing approaches whose most
appreciable feature is their transverse nature. In this scenario, a remarkable role is
played, for instance, by the Systems Biology paradigm [2, 61, 62, 92], whose crucial
point is the awareness that any complex biomedical problem, such as cancer, must
be faced adequately considering the system as a whole, something more than the
mere sum of its components, according to an holistic point of view.

This kind of approach is an example among the most interesting strategies
that have spread out involving scientists from different fields and the key point,
recognizable within all the modern research paths, is the requirement for relying
on mathematical modeling. As a matter of fact, applied mathematics is turn-
ing out to be a powerful tool for ensuring deeper investigations, especially in the
biomedical fields, where suitable models can be developed to support experimental
studies. Indeed, although such models are often subject to limitations, the aware-
ness of their indispensability within cancer research is widely spreading, especially
for the possibility of both trying and forecasting therapies [31, 35] regardless the
mathematical framework complexity, which is not an essential requirement.

The focus of this chapter is the so-called Warburg effect [97, 98] and its math-
ematical modeling by means of the acid-mediated invasion hypothesis, namely the

1The contents are mostly collected in [70].

39
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typical strategy of acidity increasing against the environment operated by tumours
to regulate their growth, which is already mentioned in [28] and then popularly
translated into a system of reaction-diffusion equations [30, 60], whose main feature
for mathematical investigation is the existence of traveling waves [10, 11, 26, 32,
33, 34, 35, 93, 94]. Although the Gatenby-Gawlinski model as originally presented
in [30, 32] is somehow outmoded, since more sophisticated systems have been intro-
duced to account for improved approximations of realistic biomedical experiments,
our interest in that context is exploring the multidimensional framework for which
analytical results are neither available nor supportive.

Before starting the investigation, it is worth framing adequately the biomedical
context behind the model, specifically describing the hallmarks the Warburg effect
is characterized by. This phenomenon concerns the metabolism of cancer cells, es-
sentially providing their glucose uptake rates: it has been firstly observed by Otto
Warburg [97] in the 1920s, and afterwards confirmed through many experiments,
that tumour cells tend to rely on glycolytic metabolism even in presence of huge
oxygen amounts. Indeed, from a strictly biomedical point of view, it is important
noticing that normal cells undergo glucose metabolism by employing oxidative
phosphorylation pathways, which is the most effective process in terms of adeno-
sine triphosphate production and requires oxygen as main resource. Tumour cells
behaviour seems to forbear the conventional pathway and appeal instead to gly-
colysis, inducing lactic acid fermentation, a product generally released in hypoxia
regime (see Figure 3.1).

Figure 3.1. Different pathways of healthy and cancer cells metabolism [111].

Although the Warburg effect has been intensely studied by now, how this phe-
nomenon happens and affects cancer proliferation is still an open problem, pro-
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ducing discussions about the detection of any possible advantage tumour cells
might benefit from. In [89], for instance, a computational model is proposed with
the aim of explaining the Warburg effect and its consequences in the tumour
microenvironment, deducing the glycolytic property of tumours to proliferate in
poorly vascularized tissues avoiding neo-vascularization. The transition between
normal to glycolytic metabolism is object of study in [4], through a mathemati-
cal model developed to explore the Warburg effect in tumour cords: it is pointed
out the capacity of tumours to lean solely on glycolysis. By exploiting a com-
bination of modeling and in vitro experiments, instead, in [18] it is shown how
cancer metabolic changes are able to define a microenvironment where the better
adapted malignant cells overwhelm the others and spatial structures are created.
And in [3], by means of a multiplayer game theory with specific payoff functions,
the Warburg effect is approached as a sort of cooperation involving cancer cells,
assuming that the public good consists in glycolysis products.

As regards the analysis carried out in this work, the above mentioned acid-
mediated invasion hypothesis is doubtless the phenomenological key point. The
crucial assumption consists in that acidification caused by lactic acid production
is globally advantageous for the cancer cells population, whilst defining a toxic
microenvironment for healthy cells. On that account, the original modeling based
on reaction-diffusion equations developed by Gatenby and Gawlinski [30] is suitable
to perform numerical investigations, because it translates the previous qualitative
statements to deal with invasive species evolving and modifying within a specific
microenvironment belonging to a healthy population. In that context, a novel
attempt has been made to extend the analysis to the multidimensional framework,
which is not deeply explored yet. Actually, in [79] an investigation of the two-
dimensional context is carried out by means of an inverse problem formulation:
we have explored the two-dimensional problem as well, and we have reached beyond
by considering also some three-dimensional configurations [28].

The contents of the chapter are organized as follows. In Section 3.2, the gen-
eral form of the model is illustrated along with its adimensionalization, and the
main features of the system are considered, without neglecting the corresponding
biomedical motivations. Section 3.3 is devoted at building a suitable numerical
algorithm, based on a finite volume approximation for the spatial discretization,
while a semi-implicit approach is invoked for the time discretization. In Section 3.4,
simulations are performed on the ground of the results available in the literature:
the wave speed approximation 2.19 is exploited to verify the existence of a stable
threshold for the propagating fronts. Section 3.5 concerns with the possibility of
assuming simplifying hypotheses in order to build some model reductions, how-
ever allowing to preserve important qualitative features. Finally, in Section 3.6, the
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multidimensional environment is analyzed by means of a finite element approach,
considering both two-dimensional and three-dimensional simulations.

3.2 The Gatenby-Gawlinski model

The model, firstly proposed by Gatenby and Gawlinski in [30], is developed
in order to reproduce cancer cells invasion within a healthy tissue, starting from
a stage in which the carcinogenesis has already happened and, then, it is not
further taken into account. The authors instead focus on the interactions between
malignant and healthy cells populations occurring at the tumour-host interface,
where a significant role is played by the lactic acid production and spreading,
because of the transition towards the glycolytic metabolism.

From a mathematical point of view, dealing with a reaction-diffusion system is
required: the unknown functions are U(x, t), which stands for the healthy tissue
density, the tumour cells density V (x, t) and W (x, t) representing the extracellular
lactic acid concentration in excess, so that the systems reads

∂U

∂t
= ρ1U

(
1− U

κ1

)
− δ1UW

∂V

∂t
= ρ2V

(
1− V

κ2

)
+D2

∂

∂x

[(
1− U

κ1

)
∂V

∂x

]
∂W

∂t
= ρ3V − δ3W +D3

∂2W

∂x2

(3.1)

with initial and boundary conditions to be introduced later on. For the functions
U and V a logistic growth is considered, with carrying capacities k1 and k2 respec-
tively, while ρ1 and ρ2 are the growth rates; instead, δ1 is a death rate proportional
to W , this term being involved to reproduce healthy cells degradation due to the
interactions with the lactic acid.

The structure of the degenerate diffusion term within the second equation is
indeed a very interesting feature of the model (3.1) and its importance for tumour
cells density is justifiable by means of biomedical arguments. As a matter of fact,
the coefficient D2 stands for a diffusion constant of the neoplastic tissue when there
is a complete lack of healthy tissue. On the other hand, when the local healthy
tissue concentration is at its carrying capacity, the diffusion coefficient equals zero
and the cancer cells are unable to spread out. As a result, no tumour spreading
is allowed unless the surrounding healthy cells concentration is no longer equal to
its carrying capacity. This is aimed at simulating a realistic defense mechanism
regarding tumour confinement [30, 84]: it is postulated that, for neoplastic tissue,
the diffusion rate diminishes in proportion to the healthy tissue concentration,
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whilst diffusion is assumed to be negligible for normal tissue (that should be in-
tended as compared to the neoplastic tissue for its mesenchymal phenotype [92]).
It is important to notice that, despite its initial originality, the diffusion term per-
taining to the tumour cells population inside the Gatenby-Gawlinski model (3.1)
is also one of its severe limitations, because experimental observations suggest that
it should actually account for the contribution of tumour cells as well; moreover,
it is reasonable to define a global density threshold, including healthy and tumour
cells, which inhibits not only diffusion but also proliferation of both U and V as
regulated by their combination or rather competition [29, 42].

Finally, in the third equation, a standard diffusion process with constant D3 is
considered for the spatial spreading of the lactic acid. Moreover, a growth rate ρ3

is involved for the acid production, which is linearly proportional to V , while δ3 is
a physiological reabsorption rate.

In order to deal with more manageable quantities, it is advisable making the
system (3.1) non-dimensionalized, as already done in [30], so that we have

∂u

∂t
= u(1− u)− duw

∂v

∂t
= rv(1− v) +D

∂

∂x

[
(1− u)

∂v

∂x

]
∂w

∂t
= c(v − w) +

∂2w

∂x2

(3.2)

and the experimental domain is assumed to be the one-dimensional interval
[−L,L], with t ≥ 0. This resultant version allows to operate with fewer (positive)
parameters d, r, D and c , thus reducing their original range and coping with
scaled functions u(x, t), v(x, t) and w(x, t). As regards the boundary data, the
homogeneous Neumann problem is contemplated for the numerical simulations.

For the one-dimensional framework, a comprehensive study of the traveling
fronts associated to the Gatenby-Gawlinski model (3.1) is performed in [26] to
identify the key qualitative features of wave propagation, because no rigorous
proof of the existence of traveling waves seems to be presently available. By mak-
ing use of matched asymptotic expansions, the system of traveling wave solutions
with suitable asymptotic and boundary conditions is analyzed after appropriate
rescaling; moreover, conditions for the appearance of a tumour-host interstitial gap
are provided, thus confirming and extending the estimates proposed in [30, 32].
The numerical results shown in Section 3.4 are consistent with those illustrated
in [26].

We conclude this section by mentioning that a generalized version of (3.1)
and (3.2) is proposed in [60], including terms for acid-mediated tumour cells death
and mutual competition between healthy and cancer cells. Other models for tu-
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mour invasion for which the existence of propagating fronts is crucial are based on
combined mechanisms of extracellular matrix dynamics and haptotaxis [75, 76].

3.3 The numerical algorithm

We have adopted a numerical strategy based on cell-centered finite volume
approximations for the spatial discretization (refer to [100], for instance). The
choice of a finite volume method is motivated by the possibility of relying on the
integral formulation of the system equations, that is a suitable ground to guarantee
consistency in terms of closeness to the physics of the model.

In order to derive a semi-discrete finite volume approximation, we firstly look
at the general case of a nonuniform mesh and impose that Zi = [xi− 1

2
, xi+ 1

2
) is the

finite volume centered at xi =
xi− 1

2
+ xi+ 1

2

2
, for i = 1, 2, ..., N , where N is a fixed

number of vertices to be selected on the one-dimensional mesh.
Let ∆xi = |xi+ 1

2
− xi− 1

2
| be the (variable) spatial mesh size, so that |xi − xi−1| =

∆xi−1

2
+

∆xi
2

is the typical length for an interfacial interval (see Figure 3.2).

Figure 3.2. Piece-wise constant reconstruction on nonuniform mesh.

We start by taking into account the equation for the healthy tissue density
in (3.2) and we examine its finite volume integral version,

1

∆xi

ˆ
Zi

∂u

∂t
(x, t) dx =

1

∆xi

ˆ
Zi

u(x, t)
(
1− u(x, t)

)
dx− d

∆xi

ˆ
Zi

u(x, t)w(x, t) dx ,

which can be handled by introducing the usual notation for finite volume integral

averages, namely ui(t) '
1

∆xi

ˆ
Zi

u(x, t) dx, hence the semi-discrete equation reads

d

dt
ui(t) = ui(t)

(
1− ui(t)

)
− d ui(t)wi(t) . (3.3)
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Similarly, the equation for the tumour cells density in (3.2) is rewritten as

1

∆xi

ˆ
Zi

∂v

∂t
(x, t) dx =

r

∆xi

ˆ
Zi

v(x, t)
(
1− v(x, t)

)
dx

+
D

∆xi

ˆ
Zi

∂

∂x

[(
1− u(x, t)

)∂v
∂x

(x, t)

]
dx

and a suitable approach must be arranged for the finite volume integral average
of the diffusion term. In particular, we proceed by evaluating the differential term
at the mesh interfaces as follows,

D

∆xi

[(
1− u(xi+ 1

2
, t)
)∂v
∂x

(xi+ 1
2
, t)−

(
1− u(xi− 1

2
, t)
)∂v
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(xi− 1
2
, t)

]

' D

∆xi

(1− ui(t))∆xi +
(
1− ui+1(t)

)
∆xi+1

∆xi + ∆xi+1

· vi+1(t)− vi(t)
∆xi

2
+

∆xi+1

2

−
(
1− ui−1(t)

)
∆xi−1 +

(
1− ui(t)

)
∆xi

∆xi−1 + ∆xi
· vi(t)− vi−1(t)

∆xi−1

2
+

∆xi
2

 ,
(3.4)

where the interfacial quantities are approximated by building weighted averages
whose weights are the size of the adjacent finite volumes, so that ∆xi/∆xi+1 and
∆xi−1/∆xi are employed at the interfaces xi+ 1

2
and xi− 1

2
, respectively. The first

order derivatives of v(x, t) are discretized by means of an interfacial formula which
makes use of the function evaluations at the neighboring vertices.
Finally, as concerns the equation for the extracellular lactic acid in (3.2), we have

1

∆xi

ˆ
Zi

∂w

∂t
(x, t) dx =

c

∆xi

ˆ
Zi

v(x, t) dx− c

∆xi

ˆ
Zi

w(x, t) dx

+
1

∆xi

ˆ
Zi

∂2w

∂x2
(x, t) dx

and, by proceeding as for the previous cases, we derive the approximation

d

dt
wi(t) = c

(
vi(t)− wi(t)

)
+

1

∆xi

wi+1(t)− wi(t)
∆xi

2
+

∆xi+1

2

− wi(t)− wi−1(t)
∆xi−1

2
+

∆xi
2

 . (3.5)

Henceforward, for the sake of simplicity, the quantity ∆xi is assumed to be
constant, namely ∆xi = ∆x for all i = 1, 2, ..., N . Consequently, from (3.4) the
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semi-discrete version of the equation for the cancer cells density becomes

d

dt
vi(t) = r vi(t)

(
1− vi(t)

)
+

D

∆x

[(
1− ui(t)

)
+
(
1− ui+1(t)

)
2

· vi+1(t)− vi(t)
∆x

−
(
1− ui−1(t)

)
+
(
1− ui(t)

)
2

· vi(t)− vi−1(t)

∆x

]

and, after some conventional manipulations, it can be rearranged to get

d

dt
vi(t) = r vi(t)

(
1− vi(t)

)
+

D

∆x2

[(
1− ui(t)

)(
vi+1(t)− 2 vi(t) + vi−1(t)

)
− 1

2

(
vi+1(t)− vi(t)

)(
ui+1(t)− ui(t)

)
− 1

2

(
vi(t)− vi−1(t)

)(
ui(t)− ui−1(t)

)]
.

(3.6)

Finally, the equation (3.5) in the case of a uniform mesh reads

d

dt
wi(t) = c

(
vi(t)− wi(t)

)
+
wi+1(t)− 2wi(t) + wi−1(t)

∆x2
. (3.7)

It is worth noticing that approximation (3.6) exhibits a structure in which the
presence of the discrete Laplace operator is recognizable, along with extra terms
consisting of products of interfacial discretizations. These terms arise from the
degenerate diffusion in the second equation of (3.2) and, indeed, the finite volume
approach we have proposed leads to a diffusion splitting by autonomously selecting
the first and second order contributions. By contrast, an algebraic manipulation
culminating in a early separation, as it could be done for deriving finite difference
schemes [78], it would entail the necessity of relying on a central discretization
for the first order terms, thus not being allowed to choose a suitable propagation
direction. As a consequence, the scheme provided with central approximations
would prove itself to be far less stable.

For the time discretization of the semi-discrete system obtained by group-
ing (3.3), (3.6) and (3.7), we employ a semi-implicit strategy considering a fixed
time step ∆t , so that ∆t = |tn+1 − tn|, for n = 0, 1, .... In particular, the reaction
terms are treated explicitly, while the differential terms on the right-hand sides
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are approximated implicitly, as follows,

un+1
i = uni + ∆t

[
uni
(
1− uni

)
− d uni wni

]
vn+1
i = vni + r∆t vni

(
1− vni

)
+D

∆t

∆x2

[(
1− un+1

i

)(
vn+1
i+1 − 2 vn+1

i + vn+1
i−1

)
− 1

2

(
vn+1
i+1 − vn+1

i

)(
un+1
i+1 − un+1

i

)
− 1

2

(
vn+1
i − vn+1

i−1

)(
un+1
i − un+1

i−1

)]
wn+1
i = wni + c∆t

(
vni − wni

)
+

∆t

∆x2

(
wn+1
i−1 − 2wn+1

i + wn+1
i+1

)

(3.8)

and Neumann-type boundary conditions un1 = un2 , vn1 = vn2 and wn1 = wn2 , for
n = 1, 2, ... are also implemented. This explicit-implicit mixed approach allows
to make less expensive choices for the time step, by contrast with purely explicit
algorithms which would be heavily conditioned by the restrictions that stability
usually requires. The possibility of adopting fully implicit schemes has also been
considered, but such an idea has not been finally taken into account since no
considerable accuracy in the approximation would have been gained but an increase
of the computational time.

We point out that, in order to efficiently solve the discrete system (3.8), it is
useful starting from the solution un+1 for the healthy tissue, whose treatment turns
out to be fully explicit; afterwards, by exploiting the block-matrix structure arising
from the other equations, thus producing a reciprocal independence between the
solutions vn+1 and wn+1, it is easy to go ahead solving separately the corresponding
equations and getting the global approximation evaluated at the discrete time tn+1.

3.4 One-dimensional simulation results

Once a suitable numerical framework has been established, the natural step to
be taken in order to proceed with experiments and simulations consists in defining
a useful tool for the wave speed estimation of the numerical solutions. As a matter
of fact, the most interesting qualitative feature arising from the analysis of the
solutions to system (3.2) is the detection of the traveling fronts phenomenon [84].
Therefore, trying to quantify the associated wave speed becomes a necessary path
to follow for verifying the existence of an asymptotic threshold. According to the
strategy proposed in [52], with the aim of providing a numerical approximation
for the wave speed of the function v at time tn, we employ the space-averaged
estimate (2.19).
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In order to validate the numerical algorithm, numerical simulations have been
performed using the scheme (3.8), together with the wave speed estimate. In
this section, we are interested in recovering computational results described in the
literature [26, 30, 32], therefore the experiments are carried out with the scaled
parameters available in [60], as listed in Table 3.1, and then with the parameters
in [26], as listed in Table 3.2. Besides the quantities already discussed for the
model presentation in Section 3.2, we assume T as the final time instant, while
the spatio-temporal mesh is built by fixing ∆x = 0.005 and ∆t = 0.01.

Table 3.1: Numerical values for the simulation parameters [60].

d r D c L T

{0.5, 1.5, 2.5, 3, 12.5} 1 4 · 10−5 70 1 20

For the choice of the initial profiles, according to what proposed in [60], a piece-
wise linear decreasing density is taken into account for the cancer cells extending
out from its core, where v = 1, and getting towards zero; for the healthy cells
density, the starting graph is simply obtained through a reflection, by imposing
a complementary behaviour with respect to the cancer cells density; finally, the
extracellular lactic acid concentration is initially equal to zero. The corresponding
graphs are shown in Figure 3.3.
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Figure 3.3. Graphs of the initial profiles for the numerical experiments.

The simulation results exhibit basically two different kinds of behaviours, both
reported in Figure 3.4, which are regulated by the parameter d measuring the
destructive influence of the environment acidity on the healthy tissue, and so
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taken as an indicator of the tumour aggressiveness. From a qualitative point
of view, all solutions evolve as forward propagation fronts moving from left to
right with positive wave speed. The plot shown in Figure 3.4(a) corresponds to
a phenomenological regime known as heterogeneous invasion, which turns out to
happen when the condition d < 1 is verified. It is characterized by the coexistence
of tumour and healthy tissue behind the wavefront, because a fraction of normal
cells survives to the chemical action of the tumour thanks to low sensitivity to
the environment acidity. We remark that the boundary data considered in [26]
are slightly different from those adopted for our numerical simulations, but the
model dynamics implies that acid concentration immediately attains its carrying
capacity at the left-hand boundary, and finally the level of the healthy cells density
is exactly 1− d in the purely heterogeneous case.

On the other hand, when d >> 1, a different evolution shape takes place,
the so-called homogeneous invasion depicted in Figure 3.4(d), that is the most
aggressive configuration. Indeed, the healthy tissue is being completely destroyed
behind the advancing tumour cells wavefront because of the high level of acidity
induced into the environment. A narrow overlapping zone actually persists for
increasing values of d > 1, which produces hybrid configurations as shown in
Figure 3.4(b) and Figure 3.4(c), but it reduces progressively as forcasted in [26].
A remarkable feature of the last configuration is the presence of a tumour-host
hypocellular interstitial gap , namely a separation zone between the healthy and
cancer cells populations. Such prediction, initially a mere mathematical result
provided by the model, has been experimentally verified: its detection, in both
unfixed in vitro experiments and in flash-frozen tissues, has provided stronger
evidence to claim this phenomenon authentication [30]. Finally, as regards the
lactic acid concentration, in all cases it tracks the tumour front with a smoother
profile. These results are in agreement with the corresponding records provided
in [60], aimed at recovering the dynamics firstly analyzed in [30].

From a mathematical point of view, the strong dissimilarity in terms of steep-
ness of the wave profiles for the healthy and tumours densities observed in Fig-
ure 3.4 is justified by the fact that somehow U inherits the (parabolic) regularity
of the acid concentration W through the reaction term, whereas the diffusion con-
stant D of the neoplastic tissue is typically very small (refer to Table 3.1). As a
matter of fact, when passing from the system (3.1) to its non-dimensionalized ver-
sion (3.2), that parameter is deduced as D = D2/D3 and it is physically relevant
to assume that D3 is much larger than D2. Therefore, the tumour propagating
front V is normally steeper, despite its diffusivity (hindered by U through a de-
generate factor) is selected as the driving mechanism of invasion, since no diffusion
is considered for the healthy cells due to their epithelial phenotype [92]. Indeed,
the wavefront U fails to keep its regularity once the equation for W is removed
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(a) heterogeneous invasion (d = 0.5)
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(b) hybrid configuration (d = 1.5)
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(c) hybrid configuration (d = 2.5)
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(d) homogeneous invasion (d = 12.5)

Figure 3.4. Different configurations of the numerical solution: comparison between
heterogeneous evolution (a) and existence of the spatial interstitial gap within the ho-
mogeneous evolution (d).

from system (3.1), as demonstrated numerically in Figure 3.10 for the reduced
model (3.9) in Section 3.5.
Another effect on the shape of the wave profiles can be appreciated dealing with the
adimensional parameter r , which is expected to be greater than 1 since deduced
as r = ρ2/ρ1 from physical considerations (we report in Figure 3.5 the numerical
simulation of an experimental case discussed in [26], for example).

We have attempted a qualitative comparison with the analytical results in [26]
by computing numerical solutions using the parameters listed in Table 3.2. In
particular, we are interested in tracking the formation of the interstitial gap , whose
appearance is expected for d > 2 (in which case its size can also be estimated).
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(a) moderate growth (r = 1)
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Figure 3.5. Qualitative analysis of tumour fronts steepness and spatial invasion as
function of the adimensional growth rate (for d = 3).

Table 3.2: Numerical values for the simulation parameters [26].

d r D c L T

{1.5, 2.5, 4} 1 4 · 10−5 2 5 20

The numerical simulations reported in Figure 3.6 actually corroborate such predic-
tion, although some discrepancies emerge concerning the smoothness of the wave
profile for the healthy cells density, thus determining a smaller size for the gap sep-
arating the host and tumour populations. Besides the effects of a bigger diffusion
constant D for the tumour cells, which slightly smooths out the steepness of the
propagating fronts, we must recall that the analysis in [26] is based on asymptotic
expansions and, therefore, solely the leading terms contribute to shape the solution
profiles (this comment applies also to Figure 3.5).

As already mentioned above, the existence of propagating fronts is a key point
for our investigation and information about their wave speed is crucial. In order
to quantify these values, we take advantage of the space-averaged propagation
speed approximation (2.19) and we apply it to better understand the wavefronts
behaviour of the Gatenby-Gawlinski model. For instance, graphs related to the
heterogeneous invasion are considered: the plot proposed in Figure 3.7(a) is meant
for capturing front evolution starting from the initial profile and, by means of
different colors, the tumour cells density function is plotted at different times until
it reaches the shape of a propagating front defined by a stable wave speed. The
graph in Figure 3.7(b) shows the discrete wave speed estimate (2.19) computed
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(c) threshold regimes (d = 2.5)
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(d) homogeneous invasion (d = 4)

Figure 3.6. Numerical simulation of the spatial interstitial gap formation from hetero-
geneous evolution (b) to homogeneous invasion (d).

as a function of time, and it is possible to appreciate the convergence towards the
asymptotic threshold; furthermore, it is easy to verify that a small waiting time is
required before achieving an asymptotic value, that is a common feature of theories
involving traveling fronts, simply recognizable by dealing with scalar problems. An
analogous graph, of course, can be plotted in the homogeneous invasion case.

It is presently useful recalling the results of analytical asymptotic wave speed
estimates provided in [60]. In Table 3.3 the discrete asymptotic wave speed ap-
proximations issued from (2.19) are listed in order to make a comparison: in both
the homogeneous and heterogeneous cases, the relative error we get is sufficiently
small to infer that numerical values are very close to the corresponding quantities
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Figure 3.7. Traveling fronts investigation in the heterogeneous invasion case: the tumour
density profile is plotted at six equally spaced time instants (a), together with the space-
averaged propagation speed approximations as a function of time (b).

computable by using the analytical formulations available in [60]. Moreover, it
is interesting to notice that, at least in the homogeneous case, the wave speed
prediction s ≈ 2

√
Dr perfectly matches the analytical formula already known for

the Fisher-KPP equation [41, 96].

Table 3.3: Comparison between analytical wave speed formulations [60] and the
numerical estimates issued from (2.19).

investigation case numerics analytical wave speed relative error

homogeneous 0.0124 s ≈ 2
√
Dr = 0.0126 0.0159

heterogeneous 0.0058 s ≈
√

2Ddr = 0.0063 0.0794

3.5 Some useful model reductions

Once that our numerical strategy and the space-averaged propagation speed
estimate have been tested, we proceed by setting some simplified versions of the
model. The purpose consists in carving a more approachable structure to pursue
analytical investigations, trying to set ground rules both for a better mathematical
understanding and, as much as possible, for keeping accuracy with respect to the
original biomedical phenomena. Firstly we set up a two-equations-based model
reduction, exploiting for numerical simulations the explicit-implicit approach de-



54 CHAPTER 3. STUDY OF THE GATENBY-GAWLINSKI MODEL

scribed in Section 3.3; afterwards, we define a one-equation-based reduction the-
oretically framed in the degenerate reaction-diffusion equations field [56, 82, 83,
84, 85, 86] and rely on the numerical strategy employed in Section 3.3 as concerns
the spatial discretization, while an explicit treatment is taken into account for the
time discretization.

3.5.1 Two-equations-based model reduction

The assumption we lean on to get a two-equations-based reduction consists in
imposing the condition w = v inside the system (3.2), thus getting a simplified
model, namely 

∂u

∂t
= u(1− u)− duv

∂v

∂t
= rv(1− v) +D

∂

∂x

[
(1− u)

∂v

∂x

] (3.9)

and the corresponding homogeneous Neumann boundary data. Such a simplifi-
cation is achievable taking into account the limit as the parameter c approaches
the infinity inside the third equation of the full model (3.2), and that is moti-
vated by the similarity between tumour cells and lactic acid evolution profiles (see
Figure 3.4).
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Figure 3.8. Wave speed estimates (blue circles) for increasing c values within the full
model (3.2) and wave speed estimate (red line) provided by the simplified model (3.9).

An interesting analysis can be performed from the graph depicted in Figure 3.8,
where the heterogeneous case is considered as an example: for each choice of the
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c value, the corresponding propagation speed approximation for the tumour cells
density front provided by the Gatenby-Gawlinski model (3.2) is reported, as well
as the (constant) wave speed estimate for the simplified model (3.9).

Because this quantity is an asymptotic threshold for the full model, by increas-
ing the c value a convergence towards the asymptotic regime is expected. At this
stage, a further discussion is required since, on the one hand, it is possible to ap-
preciate the convergence, but on the other hand we easily infer that the statement
w = v prevents the reduction from keeping the same wave speed produced by the
complete model, thus exhibiting a quantitative mismatch. Specifically, the wave
speed computed for the simplified model turns out to be smaller than the asymp-
totic value achieved by the full model. Such behaviour can be explained noticing
that the standard diffusion of the lactic acid concentration in the third equation
of (3.2) actually makes it easier to spread for the tumour cells, whose density
expansion already relies on the degenerate diffusion term. As a consequence, the
tumour spreading is slower for the reduced model (3.9), being no longer sustained
by two distinct diffusion mechanisms.

The next step consists in testing numerically our model adjustment by using
the same initial profiles (see Figure 3.3) and parameters (see Table 3.1) as for the
previous simulations of the standard version in Section 3.4, but omitting the equa-
tion for the lactic acid concentration whatever concerns, as shown in Figure 3.9.
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Figure 3.9. Graphs of the initial profiles for the simplified model.

The reduced system (3.9) is still able to reproduce important qualitative features of
the full version (3.2), as it can be detected in Figure 3.10, and what is essential for
performing a consistent mathematical analysis of the mechanisms underlying the
Gatenby-Gawlinski model is the propagating fronts structure. The plots, for both
the heterogeneous and homogeneous cases, exhibit similar qualitative behaviours
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compared to the analogous graphs in Figure 3.4, although some quantitative dif-
ferences are obviously detectable.
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(a) heterogeneous invasion
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Figure 3.10. Comparison between two different regimes of the numerical solutions for
the reduced model configuration.

In order to ensure a better understanding of the dynamics under investigation,
for completing the analysis of the heterogeneous case, it is useful to report the
same plots as previously shown in Figure 3.7 but contextualized in the model re-
duction framework. The front evolution for the tumour cells density is plotted in
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Figure 3.11. Traveling fronts investigation in the heterogeneous invasion case for the
reduced model: the tumour density profile is plotted at six equally spaced time instants
(a), together with the space-averaged propagation speed approximations as a function
of time (b).
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Figure 3.11(a) and the discrete wave speed estimates are taken into account in
Figure 3.11(b). Despite the wave speed threshold has changed with respect to the
value for the full system in Figure 3.7(b), the model reduction upholds the same
qualitative structure: indeed, the traveling fronts formation is still observable as
well as the wave speed convergence towards a stable default value. Therefore, the
transition occurring within the full model (3.2) as the c value approaches infinity
does not prevent the system from keeping its mathematical features. However,
we point out that the gap formation is no longer recognizable for the simplified
model (3.9), and indeed in Section 3.4 we have already observed a delay in its
appearance for higher values of the c parameter from Figure 3.4 with respect to
Figure 3.6. Therefore, we can conjecture that for its detection assuming an in-
dependent evolution for the lactic acid concentration is needed. That is why,
relying on the complete model is required in order to seize the whole biomedi-
cal phenomenon, regardless of any employable reductions for performing further
mathematical analysis.

3.5.2 One-equation-based model reduction

With the aim of getting a one-equation reduction for the Gatenby-Gawlinski
model, it is useful to normalize the coefficient D for the second equation in (3.9).
This goal is accomplished imposing the following rescaling

√
D
∂

∂x
=

∂

∂y
,

under which, by renaming the variable y to x, it is possible to get a two-parameters-
dependent reduction that reads as

∂u

∂t
= u(1− u)− duv

∂v

∂t
= rv(1− v) +

∂

∂x

[
(1− u)

∂v

∂x

]
.

(3.10)

After that, we consider the system (3.10) and assume the stationarity for the
healthy tissue density equation, leading to u(1 − u − dv) = 0; finally we impose
that

u = (1− dv)+. (3.11)

As a consequence, the tumour cells equation turns out to show the following struc-
ture

∂v

∂t
= rv(1− v) +

∂

∂x

[
F (u)

∣∣
u=(1−dv)+

∂v

∂x

]
, (3.12)
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where the degenerate diffusion term is a piecewise linear function defined as

F (u)
∣∣
u=(1−dv)+

= 1− u
∣∣
u=(1−dv)+

= 1− (1− dv)+ =

{
dv if v ∈ [0, 1

d
)

1 if v ∈ [1
d
, 1].

(3.13)

Our reduction (3.12) is a degenerate reaction-diffusion equation and the diffusion
F is almost everywhere differentiable, due to the discontinuity located in v = 1

d

for the derivative.
An interesting investigation to be carried out, relies in detecting information

about the shape of the corresponding traveling waves: specifically, we want to
figure out if the fronts exhibit a sharp-type or front-type trend. Technically, tak-
ing as main guideline the traveling waves problem defined by the following one-
dimensional, degenerate, reaction-diffusion equation,

∂v

∂t
=

∂

∂x

[
F (v)

∂v

∂x

]
+ g(v) with (x, t) ∈ (R× R+), (3.14)

where g(v) is a Fisher-KPP type reaction term, F (v) is the degenerate diffusion
such that v ∈ [0, 1] and F ′(0) 6= 0, then, the definition of sharpness, according
to [84], reads as

Definition 3.5.1 (sharp-type front). If there exist a value of the wave speed s, let
us call it s∗, and a value of ξ, let it be ξ∗ ∈ (−∞,+∞], such that φ(x−s∗t) = φ(ξ),
satisfying

1. F (φ)φ′′ + s∗φ′ + F ′(φ)[φ′]2 + g(φ) = 0 ∀ξ ∈ (−∞, ξ∗),

2. φ(−∞) = 1, φ(ξ∗) = 0 and φ′ < 0 ∀ξ ∈ (−∞, ξ∗),

3. φ′(ξ∗) = −s∗/F ′(0) and φ(ξ) = 0 ∀ξ ∈ (ξ∗,+∞],

where the superscript is meant to denote differentiation with respect to ξ, then
the function v(x, t) = φ(x − s∗t) is called a traveling wave solution of sharp-type
for (3.14).

We point out that the other possibility allowed, happens when the function
v(x, t) turns out to be a traveling wave of front-type, whose typical smoother trend
makes this front to be known as a smooth-type wave as well. The former statement
about the smoothness of the front-type traveling waves, is easily understandable
thinking about the implications framed by the Definition 3.5.1. As a consequence,
indeed, a sharp-type wave attains the equilibrium located in E = 0 in a finite time
ξ∗, with negative slope φ′(ξ∗) = −s∗/F ′(0) [56], thus resulting a discontinuous
derivative in ξ∗, since the left derivative tends to φ′(ξ∗−) 6= 0, while the right
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derivative tends to φ′(ξ∗+) = 0 [84]. By contrast, a smooth-type front exhibits a
continuous derivative in ξ∗. This last observation provides us with a useful tool
in order to quickly, qualitatively detect the distinctive trend for a given traveling
wave, especially when the dynamics is ruled by more complex configurations with
respect to (3.14).

As concerns the problem (3.14), theoretical results [56, 82, 84, 85] are available
for ensuring the existence and uniqueness of sharp/smooth-type traveling waves,
provided that some hypotheses about the regularity of the v-dependent functions
F and g are satisfied (other outcomes are achieved in [83] for a specific choice
of F and in [86] if g is a generalization of the Nagumo equation). The results
available in [56] require at least the pointwise differentiability in [0, 1], so that,
strictly concerning the theoretical point of view, it is not possible to state the
sharpness/smoothness of the fronts for the equation (3.12). As a matter of a
fact, we decide to lean on the numerical assessment, although the possibility of
employing a smooth approximation for by-passing the discontinuous point of F ′,
so that enough regularity [56, 84] might be ensured, would not seem to jeopardize a
theoretical prediction of existence and uniqueness for the fronts in the case of (3.13)
as well.

We stress that the reduction (3.12) might be easily rearrenged to become a one-
parameter-dependent equation, by means of the rescaling ∂/∂t = r∂/∂τ , ∂/∂x =√
r∂/∂y. However, taking advantage of the constraint r = 1 employed for carrying

out simulations, it is possible to keep relying on (3.12) and get a one-parameter
dependence anyway, thus leading to the following equation:

∂v

∂t
= v(1− v) +

∂

∂x

[
F (u)

∣∣
u=(1−dv)+

∂v

∂x

]
. (3.15)

The numerical algorithm On the heels of what has already described in Sec-
tion 3.3, we invoke the same cell-centered finite volume approximation for the
spatial discretization of (3.15) and take care of considering the corresponding ver-
sions the piecewise linear diffusion (3.13) leads to, specifically we have

∂v

∂t
= v(1− v) + d

∂

∂x

(
v
∂v

∂x

)
if v ∈

[
0,

1

d

)
, (3.16)

∂v

∂t
= v(1− v) +

∂2v

∂x2
if v ∈

[
1

d
, 1

]
. (3.17)

The equation (3.16) can be rewritten to get

1

∆xi

ˆ
Zi

∂v

∂t
(x, t) dx =

1

∆xi

ˆ
Zi

v(x, t)
(
1− v(x, t)

)
dx

+
d

∆xi

ˆ
Zi

∂

∂x

(
v(x, t)

∂v

∂x
(x, t)

)
dx
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where the finite volume integral average for the diffusion is dealt as follows

d

∆xi

[
v(xi+ 1

2
, t)

∂v

∂x
(xi+ 1

2
, t)− v(xi− 1

2
, t)

∂v

∂x
(xi− 1

2
, t)

]

' d

∆xi

vi(t)∆xi + vi+1(t)∆xi+1

∆xi + ∆xi+1

· vi+1(t)− vi(t)
∆xi

2
+

∆xi+1

2

− vi−1(t)∆xi−1 + vi(t)∆xi
∆xi−1 + ∆xi

· vi(t)− vi−1(t)
∆xi−1

2
+

∆xi
2

 .
Now, if the quantity ∆xi is constant, we get the following semi-discrete version

d

dt
vi(t) = vi(t)

(
1− vi(t)

)
+

d

∆x

[
vi(t)+vi+1(t)

2
· vi+1(t)− vi(t)

∆x

− vi−1(t)+vi(t)

2
· vi(t)− vi−1(t)

∆x

]
which easily leads to

d

dt
vi(t) = vi(t)

(
1− vi(t)

)
+

d

∆x2

[
vi(t)

(
vi+1(t)− 2 vi(t) + vi−1(t)

)
+

1

2

(
vi+1(t)− vi(t)

)2
+

1

2

(
vi(t)− vi−1(t)

)2
]
.

(3.18)

As concerns the equation (3.17), by following the same path, in case of nonuniform
mesh we have

d

dt
vi(t) = vi(t)

(
1− vi(t)

)
+

1

∆xi

vi+1(t)− vi(t)
∆xi

2
+

∆xi+1

2

− vi(t)− vi−1(t)
∆xi−1

2
+

∆xi
2

 .
while, setting ∆xi as a constant value,

d

dt
vi(t) = vi(t)

(
1− vi(t)

)
+
vi+1(t)− 2 vi(t) + vi−1(t)

∆x2
. (3.19)

For the time discretization of (3.18) and (3.19), we simply employ an explicit
strategy, where ∆t is the fixed time step, so that the final numerical scheme reads
as

vn+1
i = vni + ∆t vni

(
1− vni

)
+H

(
vni+1, v

n
i , v

n
i−1,∆x,∆t, d

)
(3.20)
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where the function H is defined as

H =



d
∆t

∆x2

[
vni
(
vni+1 − 2 vni + vni−1

)
+

1

2

(
vni+1 − vni

)2
+

1

2

(
vni − vni−1

)2
]
,

if vni ∈
[
0,

1

d

)
∆t

∆x2

(
vni+1 − 2 vni + vni−1

)
, if vni ∈

[
1

d
, 1

]
.

It is noticeable that the function H exhibits a jump due to the discontinuity located
in v = 1/d for the derivative of the diffusion F . It is also important to point out
that although the numerical scheme in (3.20) turns out to be conservative as long
as either vni ∈ [0, 1/d) or vni ∈ [1/d, 1] for every suitable choice of i and n, such a
property is lost when a transition between the regimes occurs. Nevertheless the
numerical scheme is able to retrieve a conservative structure, as ∆x→ 0.

Simulations results We take advantage of (3.20) and perform numerical
simulations in order to validate our one-equation-based reduction (3.15) for the
Gatenby-Gawlinski model. As regards the initial profile, we consider the Riemann
problem whose states are PL = 1 at the left and PR = 0 at the right; all the
parameters employed are listed in Table 3.4.

Table 3.4: Numerical default values for the parameters involved in the one-
equation-based reduction.

d ∆x ∆t T

{0.5, 2} 0.05 0.001 20

The results are depicted in Figure 3.12(a) and Figure 3.12(b) for the hetero-
geneous and homogeneous invasion, respectively, by means of the front evolution
representation. The cancerous cells density is plotted at equally spaced time in-
stants and, in both the cases, the corresponding traveling waves turn out to be of
sharp-type.

For ensuring the effectiveness of the one-equation-based reduction (3.15), it is
important to establish if trends related to tumour invasions are correctly caught.
In this respect, Figure 3.12, as well as providing information about the sharpness
of the fronts, certifies as cancerous cells front moves forward faster in the homoge-
neous invasion. Specifically, adopting the space-averaged estimate (2.19), we get
s ≈ 0.499958 for the heterogeneous case and s ≈ 0.968813 for the homogeneous
case: these two values are the asymptotic wave speeds of the tumour front. Fig-
ure 3.13 shows the discrete wave speed approximation computed as a function of
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Figure 3.12. Front evolution for the tumour cells density in the heterogeneous case (a)
and the homogeneous case (b). The parameters used are listed in Table 3.4.

time (d = 0.5 is taken as a sample) and allows us to appreciate the convergence
towards the corresponding asymptotic threshold.
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Figure 3.13. Space-averaged propagation speed approximations as a function of time
for the heterogeneous invasion. The parameters used are listed in Table 3.4.

Finally, as further evidence of the reliability of (3.15), we can get informa-
tion about the healthy cells density too, by simply leaning on (3.11). The related
graphs are depicted in Figure 3.14(a) and Figure 3.14(b). The plots are realized
by simultaneously reporting numerical approximations for the cancerous cells den-
sities, along with the induced healthy cells densities defined by means of (3.11).
The results qualitatively allow to retrieve the characteristic trends proper of the
Gatenby-Gawlinski model.
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(a) heterogeneous invasion
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Figure 3.14. Numerical approximation of the tumour cells density along with the corre-
sponding healthy cells profile, recovered by means of (3.11), for both the heterogeneous
case (a) and the homogeneous case (b). The parameters used are listed in Table 3.4.

As far as the model described by (3.15), it is useful to notice that at least for
the heterogeneous invasion, namely when d < 1, the diffusion term turns out to be
identically F (v) = dv: in order to easily check this statement, recalling the F (v)
definition in (3.13), it follows that v is always in [0, 1/d) if d < 1, being 1/d > 1
and taking in mind the constraint v ≤ 1. Due to this fact, the one-equation-based
model in this specific case becomes

∂v

∂t
= v(1− v) + d

∂

∂x

(
v
∂v

∂x

)
. (3.21)

For degenerate reaction-diffusion equations such as (3.21), it is possible to get an
analytical solution [72, 73]. In this context, we simply impose that v(x, t) is a
propagating front of the form φ(x − st) being s the associated wave speed and,
after some conventional operations, the exact solution reads as

v(x, t) =

1− exp

(
1√
2d

(x− st)
)

if x ≤ st

0 if x > st,
(3.22)

where s =
√
d/2. Assuming the previous choice d = 0.5, it follows that s = 0.5,

which is a threshold very close to our numerical estimate s ≈ 0.499958. For the
sake of completeness, we provide a graphical check as well, the plot being depicted
in Figure 3.15. We have chosen to exploit a refined spatio-temporal mesh, namely
∆x = 0.01 and ∆t = 0.0001, compared to the parameters listed in Table 3.4, with
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Figure 3.15. Exact solution and corresponding tumour density numerical approximation
for the one-equation-based model in case of heterogeneous invasion. ∆x = 0.01 and
∆t = 0.0001 are the choices for the spacial and time steps, respectively.

the aim of achieving a very effective graphical result. The resulting trajectories
are very close and the wave speed approximation is good too, being s ≈ 0.499983.

Finally, by analogy with what has been shown in Section 3.5.1 in order to nu-
merically appreciate the transition occurring from the complete Gatenby-Gawlinski
model towards the two-equations-based reduction by increasing the parameter c
in (3.2), we propose a similar analysis regarding the one-equation-based model.
Indeed, recalling the assumption (3.11) exploited in (3.10) for justifying the model
simplification, it is possible studying the transition occurring between the two-
equations-based and the one-equation-based model by defining the ε-dependent
time derivative of the function u(x, t). We get

ε
∂u

∂t
= u(1− u)− duv

∂v

∂t
= v(1− v) +

∂

∂x

[
(1− u)

∂v

∂x

]
.

(3.23)

At this stage, we can easily infer that, taking the limit as the parameter ε ap-
proaches zero in the first equation of (3.23), perfectly matches, from a theoretical
point of view, the idea behind the hypotesis (3.11), which automatically leads
to (3.15). Now, we want to catch the transition, either employing the wave speed
numerical estimate (2.19), which is the approach already exploited in Section 3.5.1,
either taking advantage of the solution (3.22). As a matter of fact, considering
the heterogeneous invasion context, we can rely on the exact solution for the
one-equation-based model and exploit it to verify the transition from the two-
equations reduction. Figure 3.16(a) exhibits the wave speed numerical approxima-
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(a) convergence of the wave speeds
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Figure 3.16. Wave speeds estimates (blue circles) for v(x, t) in (3.23) if ε ∈ [0.01, 1] along
with the wave speed analytical value (red line) provided by (3.22) (a) and convergence
of the tumour density numerical approximation from (3.23), as a function of specific ε
values, towards the exact solution (3.22) (b). The parameters used are listed in Table 3.4.

tions achieved by assuming decreasing ε values in (3.23) in the case of tumour cells
front. The resulting trend correctly reports a convergence towards the asymptotic
threshold s = 0.5, which is the analytical prediction for (3.21). Moreover, the ex-
act solution (3.22) allows us to graphically recognize the transition towards (3.21)
by means of a convergence check: Figure 3.16(b) reports the tumour density nu-
merical approximation provided by (3.23) as a function of some ε values taken
as sample. It is possible to detect a progressive alignment with the analytical
solution (3.22).

We conclude the section pointing out that the study of the Gatenby-Gawlinski
model reductions is constantly under development: the next step consists in trying
to extend the smoothness/sharpness investigation carried out for the one-equation-
based reduction in order to get analytical and numerical results about the two-
equations-based simplified version.

3.6 Multidimensional simulations

Henceforward, the analysis is carried out on the ground of two-dimensional and
three-dimensional domains. The main purpose consists in exploring the multidi-
mensional framework, both for recovering the qualitative features already exhibited
in the one-dimensional context and for better investigating the phenomenon of the
gap formation, along with its geometry and evolution. For the numerical strategy,
the finite element method [78] has been employed, due to its versatility in dealing
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with more complex geometric domains. Another advantage of this approach lies in
avoiding specific treatment for the boundary conditions, which are automatically
incorporated within the weak formulation of the system (refer to [79] for a similar
methodology). Specifically, we have used Lagrange P2 finite elements for the nu-
merical functions, while triangular and tetrahedral meshes have been adopted for
two-dimensional and three-dimensional simulations, respectively (see Figure 3.17).

(a) two-dimensional mesh (b) three-dimensional mesh

Figure 3.17. Finite element triangular (a) and tetrahedral (b) meshes for radially
symmetric experimental domains.

We proceed to write the multidimensional non-dimensionalized Gatenby-
Gawlinski model, namely the generalized version of system (3.2), as follows

∂u

∂t
= u(1− u)− duw

∂v

∂t
= rv(1− v) +D∇·

[
(1− u)∇v

]
∂w

∂t
= c(v − w) +∇2w

(3.24)

which is defined for some time interval (0, T ) and over a suitable domain Ω ⊂ Rm,
m = 2 or 3, so that the differential operators are ∇ = (∂/∂x1, ..., ∂/∂xm) and
∇2 =

∑m
i=1 ∂

2/∂x2
i , with m = 2 or 3. Afterwards, let us assume that V denotes

some functional space relevant to (3.24), then a weak solution (u, v, w) ∈ V×V×V
is a triplet of functions that satisfies, for all test functions (g1, g2, g3) ∈ V ×V ×V ,
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the following system

ˆ
Ω

(
∂u

∂t
g1 − u(1− u)g1 + duwg1

)
dx = 0

ˆ
Ω

(
∂v

∂t
g2 − rv(1− v)g2 +D(1− u)∇v · ∇g2

)
dx = 0

ˆ
Ω

(
∂w

∂t
g3 − c(v − w)g3 +∇w · ∇g3

)
dx = 0

(3.25)

and the homogeneous Neumann boundary conditions are directly built into (3.25).
The above mentioned weak formulation of system (3.24) is needed to estab-

lish the mathematical context for performing simulations by using the COMSOL
Multiphysics environment [108].

3.6.1 Two-dimensional experiments

The first important step is certainly trying to reproduce the two different kinds
of tumour invasion previously described in Section 3.4. As concerns the domain, we
consider the 2-ball of radius R centered at the point C, namely Ω = BR(C), such a
choice for the geometry being inspired by the circular Petri dish widely employed
in biology for cell cultures (see Figure 3.18). For instance, we have taken R = 8
and C = (0, 0) as simulation parameters.

Figure 3.18. Sample of a circular Petri dish for cell cultures.

For the initial profiles, we assume the evolution of a cancerous peak located
in the neighborhood of the origin and a complementary shape for the healthy
cells density (see Figure 3.19), while the extracellular lactic acid concentration is
initially assumed equal to zero. For x ∈ Ω, the corresponding functions are

u(x, 0) = 1− exp(−‖x‖2)√
π

, v(x, 0) =
exp(−‖x‖2)√

π
, w(x, 0) = 0 . (3.26)

Numerical simulations have been performed until T = 13 and the time instant
T = 6 has been selected for checking the progress of plots also at an intermediate
stage. The other simulation parameters are summarized in Table 3.1.
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(a) tumour cells initial profile (b) healthy cells initial profile

Figure 3.19. Plots of the initial profiles for tumour and healthy cells densities.

From now on, we decide to omit graphic information about the lactic acid concen-
tration, having again recognized a persistent similarity with the behaviour of the
tumour cells density (refer also to Figure 3.4).

(a) intermediate time (b) final time

Figure 3.20. The homogeneous invasion: tumour cells density evolution at two different
time instants T =6 (a) and T =13 (b).

The homogeneous invasion, which is expected to characterize the solutions
to system (3.24) for d > 1, is the first case to be examined: Figure 3.20 and
Figure 3.21 depict the related trends for tumour and healthy cells densities,
respectively.
Starting from the graphs at the intermediate time instant, reported in Fig-
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(a) intermediate time (b) final time

Figure 3.21. The homogeneous invasion: healthy cells density evolution at two different
time instants T =6 (a) and T =13 (b).

ure 3.20(a) and Figure 3.21(a), the qualitative dynamics shows clearly the initial
cancerous peak growing and spreading out at the expense of the local healthy
tissue. Then, the tumour invasion gradually extends towards the outermost

(a) intermediate time (b) final time

Figure 3.22. The heterogeneous invasion: healthy cells density evolution at two different
time instants T =6 (a) and T =13 (b).

regions of the domain (see Figure 3.20(b)), where the healthy cells density is
finally being confined (see Figure 3.21(b)). It is therefore confirmed that the
homogeneous invasion is the most aggressive situation, due to the complete
annihilation of healthy cells behind the advancing radially headed cancerous core.
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As concerns the case of heterogeneous invasion, namely for d < 1 into (3.24),
we focus on the healthy cells density evolution (see Figure 3.22) but omit reporting
plots related to the cancerous peak spreading, which turns out to be very similar
to the counterpart in Figure 3.20 for the homogeneous configuration. As a matter
of fact, it is possible to infer that the local healthy tissue is not being completely
repulsed by the tumour, in contrast to what observed in Figure 3.21 because
healthy cells are destroyed through the strong effect of the lactic acid concentration.
Figure 3.22 shows instead that the healthy cells density reaches an asymptotic
threshold within the inner region of the experimental domain, where the cancerous
core is already detectable.

(a) heterogeneous invasion (b) homogeneous invasion

Figure 3.23. Identification of the two-dimensional gap formation for the homogeneous
case (b) with respect to the heterogeneous case (a).

On the heels of the results available in the one-dimensional framework (refer
to Section 3.4), the essential qualitative difference arising when comparing the two
kinds of tumour invasion lies in the coexistence of healthy and cancer cells on one
side (heterogeneous invasion), and the annihilation of the local healthy tissue out
of the cancerous core on the other side (homogeneous invasion). However, there
is something more to be evaluated: in the homogeneous case, we have appreci-
ated that there is not intersection between healthy and tumour cells densities, as
shown in Figure 3.4(b). Specifically, we have recognized the existence of a spatial
interstitial gap, and we aim at detecting an analogous phenomenon within the
two-dimensional context as well. To accomplish this assignment, the healthy and
tumour cells densities have been plotted simultaneously and a bird-eye viewpoint
is required to investigate the circular crown placed between the advancing tumour
front and the retiring healthy tissue (see Figure 3.23). On the one hand, it is
possible to appreciate the gap formation around the cancerous peak for the homo-
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geneous invasion, as exhibited in Figure 3.23(b): a smaller blue ring, corresponding
to a null density zone, is recognizable within the circular crown located between
the fronts, confirming that no intersection is allowed in this aggressive regime. On
the other hand, for the heterogeneous invasion, Figure 3.23(a) shows that healthy
and tumour cells densities are actually conflated in the area lying between the
fronts.

(a) initial configuration (b) first intermediate time

(c) second intermediate time (d) final configuration

Figure 3.24. The homogeneous invasion: formation and evolution of a two-dimensional
gap from three initially distinct cancerous peaks.

Finally, in order to further investigate the gap formation for the case of homoge-
neous invasion, we build a more complex configuration for the initial profiles made
of three distinct cancerous peaks, by suitably rearranging the formulation (3.26).
We report in Figure 3.24 the simultaneous plots of healthy and tumour cells den-
sities at different time instants, by adopting the bird-eye viewpoint. We skip over
the details concerning the single densities and we exploit Figure 3.24 both for ana-
lyzing the gap evolution and for qualitatively interpreting the resultant dynamics
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of the fronts. In Figure 3.24(a), we notice the formation of three blue rings char-
acterized by null densities around the cancerous circular crowns; then, by means
of two intermediate evaluations (see Figures 3.24(b) and 3.24(c)), it is shown how
these rings gradually increase their size and are opening, as the corresponding
cancerous peaks are colliding and going into meltdown; eventually, once the novel
tumour core is well-defined, as exhibited in Figure 3.24(d), the resultant gap con-
sists of a single contour cordoning off the cancerous crown from the surrounding
marginal area, where the local healthy tissue is regressing.

We conclude this section by remarking that, despite the triangular arrange-
ment of the finite element meshes (see Figure 3.17(a)), the structure of radially
symmetric solutions is preserved by the model dynamics: such property is indeed
intrinsic to system (3.24), for which it can be proven analytically, and numerical
evidence also emerges from the simulation results in Figure 3.20 and Figure 3.21,
for example. Moreover, Figure 3.24 constitutes an experimental proof of the ten-
dency to recover radially symmetric structures even starting from different initial
configurations.

3.6.2 Three-dimensional experiments

The next step consists in exploring the three-dimensional framework, and we
focus on the homogeneous invasion, in order to investigate the phenomenon of
the spatial interstitial gap and its geometry. The COMSOL Multiphysics envi-
ronment is still the principal resource for performing simulations, and we rely on
ParaView [109] for post-processing graphical results.

By analogy with the two-dimensional experiments, the 3-ball of radius R cen-
tered at the point C is chosen as simulation domain, and we build the correspond-
ing finite element mesh as shown in Figure 3.17(b) for the volume Ω = BR(C)
with R = 3.5 and C = (0, 0, 0), for instance. The three-dimensional version of the
initial profiles given in (3.26) is also considered, and T = 7 is assumed as final time
instant. All the plots are realized by exploiting a graphical heat map and setting
the color palette ranging from blue to red, as the magnitudes go from the lower
values to the higher ones.

As concerns the qualitative evolution, the resulting dynamics displays the can-
cerous peak spreading out at the expense of the local healthy tissue, that is what
we have expected on the ground of the results previously described for the two-
dimensional framework (refer to Section 3.6.1). Figure 3.25(a) shows the cancer
cells initial profile, while Figure 3.25(b) reports the evaluation at an intermedi-
ate time instant T = 4. By means of a transparency technique, that allows to
appreciate the numerical data distribution throughout the three-dimensional vol-
ume, the tumour growth is suitably emphasized. The final configuration for both



3.6. MULTIDIMENSIONAL SIMULATIONS 73

healthy and cancer cells densities is depicted in Figure 3.26(a) and Figure 3.26(b),
respectively.
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(b) intermediate time

Figure 3.25. Tumour cells density evolution from the initial profile (a) towards an
intermediate stage T =4 (b).
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(b) tumour cells density

Figure 3.26. Healthy and tumour cells densities evaluation at final time T =7.

For collecting information about the gap formation and understanding how
the densities are actually distributed within the experimental domain, let us have
a look inside the volumes plotted in Figure 3.26. We cut the domain by means
of a section plan passing through the origin and exploit the radial symmetry of
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the solutions to system (3.25) to state that any other section plan would produce
similar results.
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Figure 3.27. The half balls arising from domain sectioning and provided with numerical
data throughout the external spherical surface.
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Figure 3.28. Three-dimensional tumour cells density profile located inside the half ball
provided with healthy cells density data reproduced throughout the external spherical
surface.

We report in Figure 3.27 the graphs corresponding to the half ball for both
healthy and tumour cells densities, where the numerical data under examination
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are represented on the external spherical surface only. This choice provides us with
a clearer viewpoint to better detect the inner regions characterized by different
density distributions. Indeed, taking advantage of symmetry arguments, we can
easily infer that data distributions arising from surface representation retain an
analogous behaviour inside any inner layer. Moreover, the healthy cells density is
identically null throughout a ball contained inside the domain (see Figure 3.27(a)),
while the innermost cancerous core reveals itself in bright red (see Figure 3.27(b)).

As a matter of fact, Figure 3.27 turns out to be a sort of graphical proof for
assessing the presence of a separation zone between the healthy and cancer cells
densities, preventing them from being in touch as the evolution is going on. There-
fore, available space emerges to include the tumour cell density without producing
intersection, as it has been already observed for the one-dimensional and the two-
dimensional framework (see Figure 3.4(d) and Figure 3.23(b), respectively).
On that account, Figure 3.28 shows a simultaneous plot consisting of numerical
data merging from Figure 3.26(b) and Figure 3.27(a), where the cancerous core is
placed in its corresponding spacial domain with respect to the half ball provided
with the healthy cells density profile throughout the external spherical surface. At
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Figure 3.29. Detection of the three-dimensional spatial interstitial gap by means of the
transparency technique.

this stage, identifying the three-dimensional version of the spatial interstitial gap
becomes possible: we are dealing with a null density solid shell located between the
healthy and tumour cells profiles, which is quite well recognizable in Figure 3.28.
Finally, in order to provide the most effective three-dimensional representation of
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the qualitative dynamics of the Gatenby-Gawlinski model (3.24), we have realized
a meaningful simultaneous plot of Figure 3.26(a) and Figure 3.26(b) by exploiting
the transparency technique, and the resulting graph is depicted in Figure 3.29,
where the geometry of the spatial interstitial gap is now clearly noticeable.



Chapter 4

Study of the Burridge-Knopoff
model1

4.1 Introduction

Earthquakes are doubtless an open research field. The need to improve our
knowledge of this kind of geophysical mechanisms and related topics is very strong.
Specifically, an earthquake occurs along fractures in the Earth’s crust, named
faults, characterized by a steady accumulation of tension, when big quantities of
energy are suddenly released due to the relative motion of the two sides involved.
To understand better we recall that Earth’s lithosphere includes the crust and is
also composed of a part of the upper mantle. Moreover, it presents a complex
structure divided into distinct blocks, the tectonic plates. This point is crucial,
because it is along the borders of tectonic plates that the great accumulation
of tension we mentioned above takes place. The plates are indeed continually
stressed by external forces, whose nature has been investigated and is continuing
being object of study: scientists think this stress to be caused by the mantle
convection [21] but a gravitational contribution is not ignored [22].

A central role in our analysis is played by the friction. Indeed, although the
existence of forces able to solicit plates is of course an important factor to explain
seismic events, nothing would happen if friction did not inhibit the relative motion
between the two different sides of an active fault. Strongly connected with these
concepts is the stick-slip phenomenon, associated to the earthquakes by Brace and
Byerlee [13]. The borders of a fault exhibit asperities which make the local slip
very difficult: as a consequence tension increases and the motion is inhibited by the
balance between tension and friction. Once that this equilibrium is compromised,
due to the steady accumulation of stress, a slip of the sides involved occur and a

1The contents are collected in [58].
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great quantity of energy is released, generating an earthquake. The alternation
between period of quiescence, in which tension increases, and phases in which
tension is released along the fault, through the motion of the plates, is a typical
example of the stick-slip behaviour.

It is important to notice that in the last decades a great effort has been made
to investigate the statistical properties of earthquakes. This way of thinking is
strongly connected with the idea of self-organized criticality, SOC, developed by
Bak et al. [5] and its influence on seismic events [6]. By following this concept lots
of natural phenomena are explainable in terms of criticality: these kinds of pro-
cesses can self-organize and reach critical states. When similar states are reached,
little perturbations affecting the elements belonging to the systems can propagate
and involve items of any size [112]. In the SOC framework this behaviour is often
illustrated by basic laws collecting the statistical properties of the process studied.
As concerns the earthquakes, two important power laws would be a concrete man-
ifestation of the SOC principles: the Gutenberg-Richter law [40] for the magnitude
distributions and the Omori law for the aftershocks sequences [87]. In order to
point out the SOC idea, the earthquake models are often analyzed with cellular
automaton approach, as in the work by Olami, Feder and Christensen [6, 74].

One of the most famous mathematical models developed to study earthquakes
and its statistical properties, especially pursuing the idea of a qualitative compar-
ison with real phenomena, is the Burridge-Knopoff model, proposed in 1967 [14].
This is a deterministic dynamical system whose computational investigation pro-
vides lots of useful results to achieve a sufficiently accurate analysis of seismic
events. The Burridge-Knopoff model has been deeply investigated in order to pur-
sue a statistical study of earthquakes [45] and continues to be a landmark in this
research field, due to its nontriviality but, at the same time, its simplicity [21].
On a mathematical level the associated differential system exhibits a discontinu-
ous right hand side, arising from the choice of the friction law. This is a direct
consequence of the alternation caused by the stick-slip dynamics and expressed
by the friction, the only source of nonlinearity in the model. This alternation
produces a dry friction. Lots of models arising from applications exhibit similar
characteristics and require careful analysis. An analytical study of a non-smooth
friction-oscillator model, qualitatively very close to the Burridge-Knopoff model, is
provided in [48]. Obviously also the related numerical problem must be adequately
approached: in this sense some numerical methods are employed for non-smooth
systems [1] and suitable regularizations are often performed [39].

In this work we want to investigate the model in order to prove the almost
convergence [8, 54] of wave speeds: we proceed as in the context of traveling
waves theory, specifically, by numerically recognizing the existence of an asymp-
totic threshold. Indeed, the Burridge-Knopoff model has been proved to exhibit



4.2. THE BURRIDGE-KNOPOFF MODEL 79

features related to propagating fronts: some results have been achieved in [71], by
means of a continuum version of the model, while in [65], the existence of soli-
tary waves in the excitable Burridge-Knopoff model is reported. With the aim of
achieving our main purpose, we develop a space-averaged wave speed estimate and
perform simulations by employing a numerical adjustment of the system based on a
Predictor-Corrector approach. The idea behind a Predictor-Corrector strategy [77]
is inspired by the necessity of furnishing a good initial guess to start fixed-point
iterations when an implicit method is invoked. Indeed, because several function
evaluations are generally needed by using the fixed-point method, trying to reduce
the computational cost becomes important. So the basic idea consists in using an
explicit multistep method to compute a better initial guess and take advantage of
this value by employing an implicit multistep method within a fixed-point scheme.
The procedure is then divided into two parts: the first one is the prediction phase,
where an explicit algorithm, named Predictor, furnishes an adequate initial guess;
the second one is the correction phase, where an implicit algorithm is invoked,
possibly also several times, to realize the fixed-point scheme. The implicit method
used is defined the Corrector because acts on the predicted initial value. However,
it is important to notice that the overall strategy is totally explicit because the
predicted value is employed within the implicit method where the dependence on
the incoming time instant appears.

The contents of the chapter are organized as follows. In Section 4.2 we introduce
the model and describe a particular version among those available as developments
of the original one proposed by Burridge and Knopoff, mentioning the important
connection with the Gutenberg-Richter law. In Section 4.3 we present the numer-
ical algorithm and analyze the computational strategy used; also we comment on
the results of simulations by starting from the simplest case in order to increase
the complexity and consider more articulated configurations. In Section 4.4 we
perform simulations aimed at detecting the almost convergence of wave speeds,
by means of a suitable wave speed estimate, to get information about traveling
fronts: we numerically prove the existence of an asymptotic threshold and discuss
a phenomenological explanation concerning the convergence of the wave speeds
averages.

4.2 The Burridge-Knopoff model

The system studied by Burridge and Knopoff is a spring-block model. Their
purpose consists in trying to reproduce the typical dynamics which take place
along an active fault. The goal is pursued through a discrete representation given
by a chain of N identical blocks, with mass m, mutually connected by linear
springs with elastic constant kc. A sort of one-dimensional array is generated
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(Figure 4.1). It is also possible studying the dynamics produced by a grid of
blocks, within a multidimensional version of the system, thus focusing on a two-
dimensional array [67, 68]. The blocks are supposed to rest on a rough surface,

m

kc

kp V

a
F

Figure 4.1. Scheme of the Burridge-Knopoff model.

where F is the friction, and connect to a moving upper plate by linear springs with
elastic constant kp. As regards the approximation of a real fault, the opposite sides
of two different tectonic plates are assumed to be represented by the rough surface
and the chain of blocks. The upper surface is supposed to be in motion, precisely at
constant velocity V : this contribution induces a solicitation explainable thinking
about the role of the external forces acting on a fault. It is assumed that the blocks
are initially equally spaced and that the reciprocal distance is a. This means that
a does not explicitly appear within the equation of motion for the block i, which
is

mẍi = kc(xi+1 − 2xi + xi−1) + kp(V t− xi)− F (ẋi), (4.1)

where xi is the displacement from the initial equilibrium position. Let us investi-
gate the structure of (4.1) by analyzing each contribution.

Internal elastic energy As concerns the horizontal springs, it is assumed that
a linear interaction takes place among the blocks. This is the conventional adjust-
ment adopted within the Burridge-Knopoff model, but a linear coupling is not the
only possibility. For instance, the eventuality of a nonlinear coupling is consid-
ered in [19]. Due to the chain structure, producing two neighbors for each block,
the internal elastic solicitation consists of two contributions, obviously except for
the masses at the edges (in this case adequate boundary conditions are required
as we will discuss in Section 4.3). By considering the elastic forces and recalling
that the expression xi is associated to the displacements from equilibrium posi-
tion, the contribution provided by springs with stiffness kc takes the form of the
one-dimensional discrete Laplace operator.

External forces We said above that the action of the external forces is realized
within the model by the upper surface, in motion with constant velocity V . The
blocks deal with this external element through the springs with stiffness kp. So
each mass is affected by another elastic solicitation besides that produced by the
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horizontal coupling. Of course, to quantify the vertical elastic force, it is necessary
taking into account the elongation of springs caused by the upper plate. This
consideration simply justifies the presence of the product V t. It just has to combine
this quantity with xi and kp according to the linear elasticity as in (4.1).

Friction The friction force F (ẋi) is velocity-dependent. This law allows to repro-
duce the typical stick-slip behaviour and introduces an essential instability inside
the model. It is possible to distinguish different forms of friction, for instance,
the Dieterich-Ruina friction law [24, 25, 80, 88], the Coulomb friction law used
by Muratov in [71] or the velocity-weakening friction proposed by Carlson and
Langer [15, 16, 17]. We adopt this last point of view henceforth. It is important to
point out that another choice can be made between two different qualitative be-
haviours, the so-called asymmetric and symmetric versions, whose main difference
is the constraint of non-negative velocity assumed in the asymmetric version. This
means that back slip is inhibited for each block. We assume this constraint accord-
ing to [17, 49, 66, 69, 81, 101] and adopt the following (multi-valued) functional
form

F (v) =


F0(1− σ)

1 + 2αv
1−σ

if v > 0

(−∞, F0] if v ≤ 0,

where v = ẋi. This double structure is easily understandable because a law based
on the stick-slip dynamics must exhibit a discontinuity, as a consequence of the
alternation between sticking and sliding motion for each block. The back sliding
motion is forbidden by formally imposing F (v) = −∞ for v < 0. The value F0

corresponds to the maximum static frictional force, so the static friction formally
may range in the interval (−∞, F0]. During a sticking period the elastic resultant
force acting on a block is perfectly balanced by the static friction, which means no
motion: in this case the equation (4.1) simply becomes mẍi = 0 with initial zero
velocity. When the resultant force exceeds the threshold F0, a slipping period starts
with dynamic friction. Friction becomes weaker now, it decays monotonically to
zero, as the velocity increases (see Figure 4.2). Another important feature of the
friction law is the role of the parameters σ and α. The first one quantifies a
small drop of the friction at the end of a sticking period; the second one provides
information about the decreasing of the dynamic friction force in relation to the
increasing of the sliding velocity.

One of the most interesting features of the Burridge-Knopoff model consists in
the reproducibility of some important properties related to complex phenomena
as real earthquakes, although the system exhibits a relatively simple structure.
Among these typical behaviours, the Gutenberg-Richter law plays a significant role
and can be used as a powerful instrument to assess the reliability of the model.
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Figure 4.2. The form of the friction law: the solid line is referred to the sticking friction,
the dash one, to the slipping friction. F0 is assumed to be unity. As samples for the
plot, σ = 0.2 and α = 1 are considered.

This power law establishes that, in a seismic zone, the relationship between the
number N of earthquakes with intensity greater than or equal to a given magnitude
M and the magnitude itself has the form

log10N = a− bM, (4.2)

for some parameters a and b. In order to represent the rate of seismic events, by
introducing the total number of events expressed as NT = 10a, it is possible to
reformulate the relationship (4.2) as

log10(N/NT ) = −bM. (4.3)

This substitution allows us to understand the meaning of the quantity a in terms
of total seismicity rate of an active zone. Finally, as regards the parameter b, in
real situations its values are usually very close to 1 in seismic zones [21].

It would be very interesting to make comparisons also within the aftershocks
field, by studying the Omori law. However, at least in a such simple version of the
Burridge-Knopoff model as the current one, it is impossible recognizing aftershocks
sequences, as pointed out in [21, 45]. Further contributions, as viscosity, would be
required.

4.3 Numerical algorithm and its reliability

To start with, we discuss the computational strategy adopted and the numerical
algorithm chosen. Once the number of blocks N is established, it is possible to
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obtain a differential system composed of equations like (4.1), namely{
ẋi = yi

mẏi = kc(xi+1 − 2xi + xi−1) + kp(V t− xi)− F (yi),

for i = 1, . . . , N , where we assume that x0 = x1 and xN+1 = xN for the boundary
conditions [14].

Initial conditions Following [102], in order to avoid a periodic evolution and
with the aim of reproducing realistic local tension along a fault, we assign small
random displacements from the equilibrium positions for each mass. The blocks
are supposed to be at rest, so we put zero velocities. Remembering that the
blocks are initially equally spaced with distance a, the equilibrium positions are
Pi = a(i − 1) for i = 1, . . . , N . Because zero velocities are imposed, all blocks
are initially stuck. However, if a simulation would have started with the actual
initial conditions, some irregular dynamical motion would be recognized, due to
the action of spring and friction forces. On the contrary, we wish to appreciate
a realistic charge cycle, that is why we identify the next incoming time of global
stick, t̄, and select this one as initial time. This implies that the original initial
conditions, and corresponding perturbations, must be updated in t̄: the simulation
is now ready to be restarted by setting t = 0.

Stick-slip detection To identify a time of stick for a block within the numerical
code, we use a criterion based on both the resultant force and velocities: a block
is stuck if and only if the elastic resultant force is less than the maximum static
frictional force and the velocity is equal to zero. Obviously, it is very difficult
detecting an absolutely zero velocity in simulations so that we use a workaround:
because back slip is inhibited, sign changes of the velocity are interpreted as the
tendency of being stuck, so negative values are suppressed and replaced by zero
values. That is why we do not need to introduce a threshold parameter to create
a range for the zero value as it is often done working with the asymmetric friction
law.

Seismic events Talking about the statistical properties of the model, specifically
referred to the Gutenberg-Richter law, we have to assume an operative definition
to judge whether a seismic event is happening: an earthquake occurs when a blocks
starts to slip and ends only where all the blocks are stuck again. This definition
implies that, during an event, a block can slip and become stuck alternately;
moreover, the elastic coupling produces a sort of propagation along the chain of
masses, because a block can trigger the slipping of its neighbors. In order to
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quantify the magnitude of an earthquake, we introduce the following definition for
the magnitude M :

M = log10

( N∑
i=1

∆xi

)
, (4.4)

where ∆xi is the cumulative displacement of the block i during a given earthquake.

4.3.1 Numerical adjustment

As regards the numerical integration of the Burridge-Knopoff model with
velocity-weakening friction, various methodologies have been employed by using
either explicit methods, such as explicit Runge-Kutta [66, 67, 68, 69, 101], or
implicit methods, such as Implicit Euler [102].

We adopt a Predictor-Corrector strategy [77] and here, for reader’s convenience,
we recall the basic procedure. First of all we start by considering a general implicit
multistep method, for instance, by selecting the Adams-Moulton methods from the
Adams Family. The following equation groups all the Adams methods,

yn+1 = yn + h

p∑
j=−1

bjfn−j. (4.5)

If b−1 6= 0, an implicit method, named Adams-Moulton, is generated; otherwise,
when b−1 = 0, an explicit method, named Adams-Bashforth, is obtained. That is
why we assume b−1 6= 0. In (4.5) yn indicates the approximate solution evaluated
at time tn; the symbol fn−j, corresponding to f(tn−j, yn−j), is the vector field; h
is the step size; bj ∈ R; p ∈ N is used to quantify the number of steps of the
method, precisely p+ 1, without including the implicit part associated to j = −1.
We recall that the Adams methods are derived from the integral representation of
the Cauchy’s problem for a given differential system, namely

x(t) = xo +

ˆ t

t0

f(s, x(s)) ds,

by using interpolating polynomials in the Lagrange form to approximate the vector
field. In order to solve a Cauchy’s problem by using an implicit method such
as (4.5) it is necessary to approach a nonlinear equation. We can rewrite (4.5) as
follows

yn+1 = yn + h

p∑
j=−1

bjfn−j = Φ(yn+1). (4.6)

By taking advantage of (4.6) we can adopt fixed-point iterations and thus solve
the nonlinear equation. For k = 0, 1 . . . , we get

y
(k+1)
n+1 = Φ(y

(k)
n+1). (4.7)
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However the procedure triggered by (4.7) requires several function evaluations to
achieve convergence, due to the iterations needed. The idea behind a Predictor-
Corrector strategy, which is inspired by the purpose of reducing the computational
cost, is to compute a good initial guess for the fixed-point iterations by recalling an
explicit multistep method. This method, called Predictor, provides an adequate
guess to be used within the fixed-point scheme (4.7) generated by the implicit
algorithm (4.5). The implicit method, named Corrector, can be invoked m times,
with m ≥ 1. When m > 1 the procedure is called Predictor-Multicorrector. In this
work we choose m = 1, so we will continue using simply the wording Predictor-
Corrector. The algorithm produced by starting from the Adams methods can be
summed up as follows

Predict : y
(0)
n+1 = y(1)

n + h

p̄∑
j=0

b̄jf
(0)
n−j

Evaluate : f
(0)
n+1 = f(tn+1, y

(0)
n+1)

Correct : y
(1)
n+1 = y(1)

n + hb−1f
(0)
n+1 + h

p∑
j=0

bjf
(0)
n−j,

where the Evaluation step of the vector field f is included. The superscript (0)
denotes the guess provided by the Predictor, the superscript (1), instead, indicates
the values furnished by the Corrector. The abbreviation usually employed for the
overall procedure is PEC. We notice that a Predictor-Corrector strategy, also in the
general case m ≥ 1, is by construction totally explicit. As regards our numerical
adjustment, we adopt the Predictor-Corrector technique in a bit different form,
called PECE, in which a further evaluation of f is performed at the end of the
sequence. Moreover, the second-order Adams-Bashforth scheme (AB2) is used
as Predictor, while the third-order Adams-Moulton method (AM3) is chosen as
Corrector. We thus obtain

Predict : y
(0)
n+1 = y(1)

n +
h

2
[3f (1)

n − f
(1)
n−1]

Evaluate : f
(0)
n+1 = f(tn+1, y

(0)
n+1)

Correct : y
(1)
n+1 = y(1)

n +
h

12
[5f

(0)
n+1 + 8f (1)

n − f
(1)
n−1]

Evaluate : f
(1)
n+1 = f(tn+1, y

(1)
n+1).

We point out that the order, q, of the PECE procedure, can be computed as
follows

q = min(qp + 1, qc),

where qp and qc are the orders of the Predictor and the Corrector steps, respectively.
Therefore, we have generated an overall third-order method.
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Evaluating the pros and the cons of the Predictor-Corrector technique, the main
advantages consist, firstly, in avoiding to solve an implicit system at every step,
whose size would increase with the number of blocks, and, secondly, in ensuring
a stronger stability when compared to standard explicit methods. On the other
hand, we have to adopt a small time-step to achieve a good approximation of
the solution to the Burridge-Knopoff model. According to [69, 101], we choose
h = 0.001 as constant step.

4.3.2 One block

As the simplest case, we examine the evolution of the system in which only one
block is involved (see Figure 4.3). The aim is to become familiar with the specific

m

kp V

F

Figure 4.3. The system involving a single block

trend of the stick-slip dynamics. The equation of motion can be easily deduced
from (4.1) by omitting the elastic term associated to the horizontal connecting
springs, because in this configuration adjacent blocks are not included, so that we
get

mẍ = kp(V t− x)− F (ẋ). (4.8)

For the values of the parameters involved in the model, we adopt the list shown
in Table 4.1, as in [81]. We deduce from this table all the values useful to in-

Table 4.1: Values of quantities involved in the simulations with one block.

Parameters

m kp kc V F0

1 1 60 0.001 1

tegrate (4.8). Finally, for the remaining parameters, we put σ = 0.01 according
to [66] and arbitrarily choose α = 1. In the follow-up we will discuss carefully the
role of the quantity α, which is very significant within the configurations involving
lots of blocks.

As initial conditions we simply impose x(0) = 0 and ẋ(0) = 0 without adopting
artifices as those mentioned previously, very useful in the case of more blocks. It
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is obviously possible to assume a more realistic small displacement for x(t) in
t = 0 but the evolution would not change its qualitative behaviour, the only
difference consisting in the duration of the first stick period. When only one
block is involved, indeed, the motion exhibits a periodic trend. In order to avoid
this kind of dynamics, it is crucial introducing more blocks within the system.
Figures 4.4 and 4.5 show the results in the case of a single block. In absence of
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Figure 4.4. Displacement for a single block. All the values used to perform the simula-
tion are available in Table 4.1.

adjacent masses, the motion tends to be periodic. We recognize the alternation
between sticking and slipping periods from the qualitative behaviour of the graph
in Figure 4.4: a steep trend characterizes the sliding motion, in opposition to the
flat one produced when there is not motion. When the block is sliding, its velocity
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(a) velocity graph
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Figure 4.5. Velocity and phase portrait for a single block. All the values used to perform
the simulation are available in Table 4.1.
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achieves some pronounced peaks as shown in Figure 4.5(a). In Figure 4.5(b) a
qualitative summary is provided by the phase portrait. Although this kind of
system is very far from being an accurate representation for seismic events, because
lots of other contributions would be required, on a geophysical level we could think
about a slipping period as an earthquake and a sticking one as a charge cycle.

4.3.3 A bit more complex configuration

We proceed to examine a model involving five masses. By adopting the same
parameters used in the case of a single block, listed in Table 4.1, and assuming
as initial conditions random, small displacements updated at the incoming time
of global stick, as described before, we simulate the evolution. The associated
differential system is defined by using (4.1) and paying attention to include the
boundary conditions. For instance, the equation for the first block becomes

mẍ1 = kc(x2 − x1) + kp(V t− x1)− F (ẋ1).

In Figure 4.6(a) we plot the displacements of the blocks, while in Figure 4.6(b) a
zoom-in for these trajectories is provided. It is possible to recognize some great
slipping phases in which all the blocks are involved; on the other hand, talking
about the flatter trends, very small displacements happen. The pronounced peaks
correspond to the most powerful shocks allowed for such a limited configuration.
Finally, looking carefully at the zoom-in Figure 4.6(b), a sequence of narrow events
happening before one of the peaks mentioned above is captured: these small earth-
quakes can be interpreted as foreshocks. Although five blocks are not enough to
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Figure 4.6. A system involving five blocks. The graph of the displacements as a function
of time and its zoom-in for the parameters listed in Table 4.1.
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exhibit a satisfying dynamics, it has been helpful to investigate the results in a
qualitative way. As can be observed, indeed, the behaviour is certainly more com-
plex and nontrivial than in the case of a single block. In order to support this
point of view, in Figure 4.7 we take one block as sample and plot the velocity
and the phase portrait (trends are very similar for the remaining blocks). So more
facets and details about the qualitative trend are pointed out.
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(a) velocity for the first block
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(b) phase portrait for the first block

Figure 4.7. Block 1 has been taken as sample for the simulation including five blocks.
The graph of velocity as a function of time and corresponding phase portrait are similar
for the remaining blocks.

4.3.4 More blocks and the Gutenberg-Richter law

The next steps in our analysis are aimed at arguing the reliability of the
Burridge-Knopoff model using the Gutenberg-Richter law exhibited in (4.3). In
order to achieve this purpose, we increase the number of blocks and consider a sys-
tem including two hundred blocks, so N = 200. In Table 4.2 the parameters used
in this last part of Section 4.3 are listed. We collect information about the seismic

Table 4.2: Values of quantities involved in the simulations with several blocks.

Parameters

m kp kc V F0 σ α

1 1 100 0.001 1 0.01 {1, 1.5, 2, 3, 4}

events generated by using the criterion described before to distinguish when an
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earthquake is happening into the simulation. As regards the magnitude, the rela-
tionship (4.4) provides a quantitative definition. First of all, to discuss the results,
it is absolutely necessary focusing on the role of the parameter α introduced by
the friction law [16, 49, 66, 101]. As said in Section 4.2, α expresses the rate of
slipping friction decreasing on increasing the sliding velocity. As a result, if α de-
creases, friction becomes more dissipative; on the contrary, larger values of α mean
less dissipation because the slipping friction decreases more quickly with sliding
velocity. On a quantitative level, the value α = 1 is an important threshold, since
values of α less than unity preventing system from exhibiting great earthquakes,
that is why α = 1 is a sort of lower bound. Moreover, different behaviours are
noticeable by assuming α = 1 and α > 1: let us investigate this point. By fol-
lowing [102] we introduce the earthquake distribution P (M), which is the ratio
between the number of earthquakes greater than or equal to a given magnitude M
(see (4.4)) and the total number of events NT . Operatively we classify magnitudes
by establishing the belonging to different ranges such as [M,M + dM ], where dM
is fixed to be equal to 0.2. According to (4.3), we represent the distribution of
earthquakes by the graph of the function M 7→ log10[P (M)]. In the first case con-
sidered α = 1 is employed and the result is shown in Figure 4.8(a). By observing
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Figure 4.8. Earthquakes distribution for a system with 200 blocks: graph of the function
M 7→ log10[P (M)]. The simulations are realized by using the parameters listed in
Table 4.2.

the graph, it is possible to recognize a behaviour very close to a straight line in
the central part (between M = −3.7 and M = 1.7, approximately), which can
be interpreted coherently with the Gutenberg-Richter law. By adopting the linear
least squares method (see Figure 4.8(a)) we estimate an exponent B ' 0.42 for the
power-law trend. We point out that the exponent derived from the simulations of
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the Burridge-Knopoff model cannot be directly matched to the b-value appearing
in the Gutenberg-Richter law (4.3), indeed a rescaling would be required in order
to make a comparison with the real data [21, 45]. We can take as a reference the
relationship b = 3

2
B described in [45]. Moreover, according to the results in [66],

we notice that by varying the ratio between the stiffness of the springs, kc/kp, usu-
ally called l2 in the literature, a bit different exponent B is computed: the lower
the ratio the higher the exponent, of course preserving the constraint kc > kp. For
instance, by imposing l2 = 36 we find B ' 0.45 or choosing l2 = 9 we obtain
B ' 0.54. As regards the data providing the results plotted in Figure. 4.8, a ratio
l2 = 100 can be deduced from Table 4.2.

All these considerations make our b-value ranging in the interval [0.63, 0.81],
that means a bit flatter slope for the graph in Figure 4.8(a): indeed it is less than
the empiric value b = 1 in (4.3). Finding a flatter slope is consistent with other
observations available in the literature, as in [17, 66, 102]. At very small magnitude
we notice a steep linear segment in the graph, probably caused by the discreteness
of the model [66, 102].

By increasing α, a different qualitative behaviour is provided by simulations.
For instance, we assume now α = 4 (see Figure 4.8(b)) in order to show the main
differences, without neglecting to provide an accurate screening, by employing
more values of α, in what follows. All the other parameters are the same as in
the case α = 1. In Figure 4.8(b) we recognize a deviation from the Gutenberg-
Richter law at large magnitudes: it is noticeable a sort of peak structure; the trend
close to a straight line persists instead in the middle-small range of magnitude, in
agreement with the empirical expectation. Finally, at smallest magnitude, as in the
case analyzed before, a steep linear segment is observable due to the discreteness
of the model. All these qualitative behaviours are consistent with previous works,
for example [17, 66, 81, 102].

Now we want to discuss the importance of the parameter α in terms of how
much it can affect the results, by pointing out another interesting outcome of the
α-dependence. We said that the lower the value the higher the dissipation: as a
result, in agreement with [16], we notice that in each earthquake the displacements
become smaller. By assuming the smallest value employable, namely α = 1, we can
provide a qualitative proof of this property. As in [81] we consider the displacement
of the location of the center of gravity during the time period [0, 104]. Our purpose
consists in making a comparison between the cases α = 1 and α = 4. Figure 4.9
shows the results and indicates that when α is set to unity, the displacements are
effectively smaller.

Let us proceed by investigating more accurately how the distribution of earth-
quakes changes when α increases. In Figure 4.10 some distributions are plotted
by assuming α ∈ {1, 1.5, 2, 3, 4}, so that we have added three different α-values



92 CHAPTER 4. STUDY OF THE BURRIDGE-KNOPOFF MODEL

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

98

100

102

104

106

108

110
D

is
p
la

c
e
m

e
n
t

α = 1

(a) α = 1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Time

98

100

102

104

106

108

110

D
is

p
la

c
e
m

e
n
t

α = 4

(b) α = 4

Figure 4.9. Displacement of the location of the center of gravity: comparison between
α = 1 and α = 4.

beyond those already analyzed. These values would be equally spaced if α = 1.5
was not considered, but we decided to provide a further value within [1, 2] in order
to control better the evolution of the graph when α is moving in this range. We
are allowed to conclude that the peak structure mentioned above persists when
α 6= 1 and that the slope, where there is a linear behaviour qualitatively in agree-
ment with the Gutenberg-Richter law, is steeper as α increases: it can be deduced
simply by noticing that when α = 1.5 a flatter slope affects the distribution in
the middle-small range of magnitude, while this slope becomes steeper whether α
increases.

Let us continue by making other comparisons of our results. We defined the
magnitude M in (4.4) by introducing the decimal logarithm. Also in [81] something
like this is performed. However, in order to allow further qualitative pairings
with some works already mentioned (for example [17, 102]), we recast the results
described above by using the natural logarithm to define the magnitude. The
relationship (4.4) becomes

M1 = ln

( N∑
i=1

∆xi

)
,

where M1 denotes the magnitude. If the quantity P (M1) is defined as we have done
for P (M), an analogue of Figure 4.10 is obtainable, qualitatively equivalent. We
gave it a try and found a graph very similar to the correspondent plots exhibited
in [102]. We also recognized that in our simulations the data, when α = 1, crosses
the other curves at M1 ' 4, in agreement with the results in [102].
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Figure 4.10. Earthquakes distribution for a system with 200 blocks: graph of the
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listed in Table 4.2.
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Figure 4.11. Distributions of magnitude for a system including 200 blocks: graph of
the function M1 7→ ln[R(M1)]; comparison between α = 1 and α = 2.

Finally, if we define another quantity, R(M1), as the rate of seismic events
with magnitudes equal to M1, operatively in a range such as [M1,M1 + dM1],
we achieve the results shown in Figure 4.11. With the aim of expressing the
qualitative behaviour affecting the dynamics when α 6= 1, in Figure 4.11(b) we
have chosen as example the value α = 2: it is possible to explain the deviation
from the Gutenberg-Richter law previously mentioned in terms of a peak structure,
by pointing out that in this case large events are too frequent. These conclusions
are consistent with those in [16, 17, 66].
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4.4 Wave speed estimate and almost conver-

gence

In the previous sections we have performed numerical simulations aimed at
providing a comprehensive overview of the typical dynamics the Burridge-Knopoff
model is ruled by, through an effective numerical method based on a Predictor-
Corrector strategy. All these achievements define a helpful background to reach
the core of our study: specifically, we take advantage of the discrete structure of
the model in order to get results related to the propagating fronts theory, on the
ground of the proceedings described before as far as the numerical discretization.

By means of some simple qualitative considerations, it is possible to recog-
nize that the assessment of mechanisms hypothetically attributable to the travel-
ing fronts field, is something worth working on in seismology and related applied
mathematics. So far we have often pointed out how much the Burridge-Knopoff
model behaviour is bound to be influenced by phenomena of perturbations spread-
ing, due to the intrinsic structure of the system: indeed, the information about
occurring events is conveyed by the connecting springs, allowing distant blocks
slipping, within a chain reaction process in which each block can trigger its neigh-
bors motion. This is aimed at reproducing realistic solicitations happening along
faults, which are some strengthening geophysical evidences that some information
is constantly being spreading.

From a mathematical point of view, a suitable analysis is needed in order to
prove that such qualitative and empirical features might be framed by a systematic
theory based on traveling fronts. In this respect, as pointed out by Muratov
in [71], a class of systems consisting of elastic media and characterized by friction
laws allowing the typical stick-slip phenomena, has been proved to be suitable
for producing traveling fronts as shocks. Being these systems of great interest
for their large usage within the seismological field, it follows that the potential
overlapping involving traveling waves theory provides a solid ground for useful
deeper analysis. In [71], by using the Coulomb friction law and taking into account
a continuum version of the model, propagating fronts are investigated, specifically,
their existence is shown and corresponding wave speed computation is performed.

Here, we wish to realize something similar by employing a different approach:
basically we are interested in detecting a stable wave speed, that means recognizing
the propagating fronts phenomenon, only by making use of the discrete version of
the model provided with the velocity-weakening friction investigated so far. As a
consequence, a wave speed estimate is needed: our choice falls on the formulation
provided by LeVeque and Yee in [52] already exploited in this work, suitably
modified and upgraded in order to get a version contextualized in this discrete
field. For the ease of the reader, we recall the approximation previously employed,



4.4. WAVE SPEED ESTIMATE AND ALMOST CONVERGENCE 95

that reads as

cn =
∆x

[φ]∆t

N∑
i=1

(
φni − φn+1

i

)
, (4.9)

where cn is the space-averaged wave speed estimate, at time tn, related to the
traveling wave φ approximated over a uniform spatio-temporal mesh (∆x and ∆t
are the fixed spatial and time steps, respectively), while [φ] := φ+−φ− , assuming
φ+ and φ− to be stationary states of φ.

Our modified version of (4.9) arises from the requirement of dealing with a
system of ODEs, thus implying some specific adjustments leading to the following
formulation

cn =
1

h[z]

N∑
i=1

(zni − zn−1
i )∆xni , (4.10)

where [z] = znN − zn1 plays the role of the term including the stationary states
in (4.9) and, as regards the quantity ∆xni , we have:

∆xni =


zn2 − zn1 if i = 1,
zni+1 − zni−1

2
if 2 ≤ i ≤ N − 1,

znN − znN−1 if i = N .

The relation (4.10) is again a space-averaged wave speed estimate for the velocity
c evaluated at time tn: the notation zni is related to the position of the block i at
time tn; the multi-valued function ∆xni is meant to be a measure of the distance
between adjacent blocks, replacing the spatial contribution ∆x involved in (4.9);
finally, as in the simulations performed in the previous sections, h is a fixed time
step, while N is the total number of blocks. We point out that, being needed a
couple of temporal indices for each wave speed evaluation in (4.10), the resulting
computed value might be equivalently referred to both the indices involved: that
is why, as a convention, we decide to rely on the last temporal instant, for each
couple, to relate the corresponding estimate.

In an attempt to start a preliminary test aimed at detecting useful information
about the wave speed, our pressing purpose consists in considering the simplest
conceivable trend for the velocity, that is c as a function of the discrete time tn.
As regards the parameters, we adopt the same quantities listed in Table 4.2 and
select α = 1 among the available values, while, as far as the time period, we opt for
[0, 105]. In Figure 4.12 the evolution for the wave speed is shown: although it is not
possible to recognize a convergence towards a stable wave speed, from a qualitative
point of view we can assert that this kind of behaviour is not surprising at all, due
to its close similarity with respect to the plot in Figure 4.5(a) or in Figure 4.7(a).
Indeed, all these graphs provide information about the velocity trend, that is
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Figure 4.12. Wave speeds estimates trend for a system involving 200 blocks.

why getting profiles characterized by a collection of pronounced peaks, namely
having reported some seismic events, is something consistent with our empirical
expectation, regardless of the number of blocks involved. These kind of graphs,
in which the velocity is heavily concentrated in peaks, are a logical consequence
of the particular dynamics analyzed, whose specificity consists in its being deeply
discontinuous. However the problem about the detection of a stable wave speed is
still open: if on the one hand the plot in Figure 4.12 is something reasonable, on
the other hand, speaking about the study of propagating fronts and their velocity,
further analyses are needed.

A possibility consists in defining a more regular function and trying to justify
the assumptions in terms of correspondence with respect to the real phenomena
object of investigation. Let us define the following quantity:

γn =
1

n

n∑
i=1

ci. (4.11)

For each n, the relation (4.11) takes into account the arithmetic mean of the
first n available wave speed estimates. In Figure 4.13 we can see the results: a
convergence towards an asymptotic threshold is now appreciable and the limit
value numerically computed is L ' 0.00104.

At this stage, from the mathematical point view, a discussion is required: the
stable wave speed provided by the limit L of the sequence {γn} is related to
the averages convergence for the sequence {cn}, that is why we have numerically
proved the summability in the sense of Cesaro. Specifically, leaning on the Cesaro
Means Theorem [90], it is known that if a sequence {βn} is convergent, let us
assume limn→∞ βn = b, then, considering the sequence made by collecting the
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Figure 4.13. Wave speeds average from (4.11) as a function of the time tn for a system
involving 200 blocks.

corresponding averages, let us say {σn} such that σn = 1
n

∑n
i=1 βi, it happens

that limn→∞ σn = b. In our case, L = limn→∞ γn = limn→∞
1
n

∑n
i=1 ci, thus,

although we have numerically proved that a convergence for the sequence {cn}
is not recognizable (see Figure 4.12), we can certainly state that, if a weaker
convergence is verified, it has to happen towards the value L, being this threshold
the limit for the averages sequence.

On the heels of this result, we are going to numerically prove the so-called
almost convergence [8, 54] for the sequence {cn}. To accomplish this purpose, let
us introduce another average, as follows

γp,n =
1

n

p+n−1∑
i=p

ci, (4.12)

which turns out to be equivalent to (4.11) if p = 1. By invoking the Lorentz
Theorem [8, 54], it is possible to assert that the sequence {cn} is said to be almost
convergent (to L) if and only if limn→∞ γp,n = L uniformly in p. We take advantage
of this result and numerically test the almost convergence for {cn} by computing
the (p, n)-dependent mean for different choices of the parameter p, as a function
of the discrete time tn. The results are depicted in Figure 4.14 starting from
the case p = 1, happening when the quantity γp,n in (4.12) perfectly matches γn
in (4.11). The parameters exploited to carry out the numerical test are listed
in Table 4.3. All the graphs clearly converge towards an asymptotic threshold,
whose value is L ' 0.00104, namely the limit already recognized in Figure 4.13,
thus testifying the almost convergence for {cn}. This kind of outcome, involving
the averages for the wave speeds sequence, provides an interesting interpretation in
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Table 4.3: Values of p involved in the simulations and corresponding time instants.

Parameter p choices

p p1 = 1 p2 = 105 p3 = 106 p4 = 107 p5 = 6 · 107

t 10−3 102 103 104 6 · 104

terms of real phenomena as well. Indeed, while the plot in Figure 4.12, reproducing
the wave speed trend, can be described as a collection of mutually independent
events, the function involving the wave speeds averages (4.12) and the related
graphs in Figure 4.14 lead to imply a dependence from the past sequences. The
latter interpretation is somehow more acceptable thinking about the mechanism of
mutual induction affecting earthquakes along a fault and the reasonable influence
that past earthquakes might have on future seismic events. Moreover, speaking
about the traveling fronts theory, the presence of a stable threshold for the wave
speeds averages is doubtless a powerful key point: it paves the way to state the
existence of propagating fronts starting from the specific discrete version of the
Burridge-Knopoff model provided with the velocity-weakening friction.
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