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Thesis project
This is a summary of my thesis project and of the other research works I have done
during my Ph.D. that are not included in this manuscript.

Thesis work
The intent of this thesis is to forecast constraints from future experiments on
cosmological parameters in non-ΛCDM cosmologies and to study the possibility
of the next decade of cosmological observations to constraint new physics beyond
that of standard cosmology.

The standard cosmological model, also known as Hot Big Bang cosmology or
ΛCDM model, is based on the assumption that the Universe is composed only of
three “ingredients” : a cosmological constant associated with Dark Energy (DE)
and denoted by Λ and matter in the form of either Cold Dark matter (composing
the 90% of the matter in the Universe and denoted with CDM) or ordinary matter
(such as electrons and protons).

The Planck satellite has provided a great confirmation of the ΛCDM paradigm
and showed that the whole history of the Universe can be described only by 6
parameters, assuming General Relativity as the correct theory of gravity and the
validity of the cosmological principle and of inflation. However, not everything
has gone in its place: few tensions between different experiments and within
Planck itself are appearing. Most notably the tension between late and early
Universe measurements of the Hubble constant H0 has now grown to a statistical
significance of ∼ 5σ [2]. Of course this could be the results of some unresolved
systematics but most interestingly this tension could indicate that we need to
abandon the ΛCDM paradigm. This is motivated by the fact that the value of
H0 inferred from the observation of the Cosmic Microwave Background (CMB)
depends on the assumed cosmological model while late time observations do not
strongly depend on any assumption about the background cosmology (typically
Supernovae Ia calibrated using Cepheids as an anchor [3, 4]). For example, new
physics in the dark energy or neutrino sectors can significantly undermine the
Planck constraints on the Hubble constant, solving the current tension on H0 (see
e.g. [3, 5–25]). Clearly and independent and accurate determination of H0 from a

xi
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future observation will be crucial to confirm or reject the possibility of new physics
beyond ΛCDM. In this thesis within the various possible observables that can lead
to constraints on H0 we consider two of the most promising: gravitational waves
standard sirens and strong lensing time delay.

Along with the Hubble tension, the most relevant anomaly, at least from the
statistical point of view, concerns the amount of lensing in the CMB angular
power spectra. In [26] a phenomenological parameter, called Alens was introduced
to rescale the amplitude of lensing in the CMB spectra. This parameter is mainly
used to test theoretical assumptions and systematics and in principle has no physical
meaning. However, Planck 2015 analysis has reported Alens = 1.15+0.13

−0.12 at 95%
C.L. about 2σ larger than the expected value (Alens = 1) with significant impact
in the parameter extraction [27]. In the latest Planck results this tension has
grown worse touching the 3σ level and showing that a better understanding of this
parameter is needed.

One of the main goals of future experiments is to measure the so-called “smok-
ing gun” of inflation, i.e. the signature in CMB polarization produced by vacuum
fluctuations of the metric (tensor modes) during inflation. Current constrains on
tensor modes only give an upper bound on their amplitude at the level of ∼ 10−1

[28]. Next generation experiments, like LiteBIRD [29], have been designed to
reach a sensibility on the amplitude of tensor mode around two orders of magni-
tude better than the current bound. However a primordial magnetic field with a
scale invariant spectrum and amplitude within the current Planck bound (see e.g.
[27]) can produce exactly the same spectrum produced by inflationary gravitational
waves preventing future experiments from claiming a detection of a non-zero am-
plitude of the tensor modes. This leads to a degeneracy in the parameter space
between the amplitude of the magnetic field and that of the primordial gravitational
waves which must be taken properly into account to disentangle the two signature
from one another.

During my Ph.D. I have studied these topics in four of my research works:

1. In Phys. Rev. D97 (2018) no.12, 123534 we have shown that primordial
magnetic fields can cause a contamination of a possible signal fromprimordial
gravitational waves. Experiments targeting primordial tensor modes at the
level of 10−3 will need to distinguish this signature from that generated by
a primordial magnetic field of amplitude ∼ 1 nG. We show that a clean
way to break the degeneracy rely on measuring the small scale features of
the magnetic spectrum. In fact, conversely to primordial tensor modes,
the magnetic field generates vector perturbations with a spectrum peaked
around ` ∼ 1000. Therefore experiments with sufficient angular resolution,
as CORE-M5 or CMB-S4, will be able to distinguish a tensor mode produced
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by inflation from that of a primordial magnetic field. Furthermore we show
that another possible way to break the degeneracy is to rely on the anisotropies
in the Faraday rotation angle.

2. In Phys.Rev. D97 (2018) no.12, 123534 it was shown that future experiments
will have the possibility of confirm/falsify the Alens tension found in Planck
data at the level of 10 standard deviations when considering a CMB-S4 like
experiment. With a CMB-S4 like probe also a possible scale dependence for
Alens could be investigated leading to a better understanding of its physical
nature. Therefore CMB-S4 would have the potential to falsify the current
tension on the amount of lensing in CMB power spectra and test a possible
scale dependence with incredible precision.

3. In arXiv:1910.03566 [astro-ph.CO] we study the possibility of constraining
the Dark Energy (DE) equation of state using future measurements of the
strong lensing time delay (SLTD) between the images of multiply lensed
quasar. Experiments like the Large Synoptic Survey Telescope (LSST) are
expected to detect a large number of lensed quasar systems and to extract
from many of them time delay measurements of good enough quality to
obtain cosmological constraints. We show that the constraint on the DE
parameter strongly depends on the number of lensed systems in our dataset
and worsen a factor of two when considering a dynamical DE equation of
state. However in the most optimistic case w can still be constrained to the
2% accuracy confirming that SLTD is a promising and powerful observable
to test our assumptions on the DE equation of state.

4. In Phys. Rev. D98 (2018) no.8, 083523 we discuss the ability of future
cosmological data to constrain the Dark Energy (DE) equation of state when
combined with a measurement of H0 coming from gravitational waves stan-
dard sirens (GWSS). We show that, provided that GWSS can measure H0
with a 1% accuracy, the bound on the DE parameter w may reach the 3%
and 7% level for a constant and a time-varying dark energy equation of state
respectively.

Other works
Only the four works listed above have been report in this thesis. For completeness
the remaining publications produced during my Ph.D. are the following:

• M. Shokri, F. Renzi and A. Melchiorri. “Cosmic Microwave Background
constraints on non-minimal couplings in inflationary models with power law

xiii

https://doi.org/10.1103/PhysRevD.97.123534
http://arxiv.org/abs/arXiv:1910.03566
https://doi.org/10.1103/PhysRevD.98.083523


Thesis project

potentials”. Phys. Dark Univ. 24 (2019) 100297 arXiv:1905.00649 [astro-
ph.CO]

• F. Renzi, M. Shokri andA.Melchiorri. “What is the amplitude of the Gravita-
tionalWaves background expected in the Starobinskimodel ?”. arXiv:1909.08014
[astro-ph.CO]

• N. Carlevaro, G. Montani and F. Renzi. “Study of MRI in stratified vis-
cous plasma configuration” EPL 117 (2017) 49001 arXiv:1608.08849 [astro-
ph.CO]
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Abstract
Anisotropies in the angular power spectra of the Cosmic Microwave Background
(CMB) temperature and polarization have confirmed that we live in a Universe that
agreewith the theoretical predictions of theΛCDM cosmologywith great accuracy.
Nevertheless there are many issues that have not yet found a solution, such as the
H0 and Alens tension, measuring the B-modes of Cosmic Microwave Background
polarization and understanding the physics of dark energy. Future cosmological
probes, like CMB-S4, LiteBIRD, Stage-III and CORE-M5, will have to deal with
all of these. In the first part of this thesis we study the possibility of future
experiments to constrain efficiently the amplitude of primordial tensor modes in
presence of a primordial magnetic field. In the second part we discuss how they
would be able to falsify the Alens tension and test a possible scale dependence of
this parameter. In the last part instead we discuss the constraints that could be
achieved on the dark energy equation of state combining together gravitational
waves, CMB and strong lensing data.
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Introduction
The standard cosmological model (or Hot Big Bang cosmology) assumes the
Universe to have negligible curvature and to be composed mainly of Cold Dark
matter and of a Dark Energy associated to a constant energy density denoted by Λ.
The flat ΛCDM model, as it is more commonly referred to, has been found to be
almost in perfect agreement with the measumerements of the anisotropies of the
Cosmic Microwave Backround (CMB) provided by the Planck satellite [30]. So
far, the Planck mission has provided an astonishing confirmation of the flat ΛCDM
model:

• The six parameters that describes the ΛCDM model have been constrained
with incredible accuracy. All but one - the optical depth at reionization - of
these six parameters are known with sub-percent precision [28].

• A deviation from the scale invariant Harrison-Zeldovich spectrum has been
detected at the level of 5σ pointing towards inflation as the mechanism gen-
erating it. Furthermore, a combination of Planck and BICEPS2/Keck Array
[31] has significantly improved the upper bound on the tensor-to-scalar ratio
leading to disfavour many large-field inflationary models [32].

• Further evidences of the presence of dark matter (DM) and dark energy (DE)
(which make up the 95% of the Universe energy density today) have been
provided

Nevertheless many open questions have not yet found an answer, for example :

• Inflation predicts the generation of metric perturbations (gravitational waves)
that imprint theB-mode polarization spectrumof theCMB.Adetection of this
signature in the B-mode spectrum would be a “a smoking gun” for inflation
and it is indeed one of the main goals of future CMB experiments, like CMB-
S4 [33] and LiteBIRD [29], which are expected to bring the sensitivity on
the amplitude of tensor modes in the range δr = 0.01−0.001. However there
exists other effects that could generate B-modes polarization (e.g. topological
defects, galactic foregrounds, primordial magnetic fields and so on) therefore
these experiments will be able to claim a detection of tensor perturbations of
the metric only if these spurious contributions can be identified and removed.
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Figure 1: Expected ∆Neff today for species decoupling from thermal equilibrium as a function of
the decoupling temperature. Dashed vertical lines denote some mass scales at which correspond-
ing particles annihilate with their antiparticles. One-tailed 68% and 95% regions excluded by
PlanckTT,TE,EE+lowE+lensing+BAO are shown in gold [28]

.

• Is there any other relativistic species beyond those predicted by the Standard
Model ? The Standard Model predicts Neff & 3 assuming three neutrinos
species and the current bound from the Planck satellite Neff = 2.99 ± 0.17
is in good agreement with this prediction. However a deviation from the
standard value may arise if new physics at high energies leads to additional
weakly coupled species, see e.g. Fig.1.

• What is the value of the sumof neutrinomasses ? Particle physics experiments
on neutrino flavors have shown that neutrinos do possess small but non-zero
masses. When the Planck data are analysed, the total mass scale of neutrinos
is assumed to be the minimal mass scale in a normal mass hierarchy i.e.∑
mν = 0.06 eV (see e.g. [27, 28]) but the total neutrino mass is indeed

unknown and there are no strong evidences to prefer one over the others (see
e.g. [34–38]). Therefore allowing for a varying

∑
mν in analysing CMB data

is one of the most well-motivated extensions of the ΛCDM model.

• What are the properties of DM and DE ? In particular, it is still unclear how
DM interacts with the Standard Model (What is its annihilation cross section
? Can it decay into StandardModel particles? What kind of particle compose
it ? and so on ) or if the Universe acceleration is driven by vacuum energy or
some modification of General relativity.

• How Gaussian is the statistics of primordial perturbations ? Even tough the
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assumptions of Gaussian fluctuations has been proved to be in agreement with
current data, there is still space for non-Gaussianities [39]. Detecting such
feature will give insights on the physics of inflation but the primordial signal
is often negligible compared to the contribution of the late-time evolution of
the gravitational potential.

This thesis focus on understanding how future experiments will address some of
these open questions and it is structured in the following way:

first part contains a review of the basis of the Friedmann-LeMaitre-
Robertson-Walker (FLRW) cosmology. We derive the equations describing
the evolution of the matter-energy density of the several species that make
up our Universe. Along with it, we describe the fine-tuning problems of the
standard cosmological model and how inflation can overcome them. Finally
we briefly discuss the early Universe thermodynamics.

second part contains a review of perturbation theory in cosmology and of
how the anisotropies in the CMB temperature are computed

third part contains the scientific research carried out during my Ph.D.

– I start by presenting a study on how well future experiments that will
aim to measure the inflationary tensor modes could resolve a spurious
contribution from a primordial magnetic field with a scale invariant
spectrum carried out in [40]. Then I proceed with a study on possible
solution of the Alens tension with the upcoming CMB experiments. This
work was carried out in [41]

– In the last part I will present two works dedicated to study the future
impact of gravitational waves and strong lensing surveys in improving
our knowledge of the DE equation of state parameter which were carried
out in [42, 43].
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FLRW cosmology
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1 Cosmological Models and
Inflation

In this Chapter we are going to describe the main features of Hot Big Bang
cosmology. We start with an introduction about the observational confirmations
of the cosmological principle. We proceed describing how this translates into the
mathematical properties of the Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric. Then we discuss the solution of Einstein equations in a FLRW background
and the implication for the dynamics of the Universe. In the last part of the
Chapter we discuss the inconsistencies of the Big Bang theory and how those
can be resolved with an early accelerated expansion phase called inflation. This
Chapter is mainly based on [44–47]
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1. Cosmological Models and Inflation

1.1 The Homogeneous and Isotropic Universe
When describing any problem in physics, one should focus on the right assumptions
to capture the essence of the problem and get rid of any irrelevant and unwanted
details. The Universe is not different in this respect. The main assumption in the
field of cosmology is the so-called Cosmological Principle stating that :

On a sufficiently large scale, the properties of the Universe are the same
for all observers. Therefore the Universe is homogeneous and isotropic
i.e. it has the same properties at every point and in every direction

Note that the statement of the cosmological principle refers only to the spacial
properties of the Universe. As we will see later in this manuscript, the Universe is
neither homogeneous nor isotropic in time. This assumption, which could seems
very limiting in practice, is actually able to glance much of the properties of the
Universe on large scales.

The validity of the cosmological principle can be also tested through obser-
vations. Fortunately our assumptions about the Universe stood up quite well at
this trial. There are two main pieces of evidence supporting the cosmological
principle: the cosmic microwave background and the tridimensional distribution
of the galaxies.

The Cosmic Microwave Background

The cosmic microwave background is the afterglow of the Big Bang, a snapshot of
the Universe when it was only 300000 years old. It is made by an almost uniform
sea of photon emitting a black body radiation at the temperature of T ≈ 2.7K. First
discovered by Penzias and Wilson in 1965 [48] (and subsequently granted them
the nobel prize in 1978), it was found to match perfectly the theoretical prediction
by the Far InfraRed Absolute Spectrophotometer (FIRAS) [49, 50] installed on the
COBE satellite [51] (see Fig.1.1) and confirmed the extreme smoothness of our
Universe. However the CMB is not completely uniform. There are extremely small
fluctuations in temperature with a characteristic amplitude of δT/TCMB ∼ 10−5.
While the discovery of fluctuations in the microwave background paved the way
for the study of CMB anisotropies it also confirmed again that only extremely tiny
deviation from smoothness were present in the early Universe. We will return in
Chapter 3 on how these fluctuations are produced and on the properties of the
anisotropies of the CMB

4



1. Cosmological Models and Inflation

Figure 1.1: The cosmic microwave background spectrum plotted in waves per centimeter vs intensity.
The plot is realized with the data collected with the Far InfraRed Absolute Spectrophotometer (FIRAS)
an instrument on the COBE satellite [51]. The FIRAS data matched so well the theoretical prediction of
a blackbody spectrum at T ≈ 2.7K that is impossible to distinguish the data from the fit ! [49, 50]

Figure 1.2: The most recent picture of the fluctuations of the CMB as measured by the Planck satellite
[30, 52]

5



1. Cosmological Models and Inflation

Figure 1.3: The SDSS’s map of the Universe [56]. Each dot is a galaxy and there are more than one
million points in the map. As reported in the figure the surveys extended up to z = 0.15 corresponding to
∼ 435 Mpc

Galaxy surveys

A further proof to support the cosmological principle comes from the mapping of
the distribution of galaxies around us. A number of galaxy surveys (most recently
eBOSS [53], APOGEE-2 [54] and MANGA survey [55]) have provided a tridi-
mensional map of more than one million galaxies composing what is known as the
Sloan Digital Sky Surveys (SDSS) [56], the most detailed 3D map of the Universe
ever made. In Fig.1.3 we report the most up to date 3D map of the galaxies around
us provided by SDSS. The SDSS’s map confirms that, while clumpy on small
scales, the distribution of galaxies is roughly homogeneous for distance greater
than ∼ 100 Mpc (z ∼ 0.04) and becomes increasingly smooth on larger scales.
Yet, galaxies are clearly not randomly distributed, they are grouped into large scale
structures of different size. We will see that the tiny fluctuations of the CMB are
the seeds that formed these structures but to understand how this have happened
we should allow to deviate from smoothness.

We have shown in this Section that there are strong observational evidences to
support the validity of the cosmological principle. However we have also seen

6



1. Cosmological Models and Inflation

that tiny deviations from smoothness where already present when the Universe
was really young and those inhomogeneities have grown into the rich variety of
structureswe observe today. But this is not the end of the story. If we have answered
the question of how to describe the geometry of our Universe and we have placed
a strong principle to sustain it, much more questions need to be answered : “Why
the Universe is so smooth ?”, “What generated the fluctuations we observe in the
CMB?”, “What is the Universe made of ?” and “How are galaxies formed in
such a smooth Universe ?”. Remarkably, all these questions have an answer that
can be found employing only fundamental physics and our knowledge of the early
Universe. Even more interestingly these answers can be tested with observations.

1.2 FLRW spacetime
Mathematically the cosmological principle implies that, on scale larger than
100 Mpc, our Universe is described by the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric [44, 57–60]. In spherical coordinates {r , θ, ϕ} the FRLW metric
assumes the form (throughout this thesis we will always assume c = ~ = 1 unless
otherwise stated) :

ds2 = дµν(t , ®x)dx
µdxν = −dt2 + a2(t)

[
dr 2

1 − kr 2 + r
2(dθ2 + sin2 θdφ2)

]
(1.1)

There are some features of Eq.(1.1) that is worth mentioning before moving on:

• The symmetries of the Universe i.e. homogeneity and isotropy, have reduced
the ten independent components of the metric дµν(t , ®x) to a single function of
time, the scale factor a(t), and a constant, the curvature parameter k .

• FLRW metric admits a foliation with “cosmic time” coordinate t and space-
like hypersurfaces Σt of constant time. The hypersufaces Σt are both trans-
lationally invariant (homogeneous) and rotationally invariant (isotropic). In
other words, the assumptions of the cosmological principle are translated in
the mathematical properties of the hypersurfaces in which the spacetime is
foliated into.

• The parameter k parametrizes the curvature of the hypersurfaces Σt : posi-
tively curved hypersurfaces will have k > 0, while flat and negative curved
hypersurfaces will have k = 0 and k < 0 respectively.

• The FLRW metric has a rescaling symmetry :

a → λa ; r → r/λ ; k → λ2k (1.2)

7



1. Cosmological Models and Inflation

this means that the geometry of the Universe will be the same if we rescale
r , a and k at the same time. This freedom can be exploited to set the scale
factor to unity at the present time, t0, i.e. a(t0) ≡ 1. If this is the case, the
scale factor a(t) becomes a dimensionless quantity while r and k−1/2 inherit
the dimension of length.

• The coordinate r is called comoving coordinate. The comoving coordinate
is related to the physical coordinate by the scale factor i.e. rphys = a(t)r , in
other words an observer looking at an object at fixed comoving distance r
will measure a physical distance from it that depends on time.

The physical velocity of an object is then obtained taking the time derivative
of rphys:

υphys ≡
drphys

dt
= a(t)

dr

dt
+ r

da

dt
≡ υpec + H rphys (1.3)

As we can see from Eq.(1.3), the physical velocity is composed of two terms:

1. The Hubble flow due to the expansion of the Universe, H rphys, where
H ≡ Ûa/a is the Hubble parameter

2. Peculiar velocity, υpec ≡ a(t)
dr
dt , which is the velocity associated with the

motion of an object with respect to the cosmological Hubble flow (i.e. is
the velocity measured by an observer at rest with the Hubble flow, called
comoving observer)

However, peculiar velocities are typically very small compared to the Hubble
flow and can be safely neglected at the background level.

We see therefore that the evolution of the metric in an FLRW spacetime is entirely
dictated by the evolution of the scale factor a(t) whose evolution will be related
to the energy momentum tensor via Einstein field equations (see Section 1.3).
Before describing the dynamics of the scale factor, however, we will describe the
kinematics properties of the FLRW background.

1.2.1 Geodesic equation and particle motion

In the absence of additional non-gravitational forces freely falling particles in
curved spacetime move along special trajectories called geodesic. For massive
particles a geodesic is a timelike curve Xµ(τ) which minimizes the proper time ∆τ
between two points in the spacetime. It possible to show that the extremal path
satisfies the so-called geodesic equation (we do not give here a formal derivation
of the geodesic equation but we remind the interested reader to the literature on

8
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the basics of General Relativity [57–60]):

d2Xµ

dτ2 = −Γ
µ
αβ

dXα

dτ

dXβ

dτ
(1.4)

where Γµ
αβ

are called Christoffel symbols and are defined through the metric дµν as:

Γ
µ
αβ
=

1
2
дµγ

(
дγβ,α + дγα,β − дαβ,γ

)
(1.5)

where we have used the convention ∂ρдµν ≡ дµν,ρ to indicate partial derivative with
respect to Xρ. The geodesic equation can be rewritten in a more compact form
introducing the four-velocity of the particle, Uµ ≡ dXµ/dτ:

dUµ

dτ
= −Γ

µ
αβ

UαUβ (1.6)

Noting that d/dτ ≡ dXα/dτ d/dXα the above equation can be written as:

Uα∇αUµ = 0 (1.7)

where∇αUµ = Uµ
,α+Γ

µ
αβ

Uβ is the covariant of the four-velocity. The above equation
can be also written in terms of the particle four-momentum, since for a massive
particle Pµ =mUµ, as :

Pα∇αPµ = 0 (1.8)
For massless particles instead, we cannot define the geodesic in terms of the proper
time since this is zero and therefore UµUµ = 0. However, we can simply define
the momentum of massless particles as dxµ/ds where s is an affine parameter
such that the geodesic equation takes exactly the form of Eq.(1.8). With this
definition Eq.(1.8) holds both for massive and massless particles. Now that we
have an equation describing the propagation of massless and massive particles we
can make a step further and solve it. To evaluate the r.h.s of Eq.(1.8) what we
need is to compute the Christoffel symbols for the FLRW metric. Fortunately, all
Christoffels with two time the same indices vanish i.e. Γµ00 = Γ

0
0β ≡ 0, the only non

vanishing components are:

Γ0
ij = a Ûaγij , Γi0j =

Ûa

a
δij , Γijk =

1
2
γil

(
γkl ,j + γjl ,k − γjk,l

)
(1.9)

or are related to this by symmetry (note that the Christoffels are symmetric on the
bottom indices Γµ

αβ
= Γ

µ
βα
). The homogeneity of the FLRW background implies

that ∂iPµ = 0 so that Eq.(1.8) rewrites:

P0 dPµ

dt
= −

(
2Γµ0jP

0 + Γ
µ
ijP

i
)

Pj (1.10)

Now, to solve Eq.(1.10) we have to distinguish between massive and massless
particles:
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• A particle initially at rest in the comoving frame will remain at rest since the
r.h.s of Eq.(1.10) vanish if Pj = 0 and therefore dPµ/dt = 0

• From the zero component of Eq.(1.10) we see that :

E
dE
dt
= −Γ0

ijP
iPj = −

Ûa

a
p2 (1.11)

where p2 ≡ −дijPiPj = a2γijPiPj is the physical three-momentum. The
components of Pi satisfies the constraint дµνPµPν =m2 (or E2 −p2 =m2 with
m = 0 for massless particles). It follows EdE = pdp and then:

Ûp

p
= −
Ûa

a
(1.12)

For a massless particle this implies that the energy decays with the expansion
of the Universe since p2 = E2 i.e.

ÛE
E
= −
Ûa

a
(1.13)

For a massive particle instead this implies :

Pi =
mυi√

1 − дµνυµυν
∝

1
a

with i = 1, 2, 3 (1.14)

where υi = dx i/dτ is the comoving peculiar velocity. Then a freely-falling
massive particle will converge on the Hubble flow

1.2.2 Particle Horizon

In General Relativity the causal structure of the space-time is determined by how
far light can travel in a certain amount of time. In order to describe the propagation
of light (photons) in an FLRW background it is useful to introduce the conformal
time η:

dη =
dt

a(t)
(1.15)

and to redefine the radial coordinate of the FLRW metric employing the transfor-
mation dχ ≡ dr/

√
1 − kr 2, such that the metric could be rewritten as :

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
2] (1.16)

where :
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Sk(χ) ≡
1
√
k



sinh(
√
kχ) k < 0

√
kχ k = 0

sin(
√
kχ) k > 0

(1.17)

and dΩ2 ≡ dθ2 + sin2 θdφ2 is the infinitesimal solid angle element. Since the
spacetime is isotropic, we can always define a coordinate systems in which light
travels only in the radial direction (i.e. θ = φ = const), so that the photon
trajectories are described by a two-dimensional line elements:

ds2 = a2(η)(−dη2 + dχ2) (1.18)

Since, photons travel along null geodesics, ds2 = 0, their path is defined by:

∆χ = ±∆η (1.19)

where the plus sign is for outgoing photons and the minus sign for incoming ones.
Following Eq.(1.19), the maximum comoving distance light could have traveled
between an initial time ti and a time t is simply given by the difference in conformal
time i.e. ∆η = η(t) − η(ti). Hence, we can define the comoving particle horizon
as:

χp(t , ti) =

∫ t

ti

dt ′

a(t ′)
(1.20)

If we assume that the Big Bang1 “started” with a singularity at time ti = 0, then the
greatest comoving distance from which an observer at time t could receive light
signal is given by:

χp(t , 0) =
∫ t

0

dt ′

a(t ′)
(1.21)

The physical particle horizonwill be then obtained simplymultiplying this quantity
by the scale factor i.e. dp(t , 0) = a(t)χp(t , 0). Therefore, observer separated by a
distance larger than dp(t , 0) could have never communicate with each other. One
may expect that as time proceed more and more regions of the spacetime come
into causal contact (i.e. they fall into the horizon of one another) but this need not
to be the case. Infact, the time evolution of the FLRW metric (and then its causal
structure ) depends on the matter-energy contents of the Universe, as we will see
in Section 1.3, and the value of η could both increase or decrease depending on
the matter-energy content of the Universe.

1It is worth stressing that the Big Bang singularity is a point in time, but not in space. It happens
everywhere in space.
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1.2.3 Redshift

In Section 1.2.1 we have seen that massless particles loose energy with time
because the Universe is expanding. This property of the FLRWmetric leads to the
concept of redshift: classically this can be seen as a stretching of the wavelength of
an electromagnetic waves propagating freely due to the Hubble flow. The concept
of redshift plays a key role in cosmology since everything that we know about the
Universe is inferred through the light emitted by distant sources and must be taken
into account when analysing observational data. The expression of redshift can
be derived either classically or quantum mechanically, here we follow the latter (a
more detailed discussion can be found on [58, 59]). From a quantum mechanical
point of view, the wavelength of a photon is related to its momentum by λ = 2π/p.
Since for photons the momentum is inversely proportional to the scale factor, light
emitted at time t1 with wavelength λ1 is observed at time t0 with wavelength:

λ0 =
a(t0)

a(t1)
λ1 (1.22)

Since a(t0) > a(t1) it is also λ0 > λ1. It is conventional to define the redshift
parameter as the fractional shift in wavelength of a photon observed at t0 and
emitted at t1 < t0,

z ≡
λ0 − λ1
λ1

=⇒ 1 + z =
1

a(t1)
(1.23)

where in the last equality we have made use of a(t0) ≡ 1.

1.2.4 Distance in Cosmology

When speaking of distance in cosmology we have to be careful about what we
mean with “distance”. We already encountered two definitions of distance, the
metric distance, Sk(χ), of Eq.(1.17) and the comoving distance,

χ(z) =

∫ t0

t1

dt ′

a(t ′)
=

∫ z

0

dz

H(z)
(1.24)

that we used to define the particle horizon in Eq.(1.20). Note that for a flat Universe
the metric and comoving distances coincide. These distances however cannot be
observed but are useful in defining the observable distances.

Luminosity distance

One way to infer distance in astronomy is to measure the flux, F, of a source
of known luminosity, L. In a non-expanding Universe, the observed flux F at a
distance d from a source of known luminosity L can be simply written as:

F =
L

4πd2 (1.25)
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since the total luminosity on a spherical shell with area 4πd2 is constant. In flat
spacetime, this is generalized replacing the distance d with the metric distance
Sk(χ) i.e.

F =
L(χ)

4πS2
k
(χ)

(1.26)

where now L(χ) is the luminosity through a (comoving) spherical shell with radius
S2
k
. To generalise this to a FLRW spacetime, we should take into account that:

1. In a fixed time the number of photons crossing a shell will be smaller today
than at the emission time by a factor (1+z)−1. Therefore the luminosity L(χ)
is dimmed by the same amount being the energy multiplied by the number of
photons passing the shell per unit time.

2. The energy of the photons will be smaller today than at emission by, again, a
factor (1 + z)−1 because of expansion.

These effects add up so that the observed flux in a FLRW Universe is:

F =
L(χ)

4π (1 + z)2 S2
k

≡
L(z)

4πd2
L(z)

(1.27)

where we have introduced the luminosity distance dL(z) = (1 + z)Sk . Objects of
known luminosity are sometimes referred to as standard candles, one example are
Supernovae of Type Ia [61].

Angular diameter distance

Another way to determine distances is to measure the angle θ subtended by an
object of known size l . This kind of objects is known as standard ruler, one
example are the Baryon Acoustic Oscillations (BAO) [62]. Assuming the angle θ
to be small, the distance to the object is simply:

dA =
l

θ
(1.28)

this quantity is known as angular diameter distance. In an expanding Universe,
the comoving size of an object is l/a while the angle subtended is θ = (l/a)/Sk(χ)

so that:
dA = a Sk(χ) =

Sk(χ)

1 + z
(1.29)

It is worth noting that dA is equal to the comoving distance for z → 0 but it
decreases at very large redshift, then objects at large redshift will appear bigger
than they would at intermediate redshift.

Supernovae standard candles and BAO have played an important role in proving
that the Universe is into an accelerated expansion phase which have led to the
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discovery that the dominant form of matter-energy today is the Dark Energy [62–
64]. We will return to the concept of Dark Energy in the next Section where we
discuss the dynamics of an FLRW Universe.

1.3 The dynamics of the FLRW background
The dynamics of the Universe is determined by the Einstein equation,

Gµν = 8πGTµν (1.30)

relating the Einstein tensor, Gµν, determined by the spacetime geometry (i.e. by
the metric дµν) and the stress-energy tensor Tµν determined by the matter-energy
content of the Universe. In the next Sections we are going to use these equation to
solve for the evolution of the scale factor a(t) as a function of the “energy budget”
of the Universe.

1.3.1 The stress-energy tensor

The requirement of isotropy and homogeneity force the stress-energy tensor to be
that of a perfect fluid (fluid energy and momentum are conserved and there are no
anisotropic stress, see also [57, 59, 60]),

Tµν = (ρ + P)UµUν − Pдµν (1.31)

or with mixed indices:
Tµν = (ρ + P)UµUν − Pδµν (1.32)

Uµ is the relative four-velocity between the fluid and the observer (for a comoving
observer Uµ = (1, 0, 0, 0) and we would have Tµν = diaд (ρ,−P,−P,−P) ) while ρ
and P are the energy density and pressure in the rest-frame of the fluid. To describe
the evolution in time of density and pressure1 we make use of the conservation
equation of Tµν, which reads:

∇µT
µ
ν = ∂µT

µ
ν + Γ

µ
νλ

Tλν − ΓλµνT
µ
λ
= 0 (1.33)

The evolution of the energy density is determined by the “zero” component of this
equation i.e.

dρ

dt
+ Γ

µ
µ0ρ − Γ

λ
µ0Tµ

λ
= 0 (1.34)

where we have used the fact that Ti
0 = 0 due to isotropy. Now, making use of

Eq.(1.9) we find:
Ûρ + 3

Ûa

a
(ρ + P) = 0 (1.35)

1spatial homogeneity and isotropy require that ρ and P are function of the time only
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which is the continuity equation for a fluid in an expanding Universe. We can now
use Eq.(1.35) to glean information about the evolution of different matter-energy
components in the Universe. We start rewriting Eq.(1.35) as :

a−3∂(ρa)

∂t
= −3

Ûa

a
P (1.36)

We proceed then classifying the different components by their contribution to the
pressure:

• Matter
Throughout this work we will use “matter” to indicate all form of energy for
which the pressure is much smaller than the energy density |P| � ρ so that
we can neglect the pressure contribution of this component. Setting P = 0 in
Eq.(1.36) we have ρ ∝ a−3. This dilution reflects the fact that particle number
density scale with the inverse of the volume V ∝ a3 i.e. n = dN/dV ∝ a−3.
This scaling for the density, as we will see in the next Chapter, is verified for a
gas of non-relativistic particles where the energy density is dominated by the
mass. In the standard picture matter is made of two components dark matter,
which compose most of the matter density of the Universe but is “invisible”
since do not interact with photons, and baryons, which in cosmology is used
to indicate ordinary matter (nuclei and electrons)

• Radiation
We will use “radiation” instead to refers to species for which the pressure
satisfies ρ = 3P. In this case Eq.(1.36) implies:

ρ ∝ a−4 (1.37)

The dilution now takes into account the redshifting of the energy of massless
particles, E ∝ a−1, along with the dilution caused by the increasing of the
Universe volume due to expansion. In the standard picture, radiation is made
up of photons which, being massless, have always been relativistic (today
we detect those photons as the CMB), and neutrinos, which behaved like
radiation for most of the Universe history and only recently they have started
to behave as matter due to their small masses.

• Dark Energy
As we have seen in the previous Section Supernovae measurements have
shown that the Universe is in a accelerated expansion phase. Matter and
radiation are not enough to describe the acceleration, another component has
to be added in the energy budget. This is a mysterious negative pressure
component with P = −ρ. From Eq.(1.36) we see that the energy density do
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not dilute with the expansion i.e. it is constant ρ ∝ a0, therefore energy has
to be created as the Universe expands. Because of this feature dark energy
has been associated to the concept of vacuum energy of quantum field theory
which ground state corresponds to a stress-energy tensor of the form:

Tvac
µν = ρvacдµν (1.38)

This form of Tµν implies that Pvac = −ρvac . Unfortunately, quantum field
theory predicts a value for the vacuum energy which is completely off from
the observed one ρvac/ρobs ∼ 10120. However, Eq.(1.30) is not uniquely
defined, one can add on the l.h.s. a term of the form −Λдµν, for some constant
Λ2 , without changing the conservation law of the stress-energy tensor. In
other words, we could have written Eq.(1.30) as:

Gµν − Λдµν = 8πGTµν (1.39)

Nowadays, this contribution to Einstein equations is treated as an additional
term in the stress-energy tensor with the same form of Eq.(1.38):

T(Λ)µν =
Λ

8πG
дµν ≡ ρΛдµν (1.40)

1.3.2 Friedmann Equations

Until nowwe have concentrated on the r.h.s. of Eq.(1.30), to solve for the evolution
of the scale factor we need to explicitate the form of the Einstein tensor for the
FLRW metric. Due to the symmetries of the FLRW metric, the only non-zero
components of the Einstein tensor are:

G0
0 = 3

[(
Ûa

a

)2
−

k

a2

]
(1.41a)

Gi
j = δ

i
j

[
2
Üa

a
+

(
Ûa

a

)2
+

k

a2

]
(1.41b)

Combining these relations with the definition of the stress-energy tensor we get
the Friedmann equations: (

Ûa

a

)
=

8πG
3

ρ −
k

a2 (1.42a)

Üa

a
= −

4πG
3
(ρ + 3P) (1.42b)

2The constant Λ is also known as cosmological constant
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where ρ ≡
∑

i ρi and P ≡
∑

i Pi are the sum of all the contributions to pressure and
radiation in the Universe. The first Friedmann equation is often written in terms
of the Hubble parameter,

H2 =
8πG

3
ρ −

k

a2 (1.43)

This implies that, for a flat Universe with k = 0, the density today has a precise
value called critical density:

ρcrit ,0 =
3H2

0
8πG

= 2.8 × 1011h2 M� Mpc−3 (1.44)

where we have made use of the definition of the reduced Hubble constant H0h
−1 =

100 km s−1 Mpc−1. The critical density can then be used to define the dimension-
less density parameters:

Ωi,0 ≡
ρi,0
ρcrit ,0

(1.45)

where the subscript i runs over all the species (photons, dark matter, etc.). Using
Eq.(1.45) we can rewrite the first Friedmann equation in terms of the Ωi,0:

H2(a) = H2
0

[
Ωr ,0

(a0
a

)4
+ Ωm,0

(a0
a

)3
+ Ωk,0

(a0
a

)2
+ ΩΛ,0

]
(1.46)

here, Ωk,0 ≡ −k/(a0H0)
2 is the “curvature” density parameter. As commonly done

in the literature we drop the subscript “0” to denote the density parameter today,
so that e.g. Ωr is the radiation density today in terms of the critical density today.
Using this convention and employing Eq.(1.23) we can rewrite the above equation
as:

H2(z) = H2
0
[
Ωr (1 + z)4 + Ωm (1 + z)3 + Ωk (1 + z)2 + ΩΛ

]
(1.47)

Evaluating the above equation at the present time, a relation between the Ω of
different species is found i.e. ∑

i

Ωi + Ωk = 1 (1.48)

Current observations from CMB and Large scale structure (LSS) have lead to
strong constraints on the density parameters Ωi [27, 28]:

Ωbh
2 = 0.0224 ± 0.0001 Ωch

2 = 0.120 ± 0.001 (1.49)

Ωm = 0.315 ± 0.007 ΩΛ = 0.6847 ± 0.0073 (1.50)

where Ωb and Ωc are the baryons and cold dark matter density respectively and h
is the reduced Hubble constant. These results shows that Ωk ≈ 0, we will assume
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Phase w a(t) a(η)

RD 1/3 t2/3 η2

MD 0 t1 η

ΛD −1 eHt −η−1

Table 1.1: Solutions of the Eq.(1.46) for a flat Universe dominated by matter (MD), radiation (RD) and
a cosmological constant (ΛD).

therefore in the rest of the present work the Universe to be flat3. These results also
show that the Universe today is composed of:

• 5% of ordinary matter

• 27% of (cold) dark matter

• 68% of a dark energy component with w ≈ −1

Single component solution of the Friedmann equation

We have now all the tools to solve Eq.(1.46) and describe the evolution of the scale
factor a(t). We start by noting that due to the different redshift scaling of energy
density species in Eq.(1.47), the history of the Universe has been a succession of
epochs dominated by a single energy density species. First radiation then matter
and the cosmological constant at late time. In the case of a single species Eq.(1.47)
can be analytically solved to find the time evolution of the scale factor a(t). We
define the equation of state of a single species as:

P = wρ (1.51)

where w is a constant which value depends on the species we are considering.
Using Eq.(1.51) in the continuity equation Eq.(1.36), we can find a solution for the
evolution of the density ρ:

ρ(a) ∝ a−3(1+w) (1.52)

Inserting the above equation into Eq.(1.46) we obtain the time dependence of the
scale factor:

a(t) ∝

{
t2/3(1+w)

w , −1
eHt

w = −1
(1.53)

A summary of the solutions is given in Tab.1.1
3This constraints have been found fitting cosmological data with a standard ΛCDM parametrization

[27]. We refer to [27, 28] for an analysis of the constraints on the curvature parameter in extended (i.e.
non-ΛCDM) cosmologies
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1.4 The fine-tuning problem of the Hot Big Bang Cosmology
The Hot Big Bang cosmology described in the previous Sections has been found to
be extremely successful when compared with observations but, the description we
havemade is still incomplete. We have not already specified what initial conditions
have made the Universe appears as it is today. We are going to see that the Universe
requires a particularly fine-tuned set of initial condition to evolve into its current
state.

1.4.1 The flatness problem

Consider the definition of the curvature density that we have made in Eq.(1.46) as
a function of redshift:

Ωk(z) ≡
−k2

a2H2 = Ωk
(1 + z)2

E2(z)
(1.54)

For a truly flat Universe Ωk = 0 at all time, but otherwise assuming for simplicity
a single component Universe, one finds:

Ωk(z) =
Ωk

Ωi(1 + z)1+3w (1.55)

so that during matter and radiation dominance |Ωk | is an increasing function of
time. Then, even tough curvature density is very close to zero today, it was even
closer to zero at earlier times. The Universe therefore should have started out
remarkably close to be flat. Recall also that, to a flat Universe is associated a
total energy density equal to the critical density. Therefore having an extremely
tiny curvature at early times is equivalent to assume that the energy density of the
Universe was extremely fine tuned to be close to the critical density at that time.

1.4.2 The horizon problem

In order to discuss the horizon problem we start by writing the comoving particle
horizon of Eq.(1.20) as:

χp(a) =

∫ lna

lnai
(aH)−1d lna (1.56)

where ai ≡ 0 corresponds to the Big Bang singularity (BBs). The causal structure
of the Universe is related to the quantity (aH)−1, the comoving Hubble radius.
Assuming a perfect fluid with equation of state given by Eq.(1.51), one finds:

(aH)−1 = H−1
0 a(1+3w)/2 (1.57)
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The strong energy condition i.e. 1 + 3w > 0 is verified for all familiar energy
sources (radiation and matter) and leads to the conclusion that the Hubble radius
increases as the Universe expansion goes on. We can therefore rewrites the particle
horizon as:

χp(η) =
2H−1

0
1 + 3w

(
a(1+3w)/2 − a(1+3w)/2

i

)
≡ η − ηi (1.58)

These definitions make evident two important features of the comving horizon:
• χp(a) receveis the largest contributions from late time, since ηi → 0 asai → 0

• the comoving horizon is a finite quantity,

χp(t) =
2H−1

0
1 + 3w

a(t)(1+3w)/2 =
2

1 + 3w
(aH)−1 (1.59)

and it is proportional to the Hubble radius χp ∝ (aH)−1

We have seen in Section 1.1 that the relic radiation of the Big Bang, the CMB, is
almost perfectly isotropic with anisotropies of one part in one hundred thousand.
The finiteness of the conformal time implies however that most part of the CMB
have never been in causal contact. In particular, the characteristic angular scale of
the CMB anisotropies is the angle at which the horizon is seen at recombination,

θ ≈
ηrec
η0
≈ 1◦ (1.60)

where ηrec = η(trec) is the value of the conformal time when the CMB is emitted.
We see indeed that the CMB temperature is the same for region separated by more
than 1◦, so that at recombination the Universe was made up of (ηrec/η0)

−3 ≈ 104

causally disconnected patches (see also Fig.1.2).
If these regions have never had time to communicate (i.e. were never in causal
contact) why they have the same temperature ?
This corresponds to the so-called horizon problem. A possible solution is that the
initial density perturbations were exactly that required to observe the right degree
of uniformity in the CMB and possessed the right degree of fluctuations to explain
the formation of the structures we observe today. As for the flatness problem this
explanation corresponds to have very fine-tuned initial conditions. We will see
shortly that the an accelerated expansion phase at early time (called inflation) can
solve all these problems without the necessity of any fine-tuning.

1.5 Classical Inflation
1.5.1 A solution to all problems

Both the horizon and the flatness problem are a results of the behavior of theHubble
radius, (aH)−1, which aswe have seen because of the strong energy condition grows
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at the same rate of the particle horizon. However there are no reasons to assume that
the strong energy condition cannot be violated. If we conjecture that 1 + 3w < 0,
we find that the Hubble radius decreases with time,

d

dt
(aH)−1 < 0 (1.61)

At present time then the comoving horizon appears much larger than the Hubble
radius so that particles cannot communicate today but were in causal contact at
earlier time. This constitutes the solution of the horizon problem. A similar
argument is also able to solve the flatness problem. Infact the curvature density,
|Ωk | = |k |/(aH)2, is now also a decreasing function of time. So, no matter what
was the initial curvature of the Universe since it get closer and closer to zero while
expansion is occurring. Before going into the details of the physics that can lead
to the shrinking of the Hubble radius, it is worth discussing the consequences of
this assumption:

• The shrinking of the comoving radius implies an accelerated expansion,
d

dt
(aH)−1 = −

Üa

( Ûa)2
< 0⇒ Üa > 0 (1.62)

Therefore inflation is commonly defined as a period of acceleration.

• We have seen in the previous Section that an accelerated expansion corre-
sponds to a constant Hubble rate therefore:

d

dt
(aH)−1 = −

ÛaH + a ÛH
(aH)2

= −
1
a
(1 − ϵH) (1.63)

where we have defined ϵH ≡ − ÛH/H2. Therefore inflation also corresponds to
the requirement,

ϵH = −
ÛH

H2 < 1 (1.64)

If we also define another quantity N defined by, dN/dt ≡ −H, which measure
the number of e-folds of inflation. Then, the condition on the Hubble radius
can be translated into a condition on ϵH, i.e.

ϵH =
dlog H
dN

< 1 (1.65)

• As we discussed above, the strong energy condition is violated if (aH)−1

decreases in time. Using Eq.(1.36) and Eq.(1.46) we find:

ϵH = −
ÛH

H2 =
3
2
(1 + w) < 1 (1.66)

inflation, then, is associated to a dominant form of energy with negative
pressure or w < −1/3.
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1.5.2 Slow-roll single field inflation

The simplest way to mathematically address all the features that are required for
inflation to happen is to associate inflationary dynamics to that of a scalar field
ϕ(t), dubbed the inflaton1. The stress-energy tensor associated with the scalar field
can be written as :

Tµν = ∂µϕ∂νϕ − дµν
(
1
2
дαβ∂αϕ∂βϕ − V(ϕ)

)
(1.67)

From this definitionwe can easily derive the pressure and energy density associated
with the scalar field ϕ:

T0
0 = ρϕ ⇒ρϕ =

1
2
Ûϕ2 + V(ϕ) (1.68)

Ti
j = −Pϕδij ⇒Pϕ =

1
2
Ûϕ2 − V(ϕ) (1.69)

while the Friedmann equations can be written in terms of the scalar field as:

H2 =
1
3

1
M2

pl

(
1
2
Ûϕ2 + V

)
(1.70a)

ÛH = −
1
2
Ûϕ2

M2
pl

(1.70b)

where M2
pl
= (8πG)−1 is the Planck mass. We see therefore that the evolution

of the Hubble parameter is determined entirely by the kinetic term. Combining
Eq.(1.70a) and Eq.(1.70b), one finds that the inflaton evolves accordingly to a
Klein-Gordon equation of the form:

Üϕ + 3Hϕ + V′(ϕ) = 0 (1.71)

where V′ = dV/dϕ. Instead, the equation of state parameter wϕ associated to the
inflaton is simply:

wϕ =
Pϕ
ρϕ
=

1
2
Ûϕ2 − V(ϕ)

1
2
Ûϕ2 + V(ϕ)

(1.72)

The requirement to have an accelerated expansion, i.e. w ≈ −1, is verified only if
Ûϕ2/2 � V(ϕ) or in other words we can have an acceleration driven by the inflaton
only if the inflationary potential dominates over the kinetic term.
How we can satisfy this requirement ?
The common way to go around this issue is to assume a shallow slope for the
1In principle the inflaton could be a function of both space and time coordinates ϕ(x, t) but the

symmetries of the FLRW metric require the inflaton to depends only on time.
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Figure 1.4: Example of a inflaton potential. The accelerated phase occurs when the potential energy
of the field V(ϕ) dominates the total energy of the inflaton. Inflation ends when the kinetic energy 1/2 Ûϕ2

become comparable with the potential energy. CMB fluctuations are produced at ϕCMB around 60 e-folds
before the end of inflation. After inflation ends, the inflaton starts to oscillate around the minimum of the
potential converting its energy density in radiation. This process is called commonly reheating

potential leading to its minimum: the field would have slowly evolved towards
the potential minimum maintaining small the kinetic energy and allowing for
Üa > 0 (see Fig.1.4). This condition is known as the slow-roll regime, while the
requirement that the potential energy dominates over the kinetic terms is known as
the slow-roll approximation. One can easily see that in the slow-regime also the
condition ϵH < 1 is verified. Infact, using Eq.(1.64) and Eq.(1.70b) one finds:

ϵh =
Ûϕ2

M2
pl

H2
=

3
1 + 2V/ Ûϕ2

(1.73)

so if the potential contribution to the energy density dominates over the kinetic
term we always have ϵH < 1. In the slow-roll regime ϵH � 1 and ρϕ ∼ −Pϕ
hence inflation follows a quasi de Sitter expansion while the potential falls into its
minimum.
What remains to be answered is : How long inflation should last in order to have
enough time to solve both the horizon and the flatness problem ?
What we need is that the condition ϵH < 1 is verified for a sufficiently large
number of Hubble times. We therefore introduce another parameter to take this
into account:

ηH = −
dlog ϵH
dN

= 2ϵH +
2 Üϕ
H Ûϕ

(1.74)

23



1. Cosmological Models and Inflation

This parameter must also satisfy the same condition as of ϵH, i.e. |ηH | < 1 (or
|ηH | � 1 in the slow-roll regimes). These conditions on ϵH and |ηH | can be
reformulated as constraints on the shape of the inflationary potential leading to the
definition of the so-called slow-roll parameters2:

ϵV ≡
M2

pl

2

(
V′

V

)2
ηV ≡ M2

pl

V′′

V
(1.75)

As for ϵH and |ηH |, the slow-roll parameters, ϵV and |ηV |, have to be small for
inflation to happen i.e. {ϵV, |ηV |} � 1. In the slow-roll regime, the two set of
parameters are also related by the following identities:

ϵH ≈ ϵV (1.76a)

ηH ≈ −2ηV + 4ϵV (1.76b)

Finally, inflation ends when acceleration ceases (i.e. Üa = 0) corresponding to
ϵH = 1 (ϵV ≈ 1) and a violation of the slow-roll approximation. We can then
estimate the number of “e-folds” required for inflation as:

N(t) = log
aend
a(t)
=

∫ tend

t
H(t ′)dt ′ (1.77)

where tend corresponds to the time where ϵH = 1. In the slow-roll regime the
following relations hold,

Hdt =
H
Ûϕ
dϕ ≈

1
M2

pl

V(ϕ)
V′(ϕ)

dϕ (1.78)

where in the last equality we have assumed Ûϕ > 0, and Eq.(1.77) can be written as
an integral over the field space of the inflaton:

N(t) =
1

M2
pl

∫ ϕend

ϕ(t)
dϕ

V(ϕ)
V′(ϕ)

(1.79)

FromEq.(1.79), we see that the number of e-folds associatedwith inflation depends
on the specific form of the potential that is driving it. However, we can estimate
the approximate value of N for inflation with the following argument. The Hub-
ble radius at the onset of inflation must have been larger than the largest scale
observable at the present time, or in other words than the current Hubble radius.
Assuming that after inflation the Universe is radiation dominated (considering the

2ϵH and |ηH | are generally referred to as the Hubble slow-roll parameters
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matter dominance phase add only a small correction) we have that H ∝ a−2. The
Hubble radius at the end of inflation can be then estimated from:

aend =
a0H0

aendHend
=

T0
Tend

(1.80)

Assuming that Tend = 1015 GeV and recalling that T0 = 2.7 K = 10−3 eV then
aend ∼ 10−28. So the comoving Hubble radius after inflation was 28 orders of
magnitude smaller than today. Then the inflationary picture works only if this
condition is satisfied. To translate this into a constraint on the number of e-folds,
recall that during inflation the Hubble parameter is nearly a constant and the
Universe experiences a de Sitter-like expansion, therefore:

a(t)

aend
= eH∆t ≈ eN(t) =⇒ N & 60 (1.81)

So, we need at least 60 e-folds for inflation to solve the issues of the Hot Big Bang
scenario. We conclude this Chapter stressing out that a microscopic interpretation
of inflation is still unknown but there are many models whose predictions fall well
inside the observational bounds (see e.g. [32]). For a more detailed discussion on
inflationary physics instead we refer to [47].
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2 Universe Thermodynamics
As we have seen in the previous Chapter, the Universe emerged in a very hot and
dense state after the end of inflation. The rate of interactions between particles
was so fast that thermodynamic equilibrium was established, and the state of
the Universe was that of a plasma at a single temperature T. As the Universe
expanded, the plasma cooled down, and the first light elements (hydrogen, helium
and lithium) formed. At some point, the temperature had dropped enough that
electrons recombine and the first atoms get formed. At this point the efficiency of
the interactions that bounded photons and plasma particles is so low that they start
to stream freely and the Universe becomes transparent to radiation becoming what
we see now as the CMB.

In this Chapter, we are going to review briefly the thermal history of the Hot
Big Bang, with a glance at neutrino decoupling and recombination. This Chapter
is mainly based on [44, 46]
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2.1 Thermal History
In order to understand the thermal history of our Universe, one has to compare
the rate of interactions Γ with the expansion rate H. Indeed, when the rate of
interactions is much bigger than the expansion rate (Γ � H), the time scale of
particle interactions is much smaller than the characteristic expansion time scale
and local thermal equilibrium is reached before the effect of expansion become
relevant. However, as the Universe cools down the interaction rate typically
decreases much faster than the Hubble rate and when Γ ∼ H then the particles start
to decouple from the thermal bath. In the standard model the rate of interaction
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between to particle species can be written as

Γ ≡ n〈συ〉 (2.1)

wheren is the particles number density andwe have assumed that both species have
the same density, σ is the interaction cross Section and υ is the relative velocity
between the two species of particles. The brackets indicate instead an average over
the velocity distribution. In the StandardModel, interactions aremediated by gauge
bosons therefore one can write T ∼ α2/T2 with α ≡ д2/4π being the generalized
structure constant associated with a generic gauge bosons. Assuming that all the
species involved are ultra-relativistic (which is well motivated for T & 100 GeV),
we can set υ ∼ 1. The number density of particles scales as the inverse of the
Universe volume so approximately we have n ∼ a−3 ∼ T3. Therefore, we can write
the rate of interactions as:

Γ = n〈συ〉 ∼ α2T (2.2)

The expansion rate instead is estimated through the Friedmann equation and re-
membering that for relativistic species we have ρ ∼ a−4 ∼ T4, hence:

H ∼
T2

M2
pl

(2.3)

Then, taking the ratio of Eq.(2.2) and Eq.(2.3) we have:

Γ

H
∼
α2Mpl

T
∼

1016 GeV
T

(2.4)

where we used α ∼ 10−2. We see therefore from Eq.(2.4) that the condition Γ � H
is satisfied for temperatures 100 GeV . T . 1016 GeV. Below T . 100 GeV the
electroweak symmetry is broken and the cross Section of interactions become that
of the weak force i.e. σ ∼ G2

FT2 where GF ∼ 1.17 × 10−5 GeV−2 is the Fermi
constant. Then, we have:

Γ

H
∼

(
T

1 MeV

)3
(2.5)

The strength of weak interactions decreases as the temperature of the Universe
drops, for T ∼ 1 MeV the ratio becomes O(H) and particles that interacts with the
primordial plasma only through weak interactions decouple at this temperature. In
the next Sectionswe are going to describe how the breaking of particles equilibrium
caused by cooling of our Universe has shaped the cosmological history. We
conclude this introduction with a summary of the key thermal epochs of the
Universe (for a detailed discussion of the various epoch see [65]).

28



2. Universe Thermodynamics

• Baryogenesis
This is the epoch where the asymmetry between baryons and anti-baryons
was generated. Particles and anti-particles annihilate with process of the
form e+ + e− → 2γ i.e. two antiparticles annihilate into a pair of photons.
If initially the Universe was filled with equal amount of particles and anti-
particles then we expect to end up with a Universe filled only with radiation.
However we observe today an excess of matter (baryons) over anti-matter
with a density with respect to photons (γ) of nb/nγ ∼ 10−9.

• Electroweak phase transition
For temperature around 100 GeV particles acquire masses through the Higgs
mechanism, as we have seen above, leading to a drastic change in the strength
of weak interactions.

• QCD phase transition
Around T ∼ 150 MeV strong interactions between quarks and gluons become
important and baryons (three quarks systems) and mesons (quark anti-quark
pair) start to form and began the relevant degree of freedom after the QCD
transition.

• Dark Matter Freeze-out
Dark matter interacts very weakly with ordinary matter so it is expected to
decouple relatively early. If it is made of WIMP (weakly interactive massive
particles) then dark matter decouple (and its density freeze to a constant
value) from the primordial plasma for T & 1 MeV.

• Neutrino Decoupling
Neutrinos interacts only through weak interactions therefore they will decou-
ple when T . 1MeV as we have discussed above.

• Electron-Positron Annihilation
ForT ≈me ∼ 0.5 MeV photons are not energetic enough to keep the positron-
electron pair annihilation process in equilibrium. Positron and electrons then
annihilate transferring their energy to the thermal bath and heating it up.
Neutrinos are instead not affected since they have already decoupled.

• Big Bang Nucleosynthesis
At T ≈ 0.1 MeV, around three minutes after the Big Bang, light elements
were formed.

• Recombination
This is the epoch during which neutral hydrogen was formed.
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• Photon Decoupling
Before recombination photons are coupled with the other particles forming
the primordial plasma through Compton scattering (e− + γ→ e− + γ). After
recombination, however, the free electron density drops sharply and the
Compton scattering become inefficient. Photons decouples from the plasma,
their mean free path becoming longer than the horizon. They have since
freely streamed through the Universe and we observe them today as the CMB

2.1.1 Equilibrium Thermodynamics

When talking about thermal equilibrium in early stage of the Universe history,
we are actually referring to a statistical equilibrium between a huge number of
particles of different species. The system is then described by a distribution
function f (x,p, t) in phase space [58]. Because of homogeneity, the distribution
function has to be independent of the position x. Furthermore, isotropy requires
that the momentum dependence in f comes only through the magnitude of the
momentum and not through its orientation in space, i.e. p ≡ |p|. The number
density of particle in the phase space is then simply given by [44, 58]:

n =
д

(2π)3

∫
f (p)d3p (2.6)

where д is the internal number of degrees of freedom (e.g. the spin) and (2π)3
is the density of states in the phase space volume. The energy density is found
simply weighting the number density with the particle energy E(p)1:

ρ =
д

(2π)3

∫
d3p f (p)E(p) (2.7)

with similar arguments one finds that the pressure is defined as:

P =
д

(2π)3

∫
d3p f (p)

p2

3E(p)
(2.8)

Before moving on, it is worth introducing three important concept that we will
need to describe the thermal history of the Universe.

• Kinetic Equilibrium
A system of particles is in kinetic equilibrium if the particles exchange energy
and momentum efficiently. This leads the system to a state of maximum

1To a good approximation, particles in the early Universe were weakly interacting, therefore their
energy is a function of the magnitude of the momentum only, i.e. E2 = p2 +m2
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2. Universe Thermodynamics

entropy in which the distribution function is given by the Fermi-Dirac (for
fermions) and Bose-Einstein distribution (for bosons):

f (p) =
д

e(E−µ)/T ± 1
(2.9)

where µ is the chemical potential

• Chemical Equilibrium
A system of particles is in chemical equilibriumwith respect to some reaction
if the rate of direct and inverse reaction is the same. Consider for example a
generic interactions x1 + x2 + · · · � y1 + y2 + . . . , chemical equilibrium is
reached when the condition, ∑

xi

µxi =
∑
yi

µyi (2.10)

is satisfied.

• Thermal Equilibrium
When a system of particles is both in chemical and kinetic equilibrium is said
to be in thermal equilibrium. All the particles of the system share therefore
the same temperature.

2.1.2 Density, Pressure and Entropy conservation

We now can make a step further and explicitly compute the density and pressure
of a system of particles in a FLRW Universe. Recalling that E(p) = p2 +m2 and
assuming chemical equilibrium, it is straightforward to show that:

• In the ultra-relativistic limit T �m, the integrals Eqs.(2.6 - 2.7) can be done
in terms of the Riemann function, ζ:

n =
дζ(3)
π2 T3 ×

{
1 bosons
3
4 fermions

(2.11a)

ρ =
π2

30
дT4 ×

{
1 bosons
7
8 fermions

(2.11b)

P =
1
3
ρ (2.11c)

• In the non-relativistic limit (m � T), instead the integrals become:

n = д

(
mT
2π

)2/3
e−m/T (2.12a)

ρ =mn (2.12b)
P = nT � ρ (2.12c)
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2. Universe Thermodynamics

Comparing Eqs.(2.11) with Eqs.(2.12), we see that when temperature drops below
m all quantities of the system get en exponential suppression. This is a consequence
of the annihilation of particles and antiparticles: as the temperature decreases
particle species become non-relativistic, particles energy is not high enough for
pair production and annihilation cannot be balanced anymore. Through Eqs.(2.11)
it is also possible define the so-called effective number of relativistic species,д?(T).
When T & 100 GeV, all particles of the StandardModel are relativistic so that they
all contribute to the radiation energy density ρr . Assuming T to be the temperature
of a photon gas, the total radiation energy density would be the sum of the energy
density of all the species involved, i.e.

ρr =
∑
i

ρi =
π2

30
д?(T)T4 (2.13)

The sum of Eq.(2.13) may receive contributions of two types:
1. Contribution from relativistic species (T & m) which are in equilibrium with

photons, in this case д? has the form:

дth? =
∑
i=b

дi +
7
8

∑
i=f

дi (2.14)

when the temperature drops below the mass thresholdmi of a particle species,
it becomes non-relativistic and its contribution is removed from the sum.

2. Relativistic species that are not in thermal equilibrium with the photons so
that Ti , T �mi . For those decoupled species д? can be written as:

дdec? (T) =
∑
i=b

дi

(
Ti

T

)4
+

7
8

∑
i=f

дi

(
Ti

T

)4
(2.15)

If there are decoupled particles which are still relativistic in the thermal bath, we
need to estimate their temperature in order to calculate their contribution toд?. This
can be done using a conserved quantity, the total entropy of the Universe. From the
second law of Thermodynamics we know that the entropy of the Universe can only
increase or stay constant and it is conserved in equilibrium. Since there 109 photons
per baryons the entropy of the Universe is dominated by that of the photon bath (at
least as long as the Universe is sufficiently uniform). Any entropy production from
non-equilibrium processes is therefore completely insignificant relative to the total
entropy. Then, to a good approximation, we can treat the expansion as adiabatic
so that the total entropy is constant even beyond equilibrium. Assuming there is
no chemical work, µ = 0, from the second law we can write:

dS = d
(
ρ + P

T
V
)
= d(sV) (2.16)
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2. Universe Thermodynamics

where we have defined the entropy density, s = (P + ρ)/T. Taking the time
derivative, we can see that this is a conserved quantity:

dS
dt
=

V
T

(
dρ

dt
+

1
V
dV
dt
(ρ + P)

)
+

V
T

(
dP
dt
−
ρ + P

T
dT
dt

)
= 0 (2.17)

The first term vanish because of the continuity equation Eq.(1.36), the second term
vanish because, in absence of chemical work, ∂P/∂T = (ρ + P)/T. Then the total
entropy is conserved and s ∝ a−3 ∝ T3. Using Eqs.(2.11), we see that the entropy
density can be written as:

s =
∑
i

ρi + Pi

Ti
≡

2π2

45
д?,S(T)T3 (2.18)

where we have defined д?,S = дth
?,S + д

dec
?,S. In thermal equilibrium we clearly have

д?,S = д
th
? , but for decoupled species since s ∝ T3 we have:

дdec?,S ≡
∑
i=b

дi

(
Ti

T

)3
+

7
8

∑
i=f

дi

(
Ti

T

)3
, дdec? (2.19)

Thereforeд? andд?,S are equivalent only if all species are in equilibrium at the same
temperature. There are however two important implications of the conservation of
entropy:

1. Since s ∝ a−3, the number of particles in a comoving volume is simply
Ni ≡ ni/s. If particles are not produced or destroyed then ni ∝ a−3 and Ni is
a constant.

2. Eq.(2.18) implies that :

д?,S(T)T3a3 = const =⇒ T ∝ д?,S(T)−1/3a−1 (2.20)

Away from particles mass threshold д?,S is nearly constant and T ∝ a−1.
The factor д?,S(T)−1/3 accounts for the fact that whenever a particle species
becomes non-relativistic, its entropy is transferred to the other relativistic
species still present in the thermal plasma, causing T to decrease slightly less
slowly than a−1. We will see in next Section that this has important conse-
quences for the formation of the CMB and the cosmic neutrino background
(CνB).

2.2 Cosmic Neutrino Background
Neutrinos interact with the primordial plasma only via weak interaction. We
have see in Section 2.1 that when the temperature drops below 1 MeV particles
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that interact through the weak force decouple from the thermal bath (a precise
calculation gives Tdec

w
≈ 0.8 MeV). After decoupling, neutrinos move freely along

geodesic preserving the relativistic Fermi-Dirac distribution. Their entropy will be
conserved therefore Tν ∝ a−1. If д?,S is constant then the photon temperatures will
scale in the same way and photons and neutrinos would have the same temperature
Tν = Tγ. However, if some annihilation process happens the temperature decrease
more slowly than a−1. For neutrinos this is indeed the case. After neutrino
decoupling, infact, e+ − e− pairs start to annihilate when the temperature drops
below the electron mass and energy is injected into the plasma. The photon bath
is therefore heated up by the electron-positron annihilation process and Tγ > Tν.
Using the fact that дγ = д+e = д−e = 2 we have that:

дth?,s =

{
2 + 7

8 × 4 = 11
2 T & me

2 T < me

(2.21)

Since дth?,s(aTγ)3 remains constant in equilibrium we have:

Tν =
(

4
11

)3
Tγ (2.22)

When T �me the effective number of relativistic species is:

д? = 2 +
7
8
× 2Neff

(
4

11

)4/3
= 3.38 (2.23a)

д?,S = 2 +
7
8
× 2Neff

(
4

11

)
= 3.94 (2.23b)

where we have introduced the parameter Neff the so-called effective number of
neutrino species. For an instantaneous decoupling Neff = 3. However, neutrinos
were still decoupling when the e+ − e− annihilation began, so some of the energy
released did leak to neutrinos. Accounting for this raises the value to Neff = 3.046.
The evolution of д?(T) is shown in Fig.2.1

2.3 Recombination
Until now we have assumed kinetic equilibrium for the systems of particles we
were considering, so that their distribution function were described by the Fermi-
Dirac or Bose-Einstein distribution. However there are many processes in the
early Universe for which this assumption does not hold. One of such processes
is the epoch of recombination when the first atoms were formed. For T > 1 eV,
the primordial plasma was composed of free electrons, photons (tightly coupled
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Figure 2.1: Evolution of the relativistic degree of freedom д?(T) assuming the Standard Model particle
content. The dotted line represent д?,S(T) [44]

to electrons via Compton scattering) and protons (coupled to the electrons via
Coulomb scattering). When the temperature becomes low enough the formation
of neutral hydrogen became viable since the reaction

H + γ � p + e− (2.24)

is not efficient enough to maintain the hydrogen ionized. Then, the density of
free electrons dropped sharply and photons mean free path became longer than the
horizon distance. The Universe became transparent to radiation. To understand
when this happens we have to track the evolution of the fraction of free electron
w.r.t. baryons Xe ≡ ne/nb . When baryons and photons are still in equilibrium
(T > 1 eV) we have the following equilibrium abundances:

n
eq
i = дi

(
miT
2π

)3/2
exp

(µi −mi

T

)
(2.25)

where i = {e,p,H} and we have used Ti < mi . Recall also that µe + µp = µH
following from the equilibrium of Eq.(2.24) (since µγ = 0). To get rid of the
chemical potential, we consider the ratio of the abundances of free protons and
electrons w.r.t. that of neutral hydrogen.(

nH
nenp

)����
eq

=
дH

дeдp

(
2π
T

mH
memp

)3/2
e(mp+me−mH)/T (2.26)
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Figure 2.2: Evolution of the electron fraction Xe as a function of redshift. The dashed curve shows the
evolution of Xe predicted by the Saha equation, the solid line instead represents the calculation made
with a more exact numerical treatment (involving the Boltzmann equation, see also next Chapter)

Using the fact that дp = дe = 2 and дH = 4, introducing the binding energy
BH ≡ me +mp −mH = 13.6 eV and taking ne = np (since the Universe is not
electrically charged) we end up with:

nH

n2
e

����
eq

=

(
2π
meT

)3/2
e

BH
T (2.27)

Using the fact that the baryon density is:

nb = ηbnγ = ηb
2ζ(3)
π2 T3 (2.28)

where ηb = 5.5 × 10−10(Ωbh
2/0.020) is the baryon-to-photon ratio. Considering

only protons (which compose the 90% of the primordial abundance of nuclei) and
ignoring all other nuclei, the baryon density can bewritten asnb ≈ np+nH = ne+nH
and hence:

1 − Xe

X2
e

=
nH

n2
e

nb (2.29)

Substituting the above equation in Eq.(2.27) we arrive at the Saha equation:(
1 − Xe

X2
e

)
eq

=
2ζ(3)
π2 ηb

(
2π
meT

)3/2
e

13.6 eV
T (2.30)
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As we see from Fig.2.2, the Saha equation, which assumes that the electron
abundance is the equilibrium one, gives a good prediction of the temperature
of recombination Trec and decoupling Tdec however a calculation involving the
Boltzmann equation (see next Chapter) is needed to calculate the relic density of
electrons after freeze-out.

We proceed defining Trec as the temperature where 90% of the electrons have
combined with protons so that Xe = 0.1. Using Eq.(2.30), we find:

Trec ≈ 0.3 eV ≈ 3600 K

Recombination occurs at Trec � BH, the reason is that the baryon fraction is
really small ηb � 1 and there are around 109 photons for each hydrogen atom.
Even when the temperature drops below BH, the high energy tail of the photon
distribution contains still a lot of photon with energy greater than BH which can
ionize newly formed hydrogen atoms.

Using Trec = T0(1 + zrec) with T0 = 2.7 K, we find zrec ≈ 1320. Since
the matter-radiation equality happens at zeq ≈ 3500, recombination occurs in the
matter-dominated era. Therefore, a ∝ t−3/2 and

trec ∼ 2.9 × 105 ys

As shown Fig.2.2, photon decoupling happens slightly after recombination. Pho-
tons decouples from the plasma when their interaction rate is comparable to the
Hubble rate, i.e. Γγ(Tdec) ∼ H0(Tdec). Photons are coupled to the plasma through
electrons Thomson scattering with Γγ ≈ neσT where σT ≈ 2 × 10−3 MeV. Using:

Γγ(Tdec) = nbXe(Tdec)σT =
2ζ(3)
π2 ηbσTXe(Tdec)T3

dec (2.31a)

H(Tdec) = H0
√
Ωm

(
Tdec

T0

)3/2
(2.31b)

we get,

Xe(Tdec)T3/2
dec
∼

π2

2ζ(3)
H0
√
Ωm

ηbσTT3/2
0

(2.32)

Therefore using Eq.(2.30) we finally obtain the value of Tdec ∼ 0.27 eV. While
the redshift and time of photons decoupling are:

zdec ≈ 1100

tdec ≈ 3.8 × 105ys

This is the moment in which the Cosmic Microwave Background was formed. We
conclude this Section with a few remarks:
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• Even tough Tdec ∼ Trec , the ionization fraction decreases significantly be-
tween recombination and decoupling (see also Fig.2.2) i.e. Xe(Trec) = 0.1
and Xe(Tdec) = 0.01. Indeed a high degree of neutrality is needed for the
Universe to become transparent to photon propagation.

• Recombination happens after matter-radiation equality but the ratio Ωr/Ωm

is still high enough to leave observable signature in the CMB, through the
early ISW effect [44].
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PART II

From inhomogeneities to anisotropies
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3 The inhomogeneous
Universe

Until now we have treated the Universe as perfectly homogeneous and isotropic,
however to understand the formation and evolution of large scale structure (LSS)we
have to introduce inhomogeneities. In this Chapter we will develop the formalism
of cosmological perturbation theory and discuss how inflation sets the initial
conditions to solve the perturbation equations. In the last part of the Chapter we
use the perturbation theory we have drawn to connect the fluctuations in the energy
density with the anisotropies we observe in the CMB.

This Chapter is mainly based on [44, 46]
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3. The inhomogeneous Universe

3.1 Cosmological Perturbation Theory
3.1.1 Perturbations of the FLRW metric

In order to avoid unnecessary technical details, we will take the background metric
to be the flat FLRW metric. The perturbed spacetime metric can then be written:

ds2 = a2(η)
(
(1 + 2A)dη2 − 2Bidx

idη − (δij + hij)dx
idx j

)
(3.1)

It will be useful to perform a scalar-vector-tensor (SVT) decomposition of the
perturbations. In fact, Einstein equations for the different components do not mix
at linear order and can be treated separately. Furthermore, it is worth stressing that
these fluctuations are produced during inflation (as we will see briefly in Section
3.1.5) therefore inflationary dynamics sets the initial condition needed to solve
the perturbation equations. However vector perturbations are not produced during
inflation and even if they are, they would decay quickly with the expansion of the
Universe (see e.g. [66] and reference therein). The SVT decomposition allow then
to neglect vector perturbations and deal only with scalar and tensor ones.

We proceed by decomposing the degree of freedom of the perturbed metric
using the SVT approach. For the vector terms, Bi , this means we can decompose
it into the gradient of a scalar and a divergenceless term:

Bi = ∂iB + B̂i (3.2)

with ∂iB̂i = 0. In similar fashion, a rank-2 tensor can be decomposed as:

hij = 2Cδij + 2∂〈i∂j〉E + 2∂(iÊj) + 2Êij (3.3)

where we have defined:

∂〈i∂j〉E ≡
(
∂i∂j −

1
3
δij∇

2
)

E (3.4)

∂(iÊj) ≡
1
2

(
∂iÊj + ∂jÊi

)
(3.5)

As for Bi , hatted quantities are divergenceless while the tensor Êij is traceless,
Êi
i = 0. We need to face the fact unfortunately that metric perturbations (as well

as matter perturbations, see next Section) are not uniquely defined but depends
on the particular choice of the coordinate systems or “gauge choice”. Making a
different choice of coordinates can change the values of the perturbation variables
or it can results in introducing fictitious perturbations. In particular choosing a
transformation of the form:

Xµ → Xµ ≡ X̃µ + ξµ(η,x) (3.6)
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where ξ0 ≡ T and ξi ≡ Li = ∂iL + L̂i and we have decomposed the spatial shift Li

in its scalar and vector components, and using th equivalence of the metric element
ds2 in the two coordinate systems, one can show that the perturbation variable are
transformed as:

A→ A − T′ −HT (3.7)

B→ B + T − L′ B̂i → B̂i − L′i (3.8)

C→ C −HT −
1
3
∇2L (3.9)

E→ E − L Êi → Êi − L̂i Êij → Êij (3.10)

whereH is the Hubble parameter in conformal time and ′ denotes derivative w.r.t.
conformal time. Before looking at how the problem of choosing the gauge can be
resolved we are going to see how the gauge choice affects the perturbations of the
stress energy tensor.

3.1.2 Matter perturbations

We start noting that the components of the stress-energy tensor can be written as:

T0
0 = ρ̄ + δρ (3.11)

Ti
0 = υ

i (ρ̄ + P̄
)
υi (3.12)

Ti
j = −

(
P̄ + δP

)
δji − Π

i
j (3.13)

where an over-bar denotes background quantities and υi is the bulk velocity and
Πi
j is the transverse and traceless anisotropic stress tensor. It is useful to introduce

a new quantity, the momentum density qi = υi
(
ρ̄ + P̄

)
. The momentum density

and the anisotropic stress can be also decomposed in their scalar, vector and tensor
parts as:

qi = ∂iq + q̂i (3.14a)

Πij = ∂〈i∂j〉Π + ∂(iΠ̂j) + Π̂ij (3.14b)

Using these relations and employing the transformation rule for rank-2 tensors on
Tνµ, one can show that under coordinate transformation of the form of Eq.(3.6) the
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matter perturbations variables transform as :

δρ→ δρ − Tρ̄′ (3.15)

δP→ δP − TP̄′ (3.16)

qi → qi + (ρ̄ + P̄)L′i (3.17)

υi → υi + L′i (3.18)

Πij → Πij (3.19)

3.1.3 Fixing the gauge

We have seen in the previous two sections that the matter and metric perturbations
are gauge dependant, a wrong choice of the coordinates system can therefore
make real perturbations to disappear or fake perturbations to appear. To avoid
fixing a specific gauge one can also define gauge invariant quantity through special
combination of the metric perturbations, these quantities are known as Bardeen
variables: (see e.g. [57, 58, 60] for a detailed discussion of gauge freedom in
general relativity).

Ψ ≡ A +H(B + E′) + (B − E′)′ (3.20a)

Φ ≡ −C −H(B − E′) +
1
3
∇2E (3.20b)

Φi ≡ Ê′i − B̂i (3.20c)

Êij (3.20d)

where prime denotes derivatives w.r.t. conformal time andH ≡ a′/a is the Hubble
parameter in conformal time. In this thesis, we will not use gauge invariant
quantities but instead we will fix the gauge in order to make physics more evident.
In what follows we will only make use of the following gauge choice:

• Newtonian gauge
In the Newtonian gauge we fix B = E = 0. This leads to the following
perturbed metric:

ds2 = a2(η)
(
(1 + 2Ψ) −

[
(1 − 2Φ)δij + hij

] )
(3.21)

whereΨ ≡ A is the gravitational potential andΦ ≡ C is the local perturbations
of the average scale factor and hij is the transverse and traceless tensor. For
now we will study only scalar perturbations and set hij = 0.
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• Spatially Flat gauge
In the Spatially flat gauge we fix C = E = 0, we will make use of this gauge
when discussing inflationary perturbations.

Before moving on, there are some few remarks that is worth making about the
Newtonian gauge:

• The choice of B = 0 is equivalent to require that hypersurface of constant
time are orthogonal to the observer wordlines at rest in the coordinates.

• Induced geometry on constant time hypersufaces is isotropic since E = 0.

• In absence of anisotropic stress Φ ≡ Ψ and the metric would resemble that of
the weak field limit of GR about Minkowski spacetime

3.1.4 Evolution and conservation equations

As we have seen in the previous chapter the equations of motion for the variables
describing the matter-radiation component of the Universe are given by the con-
tinuity equation ∇µTµν = 0. If there are several contributions to the stress-energy
tensor then they simply add up i.e. Tµν =

∑
a T(a)µν which implies that also the fluid

variables sums up as:

δρ =
∑
a

δρa δP =
∑
a

δPa qi =
∑
a

qi
(a) Πij =

∑
a

Πij (3.22)

If there is no momentum or energy transfer between the different species com-
posing the stress-energy tensor then the species are separately conserved and we
also have ∇µT(a)µν = 0. Using this, the perturbed conservation equations assume the
form:

δ′a = −

(
1 +

P̄a

ρ̄a

)
(∂iυ

i
a − 3Φ′) − 3H

(
δPa

ρ̄a
−

P̄a

ρ̄a
δa

)
(3.23a)

υia = −

(
H +

P̄′a
ρ̄a + P̄a

)
υia −

1
ρ̄a + P̄a

(
∂iδPa − ∂jΠ

ij
a

)
− ∂iΨ (3.23b)

where δa = δρa/ρ̄a is the density contrast. The different matter components
are gravitationally coupled through the metric fluctuations, these equations are
determined via the Einstein equations by the total perturbed stress-energy tensor.
From the components of Einstein equations we find (for a detailed derivation see
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e.g. [44, 47, 57–60]):

00−component ∇2Φ − 3H(Φ′ +HΨ) = 4πGa2δρ (3.24a)

ij−component ∇2(Φ − Ψ) = −8πGa2(ρ̄ + P̄)σ (3.24b)

0i−component Φ′ +HΦ = −4πGa2q (3.24c)

ij−tracepart Φ′′ + 3HΦ′ + (2H +H2)Φ = 4πGa2δP (3.24d)

where in deriving Eq.(3.24b) we have used the decomposition of the anisotropic
stress in Fourier space i.e. Πij = −(ρ̄ + P̄)

(
k̂ik̂ j − 1/3δij

)
σ.

To solve the coupled system of equations made by Eqs.(3.23) and Eqs.(3.24)
we need to provide initial conditions for the perturbed variables. We will see
that perturbations are generated during inflation through quantum fluctuations
of the inflaton, and then they are promoted to classical fluctuations during the
acceleration phase when the Hubble radius shrinks and perturbations exit the
horizon. We will see therefore that inflation naturally provides a mechanism to
generate cosmological fluctuations and set their initial conditions. Before moving
on to discuss how to properly sets initial conditions for the perturbation equations,
it is worth making some few comments on the equations we have introduced in
this section:

• Eqs.(3.23) are not enough to describe the evolution of the four perturbations
{δa, δρa, δPa,Π

ij
a }. However, perfect fluids are characterized by strong in-

teractions which keeps the pressure isotropic then one can set Πij
a = 0. In

addition pressure perturbations are related to density perturbations through
the adiabatic speed of sound c2

s,a i.e. δPa = c2
s,aδρa. The perturbations of

a perfect fluid are therefore described by only two variables δa and υa and
Eqs.(3.23) are sufficient to describe their evolution. Assuming also that the
background equation of state is constant for all species P̄a/ρ̄a ≡ wa, we can
rewrite Eq.(3.23a) as:

δ′a = −(1 + wa)(∂iυia − 3Φ′) − 3Hδa(c2
s,a − wa) (3.25)

We note however that decoupled or weakly-interacting species such as neu-
trinos cannot be described by a perfect fluid and the above assumptions do
not apply. In this case one need to solve the Boltzmann equation. We will
return on this when describing CMB anisotropies and spectra at the end of
the Chapter.

• Eq.(3.24a) is the relativistic generalization of thePoisson equation. Inside the
Hubble radius the Fourier mode of the perturbations satisfy k � H therefore
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∇2Φ dominates the r.h.s of Eq.(3.24a) and we return to the classical Poisson
equation for the gravitational potentail Φ i.e. ∇2Φ ≈ 4πGa2δρ. Relativistic
corrections will be therefore important only for scales comparable to the
Hubble radius i.e. k . H

• Eq.(3.24b) is sourced by the reduced anisotropic stress tensor σ but for perfect
fluids σ = 0 therefore Ψ ≈ Φ. This is indeed a well motivated assumption.
Baryons and dark matter can be described as a perfect fluids so they do not
contribute to the anisotropic stress. Photons start to develop an anisotropic
stress only during the matter dominance when their contribution to the total
energy density can be ignored. The only exception is represented by free-
streaming neutrinos which cannot be described by a perfect fluid, however
their effect is also relatively small and we will neglect it.

3.1.5 Setting Initial Conditions

At sufficient early time (η→ 0) all scales of interest for observations were outside
the horizon. We will see in next Section that inflation sets up the initial condition
for the Newtonian potential Φ on super-horizon scales, then the super-horizon limit
(k � H ) of Eq.(3.24a) can be used to infer the initial condition for the density
contrast δ.

Adiabatic perturbations

In the rest of this thesis, we will only consider adiabatic initial conditions since this
assumption is consistent with current data and in single field slow-roll inflation
this are the only kind of perturbations that can be excited. This initial condition
satisfies:

Iij ≡
δi

1 + wi
−

δj

1 + wj
= 0 ∀i, j (3.26)

thus for adiabatic perturbations, all matter component have the same fractional
density since wm = 0. Radiation perturbations instead follow,

δr =
4
3
δm (3.27)

since w = 1/3 for relativistic species. This means that the total energy density
δρ =

∑
a δρaδa is dominated by the species that carries the dominant energy

contribution. At early times the Universe is radiation dominated so that the
fractional density is that of radiation δr . We see from Eq.(3.24d) that on super-
horizon scale Φ ≈ const and Eq.(3.24a) implies:

δ ≈ δr = −2Φ = const (3.28)
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Therefore, all matter perturbations are given in terms of the super-Hubble value of
the potential Φ.

However the gravitational potential Φ is constant on super horizon scales only
if the equation of state of the background is constant. When the equation of state
evolves, e.g. in the transition from radiation tomatter dominance, also the potential
evolves. Therefore it is convenient to define a quantity that remains constant on
large scales even when the equation of state changes. This variable is the so-called
comoving curvature perturbation:

R = −Φ +
H

ρ̄ + P̄
δq (3.29)

The quantity R has also another advantage: it is gauge invariant i.e. it does not
change under a coordinate transformation (see e.g. [44, 57]). In the next section
we will see how inflation predicts the value of the curvature perturbation at the
onset of the radiation dominated phase.

3.2 Initial condition from Inflation
Wehave seen in Section 1.5 how inflation can resolve the problems ofHot BigBang
scenario and bring the singularity back to infinite past η → −∞. In this Section
we will see how inflation provides a natural mechanism to seed the fluctuations
of the CMB and sets the initial conditions for the evolution of perturbations in
the radiation and matter dominated phase. The mechanism behind the generation
of perturbations during inflation is rather simple: the evolution of the inflaton
field ϕ(t) governs the total energy density ρ(t) and hence controls when inflation
ends. Essentially, the inflation acts as a local “clock” reading off the amount
of inflationary expansion still to occur. In quantum mechanics precise timing
is not possible because of the uncertainties principle i.e. quantum-mechanical
clocks always have some variance. This translate into having spatially varying
fluctuations of the inflaton δϕ(t ,x). Hence, at the end of inflation there will be
local differences in time δt(x). These differences in the local expansion histories
lead to a differences in the local densities after inflation δρ(t ,x) and to curvature
perturbations R(x). In the following we will give a brief review of the calculation
that allows to connect the variance of the inflaton with that of the curvature
perturbation, for a more detailed derivation we refer to [44, 47]

In the spatially flat gauge (дij = −a2δij) the inflationary action is:

S =
∫

d3ηd3x
√
−д

[
1
2
дµν∂µϕ∂νϕ − V(ϕ)

]
(3.30)

in this gauge the information are carried by the inflaton perturbation δϕ and the
metric perturbations δд0µ and the two quantities are related by Einstein equations.

48



3. The inhomogeneous Universe

Furthermore in the spatially flat gauge δд0µ are suppressed w.r.t. inflaton fluctua-
tions by a factor of the order of the slow-roll parameter ϵH. At leading order we can
then ignore fluctuations of the geometry and perturb the scalar field independently.

Evaluating Eq.(3.30) on an unperturbed FLRW background we find:

S =
∫

d3ηd3x

[
1
2
a2

(
ϕ′2 − (∇ϕ)2

)
− a4V(ϕ)

]
(3.31)

We expand the inflaton asϕ(η,x) = ϕ̄(η)+a−1F(η,x) andwe look for the linearized
equations for F(η,x). To do this we expand the action Eq.(3.31) to second order
in F, i.e.

S(2) =
∫

d3ηd3x
1
2

[(
F′2 − (∇F)2

)
−
a′′

a
F2

]
(3.32)

which implies the following equation of motion:

F′′k + (k
2 −

a′′

a
)Fk = 0 Fk(η) ≡

∫
d3x

(2π)3/2
F(η,x)e−ik·x (3.33)

In a quasi-deSitter background a′′/a ≈ 2/η2 and we have:

F′′k + (k
2 −

2
η2 )Fk = 0 (3.34)

At sufficient early times all modes where inside the horizon, |kη| � 1, in this limit
Eq.(3.34) reduces to:

F′′k + k
2Fk = 0 (3.35)

During inflation theHubble radius shrinks and eventually amode of givenk crosses
the horizon when |kη| ∼ 1. At this moment we one can switch to a description in
terms of the comoving curvature perturbation R which become constant outside
the horizon |kη| � 1. The variance of R at horizon crossing will then become the
initial condition of perturbations in the post-inflationary FLRW Universe.

We start noting that Eq.(3.35) is just the equation for a simple harmonic oscil-
lator, therefore it has two independent solution Fk ∝ e±ikη. We are interested only
to the − solution which corresponds to the ground state of the Hamiltonian of the
oscillator [47]. In practice this mean solving Eq.(3.34) with the initial condition:

lim
η→∞

Fk(η) =
1
√

2k
e−ikη (3.36)

Assuming a slow-roll inflation, it is sufficient to study the solutions of Eq.(3.34)
in a deSitter spacettime which read:

Fk(η) =
e−ikη
√

2k

(
1 −

i

kη

)
(3.37)

49



3. The inhomogeneous Universe

where we havemade use of the initial condition, Eq.(3.36), to get rid of the solution
∝ eikη.

Finally we evaluate the variance of the mode function Fk , to determine the
perturbations of the scalar field. This is done by promoting the function F to
a quantum operator F̂ and evaluating its variance over the ground state of the
harmonic oscillator. After some manipulation one finds:

〈|F̂|2〉 =
∫

d lnk
k3

2π2 |Fk(η)|
2 (3.38)

We are now going to connect this solution with the curvature perturbation R. First
of all we define the dimensionless power spectrum as:

∆2
F(k, η) ≡

k3

2π2 |Fk(η)|
2 (3.39)

Using Eq.(3.37) we have:

∆2
δϕ(k, η) = a−2∆2

F(k, η) =

(
H
2π

)2
(
1 +

(
k

aH

)2
)

(3.40)

At horizon crossing this is simply:

∆2
δϕ(k, η) =

H2

2π

����
k=aH

(3.41)

We are now in place to connect the fluctuations of the inflaton with the curvature
perturbation. Recall from Eq.(3.29) that

R = −Φ +
H

ρ̄ + P̄
δq (3.42)

As discussed we neglect the spatial variation of the metric w.r.t. the fluctuation of
the inflaton therefore Φ = 0. The perturbed stress-energy tensor is instead:

δT0
j = д

0µ∂µϕ∂jδϕ =
ϕ̄′

a2∂jδϕ = −∂jδq (3.43)

Using ρ̄ + P̄ = a−2ϕ̄′2, we have:

R =
H

ϕ̄′
δϕ = −H

δϕ

Û̄ϕ
= −Hδt (3.44)

confirming our assumption that the curvature perturbation is induced by the time
shift at the end of inflation. The power spectrum of R at horizon crossing is then
easily found to be:

∆2
R(k) =

H2

2π Û̄ϕ

�����
k=aH

=
1

8π2ϵH

H2

M2
pl

�����
k=aH

(3.45)
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The form of the spectrum is generally approximated with a power law of the form:

∆2
R(k) = As

(
k

ks

)ns−1
(3.46)

where the spectral indexns is connected to the slow-roll parameters by the following
relation:

ns − 1 = −2ϵH − ηH (3.47)

The most recent observation have placed a very tight constraint on the value of
the scalar spectral index showing a percent-level deviation from a scale invariant
spectrum (ns = 1) i.e. ns = 0.965±0.004 [28]. This is indeed a strong confirmation
of the time dependence in the inflationary dinamics and of the quantum nature of
primordial fluctuations.

3.2.1 Primordial gravity waves

In this Section we are going to sketch the logic (identical to that of the scalar case)
behind the evolution of tensor perturbations during inflation but we will not go
through the details of the quantum production of tensor fluctuations (more details
on the production of gravity waves during inflation can be found in [44, 47]).

We start by the spatial metric for tensor perturbations:

ds2 = a2(η)[dη2 − (δij + 2hij)dx idx j] (3.48)

Substituting this in the Einstein-Hilbert action and expanding to second order
gives:

S(2) =
M2

pl

8

∫
dηd3xa2 [

h′ij − (∇hij)
2] (3.49)

it is convenient to divide the degree of freedom in the metric (the polarization of
the gravitational waves) using:

Mpl

2
ahij ≡

1
√

2

©«
f+ f× 0
f× −f+ 0
0 0 0

ª®®¬ (3.50)

so that the perturbed action rewrites:

S(2) =
M2

pl

8

∫
dηd3x

[
f ′2λ − (∇fλ)

2 +
a′′

a
f 2
λ

]
(3.51)

This is are just two copies of the action in Eq.(3.32), one for each polarization
mode of the gravitational wave, f×,+. The power spectrum for tensor modes can
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therefore be directly inferred from the results for scalar perturbations,

∆2
h(k, η) = 2 ×

(
2

aMpl

)2
∆2

F(k, η) (3.52)

which at horizon crossing reads:

∆h(k, η)
2 =

2
π2

H2

M2
pl

�����
k=aH

(3.53)

We notice that the tensor amplitude, conversely to the scalar one, depends only on
H and it is therefore a direct measure of the expansion rate during inflation. The
form of the tensor power spectrum is also commonly approximated as a power law,

∆2
h(k) = At

(
k

kt

)nt
(3.54)

where the spectral index is given by nt = −2ϵH. Generally the tensor amplitude is
given in terms of the scalar amplitude As at the tensor pivot scale kt defining the
so called tensor-to-scalar ratio:

r ≡
∆2
R
(kt )

∆2
h
(kt )

(3.55)

It is commonly assumed that the pivot scale of tensor and scalar is the same i.e.
ks = kt so that r is defined independently of the scalar spectral index and pivot
scale:

r =
As

At
= 16ϵH (3.56)

The most recent constraint on the value of r , achieved combining Planck, BICEP2
and BAO data gives only an upper limit r < 0.07 [28, 32]. More stringent
constraints on r require the measurement of polarization B-modes which are a
direct trace of quantum fluctuations of the metric produced during inflation (see
Section 3.4.4. Measuring polarization B-modes is indeed one of the main goal of
future experiments such as CMB-S4 [33] and LiteBIRD [29]

3.3 Inhomogeneities
Metric perturbations couple gravitationally to all matter perturbations at early
times when the Universe is filled with a plasma made of photons, baryons and
electrons. Baryons and electrons are in turn coupled to each other via Coulomb
scattering while electrons and photons interact via Thomson scattering. When
electron density drops at recombination, Thomson scattering become inefficient
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and photons decouple from the primordial plasma and start to stream freely. In
turn Coulomb scattering efficiency is not affected and electrons and baryons can be
treated as a single tightly coupled fluid. To derive the fluctuations in the CMB, we
need to follow the complicated set of interactions between all matter components
until recombination. To do this we will need to employ the Boltzmann equation.

d fa
dη
=
∂ fa
∂η
+
∂ fa
∂x
·
∂x

∂η
+
∂ fa
∂ln ϵ

dln ϵ
dη
+
∂ fa
∂p̂
·
dp̂

dη
= C[{ fb}] (3.57)

where ϵ = a(t)E is the comoving energy and p̂ is direction of propagation of
photons. For each species a then there will be an evolution equation for the species
distribution function fa coupled to the distribution function of the other species b
through the collision term C[{ fb}]. Since we are interested in the evolution of the
distribution function for photons only fγ we will drop the subscript and refer to it
simply as f . Photons interacts mainly with electrons therefore the collision term
will depend only on the photon and electron distribution function i.e. C[{ f , fe}].

3.3.1 Collisionless Boltzamnn equation

We will start by studying the l.h.s. of Eq.(3.57) and for the moment we will set the
collision term to zero. This leads to:

d

dη
f (η,E,x, p̂) = 0 (3.58)

which states that, in absence of scattering, the number of particles in a given
element phase space does not change with time. We note that the last term in
Eq.(3.57) is a second order term: in fact the Bose-Einstein distribution depends
only on photon momentum p and not on the direction of propagation p̂ therefore
∂ f /∂p̂ is non-zero only at first order and the same is true for ∂p̂/dη which is
non-zero only if there are perturbations to the gravitational potential. Thus the last
term is the product of two first order terms and can be neglected at linear order.
With a similar argument one can show that also ∂ f /∂x and ∂ ln ϵ/∂η are first
order terms, therefore we can write Eq.(3.58) as:

∂ f

∂η
+ p̂ · ∇f +

∂ f̄

∂ln ϵ
dln ϵ
dη
= 0 (3.59)

where we have used dx/dη = p̂ and f̄ is zero-order distribution function. At order
zero this implies that ∂ f̄ /∂η = 0 and therefore the zero-order distribution function
depends only on ϵ, this is consistent with Eq.(2.9) as long as T ∝ a−1,

f̄ (ϵ) ∝

[
exp

(
ϵ

T0

)
− 1

]−1
(3.60)
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where T0 = 2.7255K is the present CMB temperature. To study the effect of per-
turbations we introduce the fractional temperature perturbation Θ(η,x, p̂) which
we assume to be independent from ϵ i.e. the temperature perturbations is the
same at all frequencies and does not lead to spectral distortion. The perturbed
distribution function is rewritten as:

f (η,x, ϵ, p̂) =

[
exp

(
ϵ

aT̄(η)[1 + Θ(η,x, p̂)]

)
− 1

]−1
(3.61)

Assuming Θ to be a small perturbation we can rewrite Eq.(3.59) as:

−
dln f̄ (ϵ)

dln ϵ

(
dΘ

dη
−
dln ϵ
dη

)
= 0 (3.62)

In the absence of collisions, the evolution of the temperature perturbations is
therefore directly related to the evolution of the comoving photon energy which is
described by the geodesic equation. Recalling that for photons дµνPµPν = 0, in the
Newtonian gauge we have:

Pµ =
ϵ

a2 [1 − Ψ, (1 + Φ)p̂] (3.63)

Using Eq.(1.4) and dη/dλ = ϵ/a2(1 − Ψ), the geodesic equation can be rewritten
in conformal time as:

(1 − Ψ)
ϵ

a2
dPµ

dη
+ Γ

µ
νρPνPρ = 0 (3.64)

The 00-component of this equation is then:

dln ϵ
dη
= −

dΨ

dη
+

(
ÛΨ + ÛΦ

)
(3.65)

the photon energy evolves along the geodesic in presence of metric perturbations
due to variation of Ψ along the path and by the evolution of the potentials. As
expected, in absence of perturbations photon energy is conserved.

3.3.2 Collision term for Thomson scattering

The dominant scattering effect close to recombination is the Thomson scattering
of the photons off the free electrons in the plasma. This is the only scattering
process we need to take into account to calculate the r.h.s of Eq.(3.57)

Let us start in the rest frame of a single electron. In this frame, an incoming
photon has energy ϵ′in and 3-momentum p′in = ϵ

′p̂in. Since Thomson scattering
is an elastic process it does not change the photon energy so that the scattered
photon has energy ϵ′in and 3-momentum p′ = ϵ′inp̂

′. The differential cross-section
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for Thomson scattering of unpolarized radiation (i.e. the rate at which electrons
scatter photons per solid angle, per unit incident photon flux) is:

dσ

dΩ
=
σT
4π

(3.66)

where σT is the Thomson cross section. Now, we can write the scattering rate with
respect to the proper time τ′ in the electron rest-frame:

C′[f ′(ϵ′, p̂′)] ≡
d f ′

dτ′
= ne

∫
dp̂′in

dσT
dΩ
[f ′(ϵ′, p̂′in) − f ′(ϵ′, p̂′)]

= neσT

(
−f ′(ϵ′, p̂′) +

∫
dp̂′in
4π

f ′(ϵ′, p̂′in)

)
(3.67)

the first term in the integral account for incoming photon (p̂′in → p̂′) while the
second describes outgoing photon (p̂′ → p̂′in) and we see that the collision term
vanish for isotropic radiation (p̂′in = p̂′) confirming that the collision term arises
only at linear order.

Now, we need to return to the background frame in which the electron is not at
rest. This accounts for the bulk velocity of electrons ve . To obtain the distribution
in this framewe need to perform aLorentz boost of the distribution in the rest frame.
First we note that, at zeroth order the proper time is the same in both frame. Then,
using the Lorentz invariance of the distribution function (f ′(ϵ′, p̂′) = f (ϵ, p̂)), the
scattering rate in the boosted frame is, up to second order terms:

C[f (ϵ, p̂)] ≡
d f (ϵ, p̂)

dη
= a

d f ′(ϵ′, p̂′)

dτ
= aC′[f ′(ϵ′, p̂′)] (3.68)

Substituting Eq.(3.67) we get:

C[f (ϵ, p̂)] = −Γ
(
f ′(ϵ′, p̂′) +

∫
dp̂′in
4π

f ′(ϵ′, p̂′in)

)
(3.69)

In the boosted frame, the photon energy is not conserved in the scattering due to
the motion of the electron i.e. ϵ , ϵin. Infact a Lorentz transformation of the
energy and of the distribution function gives:

ϵ′ = γϵ (1 − p̂ · ve) (3.70)

ϵin = γϵ(1 − (p̂ − p̂′in) · ve) (3.71)

f ′(ϵ′, p̂′) = f (ϵ, p̂) = f̄ (ϵ) −
d f̄

dln ϵ
(p̂ − p̂′in) · ve −

d f

dln ϵ
Θ(p̂in) (3.72)
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Let us further discuss the terms of Eq.(3.72). The first term f̄ (ϵ) cancel out the
contribution of the zeroth order term of f (ϵ, p̂) ≈ f̄ (ϵ) + (d f̄ (ϵ)/ln ϵ)Θ(p̂). The
contribution of p̂′in · ve integrates to zero by parity. With these considerations, we
can put all these into Eq.(3.67) to obtain:

C[f ] = Γ
d f̄

dln ϵ
[Θ(p̂) − Θ0 − p̂ · ve] (3.73)

where Γ = aneσT and we have defined themonopole of the temperature anisotropy:

Θ0 =
1

4π

∫
dp̂inΘ(p̂in) (3.74)

We conclude this part noting that in the Thomson cross section we have implicitly
averaged over a polarization term . The more correct form of σT would be:

dσ

dΩ
=

3σT
16π
[1 + (p̂′in − p̂

′)2] (3.75)

and the collision term will assume the form

C[f ] = Γ
d f̄

dln ϵ

[
Θ(p̂) − p̂ · ve −

3
16π

∫
dp̂inΘ(p̂in)[1 + (p̂in − p̂)

2]

]
(3.76)

The contribution from polarization is around the 1% in the collision term, however
the dependence on polarization means that at a small level the CMB will be
polarized due to Compton scattering. Interestingly the information carried by
polarization is as valuable as that of the temperature spectrum. We will return on
the polarization at the end of the next Section.

3.3.3 Photon Boltzmann equation

We obtain the Boltzmann equation for photons putting together Eq.(3.76) and
Eq.(3.62):

dΘ

dη
=
dln ϵ
dη
− Γ[Θ − Θ0 − p̂ · ve] (3.77)

At early times the Thomson scattering was still efficient and electrons were tightly
coupled to photons (Γ � H ). As we discussed previously scattering tends to
make the photon distribution isotropic in the electron rest frame. In a general
frame then the distribution has only a monopole and a dipole Θ → Θ0 + p̂ · ve .
Using Eq.(3.65) the Boltzmann equation becomes:

Θ′ + p̂i∂iΘ = Φ
′ − p̂i∂iΨ − Γ[Θ − Θ0 − p̂ · ve] (3.78)

It is now convenient to transform this equation into the Fourier space. We define
the Fourier transform of a generic function F(η,x) and the inverse transformation
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as:

F(η,k) ≡
∫

d3x

(2π)3/2
F(η,x)e−ik·x F(η,x) ≡

∫
d3k

(2π)3/2
F(η,k)eik·x (3.79)

and Eq.(3.78) reads:

Θ′ + ikµΘ = Φ′ − ikµΨ − Γ[Θ − Θ0 − iµve] (3.80)

where ve ≡ ivek̂ and µ ≡ k̂ · p̂. It is worth stressing that due to the statistical
isotropy of the Thomson scattering the evolution of the temperature fluctuations
does not depends explicitly on k̂ and p̂ but only on their relative orientation µ.
Furthermore, since for scalar fluctuations the perturbation from a single Fourier
mode are axisymmetric it is convenient to expand the Fourier modes in terms of
the Legendre polynomials, i.e.

Θ(η, k̂, p̂) ≡
∞∑̀
=0
(−i)`Θ`(η, k̂)P`(µ) (3.81)

The multipole expansion is really convenient in the tight-coupling limit since all
moments ` > 2 are suppressed. The evolution equation for the Θ`>2 is obtained
multiplying Eq.(3.80) by the Legendre polynomials P`>2 and integrating over µ.
The remaining terms lead to the following equation:

Θ′ + k

(
` + 1
2` + 3

Θ`+1 −
`

2` − 2
Θ`−1

)
= −ΓΘ` (3.82)

which is an infinite hierarchy of coupled equation since eachmomentΘ` is coupled
to the adjacent moments Θ`±1. In the tight coupling limit (Γ � k > H ) it implies:

Θ` ∼
k

Γ
Θ`−1 � Θ`−1 (3.83)

showing that moments with ` > 2 are suppressed. We can derive the evolution
equations for the monopole and the dipole as we have done for the higher order
moments, this leads to:

Θ′0 = −
kΘ1

3
+ Φ′ (3.84a)

Θ′1 = kΘ0 − kΦ − Γ(Θ1 − ve) (3.84b)

The monopole and the dipole are also related to the 00− and i0− component of the
perturbed stress-energy tensor for the photons in a simple way [44]:

Θ0 =
δγ

4
Θ1 = −υγ (3.85)
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Using this relation, we can recast the evolution equation for the monopole and the
dipole in a more familiar way:

δ′γ +
4
3

(
∇ · vγ − 3Φ′

)
= 0 (3.86)

v′γ +
1
4
∇δγ +∇Ψ = −Γ(vγ − ve) (3.87)

which are Eqs.(3.23) in the epoch of radiationd domination with the addition of
an interaction term. We notice that the first equation is the standard continuity
equation for δγ which holds still since there is no energy exchange at linear order
from Thomson scattering. The Euler equation instead receive a corrections due to
exchange of momentum between photons and electrons caused by the scattering.

3.3.4 Neutrinos

We can trivially extended what we have found for Θ0 and Θ1 to derive the equation
describing neutrino fluctuations. Neutrinos decouple from the rest of the plasma
well before recombination, so they are described by the collisionless Boltzmann
equation, i.e. by Eqs.(3.84) without the collision term. Defining the neutrino
temperature fluctuation as N we have:

N ′0 = −
kN1

3
+ Φ′ (3.88a)

N ′1 = kN0 − kΦ (3.88b)

where we have used the fact that the density contrast of neutrino is δν = 4N0.
When including neutrinos the equation for the evolution of the potential, Eqs(3.24a
- 3.24b), assume the form:

∇2Φ − 3H(Φ′ +HΨ) = 4πGa2[ρ̄cδc + ρ̄bδb + 4ρ̄γΘ0 + 4ρ̄νN0] (3.89)

∇2(Φ − Ψ) = −8πGa2(ρ̄γΘ2 + ρ̄νN2) (3.90)

where in the first equation we have explicitly written the contribution to the per-
turbed matter density ρmδm = ρ̄cδc + ρ̄bδb (accounting for cold dark matter and
baryons respectively) and to the perturbed radiation density ρrδr = 4ρ̄γΘ0+4ρ̄νN0
(accounting for photons and neutrinos respectively). In Eq.(3.90) instead we have
made use of the conservation equation for the stress-energy tensors spatial compo-
nent (Ti

j) to relate the anisotropic stress σ to the quadrupole moments of neutrinos
and photons perturbations which yields σν = −3/5N2 and σγ = −3/5Θ2. From
Eq.(3.90) we see that the two potentials Φ and Ψ are equal and opposite unless neu-
trinos or photons have a non-negligible quadrupole moment. As we have discussed
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above, in the tight coupling limit photon quadrupole moment is suppressed how-
ever neutrinos are purely free-streaming and can therefore have a non-negligible
quadrupole moment. In the next section we will see that the tight coupling limit
approximation breaks for scale smaller than the photons mean free paths leading
to the damping of perturbations at these scales.

3.4 CMB anisotropies
What we see in the sky as the CMB (Fig1.2) is a map of the cosmic microwave
background which describe the variation of the CMB temperature as a function of
the direction of photon propagation, p̂. However the temperature fluctuations are
defined at every point in space and time, Θ(η,x, p̂), this mean that our only handle
on the anisotropies is their dependence from the direction of the incoming photon
p̂. The reason is that we only see a representation of the CMB map at fixed point
in space (x = x0) and time (η = η0). Furthermore CMB maps are given in terms
of the projection of p̂ in the sky i.e. in polar coordinates θ, ϕ.

To relate the anisotropies in the CMBwith the fluctuations in the photon-baryon
fluid we need therefore to expand the temperature fluctuations field in spherical
harmonics, i.e.

Θ(η, k̂, p̂) =
∞∑̀
=1

∑̀
m=−`

a`m(η, k̂)Y`m(p̂)

=

∞∑̀
=1
(−i)`Θ`(η, k̂)P`(k̂ · p̂) (3.91)

where we havemade use of the relation between spherical harmonics and Legendre
polynomial,

P`(a · b) =
4π

2` + 1

∑̀
m=−`

Y`m(b)Y?`m(a) (3.92)

and defined the a`m in terms of Θ` as:

a`m(η, k̂) = (−i)
` 4π
2` + 1

Θ`(η, k̂)Y?`m(k̂) (3.93)

to make the relation with the moment of the temperature fluctuation manifest.
With these relation the temperature map can be written as,

Θ(p̂) ≡
δT
T
(p̂) = Θ(η0,x0, p̂)

=

∫
d3k

(2π)3/2
eik̂·x0

∑̀
(−)`Θ`(k)R(k̂)P`(k̂ · p̂) (3.94)
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where R is the comoving curvature perturbation and we have defined the transfer
function Θ`(k) ≡ Θ`(η0, k̂)/R(k).

The background and homogeneity of the Universe require that the angular
average of the a`m is zero but they have a non-zero variance. This variance is
called C` and it is defined as:

〈a`ma
?
`′,m′〉 = δ``′δmm′C` (3.95)

Using the relation between a`m and Θ`, the C` coefficients can be related to the
temperature fluctuation field i.e.

〈Θ(p̂)Θ(p̂′)〉 =
∑̀ 2` + 1

4π
C`P`(p̂ · p̂′) (3.96)

Using Eq.(3.94), it can be shown that the C`’s are defined as:

C` =
4π

(2` + 1)2

∫
d lnkΘ2

`(k)∆
2
R(k) (3.97)

where ∆2
R
(k) is the spectrum of the curvature perturbation defined as:

〈R(k̂)R?(k̂′)〉 =
2π2

k3 ∆
2
R(k)δD(k̂ − k̂

′) (3.98)

If the fluctuations areGaussian the power spectrum (two-point correlation function)
contains all the information of the CMB. This is in agreement with current data but
the question on how Gaussian are the statistics of primordial perturbation is still
open. Inflationary models infact predict that early time fluctuations may have some
degree of non-Gaussianity; their detection would be therefore of great importance
to better understand the physics of inflation [67].

3.4.1 Anisotropies from inhomogeneity

To connect the observed spectrum today with the fluctuations at recombination we
need now to integrate back our equation to the time of recombination along the
line of sight (LOS). It useful to introduce some auxiliary concepts:

• Optical depth

τ(η) ≡

∫ η0

η
Γ(η′)dη′ (3.99)

it describe the opacity of the Universe at a given time when seen from today.
The probability of no scattering for a photon along the path to us scale as e−τ
therefore the Boltzmann equation can be rewritten :

dΘ

dη
+ ΓΘ =

d

dη
(e−τΘ) (3.100)
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• Visibility function
д(η) ≡ −τ′(η)e−τ(η) (3.101)

it describe the probability density for a photon to last scatter at time η.

Using these new quantities the Boltzmann equation for scalar perturbations to the
photon density can be written as:

d

dη
[e−η(Θ + Ψ)] = e−τ(Φ′ + Ψ′) + д(τ)[Θ0 + Ψ − p̂ · ve] = S (3.102)

integrating along the LOS we find:

Θ(η0,x0, p̂) =

∫ η0

0
dη′S(η′,x0 + (η0 − η

′)p̂, p̂) (3.103)

where we have used τ(η0) = 0 and τ(0) ≈ ∞ and dropped the unobservable
monopole Ψ(η0,x0) (for a more detailed derivation see [44]). Assuming that
the recombination occurs instantaneously we can set д(η) = δD(η − ηrec) and
e−τ = H(η− ηrec) where δD andH are the delta Dirac and the Heaviside functions
respectively. Therefore we find:

Θ(p̂) ≈ (Θ0 + Ψ)|ηrec − (p̂ · ve)|ηrec +

∫ η0

ηrec

dη′(Ψ′ + Φ′) (3.104)

We see then that Θ(p̂) is made up of three contributions:

• Sachs-Wolfe effect(SW)
It is the relative frequency shift of photons induced by the difference in gravi-
tational potential at emission and detection. More precisely is a combination
of the intrinsic temperature fluctuation at the surface of last-scattering and
an additional gravitational redshift arising when the photons climb out of a
potential well at last-scattering.

• Doppler effect
The photon-baryon fluid moves w.r.t. the conformal Newtonian frame with a
non-zero velocity ve . This leads to a shift in the photon energy.

• Integrated Sachs-Wolfe effect (ISW)
This term describes the effect of gravitational redshifting of the photon en-
ergy from the evolution of the potentials along the LOS. During the matter
dominated era the potentials were constant but at early times the residual
amount radiation gives a time variation of Φ leading to the early ISW effect.
At late times, dark energy become relevant and again the potentials are not
constant along the LOS leading to the so-called late ISW.
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It is worth at this point to evaluate the Sachs-Wolfe term at large scales (where it
dominates the CMB spectrum) to glance some of the physics behind this contri-
bution. On super horizon scales and for adiabatic initial conditions we can write
−2Ψ = −2Φ ≈ δ = δc = δb = 3/4δγ (since recombination happens in the matter
dominance) therefore we have that CMB anisotropies on large scales are:

Θ ≈

(
1
4
δγ + Ψ

)����
ηrec

=
1
3
Ψ(ηrec) = −

1
8
δγ(ηrec) (3.105)

At this scale gravitational redshift wins over temperature fluctuations, an overden-
sity at last scattering (δγ(ηrec) > 0) corresponds to a potential well (Ψ(ηrec) < 0)
and therefore to a cold spot in CMB map i.e. Θ(ηrec) < 0. Conversely, hot spots
corresponds to an underdensity.

Finally in order to find the transfer functions for each term we transform the
LOS solution to Fourier space:

Θ`(k) = j`(kχrec)(Θ0+Ψ)|ηrec− j
′
`(kχrec)ve |ηrec+

∫ η0

ηrec

dη′(Ψ′+Φ′)j`(kχrec) (3.106)

in deriving this equation we have made use of the Rayleigh plane waves expansion,

eiχk·p̂ =
∑̀
(−i)`(2` + 1)j`(kχ)P`(k̂ · p̂) (3.107)

where j` are the Bessel function and we have defined f |ηrec ≡ f (ηrec,k)/R(k) and
χ(η) = η0 − η as the conformal distance along the LOS. Putting Eq.(3.106) into
Eq.(3.97) and neglecting for simplicity the cross spectra and the contribution of
the ISW which are very small, we have:

Θ`(k) = TSW(k)j`(kχrec) + TD(k)j
′
`(kχrec) (3.108)

with TSW(k) = (Θ0 +Ψ)|ηrec/R(k) and TD(k) = ve |ηrec/R(k). Therefore the contri-
bution to the C`’s of these terms can be find to be:

CSW
` ∼ T2

SW(k)∆
2
R(k)|k∼`/χrec (3.109)

CD
` ∼ T2

D(k)∆
2
R(k)|k∼`/χrec (3.110)

3.4.2 Transfer function

The last thing we need to do is to calculate the transfer function TD and TSW.
This requires to evolve the coupled fluctuations of photons, baryons, electrons and
dark matter in a perturbed spacetime. As we have already discussed, photons are
tightly coupled to the electrons so that we can use the Boltzmann equation in the
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form derived in Section 3.3.3. This approximation breaks close to recombination
(and below the diffusion damping scale, see below) but it is otherwise enough to
describe photon dynamics with good accuracy. The coupling between baryons and
electrons remains strong throughout so they form a single electron baryons fluid,
for simplicity we will refer to this as the baryon fluid and denotes the bulk velocity
of electrons and baryons as vb .

What we need to do is to connect then Eqs.(3.84) with the equations describing
the evolution of the baryon fluid. We start noting that the momentum density
qi ≡ Ti

0 can be written as:

qi = (ρ̄γ + P̄γ)viγ + (ρ̄b + P̄b)vib =
4
3
ρ̄γ(v

i
γ + Rv

i
b) (3.111)

where R = 3ρ̄b/4ρ̄γ is the baryon to photon ratio. The total energy density
perturbation can be then rewritten in terms of R as:

δρ = ρ̄γ

(
δγ +

4
3

Rδb
)

(3.112)

Using these relations and ∇µT
µ
ν = 0 we obtain:

δ′b = −kvb + 3Φ′ (3.113a)

v
′
b = −H vb − kΨ −

Γ

R
(Θ1 + vb) (3.113b)

Let us now rearrange Eq.(3.113b) as:

vb = −Θ1 −
R
Γ
[v′b +H vb + kΨ] (3.114)

in the tight coupling limit vb ≈ −Θ1 but since it multiplied by Γ we need the next
to leading order solution. We obtain this approximating vb ≈ −Θ1,

vb ≈ −Θ1 +
R
Γ
[Θ′1 +HΘ1 − kΨ] (3.115)

Substituting Eq.(3.115) into the second of Eqs.(3.84) and using this into the first
of Eqs.(3.84) to eliminate Θ1, we obtain an evolution equation for the monopole:

Θ′′0 +
HR

1 + R
Θ0 + c

2
s k

2Θ0 = −
1
3
k2Ψ + Φ′′ +

R′

1 + R
Φ′ (3.116)

Eq.(3.116) is the main equation in describing CMB phenomenology. Before
moving on to discuss its solution it is worth mentioning which are the important
scales in Eq.(3.116).
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• Hubble radius
We have seen that metric perturbations are frozen outside the hubble radius
rH = (aH)−1. The perturbation modes then start to evolves only at horizon
crossing when they renter into the Hubble radius

• Sound horizon
Photon fluctuations remain frozen until they cross the sound horizon rs =∫ η

0 csdη
′, then they start to oscillate. WhenR � 1, the sound speed cs = 1/

√
3

and the sound horizon is nearly equal to the size of the horizon. Before
decoupling however the baryon fraction become relevant and cs goes to zero.
At this moment the sound horizon is much smaller than the Hubble radius.

• Diffusion scale
The diffusion scale rD is important in discussing the damping of CMB fluctu-
ations. The tight coupling approximation infact holds only above this scale.
Below the diffusion scale we need a more careful treatment of the Boltzmann
equation. For the moment, we define it as square root of the integral of the
photon mean free path along the LOS i.e.

r 2
D ∼

∫ η

0
Γ−1 (3.117)

At early times the diffusion length is very small and so is the photon mean
free path, but around recombination Γ → 0 and diffusion scale becomes
comparable to rH. The longer a mode spends in the diffusive regime the more
it gets damped by photons.

To captute much of the physics of Eq.(3.116), we can ignore the time variations
of the potentials (which is a good approximation since recombination happens in
matter dominance when the potential are approximately constant) and we ignore
the evolution of the baryon ratio R compared to the oscillation frequency csk .
Then, we can rewrite Eq.(3.116) as:

Θ′′0 + c
2
s k

2Θ0 = −
k2

3
ψ (3.118)

which corresponds to a simple harmonic oscillator with a constant gravitational
forcing term. The general solution is:

Θ0(η,k) = [Θ0(k) + (1 + R)Ψ(k)] cos(krs) − (1 + R)Ψ(k) (3.119)

where we have used Θ′0(0) = 0 for adiabatic initial conditions. We conclude this
section discussing the physical implications of Eq.(3.119).

64



3. The inhomogeneous Universe

• When photons dominates the fluid R→ 0 and Eq.(3.119) becomes:

Θ0(η,k) + Ψ(k) = [Θ0(k) + Ψ(k)] cos(krs) (3.120)

This represents a harmonic oscillator with a zero-point displaced by gravity.
Photons oscillate in an out of the potential well, when they fall in the term
−Ψ > 0 and photons gain energy. After decoupling photons have to climb
out the potential and loose energy this precisely compensate the energy
gain at infalling. Therefore Eq.(3.120) describe the observed temperature
perturbation. Different modes will arrive in different phase of their evolution
at the time of decoupling. A discrete sets of wavenumbers kn = nπ/rs(ηrec)

corresponds therefore to the oscillation peaks at decoupling i.e. the peaks
that we observe in the CMB.

• Including the baryon ratio again but assuming it to be constant in time we
get:

Θ0(η,k) + Ψ(k) = [Θ0(k) + Ψ(k)] cos(krs) − RΨ(k) (3.121)

The displacement due to the gravitational potential is further enhanced by the
presence of baryons i.e. the gravitational infall leads to a greater compression
of the fluid in the potential well. Since the redshift is not affected by baryons
this features remains in the spectrum and enhance all peaks from compression
over those from rarefaction.

• During the radiation era the potential Ψ and Φ become time dependent inside
the horizon. The decaying potentials act to enhance temperature fluctuations
through a near resonant driving force. Since the potentialΨ decays after sound
horizon crossing, it drives the first compression without a counterbalancing
effect when photons exits the potential wells. The higher peaks began their
oscillation during radiation dominance therefore are the more enhanced by
this effect.

• For the approximate solution with constant R, the evolution of the dipole
satisfy:

Θ1(η,k) = −3[Θ0(k) + (1 + R)Ψ(k)]cs sin(krs) (3.122)

evaluating this and Eq.(3.119) at η = ηrec the transfer function can be written
as:

TSW(k) = A(k) cos(krs,rec) + B(k) (3.123)

TD(k) = −3csA(k) sin(krs,rec) (3.124)
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with

A(k) ≡
Θ0(k) + (1 + R)Ψ(k)

R(k)
(3.125)

B(k) ≡ −R
Ψ(k)

R(k)
(3.126)

In our derivation of CMB anisotropies along with the contribution of the ISW
term, we are not considering some important effects that contributes to shape the
power spectra of CMB anisotropies :

• Photon decoupling does not happen instantaneously but actually takes quite
sometimes as we have seen in Chapter 2. As a results instead of considering
initial condition for the free-streaming evolution at ηrec one must convolve
Φ, υγ and δγ with the photon visibility function giving the probability that
a photon last-scattered at redshift η. This in turn lead to an exponential
suppression of the C` [65].

• At the reionization epoch, the light from the first stars, quasars and dwarf
galaxies makes the Universe less transparent to CMB photons. Free electron
density grows again and the probability for a photon to “live through” this
epoch is given by the reionization optical depth e−τrei with τrei = τ(ηrei).
Photons that rescatter at z = zrei at given place in the Universe have last
scattered at recombination anywhere on a sphere of coordinate radius ≈ ηrei.
Since the direction of photon propagation changes randomly, photons coming
to an observer from a given direction gather from the whole of that sphere.
Hence, the contribution of rescattered photons to anisotropy at angular scales
smaller than ∆θrei = ηrei/η0 is washed out, and the remaining anisotropy is
due to photons that have not rescattered. On the other hand, the anisotropy
at angular scales larger than ∆θrei remains intact, since the regions of the
coordinate size ηrei at recombination are not resolved at these angular scales.
At the level of the angular power spectrum, this implies a suppression of the
C` coefficients by e2τrei for ` > πη0/ηrei

• Weare not including (massive) neutrinos in our computation ofCMBanisotropies.
Their contribution (even if it is not dominant) as an important impact on CMB
anisotropies has we have briefly discussed in Section 3.3.4.

• The ensemble average that define the C` should in principle be made over
different Universe realizations. Since we have only one Universe to observe
this cannot be done in reality. Therefore onemust construct an estimator Ĉ` of
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Figure 3.1: Planck 2018 temperature power spectrum (red points) with the 1σ error including cosmic
variance. The base-ΛCDM theoretical spectrum best fit to the Planck likelihood is plotted in light blue.
Residual w.r.t this model are showed in the lower panel. Note that D` = `(` + 1)C` . The picture is
adapted from [28].

the realC` assuming that each region at a certainmultipole ` is an independent
realization of the underlying stochastic field (ergodic hypothesis):

Ĉ` ≡
1

2` + 1

∑̀
m=−`

|a`m |
2 (3.127)

The expected squared difference between Ĉ` and C` is called the cosmic
variance and for Gaussian anisotropies is:

〈(Ĉ` − C`)2〉 =
2C`

2` + 1
(3.128)

Therefore, at large angular scales we do not have many different regions over
which to sample the distribution from which the a`,m are drawn, and there
will be an intrinsic uncertainty in our knowledge of the C`.

Current codes like the Boltzmann solver CAMB takes into account all these contri-
butions along with solving the Boltzmann hierarchy to higher order than the dipole.
In Fig.3.1 the Planck data points are showed with the best fit ΛCDM spectrum.
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3.4.3 Diffusion Damping

By assuming perfect tight coupling (zero mean free path) our solution is missing
some physics: the approximation of photons and baryons and electronsmoving as a
single fluid is not met in reality. Photons travels a finite distance between collisions
λmfp = (σTne)

−1, in a Hubble time the number of photons scattering is σTneH−1.
The total distance traveled in the course of a randomwalk is themean free path times
the square root of the total number of steps λD ∼ λmfp

√
σTneH−1 = (σTneH)−1/2.

Any perturbation on scales smaller than λD is washed out by the diffusion damping.
In Fourier space this will corresponds to have a damping terms in Eq.(3.120) of
the form:

Θ0 ∝ e
−k2/k2

D coskrs (3.129)

with kD ∼ λ
−1
D . Since the tight coupling approximation breaks for scale smaller

than kD, we have to account also for the photons quadrupole moment Θ2. A
detailed calculation of the damping scale involving the quadrupole moment in the
Boltzmann equation gives:

k−2
D (k) ≡

∫ η

0

dη

6(1 + R)Γ(η)

[
R2

1 + R
+

8
9

]
(3.130)

we see that this is consistent with our naive definition of the damping scale
Eq.(3.117) and with the approximate solution that we have found in this Sec-
tion using the photon mean free path. The diffusion damping is sometimes called
Silk damping and kD is also known as the Silk scale.

3.4.4 CMB polarization

We conclude this Chapter with a note on CMB polarization. As we have discussed
in deriving the photon Boltzmann equation, Thomson scattering can induce polar-
ization if the incoming radiation field as a quadrupole moment (corresponding to
Θ2).

Polarization unfortunately is not a scalar field, so the expansion in spherical
harmonics cannot be applied. We have instead to start from the anisotropic tensor
Iij(p̂) defined on the sky at the observation point {η0,x0}. Starting from Iij one
can construct:

• the “Stokes parameters” Q and U (see also [44])

Q =
1
4
(I11 − I22) (3.131)

U =
1
2

I12 (3.132)
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Q and U are related to the polarization magnitude and angle by:

P =
√

Q2 + U2 (3.133)

α =
1
2

arg(Q + iU) (3.134)

• the scalar (spin-0) field 1
4(I11+I22)which is nothingmore than the temperature

anisotropy itself.

Since Q and U are not invariant under rotation in the plane perpendicular to photon
direction of propagation (p̂) we cannot use the spherical harmonic expansion,
instead we need to use the spin-2 spherical harmonics Y(±)

`m . Q and U can then be
written as [68, 69]:

Q(p̂) ± iU(p̂) =
∞∑̀
=0

∑̀
m=−`

a±`mY±`m(p̂) (3.135)

It is useful to introduce a linear combination of the a`m:

aE
`m = −

1
2
(a+`m + a

−
`m) (3.136)

aB
`m = −

1
2i
(a+`m − a

−
`m) (3.137)

and from these one construct the following quantities:

E(p̂) ≡
∞∑̀
=0

∑̀
m=−`

aE
`mY±`m(p̂) (3.138)

B(p̂) ≡
∞∑̀
=0

∑̀
m=−`

aB
`mY±`m(p̂) (3.139)

The E field can be characterized as a divergence- and curl-free field (with E < 0
around cold spots in the sky and E > 0 around hot ones), instead the B field is
a divergenceless but with a non-zero vorticity at every point in the sky. Along
with the a`m (that we will from now on denotes with aT

`m) are everything we need
to know to compute the power spectra and cross-correlation of temperature and
polarization fluctuations. Therefore Eq.(3.95) is generalized to:

〈aX
`m(a

Y
`′,m′)

?〉 = δ``′δmm′CXY
` (3.140)

with X,Y = T,E,B. Given that temperature and polarization anisotropies are
generated by density fluctuations we expect a non-zero cross correlation between
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the temperature and the E fields while instead TB and EB are zero for parity
reasons. This decomposition of the polarization in E− and B−modes is of great
importance in modern cosmology as shown in [68, 69] (but see also [44]). In fact
they have demonstrated that:

• scalar perturbations (fluctuations of the energy density) can lead to a quadrupole
moment for the incoming radiation field. Then they can only sourceE-modes.

• vector perturbations (plasma vorticity) can also produce a quadrupole mo-
ment which results in the production of B-modes. But the expansion of the
Universe wash out this kind of perturbations so their contribution is expected
to be negligible

• tensor perturbations (gravity waves) stretch and squeeze the space in orthog-
onal directions thus they produce both E- and B-modes

Since gravitational waves are produced during inflation a detection of a B-modes
signature in the CMB would represent the “smoking gun” for inflation. However
foregrounds (such as dust and synchrotron radiation) can emit polarized radiation
and must be taken into account carefully. Furthermore, gravitational lensing
can rotate E-modes into B-modes and therefore acts as an additional source of
contamination.

We conclude this brief review of the CMB polarization with the equivalent of
Eq.(3.97) for XY different from TT. For XY = EE,TE, the E-modes power spec-
trum and its cross-correlation with the temperature field, the spectra are dominated
by scalar fluctuations so that we can write:

CXY
` ∝

∫
d lnk∆2

R(k)TX,`(k)TY,`(k) (3.141)

where TY,`(k) and TX,`(k) represent the transfer function of the X and Y fields and
we have TT,`(k) = Θ`(k). For XY = BB, B-modes power spectrum, we can instead
write:

CBB
` ∝

∫
d lnk∆2

h(k)TB,`(k)TB,`(k) (3.142)

since this kind of polarization anisotropies are generated by tensor perturbations
the power spectrum is the Fourier transform of the two-point correlation function
of the spin-2 metric perturbation hij of Eq.(3.21).
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4 PMF impact on Future
CMB Bounds on Inflationary

Gravitational Waves
In this Chapter we study the implications of including a primordial magnetic field
(PMF) in the standard cosmological scenario and how this can lead to a bias
inference of the tensor-to-scalar ratio for future experiments aiming at measuring
this value with a sensitivity δr ∼ 10−3. Besides we provide also a forecast on the
possibility of breaking the degeneracy using measurements of the Faraday rotation
of CMB polarization.

This Chapter is mainly based on the work Phys. Rev. D97 (2018) no.12, 123534
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4.1 Introduction
One of the main goals of modern cosmology is the detection of Cosmic Mi-
crowave Background polarization B-modes produced by vacuum fluctuations of
the metric during inflation. Their detection would provide a “smoking gun” for
the inflationary paradigm and give hints towards the quantum nature of gravity.
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4. Magnetic Fields and Gravitational Waves

In the past years the experimental bounds on the primordial B-mode component
(parameterized by the tensor-to-scalar ratio r ) have improved significantly. Indeed,
since the constraints from the BICEP experiment of r < 0.72 at 95% C.L. [70] in
2010, the recent combined analysis of BICEP2, Keck Array IV and PlanckB-mode
measurements now provide r < 0.07 at 95% C.L. [31], showing an improvement
by nearly one order of magnitude in about ∼ 7 years (see also [71]). In the next
years a further improvement by one order of magnitude, reaching a sensitivity in
the range of r ∼ 10−2 - 10−3, is expected by several ongoing experiments such
as BICEP3 and the Keck Array [72], CLASS [73], Advanced ACTPol [74], and
SPT-3G [75]. Future experiments as the LiteBIRD [29] and CORE-M5 [76–78]
satellite missions and the CMB-S4 ground based telescope [33] are expected to
reach a sensitivity of δr ∼ 0.0001, closing in on the prediction r ≈ 10−3 of the
Starobinsky model [79].

It is however important to investigate if other mechanisms could generate a B-
mode polarization signal that could lead to a wrong claim for a detection of vacuum
fluctuations of the metric. For example, foregrounds as galactic dust are obviously
an issue [80]. Topological defects (see e.g. [81]) can also produce B-modes (even
from vector perturbations [82]). Finally, GWs can also be sourced during inflation
in presence of anisotropic stress generated by quantum fluctuations of other fields,
even if their energy density is much smaller than that of the dominant inflaton
field (see e.g. [83, 84]). The common attribute to all these sources is the fact that
they have some additional signature that allows to disentangle them from B-modes
generated from vacuum fluctuations of the metric, be it the frequency dependence
for galactic foregrounds (see e.g. [85, 86]), or the shape of the angular power
spectrum for B-modes from topological defects or sourced tensor fluctuations
during inflation.1

B-mode polarization can also be produced by a primordialmagnetic field (PMF)
(see e.g. [94–96]). In the presence of PMFs, passive tensor and compensated
vector modes give B-modes with angular spectra that are very similar in shape
to those produced by primordial gravitational waves (GWs)2 and lensing (see e.g.
[94, 97–99]). Future CMB experiments like CMB-S4 will be extremely sensitive
to PMFs, improving current constraints on the corresponding B-mode amplitude
by nearly two orders of magnitude [100].

It is then important to investigate how well future CMB experiments could
discriminate between inflationary GWs and PMFs in the generation of CMB
polarization B-modes: these experiments would be able to claim a detection of the

1 Moreover, sourced tensor fluctuations can be chiral [87–91] and highly non-Gaussian [92, 93].
2For simplicity, in the rest of the Chapter we will refer to vacuum fluctuations of the metric during

inflation as primordial gravitational waves.
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quantumnature of tensor perturbations of themetric only if a potential contribution
from PMFs can be identified and subtracted.

How can one distinguish between the two scenarios? One key difference be-
tween the two is that while GWs affect the CMB anisotropies on large angular
scales, primordial magnetic fields affect also smaller angular scales through com-
pensated perturbations (see e.g. [94, 97, 99, 101]). Aswe show later in thisChapter,
CMB experiments sensitive mainly to large angular scales as the proposed PIXIE
and LiteBIRD missions are essentially unable to discriminate between PMFs and
primordial GWs at the level of r ≈ 10−3. Then, a clean and reliable detection of
B-modes generated by the inflationary tensor fluctuations can be obtained only by
considering also smaller scales, as planned by the CMB-S4 experiments, or by a
satellite with improved angular resolution as the recent CORE-M5 proposal.

A second difference between these two scenarios is the fact that PMFs can be
constrained also by measuring the Faraday rotation (FR) of CMB polarization (see
e.g. [101] and references therein) considering maps at different frequencies and
taking advantage of the fact that the frequency scaling of FR is∼ ν−2. Moreover, FR
can be in principle measured either by considering the effect on CMB anisotropies
angular spectra or by extracting the Faraday rotation angle through estimators that
make use of the coupling between E- and B-modes induced by FR [102–105].
It is therefore important to evaluate whether future realistic CMB experiments,
considering their sensitivities, angular resolution and frequency and sky coverages,
would be able to use FR to differentiate PMFs from inflationary GWs.

This Chapter is structured as follows: in Section 4.2 we review how primordial
magnetic fields affect CMB temperature and polarization anisotropies and discuss
in what region of parameter space they give a B-mode signal degenerate with that
from primordial GWs. In Section 4.3 we review our forecast method while in
Section 4.4 we present our results. In Section 4.5 we discuss the impact of Faraday
rotation on our forecasts. We finally conclude in Section 4.6.

4.2 Primordial Magnetic Fields
In this Section we present some definitions useful for our analysis: we refer the
interested reader to [66, 94, 97, 98, 106, 107] for a more detailed discussion of the
subject.

4.2.1 Magnetic Parameters

We consider a stochastic magnetic field Bi(η, ®x) generated at a time ηB before the
epoch of neutrino decoupling ην. We assume that PMFs are a statistically isotropic
Gaussian field with no helicity (a review on the impact of helical field on CMB
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physics can be found in [106]). The exact form of the power spectrum PB of the
PMF strongly depends on the mechanism generating it. Following the current
literature, we define PB as a power law with a cut-off scale kD, i.e.

PB(k) =

{
A knB for k < kD ,

0 otherwise ,
(4.1)

where a spectral index nB = −3 denotes a scale-invariant spectrum and the cut-off
scale kD accounts for the damping of the magnetic field due to radiation viscosity
on very small scales, where magnetic effects are suppressed by photon diffusion
[108, 109]. From Eq. (4.1), then, we define the magnetic field amplitude in terms
of the parameter Bλ, obtained by smoothing the magnetic energy density with a
Gaussian filter over a comoving scale λ [94]. In what follows we take λ = 1 Mpc.1
Moreover, we focus only on nearly scale-invariant spectra PMFs with nB = −2.9,
which we expect to be produced by inflationary magnetogenesis, where magnetic
fields are generated on small scales and then stretched to cosmological scales
by the accelerated expansion (see [111–113] for recent analyses). We refer to
[66, 99, 106, 110, 114–116] for discussions about how values of nB larger than −3
can be generated, and what are the current constraints on PMFs with blue-tilted
spectra.

Depending on the generation epoch of the PMF three different class of magnetic
perturbations can be distinguished: inflationary, passive and compensated. In this
Chapter we focus only on passive and compensated mode which are sourced by
every PMF independently of the magnetic generation history. Passive modes are
generated before neutrino decoupling (η < ην) [94, 97, 98, 117, 118]. When
neutrinos decouple (η ≥ ην), they also produce an anisotropic stress that com-
pensates the magnetic one leading to isocurvature-like perturbations, the so-called
compensated modes [94, 97, 98, 117–119].

The amplitude of these modes is set by the comoving curvature perturbation
ζ. The presence of a PMF sources the growth of ζ before neutrino decoupling
through the anisotropic stress ΠB [94]. Once neutrino compensation on the PMF
anisotropic stress is effective, the growth of ζ ceases. For scalar perturbations the
final form of ζ is [94, 118]

ζ ≈ ζ(ηB) −
1
3

RγΠB

[
ln(ην/ηB) +

(
5

8Rν
− 1

)]
, (4.2)

where ζ(ηB) is the comoving perturbation at the time of PMF generation, (ΠB)
i
j is

the magnetic dimensionless anisotropic stress, and Ri represents the ratio between
the total density and the density of the species i.

1It is common to take this value for λ [110]: it corresponds to the size of a typical region at the time
of last scattering that later collapses to form a galactic halo.
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Ωbh
2 Ωch

2 τ nS 100 θMC ln
[
1010AS

]
r

0.02225 0.01198 0.055 0.9645 1.04077 3.094 0

B1 Mpc [nG] log10 (ην /ηB) nB

1.08 12 −2.9

Table 4.1: Cosmological (top) and magnetic field (bottom) parameters assumed for the fiducial model.
The fiducial values for the PMF parameters are within the 95% C.L. limits from current CMB experiments
such Planck [110] and Planck+SPT [99] (see [120, 121] for constraints from pre-Planck data).

From Eq. (4.2) we see that there are two main contributions to ζ. The first
contribution which has amplitude proportional to the product ΠB ln(ην/ηB) is the
adiabatic-like passive mode (which, unlike the standard adiabatic mode, has non-
Gaussian statistics). This mode grows logarithmically in time when ηB ≤ η ≤ ην
and then freezes on super-horizon scales after neutrino decoupling. The value of
ηB cannot be defined unle ss the generationmechanism of the PMF is known. In the
following, we will allow ην/ηB to range from 106 to 1017 [99], corresponding to a
energy scale of PMF generation between 103 GeV and 1014 GeV.2 From Eq. (4.2),
we see that increasing ην/ηB leads to an increase in the amplitude of the passive
mode: as we are going to discuss in the following (see Section 4.4), on large
scales this effect will be degenerate with changing the amplitude of the primordial
magnetic field. The second scalar mode is the so-called compensated mode: it is
proportional toΠB but it also has a dependency on themagnetic contributions to the
radiation density contrast, ∆B, through the ratio Rγ/Rν. This is a isocurvature-like
mode sourced by the residual PMF stress-energy after neutrino compensation.

An expression similar to Eq. (4.2) can be derived for tensor perturbations,
with ΠB replaced by the tensor part of the PMF anisotropic stress. There will be
both passive and compensated tensor modes: however, compensated tensor modes
are small in amplitude and can be safely neglected [118]. Finally, since vector
perturbations rapidly decay when not sourced, there are no passive vector modes.
Nevertheless, there is a compensated vector mode proportional to the vector part
of the anisotropic stress. In conclusion, the CMB anisotropy spectra will receive
contributions from four modes in total: a passive and a compensated scalar mode,
a passive tensor mode, and a compensated vector mode. In the following sections
we briefly discuss what are our fiducial parameters for the PMF power spectrum,
and see what are the imprints of these four modes on CMB angular spectra.

2For inflationary magnetogenesis, this corresponds to considering instantaneous reheating at energies
T4

reh ≈ H2
infM

2
P/10 between Treh = 103 GeV and Treh = 1014 GeV [115].
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4.2.2 Impact of PMFs on CMB spectra and fiducial model

We use the publicly available codeMagCAMB3 [99], which is based on a modified
version of the Boltzmann integrator CAMB [122], to compute the contributions to
the CMB angular spectra of the four magnetic modes. The fiducial cosmological
model that we are going to use for the forecasts in this Chapter is a flat ΛCDM
model with parameters compatible with the recent Planck 2015 constraints [27,
110, 123]. Most importantly, since our aim is to investigate the impact of a PMF
on the determination of the tensor-to-scalar ratio r from inflationary GWs, we
have assumed a fiducial model with no primordial GWs (i.e. we fix r = 0), but
with a non-zero PMF amplitude. More precisely, we choose a PMF amplitude
B1 Mpc = 1.08 nG and a time ην/ηB = 1012 of generation of the PMF 4 (compatible
with the current Planck bounds coming from CMB anisotropies [110]): the reason
for these choices is explained in detail at the end of this section. Besides, as
discussed in the previous section, we choose a spectral index nB = −2.9 for
the PMF spectrum. For convenience of the reader, we list the values of the
cosmological parameters and of the parameters describing the PMF in Tab. 4.1.

Fig. 4.1 shows the TT, EE, TE and BB angular spectra for our fiducial model
(Tab. 4.1). We see that PMFs have a significant effect mainly on the BB power
spectrum. On large scales, ` . 100, the passive tensor mode of the PMF gives a
scale-dependence similar to that from inflationaryGWs. On small scales, magnetic
vector perturbations dominate, and lead to an increase in power: this feature
is not shared by inflationary tensor modes, and we expect that it will allow to
break the degeneracy between the two mechanisms. We also notice that B-modes
from lensing have a larger amplitude than those from the compensated vector
mode: however, their scale dependence is different, so we can expect to be able to
disentangle it.

In Fig. 4.2, instead, we plot the sumof the tensor passive and vector compensated
contributions to the B-mode angular spectrum, together with lensing B-modes
and the prediction for CBB

` given a tensor-to-scalar ratio r = 0.0042. This is
the prediction of the Starobinsky R2 model [79] for N? ≈ 53 (N? being the
number of e-folds of the observable part of the inflationary epoch), and is the
main target of upcoming CMB experiments [33, 77]. We see that our fiducial
values B1 Mpc = 1.08 nG for the magnetic field amplitude and ην/ηB = 1012 for
the time of PMF generation give a large-scale B-mode spectrum very similar to
that of the Starobinsky model. We take, then, these values of B1 Mpc and ην/ηB as
a case-study, using them to show how an unresolved PMF component can bias the
constraints on the theoretically motivated class of inflationary models known as

3https://alexzucca90.github.io/MagCAMB/
4Corresponding to an energy scale of 109GeV
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Figure 4.1: Comparison between primary and magnetic contributions to CMB angular correlation
functions: the spectra have been computed with MagCAMB [99].
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Figure 4.2: Comparison between the (tensor passive + vector compensated) B-mode angular power
spectrum from PMFs (for B1 Mpc = 1.08 nG and ην/ηB = 1012) and the one from inflationary tensor
modes (with tensor-to-scalar ratio equal to 0.0042). For this particular choice of parameters, we see that
the inflationary and magnetic contributions are degenerate at very large scales, where both are about
two orders of magnitude larger than lensing B-modes.

α-attractors [124].
Before proceeding, we comment on the degeneracy between B1 Mpc and ην/ηB:

since the amplitude of the tensor passive mode, as that of the scalar mode, is
proportional to ην/ηB [94], we expect that increasing this parameter will result in
more power in the BB spectrum at low `. More precisely, for nearly scale-invariant
PMF spectra the contribution of the tensor passive mode to CBB

` scales as:

CBB,passive
`

∼ B4
1 Mpc

[
ln(ην/ηB)

]2
.

Therefore, we could have equivalently reproduced the large-scale behavior of
the Starobinsky model by choosing a larger B1 Mpc and a smaller ην/ηB. We
stress, however, that for us the choice of the fiducial values of these parameters
is not important: what is relevant is how a contribution to the B-mode power
spectrum from PMFs could lead to a false claim of a detection at the level r ≈
10−3. Moreover, choosing a larger B1 Mpc and a smaller ην/ηB would lead to a
smaller contribution from the compensated vector mode. Therefore, breaking the
degeneracy would be even more difficult for experiments that have access only to
large scales. This makes our choice of parameters the most conservative one.5

5Of course, this point can be turned around. We can have the same large-scale tensor power by taking
a larger ην/ηB and a smaller B1 Mpc: in that case the contribution of the compensated vector mode could
be large enough to be observable also on large scales. However, we stress that our point is that there

80



4. Magnetic Fields and Gravitational Waves

Experiment Beam Power noise `max `min fsky

[arcmin] [µK · arcmin]

PIXIE 96 3.0 500 2 0.7

LiteBIRD 30 3.2 3000 2 0.7

CORE-M5 3.7 2.0 3000 2 0.7

Stage-3 (Deep) 1 4 3000 50 0.06

Stage-3 (Wide) 1.4 8 3000 50 0.4

CMB-S4 3 1 3000 5 0.4

Table 4.2: Experimental specifications for the several configurations considered in the forecasts. The
power noise is defined as w−1/2 =

√
4πσ2/N, where σ is the r.m.s. noise in each of the N pixels. We quote

the power noise for temperature, and assume that for polarization it is simply enhanced by a factor of
√

2.

PIXIE LiteBIRD CORE-M5 Stage-3 (Deep) Stage-3 (Wide) CMB-S4
1 0.94 0.37 0.56 0.79 0.25

Table 4.3: Delensing factor α for the various experiments described in Tab. 7.1.

4.3 Method
In this Section we briefly illustrate the method we adopted to derive our forecasts
for future CMB experiments.

We follow the same procedure (now standard practice) used in [125]. We
produce synthetic realizations of future data given by

Ĉ` = C` |fid + N` . (4.3)

On the right-hand side, the C` |fid are the angular power spectra of the fiducial
model in µK2 and

N` = w
−1 exp(`(` + 1)θ2/8 ln 2) (4.4)

gives the experimental noise, where w
−1/2 is the experimental power noise ex-

pressed in µK · rad and θ is the experimental FWHM angular resolution in radians
(we assume that pixel noise is uniform and uncorrelated). We have considered
several future experiments with technical specifications listed in Tab. 7.1. More
specifically we consider the PIXIE [126], LiteBIRD [29] and CORE-M5 [78]
satellite missions, and the Stage-3 (see e.g. [127]) and CMB-S4 [33] ground-

is always a region in the currently available parameter space where the degeneracy cannot be broken
unless we have access to small scales.
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based experiments1. The simulated data are then compared with theoretical C`
obtained from the publicly available code MAGCAMB2 [99], based on a modified
version of the Boltzmann integrator CAMB [128]. Given a theoretical model, its
likelihood L is given by:

−2 lnL =
∑̀
(2` + 1)fsky

(
D
|C̄|
+ ln
|C̄|
|Ĉ|
− 3

)
, (4.5)

where Ĉ` are the fiducial spectra plus noise of Eq. Eq.(4.3), C̄` are the theory spectra
plus noise, and fsky is the sky faction observed by the experiment. Moreover, |C̄|,
|Ĉ| are given by:

|C̄| = C̄TT
` C̄EE

` C̄BB
` −

(
C̄TE
`

)2
C̄BB
` , (4.6)

|Ĉ| = ĈTT
` ĈEE

` ĈBB
` −

(
ĈTE
`

)2
ĈBB
` , (4.7)

while D is

D = ĈTT
` C̄EE

` C̄BB
` + C̄TT

` ĈEE
` C̄BB

` + C̄TT
` C̄EE

` ĈBB
`

−C̄TE
`

(
C̄TE
` ĈBB

` + 2ĈTE
` C̄BB

`

)
. (4.8)

In the following, we sample the likelihood using a MagCAMB-compatible [99]
version of the Monte Carlo Markov Chain code CosmoMC3 [128], based on the
Metropolis-Hastings algorithm with chains convergence tested by the Gelman and
Rubin method. Since we assumed no correlation between primary adiabatic and
magnetic modes, both theory and fiducial C` are obtained simply adding linearly
together magnetic and non-magnetic contributions, i.e.

C` = Cprimary
`

+ Cpassive
`

+ Ccompensated
`

. (4.9)

We also study the impact of delensing on future constraints. In order to do this, we
subtract from the total signal the lensed CMB B-modes using the “CMB×CMB”
delensing procedure already proposed in [85, 129]. In fact, the CMB lensing
is a contaminant of the primordial B-modes, that can be estimated and partially
removed from the observed signal. For each future experiment considered in this
paper, we rescale the BB power spectrum by using the corresponding delensing

1Most of these experiments are still in the stage of a proposal. The above list should therefore be
considered as an illustration of what a future CMB experiments could achieve.

2https://alexzucca90.github.io/MagCAMB/
3http://cosmologist.info
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factor [85, 130], that can be computed in the following way:

α ≡

∑
` CBB,del
`∑

` CBB,len
`

(4.10)

where CBB,del
`

≡ CBB,len
`

− CBB,est
`

is the delensed BB power spectrum and CBB,len
`

is the original lensed one. The estimated lensing B-modes CBB,est
`

can be obtained
by computing [85, 129]

CBB,est
`

=
1

2` + 1

∑̀
1,`2

| f EB
``1`2
|2 ×

(CEE
`1
)2

CEE
`1
+ NEE

`1

(Cϕϕ
`1
)2

Cϕϕ
`2
+ Nϕϕ

`2

, (4.11)

where f EB
``1`2

is the geometric coupling factor. Finally, the estimated noise will be
computed as:

Nϕϕ
`
=

[
1

2` + 1

∑̀
1,`2

| f EB
``1`2
|2
[
×

1
CBB
`1
+ NBB

`1

×
(CEE
`2
)2

CEE
`2
+ NEE

`2

]−1

, (4.12)

where the lensed B-modes appear. For this reason, we iterate this estimator until
reaching the convergence criterion:�����Nϕϕ,i+1

`
− Nϕϕ,i

`

Nϕϕ,i+1
`

����� ≤ 0.5 % . (4.13)

When delensing is included in the analysis, we do not carry out a full exploration
of the parameter space: we consider the likelihood of Eq. (4.5) for the BB angular
power spectrum only, and fix all parameters apart from r and B1 Mpc. With these
assumptions, Eq. (4.5) reduces to (for simplicity we drop the BB superscript on all
power spectra, including noise):

−2 lnL =
∑̀
(2` + 1)fsky

[
Ĉ`
C̄`
+ ln

(
C̄`
Ĉ`

)
− 1

]
, (4.14)

where, following Eqs. (4.3, 4.5), we have

Ĉ` = Ct+PMF
` |fid + α × Clens

` |fid + N` , (4.15)

C̄` = Ct+PMF
` + α × Clens

` + N` . (4.16)

In the above equations, the “t+PMF” superscript labels the BB spectrum from pri-
mordial tensor modes plus the one from primordial magnetic fields (see Eq. (4.9)),
and the “lens” superscript labels B-modes due to lensing. The values of the
delensing parameter α for the different experiments of Tab. 4.2 are collected in
Tab. 4.3.
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4.4 Results
In what follows we analyze the simulated datasets for the fiducial of Tab. 4.1
and the experiments of Tab. 7.1. For r and B1 Mpc we use a linear prior in the
range [0, 3] and [0, 5], respectively. We instead sample logarithmically ην/ηB
in the range [106, 1017]. The inflationary tensor spectral index is given by the
consistency relation nt = −r/8 while we consider only nearly scale-invariant
PMFs with nB = −2.9.

4.4.1 Results from MCMC

Let us start from the MCMC analysis. As a first step, we analyze the ability of
future/planned CMB experiments (listed in Tab. 4.2) of recovering our fiducial
values for the PMF parameters. The constraints on B1 Mpc from our selection of
future experiments are reported in Tabs. (4.4, 4.5). In the first row of these tables
we report the results from our analysis without variation in ην/ηB.

In this case, we see that large satellite experiments as PIXIE and LiteBIRD can
recover B1 Mpc with a very good precision of about σ(B1 Mpc) ∼ 0.06 - 0.03 nG.
Conversely, a satellite mission as CORE-M5, with improved angular solution
respect to PIXIE or LiteBIRD,wouldmeasure the PMF amplitudewith an excellent
accuracy of σ(B1 Mpc) ∼ 0.02 nG. The same accuracy can be achieved by the
CMB-S4 experiment. However it is important to note that we assumed a quite
optimistic value of `min = 5 for CMB-S4. It may be possible that the final `min
will shift towards higher values given a more limited scanning strategy due to, for
example, shorter observation time and high frequency foregrounds. The Stage-3
experiment in both configurations “wide” or “deep” will provide much weaker
constraints. This is due to the fact that the Stage-3 experiment is less sensitive to
large-scale B-modes. It is interesting to note that while experiments as CORE-
M5 and CMB-S4 can constrain a PMF with amplitude of B1 Mpc = 1.08 nG with a
σ(B1 Mpc) ∼ 0.02 nG precision, the upper limit on B1 Mpc achievable from CMB-S4
in case of no PMF is B1 Mpc < 0.52 nG at 68% C.L. (see e.g. [101]). This is due to
the fact that, at fixed ην/ηB, the amplitude of the B-mode polarization from PMF
scales as C` ∼ B4

1 Mpc. This means that the CMB will be able to strongly constrain
a PMF, if detected, but also that upper limits on B1 Mpc will be only marginally
improved by future experiments (by a factor four in case of CMB-S4 if we compare
with the upper limit of 2 nG from Planck).

These constraints are obtained under the assumption of a perfect knowledge
of the time of PMF generation, and this is obviously not a realistic case. As we
see from the second row of both Tabs. 4.4, 4.5, letting also ην/ηB free to vary
weakens the constraints on B1 Mpc. The constraints on B1 Mpc are relaxed by a
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PIXIE LiteBIRD CORE-M5

log10(ην/ηB) = 12

B1 Mpc (nG) 1.07 ± 0.10 1.078+0.034
−0.028 1.080+0.037

−0.038

log10(ην/ηB) free

B1 Mpc (nG) 1.16+0.35
−0.31 1.15+0.34

−0.28 1.07+0.10
−0.11

log10(ην/ηB) unconstrained unconstrained 12.4+2.9
−2.5

Table 4.4: 95% C.L. constraints on B1 Mpc and log10(ην/ηB) for the PIXIE, LiteBIRD and CORE-M5
experiments. These runs are assume that inflationary gravitational waves are absent, i.e. r = 0.

factor ∼ 4 - 5 for the PIXIE and LiteBIRD experiments, a factor ∼ 2 for CORE-M5
and by ∼ 50% for CMB-S4. Moreover, the posterior of ην/ηB is tighter than the
prior essentially just with the CORE-M5 and CMB-S4 experiments.

Let us now see how the degeneracy between PMFs and a possible primordial
GW component can be resolved. To this goal, we perform three different additional
analyses:

• in the first analysis, in contrast to our fiducial model, we wrongly assume
no PMF and we let only r free to vary with a tensor spectral index nt given
by the inflationary consistency relation nt = −r/8. Here we quantify how
the assumption of no PMF could bias the determination of r and provide a
misleading first detection of primordial GWs;

• in the second analysis we consider as free parameters both r and a B1 Mpc, but
again we fix the ratio ην/ηB, to understand if a CMB experiment could dis-
criminate between inflationary GWs and a PMF when the latter is described
just by one parameter;

• in the third analysis we vary r , B1 Mpc and ην/ηB. As noticed in [101] and
discussed in Section 4.2.2, since the time ratio determines the amplitude
of the passive tensor modes, it is mostly degenerate with r in the B-mode
polarization.

The results of these three analysis are reported in Tabs. (4.6, 4.7). As we can
see from the first row of both Tabs. (4.6, 4.7), analyzing a CMB dataset with
the wrong assumption of no PMF and B1 Mpc = 0 could lead to a bias on the
tensor-to-scalar ratio r . An experiment as PIXIE could provide an indication at
above three standard deviations for a primordial tensor amplitude of r ∼ 0.0065.
LiteBIRD, CORE-M5 andCMB-S4will provide an even higher evidence for r > 0,
with statistical significances that could reach (and also go over) about 10 standard
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Stage-3 (Deep) Stage-3 (Wide) CMB-S4

log10(ην/ηB) = 12

B1 Mpc (nG) < 1.2 < 1.2 1.079 ± 0.020

log10(ην/ηB) free

B1 Mpc (nG) < 1.3 < 1.3 1.074+0.061
−0.065

log10(ην/ηB) unconstrained unconstrained 12.2 ± 1.8

Table 4.5: As in Tab. 4.4 for the Stage-3 (deep and wide configurations) and CMB-S4 experiments.
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Figure 4.3: Forecasted constraints in the B1 Mpc vs. r plane fromMCMC for LiteBIRD and CMB-S4 (left
panel) and for PIXIE, Stage-3, and CORE-M5 (right panel). The fiducial model has B1 Mpc = 1.08 nG,
ην/ηB = 1012 and r = 0. Clearly the LiteBIRD, PIXIE and Stage-3 experiments are unable to distinguish
the PMF from inflationary GWs. On the contrary, CMB-S4 and CORE-M5 can break the degeneracy
thanks to better sensitivity to small scale B-modes.
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PIXIE LiteBIRD CORE-M5

r 0.0065+0.0029
−0.0028 0.0073+0.0018

−0.0017 0.0072 ± 0.0011

r 0.0050+0.0037
−0.0047 < 0.0082 < 0.0031

B1 Mpc (nG) < 1.1 < 1.1 1.034+0.079
−0.096

r < 0.0083 0.0051+0.0035
−0.0046 < 0.0057

B1 Mpc (nG) < 1.2 < 1.3 1.06+0.11
−0.12

log10(ην/ηB) unconstrained unconstrained < 13

Table 4.6: 95% C.L. constraints on B1 Mpc, log10(ην/ηB) and r for the PIXIE, LiteBIRD and CORE-
M5 experiments. Notice that these are one-dimensional marginalized constraints: given the strong
degeneracy between r and B1 Mpc, the detection of r when both parameters are varied is not significant.

deviations. The experimental evidence for r > 0 that these experiments obtain is
therefore completelymisleading and based on the wrong assumption ofB1 Mpc = 0.

The next step consists in letting also B1 Mpc free to vary and see if these future
experiments will be able to discriminate between r and B1 Mpc. The results of
this analysis are on the second and third rows of both Tabs. (4.6, 4.7). As we
can see, when B1 Mpc is included, the detection for r > 0 simply disappears or
is rather weaker for all the experiments considered. Furthermore, for the PIXIE,
LiteBIRD and Stage-3 experiments there is also no clear detection for B1 Mpc.
What is happening is clear by looking at Fig. 4.3: a degeneracy is present on the
B1 Mpc vs. r plane and the experiments are simply unable to discriminate between
a genuine primordial tensor component from GWs and PMFs. For PIXIE and
LiteBIRD this is essentially due to the poor experimental angular resolution that
does not allow to access small scales, ` & 1000, where the vector compensated
PMF B-mode could be detected. Indeed, when we consider experiments with
better angular resolution as CORE-M5 and CMB-S4 the degeneracy is broken, the
PMF is well measured and just an upper limit is obtained for r . For the Stage-3
experiment a degeneracy between r and B1 Mpc is also present: this is essentially
due to the lower experimental sensitivity that does not allow clear detection of the
B-mode signal of the fiducial model. Finally, from the last three rows of Tabs. (4.6,
4.7) we see that the same conclusions hold when we let also ην/ηB free to vary.
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Stage-3 (Deep) Stage-3 (Wide) CMB-S4

r 0.0084+0.0079
−0.0084 0.0084+0.0075

−0.0081 0.0072 ± 0.0014

r < 0.015 <0.015 < 0.0022

B1 Mpc (nG) < 1.1 < 1.1 1.058+0.053
−0.055

r < 0.015 < 0.014 < 0.0059

B1 Mpc (nG) < 1.2 < 1.2 1.073+0.065
−0.069

log10(ην/ηB) unconstrained unconstrained < 12

Table 4.7: As in Tab. 4.6 for the Stage-3 (deep and wide configurations) and CMB-S4 experiments.

4.4.2 Delensing
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Figure 4.4: Impact of delensing for LiteBIRD, CMB-S4 and CORE-M5: dashed lines represent the 68%
C.L. and 95% C.L. contours after delensing. Clearly, the delensing procedure affects the constraints on
r and B1 Mpc only if the degeneracy between the two is broken.

In this Sectionwe briefly study the impact of delensing on the forecasted constraints
in the B1 Mpc vs. r plane from the simulated data for LiteBIRD, CMB-S4 and
CORE-M5, using the BB exact likelihood and fixing all parameters apart from
r and B1 Mpc. To obtain the theoretical angular spectra we rescale two templates
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computed for r = 0.1,B1 Mpc = 0 nG and r = 0,B1 Mpc = 1.08 nG (fixing in both
cases ην/ηB = 1012). We leave nt fixed to −0.1/8, even if r is varied: at such
low values of r as those probed by LiteBIRD, CMB-S4 and CORE-M5 the error
is negligible (this is confirmed a posteriori by comparing Fig. 4.4 with Fig. 4.3).

The 68% C.L. and 95% C.L. contours are reported in Fig. 4.4. First, we notice
that even fixing all parameters apart from B1 Mpc and r leads to only marginally
more stringent constraints than those depicted in Fig. 4.3 (besides, recall that in
this case we are not including the information coming from the TT, EE and TE
spectra). Most importantly, we also see that delensing will not help to break the
degeneracy between the two parameters for LiteBIRD. For CORE-M5 and CMB-
S4, instead, delensing would shrink the 95% C.L. contours of roughly a factor of
2. We did not show the forecasts for Stage-3 or PIXIE in Fig. 4.4: as for LiteBIRD,
also in this case delensing would not help in breaking the degeneracy between r

and B1 Mpc.

4.4.3 Importance of small-scale B-mode measurements
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Figure 4.5: S/N of Eq. (4.17) at varying `max for the LiteBIRD and CMB-S4 experiments.

Finally, we investigate in more detail the differences between an experiment that
cannot break the degeneracy between r and B1 Mpc (i.e. LiteBIRD) and one that
can (i.e. CMB-S4). We consider two different models with roughly the same χ2

min
for the LiteBIRD simulated dataset, but with very different values of r and B1 Mpc:
the model “(1)” has (r = 1.76 × 10−5,B1 Mpc = 1.064 nG), while the model “(2)”
has (r = 7.22×10−3,B1 Mpc = 7.57×10−2 nG). Then, we expect that for LiteBIRD
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it will be impossible to distinguish between these two models, while CMB-S4 will
be able to break the degeneracy between them.

We can estimate how well the two experiments are able to distinguish model
(2) from model (1) by constructing a simple χ2

` ≡ (∆C`/σ`)2 for the difference
∆C` ≡ C(2)

`
− C(1)

`
. Thus, assuming uncorrelated multipoles, we can write the

cumulative signal-to-noise ratio as

(S/N)2`max
=

`max∑̀
=2

(
C(2)
`
− C(1)

`

)2

σ2
`

, (4.17)

where we focus on B-modes only and σ` is given by noise plus cosmic variance,
i.e. [131]

σ` =

√
2

(2` + 1)fsky

(
C(1)
`
+ N`

)
. (4.18)

We plot S/N for varying `max in Fig. 4.5: we see that for LiteBIRD it remains of
order 1 up to high `max, while for CMB-S4 it becomes of order 10 at `max & 1000.

We can show the importance of including small angular scales in a different
way by using directly the full B-mode likelihood for the CMB-S4 experiment, as
we did in our analysis of the impact of delensing. Varying `max (having fixed the
delensing parameter α to 1) we can see at which angular scale the degeneracy
between r and B1 Mpc can be broken by this experiment. In Fig. 4.6, we see that
this happens at `max & 900: if CMB-S4 could not access higher multipoles, the
constraints on r and B1 Mpc would be similar to those of LiteBIRD.
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Figure 4.6: Impact of varying `max on CMB-S4 constraints: we see that the degeneracy between r and
B1 Mpc is broken if B-mode anisotropies can be measured on scales ` & 900.

4.5 Constraints from Faraday rotation
PMFs also induce Faraday rotation (FR) of CMB polarization. It is therefore
useful to evaluate the ability of future CMB experiments to detect a PMF with
an amplitude of 1.08 nG through FR and break the possible degeneracies between
r and B1 Mpc. FR of the linear polarization of CMB photons is described by
the rotation angle αF, defined in terms of the Stokes Q and U parameters by
(Q ± iU)(®̂n) → (Q ± iU)(®̂n)e±2iα(®̂n). An inhomogeneous magnetic field sources
anisotropies in the rotation angle, whose angular power spectrum is related to the
two-point correlation function of the magnetic field (see, e.g., [102–105, 132]).
The angular power spectrum CαFαF

`
of the rotation angle αF(®̂n) can be constrained

directly by exploiting the fact that, at first order in αF, the off-diagonal elements
of the two-point correlation functions of E- and B-modes are proportional to the
rotation field [133]. One can take advantage of this feature to build a quadratic
estimator to measure the anisotropic rotation [133–135]. The rotation of E-modes
into B-modes, moreover, leads to a contribution CBB,FR

`
that should be in principle

added to Eq. (4.9) (see [96] for an extensive review). However the angular spectrum
CαFαF
`

, and then CBB,FR
`

, scales as ν−4: thus we expect to have a larger signal for
these FR-induced B-modes at lower frequencies (e.g. ν ∼ 30 GHz), that will not
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be optimally sampled by the experiments considered here.
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Figure 4.7: B-mode angular spectrum from Faraday rotation (B1 Mpc = 1.08 nG is assumed) at frequen-
cies of 30 GHz, 60 GHz, 90 GHz, 150 GHz and 220 GHz. The B-modes from magnetic perturbations are
also shown, together with the standard lensing prediction. Clearly the B-modes from FR are completely
negligible for an experiment mostly sensitive to frequencies around 150 GHz as those considered in this
Chapter. PIXIE will operate at lower frequencies, but it will have access only to very low multipoles,
where the FR signal is negligible anyway.

Indeed, these experiments are not conceived for a measurement at these fre-
quencies:

• lower frequencies are more contaminated by galactic foregrounds and are
mostly used to identify and remove them rather than to extract genuine cos-
mological information;

• for a given experimental configuration, lower frequencies are limited by
diffraction and have smaller angular resolution. Therefore, space experiments
such as CORE-M5 or LiteBIRD have been designed with the largest number
of detectors at frequencies around ∼ 150 GHz where the minimal foreground
contamination is expected.

In Fig. 4.7 we plot the expected signal in the B-mode angular power spectrum from
Faraday rotation generated by a magnetic field of 1.08 nG for various frequencies.
The Faraday rotation B-modes are obtained using Eq. (38) of [102]. In Fig. 4.7 we
also plot the lensingB-mode spectrum and the frequency-independent contribution
of Eq. (4.9), i.e. the one generated by vector- and tensor-mode perturbations in
the metric, sourced by the stress-energy in the PMF. As we can clearly see, the
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PIXIE LiteBIRD CORE-M5 Stage-3 (Deep) Stage-3 (Wide) CMB-S4
0.05 0.7 15 20 2 102

Table 4.8: S/N ratio for the detection of a nearly scale-invariant PMF of 1.08 nG through FR.

B-modes from Faraday rotation at 150 GHz are about four orders of magnitude
smaller than the lensing signal, i.e. they will be undetectable by an experiment
operating at those frequencies. At 30 GHz the signal is much larger, however
none of the experiment considered in this Chapter will sample this frequency with
the exception of PIXIE. In this case, however, the angular resolution will not be
sufficient to detect the B-modes from Faraday rotation, since PIXIE can arrive
at most at `max = 500. The LiteBIRD and CORE-M5 could produce full CMB
sky maps at frequencies of 60 GHz. It is therefore interesting to investigate if
these B-modes from FR could be detected by these experiments. Unfortunately,
as we show in Fig. 4.8, neither of these two experiments will be able to detect
them. Indeed, they will not have enough sensitivity and angular resolution at
these frequencies. To summarize, the contribution CBB,FR

`
to the B-mode angular

power spectrum induced by a PMF of 1.08 nG is not detectable by the experiments
considered here. For this reason, in the following we will focus on a forecast for
the detection of anisotropies in the FR angle αF of the E modes: clearly, a detection
of αF would allow to confirm whether a possible B-mode measurement is due to
primordial GWs or to PMFs.

Then, to perform this forecast we consider the following approximated angular
power spectrum of αF induced by a nearly scale-invariant PMF of 1.08 nG (see
e.g. Eq. (4) in [105]):

L(L + 1)CαFαF
L

2π
= 4.2 × 10−8 rad2 , (4.19)

where we have assumed a CMB observational frequency of ν ∼ 150 GHz. We
have then estimated the experimental noise on CαFαF

L and computed the relevant
signal-to-noise ratio using the quadratic estimator described in [134, 135] (see
Appendix A). For simplicity we have neglected the contamination of “spurious”
FR induced by magnetic fields in our galaxy and lensing. Our results (shown in
Tab. 4.8) should therefore be considered as optimistic since the removal of these
terms could lead to a significantly lower S/N (see [101]).
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Figure 4.8: Expected experimental white noise for the lowest channels of LiteBIRD (top panel) and
CORE-M5 (bottom panel), together with the expected signal from B-modes generated by Faraday rotation
(for a PMF with B1 Mpc = 1.08 nG) at the same frequencies. Clearly, the signal is undetectable in any
frequency channel by any of the two experiments.

We see that experiments as PIXIE and LiteBIRD will essentially be unable
to detect our fiducial PMF through FR. This is mainly due to the poor angular
resolution that does not let these experimentsmeasureE- andB-modes at ` ∼ 1000,
i.e. at scales that are relevant for a measure of αF. Including the frequency
dependence of the signal will not change this result since at lower frequencies
would correspond also an even lower angular resolution. On the contrary, the
Stage-3 experiment, especially in the “deep” configuration, will be able to detect
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the PMF via FR with high accuracy. While in this case r is poorly constrained,
a combination with the LiteBIRD experiment could be extremely important. The
CMB-S4 experiment will constrain a PMF with great accuracy, in agreement with
the results presented in [101].

4.6 Discussion and Conclusion
Undoubtedly, one of the main goals of future CMB experiments is a detection
of inflationary GWs through their effect on the B-mode polarization. Such a
detection would be a strong hint towards the quantum nature of gravity. However,
a simple detection of B-modes is not enough to confirm their primordial origin:
primordial magnetic fields can cause a contamination of a possible signal from
vacuum fluctuations of the metric. The goal of this Chapter was to show that future
CMB experiments targeting inflationary GWs at the level of r ≈ 10−3 will not be
able to claim a detection unless they are able to distinguish them from a PMF of
amplitude ∼ 1 nG.

Satellite missions as PIXIE or LiteBIRD, that are limited to large angular scales,
will not be able to break such degeneracy. For experiments with better angular
resolution, like CORE-M5 or CMB-S4, it will instead be possible to discriminate
between the two mechanisms since they will be able to detect the compensated
vector perturbations of the PMF. A second way to break the degeneracy is that of
measuring the PMF through Faraday rotation of the CMB polarization. While B-
modes induced by FR are practically undetectable by the experiments considered
here, a better opportunity is offered by measurements of anisotropies in the FR
angle. We find that also in this case PIXIE and LiteBIRD will not be able to
significantly detect the PMF. However, we have found that the Stage-3 experiment
could already put stringent constraints on it. A nice complementarity therefore
exists between the LiteBIRD and Stage-3 experiments that could allow to break
the degeneracy between the tensor-to-scalar ratio and the PMF amplitude.

Before concluding we note that there are other signatures typical of PMFs that
could help in distinguishing them from inflationary GWs:

• the B-modes produced by PMFs are highly non-Gaussian, since they are
proportional to the square of the field amplitude. Consequently, bispectrum
and trispectrum measurements could also place strong constraints on them
[110, 136, 137];

• PMFs are damped on small scales, leading to heating of baryons and electrons
and producing Compton-y distortions in the CMB (see [110]). This has been
used to place an upper limit of 0.90 nG at 95% C.L on the magnetic field
amplitude (recently [138] has improved this bound to 0.83 nG).
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Regarding the second of these signatures, we emphasize that uncertainties in the
modeling of the heating and in the reionization process may affect the constraint
[139]. Moreover, and most importantly, a PMF of ∼ 0.9 nG would produce
a B-mode spectrum essentially rescaled by a factor of 0.5 with respect to the
template considered here. This could still bias future CMB polarization searches
for primordial GWs at the level of r ≈ 10−3 if not accounted for.

In summary, future constraints at the level of 0.2 nG, as expected from FR
measurements by the CMB-S4 experiment (see also [101]), will be crucial in
limiting a spurious B-mode PMF contribution to sub-percent level respect to the
value of r ≈ 10−3.
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5 Cornering the Planck
Lensing Tension with Future

CMB data
In this Chapter we discuss the possibility of future experiments to confirm or rule
out the present Alens tension in Planck data. We also study how the tension will be
seen in different frequency channels for the CMB-S4 experiment

The Chapter is mainly based on the work Phys.Rev. D97 (2018) no.12, 123534
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5.1 Introduction
The precise measurements of CosmicMicrowave Background (CMB) anisotropies
made by the Planck satellite [27] have provided a wonderful confirmation of the
standard cosmological model of structure formation based on inflation, dark matter
and a cosmological constant. The predictions of acoustic oscillations in the CMB
anisotropy angular power spectra have been fully confirmed with unprecedented
accuracy. Nonetheless few, interesting, tensions are emerging hinting to systemat-
ics and/or possible extensions to the standard scenario (see e.g. [140–143]).

The most relevant anomaly, at least from the statistical point of view, concerns
the amount of lensing in the CMB angular power spectra. Gravitational lensing
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slightly redistributes the photon paths from the last scattering surface, smoothing
the acoustic oscillations in the CMB anisotropy and polarization power spectra
(see [144]). The amount of smearing due to CMB lensing, once the cosmological
parameters are fixed, can be computed with great accuracy (see e.g. [145]) and the
effect is included in all current parameter analyses. In [26] a phenomenological
parameter, Alens , was introduced that essentially rescales the lensing amplitude
in the CMB spectra. This parameter has, in principle, no physical meaning and
is mainly used as an effective parameter for testing theoretical assumptions and
systematics. However, the value of this parameter from the latest Planck analysis
of [123] is Alens = 1.15+0.13

−0.12 at 95% C.L., i.e. about 2.3 σ larger than the expected
value with a significant impact on parameter extraction.

Indeed, the inclusion of Alens in the analysis shifts the constraints derived
from Planck data on several cosmological parameters. Interestingly, some tension
exists between the cosmological parameters derived from a combination of pre-
Planck datasets and those obtained by the Planck satellite (see Table I in [146]
and discussion in [141, 142]). As noted in [141, 142], the inclusion of Alens

significantly reduces this tension. Moreover, lensing in the CMB spectra is crucial
in constraining neutrinomasses. A larger value forAlens , if not accounted for, could
produce biased bounds on neutrino masses, stronger than those that realistically
could be reached with the Planck specifications and experimental noise. Indeed,
from simulated Planck angular spectra (assuming a neutrino mass of Σmν ≤ 0.06
eV), one would expect a limit on the sum of neutrino masses of Σmν ≤ 0.59 eV at
95% c.l., while the current limit from real Planck data is much stronger, at the level
of Σmν ≤ 0.34 eV at 95% c.l. (see [123]). These stronger than expected neutrino
mass bounds from Planck are connected to the 2.3 σ Alens tension and should
be treated with great care. Finally, Alens anti-correlates with the amplitude of
r.m.s. matter density fluctuations on 8h−1Mpc scales, the so-called σ8 parameter.
Allowing Alens to vary brings indeed the constraints on the S8 = σ8(Ωm/0.3)0.5
parameter from S8 = 0.852 ± 0.018 at 68% C.L. to S8 = 0.808 ± 0.034, in better
agreement with the constraints derived from cosmic shear data from the KiDS-450
[147] and DES [148, 149] surveys.

While Alens seems to solve several current tensions, there are at least two
puzzling aspects of the Alens anomaly that should suggest some caution. First of
all, there is no easy theoretical way to accommodate a value of Alens larger than
expected, even in an extended parameter space (see e.g. [5, 7, 25]). Proposals
that can give a theoretical explanation to the Alens anomaly include, for example,
modified gravity [150], running of the running of the spectral index [151], closed
universes [152], and compensated baryon isocurvature perturbations [153, 154].
These explanations are certainly all rather exotic and would hint for a significant
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change in the standard scenario. The second point is that an anomalous Alens

value, if related to lensing, must show up also in the CMB lensing measurements
based on the trispectrum analysis of the Planck temperature and polarization
maps. However Planck CMB lensing is in perfect agreement with the standard
expectations. Combining the Planck angular power spectra with the CMB lensing
yields Alens = 1.025+0.051

−0.058 [27], in agreement with the standard value even if at
the price of an higher χ2 value due to the relative inconsistency between the two
datasets. This fact in practice, even if based on the assumption ofΛCDM, disfavors
the hypothesis of Alens > 1 due to gravitational lensing.

These two aspects could suggest that the Alens anomaly is related to some
systematics in the data. However, the anomaly survived the scrutiny of two Planck
data releases and hints for its presence have already been reported, albeit at small
statistical level, in pre-Planck data (see e.g. [155]). It is therefore timely to
investigate the potential of future CMB experiments to confirm and/or rule out the
Alens anomaly. Several ground and space-based experiments are indeed proposed
or expected in the next years that will sample the small scale region of the CMB
angular spectrum. At the same time it is important to scrutinize the ability of these
experiments in detecting a possible scale dependence of the effect. This is indeed
the goal of the present chapter. While this kind of analysis is straightforward, none
of the several recent papers that forecasted the ability of future experiments in
constraining cosmological parameters (see e.g. [33, 76, 127]), as far as we know,
considered the Alens parameter.

In the next Section we briefly discuss the current status of the Alens tension.
In Section 5.3 we describe the data analysis method adopted for our forecasts.
In Section 5.4 we show the obtained results and in Section 5.5 we present our
conclusions.

5.2 Current status of the Alens anomaly
In this section we discuss the current status of the Alens anomaly and its impact
on current cosmological parameter estimation. In Table 5.1 we compare the
constraints presented in [146] with those derived from Planck 2015 temperature
and polarization data assuming ΛCDM (third column) and a variation in Alens

(see fourth column of the table). We also show the effects of including cosmic
shear data from CFHTLenS (named WL) as in [27] (fifth column). In the square
brackets, on the right side of the constraint, we also report the shift S between the
cosmological constraints from Planck and pre-Planck measurements defined as:

S =
|Πpre−Planck − ΠPlanck |√
σ2
pre−Planck + σ

2
Planck

(5.1)
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Parameter WMAP9 Planck TTTEEE Planck TTTEEE Planck TTTEEE
+ACT+SPT (Alens) +WL (Alens)

100Ωbh
2 2.242 ± 0.032 2.222 ± 0.015 [0.56] 2.239 ± 0.017 [0.08] 2.245 ± 0.017 [0.08]

100Ωch
2 11.34 ± 0.36 12.03 ± 0.14 [1.79] 11.87 ± 0.16 [1.34] 11.78 ± 0.15 [1.13]

104θMC 104.24 ± 0.10 104.069 ± 0.032 [1.63] 104.09 ± 0.033 [1.42] 104.10 ± 0.033 [1.32]

ns 0.9638 ± 0.0087 0.9626 ± 0.0044 [0.12] 0.9675 ± 0.0049 [0.37] 0.9697 ± 0.0047 [0.59]

ΩΛ 0.723 ± 0.019 0.6812 ± 0.0086 [2.00] 0.6920 ± 0.0096 [1.46] 0.6974 ± 0.0089 [1.22]

Ωm 0.277 ± 0.019 0.3188 ± 0.0086 [2.00] 0.3080 ± 0.0096 [1.46] 0.3026 ± 0.0089 [1.22]

σ8 0.780 ± 0.017 0.8212 ± 0.0086 [2.16] 0.806 ± 0.017 [1.08] 0.797 ± 0.016 [0.73]

t0 [Gyrs] 13.787 ± 0.057 13.822 ± 0.025 [0.56] 13.790 ± 0.029 [0.05] 13.777 ± 0.028 [−0.20]

H0 [km/s/Mpc] 70.3 ± 1.6 67.03 ± 0.61 [1.91] 67.84 ± 0.72 [1.4] 68.25 ± 0.69 [1.18]

Alens 1 1 1.154 ± 0.076 1.194 ± 0.076

Table 5.1: Constraints at 68% c.l. on cosmological parameters from pre-Planck datasets (second
column, see [146]), Planck TTTEEE in case of ΛCDM (third column), and Planck TTTEEE and Planck
TTTEEE+WL varying Alens (fourth and fifth column, repectively). In the square brackets we report the
shift S, defined via Eq.(5.1), that quantifies the discrepancy in the constraint on the parameter Π between
pre-Planck and Planck measurements. As we can see, when Alens is included, the tensions on the value of
the Hubble constant, the matter and cosmological constants densities and the value of σ8 are significantly
reduced, especially when including cosmic shear data (WL).

where Π and σ are the parameter mean value and uncertainty reported for the
pre-Planck and Planck datasets. As we can see, the most relevant (at about ∼ 2σ)
shifts on the values of Ωm, σ8 and H0 are relieved when a variation in Alens is
considered, especially when also the WL dataset is included. As we can see, we
obtain a value for Alens > 1 at about 2 sigma level from Planck TTTEEE and at
about 2.6 sigma from Planck TTTEEE+WL. The inclusion of cosmic shear data
therefore does not only improve the agreement with the WMAP constraints but
also the statistical significance for Alens .

5.3 Method
The goal of this paper is to investigate to what extent future CMB experiments will
be able to constrain the value of Alens and falsify/confirm the current anomaly. We
have therefore simulated CMB anisotropy and polarization angular spectra data
with a noise given by:

N` = w
−1 exp(`(` + 1)θ2/8 ln 2), (5.2)

where w
−1 is the experimental power noise expressed in µK-arcmin and θ is

the experimental FWHM angular resolution. We have considered several future
experiments with technical specifications listed in Table 5.2. In particular, we have
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Experiment Beam Power noise w−1 `max `min fsky
[µK-arcmin]

Pixie 96’ 4.2 500 2 0.7

LiteBIRD 30’ 4.5 3000 2 0.7

CORE 6’ 2.5 3000 2 0.7

CORE-ext 4’ 1.5 3000 2 0.7

Stage-III (Deep) 1’ 4 3000 50 0.06

Stage-III (Wide) 1.4’ 8 3000 50 0.4

Stage-IV 3’ 1 3000 5, 50 0.4

Table 5.2: Experimental specifications for the several configurations considered in the forecasts.

Parameter Value

Ωbh
2 0.02225

Ωch
2 0.1198

τ 0.055

ns 0.9645

100θMC 1.04077

ln(1010As) 3.094

Alens 1.00

Table 5.3: Cosmological Parameters assumed for the fiducial model.

considered three possible CMB satellite experiments as CORE [76, 78], LiteBIRD
[156] and PIXIE [126]. A Stage-III experiment in two possible configurations as
in [127], i.e. a ’wide’ experiment similar to AdvACT and a ’deep’ experiment
similar to SPT-3G. Finally we consider the possibility of a ’Stage-IV’ experiment
as in [127] (but see also [33, 157]).

We have computed the theoretical CMB angular power spectra CTT
` , CTE

` ,
CEE
` , CBB

` for temperature, cross temperature-polarization and E and B modes
polarization using the CAMB Boltzmann code [122]. The angular spectra are
generated assuming a fiducial flat ΛCDMmodel with parameters compatible with
the recent Planck 2015 constraints [123].

The theoretical C`’s are then compared with the simulations using the Monte
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Carlo Markow Chain code CosmoMC1 [128] based on the Metropolis-Hastings
algorithm. The convergence of the chains is verified by the Gelman and Rubin
method. Given a simulated dataset, for each theoretical model we evaluate a
likelihood L given by

− 2 lnL =
∑
l

(2l + 1)fsky

(
D
|C̄|
+ ln
|C̄|
|Ĉ|
− 3

)
, (5.3)

where C̄l are the fiducial spectra plus noise (i.e. our simulated dataset) while
Ĉl are the theory spectra plus noise. |C̄|, |Ĉ| are given by:

|C̄| = C̄TT
` C̄EE

` C̄BB
` −

(
C̄TE
`

)2
C̄BB
` , (5.4)

|Ĉ| = ĈTT
` ĈEE

` ĈBB
` −

(
ĈTE
`

)2
ĈBB
` , (5.5)

with D defined as

D = ĈTT
` C̄EE

` C̄BB
` + C̄TT

` ĈEE
` C̄BB

` + C̄TT
` C̄EE

` ĈBB
`

−C̄TE
`

(
C̄TE
` ĈBB

` + 2ĈTE
` C̄BB

`

)
.

(5.6)

In what follows we also test the possibility of a angular dependence for Alens .
Such scale dependence could arise from beyond standard model physics such as
modified gravity, cold dark energy, or massive neutrinos. We therefore consider
the following parametrization (see [6]):

Alens(`) = Alens,0(1 + Blens ∗ log(`/`∗)) (5.7)

considering also the parameters Alens,0 and Blens as free parameters and different
values of the pivot scale `∗.

5.4 Results
5.4.1 Future constraints on Alens

The expected constraints on Alens for several future CMB experiments are reported
in Table 5.4. As we can see a satellite experiment as PIXIE, devoted mainly
to the measurement of CMB spectral distortions, will not have enough angular

1http://cosmologist.info
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Experiment Alens

Pixie 1.016+0.09
−0.11

LiteBIRD 1.001 ± 0.025

CORE 1.001 ± 0.013

CORE-ext 1.002 ± 0.011

Stage-III (deep) 0.92+0.13
−0.11

Stage-III (wide) 0.97+0.11
−0.07

Stage-III (deep)+τ-prior 1.004+0.044
−0.048

Stage-III (wide)+τ-prior 1.001+0.026
−0.028

Stage-IV (lmin = 50) 0.998 ± 0.025

Stage-IV (lmin = 5) 0.999 ± 0.015

Table 5.4: Expected constraints on Alens . The fiducial model assumes Alens = 1.000. For Stage-III
wide, deep and Stage-IV with lmin = 50 we have further imposed a Gaussian prior on the reionization
optical depth corresponding to Planck 2015 results : τ = 0.055 ± 0.010.

resolution to constrain Alens , conversely a satellite as LiteBIRD, despite the poorer
angular resolution with respect to Planck, thanks to the precise measurement of
CMB polarization, could reach an accuracy of ∆Alens ∼ 0.026, enough to falsify
the current value of Alens ∼ 0.15 at more than five standard deviations. A more
ambitious space-based experiment as CORE, on the other hand, could test the
Alens anomaly at more than 10 standard deviations. Near future ground-based as
Stage-III will not have enough sensitivity on Alens unless the optical depth can be
complementary measured by a different experiment. As we can see, considering
an external prior on the optical depth as τ = 0.055 ± 0.010 (in agreement with
the recent Planck constraint [123]) can improve the Stage-III (Deep) constraint
to a level comparable with LiteBIRD, while Stage-III (Wide) can also improve
but with an accuracy smaller by about a factor two. A Stage-IV experiment can
measure Alens with an accuracy about a factor ∼ 4.5 better than the current Planck
constraint, providing a large angular scale sensitivity from lmin = 5. In this case,
the current indication for Alens ∼ 1.15 can be tested by a Stage=IV experiment
at the level of ∼ 10 standard deviations. In the less optimistic case of a smaller
sensitivity from lmin = 50, the Stage-IV experiment is expected to constrain the
Alens parameter with a precision comparable with the one achievable by LiteBIRD.
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5.4.2 Testing Alens in different spectra and frequency channels

There are two, straightforward, ways for testing if the Alens anomaly is due to a
systematic in the data: checking for its presence in the temperature and polarization
spectra separately and considering also the frequency dependence. Of course, if
the Alens anomaly is not simultaneously present in all the spectra and at all the
frequencies this could better support the hypothesis of a systematic or a unresolved
foreground. However when analyzing just one C` spectrum or just one frequency
at time, the experimental noise is clearly larger and it is therefore interesting to
investigate what kind of accuracy could be reached in this case.

As an example, we have considered the optimistic CMB-S4 configuration and
considered the constraints on Alens achievable when using just the TT and EE
channels. We have found the following constraints at 68% C.L.: Alens = 1.000 ±
0.044 (TT) and Alens = 1.000 ± 0.024 (from EE). So, in practice, E polarization
data alone from CMB-S4 could test the current Alens ∼ 1.15 anomaly at the level
of 5 standard deviations. A complete configuration for the CMB-S4 experiment is
clearly not yet finalized. In order to study the frequency sensitivity to Alens we have
however assumed three channels at 90, 150 and 220 GHz with angular resolutions
of 5, 3, and 2 arcminutes and detector sensitivities of 2.2, 1.3 and 2.2 µKarcmin
respectively. We have found from TT data the constraints Alens = 1.003+0.044

−0.045,
Alens = 1.002+0.041

−0.045, and Alens = 1.003+0.041
−0.046 for the 90, 150 and 220 GHz channels

respectively. Using the EE data we have Alens = 1.003+0.028
−0.028, Alens = 1.002+0.023

−0.025,
and Alens = 1.003+0.023

−0.025 again for the 90, 150 and 220 GHz channels respectively.
In Figure 5.1,5.2, and 5.3 we report the 2D forecasted constraints at 68% and 95%
C.L. for Alens and other cosmological parameters from a future CMB-S4 mission
considering the frequency channels at 90, 150, and 220 GHz.

As we can see from the figures, polarization measurements will be crucial in
improving the constraint on Alens . In particular, polarization will somewhat reduce
the degeneracy between Alens and the baryon density parameter present in TT data.
However, Alens still strongly correlates with parameters as nS, Ωcdmh

2, and H0 even
when the combined polarization+temperature measurements are considered. As
we can see, therefore, with the assumed experimental configuration, the sensitivity
to Alens in each frequency channel will be essentially the same than the one
achievable when all channels are combined. A frequency dependence of the Alens

anomaly as a power law ∼ νn could be tested with spectral indexes of n ∼ 0.09 at
the level of three standard deviations.
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Figure 5.1: Forecasted constraints at 68% and 95% C.L. for Alens and other cosmological parameters
from a future CMB-S4 mission considering only the frequency channel at 90 GHz.

5.4.3 Using B modes to test the Alens anomaly.

Future experiments as Stage-IV will measure with great accuracy the CMB po-
larization B mode that arises from lensing. The B mode spectra could therefore
be in principle extremely useful for placing independent constraints on Alens . In
particular, an indication for an anomaly present in the TT, TE and EE angular
spectra but not in the BB lensing spectrum would clearly confirm (once systemat-
ics or foregrounds are excluded) that the real physical nature of the anomaly is not
connected to lensing but more to systematics or to new and unknowns processes
possibly related to recombination or inflation that leave the small scale B mode
signal as unaffected. Unfortunately the polarization B mode signal does not only
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Figure 5.2: Forecasted constraints at 68% and 95% C.L. for Alens and other cosmological parameters
from a future CMB-S4 mission considering only the frequency channel at 150 GHz.

depends from Alens . Degeneracies are indeed present between cosmological pa-
rameters and we have found that even with the Stage-IV experiment Alens will be
practically unbounded from just the B mode spectra, with a major degeneracy with
the amplitude of primordial perturbationsAs . Including an external Gaussian prior
of log(1010As) = 3.094±0.005 for the primordial inflationary density perturbation
amplitude and of τ = 0.055 ± 0.010 for the reionization optical depth, we found
that Stage-IV could reach the constraint Alens = 1.04+0.13

−0.19 at 68% c.l.. This would
only marginally test the current anomaly and other complementary constraints will
be needed to further test Alens . In Figure 5.4, we plot the future constraints at 68%
and 95% C.L. from the Stage-IV experiment (with lmin = 5) in the Alens vs Ωbh

2,

106



5. Cornering the Planck Lensing Tension with Future CMB data

0.9
60

0.9
76

ns

0.0219

0.0225

bh
2

0.112

0.12

0.128

ch
2

64.5

66

67.5

69

70.5

H
0

0.8
8

0.9
6

1.0
4

1.1
2

AL

0.96

0.976

n s

0.0
21

9

0.0
22

5

bh2

0.1
12

0.1
20

0.1
28

ch2

64
.5

66
.0

67
.5

69
.0

70
.5

H0

CMB-S4 (220Ghz) TTonly
CMB-S4 (220Ghz) EEonly
CMB-S4 (220Ghz)

Figure 5.3: Forecasted constraints at 68% and 95% C.L. for Alens and other cosmological parameters
from a future CMB-S4 mission considering only the frequency channel at 220 GHz.

Ωch
2, ns , and ln[1010As] planes. As we can see, the B modes are unable to bound

Alens due mainly to a degeneracy with the primordial amplitude As . However,
when a prior on As is included, degeneracies are still present between Alens and
Ωbh

2, Ωch
2, and ns that prevent a precise determination of Alens . In conclusion,

the measurement of primordial B modes from lensing will not let to significantly
improve the constraints on Alens given the degeneracies between cosmological
parameters.
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Figure 5.4: Future constraints at 68% and 95% C.L. from the Stage-IV experiment (with lmin = 5) in
the Alens vs Ωbh

2, Ωch
2, ns , and ln[1010As ] planes (clockwise from Top Left panel). The constraints

from BB modes only (Grey) leave Alens practically unbounded. Including a prior on the primordial
amplitude improves the constraints on Alens from B modes only (Red) but they are still far weaker than
the constraints from TTTEEE (Blue).

5.4.4 Future constraints on angular scale dependence of Alens

In Table 5.5 we report the constraints on the parameters of the angular scale depen-
dencyAlens in the form of Eq.(5.7) for the Stage-IV configuration. For comparison,
we also report the constraints using temperature and anisotropy spectra from the
Planck 2015 release [27].

As we can see, while the current bounds from Planck are rather weak and there
is no indication for a scale dependency of the Alens anomaly (see also [6]), the
Stage-IV experiment can provide constraints at ∼ 1% level on Blens , providing
useful information on a possible scale dependence. As discussed in the previous
section, we have considered different pivot scales `∗. As we see from the results in
Table 5.5, while the choice of the pivot can change significantly current constraints,
the effect on the accuracy Stage-IV constraints is less significant.
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5.5 Conclusions
While the agreement with the predictions of the ΛCDM model is impressive, the
Planck data shows indications for a tension in the value of the lensing amplitude
Alens that clearly deserve further investigations. If future analyses of Planck
data will confirm this tension then it will be the duty of new experiments to
clarify the issue. In this brief paper we have shown that future proposed satellite
experiments as LiteBIRD can confirm/rule out the Alens tension at the level of 5
standard deviation. The same accuracy can be reached by near future ground based
experiments as Stage-III providing an accurate measurement of the reionization
optical depth τ as already reported by Planck. Future, more optimistic, experiments
as Stage-IV can falsify the Alens tension at the level of 10 standard deviations.
The Stage-IV experiment will also give significant information on the possible
scale dependence of Alens , clearly shedding more light on its physical nature. A
comparison between temperature and polarization measurements made at different
frequencies could further identify possible systematics responsible for Alens > 1.
We have shown that, in the case of the CMB-S4 experiment, polarization data
alone will have the potential of falsifying the current Alens anomaly at more than
five standard deviation and to strongly bound its frequency dependence.
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Parameter Planck TTTEEE Stage-IV

`∗=50

Alens,0 1.157+0.116
−0.144 1.000 ± 0.016

Blens Unconstrained 0.0002 ± 0.0147

`∗=300

Alens,0 1.150+0.111
−0.139 0.999 ± 0.016

Blens Unconstrained 0.0002+0.0145
−0.0144

`∗=900

Alens,0 1.220+0.181
−0.356 0.999 ± 0.019

Blens Unconstrained −0.0004 ± 0.0144

`∗=1500

Alens,0 1.269+0.209
−0.462 0.999 ± 0.021

Blens Unconstrained −0.0005 ± 0.0150

`∗=2100

Alens,0 1.313+0.223
−0.551 0.999+0.022

−0.023

Blens Unconstrained −0.0004 ± 0.0143

Table 5.5: Expected constraints on Alens and Blens from Planck real data and Stage-IV simulated data.
The fiducial model for the simulated Stage-IV data has Alens = 1.00 and Blens = 0.00. We choose an
hard flat prior −0.4 < Blens < 0.4.
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6 Make Lensing Strong
Again

In this Chapter we study the constraints on simple extensions of the ΛCDM
expansion history and on the value of H0 coming from future observations of
strongly lensed systems. We also study the impact of wrong assumptions about
the background cosmological model on constraints from future surveys.

This Chapter is mainly based on the work arXiv:1910.03566 [astro-ph.CO]
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6.1 Introduction
The phenomenon of cosmic acceleration, i.e. the late phase of accelerated ex-
pansion of the Universe, has posed a major challenge for Cosmology since it was
first established in 1998 [158]. The standard cosmological model ΛCDM, with
a cosmological constant Λ as the candidate mechanism responsible for cosmic
acceleration, has so far been the most successful model in describing both early
Universe observations, such as Cosmic Microwave Background (CMB), as well as
the late time dynamics of the Universe, probed by observations of Baryon Acoustic
Oscillations (BAO), galaxy clustering and weak lensing.
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Despite the successes of ΛCDM, recent observations highlighted a discrepancy
between the value of the Hubble constant today, H0, inferred from CMB observa-
tions and the local measurements performed through the distance ladder technique.
While the former estimate of H0 depends on the assumed cosmological model, the
latter does not depend strongly on any cosmological assumption, as it relies on the
observation of standard candles (type Ia supernovae) whose absolute luminosity is
calibrated using Cepheids as an anchor. Recent estimates of H0 obtained using the
latter technique have been provided by the SH0eS team [3], with their latest value
achieved exploiting observations of Cepheids in the Large Magellanic Cloud from
the Hubble Space Telescope, H0 = 74.03 ± 1.42 km/s/Mpc [4].

The CMB estimates of H0 rely instead on constraints of the size of the sound
horizon at the last scattering surface (θ∗) a measurement which allows to extrap-
olate bounds on the current expansion rate. This extrapolation however implies
an assumption for the expansion history of the Universe. Assuming a ΛCDM
background, measurements of the CMB from the Planck collaboration provide
H0 = 67.36 ± 0.54 km/s/Mpc [28], a value which is in tension with the local
measurement of the SH0eS collaboration at 4.4σ.

There is currently no consensus on what is causing the discrepancy in the
measure of theHubble constant between low and high redshift data. One possibility
is that the results are biased by neglected systematic effects on observational data
(see e.g. [159–163]), while, on the other hand, this tension could indicate that
we need to abandon the ΛCDM assumption when extrapolating results to present
time. Investigations of the latter possibility have highlighted how early time
deviations from standard physics have the potential to ease the tension (see e.g.
[164–169]), while other studies have tried to solve this issue allowing for non
standard late time evolution, which might be produced by dynamical dark energy
(DE) models, modified theories of gravity or interactions between DE and dark
matter (such as [22, 170–173]). In order to shed light on this tension, the value
of H0 has been determined also with other kind of observations. For example, the
discovery of the first binary neutron stars merging event, GW170817 [174–177]
and the detection of an associated electromagnetic counterpart have lead to the
measurement H0 = 70+12

−8 . Even though this constraint is much weaker than those
obtained by SNe and CMB observations it is expected to significantly improve with
the discovery of new merging events with an associated counterpart [178, 179].

Along with standard sirens (as gravitational wave events are called nowadays
because of their analogy with standard candles), observations of the time delay
between multiply imaged strongly lensed system has become a compelling method
to obtain measurements of H0 together with other cosmological parameters. The
observational method of SLTD was first proposed in 1964 and it can now pro-
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duce precise, although cosmology dependent, estimations of the Hubble constant
thanks to accurate measurements of the time delays between multiple images of
specific lensed quasar [180]. The analysis of four well-measured systems from the
H0LiCOW lensing program [181] has recently provided a bound on the Hubble
constant of H0 = 72.5 ± 2.1 assuming a flat ΛCDM cosmology [182]. While the
H0LiCOW program is ambitiously aiming to bring the SLTD estimates of H0 to
the 1% precision (see e.g. [181] and [183] where a 2.4% constraints on H0 is
obtained combining six well-measured lensing systems), observations of lensed
system from future surveys, such as the Large Synoptic Survey Telescope (LSST)
which should start taking data in 2023 [184], are expected to significantly improve
the number of well-measured strongly lensed systems [185]. The increase in the
number of observed lensed sources will also open the possibility to constrain non
standard cosmologies, e.g. extensions in the dark and neutrino sector (see [183]
for recent constraints on these extended parameter space from SLTD). SLTD is
sensitive to the cosmological model through a combination of distances, but unlike
Type Ia SNe, SLTDmeasurements do not require any anchoring to known absolute
distances.

Typically however, obtaining cosmological constraints with SLTD systems re-
quires precise measurements and modeling of the mass profile and of the envi-
ronment of the lens system in order to have systematics reasonably under control.
Future surveys, like LSST, are also expected to provide enough well-measured
systems to allow sufficient statistics with a selected subset of lenses for which a
precise modelling of the lens properties can be obtained. This will certainly limit
the impact on the cosmological constraints of the uncertainties in the modeling of
lens mass and environment. LSST, for instance, has the advantage of having both
the wide field-of-view to detect many quasars, and the frequent time sampling to
monitor the lens systems for time delay measurements. Several thousand lensed
quasar systems should be detectable with LSST, and, as shown in [186], around
400 of these should yield time delay measurements of high enough quality to
obtain constraints on cosmological models [187].

It is timely to investigate the constraints on cosmological parameters that can
be obtained from future observations of strongly lensed systems. In this Chapter
we focus on simple extensions of the ΛCDM expansion history and forecast SLTD
constraints on these, as well as on the current expansion rate H0. We do so, by
creating synthetic mock catalogs of future survey with variable number of lenses
up to 1000 and building a Gaussian likelihood to compare data with theory. We
also include estimates of the lens galaxy stellar velocity dispersion in our analysis.

The Chapter is organized as follows. In Section 6.2 we outline the connection
between the time delays and the cosmological model, describe the theoretical
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modeling of the lens velocity dispersion and illustrate how it can improve the time
delay constraints on DE parameters. In Section 6.3 we outline our analysis method,
describing the likelihood expression used to infer the posterior distributions of
cosmological parameters, and explaining the procedure used to generate mock
datasets, which are used to forecast the constraints displayed in Section 6.4. In
Section 6.4.1 we discuss the constraining power of SLTD on the DE models of
interest, assessing at the same time how observational uncertainties on the lens
model and on line of sight effects impact the Figure of Merit of future surveys.
Section 6.5 contains our investigation of the possible bias brought on the inferred
parameters by a wrong assumption of the underlying cosmological model. We
also propose a consistency check that could be performed on future SLTD datasets
to verify this possibility. Finally, we summarize our conclusions in Section 6.6.

6.2 Cosmology with Time Delay Measurements
We shall describe the connection between gravitational lensing time delay and the
cosmological model, and how we account for the velocity dispersion of the lensing
galaxy for our cosmological inference.

We also specify the lens and environment mass modeling used for our analysis
and include a description of the mass-sheet degeneracy, which provides a transfor-
mation of the lens mass profile that has no observable effect other than to rescale
the time delays [188].

6.2.1 Theory of Gravitational Lensing Time Delays

In strongly lensed systems, the time that light rays take to travel between the source
and the observer depends sensibly both on their path and on the gravitational
potential of the lens. For a given i-th light ray, the time delay with respect to its
unperturbed path is given by [189, 190]):

t(θi, β) = (1 + zl )
DlDs

c Dls

[
(θi − β)2

2
− ψ

⊥
(θi)

]
, (6.1)

where, as shown in Figure 6.1, β and θi stand, respectively, for the source and the
image position, zl is the redshift of the lens and ψ⊥(θi) is the projected gravitational
potential calculated on the lens plane. Dl , Ds and Dls are, respectively, the angular
diameter distance from the observer to the lens, from the observer to the source,
and from the lens to the source; they satisfy the relation

Dls =
(1 + zs)Ds − (1 + zl )Dl

1 + zs
, (6.2)
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Figure 6.1: The schematic view of a strongly lensed system. Dl , Ds and Dls are, respectively, the
angular diameter distance from the observer to the lens, from the observer to the source, and from the
lens to the source. The solid angles β and θi indicate the position of the source and the images, with
respect to the lens plane.

where zs is the redshift of the source. The Fermat principle provides us with a lens
equation for the relative angle between the true position of the source and each of
the, possibly multiple, images:

θi − β = ∇ψ⊥(θi), (6.3)

where∇ is the transverse gradient computed on the plane orthogonal to the direction
of propagation of light. It can be shown [189, 190] that the combination (θi −
β)2/2−ψ

⊥
(θi) in Eq. (6.1) is only dependent on the geometry andmass distribution

of the deflectors; it is usually referred to as the Fermat potential ϕ(θi, β).
As Eq. (6.1) shows, the background cosmological parameters impact the grav-

itational lensing time delays through the ratios of angular diameter distances. In a
flat Universe the angular diameter distance can be written as

D(z) =
c

H0(1 + z)

∫ z

0

dz′

E(z′)
, (6.4)

where E(z) = H(z)/H0 is the dimensionless Hubble rate, and c is the speed of light.
The relative time delay between two images A and B of a lensed system is given
by the difference in the excess time of the two images, which can be rewritten in a
simple form using the Fermat potential

∆tAB = (1 + zl )
DlDs

c Dls
[ϕ(θA, β) − ϕ(θB, β)] , (6.5)

where we can isolate the factor containing the dependence on cosmological pa-
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rameters
D∆t = (1 + zl )

DlDs

c Dls
, (6.6)

which is referred to as the time delay distance.

6.2.2 Lens Mass Model and Mass-Sheet degeneracy

While assuming a cosmological model is enough to define D∆t through Eq. (6.6),
in order to be able to obtain theoretical predictions for ∆tAB, the Fermat potential
needs to be computed. This requires a modeling of the mass profile of the lens
galaxy.

While an accurate description of the mass profile is challenging both experi-
mentally and theoretically, the profiles of most discovered lens galaxies have been
shown to be well fitted by a nearly elliptical power-law mass distribution [191].
Throughout this Chapter, when describing our lens systems, we will use a pro-
jected potential on the lens plane ψ⊥ obtained assuming the Softened Power-law
Elliptical Potential (SPEP) [192]:

ψSPEP(θ) =
2A2

(3 − γ′)2

[
θ2

1 + θ
2
2/q

2

A2

] (3−γ′)/2
, (6.7)

where q is the galaxy axis ratio, A = θE/[
√
q(

3−γ′
2 )

1/(1−γ′)] is an overall normaliza-
tion factor depending on the Einstein radius θE and γ′ ≈ 2 is the slope of the mass
profile [which we define in Eq. (6.11)]. θ1 and θ2 are the projections on the lens
plane of the two dimensional image position θ.

Additionally, as common in the modeling of the mass profile of quadrupole
lenses (see e.g. [189, 190]), we include in our modeling of the lens mass profile a
constant external shear yielding a potential in polar coordinates of the form:

ψp(θ, ϕ) ≡
1
2
θ2γext cos 2(ϕ − ϕext). (6.8)

where γext and ϕext are the shear strength and angle. It is worth stressing that both
ψp and ψSPEP contribute to the projected potential ψ⊥.

When using time delay measurements in cosmology, a complicating factor
arises from the so-called mass-sheet degeneracy (for a detailed discussion see e.g.
[189, 190]). In fact, a transformation of the lens convergence κ(θ) = ∇ψ⊥/2 of
the form:

κ′(θ) = λκ(θ) + (1 − λ) (6.9)

will result in the same dimensionless observables, e.g. image positions and shapes,
but will rescale the time delays by a factor λ. The additional mass term can be due
to perturbers that are very massive or close to the lens galaxy (which may need
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to be included explicitly into the mass model and affects stellar kinematics) or to
the structures that lie along the LOS (see e.g. [193–196]). Both effects can be
summed up into a constant external convergence term, κext = 1 − λ, due to the
mass sheet transformation described by Eq.(6.9). The neat effect is a rescaling of
the value of the observed time delay distance [197, 198]:

D′∆t =
D∆t

1 − κext
(6.10)

This degeneracy between the external convergence and the mass normalization
of the lens galaxy, if not resolved, can lead to a biased inference of the cosmological
parameters [199]. Such an effect can be reduced by the combination of lensing
data with stellar kinematics measurements, tracing the internal mass distribution
of the lens galaxy [200].

6.2.3 Stellar Dynamics Modelling

In order to model the measurable stellar velocity dispersion σv we need to model
the 3D gravitational potential of the lens galaxy Φ, in which stars are orbiting.
This potential will have contributions from the mass distributions of both the lens
and the nearby galaxies physically associated with the lens. To model the stellar
velocity dispersion we follow the analysis of [195, 196].

The overall mass density associated to Φ can be approximated as a spherically
symmetric power law profile:

ρlocal = ρ0

(r0
r

)γ′
(6.11)

the overall normalization ρ0r
γ′

0 can be determined quite well by lensing measure-
ments, since it is a function of the lens profile characteristic only, and can be
written as [195]:

ρlocal(r ) = π
−1/2 (κext − 1) Σcr Rγ′−1

E
Γ(γ′/2)

Γ
(
γ′−3

2

) r−γ′ , (6.12)

where RE is the Einstein radius and Σcr is the critical surface density. As in [195],
to calculate the LOS velocity dispersion we follow [201].

The three-dimensional radial velocity dispersion σr is then found solving a
spherical jeans equation:

∂(ρ∗σ2
r )

∂r
+

2βani(r )ρ∗σ2
r

r
+ ρ∗
∂Φ

∂r
= 0 , (6.13)

where βani = r 2/(r 2 + r 2
ani) is the anisotropy distribution of the stellar orbits in

the lens galaxy and Φ is the galaxy gravitational potential associated to the overall
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density of Eq.(6.11). For the modeling of the stellar distribution ρ∗, we have
assumed the Hernquist profile [202]

ρ∗(r ) =
I0a

2πr (r + a)3
, (6.14)

with I0 being a normalization factor, a = 0.551reff and reff being the effective
radius of the lensing galaxy. The luminosity-weighted velocity dispersion σs is
then given by :

I(R)σ2
s = 2

∫ ∞

R

(
1 − βani

(
R
r

)2
)
ρ∗σ2

r r dr
√
r 2 − R2

. (6.15)

Here R is the projected radius and I(R) is the projected Hernquist profile. Fi-
nally, the luminosity-weighted LOS velocity dispersion within a measuring device
aperture A is :

(σv)
2 =

∫
A
[I(R)σ2

s ∗ P]RdRdθ∫
A
[I(R) ∗ P]RdRdθ

. (6.16)

where ∗P indicate convolution with the seeing (see also [195, 196]).
A prediction of the measurable velocity dispersion σv is therefore obtained

accounting for the observational characteristics of the survey, i.e. through the
convolution, over A, of the product I(R)σ2

s with the seeing P. Note that the
cosmological dependence of σv is contained only in the combination ΣcrR

γ′−1
E ,

therefore separate σv as:

(σv)
2 = (1 − κext )

Ds

Dls
F (γ′, θE, βani, reff) (6.17)

where the termsF accounts for the computation of the integral in Eq.(6.16) without
the cosmological terms, θE is the angle associated with the Einstein radius, and all
the cosmological information is contained in the ratio Ds/Dls .

In this work, we follow the spectral rendering approach of [196] to compute the
luminosity-weighted LOS velocity dispersion from Eq.(6.16).

6.3 Analysis method and mock datasets
The final goal of this Chapter is to assess how well future surveys of strongly
lensed systems will constrain cosmological parameters, with a particular focus on
simple extensions to the ΛCDM model.

We do so by comparing the theoretical predictions of different cosmological
models with forecasted datasets, based on mock catalogues. In practice we aim at
calculating the posterior distribution P(®π | ®d) for a set of cosmological parameters
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®π given the set of (forecasted) data ®d. Using the Bayes theorem, this can be written
as

P(®π| ®d) ∝ P( ®d | ®π)P(®π), (6.18)

where P( ®d | ®π) is the likelihood of ®d given ®π, and P(®π) is the prior distribution.
This expression for the posterior distribution does not include possible nuisance

parameters which would account for uncertainties in the modeling of the lensed
system, its environment and LOS effects. Wewill first generalize it to include these
parameters and then marginalize over them in order to obtain the final distribution
only for the cosmological parameters.

We consider the following nuisance parameters ®πnuis = (rani, κext, γ
′). The final

posterior can be obtained as [195]

P(®π| ®d) ∝
∫

dranidκextdγ
′P( ®d | ®π, ®πnuis)P(®π)P(rani)P(κext)P(γ′) , (6.19)

where P(rani), P(κext) and P(γ′) are the prior distributions on each nuisance param-
eter. Notice that we do not include here as nuisance parameters, the other terms
that enter in the lens model, e.g. the Einstein radius θE and the external shear γext.

In this Chapter we assume these to be perfectly known, since we are mainly
interested in analyzing the degeneracy between the H0 and the parameters of the
lensmodeling that are expected to have themost important impact on its estimation,
i.e. the slope of the power law profile and the external convergence (see e.g. [203]).

The degeneracy between H0, γ′ and κext may, in turn, also affect the constraints
on DE equation of state through the well-known degeneracy between H0 and DE
parameters. We leave the study of the impact on our results of the inclusion of the
whole parameter space of the lens model for a future work.

As discussed in Section 6.2, in order to break the mass-sheet degeneracy SLTD
surveys combine measurements of the time delay between different images (∆t)
and of the projected velocity dispersion within the lens (σv). The latter contains
also a dependence on the cosmological parameters. Hence, our data vector will be
therefore composed of this pair of measurements for each lensed system included
in the dataset, with ®d = ( ®∆t , ®σv). In order to constrain our cosmological models,
these measurements need to be compared with the theoretical predictions ®∆t

th
and

®σth. Assuming a Gaussian likelihood, this can be written as

P( ®d | ®π) = exp

[
−

1
2

(∑
i,j

(∆t th
i,j(®π) − ∆ti,j)

2

σ2
∆ti, j

+
∑
i

(σth
i (®π) − σv,i)

2

σ2
σv,i

)]
, (6.20)

where the index i runs over all the lensed systems in the dataset, j runs over
the image pairs for each of the systems and we assume there is no correlation
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between the measurements of different systems. For a given set of cosmological
(®π) and lens model (®πnuis) parameters, the theoretical predictions ∆t th

i,j and σ
th
v,i can

be obtained from Eq. (6.1) and Eq. (6.16) respectively. We compute the angular
diameter distances that appear in these equations using EFTCAMB [204, 205], a
public patch to CAMB [122, 206].

With these predictions we can then reconstruct the posterior distribution P(®π| ®d)
sampling the parameter space and computing the likelihood of Eq. (6.20) for
each sampled point. The parameter space is sampled through the public Monte-
Carlo Markov-Chain (MCMC) code CosmoMC [128], with the parameter vector
®π including the total matter density Ωm, the Hubble constant H0 and w0 and wa,
which parameterize the DE equation of state via the CPL form [207, 208]

w(z) = w0 + wa
z

1 + z
. (6.21)

Using this parameterization, the dimensionless Hubble rate E(z) appearing in
Eq. (6.4) can be written as

E(z) =
√
Ωm(1 + z)3 + ΩDE(1 + z)3(1+w0+wa) exp

[
−wa

z

1 + z

]
. (6.22)

In the following, we will explore three different DE models and this will
determine whether or not we sample w0 and wa. The cases we investigate are:

• ΛCDM, where both parameters are fixed to w0 = −1 and wa = 0, recovering
the standard cosmological constant equation of state w(z) = −1;

• wCDM, where wa = 0, but we keep w0 free to vary, obtaining a constant
equation of state which might however deviate from −1;

• w0waCDM, where both w0 and wa are free to vary and we explore the possi-
bility of a DE with a time dependent equation of state.

We always assume a flat Universe, with the DE density set by the relation ΩDE =

1 − Ωm. As stated above, sampling only over the parameters ®π, while keeping the
nuisance parameters ®πnuis fixed to their fiducial values, implicitly assumes that the
lensed system is perfectly known: we label such cases as ideal.

We consider also a realistic cases, where the nuisance parameters are allowed to
vary. In Table 6.1 we show the prior distributions assumed for all the parameters,
with the cosmological ones always sampled using a uniform prior [πimin, π

i
max].

In the wCDM and w0waCDM cases, we additionally impose an acceleration
prior, which limits the DE equation of state to w(z) < −1/3. In the realistic case,
we additionally sample the nuisance parameters using Gaussian priors G for κext
and γ′ and a uniform prior for rani. Keeping the nuisance parameters fixed, like in
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the ideal case, effectively amounts to using Dirac δD distributions as their priors.
As stated by [195], we stress that the uncertainty in reff has a negligible effect on
the velocity dispersion modeling.

Parameter Ideal case Realistic case

Ωm [0, 1] [0, 1]

H0 [40, 140] [40, 140]

w0 [−3, 0] [−3, 0]

wa [−4, 4] [−4, 4]

κext δD(−0.03) G(−0.03, 0.05)

γ′ δD(1.93) G(1.93, 0.02)

rani (
′′) δD(3.5) [0.665, 6.65]

Table 6.1: Prior ranges on the cosmological and nuisance parameters sampled in our analysis.

6.3.1 Mock Catalogues

The last ingredient that we need in order to compute the likelihood, is the data
vector ®d . We generate three mock catalogues containing different numbers of
observed systems, i.e. with Nlenses = 10, 100, 1000 lenses, uniformly distributed
in the redshift range 0 < z ≤ 1. Furthermore, we assume all the systems in the
dataset to be identical to each other, adopting for all of them the mass profile
described in Eq. (6.7), with the fiducial values of the model parameters set to those
of the H0LiCOW resolved quadruply lensed system HE0435-1223 [209], listed in
Table 6.2.

We also assume that the redshift difference between the lens and the background
source is the same for all the systems, with ∆z = 1.239.

Parameter θE (
′′) q θq (°) γ′ γext φext (°) κext reff (

′′) rani (
′′)

Value 1.18 0.8 −16.8 1.93 0.03 63.7 −0.03 1.33 3.5

Table 6.2: Fiducial values for the mock lens parameters.

Apart for being one of the currently best observed system, HE0435-1223 has
the advantage of being almost symmetric in terms of the image configuration,
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which itself implies that the image separations are more than the observational
threshold of 1′′ [210].

Moreover, the amount of external shear induced from the environment of this
lens is consistent with the shear parameter of most of the studied lens systems in
the assumed redshift range (see e.g. the catalogue of [186]).

Our assumptions on the redshift range of the dataset are justified by the con-
straints on source quasar redshifts from current surveys such as SDSS [211],
as well as the predicted peak lens and source redshift ranges for the LSST sur-
vey [185]. Notice that our modeling of the mock catalogue implies also that we
assume the same external convergence κext for all systems. We fix the value of the
external convergence on the best fit value of the distribution of κext estimated by
the analysis of the environment of the lens HE0435-1223 [212]. Since κext is a
LOS effect, this assumption might easily break down for surveys with an extended
redshift range, for which a redshift dependence of this nuisance parameters could
be included.

The external convergence might also carry cosmological information, in par-
ticular if one wants to explore deviations from General Relativity; the different
evolution of Large Scale Structures in modified gravity theories might indeed
imprint characteristic features in the effect that these structures have on SLTD
measurements, which can in principle be exploited to constrain departure from the
standard General Relativity description [199].

In addition to the lens parameters, in order to generate our mock datasets we
also need to assume a fiducial cosmology. We choose two different fiducials, thus
creating two classes of mock data:

• Λ-mock, where the DE equation of state parameter is constant in time and
equal tow(z) = −1 (thus assumingw0 = −1 andwa = 0), and the cosmological
parameters are chosen to be in agreement with the constraints obtained by
the Planck collaboration [28], i.e. Ωm = 0.295, H0 = 67.3 Km/s/Mpc.

• w-mock, which differs from the Λ-mock only in the value of the DE equation
of state parameter, which is again constant but set to w(z) = −0.9.

In both cases, we assume a flat Universe, with ΩDE = 1 − Ωm. Once the
lens and fiducial cosmological parameters are assumed, the relative time delays
and the velocity dispersion can be computed following Eq. (6.5) and Eq.(6.16).
Computing these for each of the Nlens lensed system contained in our dataset
allows us to create our simulated data points; for each of these we assume that
the time delays are observed with an error of σ∆t = 0.8 days1, while for the

1Based on our generated time delay values, this estimate fulfills the requirement of 0.2% level time
delay accuracy which, as pointed out by [213], is needed for a low biased cosmological inference.
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Figure 6.2: ΛCDM for a survey with Nlens = 10. The upper panel shows the velocity dispersion of the
lens galaxies projected along the line of sight. The bottom panel shows the absolute time delay differences
between image A and the other three images.

velocity dispersion measurements we assume a constant error σσv = 15 km/s. As
an example, we show in Figure 6.2 the Λ-mock obtained for a forecasted survey of
Nlens = 10 lensed systems.

6.4 Forecasts for cosmological parameters
In this Section we present the forecasted bounds on cosmological parameters
obtained following the analysis procedure and the mock datasets described in
Section 6.3. We focus on the Λ-mocks, containing Nlens = 10, 100, 1000 lensed
systems, and we analyse them, both in the ideal and realistic cases, using the three
DE models we introduced: ΛCDM, wCDM and w0waCDM.

ΛCDM - In a standard ΛCDM scenario, we find that future strong lensing surveys
will be able to constrainH0 at the same level of Planck [28], σH0 ∼ 1%, alreadywith
Nlens = 10 in the ideal case; this result is consistent with what was found in [214]
for a catalogue of 55 lenses. Increasing the number of systems to Nlens = 100,
improves the bound onH0 by a factor of∼ 3, while with our most optimistic dataset
(Nlens = 1000) we find thatH0 could be constrainedwith an error of∼ 0.1%. These

123



6. Make Lensing Strong Again

Figure 6.3: Constraints on the ΛCDM cosmological model obtained using the Λ-mock datasets with
Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows the
results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right panel
refers to the realistic case where these parameters are free. We show here only κext as this is the only
nuisance parameter with a significant degeneracy with the cosmological ones.

results are shown in the left panel of Figure 6.3 and in the ΛCDM entries of Table
B.1 shown in Appendix B.

In the realistic cases, where the nuisance parameters are let free to vary, the
constraints on the Hubble rate are worsened by a factor of ∼ 4 for Nlens = 10. This
worsening is mainly due to the strong degeneracy between H0 and κext described
by Eq. (6.10), which is clearly visible in the right panel of Figure 6.3. Increasing
the number of lenses improves the bounds on both parameters, and we reach a
∼ 2% constraint on H0 when Nlens = 1000. All the results for the realistic cases
are shown in Table B.2 in Appendix B.

wCDM - Using the mock datasets to constrain this simple extended DE model,
we find that in the ideal case with Nlens = 10, H0 can now be measured with
an error of ∼ 4%, which is improved to ∼ 1% and ∼ 0.3% for Nlens = 100 and
Nlens = 1000 respectively. The parameter determining the equation of state for
DE, w0, is constrained at the level of ∼ 34% for the 10 lenses case, while moving
to the optimistic 1000 lenses configuration boosts the constraining power on this
parameter up to ∼ 2%, thanks to the breaking of the degeneracy between H0 and
w0. Such a result highlights how the improvement of SLTD measurements will
significantly impact the investigation of DE alternatives to ΛCDM. These results
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Figure 6.4: Constraints on the wCDM cosmological model obtained using the Λ-mock datasets with
Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows the
results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right panel
refers to the realistic case where these parameters are free. We show here only κext as this is the only
nuisance parameter with a significant degeneracy with the cosmological ones.

are shown in Figure 6.4, while the constraints on all the sampled parameters are
included in Appendix B in Table B.1.

When considering the realistic case (see right panel of Figure 6.4 andTableB.2),
the worsening of the constraints due to the nuisance parameters has a different trend
with respect to the ΛCDMmodel; in the 10 lenses case, the additional degeneracy
introduced by κext worsen the bounds on H0 only by a factor ∼ 2 (with respect to
the factor ∼ 4 of the ΛCDM case), due to the already existing degeneracy between
H0 and w0, while in the 100 and 1000 lens cases, when this degeneracy is broken,
the constraints become looser by a factor ∼ 5 and ∼ 7 respectively.

As κext affects w0 only through its degeneracy with H0, moving from the ideal
to the realistic case does not have an extreme impact on the DE parameter, with
the constraints getting worse by a factor of ∼ 2 for Nlens = 10, 100, 1000

w0waCDM - In this case, we find that due to the degeneracies between H0 and
the DE parameters w0 and wa, the constraints on H0 are significantly worsened.
We see that a strong lensing survey could reach a ∼ 1% level bound on the
Hubble parameter only with the most optimistic configuration of this Chapter,
i.e. Nlens = 1000 in the ideal case. Due to their degeneracy, w0 and wa are not
efficiently constrained solely with SLTD data; the best constraint is of the order of
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Figure 6.5: Constraints on the w0waCDM cosmological model obtained using the Λ-mock datasets with
Nlens = 10 (red contours), 100 (yellow contours) and 1000 (blue contours). The left panel shows the
results for the ideal case, with nuisance parameters fixed to their fiducial values, while the right panel
refers to the realistic case where these parameters are free. We show here only κext as this is the only
nuisance parameter with a significant degeneracy with the cosmological ones.

∼ 5% on w0 and σwa ∼ 0.3 on wa, in the most optimistic case. Of course, possible
synergies of future SLTD surveys with other background probes, such as SNIa or
BAO, would significantly improve this situation, breaking the degeneracy between
the DE parameters and allowing to obtain again a bound on H0 competitive with
respect to CMB or local measurements.

The effect of nuisance parameters when considering the realistic case is similar
to what is found for the wCDM case, with the additional parameters affecting
mainly the bounds on H0, whose error reaches now ∼ 2% for Nlens = 1000, while
not showing significant impact on the DE parameters.

The results for the w0wa case are shown in Figure 6.5, while numerical con-
straints are reported in Tables B.1 and B.2 shown in Appendix B.

6.4.1 Figure of Merit for Strong Lensing Time Delay

We would like to quantify the constraining power of SLTD surveys, and its im-
provement with the number of observed systems, in a general way that allows to
directly compare the performance of different surveys. For this purpose, we rely
on the commonly used Figure of Merit (FoM) [215]. For two parameters α and β
the FoM is

FoMαβ =

√
det F̃αβ, (6.23)
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Figure 6.6: FoM for the Ωm ,H0 (left panel) and w0,wa (right panel) as a function of Nlens when
analysing ΛCDM (red lines), wCDM (yellow lines) and w0waCDM (black lines). The solid lines refer to
the ideal case, while the dashed lines account for free nuisance parameters (realistic case).

whereF is theFisher informationmatrix for a generic number of parameters and F̃αβ
is the Fisher matrix marginalized over all the parameters except for α and β. Given
its definition, the FoM gives an estimate of the area of the confidence contours
for two parameters, thus quantifying the constraining power of an experiments
on them, taking also into account their correlation. It is important to remember
that such a definition implies approximating the posterior distribution P(®π| ®d) to a
Gaussian.

From our MCMC analysis we derived a covariance matrix C = F−1, which
contains all the sampled parameters. Let us focus on two cosmological parameters
of interest that are common to all the models investigated in this work: Ωm and
H0. We shall marginalize the covariance matrices over all the other parameters
and then compare the constraining power of our mock datasets in each of the cases
analysed, using the FoM for Ωm and H0:

FoMΩmH0 =

√
det C̃−1

ΩmH0
. (6.24)

The posterior for Ωm and H0 is very close to a Gaussian one when the parameters
are tightly constrained, e.g. in the ΛCDM case with Nlens = 1000; however, the
gaussian approximation becomes less and less efficient as the number of lenses in
the dataset decreases. Hence, the FoM values for the less constraining cases might
be overestimated.

In the left panel of Figure 6.6 we show the trend of the FoM for the ideal (solid
lines) and realistic (dashed lines) cases as a function of Nlens. Comparing these
two cases, we can notice how the improvement in constraining power brought by
the number of lenses is less significant when the nuisance parameters are let free
to vary. We also notice that the FoM for the ideal and realistic cases become more
similar to each other as we go from ΛCDM to the more general DE parametrized
by CPL. This is consistent with the trends that we have discussed in Section 6.4.
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In the right panel of Figure 6.6 we also show the FoM for the w0 and wa

parameters, FoMw0wa . Such quantity is commonly used when quantifying the
expected sensitivity of future experiment to the DE sector. We find that SLTD
surveys can reach values of FoMw0wa ≈ 100 for Nlens = 1000 (in the ideal case),
which is comparable with other future surveys, such as Euclid, expected to reach
FoMw0wa ≈ 400 with its primary probes, [216] or the FoMw0wa ≈ 100 reached by
the combination of Weak Lensing measurements from SKA1 and DES, together
with Planck observations [217].

6.5 A smoking gun for dark energy?
In Section 6.4 we used the Λ-mock and constrained three DE models which
contained the assumed fiducial cosmology as a limiting case. However, when
real data will be available, we will have no a priori knowledge of the underlying
cosmological model, and assumptions about the latter might affect the results.

In this Section we test the impact of wrong assumptions about the underlying
cosmology on constraints from future surveys. To this extent, we consider the
w-mocks, generated with a fiducial w0 = −0.9, and fit the data assuming instead
a ΛCDM cosmology. Given that the latter does not contain the true fiducial as a
limiting case, we can quantify the sensitivity of future surveys on this assumption
by computing the shift of the mean values obtained for cosmological parameters.
In particular, for H0 we have

S(H0) =
|H0 − Hfid

0 |

σH0

, (6.25)

where the fiducial value is the one used to generate the mock data, i.e. Hfid
0 = 67.3

km/s/Mpc, and we assume that the H0 distributions obtained through our analysis
can be approximated by a Gaussian of width σH0.

In Figure 6.7 we show the bounds on H0 and the values of S(H0) changing the
sample size, both for the ideal and realistic cases, when fitting the w-mocks with
a ΛCDM cosmology. In the realistic case, the shift on this parameter is never
statistically significant and reaches the maximum of S(H0) = 1.4 for the 1000
lenses mock. However, in the ideal case the shift can be as high as 10σ. This
implies that, if mass modelling of lenses reaches extreme accuracy with future
surveys, the assumption of wrong cosmology could lead to significant tensions
on H0 value between SLTD observations and other independent cosmological
measurements (e.g. from SH0eS [4]).

Interestingly, it might be possible to exploit this shift effect, to build a consis-
tency check of the assumed cosmological model. Using a dataset of Nlens observed
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Figure 6.7: Marginalized means and error estimates on the value of the Hubble constant using the
w-mocks (w0 , −1) analysed keeping the w fixed to the ΛCDM value. The solid lines represent the
ideal cases, while the dashed lines show the results of the realistic cases. The numbers above each line
correspond to S(H0) computed following Eq. (6.25).

systems, we can split it inNbin redshift bins and use the resulting datasets separately
to constrain the parameters of a given cosmological model, e.g. ΛCDM. Should
this model differ from the “true” cosmology (or the fiducial one in the case of fore-
casts), the results obtained analysing separately the three datasets will be in tension
with each other. As a test case, we split the w-mock, both for Nlens = 100 and
Nlens = 1000, in Nbin = 3 redshift bins and we fit these with a ΛCDM cosmology.

In Figure 6.8 we show the constraints on H0 and Ωm obtained through this
analysis for Nlens = 100 (top panels) and Nlens = 1000 (bottom panels), with the
left (right) panels showing the results in the ideal (realistic) case. While for 100
overall lenses both the ideal and realistic case show no tensions on the cosmological
parameters, in the ideal case with Nlens = 1000 a tension between the results on H0
appears, with a ∼ 2σ significance between the first and the third bin. Such a result
highlights how, with a sufficient number of observed systems, the assumption
of a ΛCDM cosmology could be checked internally using only this observable;
a statistically significant tension on the measured parameters in different redshift
bins would then provide a smoking gun for the breakdown of ΛCDM, after internal
systematics effect are excluded .
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Figure 6.8: Comparison of the constraints onH0 andΩm from the analysis of the three datasets obtained
splitting the original mock data in three redshift bins. Top panels refer to the Nlens = 100 dataset, while
the bottom panels to the Nlens = 1000. Left panels do not include nuisance parameters (ideal case), while
the right panels refer to the realistic case.

6.6 Conclusions

In this Chapter we explored constraints on the nature of Dark Energy (DE) from
future Strong Lensing Time Delay (SLTD) measurements. We simulated SLTD
datasets starting from a fiducial cosmological model and a description of the lens
profile. For the latter, we assumed a common lens profile for all the systems.
We distributed the lenses uniformly in the redshift range 0 < zlens < 1, and we
simulated the time delay that these would generate among different images of
a background source, always placed at a ∆z = 1.239 from the lens, assuming
different cosmologies. In the ideal case, in which the lens profile and external
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environment parameters are perfectly known, SLTD measurements can provide
constraints that are competitive with other upcoming cosmological observations;
H0 can be constrained with an error as small as ∼ 0.1% assuming a ΛCDM
model and an optimistic dataset of Nlens = 1000 observed systems, while this error
increases up to ∼ 1% when the DE equation of state is allowed to vary.

We also evaluated the Figure ofMerit (FoM) for the w0 and wa in the Chevallier-
Polarski-Linder parametrization of DE. We found that in our most optimistic case,
the FoM can reach a value of ∼ 100, which is competitive with what is expected
from upcoming Large Scale Structure surveys. When considering a more realistic
case, with the lens profile and lens environment parameters not perfectly known,
the constraints worsen significantly. In particular H0 is strongly degenerate with
the nuisance parameter κext, that encodes the external convergence brought by
additional structures along the line of sight between the observer and the lens.
Whenwe allow κext to vary (according to a prior), we find thatH0 can be constrained
only up to ∼ 2% both in the ΛCDM and w0waCDM cases. In the latter case, the
FoM on w0,wa can reach only ∼ 60.

Furthermore we quantified the bias on cosmological parameters arising from a
wrong assumption on the cosmological model in the analysis of future data. We
analysed themock dataset generated assumingw = −0.9with aΛCDMcosmology,
i.e. with a fixed w = −1, and computed the shift S(H0) on the Hubble constant with
respect to the fiducial value used to obtain the mock data. Interestingly, we found
that in the ideal case this shift can reach 10σ, highlighting how comparing the
results obtained from SLTD observations with other measurements of H0 could
produce significant tensions on this parameter. Such a shift is however almost
completely washed out in the realistic case, where S(H0) never exceeds ∼ 1.5σ.

The study of the shift in H0, suggested an interesting, and potentially powerful,
consistency check of the cosmological model, entirely based on SLTD data. We
split our mock datasets constructed with a wCDM cosmology, with w = −0.9,
and analysed the three resulting datasets separately, (wrongly) assuming ΛCDM
cosmology. In the ideal case with Nlens = 1000, we found that the measurements
of H0 in the different bins would be in tension with each other up to ∼ 2σ. This
result shows how, with an accurate modeling of the observed lenses, future SLTD
datasets can be used to internally test the assumptions on the cosmological model.

The future of SLTD looks bright; measurements are reaching the same accuracy
of other, more traditional probes of background cosmology. As we have shown
with our analysis, in the upcoming years, SLTD will provide competitive and
complementary constraints on dark energy. It would be of great interest to not
only further explore SLTD in the context of extended theories of gravity [218–220],
but also in combination with other cosmological probes. This work represents a
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first step in all these directions. In particular, the likelihood pipeline that we have
built in CosmoMC will be of great use to explore complementarity of SLTD with
other cosmological probes.
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7 Standard Sirens Impact on
Future Hubble Parameter

Constraints
In the previousChapter, we showed that strong lensing time delaywill be a powerful
method to test cosmological models in the coming future. With a large dataset
of strong lensing events it would also be possible to put tight constraints on the
equation of state of the dark energy. However, the number of gravitational wave
events measured is also expected to increase significantly. Many of them might
also have an electromagnetic counterpart (i.e. they might be standard sirens) and
it would be possible to measure H0 from them. In this Chapter we are going to
study the impact that a measurement of the Hubble constant, H0, coming from
gravitational wave observations would have on future bounds from CMB and BAO
experiments in extended cosmological models.

This Chapter is mainly based on the work Phys. Rev. D98 (2018) no.8, 083523
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7. Standard Sirens Impact on Future Hubble Parameter Constraints

7.1 Introduction
We have briefly discuss in Section 6.1 that gravitational-wave standard sirens
(GWSS) have been posed as a powerful and new method for the determination of
Hubble constant (but see also [179, 221–228]) .

While the constraint on H0 from GWSS is much weaker than those currently
obtained frommeasurements of luminosity distances of standard sirens or observa-
tions of the CMB anisotropies, it is expected to significantly improve in the coming
years with the discovery of additional standard siren events. Moreover, this kind of
measurement is clearly of particular interest given the current discrepancy on the
value of H0 between standard candle luminosity distances of Cepheids and Type
Ia supernovae [3, 229]

Clearly an independent and accurate future determination of H0 from GWSS
will play a key role in confirming or rejecting the possibility of new physics beyond
ΛCDM. It is to emphasized that an accurate measurement of the Hubble constant,
even though it is a low-redshift quantity, can have important consequences for other
higher-redshift cosmological parameters such as the dark energy equation of state
[230]. The possibility of constraining cosmology with GWSS has been already
considered in several different work (see e.g. [19, 223, 231–239]). Some of these
studies analyzed “far future” experiments such as the LISA satellite mission [240]
expected to be launched in 2034 or third generation interferometers such as the
Einstein telescope [233, 241] or the Cosmic Explorer [242].

However, recently, in [179] it has been estimated that, depending on the discov-
ery rate of binary neutron stars, a sub-percent determination of the Hubble constant
from GWSS could be achieved by the Hanford-Livingston-Virgo (HLV) network
as early as during the second year of operation at design sensitivity (∼ 2023
[243]). Given the rate uncertainties, a sub-percent measurement may have to wait
for two years of Hanford-Livingston-Virgo-Japan-India (HLVJI) network, which
is expected to commence operations ∼ 2024+.

On the other hand, a significant improvement in the observational data is
expected from the next CMB and BAO experiments. Future satellite missions
such as LiteBIRD [29, 156] and ground based experiments such as CMB-S4 [33]
will improve the Planck results thanks to cosmic variance limited measurement
of CMB polarization. The LiteBIRD satellite is a JAXA strategic large mission
candidate in Phase-A1 (concept development) and is currently scheduled for launch
around 2026 − 2027 . A complementary groundbased CMB experiment with the
sensitivity of CMB-S4 is at the moment planned after 2023 .

Similarly, galaxy spectroscopic surveys such as DESI ([244], expected to be
completed by 2023) will observe BAO with unprecedented precision. The level of
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accuracy on the Hubble constant expected from future CMB+BAO observations
can reach the 0.15% level (see e.g. [76]). This could naively appear as an order
of magnitude more accurate than future projections for standard sirens constraints.
However the CMB + BAO constraint is obtained under the assumption of ΛCDM
and, as we are going to show in the following sections, can easily be more than
one order of magnitude weaker in extended cosmological scenarios.

These extended scenarios are of particular interest as they may offer a solution
to the existing tension between different measurements of H0. We emphasize
that standard sirens constitute a direct measurement of the luminosity distance,
obviating the need for a distance ladder. The absolute caliation of the source is
provided by the theory of general relativity. The possible systematics associated
with standard siren measurements are expected to reside primarily with the in-
strument, and in particular, with the calibration of the photodetectors which lead
directly to the measurement of the amplitude of the gravitational waves [245, 246].
This calibration is expected to be achieved to better than 1% in the near future
[247]. Gravitational wave standard siren measurements thus have the potential to
provide a particularly clean and robust probe to the sub-percent level.

This is to be comparedwith the case of Type Ia supernovae standard candlemea-
surements, which involve astronomical calibrators such as Cepheids, and multiple
rungs of the distance ladder. It remains unclear whether the supernova systematics
can be reduced to the ∼ 1% level (see e.g. [3, 248, 249]). However, if supernovae
achieve this level of accuracy on the measurement of H0 then our results apply
directly to them as well. Of course, supernovae also offer the opportunity to probe
to much higher redshifts than GWSS, and therefore offer additional cosmological
constraints.

It is therefore timely to investigate what kind of additional constraints a direct
determination of H0 with ∼ 1% accuracy from GWSS can bring, with the expected
completion of new CMB and BAO surveys within the coming decade. In this
Chapter we address this question by forecasting the cosmological constraints from
future CMB and BAO surveys in extended cosmological scenarios and by dis-
cussing the implications of an additional independent and direct H0 measurement
at the level of 1% from upcoming GWSS sources. This Chapter is structured as
follows: in the next section we discuss how we produced our forecasts for CMB,
BAO and GWSS data, in section 7.3 we present the constraints coming from our
analysis combining together our mock datasets, and in section 7.4 we present our
conclusions.
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7.2 Method
In this section we descrive our forecasting method. We start with a description of
the assumed theoretical framework, and then discuss the generation of forecasts
for CMB, BAO and standard sirens constraints.

7.2.1 Extended Models

As discussed in the previous section, in this chapter we consider parameter ex-
tension to the standard ΛCDM model. These models, as we discussed below, are
physically plausible, compatible with current observations, and able to solve in
some cases the current observed tensions between cosmological datasets.

The standard flatΛCDMmodel is based on just 6 parameters: the baryonωb and
cold dark matter ωc physical energy densities, the amplitude As and the spectral
index nS of scalar primordial perturbations, the angular size of the sound horizon
at decoupling θs and the optical depth at reionization τ. Following [25, 254], we
consider variations with the addition of 4 additional parameters:

• Curvature, Ωk . Most of the recent analyses assume a flat universe with
Ωk = 0 since this is considered as one of the main predictions of inflation.
However inflationary models with non-zero curvature can be conceived (see
e.g. [255]). Moreover the recent results from Planck prefer a closed model
Ωk > 0 at more than two standard deviations [27]. Including further data
from BAO strongly constraints curvature with Ωk = 0.0002± 0.0021 at 68%
C.L. and perfectly compatible with a flat universe [27]. However this result
is obtained in the framework of ΛCDM + Ωk i.e. in one single parameter
extension while here we want to analyze a larger parameter space, varying
ten parameters at the same time. In this scenario the current Planck + BAO
constraints on Ωk are weaker.

• Neutrino mass, Σmν. Neutrino oscillation experiments have demonstrated
that neutrinos undergo flavor oscillations and must therefore have small but
non-zero masses. However the neutrino absolute mass scale and the mass
hierarchy are not yet determined (see e.g. [34] for a recent review). Usually, as
in [27], the total neutrino mass scale is fixed to Σmν = 0.06 eV corresponding
to the minimal value expected in the normal hierarchy scenario. There is
clearly no fundamental reason to limit current analyses to this value and the
neutrino mass should be let free to vary.

• Neutrino effective number, Neff. Any particle that decouples from primor-
dial thermal plasma before the QCD transition could change the number of
relativistic particles at recombination increasing Neff from its standard value
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of 3.046 (see e.g. [256]). An increased value of Neff can help in solving the
Hubble constant tension (see e.g. [3]). Reheating at energy scale close to the
epoch of neutrino decoupling could on the contrary lower the value of Neff
[37].

• Dark energy equation of state, w. While current data are in agreement with
a cosmological constant, the possibility of having dark energy equation of
state different from −1 is certainly open (see e.g. [7]). Moreover, a time
evolution for w helps in solving the coincidence problem of why dark energy
and dark matter have similar densities today. In this Chapter we consider two
parametrization, either w constant with time or the Chevalier-Polarski-Linder
parametrization (hereafter CPL) [207, 208]:

w(a) = w0 + (1 − a)wa (7.1)

where a is the scale factor, w0 is the equation of state today (a = 1) and
wa parametrizes its time evolution. This should be considered as a minimal
extension since dark energy time dependences could be more complicated
as, for example, in the case of rapid transition. We consider dark energy
perturbations following the approach of [257].

In this chapter we consider the following 10 parameter extension : ΛCDM + Ωk +

Neff + Σmν + w and ΛCDM + Ωk + Σmν + w0 + wa.
While we study extended models, for our simulated data we assumes as a

fiducial (true) model the standard ΛCDM model with parameters in agreement
with the most recent Planck constraints [27]: ωb = 0.02225, ωc = 0.1198, τ =
0.055, 100θs = 1.0477, nS = 0.9645, Σmν = 0.06 eV, Neff = 3.046, Ωk = 0,
w0 = −1 and wa = 0. The corresponding derived value of H0 in this model is
H0 = 67.3 km s−1 Mpc−1.

The theoretical models and the simulated data are computed with the latest
version of the Boltzmann integrator CAMB [122]. Given a simulated dataset
and a likelihood that compares data with theory, we extract the constraints on
cosmological parameters using the Monte Carlo Markow Chain (MCMC) code
CosmoMC1 [128].

7.2.2 Forecasts for CMB

We produce forecasts on cosmological parameters for future CMB experiments
with a well established and common method (see e.g. [41, 76, 157]). Under the
assumption of the fiducial model described previously, we compute the theoretical

1http://cosmologist.info
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Experiment Beam Power noise W−1/2 `max `min fsky
[µK-arcmin]

LiteBIRD 30’ 4.5 3000 2 0.7

S3deep 1’ 4 3000 50 0.06

S3wide 1.4’ 8 3000 50 0.4

CMB-S4 3’ 1 3000 5 0.4

Table 7.1: Specifications for the different experimental configurations considered in this chapter. In
case of polarization spectra the noise W−1 is multiplied by a factor 2.

CMB angular spectra for temperature, CTT
` , E and B modes polarization CEE

` and
CBB
` , and cross temperature-polarization CTE

` , using the Boltzmann code [122].
Given an experiment with FWHM angular resolution θ and experimental sen-

sitivity W−1 (expressed in [µK-arcmin]2), we can introduce an experimental noise
for the temperature angular spectra of the form (see e.g. [125]):

N` =W−1 exp (`(` + 1)θ2/8 ln 2) (7.2)

A similar expression is used to describe the noise for the polarization spectra
with W−1

p = 2W−1 (one detector measures two polarization states). We have then
produced synthetic realizations of CMB data assuming different possible future
CMB experiments with technical specifications as listed in Table 7.1.

In particular, we have considered a possible future CMB satellite experiments
such as LiteBIRD [156] and three possible configurations for ground-based tele-
scopes as Stage-III ’wide’ (S3wide), Stage-III ’deep’ (S3deep) (see [127] ), and
CMB-S4 (see e.g. [33, 41, 157]). The simulated experimental spectra are then
compared with the theoretical spectra using a likelihood L given by

− 2 lnL =
∑
l

(2l + 1)fsky

(
D
|C̄` |
+ ln
|C̄` |
|Ĉ` |
− 3

)
, (7.3)

where Ĉl are the theoretical spectra plus noise, while C̄l are the fiducial spectra
plus noise (i.e. our simulated dataset). The quantities |C̄` |, |Ĉ` | are :

|C̄` | = C̄TT
` C̄EE

` C̄BB
` −

(
C̄TE
`

)2
C̄BB
` , (7.4)

|Ĉ` | = ĈTT
` ĈEE

` ĈBB
` −

(
ĈTE
`

)2
ĈBB
` , (7.5)
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where D is defined as

D = ĈTT
` C̄EE

` C̄BB
` + C̄TT

` ĈEE
` C̄BB

` + C̄TT
` C̄EE

` ĈBB
`

−C̄TE
`

(
C̄TE
` ĈBB

` + 2ĈTE
` C̄BB

`

)
(7.6)

In what follows we do not consider information from CMB lensing derived from
trispectrum data.

7.2.3 Forecasts for BAO

For the future BAO dataset we consider the DESI experiment [244]. If DV is the
volume averaged distance, this is defined as:

DV(z) ≡

[
(1 + z)2 DA(z)

2cz

H(z)

] 1
3

(7.7)

where DA is the angular diameter distance and H(z) the expansion rate. Under the
assumption of the fiducial model described previously, we compute the theoretical
values of the ratio rs/DV, where rs is the sound horizon at the drag epoch when
photons and baryons decouple, for the different redshifts in the range z = [0.15 −
1.85] listed in Table 7.2.

Given the forecast uncertainties reported in [1] for DA/rs and H(z), we then
compute the uncertainties on rs/DV and we show them in Table 7.2. The simulated
BAO dataset is finally compared with the theoretical rs/DV values through a
Gaussian prior. As a consistency test, we have checked that by using directly the
DA/rs value and the corresponding uncertainties reported in [1] instead of rs/DV,
we obtain very similar results with constraints about ∼ 30% weaker on H0 when
combined with CMB-S4 data in agreement with the results of [258].

In principle it would be possible to forecast BAO data considering DA/rs
and H(z) as independent measurements. However some small tension (around
1 sigma level) is present between the current constraints from DA/rs and H(z)
(see e.g. [258], Figure 2 contours in the Top Left and Bottom Left panels for
Ωm ∼ 0.3). It is clearly difficult to properly take into account a possible small
tension between future DA/rs and H(z) measurements that could improve/reduce
future BAO constraints. We therefore follow the approach of [127] deriving the
expected fractional uncertainties on rs/DV for DESI from the fractional errors on
DA/rs and H(z) forecasted in [1].
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Redshift σ(rs/DV)DV/rs σ(rs/DV)

0.15 2.57% 0.00595

0.25 1.71% 0.00246

0.35 1.32% 0.00141

0.45 1.08% 0.00093

0.55 0.91% 0.00067

0.65 0.79% 0.00051

0.75 0.70% 0.00040

0.85 0.68% 0.00036

0.95 0.75% 0.00037

1.05 0.77% 0.00036

1.15 0.76% 0.00034

1.25 0.76% 0.00032

1.35 0.83% 0.00033

1.45 0.96% 0.00037

1.55 1.21% 0.00046

1.65 1.89% 0.00069

1.75 2.91% 0.00104

1.85 3.87% 0.00134

Table 7.2: Specifications for the forecast DESI data, obtained by [1].

7.2.4 Forecast for gravitational wave standard sirens

As stated in the introduction, in this chapter we address the question of what kind of
cosmological information can be obtained from GWSS systems within the coming
decade (i.e. by ∼ 2028) when complementary measurements from CMB and BAO
surveys will be available. We therefore focus our attention on GW experiments
that could be completed in this time-scale: the Hanford-Livingston-Virgo (HLV)
network of interferometers during the second year of operation at design sensitivity
(∼ 2023) and the the Hanford-Livingston-Virgo-Japan-India (HLVJI) network two
years after the start of operations (∼ 2026) [243].

We do not consider longer-term experiments such as the LISA [240] or DE-
CIGO [259] missions or proposed third generation interferometers such as the
Einstein Telescope [241] or the Cosmic Explorer [242] that would presumably

140



7. Standard Sirens Impact on Future Hubble Parameter Constraints

start operations no sooner than 2030. Moreover, these experiments will be able
to determine the luminosity distance of GWSS at higher redshift, opening the
possibility to test the acceleration of the universe (i.e. the deceleration parameter),
while here we only limit our discussion to the Hubble constant (although black
holes standard sirens would probe these high redshifts earlier [260]).

Considering HLV or HLVJI and assuming the optimistic case that all binary
neutron star (BNS) systems have detected optical counterparts and associated
redshift measurements, the major uncertainty on the projected constraint on H0
from GWSS comes from the BNS detection rate. The current best estimate of the
BNS rate is R = 1540+3200

−1220 Gpc
−3yr−1 [175] (median and 90% credible interval); it

is very poorly constrained given that only one BNS event has been detected to date.
Following [179] we forecast 4%, 2%, and 1% uncertainties on the measurement of
H0 for the HLVnetwork after two years at design sensitivity (∼ 2023) and assuming
lower, mean, and upper BNS rates of R = 320Gpc−3yr−1, R = 1540Gpc−3yr−1,
and R = 4740Gpc−3yr−1. The corresponding accuracy for the HLVJI network
operating after one year of operation (∼ 2025) reaches 3%, 1.4%, and 0.8% on H0,
while after two years it arrives at 2.8%, 1.2%, and 0.7% (see Figure 3 in [179]).
By 2028 the HLVJI network would have an additional two years of operation,
leading very roughly to a factor of

√
2 improvement to 2%, 0.85%, and 0.5%. It is

therefore possible that standard siren measurements will reach an accuracy of 1%
by 2028 (under the assumption that a majority of BNS mergers have detectable
electromagnetic counterparts).

Considering that our fiducial model has H0 = 67.3 km/s/Mpc, we therefore
assume a Gaussian prior of H0 = 67.3± 0.673 km/s/Mpc. In what follows we will
refer to this (optimistic) prior as GWSS67. On the other hand, we also consider
the significantly more pessimistic H0 prior of 4% (H0 = 67.3 ± 2.7 km/s/Mpc).
This prior, just a factor of ∼ 4 smaller than the current GW constraint based on
a single event, is clearly extremely conservative but may happen if the BNS rate
ends up on the low side (see e.g. [175, 179, 261, 262]). In what follows we will
refer to this prior as PGWSS67.

These priors on H0 are introduced by importance sampling on the models
(samples) drawn from our MCMC simulations [128]. In our case this translates
into multiplying each sample weight by a Gaussian function, with mean and
variance defined by the assumed H0 prior, evaluated at the value of H0 in the
sample itself. For this to work it is only necessary that the obtained weights
are significant for a large fraction of the re-weighted samples; this is a direct
consequence of the requirement that the distribution from which the samples are
drawn and the importance distribution are not too dissimilar.
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7.3 Results

7.3.1 ΛCDM + Ωk + Σmν + Neff + w model

We first forecast the constraints on cosmological parameters from future CMB data
only, assuming the extended 10 parameter model ΛCDM + Ωk + Σmν + Neff + w.
The constraints on cosmological parameters for the experimental configurations
listed in Table 7.1 are reported in Table 7.3, while 2D contour plots at 68% C.L.
and 95% C.L. between the extra parameters are reported in Figure 7.1. We find
that future experiments, including CMB-S4, will be unable to provide significant
additional constraints on geometrical parameters such as H0, Ωk , and w. This is
due to the well known geometrical degeneracy that affects CMB observables (see,
e.g., [263–265]).

CMB-S4 will improve the constraints on nS, Neff, Ωbh
2, and Ωch

2 by a factor
of ∼ 2–5 with respect to LiteBIRD. These parameters are less affected by the
geometrical degeneracy, and can thus be better constrained with an improvement in
the angular resolution of the experiment. Constraints on neutrino masses will also
only see marginal improvement (i.e. Σmν < 0.32 eV at 95% C.L. for the strongest
case fromCMB-S4), which falls short of the sensitivity of ∆Σmν ∼ 0.05 eV needed
to test the inverted neutrinomass hierarchy at two standard deviations. The neutrino
effective number will be, on the contrary, less affected and interesting constraints
at the ∆Neff ∼ 0.045 level can be achieved with CMB-S4 even in the case of a
very extended parameter space. It is interesting to investigate how the inclusion
of future BAO surveys, such as DESI, can break the geometrical degeneracy and
improve the constraints derived from CMB data.

Assuming the same ΛCDM fiducial model, we report the CMB+DESI con-
straints in Table 7.4 and we show the 2D confidence level contours at 68% C.L.
and 95% C.L. in Figure 7.2. The geometrical parameters are constrained almost
equally by all configurations, indicating that the additional constraining power
arises from the inclusion of DESI. Curvature is now determined with a 0.1–0.2%
accuracy, while the equation of state can be determined with a ∼ 5% accuracy.
It is interesting to note that a degeneracy is present between Ωk , w, and Σmν, i.e.
the introduction of a neutrino mass limits the CMB+BAO constraints on curvature
and w. In addition, after the inclusion of DESI, CMB-S4+DESI provides better
constraints by a factor ∼ 2 − 4 on parameters such as nS and Neff with respect
to LiteBIRD+DESI. The bounds on the sum of neutrino masses are however still
affected by the remaining extra parameters (mostly by the anti-correlation with
w and the correlation with Ωk), resulting in a limit of Σmν < 0.126 eV at 95%
C.L. for the CMB-S4+DESI configuration and Σmν < 0.202 eV at 95% C.L. for
LiteBIRD+DESI. However the key result for our analysis is the constraint on the
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Hubble parameter. Again, between the several configurations we consider, CMB-
S4+DESI provides the best constraint of H0 = 67.4+1.0

−1.1 km s−1 Mpc−1, i.e. an
uncertainty on the value of the Hubble constant of the order of ∼ 1.5%, while
LiteBIRD+DESI gives H0 = 67.8+1.3

−1.5 km s−1 Mpc−1 with an uncertainty of ∼ 2%.
As discussed in the previous section, a similar uncertainty can be reached by

the HLVJI network after one year of observations (∼ 2025) with a BNS detection
rate of R ≥ 1540 Gpc−3yr−1 or by HLV after two years of observations(∼ 2023)
if the rate is R ≥ 2800 Gpc−3yr−1. For simplicity we have assumed that the
standard siren accuracy on H0 scales as 1/

√
NBNS where NBNS is the number of

observed BNS systems, which is a good approximation for N & 20 [179]. A first
conclusion is that by 2025–2030 standard sirens may offer constraints on H0 that
are comparable in accuracy to those achievable from future CMB+BAO missions
at a similar epoch.

Furthermore, given existing estimates of the BNS event rate, an even higher
H0 accuracy may be expected from GWSS.In Table 7.5 and in Figure 7.3 we
report the future constraints achievable by a combination of the CMB data and
a prior on the Hubble constant with a 1% accuracy (GWSS67). This GWSS67
prior, with respect to the CMB data alone, breaks the geometrical degeneracy
and improves significantly the constraints on the corresponding parameters, now
producing strong bounds on cosmological parameters such as curvature (0.3% ac-
curacy from CMB-S4+GWSS67) and w (7% accuracy from CMB-S4+GWSS67).
The bound on neutrino masses is improved by ∼ 30%, while there is no significant
improvement on the remaining parameters (Neff, nS, and the cold dark matter and
baryon densities).

How would the inclusion of a GWSS measurement of H0 impact cosmological
constraints derived from a CMB+DESI?

We answer to this question in Table 7.6 and Figure 7.4 where we report the
constraints achievable from the full combined dataset. We find that the com-
bined analysis (in the case of CMB-S4) would constrain the Hubble constant with
an accuracy of ∼ 0.5 km/s/Mpc, i.e. nearly a factor of two better than the CMB-
S4+DESI case. A similar improvement is present with respect to LiteBIRD+DESI.
Constraints on the dark energy equation of state are also significantly improved,
by 30–40%, reaching an accuracy of about 3% with CMB-S4+DESI and 4% with
LiteBIRD+DESI. It is interesting to note that the constraints on H0, Ωk , and w

coming from a combined analysis of DESI, GWSS, and a CMB mission such as
LiteBIRD, S3deep, or S3wide, will be comparable or in some cases even better
than the corresponding constraints coming from a CMB-S4+DESI dataset. For
example, a 0.1% accuracy on curvature or a 3% accuracy on w can be reached by a
S3wide+DESI+GWSS67 configuration instead of CMB-S4+DESI. Alternatively,
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the GWSS measurement would also provide an interesting consistency check be-
tween different CMB+BAO datasets. We also consider the possibility that future
standard siren measurements of H0 will confirm the current tension on the Hubble
constant between CMB+BAO and local measurements from supernovae. It is in-
teresting to evaluate at how many standard deviations a CMB+DESI measurement
of H0 will disagree with a GWSS determination of H0 = 73.30 ± 0.73 km/s/Mpc.
From Table 7.4, we find that the standard siren measurement would be 4 stan-
dard deviations from the expected LiteBIRD+DESI constraint, and at roughly 5
standard deviations from the CMB-S4+DESI value. This is a significant improve-
ment, since in an extended parameter space such the one we are considering the
existing tension is at about 2 standard deviations (see e.g. [5]). Finally, let us
consider a significantly more pessimistic GW prior on H0 with a ∼ 4% accuracy
(PGWSS67). In Table 7.7 we report the constraints achievable from a combination
of this prior with future CMB data. As expected, the constraints on curvature and
w are relaxed with respect to the previous analyses of CMB+GWSS67 but only by
a ∼ 10 − 20%. In practice, the geometrical degeneracies between cosmological
parameters present in CMB data only can be already sufficiently broken with a,
pessimistic, PGWSS67 prior. An improvement of a factor four in the determina-
tion of H0 will result in a, more modest, 10% improvement in the parameters. A
first conclusion is therefore that in this theoretical framework, the GWSS67 and
the PGWSS67 prior produce very similar constraints when combined with CMB
data. On the other hand, combining the PGWSS67 prior with CMB+DESI data
has a small effect in improving the constraints on w. We have found that in this
case the constraints on w improve just by ∼ 5% while, as discussed above, the
improvement in case of GWSS67 is larger than ∼ 20%. The 4% PGWSS67 prior
will clearly provide little help in solving the current tension on the value of the
Hubble parameter.
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Parameter LiteBIRD S3deep S3wide CMB-S4

Ωbh
2 0.02214 ± 0.00023 0.02222 ± 0.00016 0.02220 ± 9 × 10−5 0.02219 ± 5 × 10−5

Ωch
2 0.1203 ± 0.0042 0.1199 ± 0.0030 0.1198 ± 0.0013 0.1199 ± 0.0010

100θMC 1.04075 ± 0.00078 1.04065 ± 0.00033 1.04071 ± 0.00016 1.04071 ± 0.00012

τ 0.054 ± 0.002 0.054 ± 0.010 0.053 ± 0.010 0.055 ± 0.003

H0 64+8
−18 59+7

−19 61+7
−17 60+8

−11

ΩK −0.014+0.018
−0.005 −0.027+0.033

−0.010 −0.016+0.020
−0.006 −0.012+0.016

−0.004

log(1010AS) 3.092 ± 0.011 3.090 ± 0.021 3.090 ± 0.021 3.093 ± 0.006

nS 0.9629+0.0073
−0.0074 0.9656 ± 0.0112 0.9650+0.0048

−0.0046 0.9648 ± 0.0038

w −1.069+0.638
−0.297 −0.896+0.661

−0.279 −0.911+0.506
−0.243 −0.846+0.283

−0.234

Neff 3.069+0.243
−0.246 3.082 ± 0.141 3.063 ± 0.070 3.060+0.046

−0.045

Σmν < 0.594 eV < 0.584 eV < 0.405 eV < 0.322 eV

Table 7.3: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from future CMB experiments
with specifications listed in Table 7.1 in an extendedΛCDM+Ωk +Σmν+Neff+w 10 parameters analysis.
A 6 parameters ΛCDM model is assumed as fiducial model. Parameters as H0 and w are practically
unbounded. Ωk and Σmν are also weakly constrained.
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Figure 7.1: Forecasted future constraints at 68% and 95% C.L. from future CMB data for the experi-
mental configurations in Table 7.1 in case of the ΛCDM+ Ωk + Σmν +Neff +w extended model. Clearly
in this extended parameter space CMB data alone will be unable to significantly constrain geometrical
parameters as H0, Ωk or w.
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Parameter LiteBIRD+DESI S3deep+DESI S3wide+DESI CMB-S4+DESI

Ωbh
2 0.02219 ± 0.00022 0.02219 ± 0.00016 0.02218 ± 9 × 10−5 0.02218 ± 5 × 10−5

Ωch
2 0.1212+0.0033

−0.0041 0.1208 ± 0.0027 0.1199 ± 0.0013 0.1199 ± 0.0010

100θMC 1.04058+0.00071
−0.00070 1.04069 ± 0.00031 1.04075 ± 0.00015 1.04076 ± 0.00011

τ 0.055 ± 0.002 0.057 ± 0.009 0.057 ± 0.008 0.055+0.002
−0.003

H0 67.8+1.3
−1.5 67.7+1.2

−1.3 67.4+1.0
−1.2 67.4+1.0

−1.1

ΩK 0.000+0.001
−0.002 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.001

log(1010AS) 3.097 ± 0.009 3.101 ± 0.018 3.099 ± 0.016 3.095+0.005
−0.006

nS 0.9656+0.0069
−0.0068 0.9637 ± 0.0104 0.9645+0.0046

−0.0047 0.9647+0.0037
−0.0036

w −1.013+0.054
−0.047 −1.022+0.057

−0.047 −1.010+0.051
−0.045 −1.005+0.047

−0.043

Neff 3.118+0.206
−0.237 3.065+0.136

−0.138 3.049 ± 0.067 3.051 ± 0.044

Σmν < 0.202 eV < 0.253 eV < 0.186 eV < 0.126 eV

Table 7.4: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from future CMB experiments
with specifications listed in Table 7.1 plus information from the BAO DESI galaxy survey in an extended
ΛCDM + Ωk + Σmν + Neff + w, 10 parameters, analysis. A 6 parameters ΛCDM model is assumed as
fiducial model. When comparing the results with those in the CMB alone case reported in Table 7.3
we can notice a significant improvement in geometrical parameters as H0, w and Ωk . Constraints on
neutrino masses are also improved.
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Figure 7.2: Forecasted constraints at 68% and 95% C.L. from CMB+DESI data for the experimental
configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + Neff + w extended model.
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Parameter LiteBIRD+GWSS67 S3deep+GWSS67 S3wide+GWSS67 CMB-S4+GWSS67

Ωbh
2 0.02215 ± 0.00023 0.02221 ± 0.00017 0.02220 ± 9 × 10−5 0.02219 ± 5 × 10−5

Ωch
2 0.1204+0.0042

−0.0043 0.1199+0.0032
−0.0030 0.1198+0.0014

−0.0013 0.1200+0.0010
−0.0009

100θMC 1.04075 ± 0.00080 1.04068+0.00031
−0.00035 1.04074+0.00015

−0.00016 1.04075 ± 0.00011

τ 0.055 ± 0.002 0.054 ± 0.010 0.053 ± 0.011 0.055+0.002
−0.003

H0 67.30+0.67
−0.68 67.30+0.65

−0.67 67.26+0.66
−0.63 67.27 ± 0.65

ΩK −0.005+0.007
−0.005 −0.006+0.007

−0.008 −0.004 ± 0.005 −0.001 ± 0.003

log(1010AS) 3.093 ± 0.010 3.091+0.022
−0.023 3.090 ± 0.022 3.095+0.005

−0.006

nS 0.9631+0.0072
−0.0074 0.9658+0.0117

−0.0104 0.9653+0.0049
−0.0047 0.9649+0.0035

−0.0037

w −1.199+0.260
−0.112 −1.208+0.241

−0.142 −1.100+0.126
−0.086 −1.032+0.070

−0.046

Neff 3.073+0.243
−0.255 3.076+0.147

−0.141 3.059 ± 0.070 3.055+0.044
−0.043

Σmν < 0.587 eV < 0.536 eV < 0.326 eV < 0.206 eV

Table 7.5: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+GWSS67 data
for the experimental configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + Neff + w extended
model.
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Figure 7.3: Forecasted constraints at 68% and 95%C.L. fromCMB+GWSS67 data for the experimental
configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + Neff + w extended model.
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Parameter LiteBIRD+DESI+GWSS67 S3deep+DESI+GWSS67 S3wide+DESI+GWSS67 CMB-S4+DESI+GWSS67

Ωbh
2 0.02218 ± 0.00021 0.02218+0.00015

−0.00016 0.02218 ± 9 × 10−5 0.02218 ± 5 × 10−5

Ωch
2 0.1205+0.0028

−0.0031 0.1205 ± 0.0024 0.1199 ± 0.0013 0.1199 ± 0.0010

100θMC 1.04069+0.00064
−0.00063 1.04072 ± 0.00030 1.04075 ± 0.00015 1.04076 ± 0.00011

τ 0.055 ± 0.002 0.057 ± 0.009 0.057 ± 0.008 0.055+0.002
−0.003

H0 67.37+0.60
−0.61 67.36+0.58

−0.59 67.32 ± 0.57 67.31+0.54
−0.55

ΩK 0.000+0.001
−0.002 0.001 ± 0.002 0.000 ± 0.001 0.000 ± 0.001

log(1010AS) 3.096 ± 0.008 3.100 ± 0.018 3.099 ± 0.016 3.095+0.005
−0.006

nS 0.9648 ± 0.0061 0.9635 ± 0.0100 0.9645 ± 0.0046 0.9648 ± 0.0036

w −1.003+0.043
−0.039 −1.009+0.038

−0.035 −1.007 ± 0.030 −1.003 ± 0.028

Neff 3.076+0.176
−0.178 3.053+0.124

−0.123 3.048+0.065
−0.066 3.052+0.043

−0.044

Σmν < 0.164 eV < 0.226 eV < 0.180 eV < 0.120 eV

Table 7.6: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+DESI+GWSS67
data for the experimental configurations in Table 7.1 in case of the ΛCDM+Ωk +Σmν+Neff +w extended
model.
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Figure 7.4: Forecasted constraints at 68% and 95% C.L. from CMB+DESI+GWSS67 data for the
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Parameter LiteBIRD+PGWSS67 S3deep+PGWSS67 S3wide+PGWSS67 S4+PGWSS67

Ωbh
2 0.02215 ± 0.00023 0.02222 ± 0.00017 0.02219 ± 9 × 10−5 0.02219 ± 5 × 10−5

Ωch
2 0.1204+0.0040

−0.0044 0.1199+0.0031
−0.0029 0.1198+0.0014

−0.0013 0.1200+0.0010
−0.0011

100θMC 1.04073+0.00079
−0.00078 1.04068+0.00034

−0.00033 1.04074 ± 0.00015 1.04075 ± 0.00012

τ 0.055 ± 0.002 0.054 ± 0.010 0.053 ± 0.011 0.055+0.002
−0.003

H0 67.03 ± 2.68 66.95+2.65
−2.69 66.86+2.80

−2.69 66.72+2.52
−2.55

ΩK −0.006+0.007
−0.005 −0.007 ± 0.008 −0.004+0.005

−0.004 −0.002 ± 0.003

log(1010AS) 3.093 ± 0.010 3.090 ± 0.022 3.090 ± 0.021 3.094+0.005
−0.006

nS 0.9631+0.0073
−0.0074 0.9662+0.0109

−0.0111 0.9651+0.0046
−0.0049 0.9652+0.0040

−0.0039

w0 −1.188+0.274
−0.130 −1.191+0.254

−0.151 −1.087+0.148
−0.112 −1.022+0.088

−0.079

Neff 3.073+0.244
−0.247 3.078+0.142

−0.140 3.056+0.068
−0.069 3.058+0.047

−0.048

mν < 0.580 eV < 0.531 eV < 0.338 eV < 0.208 eV

Table 7.7: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+PGWSS67 data
for the experimental configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + Neff + w extended
model.

7.3.2 ΛCDM + Ωk + Σmν + w0 + wa model

As shown in the previous section, the neutrino effective number Neff will be
measured with good accuracy even in extended parameter spaces. The main
reason for this is due to the lack of the so-called early integrated Sachs Wolfe
effect in polarization data. The inclusion of polarization helps in determining the
amplitude of the EISW and Neff. Since we are interested in evaluating the impact
of a future GWSSmeasurement of H0, it makes sense to further extend the number
of geometric parameters. In what follows we substitute Neff with wa, considering
therefore a dynamical dark energy equation of state described by a CPL form.

In Table 7.8 we report the constraints at 68% C.L. on cosmological parameters
from the combination of future CMB and DESI data while in Figure 7.5 we report
the corresponding 2D contours for the 68% and 95% confidence levels. If we
compare with the results in Table 7.8 and in Figure 7.5 with those previously
obtained assuming w = constant in Table 7.4 and in Figure 7.2 there is now a
substantial increase (about a factor two!) in the error on H0. Indeed, now the
combination of CMB-S4+DESI data is able to constrain the Hubble constant to
only ∼ 2 km s−1 Mpc−1 error, i.e. to a ∼ 3% accuracy. LiteBIRD+DESI constrains
H0 to ∼ 3.5% accuracy. These weaker constraints are due to the geometrical
degeneracy between H0, wa, and w0. The two dark energy parameters are now
weakly determined, with uncertainties of the order of ∼ 20% for w0 and ∼ 60–70%
for wa. H0, wa, and w0 are also determined to similar accuracy by different CMB
experiments, indicating that the constraining power in this case is coming primarily
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from DESI.

The constraint on Ωk is virtually unchanged with respect to Table 7.4, and
varies with the CMB experiment considered. The inclusion of wa weakens the
future constraint on the sum of neutrino masses, Σmν. Other parameters, such
as nS, that are degenerate with Neff, are, on the contrary, now better constrained.
Given the strong degeneracy in the w0–wa plane for these future experiments,
it is clearly interesting to study the impact of a future GWSS determination of
H0. As discussed in the previous section, a 3% accuracy on H0 can be reached
by the HLV network after two years of operation if the BNS detection rate is
R > 3500Gpc−3yr−1, a value well inside current limits. The same accuracy can be
achieved by the HLVJI network after just one year of observation even assuming
the lowest BNS rate of R = 320Gpc−3yr−1. We found that including a 3% GWSS
prior to the CMB+DESI constraints reported in Table 7.8 the constraints on H0 and
on the dark energy parameters could be already improved at the level of 10− 30%.

However, a ∼ 1% accuracy on H0 is also directly attainable by future GWSS
measurements, and it is interesting to discuss the impact of this improved determi-
nation on future combined cosmological parameter measurements. We report the
constraints on cosmological parameters for CMB+DESI+GWSS67 in Table 7.9
and the corresponding 2D confidence levels in Figure 7.6.

The measured value of the Hubble constant is practically identical to the as-
sumed prior from the standard sirens (GWSS67), indicating that the standard siren
measurements are contributing to the combined constraints on all related cosmo-
logical parameters. In particular, the constraints on the dark energy parameters w0
and wa are substantially improved, by a factor ∼ 1.6–2.8, with the inclusion of the
standard siren measurements.

Finally, in Table 7.10 we report the expected constraints when combining future
CMBdatawith a, pessimistic, PGWSS67 prior on theHubble parameter. Aswe can
see, including the PGWSS67 prior will improve the constraints on the dark energy
parameters by ∼ 20 − 30% respect to CMB+DESI data. A ∼ 4% determination of
the Hubble parameter can be therefore useful in this theoretical framework even
when considering the CMB+DESI dataset.

However the constraints achievable with the PGWSS67 prior on w0 will be
about a factor two larger than those achievable with the GWSS67 prior.
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Parameter LiteBIRD+DESI S3wide+DESI S3deep+DESI CMB-S4+DESI

Ωbh
2 0.02214 ± 0.00018 0.02218 ± 6 × 10−5 0.02217 ± 0.00011 0.02218 ± 3 × 10−5

Ωch
2 0.1201 ± 0.0011 0.1199 ± 0.0009 0.1207+0.0018

−0.0020 0.1198 ± 0.0008

100θMC 1.04072 ± 0.00049 1.04075 ± 0.00013 1.04070 ± 0.00028 1.04077 ± 0.00010

τ 0.055 ± 0.002 0.057 ± 0.009 0.057 ± 0.009 0.055+0.002
−0.003

H0 66.2 ± 2.3 66.3 ± 2.3 66.4 ± 2.4 66.4+2.2
−1.9

ΩK 0.000 ± 0.002 0.000 ± 0.002 0.001 ± 0.003 0.000 ± 0.001

log(1010AS) 3.095 ± 0.004 3.098 ± 0.017 3.100 ± 0.018 3.094 ± 0.005

nS 0.9638 ± 0.0042 0.9644 ± 0.0026 0.9626+0.0060
−0.0059 0.9645 ± 0.0023

w0 −0.859+0.202
−0.259 −0.883+0.203

−0.252 −0.872+0.225
−0.269 −0.901+0.149

−0.228

wa −0.470+0.795
−0.540 −0.390+0.749

−0.549 −0.456+0.818
−0.616 −0.306+0.661

−0.372

Σmν < 0.212 eV < 0.216 eV < 0.289 eV < 0.150 eV

Table 7.8: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+DESI data for the
experimental configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + w0 + wa extended model.
Note the significant increase in the error on H0 (about a factor two) with respect to the ΛCDM + Ωk +

Σmν + w0 + wa scenario reported before.
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Figure 7.5: Forecasted constraints at 68% and 95% C.L. from CMB+DESI data for the experimental
configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + w0 + wa extended model.
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7. Standard Sirens Impact on Future Hubble Parameter Constraints

Parameter LiteBIRD+DESI+GWSS67 S3wide+DESI+GWSS67 S3deep+DESI+GWSS67 CMB-S4+DESI+GWSS67

Ωbh
2 0.02214 ± 0.00017 0.02218 ± 5 × 10−5 0.02217 ± 0.00012 0.02218 ± 3 × 10−5

Ωch
2 0.1202+0.0010

−0.0011 0.1200 ± 0.0009 0.1207+0.0017
−0.0020 0.1198 ± 0.0008

100θMC 1.04074 ± 0.00048 1.04075 ± 0.00013 1.04070 ± 0.00028 1.04077 ± 0.00010

τ 0.055 ± 0.002 0.057 ± 0.008 0.057 ± 0.009 0.055 ± 0.002

H0 67.21+0.62
−0.63 67.23+0.67

−0.63 67.24 ± 0.64 67.23+0.63
−0.64

ΩK 0.000 ± 0.002 0.000 ± 0.001 0.001 ± 0.002 0.000 ± 0.001

log(1010AS) 3.095 ± 0.004 3.098+0.016
−0.017 3.100 ± 0.018 3.095 ± 0.005

nS 0.9638 ± 0.0043 0.9642 ± 0.0026 0.9625 ± 0.0058 0.9644 ± 0.0022

w0 −0.974+0.078
−0.089 −0.978+0.081

−0.089 −0.969+0.084
−0.095 −0.985+0.066

−0.082

wa −0.147+0.377
−0.282 −0.127+0.360

−0.304 −0.188+0.404
−0.320 −0.080+0.319

−0.225

Σmν < 0.196 eV < 0.205 eV < 0.278 eV < 0.140 eV

Table 7.9: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+DESI+GWSS67
data for the experimental configurations in Table 7.1 in case of the ΛCDM+Ωk +Σmν+w0+wa extended
model. Note the significant improvement in accuracy on H0 and on the dark energy parameters w0 and
wa with respect to the CMB+DESI case.
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Figure 7.6: Forecasted constraints at 68% and 95% C.L. from CMB+DESI+GWSS67 data for the
experimental configurations in Table 7.1 in case of the ΛCDM + Ωk + Σmν + w0 + wa extended model.

152



7. Standard Sirens Impact on Future Hubble Parameter Constraints

Parameter LiteBIRD+DESI+PGWSS67 S3wide+DESI+PGWSS67 S3deep+DESI+PGWSS67 CMB-S4+DESI+PGWSS67

Ωbh
2 0.02214 ± 0.00017 0.02217 ± 0.00011 0.02218 ± 6 × 10−5 0.02218 ± 3 × 10−5

Ωch
2 0.1201+0.0010

−0.0011 0.1207+0.0018
−0.0020 0.1199 ± 0.0009 0.1199 ± 0.0008

100θMC 1.04073 ± 0.00048 1.04070 ± 0.00028 1.04075 ± 0.00013 1.04076 ± 0.00010

τ 0.055 ± 0.002 0.057 ± 0.009 0.057 ± 0.008 0.055+0.002
−0.003

H0 66.64+1.71
−1.72 66.76+1.82

−1.83 66.74+1.74
−1.72 66.79+1.69

−1.71

ΩK 0.000 ± 0.002 0.001+0.002
−0.003 0.000 ± 0.001 0.000 ± 0.001

log(1010AS) 3.095 ± 0.004 3.100 ± 0.018 3.098 ± 0.017 3.095 ± 0.005

nS 0.9638 ± 0.0042 0.9625+0.0059
−0.0058 0.9643 ± 0.0026 0.9643 ± 0.0022

w0 −0.912+0.159
−0.195 −0.918+0.172

−0.204 −0.926+0.163
−0.190 −0.938+0.142

−0.182

wa −0.323+0.619
−0.444 −0.330+0.643

−0.497 −0.271+0.588
−0.460 −0.213+0.548

−0.375

mν < 0.205 eV < 0.284 eV < 0.211 eV < 0.148 eV

Table 7.10: Forecasted constraints at 68% C.L. (upper limits at 95% C.L.) from CMB+DESI+GWSS67
data for the experimental configurations in Table 7.1 in case of the ΛCDM+Ωk +Σmν+w0+wa extended
model. Note the significant improvement in accuracy on H0 and on the dark energy parameters w0 and
wa with respect to the CMB+DESI case.

7.3.3 Figure of Merit

Model Dataset LiteBIRD S3deep S3wide CMB-S4

ΛCDM + Ωk + Σmν + Neff + w CMB 5 1 398 29236
CMB+PGWSS67 110 40 12732 2.2 × 106

CMB+GWSS67 262 104 50929 1.2 × 107

CMB+DESI 6659 2415 383240 3.74 × 107

CMB+DESI+PGWSS67 7735 2807 422008 4.06 × 107

CMB+DESI+GWSS67 16928 5484 752879 7.39 × 107

ΛCDM + Ωk + Σmν + w0 + wa CMB 7 1 170 9223
CMB+PGWSS67 111 18 2732 14402
CMB+GWSS67 291 43 9231 589791
CMB+DESI 13335 2394 227590 1.04 × 107

CMB+DESI+PGWSS67 19458 3577 323789 1.6 × 107

CMB+DESI+GWSS67 57928 11735 1.01 × 106 5.7 × 107

Table 7.11: Improvement with respect to simulated CMB data of the global Figure of Merit for the two
theoretical scenarios considered in this chapter and for different combination of datasets. The FoM is
normalized to the S3deep CMB alone case that provides the less constraining results.

It is interesting to quantify the improvement of a GWSS prior by comparing
the overall Figure of Merit for the cases considered. Given an experimental
configuration and a set of N parameters pi with i = (1, ...N), we can define the
FoM from the covariance matrix of uncertainties on pi as (see e.g. [76, 266]):

FoM = (det[cov pi}])
−1/2 (7.8)

that is proportional to the inverse of the volume of the constrained parameters
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7. Standard Sirens Impact on Future Hubble Parameter Constraints

space. It is important to stress that this FoM considers the whole parameter space
and not just the dark energy parameters as in [250]. In Table 7.11 we report the
FoM for the two theoretical scenarios considered in this Chapter and for different
combinations of datasets.

The FoM are normalized to the S3deep, CMB only, value. As we can see, in the
case ofΛCDM+Ωk+Σmν+Neff+w there is a significant improvement in FoMwhen
the GWSS67 prior is included with the CMB data. The improvement is significant
(between a factor ∼ 50 and ∼ 400) and larger in the case of the CMB-S4 dataset.
A smaller but still significant improvement is present when the PGWSS67 prior is
considered. This clearly shows that, once the geometrical degeneracies are broken
by the introduction of the GWSS prior, there is a significantly improved parameter
determination with this dataset. It is interesting also to note that the S3wide
configuration has a constraining power that is superior to LiteBIRD+GWSS67 and
S3deep+GWSS67. When the DESI dataset is included there is an improvement
by a factor ∼ 1000 and ∼ 2400. In this case the CMB dataset that would better
benefit by the inclusion of the DESI data is S3deep. Both S3deep+DESI and
LiteBIRD+DESI have a smaller FoM than S3wide+GWSS67, and S3wide+DESI
has less constraining power than CMB-S4+GWSS67.

When further including the GWSS67 prior the improvement in FoM is about a
factor 2–3 with respect to the CMB+DESI case, clearly showing that GWSSwill be
useful in further constraining the parameter space. However, when considering the
more pessimistic PGWSS67 prior the improvement with respect to the CMB+DESI
case is just ∼ 10− 20%. In the case of the ΛCDM+Ωk + Σmν +w0 +wa model the
improvement in the FoM obtained by the inclusion of the GWSS67 prior in the case
of the CMB data is about a factor of ∼ 50. With the DESI dataset the improvement
is a factor of ∼ 1000–2400. As we can see these improvements are smaller if
compared to the ΛCDM+ Ωk + Σmν +Neff +w scenario, showing that in this case
the parameter degeneracies are more severe. When the GWSS67 prior is included
the improvement is about a factor ∼ 4–6, larger if compared with the similar data
combination for the ΛCDM + Ωk + Σmν + Neff + w scenario. The combination of
LiteBIRD, S3deep, and S3wide with DESI data has less constraining power than
CMB-S4+GWSS67. The inclusion of a PGWSS67 prior can improve by a ∼ 60%
the FoM of CMB-S4 an CMB-S4+DESI.

Finally, in order to better visualize the impact of a future prior on H0, we
plot in Figure 7.7 the values of the FoM in function of of 4 different expected
accuracies on the Hubble constant: 4%, 3%, 2%, and 1$. We can firstly clearly
see that the FoM will be in general larger in case of the "w0 + wa" scenario with
respect to the "w0+Neff" for any experimental configuration (with the exception of
LiteBIRD). The inclusion of an external prior on the Hubble parameter is therefore
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7. Standard Sirens Impact on Future Hubble Parameter Constraints

more efficient in improving the constraints in the case of a "w0+wa" model, where
dynamical dark energy is considered. Secondly, while in the CMB only scenario
an improvement in the accuracy of H0 is always reflected in a substantial increase
in the FoM, it seems that in the case of CMB+DESI and for the "w0 +Neff" model
(the red lines in the figure) a significant increase is expected when moving to an
accuracy below 2%. An improved accuracy in H0 from 4% to 2% produces larger
improvements in the FoM for the CMB+DESI dataset in the case of the "w0 + wa"
scenario.
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Figure 7.7: Figures of Merit for the theoretical models and experimental configurations considered in
function of different priors on the Hubble parameter with a 4%, 3%, 2%, and 1% accuracy respectively.
The assumed CMB datasets are LiteBIRD (Top Left), S3deep (Top Right), S3wide (Bottom Left), and
CMB-S4 (Bottom Right).

7.4 Conclusions
The recent observations of gravitational waves and electromagnetic emission pro-
duced by the merger of the binary neutron-star system GW170817 has introduced
a complementary and direct method for measuring the Hubble constant. In the
coming decade GW standard sirens are expected to produce constraints on H0 with
∼ 1% accuracy. At the same time, improved constraints are expected from CMB
experiments and from BAO surveys.

In an extendedΛCDM parameter space, where we have considered variations in
curvature, neutrino mass, and the dark energy equation of state, we have found that
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7. Standard Sirens Impact on Future Hubble Parameter Constraints

a combination of future CMB and BAO data can constraint the Hubble constant
at the level of 1.5–2%. A similar accuracy may be reached by the HLV network
in the second year of observations if the the BNS rate is R ≥ 2800 Gpc−3yr−1,
in agreement with current limits on R, or by the HLVJI network after one year of
observations with a more conservative BNS detection rate ofR ≥ 1540Gpc−3yr−1.
Gravitational wave standard sirens may reach a 1% measurement of H0 within the
decade, which when combined with future CMB data would constrain curvature
to 0.3% and the dark energy equation of state to ∼ 5%. A GWSS measurement
of the Hubble constant would also improve the constraints on these geometrical
parameters coming from future CMB+BAO data by by 30–40%. In addition,
the current 2σ Hubble tension between CMB+BAO and supernova data could be
strengthened to 5σ with the inclusion of standard siren constraints.

When we further include time variations in the dark energy equation of state,
parameterizing its evolution with a CPL function, we find that future CMB+BAO
data will constrain the Hubble constant to ∼ 3%. This level of accuracy on H0 can
be independently reached by the HLV network of interferometers after the second
year of operation if the BNS detection rate is R > 3500 Gpc−3yr−1, a value again
well inside current limits, or by the HLVJI network after one year of observations
even considering a low BNS detection rate of R = 320 Gpc−3yr−1. This standard
siren measurement would therefore improve the CMB+BAO constraints on this
model at the level of 10 − 30%. Assuming a future H0 accuracy of ∼ 1% from
standard sirens, as to be expected within the decade, we find that the constraints
on the dark energy equation of state parameters w0 and wa from future CMB+BAO
datasets can be improved by a factor 1.6–2.8. We conclude that standard siren
measurements by the HLV and HLVJI gravitational-wave detector networks over
the coming decademay significantly improve our understanding of cosmology. We
have also found that even a more pessimistic determination of H0, with a a ∼ 4%
accuracy can significantly improve the constraints from CMB alone data in case
of a ΛCDM + Ωk + Σmν +Neff + w model and from CMB alone and CMB+DESI
data in case of a ΛCDM + Ωk + Σmν + w0 + wa model.

Finally it is clearly worth mentioning that similar constraints on H0 and dark
energy parameters could come by combining CMB and BAO data with other
complementary probes such as supernovae and cosmic shear (see e.g. [239, 267]).
In this case future constraints from GWSS will play a crucial role in confirming
these results and cross-validating the different approaches. In addition, these
comparisons offer the exciting possibility of discovering new physics beyond the
ΛCDM scenario.
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Thesis Summary
The goal of my Ph.D. thesis was to forecast the constraints that would come from
future experiments on cosmological parameters in non-ΛCDM cosmologies in
order to study the possibility to test new physics beyond the standard model in
the upcoming decades. In the following we summarize the results drawn by the
research I carried out:

• One of themain goals of future CMB experiments is undoubtedly to detect the
signature of inflationary gravitational waves in the polarization B-modes. It is
well known that such a detection would be a strong hints towards the validity
of inflation and of the quantum nature of gravity. However, primordial
magnetic fields can contaminate a possible signal from inflationary tensor
modes. In [40] we showed that CMB experiments targeting inflationary
GWs with amplitude ∼ 10−3 will not be able to claim any detection unless
they are able to disentangle them from a nearly scale invariant magnetic
field with amplitude ∼ 1 nG. However, magnetic fields produce vector
perturbations that source a B-mode signature peaked around ` ∼ 1000 [94,
97, 98]: measuring this features of the magnetic spectrum would be enough
to break the degeneracy with CMB spectra alone. Therefore we showed that
experiments with enough angular resolution, such as CORE-M5 and CMB-
S4, will be able to distinguish a B-mode signal produced during inflation
from that of a primordial magnetic field. Conversely experiments limited to
large angular scales, like LiteBIRD or PIXIE will not be able to break the
degeneracy. Finally we discussed the possibility of breaking the degeneracy
using the Faraday rotation of CMB polarization induced by the magnetic field
showing that this could be a complementary way to distinguish a primordial
magnetic field from inflationary gravitational waves.

• Even tough the agreement with ΛCDM is impressive, Planck data shows a
tension in the value of the lensing amplitude Alens at ∼ 2σ (grown to 3σ in
the 2018 Planck release [28]) that clearly need to be understood. In [41]
we showed that experiments such as LiteBIRD and Stage-III would be able
to confirm or falsify the current tension at the level of 5 standard deviations
while a CMB-S4 like experiment can falsify the tension at the incredible level
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of 10 standard deviations. Furthermore we showed that CMB-S4 would be
able to identify a possible scale or frequency dependence of Alens providing
new insight into its physical nature.

• In the next decades, gravitational waves are expected to provide a measure-
ment of theHubble constant with an accuracy comparablewith the constraints
from CMB and standard candles [179, 224] and possibly leading to solve the
current tension between late and early time observations. In [42] we dis-
cussed the impact of a 1% measurement of the Hubble constant coming from
gravitational wave standard sirens on CMB+BAO constraints on extended
cosmologies. In particular we considered non-flat cosmologies with varying
neutrino sector and dark energy parameter. We showed that the major im-
provement brought by GWSS will be on the dark energy equation of state.
For a constant equation of state, a combination of CMB, BAO and GWSS
will lead to a 3% bound on w in the most optimistic case (a factor ∼ 2 with
respect to CMB+BAO alone). When considering a time varying dark energy
equation of state instead the improvement is more significant. w is now con-
strained only to 7%, a factor of 2 worst than with constant w but around 3
times better than CMB+BAO constraints. We conclude therefore that GWSS
measurements will indeed improve our understanding of cosmology in the
coming decade.

• The H0LiCOW program has recently shown that strong lensing time delay
(SLTD) measurements is becoming a compelling method to test cosmol-
ogy [181, 183]. Even tough only 6 lensed systems have been measured
with enough accuracy in the mass model to be suitable for cosmological
constraints, in the upcoming decade experiments like LSST are expected to
bring this number up to 400. In [43] we simulated strong lensing time de-
lay datasets starting from a fiducial cosmology and a description of the lens
mass profile. We showed that already with 10 lenses, the Hubble parameter
will be measured with a 1% accuracy in ΛCDM closing the gap with CMB
and Supernovae Ia constraints (has was found also in [214]). We further
address the possibility of SLTD surveys of constraining dark energy. We
showed that for a constant equation of state, w can be constrained to the 7%
with 100 lenses and to an impressive 2% in the most optimistic case (1000
lenses). When considering a time varying dark energy parameter instead
only a 5% constraints is reached in the most optimistic scenario of 1000
well-measured lensing systems. In conclusion, we showed that future lensing
surveys has the possibility to rapidly achieve constraints comparable or even
better than CMB and standard candles current constraints provided enough



well-measured lenses are observed.

To conclude, upcoming CMB experiments and lensing surveys will play a great
deal towards a better understanding of our Universe with the possibility of shedding
light on many questions that have been left open after the conclusion of the Planck
mission. The way ahead of us promises to bring new discoveries which may lead
to a new level of comprehension of our Universe. This thesis has deal with some
of these questions showing that future experiments would be able to shed light on
many of them, however it also showed that significant improvements on parameter
constraints may be achieved when combining different and independent measures
together to take advantage of their peculiar features. In this respect, gravitational
waves and strong lensing time delay are expected to play the most important role
both in solving the H0 tension and in shedding light on the physics of dark energy.





PART IV

Appendix
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A Measuring anisotropies
in the Faraday rotation angle

In this appendix we describe how we calculate the signal-to-noise ratio for Faraday
rotation measurements introduced in Chapter 4.

Following [134] we compute the signal-to-noise ratio using:

S
N
=

√√√∑
L

( CαFαF
L

∆CαFαF
L

)2
fsky(2L + 1)

2
. (A.1)

where CαFαF
L is the spectrum reported in Eq.(4.19) and

∆CαFαF
L =

[∑
ll ′

(2l + 1)(2l′ + 1)(FL,BE
ll ′
)2

4πCBB, map
l

CEE, map
l ′

]−1

. (A.2)

with

FL,BE
ll ′
≡ 2CEE

l ′

(
l L l′

2 0 −2

)
WlWl ′, FL,EB

ll ′
≡ FL,BE

l ′l
. (A.3)

Here, the objects in parentheses are Wigner-3j symbols, Wl is Gaussian window
function of full-width half-maximum θ (in radians): Wl (θ) ≡ exp

[
−l2θ2/(16 ln 2)

]
,

CEE,map
l

, and CBB,map
l

are, respectively, the power spectra for the E and B modes
from the map (we assume for simplicity just instrumental noise for the B modes),

CEE, map
l

≡ CEE
l |Wl |

2 + 2w−1, (A.4)

CBB, map
l

≡ 2w−1. (A.5)
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B Constraints on
cosmological parameters from

SLTD
In this Appendix we show the constraints obtained on all free cosmological param-
eters when the Λ-mock is analysed. In Table B.1 we show the results obtained in
the ideal case, when the nuisance parameters are assumed to be perfectly known,
while Table B.2 shows the constraints in the realistic case, where also the κext , rani
and γ′ are free. In these tables, for each parameter, we show the results obtained
assuming different DE models, i.e. ΛCDM, wCDM and w0waCDM.

Parameter DE model 10 lenses 100 lenses 1000 lenses

ΛCDM 0.304+0.069
−0.085 0.296 ± 0.027 0.2949 ± 0.0086

Ωm wCDM 0.37+0.12
−0.10 0.305+0.037

−0.042 0.296 ± 0.012

w0waCDM 0.425+0.12
−0.083 0.322 ± 0.053 0.294+0.022

−0.020

ΛCDM 67.16+0.70
−0.41 67.28+0.21

−0.17 67.299+0.063
−0.057

H0 wCDM 68.1+2.1
−4.0 67.42+0.51

−0.62 67.31 ± 0.18

w0waCDM 68.3+3.0
−3.8 66.9+1.4

−1.2 67.33+0.52
−0.47

ΛCDM − − −

w0 wCDM −1.30+0.47
−0.10 −1.021+0.073

−0.046 −1.002+0.020
−0.018

w0waCDM −1.19+0.74
−0.21 −0.94+0.15

−0.19 −1.001+0.045
−0.063

ΛCDM − − −

wa wCDM − − −

w0waCDM −1.1+1.8
−1.3 −0.43+1.0

−0.79 0.02 ± 0.34

Table B.1: Mean marginalized values and their 68% confidence level bounds for the three DE model
considered. We show here the results for the ideal case for 10, 100 and 1000 lenses.
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Parameter DE model 10 lenses 100 lenses 1000 lenses

ΛCDM 0.292+0.11
−0.096 0.293 ± 0.035 0.295 ± 0.011

Ωm wCDM 0.401+0.15
−0.091 0.327 ± 0.075 0.299 ± 0.027

w0waCDM 0.460+0.13
−0.065 0.388+0.11

−0.084 0.304 ± 0.042

ΛCDM 67.3+2.3
−2.7 67.5+1.1

−2.1 67.26+0.43
−1.5

H0 wCDM 70.8+3.6
−5.4 68.3+2.1

−2.8 67.51+0.77
−1.9

w0waCDM 71.1+4.4
−5.8 68.2+2.2

−2.8 67.48+0.82
−1.8

ΛCDM − − −

w0 wCDM −1.44+0.62
−0.20 −1.07+0.15

−0.050 −1.007+0.036
−0.024

w0waCDM −1.41+0.89
−0.37 −0.96 ± 0.23 −0.997+0.050

−0.064

ΛCDM − − −

wa wCDM − − −

w0waCDM −1.2+1.9
−1.6 −0.93+1.7

−0.64 −0.07+0.46
−0.33

ΛCDM −0.001 ± 0.041 −0.001+0.023
−0.032 −0.0040+0.0092

−0.023

κext wCDM 0.017 ± 0.041 0.006 ± 0.034 −0.001+0.011
−0.027

w0waCDM 0.023 ± 0.040 0.011 ± 0.030 −0.001+0.013
−0.025

ΛCDM > 3.06 > 3.45 4.1 ± 1.5

rani wCDM > 3.46 > 3.33 4.2 ± 1.4

w0waCDM > 3.57 > 3.55 4.2+1.9
−1.3

ΛCDM 1.930 ± 0.018 1.930 ± 0.013 1.9301 ± 0.0052

γ′ wCDM 1.927 ± 0.018 1.930 ± 0.012 1.9301 ± 0.0052

w0waCDM 1.926 ± 0.018 1.929 ± 0.013 1.9300 ± 0.0052

Table B.2: Mean marginalized values and their 68% confidence level bounds for the three DE model
considered. We show here the results for the realistic case for 10, 100 and 1000 lenses.
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