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NUMERICAL SOLUTION OF THE
FRACTIONAL OSCILLATION EQUATION
BY A REFINABLE COLLOCATION METHOD*

Abstract. Fractional Calculus is widely used to model real-world phenomena. In fact, the
fractional derivative allows one to easily introduce into the model memory effects in time
or nonlocality in space. To solve fractional differential problems efficient numerical meth-
ods are required. In this paper we solve the fractional oscillation equation by a collocation
method based on refinable bases on the semi-infinite interval. We carry out some numerical
tests showing the good performance of the method.

1. Introduction.

Fractional calculus arises in several fields, from physics to continuum mechanics, from
signal processing to electromagnetism [8, 9, 13]. In particular, fractional differential
equations are widely used to describe physical systems since the nonlocal behavior of
the fractional derivative allows one to easily model long-range memory effects in time.

Analytical solutions of fractional differential problems can be obtained just in
very few cases and, usually, they are given in term of special functions or series expan-
sions that cannot be accurately evaluated. For this reason, in recent years the interest
towards the construction of efficient numerical methods for fractional differential prob-
lems has been growing. For a review on numerical methods for fractional differential
problems see, for instance, the books [1, 11] and the detailed bibliography in the pa-
pers [10, 21, 24]. Among the variety of numerical methods commonly used in this
field, global methods seem particularly attractive. In these methods the solution is ap-
proximated by an expansion on a local basis: a clever choice of the basis allows to
approximate accurately the nonlocal behavior of the fractional derivative.

The refinable collocation method introduced in [18] is a global method in which
the solution is expanded in a refinable basis whose fractional derivatives have a closed
form easy to evaluate. The coefficients of the expansion are obtained by solving a linear
system that involves the collocation matrices of the refinable basis and of its fractional
derivatives. The method was successfully used to solve linear and nonlinear fractional
differential problems [18, 19, 21]. In this paper we use this method to numerically
solve the fractional oscillation equation.

The paper is organized as follows. In Section 2 we briefly describe the fractional
oscillation equation we are interested in. The main features of the collocation method
we use are outlined in Section 3 while the numerical results are reported in Section 4.
Finally, in Section 5 we draw some conclusions.

*Dedicated to Catterina Dagnino on the occasion of her retirement
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2. The fractional oscillation equation.

The oscillation equation of fractional order has the form [3, 12, 15]

Dfy(t) = —p'y(t) + f(1), >0, 1<y<2,
(2.1
y(0)=yo, Y(0)=y1,

where u > 0 is the stiffness coefficient and f () € C[0,+cc) is the driving force. The
symbol D?y(t) denotes the Caputo fractional derivative defined as

1 )
Y o
(2.2) Dfy(t) := =7 L (= dr, k—1<y<k,

where o
(o) := f e dn
0

is the Euler’s gamma function. For details on fractional calculus and fractional deriva-
tives see, for instance, [3, 23].
Equation (2.1) can be seen as a generalization of the classical linear oscillation equation

Y'(t) = =2y(0) + f(1), >0,
2.3)

¥(0)=yo, Y (0)=y1,
whose analytical solution is
!
2.4) ¥(t) = yo cos(ut) + y;l sin(ut) +f f(t—7)sin(ut)dr.
0

Using the Mittag-Leffler function [4]:

n

o8]
z
E. =§ - B=0, C,
Yvﬁ(z) = F(,Yn_l_B)? YB zZ€

the solution to Equation (2.1) can be expressed in a closed form as [3, 5, 15]

t
(2.5)  y(t) =yoEyi(—u't) + y1t Eya(—u'tY) +J;) ft =) T Eyy(—p' 1) dr.
By setting f(¢f) = 0 and y; = 0, Equation (2.5) reduces to

(2.6) y(t) = yoEy1(—u'"),

which in turn, reduces to the classical solution of the harmonic oscillator

(2.7) ¥(t) = yo cos(ut)
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when y = 2. It is worth noting that, while the solution to the classical oscillation equa-
tion exhibits an infinite number of zeros, the solution to the fractional oscillation equa-
tion has a finite number of zeros that increases when Y — 2. Moreover, the amplitude
of the oscillation decreases when ¢t — oo [5]. This means that in the fractional oscilla-
tion equation the damping is an intrinsic effect that is generated just by the fractional
derivative.

The solution to the oscillation equation for different values of y and different driving
forces f(t) is shown in Figure 1.
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Figure 1: The analytical solution of the oscillation equation when yg = 1, y; =0,
f() =0 (left) and yo =0, y; =0, f(t) = cos(2¢) (right) for y= 1.5 (green dashed
line), 1.7 (red dotted line), 1.9 (blue dash-dotted line). The analytical solution when
Y =2 is displayed as a red solid line. Here, u = 1.5.

3. The collocation method in refinable spaces.

Refinable spaces are embedded approximating subspaces of L;(R) satisfying the sep-
aration and density properties [2, 14]. They can be generated by the translates and
dilates of a refinable function, i.e., a function satisfying a refinement equation:

(3.8) o1) = Y, 92t —0), 1R,
ez

where the coefficient sequence {a; € R, ¢ € Z} is the refinement mask. The existence of
a unique solution to Equation (3.8) is related to the properties of the mask (see [2] for
details). Here, we assume that the mask is compactly supported on [0, N] so that @ is
compactly supported too, with supp ¢ = [0, N]. Moreover, we assume that ¢ belongs to
L>(R) and that its integer translates form a L,-stable basis. Let @ ¢(t) = 2//2¢(2/t — ()
denote any of the integer translates and dilates of ¢. The sequence of closed spaces

V; =span{@/(t),{=—N+1,-N+2,...}, jeZ, te[0,0),

forms a multiresolution analysis of L*[0,0), i.e., the spaces {V;} satisfy
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() VicVia, JjeZ; (i) UjezV;=L*0,0);
(@ii) ﬂjeZ Vi ={0}; @) f(r)eVieo f(2r)eViyr;

W{e(x—10),{ = —N+1,—N+2,...} is a L?-stable basis for Vp.

For any j held fix, we approximate the solution to the differential problem (2.1) by
an approximating function that belongs to the refinable space V, i.e.,

o0

(3.9) yil)= > ciuoult).

{=—N+1

In practical applications the solution to the differential problem (2.1) is approximated
in a finite interval I = [0, 7] with T a positive integer, so that the sum in (3.9) is a finite
sum since just the refinable functions having support intersecting I give a contribution
to y;(t) whent e I.

Let us denote by A the set of the indexes ¢ such that supp@;c n I # {0}. Then, in the
collocation method the unknown coefficients {c;¢,¢ € Aj} are determined by requiring
that

(3.10) yit)= > ciu@i(t),  tel,
leN;

solves the differential problem (2.1) on a set of collocation points {t,,0 < p < P}
belonging to the discretization interval I.

Since Equation (3.8) allows to efficiently evaluate @ j; on dyadic nodes [14], we choose
as collocation points the dyadic points of the interval I, i.e.,

(3.11) {f17=P/2saP=071,---,Nv}7 Ny =2'T,
where s > 0 is the collocation level. Thus, the collocation method applied to (2.1) gives

D;{y](tp)=_HYYJ(tp)+f(tp)v p=1727"'7NS7
(3.12)

yi(0)=yo,  ¥i(0)=y1.
Substituting (3.10) in the previous equations, we obtain the linear system
(Ajs+u'Bj;) Cjs = Fy,
(3.13) ®5(0)Cjs = yo,
¥, (0)Cjs =1,

where Cj; = [cj¢, £ € AG]” is the unknown vector, @ (1) = [@;¢(t), ¢ € A\[] is the vector
of the basis functions evaluated in ¢,

Ajs = [DI®)(t,),p =1,2,...,N;],

Bjx = [¢]A(tp)ap = 1727"'7NS]7
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are the collocation matrices of the refinable basis, and

F:Y = [f(tp)vp: 1:27"'7NS]T7

is the known term. The linear system has Ny +2 = 2°T + 2 equations and §A\; =
2JT + N — 1 unknowns. To guarantee the existence of a unique solution, the collocation
level s and the multiresolution level j have to be chosen so that Ny +2 > 119\6 We notice
that when N; + 2 = §4\; there is not a great flexibility in the choice of the parameters s
and j. For instance, for N = 3 the only choice is s = j. To have higher flexibility, we
set 2°T +2 > 2/T + N — 1. Thus, (3.13) results in an overdetermined linear system that
can be solved in the least squares sense. In this case particular attention should be paid
to fulfill the initial conditions.

4. Numerical tests

In this section we show the approximated solutions we obtained by the collocation
method (3.12) when applied to the oscillation equation (2.1) with different driving
forces f(¢) and different values of y, the order of the fractional derivative. In the tests
we used as approximating spaces the refinable spaces

Vi =span{B,i(t) = B,(2/t =) 0 = —n,—n+1,....2/ T}, j=jo, tel,

generated by the polynomial B-spline B, () of degree n. The explicit expression of B,
can be obtained, for instance, by the finite difference of the truncated power function
" = max(0,1)":

1
B,(t) := ;A"Hti,

where A" denotes the finite difference operator of order n [25]. We recall that the
polynomial B-splines are refinable functions associated with the binomial mask [2].
Details on the evaluation of the fractional derivatives of the B-spline basis {B,,j¢(¢)} on
a finite interval can be found in [16, 22].

In the tests we set s = j + 1 so that the time step is At = 27/=!. The discretization
interval is set to I = [0, 15].

To analyze the performance of the collocation method we evaluate the L,-norm of the

approximation error: el = 1/83 lej(t)|>dt, ej(t) = y(t) —y;(t), and the numerical

convergence order: p; =log, ([ej—1[2/]ej]2)-

4.1. Example 1

In the first example we set f(f) = 0 and y(0) = 1, y’(0) = 0. The exact solution is
given by Equation (2.6) and reduces to the classical harmonic oscillation (2.7) when
v =2 (cf. [13]). The numerical solution y3 and the absolute value of the error e3(r) for
n = 4 and different values of 7y are displayed in Figure 2. The L;-norm of the error and
the numerical convergence order as a function of the multiresolution level j are listed
in the tables below for the B-splines of degree n = 3 and n = 4 in the case wheny = 1.3.
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n=3 n=4
J | lejla | pj J | el | ey
1| 691e-02 1 | 6.19¢-02
2 | 3.28e-02 | 1.077 2 | 3.11e-02 | 0.995
3| 1.49e-02 | 1.135 3 | 1.55e-02 | 0.999
4 | 6.18e-03 | 1.272 4 | 7.77e-03 | 1.001
5| 2.41e-03 | 1.356 5 | 3.88e-03 | 1.003
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Figure 2: Example 1: The numerical solution y3(¢) (left) and the error |e3(¢)]| (right)
for Y= 1.3 (blue solid line with markers), 1.5 (green dashed line), 1.7 (red dotted line),
1.9 (blue dash-dotted line). The exact solution when y = 2 is displayed as a red solid
line. Here, y=1.5and n = 4.

4.2. Example 2

In the second example we set f(¢) = 1 and y(0) = 0, ¥'(0) = 0. The exact solution is
[15]

Y(t) = 1" Eyy i1 (—p'tY).

The numerical solution and the absolute value of the error for n = 4 and different values
of yare displayed in Figure 3. The Ly-norm of the error and the numerical convergence
order as a function of the multiresolution level j are listed in the tables below for the
B-splines of degree n = 3 and n = 4 in the case when y = 1.5.

n=3 n=4
Jl leil2 | pi J | leil2 | pi
1| 5.61e-02 1 | 4.83e-02
2 | 2.82e-02 | 0.990 2 | 2.44e-02 | 0.989
3 | 1.41e-02 | 0.999 3 | 1.22e-02 | 0.996
4 | 7.04e-03 | 1.005 4 | 6.11e-03 | 0.999
5 | 3.49e-03 | 1.012 5 | 3.06e-03 | 1.000
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Figure 3: Example 2: The numerical solution y3(¢) (left) and the error |e3(r)]| (right)
for y= 1.5 (green dashed line), 1.7 (red dotted line), 1.9 (blue dash-dotted line). Here,
u=09andn =4.

4.3. Example 3

In the last example we set f(¢) = cos(At) and y(0) = 0, y'(0) = 0. The exact solution
is [15]

y(t)

!
= J cos(Mt — 1)) T Eyy(—utt) dr.
0
The numerical solution and the absolute value of the error for n = 4 and different values
of y are displayed in Figures 4. Top panels refer to the case A = 2 and u = 1.5 while
bottom panels refer to A = u = 1.5. In the first case, after a transient period, the solution
becomes oscillatory while in the latter case the amplitude of the solution increases with
time (cf. [15]).

The Lp-norm of the error and the numerical convergence order as a function of the

multiresolution level j are listed in the tables below for the B-splines of degree n = 3
and n = 4 in the case when A =u=1.5andy=1.5.

n=3 n=4
il el | ps il leils | ps
1 | 4.85¢-02 1 | 4.42e-02
2 | 2.33e-02 | 1.061 2 | 2.23e-02 | 0.991
3| 1.08e-02 | 1.106 3| 1.12e-02 | 0.997
4 | 4.65¢-03 | 1.216 4 | 5.58e-03 | 0.998
5| 1.82e-03 | 1.356 5 | 2.79¢-03 | 1.000

5. Conclusions

In this paper we used the collocation method introduced in [18] to solve the oscillation
equation (2.3). The numerical tests show that the method gives good results when using
the polynomial B-splines as approximating functions. In all the examples the error is
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Figure 4: Example 3: The numerical solution y3(¢) (left) and the error |e3(¢)| (right)
for y = 1.3 (blue solid line with markers), 1.5 (green dashed line), 1.7 (red dotted line),
1.9 (blue dash-dotted line). Top panels refer to the case A = 2 and u = 1.5; bottom
panels refer to the case A = u = 1.5. In both cases n = 4.

in the order of 102 or less. We note that the error is smaller when Y goes to 2, ie.,
when approaching the classical oscillation equation of integer order. The behavior of
the L-norm of the error when j increases, shows that the method is convergent with
convergence order close to 1 (cf. [18]). On the other hand, the approximation error
depends slightly on the degree of the B-spline. The method can be used also with other
refinable bases, for instance, fractional B-splines [26], fractional GP refinable functions
[17] or nonstationary refinable functions [20]. For these functions, refinable bases on
the interval can be constructed following the techniques given in [6]. Some preliminary
tests can be found in [18, 19, 21].

To conclude, we observe that the collocation method (3.12) can be generalized by
approximating y(¢) with a refinable operator like the operators introduced in [7]. This
will be the subject of a forthcoming paper.
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