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Shielding of an Imperfect Metallic Thin Circular Disk: Exact and
Low-Frequency Analytical Solution
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Abstract—The problem of evaluating the shielding effectiveness of a thin metallic circular disk with
finite conductivity against an axially symmetric vertical magnetic dipole is addressed. First, the thin
metallic disk is modeled through an appropriate boundary condition, and then, as for the perfectly
conducting counterpart, the problem is reduced to a set of dual integral equations which are solved
in an exact form through the application of the Galerkin method in the Hankel transform domain. A
second-kind Fredholm infinite matrix-operator equation is obtained by selecting a suitable set of basis
functions. A low-frequency solution is finally extracted in a closed form. Through a comparison with
results obtained from a full-wave commercial software, it is shown that such a simple approximate
solution is accurate up to the frequency where the surface-impedance model of the thin disk is valid.

1. INTRODUCTION

The scattering of electromagnetic waves by circular metal disks and their penetration through circular
apertures cut in an infinite metal plate constitute a canonical problem in electromagnetic theory and, as
such, have been the subject of an intensive research thorough the years, although most of the studies were
directed to perfectly-conducting (PEC) and infinitesimally-thin objects (see, e.g., [1–17] and references
therein).

Recently, the interaction of an infinitesimally thin PEC disk and a vertical magnetic point source
(representing a small electric loop current) has been deeply investigated [18] obtaining the exact
representation for the electromagnetic field, valid for any frequency range, through the solution of
a set of dual integral equations by means of a numerical Galerkin Method-of-Moments approach and an
analytical-regularization scheme. Moreover, surprisingly, a static solution has been obtained in a closed
form which has been shown to be accurate up to very high frequencies.

In this work, we extend the analysis presented in [18] by still considering the interaction of a
Vertical Magnetic Dipole (VMD) with a circular metallic disk, but having a finite conductivity and a
finite thickness. It is worth noting that such a configuration has received much less attention than its
ideal counterpart [13, 19–21].

The formulation of the problem, together with the fundamental assumption of thin disk, is first
presented in Section 2 and, operating in the Hankel transform domain, a set of dual integral equations is
derived. In Section 3, an exact numerical solution is obtained through a Galerkin Method-of-Moments
approach pointing out the crucial physical and mathematical differences with respect to the PEC case,
whose static solution can be recovered but paying great attention to the limiting process, as shown in
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Section 4. The static-PEC solution is then the base to construct a low-frequency approximate solution
in Section 5 whose limits of validity are also discussed. Finally, the conclusions of the work are drawn
in Section 6.

2. FORMULATION OF THE PROBLEM

The configuration under analysis consists of a thin metallic circular disk of thickness d and radius a
characterized by a finite (bulk) conductivity σ and placed on the plane z = 0 of a cylindrical coordinate
system (ρ, φ, z) with center at the origin and a vertical magnetic dipole (VMD) with magnetic dipole
moment mz placed along the z axis at a height z = h (see Fig. 1). The electromagnetic problem is
axial-symmetric so that all the fields depend only on ρ and z. Time-harmonic sources and fields are
assumed with an implicit ejωt dependence.
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Figure 1. Configuration under analysis: a vertical magnetic dipole (VMD) radiates in the presence of
a circular metallic disk with radius a, thickness d, and conductivity σ. The VMD is axially symmetric
with respect to the disk and placed at a distance h from it.

As already shown in [18], the incident electric field produced by a vertical magnetic dipole of
moment mz and placed at z = h is

Einc
φ (ρ, z) = −k0ζ0mz

4π

∫ ∞

0

e−jkz|z−h|

kz
J1 (kρρ) k2

ρdkρ (1)

where k0 and ζ0 are the free-space wavenumber and impedance, respectively, and kz =
√

k2
0 − k2

ρ. On
the other hand, the electric field scattered by the disk is [18]

Escat
φ (ρ, z) = −k0ζ0

2

∫ ∞

0
J̃Sφ(kρ)

e−jkz|z|

kz
J1 (kρρ) kρdkρ (2)

where J̃Sφ(kρ) is the Hankel transform of order 1 [22] of the induced surface current density JSφ(ρ),
with the latter being expressed in A/m.

Provided that the thickness d is less than twice of the skin depth δ = 1/
√

πμ0σf , the following
boundary condition on the disk can be assumed [23, 24]:

Escat
φ (ρ, z = 0) + Einc

φ (ρ, z = 0) = R0JSφ(ρ) (3)

where
R0 = 1/ (σd) (4)

is the surface (transition) resistance of the disk. Equations (3) and (4) represent an accurate model
up to the frequency fmax = 2/(πμ0σd2) when the skin depth δ is equal to half disk thickness d/2. By
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assuming the boundary condition in Eqs. (3)–(4), the following set of dual integral equations can be
derived:

−k0ζ0

∫ ∞

0

1
2kz

(
J̃SΦ(kρ) +

mzkρ

2π
e−jkzh

)
J1 (kρρ) kρdkρ = R0JSφ(ρ) , ρ < a

∫ ∞

0
J̃Sφ (kρ)J1 (kρρ) kρdkρ = 0 , ρ > a

(5)

where the second equation enforces the vanishing of JSΦ(ρ) outside the disk.

3. GALERKIN METHOD-OF-MOMENTS SOLUTION

By expressing the surface current density JSφ(ρ) as an inverse Hankel transform and rearranging some
terms, the first equation in Eq. (5) can be rewritten as∫ ∞

0

(
k0ζ0

2R0kz
+ 1

)
J̃SΦ(kρ)J1 (kρρ) kρdkρ = −

∫ ∞

0

k0ζ0

R0kz

mzkρ

4π
e−jkzhJ1 (kρρ) kρdkρ (6)

We can expand the unknown surface current density through a set of basis functions bn(ρ) whose Hankel
transform is b̃n(kρ) so that

JSφ (ρ) =
+∞∑
n=1

inbn (ρ) (7)

and

J̃Sφ (kρ) =
+∞∑
n=1

inb̃n (kρ) (8)

By applying the Galerkin Method of Moments, we obtain the algebraic system
N∑

n=1

Aσ
mnin = Bσ

m, m = 1, . . . , N (9)

where

Aσ
mn =

k0ζ0

2R0

∫ ∞

0

b̃m (kρ) b̃n (kρ)
kz

kρdkρ +
∫ ∞

0
b̃m (kρ) b̃n (kρ) kρdkρ (10)

and

Bσ
m = −k0ζ0mz

4πR0

∫ ∞

0
b̃m (kρ)

k2
ρ

kz
e−jkzhdkρ (11)

The presence of a finite conductivity σ deeply changes the nature of the problem with respect to
the perfectly conducting (PEC) case [18]: in fact, the static limit for R0 �= 0 produces a current which
is identically zero. Moreover, the finite conductivity implies that the current is not singular anymore at
the edges of the disk [25]. Therefore, the following set of basis functions is adopted [26]:

bn (ρ) =

⎧⎨
⎩

0 ρ > a
ρ

a2
P

(1,0)
n−1

(
1 − 2

ρ2

a2

)
, n = 1, 2, . . . ρ < a

(12)

where P
(α,β)
n (·) are the Jacobi polynomials of order n. The Hankel transforms of Eq. (12) are

b̃n (kρ) =
∫ a

0

ρ

a2
P

(1,0)
n−1

(
1 − 2

ρ2

a2

)
J1 (kρρ) ρdρ =

J2n (kρa)
kρ

(13)

By adopting this set of basis functions, from Eq. (10), we obtain

Aσ
mn =

k0ζ0

2R0

∫ ∞

0

J2m (kρa) J2n (kρa)

kρ

√
k2

0 − k2
ρ

dkρ +
∫ ∞

0

J2m (kρa) J2n (kρa)
kρ

dkρ (14)
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Taking into account the integral identity [27, 6.574]

∫ ∞

0
Jν(αt)Jμ(αt)t−λdt =

αλ−1Γ (λ) Γ
(

ν + μ − λ + 1
2

)

2λΓ
(−ν + μ + λ + 1

2

)
Γ

(
ν + μ + λ + 1

2

)
Γ

(
ν − μ + λ + 1

2

) (15)

valid for ν + μ + 1 > λ > 0 and α > 0, by letting ν = 2m− 1/2, μ = 2n− 1/2, α = a, t = kρ, and λ = 1,
we have ∫ ∞

0

J2m (kρa) J2n (kρa)
kρ

dkρ =
Γ(1)Γ (n + m)

2Γ (m − n + 1) Γ (n + m + 1) Γ (n − m + 1)
=

δmn

4m
(16)

and therefore
Aσ

mn =
k0ζ0

2R0

∫ ∞

0

J2m (kρa)J2n (kρa)

kρ

√
k2

0 − k2
ρ

dkρ +
δmn

4m
(17)

where δmn is the Kronecker symbol. Moreover

Bσ
m = −k0ζ0mz

4πR0

∫ ∞

0
J2m (kρa) kρ

e−j
√

k2
0−kρ

2h√
k2

0 − k2
ρ

dkρ (18)

It is worth noting that, thanks to the particular choice of the basis functions which diagonalize the
perturbative term due to the finite conductivity, in the limit N → +∞ the system in Eq. (9) can be
rewritten as

im +
∞∑

n=1

Âσ
mnin = B̂σ

m (19)

where

Âσ
mn =

2mk0ζ0

R0

∫ ∞

0

J2m (kρa)J2n (kρa)

kρ

√
k2

0 − k2
ρ

dkρ (20)

and

B̂σ
m = −mk0ζ0mz

πR0

∫ ∞

0
J2m (kρa) kρ

e−j
√

k2
0−kρ

2h√
k2

0 − k2
ρ

dkρ (21)

Remarkably, Eq. (19) is a second-kind Fredholm equation in the space �2 of the square-summable
sequences; as such, it does not require any regularization scheme [10]. Therefore, compared with the
PEC case [18], the finite conductivity has the role of a regularizing parameter. The fact that the integral
equation is Fredholm second-kind type guarantees that a unique solution exists, which can be obtained
through any discretization or truncation scheme.

The integral in Eq. (20) can be expressed through a rapidly convergent series thanks to the
identity [28]

(−1)l
′−l 2k

∫ ∞

0

J|m|+2l+1 (τa) J|m|+2l′+1 (τa)

τ
√

k2 − τ2
dτ = −

∞∑
l=1

(
−1

2
l

)
p

(
−1

2
l + 1

)
q

(−jka)l

Γ
(

1
2
l + p + 1

)
Γ

(
1
2
l + q + 2

) (22)

with p = l′ − l, q = |m| + l′ + l, and where (x)y is the Pochhammer symbol defined as

(x)y =
Γ (x + y)

Γ (x)
(23)
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In fact, by letting k = k0, τ = kρ, l = m−1, l′ = n−1, m = 1 and therefore p = n−m and q = n+m−1
in Eq. (22), from Eq. (20) we have

Âσ
mn = (−1)p+1 mζ0

R0

∞∑
l=1

(
−1

2
l

)
p

(
−1

2
l + 1

)
q

(−jk0a)l

Γ
(

1
2
l + p + 1

)
Γ

(
1
2
l + q + 2

) (24)

Once the coefficients in have been determined, the scattered magnetic field can readily be found as

Hscat
ρ (ρ, z) =

N∑
n=1

in
2

∫ ∞

0
b̃n (kρ) e−jkz|z|J1 (kρρ) kρdkρ

=
N∑

n=1

in
2

∫ ∞

0
J2n (kρa)J1 (kρρ) e−j

√
k2
0−k2

ρ|z|dkρ (25)

and

Hscat
z (ρ, z) = −j

N∑
n=1

in
2

∫ ∞

0
b̃n (kρ)

e−jkz|z|

kz
kρ

2J0 (kρρ) dkρ

= −j
N∑

n=1

in
2

∫ ∞

0
J2n (kρa) J0 (kρρ) kρ

e−j
√

k2
0−k2

ρ|z|√
k2

0 − k2
ρ

dkρ (26)

4. STATIC LIMIT OF THE PEC CASE

It is possible to obtain the static limit of the PEC case by first letting R0 = 0 (PEC condition) and
next letting k0 = 0. In fact, it should be noted that one cannot recover the static solution of the PEC
case if the two limits are inverted, i.e., if the static condition k0 = 0 is first enforced and next the PEC
condition R0 = 0: in such a case, the trivial identically zero solution is obtained. Such a situation is
typical of a singular perturbation [29]. To this aim, by multiplying all the elements of the system in
Eq. (19) by the factor 2R0/(k0ζ0), then letting R0 = 0, and finally k0 = 0 we obtain

∞∑
n=1

Â(0)
mnin = B̂(0)

m (27)

where
Â(0)

mn = j

∫ ∞

0

J2m (kρa) J2n (kρa)
k2

ρ

dkρ (28)

and
B̂(0)

m = −j
mz

2π

∫ ∞

0
J2m (kρa) e−kρhdkρ (29)

All the elements can be evaluated in a closed form by using the identities in Eq. (15) and [27, 6.611]

∫ ∞

0
e−αxJν (βx) dx =

β−ν
[√

α2 + β2 − α
]ν

√
α2 + β2

(30)

thus obtaining

Â(0)
mn = ja

Γ
(

2m + 2n − 1
2

)

4Γ
(

2m − 2n + 3
2

)
Γ

(
2n − 2m + 3

2

)
Γ

(
2m + 2n + 3

2

) (31)
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Thanks to the property of the Gamma function
Γ(z + 1) = zΓ(z) (32)

Eq. (31) can also be expressed as

Â(0)
mn = ja

(
m + n − 1

2

)(
m + n +

1
2

)

4Γ
(

2m − 2n + 3
2

)
Γ

(
2n − 2m + 3

2

) (33)

and moreover

B̂(0)
m = −j

mz

2π

[√
1 +

h2

a2
− h

a

]2m

√
a2 + h2

(34)

From Eqs. (25)–(26), the scattered magnetic field can be expressed in the static limit as

Hscat
ρ (ρ, z) =

1
2

N∑
n=1

in

∫ ∞

0
J2n (kρa) J1 (kρρ) e−kρ|z|dkρ (35)

Hscat
z (ρ, z) =

1
2

N∑
n=1

in

∫ ∞

0
J2n (kρa) J0 (kρρ) e−kρ|z|dkρ (36)

By using the identity [27, 6.626]∫ ∞

0
xλ−1e−αxJμ(βx)Jν(γx)dx =

βμγν

Γ(ν + 1)
2−ν−μα−λ−μ−ν

·
∞∑

m=0

Γ(λ+μ+ν+2m)
m!Γ(μ + m + 1)

F

(
−m,−μ − m; ν+1;

γ2

β2

)(
− β2

4α2

)m

(37)

valid for λ + μ + ν > 0 and α > 0, where F (·, ·; ·; ·) are the Gauss hypergeometric functions, we obtain

Hscat
ρ (ρ, z) = ρ

N∑
n=1

in
a2n

(2|z|)2n+2

∞∑
m=0

(2n + 2m + 1)!
m!(2n + m)!

F

(
−m,−2n − m; 2;

ρ2

a2

)(
− a2

4|z|2
)m

(38)

and

Hscat
z (ρ, z) =

N∑
n=1

in
a2n

(2|z|)2n+1

∞∑
m=0

(2n + 2m)!
m!(2n + m)!

F

(
−m,−2n − m; 1;

ρ2

a2

)(
− a2

4|z|2
)m

(39)

The scattered field is thus expressed through integrals of Lipschitz-Hankel kind for which different
representations exist in terms of first- and second-kind elliptic integrals [30].

It is worth noting that for ρ = 0, we have Hscat
ρ = 0 and

Hscat
z (0, z) =

1
2

N∑
n=1

in

∫ ∞

0
J2n (kρa) e−kρ|z|dkρ (40)

i.e., by using the identity in Eq. (30)

Hscat
z (0, z) =

1
2

N∑
n=1

in

[√
1 +

|z|2
a2

− |z|
a

]2n

√
a2 + |z|2 (41)

The proposed formulation is exact, but since the adopted basis functions do not automatically
take into account the algebraic singular behavior at the edges of the disk present in the PEC case the
convergence is worse with respect to the formulation presented in [18]. In Fig. 2, the behavior of the
current density and of the scattered magnetic field for a PEC disk is presented as a function of the
number of basis functions for the same configuration considered in [18] (i.e., a = 5 cm and h/a = 2).
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Figure 2. Convergence of the surface current density and of the scattered magnetic field as a function
of the number N of basis functions for a PEC disk. Parameters: mz = 1Am2, a = 5cm, h/a = 2.

5. LOW-FREQUENCY APPROXIMATION

In order to obtain a low-frequency approximation for the problem of a disk with a finite conductivity,
one can think to use the static integral of the PEC case with a perturbative term dependent on frequency
which takes into account the finite conductivity of the disk. To this aim, the integrals in Eq. (19) are
approximated with their static version so that the system to be solved is

im +
∞∑

n=1

Âσ(0)
mn in = B̂σ(0)

m (42)

where
Âσ(0)

mn =
2mk0ζ0

R0
Â(0)

mn (43)

and
B̂σ(0)

m =
2mk0ζ0

R0
B̂(0)

m (44)

Once the coefficients in have been obtained, the scattered field is calculated through the static formulas
(35)–(36): in particular, for the scattered field along the dipole and disk axis, and Eq. (41) is used.

It is interesting to compare the magnetic shielding effectiveness [31] obtained with a full-
wave formulation and that obtained with the low-frequency approximation. The magnetic shielding
effectiveness along the axis z is defined as

SEH = 20 log

∣∣H inc
z (0, z)

∣∣
|Htot

z (0, z)| (45)

where Htot
z = H inc

z + Hscat
z .

An example is reported in Fig. 3, where a configuration with h = 30 cm, z = −h, σ = 5.7 · 107 S/m
(copper disk), d = 1 mm is considered. Different values of radius are considered, and the infinite planar
case (i.e., for a → +∞) is also reported as [32].

In particular, the full-wave problem has been solved in the frequency domain by means of a
two-dimensional (2-D) axially symmetric FEM, i.e., the low-frequency magnetic-field package of the
commercial software COMSOL. As far as the FEM discretization is concered, third-order triangular
Lagrangian elements have been used, and infinite elements to truncate the computational domain have
been introduced [33]. Moreover, the volume of the screen is discretized with an appropriate boundary-
layer mesh in order to accurately account for the diffusion effects inside the screen and adequately
resolve the penetration depth of the induced currents [34].
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Figure 3. Magnetic shielding effectiveness SEH of a copper disk as a function of frequency f for
different values of h/a: comparison between the proposed low-frequency formulation and a full-wave
solution. Solution for the PEC disk is also reported as reference. Parameters: h = 30 cm, z = −h,
σ = 5.7 · 107 S/m, d = 1 mm.
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formulation and a full-wave solution. Solution
for the PEC disk is also reported as reference.
Parameters: h = 1cm, z = −h, σ = 5 · 103 S/m,
d = 0.1 mm.

It can be seen that the low-frequency approximation is an excellent representation of the exact
solution over the whole frequency range within which the finite-conductivity disk can be represented
as an infinitesimally thin sheet of surface resistance R0, i.e., for the adopted screen parameters, up to
the frequency fmax = 8.8 · 103 Hz. For comparison purposes, in Fig. 3 the relevant solutions for a PEC
disk are also reported. As expected, in the low-frequency regime, the SEH of the lossy configuration is
smaller than the relevant PEC performance, which however represents the asymptotic result for high
frequencies. An exception to such a behavior is represented by the case h/a = 0.3 in an intermediate
frequency region where the SEH of the lossy configuration is larger than that for the PEC disk because
of a resonance effect [34].

It is also interesting to observe the variation of the surface density current as a function of the
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radius a for a fixed value of h and at a certain operating frequency, according to Eqs. (7) and (9). An
example is reported in Fig. 4, where h = 30 cm and f = 1 kHz. As expected, with respect to the PEC
case, the surface current density does not present any singular behavior at the edges.

As a second example, a disk of conductive painting characterized by a conductivity σ = 5 · 103 S/m
and a thickness d = 0.1 mm. The source is placed at h = 1cm and the observation point at z = −h.
The relevant magnetic shielding effectiveness SEH is reported in Fig. 5 as a function of frequency and
for different values of the radius a. Both the proposed low-frequency approximation and a full-wave
solution are reported for comparison. It is worth noting that, for the adopted values of conductivity
and thickness, the thin-sheet approximation is valid in the entire considered frequency range (in fact
fmax = 1.01 · 1010 Hz): although not shown, the results obtained through Eq. (26) and the commercial
software COMSOL are completely superimposed. On the other hand, the proposed low-frequency
representation is correct up to the frequency f = 1 · 109 Hz beyond which other resonance effects,
depending on the disk radius, may occur [34]. In this case, because of the much lower value of the
conductivity than the copper case, the difference with respect to the relevant PEC disk is much more
pronounced although, for high frequencies, the PEC case still represents the limiting solution.

6. CONCLUSION

The problem of radiation by a vertical magnetic dipole in the presence of a thin metallic circular disk
with finite conductivity has been addressed. Modeling the thin conductive disk through an appropriate
boundary condition, the problem is reduced to the solution of a set of dual integral equations. The latter
is exactly solved through the application of the Galerkin method in the Hankel transform domain. A
low-frequency solution is extracted in a closed form and is shown to be very accurate up to the frequency
where the surface-impedance model of the thin disk is valid.
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