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 Abstract
β-Glucosidase is a class of hydrolytic enzymes that catalyzes the removal of the non-reducing β-D-
glucosyl unit from various disaccharides and substituted β-D-glucosides. β-Glucosidase belongs to 
Glycoside Hydrolase (GH) families 1 and 3 and potentially has many biotechnological applications 
with thermostable enzymes are preferred over mesophilic homologs in different applications. In the 
present work, a comparative analysis of physicochemical properties and amino acids composition 
of 60 (20 mesophilic, 20 thermophilic and 20 hyperthermophilic) β-glucosidases were performed. 
Multiple sequence alignment and phylogenetic tree analysis were constructed. Analysis of Variance 
(ANOVA) showed that several physicochemical properties including molecular weight, isoelectric point, 
number of positively charged amino acids, and extinction coefficient are statistically different among 
β-glucosidases groups (P<0.05). The analysis also showed that content of amino acids Asp, Gln, Cys, 
His, and Thr is significantly higher in mesophilic enzymes whereas that of Glu, Lys, Tyr, and Trp is higher 
in thermo- and hyperthermostable homologs (P<0.05). Overall, nonpolar amino acids were the most 
abundant amino acids group in β-glucosidase with no significant difference among meso-, thermo-, 
and hyperthermophilic enzymes. Conversely, the content of polar amino acids is statistically higher 
(P<0.05) in mesophilic enzymes whereas that of charged and aromatic amino acids is significantly higher 
(P<0.05) in thermo- and hyperthermophilic counterparts. Finally, multiple regression analysis showed 
that both polar and aromatic amino acids contribute significantly (P<0.05) to the thermostability. 
Optimal temperature variation of 53% could be explained by these two groups of amino acids. In 
conclusion, several amino acids appear to contribute to the thermostability of β-glucosidases and the 
findings from this study should pave the road toward a better understanding of thermostability of 
β-glucosidases and protein engineering.
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INTRODUCTION
 β-Glucosidase (BGL) is a heterogeneous 
group of hydrolytic enzymes that catalyzes 
the removal of the non-reducing β-D-glucosyl 
terminal unit from a variety of disaccharides, 
alkyl-β-D-glucosides, aryl-β-D-glucosides and short 
oligosaccharides1,2. BGLs have found tremendous 
applications in various biotechnological industries 
mainly biofuel production, aroma and flavor 
enhancement, nutritional isoflavone hydrolysis, 
cassava detoxification, paper deinking, and 
synthesis of various oligosaccharides and 
substituted-β-D-glycosides2,3. Hence BGLs have 
attracted the interest of researchers of this field 
in the last decade. Additionally, many applications 
of BGL such as biofuel production require enzymes 
with exceptional properties such as increased 
catalytic efficiency, high thermostability, and 
glucose tolerance4,5. BGLs such as GH 3 BGLs from 
fungi are sensitive to glucose. However, several 
reported GH 1 BGLs exhibit excellent glucose 
tolerance6-10. Thermostability of BGL from GH 1 
family is low and the search for thermostable 
enzymes with glucose tolerance is an important 
goal of ongoing researches. In this context, on 
one hand, thermostable enzymes can be obtained 
through isolation of novel microbes capable 
of producing thermostable enzymes; which is 
tedious, time-consuming and cost-intensive 
approach11. On the other hand, the application 
of protein engineering principles to design and 
synthesize thermostable proteins from their 
mesophilic homologs is the approach of choice 
toward the development of industrially convenient 
catalysts3,12. 
 Elucidation of factors contributing to 
protein thermostability is the first crucial step 
for successful protein engineering and catalysts 
designing for the conversion of mesophilic 
enzymes to thermophilic counterparts. Several 
workers of the field have identified some attributes 
contributing to protein thermostability including 
hydrophobicity and compactness13-15, shortening 
of loops16-18, decreased occurrence of thermolabile 
residues such as Gln, Cys, and Ser13, high content 
of aromatic amino acids19, high helical content20, 
increased polar surface area21, hydrogen bonding 
and electrostatic interactions13,20, high frequency of 
proline occurrence22, and high disulfide bonds13,23,24. 

These factors can be determined experimentally 
or through the analysis of protein sequences and 
structures using robust computational biology and 
bioinformatics tools; known as in silico approach. 
This approach is more attractive because it is cost 
effective and enables comparison and analysis of 
large datasets of protein. Detailed comparative 
analysis of physicochemical properties and amino 
acids composition of mesophilic, thermophilic, and 
hyperthermophilic BGLs is lacking. The present 
study aimed to compare the physicochemical 
properties and amino acids composition of 
mesophilic, thermophilic and hyperthermophilic 
BGLs from GH 1 in an attempt to identify attributes 
associated with enhanced thermostability of 
BGLs which may pave the way toward future 
engineering of BGL.

MATERIALS AND METHODS
Data Collection 
 Different literature databases (e.g., 
PubMed, ScienceDirect, Springer, Google Scholar) 
were searched for publications regarding GH1 
BGLs. Publications were downloaded and screened 
for information regarding source organisms, life 
domain, optimal temperature of enzyme activity 
and Genbank or UniProt ID (if reported). Only GH1 
BGLs which have been characterized for substrate 
specificity and optimal temperature were selected 
for further analysis. Protein sequences were 
retrieved from UniProt (https://www.uniprot.org/) 
in FASTA format for analysis. Based on reported 
optimal temperature of enzyme activity, these 
enzymes were classified into three groups: 1) 
mesophilic with an optimal temperature between 
25-45°C (M-BGLs), 2) thermophilic with an optimal 
temperature between 50-75°C (T-BGLs), and 3) 
hyperthermophilic with an optimal activity above 
75°C (HT-BGLs).
Deduction of Physicochemical Properties and 
Amino Acid Compositions
 Protein sequences were predicted for the 
presence of signal peptide using Signal P 4.1 server 
(http://www.cbs.dtu.dk/services/SignalP/)25, and 
localization using LocTree 3 and PSORTb (https://
rostlab.org/services/loctree3/ and http://www.
psort.org/psortb/)26,27. Various physicochemical 
properties and amino acids composition of 
protein sequences were also predicted using the 
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EXPASY tool ProtParam (https://web.expasy.org/
protparam/)28,29. The physicochemical properties 
predicted include numbers of amino acids, 
molecular weight (MW), Isoelectric Points (PI), 
number of negatively (Asp and Glu) and positively 
(Lys and Arg) charged residues, extinction 
coefficient, Instability Index (II), Aliphatic Index (AI) 
and Grand Average of Hydropathicity (GRAVY).
Sequence Alignment and Phylogenetic Tree 
Construction
 The retrieved sequence of M-BGLs, 
T-BGLs, and HT-BGLs were aligned using muscle 
tool for multiple sequence alignment (MSA) at 
EMBL-EBI (https://www.ebi.ac.uk/Tools/msa/
muscle/)30. The alignment was retrieved in FASTA 
format and edited by BoxShade server (https://
embnet.vital-it.ch/software/BOX_form.html)31. 
Further, MSA was submitted to Phylogeny online 
tool (http://www.phylogeny.fr/) to construct a 
phylogenetic tree of selected BGLs sequences32 
using the defualt setting (maximum likelihood 
method, WAG substitution model, bootstrap 16).
Statistical Analysis and Significance Inference 
 Graphpad Prism 5 was used for calculating 
statistical parameters of physicochemical 
properties and amino acids compositions for 

M-BGLs, T-BGLs, and HT-BGLs. First, analysis of 
variance (ANOVA) was carried out to find whether 
there is a significant difference in the means of the 
parameters of M-BGLs, T-BGLs, and HT-BGLs. The 
null hypothesis states that there is no significant 
difference in the means of physicochemical 
properties and amino acid composition between 
M-BGLs, T-BGLs, and HT-BGLs. The confidence 
interval for significance was 95% and P-value 
<0.05 was considered significant. Next, where 
ANOVA detected a significant difference, post hoc 
Tukey’s test was used for multiple comparisons 
of the means of two groups. Finally, attributes 
showed a significant difference between M-BGLs, 
T-BGLs, and HT-BGLs and correlated with the 
optimal temperature of BGLs activity were used 
for multiple linear regression analysis to construct 
a model for optimal temperature prediction from 
amino acids compositions. 

RESULTS AND DISCUSSION
Multiple Sequence Alignment and Phylogenetic 
Tree Construction
 Total sixty GH1 BGL sequences for which 
experimental optimal temperature has been 
determined (20 M-BGLs, 20 T-BGLs, and 20 HT-

Table 1. Mesophilic GH1 β-Glucosidase with UniProt ID and reported optimal temperature  
 
Enzyme ID UniProt ID Source organism  Domain  Optima T (°C) Reference

M-BGL01 K0A8J9 Exiguobacterium antarcticum B7 Bacteria  30 [33] 
M-BGL02 O93785 Hypocrea  jecorina  Fungi  40 [34]
M-BGL03 A1D6G3 Neosartorya fischeri NRRL181 Fungi  40 [35]
M-BGL04 F1JZ12 Sphingomonas sp. strain 2F2 Bacteria  37 [36]
M-BGL05 B9V8P5 Micrococcus antarcticus Bacteria  25 [37]
M-BGL06 A0A1S5SJM8 Unculturable bacterium Bacteria  40 [38]
M-BGL07 D5KX75 Unculturable bacterium Bacteria  40 [8]
M-BGL08 I6YQJ8 Unculturable bacterium Bacteria  40 [39]
M-BGL09 E6TUY6 Bacillus cellulosilyticus Bacteria  40 [40]
M-BGL10 I6TNE2 Weissella cibaria Bacteria  45 [41]
M-BGL11 Q9F3B7 Streptomyces coelicolor A3 Bacteria  35 [42]
M-BGL12 Q9K440 Streptomyces coelicolor A3 Bacteria  35 [42]
M-BGL13 D0VLH9 Exiguobacterium oxidotolerans  Bacteria  35 [43]
M-BGL14 J9XU85 Bifidobacterium lactis Bacteria  38 [44]
M-BGL15 B8HAF9 Arthrobacter chlorophenolicus Bacteria  37 [45]
M-BGL16 A0A1L3HS62 Uncultured bacterium  Bacteria  37 [46]
M-BGL17 A0A2I2LGB3 Uncultured bacterium  Bacteria  40 [47]
M-BGL18 A0A1W6I0S4 Uncultured bacteriuma Bacteria  38 [48]
M-BGL19 A6W3B1 Marinomonas MWYL1 Bacteria  40 [49]
M-BGL20 M4I6Y9 Lactococcus sp. FSJ4 Bacteria  40 [50]

aAmino acids at  position 1-18  were predicted as signal sequence and removed.
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BGLs; Tables 1-3, respectively) were retrieved 
from the UniProt database. Multiple Sequence 
Alignment (MSA) analysis revealed that several 
amino acids motifs are conserved among all 
GH1 BGLs. β-Glucosidase is a single polypeptide 

protein that folds to form a GH1 classical (β/α)8 
TIM barrel structure comprised of eight α-helices 
and eight β-strands linked by short loops. GH1 
BGL utilizes two key glutamic acid residues as a 
general acid/base catalyst and nucleophile87. MSA 

Fig. 1.  Phylogenetic tree of mesophilic (Black, M-BGL), thermophilic (blue, T-BGL) and hyperthermophilic (red, HT-
BGL) β-glucosidases from bacteria, archaea, and fungi. This phylogenetic tree was constructed using Phylogeny tool. 
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Table 2. Thermophilic GH 1 β-Glucosidase with UniProt ID and reported optimal temperature  
 
Enzyme ID UniProt ID Source Domain Optima T (°C) Reference

T-BGL01 HV538882.1 Uncultured bacterium Bacteria 75 [51]
T-BGL02 A0A0B5ARU7 Jeotgalibacillus malaysiensis Bacteria 65 [52]
T-BGL03 Q47RE2 Thermobifida fusca Bacteria 60 [53]
T-BGL04 M5QUM2 Anoxybacillus sp. DT3-1 Bacteria 70 [10]
T-BGL05 K4I4U1 Uncultured bacterium Bacteria 50 [54]
T-BGL06 D9TR57 Thermoanaerobacterium  Bacteria 70 [55]
  thermosaccharolyticum
T-BGL07 A0LR48 Acidothermus cellulolyticus Bacteria 70 [56]
T-BGL08 A0A220YLM5 Alicyclobacillus sp. Bacteria 55 [6]
T-BGL09 H0HC94 Agrobacterium tumefaciens 5A Bacteria 52 [57]
T-BGL10 A0A0H4NXH8 Thermoanaerobacterium  Bacteria 60 [9]
  aotearoense
T-BGL11 W0LHR5 Uncultured bacterium Bacteria 60 [58]
T-BGL12 Q65D37 Bacillus licheniformis Bacteria 50 [59]
T-BGL13 Q608B9 Methylococcus capsulatus Bacteria 70 [60]
T-BGL14 A4XIG7 Caldicellulosiruptor saccharolyticus Bacteria 70 [61]
T-BGL15 A0A220IP58 Cellulosimicrobium cellulans Bacteria 55 [62]
T-BGL16 Q60026 Thermoanaerobacter brockii Bacteria 75 [63]
T-BGL17 B8CYA8 Halothermothrix orenii Bacteria 70 [64]
T-BGL18 I3QIG4 Bacillus subtilis Bacteria 60 [7]
T-BGL19 A0A076JRL8 Humicola insolens RP86 Fungi 60 [65]
T-BGL20 H8XVY6 Paecilomyces thermophila Fungi 55 [66]

showed the conservation of both Glu residues in 
all BGLs regardless of optimal temperature. The 
first Glu residue is the general acid/base conserved 
at position 166 (for BGL from Humicola insolens 
(HiBGL) as reference, see supplementary data S. 
Fig. 1) at conserved motif TXNEP (Thr-X-Asn-Glu-
Pro) and the second Glu residue is the nucleophile 
conserved at position 377 in consensus sequence 
TENG (Thr-Glu-Asn-Gly)88. The active site is located 
at C-terminal of the barrel and is made up of two 
subsites namely glycon binding site (subsite -1) 
and aglycon binding site (subsite +1). The catalytic 
acid/base is located at the C-terminal of β-strand 
4 and the nucleophile at the C-terminal of the 
β-strand 788. In HiBGL, glycon binding site (subsite 
-1) lies at the bottom of the barrel with Gln17, 
His120, Trp121, Asn165, Tyr308, Trp427, Glu434, 
Trp435 and Phe443 residues65. MSA showed that 
these residues are conserved throughout BGL 
evolutionary history and the side chains of which 
interact with glycon moiety through both hydrogen 
and hydrophobic bonds. Conversely, aglycon 
binding site (subsite +1) is less conserved and is 
determined by Thr177, Tyr179, Phe325, Leu326, 

Thr331, Phe333 and Phe348 (in HiBGL numbering) 
which function as gatekeepers and explain the 
aglycone broad substrate specificity exhibited by 
this enzyme89. Moreover, Trp 168 and Leu173 were 
found to be responsible for glucose tolerance90 
and MSA showed that these two residues are 
conserved among high glucose-tolerant BGLs. 
The aglycon appeared to anchor by hydrophobic 
contacts and water-mediated polar bonds91. 
In contrarily, there are few studies on amino 
acids/motifs associated with thermostability of 
BGLs. Tamaki et al. 2014 employed Statistical 
Coupling Analysis (SCA) to identify several amino 
acids related to the thermostability of BGL from 
Spodoptera frugiperda (Sfβgly) (corresponding to 
Arg27, Pro39, Trp121, Pro167, His211, Pro266, 
Pro286, Trp435 and Phe443 in HiBGL numbering)92. 
MSA demonstrated that these residues are 
conserved and the majority of which are proline 
or positively charged amino acids. Additionally, 
these residues appeared to be distributed in 
the loop segments of BGL whereas, amino acids 
related to enzyme activity are mainly concentrated 
around α-helices and β-strands92. Altogether these 
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residues represent a hotspot for BGL engineering 
in future. However, further studies to identify 
more amino acids variants and motifs related to 
the thermostability in M-, T-, and HT-BGL may be 
required. 
 Multiple sequence alignment was used 
to construct a phylogenetic tree to visualize the 
evolutionary relationship between M-, T-, and 
HT-BGLs. BGLs were clustered into three major 
clades (Fig. 1). Clade I was dominated by T-BGLs (9 
sequences, 52.9%) followed by M-BGLs (5, 29.4%) 
and HT-BGLs (3, 17.7%). Clade II was dominated by 
M-BGLs (10, 43.5%) followed by T-BGLs (8, 34.8%) 
and HT-BGLs (5, 21.7%). Both mesophilic and 
thermophilic fungal BGLs analyzed were clustered 
together in this clade suggesting their bacterial 
origin. Clade III was dominated by HT-BGLs from 
both bacteria and archaea (12, 60%) followed 
by M-BGLs (5, 25%) and thermostable BGLs (3, 
15%). Clustering of mesophilic, thermophilic and 
hyperthermophilic BGLs together indicates the 
existence of structural and functional similarities. 
The clustering of mesophilic and thermophilic 
protein is in agreement with previous reports93,94. 
Similarly, HT-BGLs from both archaea and bacteria 
were also clustered together in clade III indicating 

the structural similarity among them. Archaeal and 
bacterial proteins have been clustered together 
in several phylogenetic tree analyses95,96. This is 
because many proteins distinguishing these two 
domains belong to information processing proteins 
such as DNA replicating enzymes, and transcription 
and translation associated protein97. 
Comparative Analysis of Physicochemical 
Properties 
 All GH1 BGLs appear to lack of signal 
peptide and to localize in the cytoplasm except 
M-BGL-18 which was predicted to have 18 
residues and to localize in the periplasm. GH 1 
BGLs are known to be localized in the cytoplasm3. 
Statistical analysis (ANOVA and followed by 
Tukey test) demonstrated that MW of HT-BGLs is 
significantly higher than M-BGLs or T-BGL (P<0.05, 
Table 4). Increase in the MW of HT-BGLs could be 
attributed to the higher content of larger amino 
acids such as Lys, Tyr and Trp and lower content 
of smaller amino acids such as Gly, Gln, and Cys in 
HT-BGLs98,99. Similarly, PI is significantly higher in 
HT-BGLs than M-BGLs and T-BGLs (P<0.05, Table 
4). A similar finding was reported for thermostable 
nitrilase over their mesophilic counterparts95. 
PI indicates the pH at which the protein has an 

Table 3. Hyperthermophilic GH1 β-Glucosidase with UniProt ID and reported optimal temperature   
 
Enzyme ID UniProt ID Source organism Domain Optima T (°C) Reference
      
HT-BGL01 E7FHY4 Pyrococcus furiosus Archaea 100 [67]
HT-BGL02 O08324 Thermococcus sp. Archaea 78 [68]
HT-BGL03 Q08638 Thermotoga maritima Bacteria 95 [69]
HT-BGL04 F7YX70 Thermotoga thermarum Bacteria 90 [70]
HT-BGL05 G8YZD7 Fervidobacterium islandicum Bacteria 90 [71]
HT-BGL06 A5IL97 Thermotoga petrophila Bacteria 80 [72]
HT-BGL07 W8W3B8 Uncultured bacterium Achaea 90 [73]
HT-BGL08 A0A0A6ZH67 Uncultured bacterium Bacteria 90 [74]
HT-BGL09 Q746L1 Thermus thermophiles HB27 Bacteria 88 [75]
HT-BGL10 P22498 Sulfolobus solfataricus Archaea 90 [76]
HT-BGL11 B9K7M5 Thermotoga neapolitana Bacteria 95 [77]
HT-BGL12 B8E1X9 Dictyoglomus turgidum Bacteria 80 [78]
HT-BGL13 D3Y2V4 Thermoanaerobacter   Bacteria 80 [79]
  ethanolicus
HT-BGL14 A8WAC9 Thermus thermophiles HJ6 Bacteria 90 [80]
HT-BGL15 P10482 Caldocellum saccharolyticum Bacteria 85 [81]
HT-BGL16 Q9YGA8 Thermosphaera aggregans Archaea 85 [82]
HT-BGL17 D9PZ08 Acidilobus saccharovorans Archaea 93 [83]
HT-BGL18 Q9YGB8 Pyrococcus kodakaraensis Archaea 100 [84]
HT-BGL19 P14288 Sulfolobus acidocaldarius Archaea 85 [85]
HT-BGL20 A0A0A7RBQ4 Thermococcus pacificus P-4 Archaea 75 [86]
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equal number of positive and negative charges. 
However, a study on a set of 310 proteins failed to 
correlate pH or temperature stability with PI100,101. 
Additionally, the analysis showed that numbers 
of positively charged amino acids (Lys and Arg) 
are higher in HT-BGLs than M-BGLs and T-BGLs 
(P< 0.05, Table 4). Increased content of positively 
charged amino acids in thermostable BGLs can 
be postulated to involve in salt bridge formations 
and thus enhancing protein thermostability102-105. 
Indeed, there is experimental evidence showing 
that the redesigning of salt bridge significantly 
enhanced BGL thermostability106. Finally, the 
extinction coefficient is also statistically higher in 
HT-BGLs than M-BGLs and T-BGLs (P<0.05, Table 4). 
Extinction coefficient reflects aromatic amino acids 
content (Phe, Tyr, and Trp) which in turn appears 
to enhance protein thermostability through 
increasing protein hydrophobicity and packing106. 

Conversely, number of negatively charged amino 
acids, AI, II, and GRAVY did not show any statistical 
difference in their means among M-, T-, and 
HT-BGLs. Similar findings have been reported 
for nitrilase/cyanide hydratase family from 
mesophilic, thermophilic, and hyperthermophilic 
bacteria95 and serine protease from mesophilic 
and thermophilic microorganisms107. AI indicates 
the relative volume occupied by the side chain of 
hydrophobic amino acids (Ala, Val, Leu, and Ile) 
and may suggest thermostability of protein. AI was 
higher for all BGLs analyzed in the present study 
suggesting their overall stability108. 
Comparative Analysis of Amino Acids Composition
 ANOVA analysis demonstrated that Asp, 
Cys, Gln, His and Thr are significantly higher in 
M-BGLs than HT-BGLs and T-BGL homologs (P< 
0.05, Table 5). These amino acids are unstable at 
higher temperature and undergo either oxidations 

Table 5. Statistical analysis of amino acids composition (%) of GH1 β-glucosidases    
 
Amino   Average±SD       ANOVA    Tukey multiple 
Acid         analysis   comparison, significant? 

 M-BGL T-BGL HT-BGL F Value P value  M vs T M vs HT T vs HTa

Ala (A) 9.02±2.5 8.56±2.7 7.28±2.2 2.605 0.083 No No No
Arg (R) 5.47±1.7 5.54±1.5 5.81±1.8 0.231 0.795 No  No  No 
Asn (N) 4.23±1.1 3.98±1.1 4.70±1.4 1.792 0.176 No No  No 
Asp (D) 7.58±1.6 7.72±1.1 6.17±0.9 9.69 0.000 No Yes Yes
Cys (C) 0.95±0.7 0.66±0.4 0.40±0.4 5.463 0.007 No Yes  No 
Gln (Q) 3.18±1.1 2.38±1.0 1.86±0.7 10.439 0.000 Yes Yes No
Glu (E) 6.06±1.5 6.68±1.5 7.67±1.1 7.245 0.001 No Yes No
Gly (G) 8.2±1.3 8.47±0.8 7.65±0.9 3.54 0.035 No No Yes
His (H) 3.21±0.8 3.19±0.9 2.63±0.5 4.04 0.03 No  Yes Yes
Ile (I) 5.2±1.5 5.39±1.8 5.8±1.6 0.723 0.49 No No  No
Leu (L) 8.09±1.4 8.04±1.1 7.75±1.5 0.401 0.671 No No  No 
Lys (K) 3.71±1.8 4.76±2.7 5.84±2.1 4.54 0.015 No  Yes  No 
Met (M) 1.81±0.7 1.89±0.7 2.1±0.8 0.859 0.429 No  No  No 
Phe (F) 4.67±1.4 4.54±1.1 5.02±0.8 0.982 0.381 No  No  No 
Pro (P) 4.89±1.1 4.89±1.2 5.21±1.2 0.537 0.586 No  No  No 
Ser (S) 4.89±1.1 4.65±1.0 4.71±1.3 0.236 0.79 No  No  No 
Thr (T) 5.29±0.8 4.48±1.1 3.48±0.7 19.996 0.000 Yes Yes  Yes 
Trp (W) 2.84±0.5 2.88±0.5 3.28±0.3 5.68 0.006 No  Yes Yes
Tyr (Y) 4.93±0.8 5.5±0.9 6.08±0.5 11.554 0.000 No  Yes  Yes 
Val (V) 5.84±1.2 5.81±1.3 6.63±1.2 2.9 0.063 No  No  No 
nonpolar 43.03±3.7 42.57±3.2 42.40±3.1 0.186 0.831 No  No  No 
polar 21.74±2.3 19.54±1.6 17.78±2.3 16.807 0.000 Yes Yes  Yes 
charged 22.81±2.2 24.86±2.3 25.48±1.8 8.058 0.001 Yes  Yes  No 
aromatic 12.44±1.9 13.00±1.8 14.37±0.9 7.033 0.002 No Yes Yes 

a M for M-BGL, T for T-BGL, and HT for HT-BGL.   
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or deamination at higher temperature explaining 
why they are less common in thermostable protein 
compared to mesophilic homologs22,95,104,109-111. 
Cys specifically plays a dual role by, on one hand, 
reducing thermostability through increasing 
internal cavities and oxidation at a higher 
temperature and, on the other, increasing 
thermostability through the formation of disulfide 
bonds which enhance protein rigidity and 
stability112. Conversely, Glu, Lys, Trp, and Tyr are 
significantly higher in HT-BGLs than their T-BGLs 
and M-BGLs counterparts (P<0.05, Table 5). Glu is 
negatively charged amino acids common in both 
exposed and buried region of the protein and 
involved in electrostatic interactions. Farias et al. 
(2003) found E+K increased and Q+H decreased 
in thermostable protein suggesting E+K/Q+H ratio 
can be used as an indicator of thermal stability113. 
Similarly, Lys is positively charged amino acid 
which involves in ionic interactions resulting in 
enhanced thermo-stability and hence it is more 
abundant in thermophilic and hyperthermophilic 
proteins114-116. Furthermore, both Trp and Tyr are 
aromatic amino acids which are more common 
in thermostable protein than their mesophilic 
homologs13,117. Aromatic amino acids contribute to 
protein thermostability through π-π and cation-π 
interactions12,118. Gly was significantly higher 
in T-BGLs than HT-BGLs or M-BGLs homologs 
(P<0.05, Table 5). Gly is small hydrophobic amino 
acid responsible for creating void or cavity in 
the interior of protein thus hyperthermostable 
protein are evolved to have less Gly content 
to minimize the cavities which may disturb 
protein upon temperature increase104,117. The 
analysis also showed that there is no significant 
difference in the means of nonpolar amino acids 
Ala, Ile, Leu, Met, Phe, Pro, Val, and polar amino 
acid Met, Arg, Asn, and Ser between M-BGL, 
T-BGL and HT-BGL homologs (P>0.05, Table 5). 
Ala is the best helix forming residue associated 
with increased thermostability and packing 

of the protein119,120. Ile was found to be more 
common in thermostable compared to mesophilic 
protein100. Phe is a hydrophobic amino acid that 
tends to bury inside protein thus was higher in 
hyperthermophilic protein than their meso- and 
thermophilic homologues121. Previous research 
reported that α-helices of thermophilic protein are 
more stable than those of mesophilic homologs 
perhaps due to the high abundance of amino 
acids with greater propensity to form α-helices 
(Ala, Leu, Arg) and low abundance in β-branch 
sheet forming residues (Val, Ile, Thr). α-helices 
of thermostable protein can also be stabilized by 
interactions between side chains of amino acids 
such as Glu and Arg119,122,123. Pro has pyrrolidine 
ring which allows it to have least conformational 
states and low conformational entropy restricting 
the configuration of preceding amino acids thus it 
is more common on rigid and turn conformations 
and hence reported to be higher in thermophilic 
protein116. Pro has been used to increase protein 
thermo-stability and can be considered, here, 
a potential hotspot to enhance thermostability 
of BGLs124. Similarly, Met, Asn, and Ser are 
thermo-labile that undergo either oxidation or 
deamination (Asn) at elevated temperature and 
are therefore less common in the thermostable 
protein125,126. Indeed, the substitution of Ser by Ala 
in thermophilic protein is widely reported100. Arg 
is a positively charged residue that participates in 
electrostatic bond formation to enhance protein 
stability127,128. The present study cannot justify 
why the residues such as Ala, Phe, Arg, and Pro 
which generally contribute to thermostability are 
not statistically higher in thermostable BGLs than 
mesophilic one. However, it is important to note 
that this study compared protein sequences solely 
from one family (GH1 BGLs) whereas previous 
studies compared protein sequences from several 
families; it is well-reported that different protein 
families adopt different strategies to enhance their 
thermostability12.

Table 6. Multiple regression analysis of polar and aromatic amino acids for optimal temperature prediction

Variable Coefficient Std. Error β T value Sig.

Intercept 31.018 25.984  1.194 0.238
Polar Amino  -3.008 0.765 -0.374 -3.934 0.000
Acids
Tyr + Trp 10.687 1.942 0.523 5.504 0.000
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 Collectively, nonpolar amino acids (Ala, 
Gly, Ile, Leu, Met, Pro, Val) were the most abundant 
amino acids in all BGLs accounting for about 42.5% 
of total amino acids with no statistical difference in 
their means between M-, T-, and HT-BGLs (P>0.05, 
Table.5). Nonpolar amino acids are buried in the 
interior of protein and influence its hydrophobicity 
which is the major interacting force responsible 
for the stability of protein core104,117. Chakravarty 
et al. (2002) reported that nonpolar amino acids 
are relatively higher in thermophilic protein than 
their mesophilic protein114. Conversely, polar 
amino acids (Asn, Gln, Ser, Thr, His, Cys) are 
significantly higher in M-BGLs than T-BGLs and HT-
BGLs (P<0.05, Table 5). Decrease of polar amino 
acids in thermostable enzymes contributes to 
thermostability by minimizing cavities, Gln- and 
Asn- induced deamidation, and Cys, Ser and Thr 
oxidation at higher temperatures. This finding is 
in agreement with previous reports13,125,126,129. In 
contrary, charged amino acids (Glu, Asp, Lys, Arg) 
are higher in HT-BGLs and T-BGLs than M-BGLs (P< 
0.05, Table 5). Increase of charged amino acids in 
the thermostable protein was previously reported 
and appears to mediate protein thermostability 
through the formation of hydrogen and ionic 
interactions115,126,130. Finally, aromatic amino acids 
(Phe, Tyr, Trp) are also significantly higher in HT-
BGL than M-BGL and T-BGL analogs (P<0.05). 
This increase in aromatic amino acids enhances 
thermostability by increasing hydrophobicity of 
protein through cation-π and π-π interaction131 and 
compactness/packing of protein and decreasing 
cavities106.
Multiple Regression Analysis 
 As previously demonstrated, the mean 
numbers of positively, polar, and aromatic amino 
acids are significantly different between M-, T-, 
and HT-BGLs with both positively and aromatic 
amino acids are directly correlated with optimal 
temperature (r= 0.62 and r= 0.65, respectively) 
and polar amino acids are negatively correlated 
(r= -0.55). These variables were used to perform 
multiple linear regression to determine a model 
for predicting optimal temperature. However, the 
positively charged amino acids were excluded 
from the model because it failed to be a significant 
predictor as indicated by individual test (P> 
0.05). The model was constructed with polar and 

aromatic amino acids which significantly predicted 
optimal temperature with R square value of 0.53 
indicating that variance in optimal temperature 
of 53% could be explained by the variation of 
these two groups of amino acids. This model 
also has multiple correlation coefficients R of 
0.741 indicating that a high-quality prediction of 
this model. Additionally, β- coefficient indicates 
that aromatic amino acids (Trp+Tyr) contributed 
more to predicting optimal temperature than 
polar amino acids (Table 6). Of note, the low 
prediction value of this model (53%) is because 
thermostability cannot be solely predicted from 
the primary sequences of protein132.

CONCLUSION
 Thermostable BGLs differ from their 
mesophilic counterparts in several physicochemical 
properties such as molecular weight, isoelectric 
points, positively charged amino acids, and 
extinction coefficient. The high abundance of 
nonpolar amino acids in all BGLs may indicate 
general stability of BGLs. Additionally, increase 
in aromatic amino acids (Tyr and Trp) and 
decrease in polar amino acids (Gln, His, Thr, Cys) 
contributes significantly to BGL thermostability 
probably by combined mechanisms of increased 
hydrophobicity and decreases cavities of globular 
proteins. Charged amino acids (Lys and Glu) may 
also contribute to BGL thermostability through 
the formation of ionic bonds. Overall, these amino 
acids may be targeted through protein engineering 
for the conversion of mesophilic BGLs to their 
thermostable analogs. However, thermostability 
cannot be predicted solely from amino acids 
composition since the spatial arrangement of 
amino acids and structural feature of protein 
influence protein thermostability. Therefore, 
future analysis should focus on characterizing 
amino acids motifs and secondary structure of 
mesophilic and thermophilic BGLs to elucidate 
more attributes associated with thermostability. 
Furthermore, benefiting from a large number of 
X-ray crystallographic structures of BGLs elucidated 
to date, a comparative analysis of 3D structures 
may provide a deep insight into the difference 
between mesophilic and thermophilic BGLs 
thus paving the road toward successful protein 
engineering of this industrially valuable enzyme.
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