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Abstract

In the last decades, the growing interest in investigating natural science in the
space environment sets new targets, constraints and challenges in space mission
design, defining what is nowadays known as space science. The goal of this PhD
research is the development of new techniques of mission analysis, which can lead
to further development of space science missions using CubeSat technology. Two
main objectives have been pursued, related to both solar system exploration and
low Earth orbit missions.

Due to the low power and thrust available on a CubeSat, low energy trajectories
are necessary to allow solar system exploration. These are designed here considering
a further constraint on the transfer time, which should be minimized to limit the
effects of the hostile space environment on the on-board systems, typically based on
components off-the-shelf. According to these issues, the topological properties of
the linear dynamics in the circular restricted 3-body problem were investigated to
develop a method allowing the design of internal transit and captures, including the
possibility to select the osculating orbital elements at capture.

Three guidance strategies are proposed, allowing modification on the ultimate
behavior of trajectories to match the desired mission requirements, also in the
presence of the gravitational perturbations due to a fourth body. These strategies are
effective with modest velocity variations (delta-V) and are tailored to be implemented
with compact continuous thrusters, compatible with CubeSats. The method was
originally developed in the dynamical framework of the spatial circular restricted
3-body problem and later extended to the elliptic restricted 4-body problem.

The final chapters are related to low Earth orbit missions, presenting the devel-
opment of a purely magnetic attitude determination and control systems, suitable
for implementation as a backup solution on CubeSats. Attitude control allows
detumbling and pointing towards the magnetic field. At the same time, attitude
determination is obtained from the only measurements of a three-axis magnetome-
ter and a model of the geomagnetic field, without implementing any sophisticate
filtering solution. To enhance the computational efficiency of the system, complex
matrix operations are arranged into a form of the Faddeev algorithm, which can be
conveniently implemented on the field programmable gate array core of a CubeSat
on-board computer using systolic array architecture. The performance and the
robustness of the algorithm are evaluated by means of both numerical analyses in
Matlab Simulink and hardware-in-the-loop simulations in a Helmholtz cage facility.
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Chapter 1

Introduction

Space exploration experienced dramatic changes during the last decades, driven
by continuously evolving technology. Several branches of natural science, studying
natural phenomena and physiology in different regions of the solar system, are
increasingly involved in space flight, defining new targets, constraints and challenges
in space mission design. These disciplines are commonly referred to as space science.

An effect of space science on space mission design is that of stressing two
requirements: accessibility and affordability. In fact, progress in the field is typically
led by institutions whose budgets are considerably lower than those of space and
military agencies or commercial companies. In this scenario, small and low-cost
satellites, such as CubeSats, could represent a disruptive technology, once adequate
tools of mission analysis are developed.

New techniques are therefore necessary, to solve the old problem of space flight
complying the modern mission requirements. This thesis collects the results of my
PhD research project, pursuing two goals of current interest in CubeSat missions:
the design of low-energy trajectories, allowing solar system exploration and testing
of purely magnetic attitude determination and control systems, which can improve
the capability and reliability of space science missions in low Earth orbits.

1.1 Space science missions: trends, targets and chal-
lenges

A variety of factors contribute to define the boundary of space exploration and
influence the target of current and future space missions, including the evolving
capability of spacecraft, the advantages of space-based activities over the comparable
ground-based ones, the direct and indirect economic and social impact, political and
financial constraints. In fact, space activities need long term planning to reach the
desired goals within limited budget and development time, and these goals should
be selected in those areas where major progress can be expected in the following
decades.

As stated in their periodic reports, the space agencies ESA [43, [48], ISRO []0],
NASA [121], 122] and Roscosmos [152] share the common purpose of developing
technology to improve solar system exploration. The majority of missions envisioned
are aimed at space science research, including astronomy, astrophysics, planetology
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and physiology in the microgravity environment or in different atmospheres. Research
in these disciplines could greatly benefit from performing experiments in-situ, to
enter domains that are not accessible from ground-based facilities. These innovative
and challenging missions can be conveniently classified based on their destination

o low Earth orbits
o Sun-Earth libration (or equilibrium) points[]

o other celestial bodies (i.e. the Moon, Mars, Venus, Jupiter and its Galilean
moons)

Figure 1.1. The Sun-Earth libration points [12§]

The regions surrounding Sun-Earth libration points, sketched in Figure [1.1} are
characterized by low environmental disturbances and high observing efficiency, and
are thus suitable for investigating stellar and galactic physics [57]. In particular,
orbits around the Sun-Earth L; offer an unobstructed view of the Sun and successful
missions have already been designed taking advantage of it, with the first one
being the International Sun-Earth Explorer 3 (ISEE-3), launched in 1978 to take
measurements of the solar wind upstream from Earth [54]. Recent missions include
LISA Pathfinder, an ESA proof-of-concept launched in 2015 to test technologies
necessary for the follow-up mission, the evolved Laser Interferometer Space Antenna
(eLISA), a gravitational wave observatory [100} [I12]. Lisa Pathfinder demonstrated
not only the feasibility of eLISA, which is planned to be launched within the next
two decades, but also the flexibility of missions based on low-energy transfers,
characterized by extended launch windows although requiring enhanced design
techniques [50), [105].

Next-generation space observatories will be placed at Sun-Earth Lo, a region of
space characterized by thermal stability, where the spacecraft can easily radiate the
heat away and cool down, minimizing the thermal disturbance. Moreover, because
of the relative position of the Earth and the Sun, a spacecraft at Ly would never be

!Libration points are discussed in detail in sections and
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eclipsed, having a constantly clear view of the universe, for observations, and of the
Earth, for communication.

An eminent example is represented by the James Webb Space Telescope (JWST)
[121], aimed at producing support for astrophysical studies about the origin of
galaxies. Reviewing the Hubble Space Telescope mission, scientists agreed that, in
order to achieve this target, the JWST must provide a higher angular resolution
and coverage of the mid-IR, thus allowing the observation of the same features in
objects at different redshift [50]. From a technical perspective, it means that the
telescope must be kept at considerably low temperature and, consequently, NASA
mission analysts designed an orbit for it around the Sun-Earth Lo [10) 167, [I83]. The
European Space Agency is currently involved in developing several space telescopes
to orbit near Ly. The Planetary Transit and Oscillations of stars (PLATO) is
planned to be launched in 2025 and it is expected to help enhance our understanding
of the formation and the evolution of planetary systems [47]. Dark energy will be the
primary source of investigation for the Euclid mission, planned to be launched in 2022
[44, [149], while the Advanced Telescope for High-ENergy Astrophysics (ATHENA)
will be equipped with a cryogenic X-ray spectrometer (X-IFU) and the Wide Field
Imager (WFI) to study ordinary matter in the universe [IT1], [I50]. Dark energy
and matter will be investigated by the X-ray observatory Spektr-RG, launched on
July 13th 2019 by Roscosmos, representing the first Russian spacecraft heading to
a libration point, the Sun-Earth Ly [I54]. Research on dark energy, dark matter
and exoplanets is again the goal of an ambitious NASA mission, the Wide-Field
InfraRed Survey Telescope (WFIRST), slated to launch in 2020 [125].

Libration point missions outline a captivating scenario in which space telescopes
and probes move along non-Keplerian orbits [58], whose design requires new analytical
and computational methods, increasing the complexity of mission design and analysis.
Nevertheless, as outlined in section the same tools developed for libration point
missions can be conveniently used to design low-energy lunar and interplanetary
trajectories. In the era of small and low-power satellites (see section , these
innovative pathways can represent the access gate to a whole new class of space
missions. Low-energy trajectories show the following benefits [55] [137]

o fuel saving, because of the low AV required

e high flexibility, allowing both injection into different orbits from the same
launch, and into a targeted orbit from different launch windows

« relaxed operational timeline, because the low AV implies slower transfers

This renewed flexibility is one of the reasons why payload mass trends of space
exploration satellites are changing and the launcher capability is somehow a less
strict limitation than it was until the early 1990’s [I51].

All the major space agencies are actively involved in missions to the Moon, and
some of them are also envisioning human exploration [75, [I53]. The expertise gained
in lunar missions is pivotal to design the next generation of spacecraft, aimed at
exploring the farthest regions of the solar system. ESA’s first Small Mission for
Advanced Research in Technology (SMART-1), launched in 2003, tested mandatory
technologies and design methods for further scientific exploration of the Moon
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[56, 148, [159]. NASA Acceleration, Reconnection, Turbulence and Electrodynamics
of the Moon Interaction with the Sun (ARTEMIS) is the first mission ever to orbit
the Earth-Moon libration points Lj and Lo [124]. The mission is made up of two
probes, ARTEMIS P1 and P2, designed to transfer from L; to Ly and keep a stable
orbit around each point |2, 59, [I70]. A proof of low-energy trajectory flexibility was
given by Chang’e-2, the second Chinese lunar probe. The satellite, after orbiting
the Moon for several months to complete the primary tasks of the mission, was
redirected to Sun-Earth Lo, reaching the destination on August 25th 2011, after a
77-day journey [76], [106]. The probe finally performed a flyby of Asteroid Toutatis,
completing a successful deep-space phase of the mission.

The future of space science cannot be limited to the exploration of the cislunar
and translunar space. To better understand the nature of the universe, we must
move farther from the Earth, heading to the other celestial bodies of our solar system
and beyond. Interplanetary space science missions are currently being developed,
including NASA’s Europa Clipper mission, aimed at understanding if the conditions
for life could exist on the icy Galilean moon [97] . Similarly, ESA’s JUpiter ICy moons
Explorer (JUICE), scheduled for launch in 2022 aims at studying the conditions for
the emergence of habitable worlds around gas giants in the solar system, in particular
the Galilean moons Ganymede, Callisto and Europa [45]. ESA is also developing the
Solar Orbiter mission, which will be the first spacecraft to perform close-up studies
of the Sun’s inner heliosphere [I66]. These missions are typically designed on the
basis of traditional Keplerian trajectories [19] 20} [96] 98] 99], nevertheless low-energy
trajectories represent an interesting alternative or complementary solution to extend
the capability of the mission, eventually integrating low-cost secondary spacecraft.
Missions to Mars and between the Jovian moons based on low-energy trajectories
have been proposed, but not developed yet [52} 67, [107].

Space science is not limited to deep space. The lower cost and complexity of low
Earth orbit (LEO) satellites represent an attractive alternative. LEO missions are
often dedicated to Earth observation for atmospheric [39, [42] 83|, ground [41], [92]
and ocean monitoring [6], but can also provide support to answer cosmic questions.
Some relevant examples are given by NASA’s Spectro-Photometer for the History of
the universe, Epoch of Reionization and ices Explorer (SPHEREX), collecting data in
both optical and near-infrared light on more than 300 million galaxies and 100 million
stars in the Milky Way [40], or the Gravity Recovery And Climate Experiment
Follow-On (GRACE-FO), tracking variations in gravity over Earth’s surface [123].
Europe is always involved in similar missions, such as the LAser RElativity Satellite
(LARES) by the Italian Space Agency (ASI), aiming at measuring the Lense-Thirring
effect predicted by general relativity [I35] and ESA’s CHaracterising ExOPlanet
Satellite (CHEOPS), targeting nearby stars which are known to host exoplanets, in
the super-Earth to Neptune size range, to characterize them [13] 46].

In the last decade, the development of CubeSat technology set the basis for
LEO space science missions accessible to small entities, such as research centers
and universities, with limited budgets. In 2014, NASA Next Space Technologies
for Exploration Partnerships (NestSTEP) identified low-energy trajectories as the
pivotal technology for opening deep space exploration to CubeSats [126], defining
one of the most challenging targets in space science and exploration. This thesis
proposes suitable solutions to this challenge.
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1.2 Space science using CubeSats

CubeSat is a class of nanosatellites characterized by a modular structure and
on-board systems mainly realized from commercial off-the-shelf (COTS) components.
The elementary unit is represented by a cubic satellite with standardized edge length
and mass, respectively equal to 10 cm and 1.33 kg. If compared to bigger spacecraft,
these miniaturized satellites can be developed at low-cost and in short time, with
projects typically evolving from concept design to deployment in orbit within 24
months. These features determined their rapid diffusion and progress, becoming in
almost 10 years fundamental tools for institutions and companies involved in space
science research, technology demonstration and space exploration missions. As a
matter of fact, CubeSats are nowadays the majority of spacecraft either launched or
in development [119]. The popularity of CubeSat missions can be addressed to their
flexibility, which allows easily adapting several design parameters (i.e. size, weight,
power, cost) to the targeted missions [84]. Moreover, the rapid progress in both
miniaturized computers and micro electro-mechanical systems (MEMS) is improving
the capabilities of compact electronics, leading CubeSats to represent a suitable
alternative platform to explore the cislunar space and the solar system [120, [162].

As of 2016, no CubeSat had ever flown beyond LEO. NASA’s Mars Cube One
(MarCO) satellites A and B were the first CubeSats to fly to another planet. MarCO
6-unit (6U) CubeSats were launched on May 5th 2018 and completed their journey
to Mars on November 26th 2018, proving that CubeSats can survive the trip to deep
space [88]. A first generation of space science CubeSats heading to the cislunar space
will be launched with the maiden flight of the Space Launch System (SLS) [85] [116].
Some of these missions are designed to follow special low-energy trajectories which
will conclude into a ballistc capture by the Moon. Ballistic capture E]f occurs when
a spacecraft is spontaneously trapped by the gravitational field of a celestial body,
which the spacecraft will orbit for a relatively long time. In the mentioned missions,
the phenomenon is used to design transit trajectories from the Earth to the Moon
with significant savings in AV, reducing it to values compatible with the performance
of compact thrusters suitable for CubeSats [17), [61), [7T], [127].

Interest in studying the Moon also led to the design of CubeSat missions to the
Earth-Moon libration point Ly. These include the EQUilibriUm Lunar-Earth point
6U Spacecraft (EQUULEUS), aiming at studying the Earth’s radiation environment,
characterizing the flux of impacting meteors at the dark side of the Moon and
demonstrating the validity of CubeSats control systems under the effect of the luni-
solar perturbation [23, 134], and the Lunar Meteroid Impact Observer (LUMIO),
aiming at qualitative and quantitative characterization of the meteoroid impacts on
the lunar far side [I75].

The Moon is not meant to be a limit for CubeSat deep space exploration
missions. Probes heading to asteroids are currently under development, including
ESA’s Miniaturised Asteroid Remote Geophysical Observer (M-ARGO) and NASA’s
Near Earth Asteroid Scout (NEA Scout), which will map asteroids and demonstrate
several technologies aimed at improing CubeSat capabilities [113} [I78]. The joint

2 An overview of ballistic capture mission is presented in section and a rigorous mathematical
definition is discussed in section
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NASA and JPL Interplanetary NanoSpacecraft Pathfinder In a Relevant Environment
(INSPIRE) mission is designed to dispatch two CubeSats beyond Earth orbit as
demonstrators for functionality, communications, navigation, and payload-hosting
technologies which are considered as fundamental for heliophysics and planetary
science [87].

CubeSats have proved to be excellent technology demonstrators to test solutions
which can be later implemented on bigger spacecraft, improving their reliability. Even
though this feature is still appealing for space science missions, the new challenging
scenarios described in the previous paragraphs require an increase in the reliability
of CubeSat platforms themselves, impacting the development process from concept
design to test. In fact, an advantage in using the CubeSat standard is that the
relative simplicity of the electronic on-board systems allows extensive Hardware-in-
the-Loop (HiL) simulations, furthermore the compact size and low weight of the
platform open to innovative methods of experimental testing, based on the use of
facilities specifically developed for small satellites. A case of particular interest is that
of air-bearing testbeds, facilities aimed at reproducing the microgravity condition
experienced in space, which allow simulating spacecraft motion in the terrestrial
environment [156], [160].

The development of successful CubeSat space science missions require both novel
theoretical methods and experimental techniques. In this manuscript, the theoretical
aspects examined include ballistic capture for deep space missions and magnetic
attitude determination and control of LEO CubeSats. Experimental techniques
and facilities to verify the performance and suitability of the solutions proposed are
investigated as well and performed for some test cases.

1.3 Solar system exploration

Space mission design techniques change because of the evolving technology and of
the new formulation of problems related to space flight. The main features of space
science missions envisioned for the near future were outlined in sections [L.1] and
From this review, low-energy trajectories emerged as the cornerstone of future
space science missions beyond Earth, either based on classic big spacecraft or on
innovative small CubeSats. New design concepts introduce new complexities which
must be overcome to achieve the expected advances in space exploration. In this
section, the state of the art in low-energy trajectory design is discussed, including
comparisons with classic techniques. The purpose is to introduce a clear overview
of the issue, before to provide a rigorous mathematical formulation of the problem,
provided in Chapter [2] For the sake of clearness, the examples given hereafter refer
to Earth-Moon missions.

1.3.1 From Keplerian to multi-body dynamics

Traditional orbital transfers are determined based on Keplerian 2-body dynamics,
resulting in trajectories that can be represented as conic arcs or patched sequences
of them. Considering an Earth-Moon mission, the transfer typically begins in LEO,
where the spacecraft was previously injected by the launcher or placed after some
maneuvers. When the spacecraft is at the pericenter, a sudden increase of velocity
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(AV) is provided by the thrusters, raising the apocenter of the orbit to be inside the
lunar sphere of influence, where the gravitational attraction of the Moon dominatesﬂ
When at the apocenter, the spacecraft is inserted into a low lunar orbit, by a further
change in the spacecraft velocity. A similar transfer, sketched in Figure [1.2] was
followed by the Apollo missions and can take from 3 to 5 days depending on the
total AV provided, namely the total variation of the spacecraft velocity produced

by the engines [128].
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Figure 1.2. Sketch of NASA Apollo 8 Earth-Moon transfer [129]

In 1990 the Japanese Institute of Space and Astronautical Science (ISAS)
launched the twin satellites MUSES-A and MUSES-B, aimed at testing the necessary
technology for future lunar and interplanetary missions. The plan was to send
MUSES-B into lunar orbit, with its twin MUSES-A orbiting in LEO to support
telecommunication. Nevertheless, due to some issues occurred after the deployment,
MUSES-B suffered a failure and got lost. It was at that point that the ISAS mission
control, with the support of Belbruno, who had recently discovered a new class
of fuel saving Earth-Moon trajectories, redesigned the mission and changed the
flight plan for MUSES-A which reached the Moon in October 1991. The satellite,
later renamed Hiten, was not equipped to leave LEO and carried an insufficient
amount of fuel to move to the Moon through a traditional transfer [I1]. In fact,
this successful mission was achieved by modelling the lunar transfer in a multi-body
environment, considering the combined gravitational actions on the spacecraft from
the three most influential bodies: the Sun, the Earth and the Moon. Hiten trajectory,
designed by Belbruno and Miller [12] is shown in Figure It can be noted that the
trajectory departs from LEO and extends far beyond the translunar space, reaching
the proximity of Sun-Earth L1, before folding back to the Moon. For this reason,
Belbruno-Miller trajectories are also called external transfers.

3The sphere of influence, or Hill sphere, is the region of space in which the gravitational attraction
of a celestial body is preeminent over the others [I71]
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Figure 1.3. The Hiten trajectory [12]

External transfers in such a 4-body system, including the three celestial bodies
and the spacecraft, can be computed taking advantage of some simplifying hypotheses

o if compared to that of the three celestial bodies, the mass of the spacecraft, as
well as its gravitational field, are negligible

e the eccentricity of the Earth’s orbit around the Sun and of the Moon’s orbit
around the Earth are negligible (as a first approximation)

o close to the Earth (i.e. in LEO) the gravitational pull of the Moon is negligible
with respect to that of the Sun and the Earth

o similarly, on a Low Moon Orbit (LMO) the gravitational pull of the Sun is
negligible with respect to that of the Earth and the Moon

According to the above mentioned hypotheses, the original 4-body problem can be
approximated by a combination of two circular restricted 3-body problems (CR3BP):
the Sun-Earth-spacecraft and the Earth-Moon-spacecraft [I7I]. A segment of the
trajectory is then designed from each CR3BP and the final path in the complete
4-body system is obtained by patching these segments [35]. This technique was
successfully used to design orbits with prescribed itineraries within the cis- and trans-
lunar space [136], 138, [184], to Mars [114), 174] and between the Jovian moons [16}, [68].
More accurate trajectories can be obtained by propagating the solutions from the
patched CR3BP on more refined models. These propagators typically include the
real eccentricity for celestial bodies orbital motion [78], take into account the N-body
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environment of the solar system, using the ephemerides model [53, 108, [170], and
can integrate the compensating effect on the perturbations produced by thrust
corrections [18].

If the spheres of influence of the departure and arrival celestial body are nested
(i.e. Earth-Moon, Sun-planet, planet-moon) then low-energy transfers between the
two bodies, named the primaries, can be obtained as solutions of one single CR3BP
[28]. The resulting trajectories directly connect the two primaries and evolve inside
the bigger sphere of influence, therefore they are called internal transfers.

Internal transfers are considerably faster than external ones, which can require up
to 3 months from LEO to LMO [136], limiting the exposure of electronic on-board
systems to the hostile space environment beyond Earth. This feature can have a
dramatic impact on the reliability of the mission, especially when COTS components
are extensively used, such as in CubeSats. Based on these trajectories, missions from
the Earth to the Moon [69] 140, [143] and between Jupiter and the Galilean moons
have been designed [52] . The problem is typically solved for the two-dimensional
case, thus assuming the spacecraft trajectory evolves on the same plane of the
primaries, therefore only co-planar departure and arrival orbits can be connected.
New techniques should be implemented to solve the three-dimensional problem,
including the constraints set by the on-board sensors and actuators [90].

1.3.2 The space superhighways

The CR3BP has been extensively studied since the late 19th century and its
solutions are known to have a complex and chaotic behavior [139]. One algebraic
integral of motion exists for the problem, it is named the Jacobi constant (C') and is
proportional to the total (constant) energy of the system, in particular it decreases
as the energy increases. The libration points introduced in section correspond
to the five equilibrium points of the CR3BP. As detailed in Chapter [2], the motion
in the proximity of the libration point L; is only possible if the energy is higher
than a specific threshold level or, equivalently, if the Jacobi constant is lower than a
threshold value C;. Using the same subscripts in Figure the following relation
holds: Cl > 02 > Cg > 04 = 05.

The libration points L1, Ly and L3 are referred to as the collinear libration points,
because they lay on the straight line passing through the centers of the primaries.
The linearization of the CR3BP in the proximity of a collinear libration point shows
that unstable periodc and quasi-periodic orbits exist. Assuming a fixed value of
C, these libration point orbits can be conveniently represented on a Poincaré map
[60, [89]. The boundary of the Poincaré map shown in Figure corresponds to
Lyapunov orbits, which lie entirely in the plane of the primaries. The point at the
center of the map is associated to a 8-shaped out of plane, or vertical, periodic orbit.
The surrounding region includes non-planar quasi-periodic Lissajous orbits. Close to
the top and the bottom of the map, two points can be identified, corresponding to the
non-planar periodic halo orbits. In the neighborhood of these points, the invariant
curves describe again a quasi-periodic motion and related orbits are called quasi-halo.
The determination of libration point orbits is a crucial step in the definition of low
energy transfers because they are located at the intersection of stable and unstable
manifolds, forming the space superhighways described hereafter.
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Figure 1.4. Poincaré map of periodic and quasi-periodic libration point orbits in the
vicinity of the Earth-Moon L [60]
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Figure 1.5. Representation of some three-dimensional libration point orbits: (a) vertical
periodic, (b) Lissajous, (c) halo and (d) quasi-halo [67]

The unstable motion along a collinear libration point orbit can be represented in
the six-dimensional phase space, whose coordinates are the three position components
and the corresponding velocity components. As proved by Poincaré in the late
nineteenth century [139], this representation produces a six-dimensional surface,
named the invariant manifold, such that all those trajectories which belong to
the manifold remain on it through their dynamical evolution (69), leading to the
following results

e a spacecraft on a collinear libration point orbit slowly drifts out of it, driven by
its unstable dynamics, migrating on an isoenergetic ustable invariant manifold

e a spacecraft moving on a stable manifold will converge, within indefinite time,
to a collinear libration point orbit along an isoenergetic path.
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In fact, manifolds are conveniently classified into two groups: stable manifolds,
containing all the trajectories converging to a collinear libration point orbit, and
unstable manifolds, which collect all the paths departing from the mentioned orbit.
The intersection between the stable and the unstable manifold is the collinear
libration point orbit (i.e. Lyapunov, halo, etc.).

Considering a collinear libration point L;, if the value of the Jacobi constant is
slightly lower than the threshold Cj, then the invariant manifolds act as separatrices
between transit trajectories, orbiting alternately around both the primaries, and
bouncing trajectories, strictly confined to the neighborhood of just one primary. In
the phase space, transit trajectories are included within the hypersurface represented
by the invariant manifold, while bouncing trajectories are confined outside the
manifold. A clear visualization of this property can be provided considering the
simpler case of the planar CR3BP, characterized by four state variables (the in-plane
position and velocity components) and the integral of motion C, thus by three-
dimensional invariant manifolds. Using Birkhoff’s equations [I5] and cylindrical
isomorphic mapping [64] [65], the phase space can be reduced to dimension three
and the invariant manifolds can be represented by cylindrical channels, or tubes,
allowing clear graphic representation of the separatrix, with transit and bouncing
trajectories running, respectively, inside and outside the tubes. A stable and an
unstable manifold, related to a halo orbit about Earth-Moon L, are represented in
the form of tubes in Figure The results discussed for the planar CR3BP can
be extended to the spatial problem [I41]. In this case, the phase space reduces to
dimension five and the advantage of cylindrical representation defaults.

0.4

0.2

Z [DU]

-0.4 -]
0.5

0.2
) -0.2 0
05 4 08 0.6 0.4

Y [DU] % U]

Figure 1.6. The stable (blue) and unstable (red) manifold related to a halo orbit about L,
represented as tubes [24]
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Manifolds are global structures that extend far beyond the neighborhood of
the libration points. Whenever two (or more) manifolds intersect in the phase
space, motion from one to the other can be performed at theoretically null energy
expense, in a so called ballistic flight. The network of invariant manifolds belonging
to different 3-body systems represents a pathway in which the spacecraft can move
with minimum energy expense, mainly related to orbital corrections. This network
is commonly referred to as the space superhighways and several missions have been
designed to take advantage of it for moving from the Earth to the Moon and beyond
[33, [102], 118, 140, 142].

1.3.3 Ballistic capture and weak stability boundary

Deep space missions can take advantage of low-energy transits trajectories, belong-
ing to the phase subspace delimited by the invariant manifolds. Assuming that the
perturbations can be neglected, the energy needed to perform such mission is that
required to transfer from the departure orbit to the manifold and from here to the
arrival orbit. If some conditions are matched, a spacecraft on a low-energy transit
can be trapped by the gravitational field of the closest primary, thus it will start
orbiting the celestial body for some relatively long time. Such a trajectory is called a
ballistic capture and can be temporary (weak capture) or long-term. Spacecraft are
generally temporary captured. CubeSats missions can benefit from ballistic captures,
because of the limited AV required to perform the orbtal transfer. A typical mission
profile for an Earth-Moon ballistic capture would include

1. Propelled transfer from an Earth orbit to the stable manifold heading to L
(internal transfer) or Ly (external transfer)

2. Isoenergetic motion inside the stable manifold towards a collinear libration
point orbit

3. Injection into the unstable manifold towards the Moon
4. Ballistic capture from the Moon

5. Propelled stabilization or injection into the final lunar orbit, leaving the
unstable manifold.

The concept of weak ballistic capture was introduced by Belbruno in 1987, who
also applied it to recover the MUSES mission [12]. The combination of all the
possible cases producing weak ballistic capture forms a set called a weak stability
boundary (WSB). The WSB can be viewed as the region in which the gravitational
forces of the primaries approximately balance the centrifugal force of the moving
spacecraft H A WSB exists in the proximity of the primaries and of the collinear
libration points and Belbruno used them to design low energy transfers based on two
patched CR3BP [91], [95], 144, 174]. In 1969, Conley proved that internal ballistic
captures exist as well for the planar CR3BP [29], providing their topological location
in the phase space surrounding libration points L; and Ls. A number of missions

4The description of WSB is similar to that of equilibrium point and differs from it because the
velocity is not zero.
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based on this model have been proposed, aimed at exploring the cislunar space
and the Moon [18, [69, [140] and the Jovian moons, with particular interest into
Ganymede and Europa [53}, [66].

Internal ballistic capture offer the same advantages of internal transfers with
respect to external transfers and are particularly attractive when short time to
capture is desired. Nevertheless, previous investigations indicate two critical aspects,
related to the osculating orbital elements at capture: the inclination with respect
to the plane of the primaries is almost negligible and the radius at pericenter is
relatively high; these issues limit their use on an extensive number of missions.
Recent results suggest that this constraint might be removed [82], 115], opening to
solutions which represent an area of investigation for my research project, as detailed
in section

1.4 From low Earth orbit to deep space

Low-energy trajectories and CubeSat technlogy are tracing a new way for accessing
deep space, with significant savings in cost and development time. To fully benefit
from this advanced solutions in mission design, a marked improvement of CubeSat
platforms is required, involving the development of new on-board systems in terms of
both performance and reliability. For these goals to be achieved, the implementation
of new facilities and techniques for experimental testing is highly desirable.

Nowadays, most of the techniques used on CubeSats are simple adaptation of
those developed for big spacecraft. If this paradigm seemed appropriate in the early
days of small satellites, the ten years experience revealed that CubeSats should be
considered as a new and independent technology, more than a mere scaled-down
version of traditional big satellites. New design techniques specifically tailored for
CubeSats are therefore necessary, not only to achieve new goals, such as deep space
exploration (section , but to extend the capability of these platforms for LEO
missions also. It is worth noting that increasing the capabilities of small satellites
would have a direct impact on improving access to space and could reasonably be a
major driver in the growth of space science.

A fundamental system which is worth extensive investigation is the attitude
determination and control system (ADCS), aimed at determining and modifying
the satellite orientation in space. The accuracy of the ADCS depends on that of
the attitude hardware, sensors and actuators, and of the determination and control
algorithms, converting the information from the sensors into inputs to the actuators.
Both the hardware and the algorithms should be selected to match the requirements
set by mission operations. Strict constraints on the selection and complexity of
attitude hardware and algorithms result from the limited power and computational
efficiency characterizing CubeSats, a major drawback arising from the use of standard
low-cost components.

A promising class of ADCS is that based on the use of a three-axis magnetometer,
as the only attitude sensor, and three actuators typically represented by magnetic
coils, named magnetorquers, producing three mutually orthogonal torques. The
interest in such an ADCS is driven by the reliability, compactness, low weight
and cost of magnetometers, and by the simplicity and low power-to-torque ratio
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characterizing the magnetorquersﬂ

Attitude determination using only a three-axis magnetometer is not a trivial
task, because this sensor can only resolve two axes of the spacecraft attitude, and a
challenging filtering process is required to produce complete estimation on all of the
three axes. The first solution to this problem was proposed by Natanson et al. who
developed the deterministic attitude determination from magnetometer-only data
(DADMOD) algorithm and used it to initialize a real-time sequential filter (RTSF)
[131), 132]. Almost the totality of the magnetometer-only attitude determination
methods proposed are based on the use of the extended Kalman filter (EKF) and
can have accuracy below 5 deg on attitude and 0.01 deg/sec on the angular rates
[72, 145, 168]. Better accuracy can be achieved using the more complex unscented
Kalman filter (UKF) [109], or the two-step EKF algorithm proposed by Searcy and
Pernicka [161], which can estimate attitude with less than 1 deg error, but is effective
only for angular rates higher than 0.1 deg/sec.

The design of a Kalman Filter for attitude determination requires processing
all of the 6 (or 7, if using quaternions) attitude dynamics variables, as detailed
in section [181]. Implementing such a Kalman Filter on a CubeSat on-board
computer (OBC) can be a real issue, because it requires resources which can exceed
the capability of the main core of the OBC, often a field programmable gate array
(FPGA).

A goal of my research project is that of developing a purely magnetic ADCS
which is specifically addressed for the implementation on the FPGA of a CubeSat
OBC. The solution proposed does not depend on the Kalman filter, emphasizes the
computational efficiency and can provide an accuracy of the order of few degrees,
adequate for most of the CubeSat missions in LEO, which are the target for the
solution proposed. Deep space CubeSats could also benefit from it, during the
stabilization process after the deployment in LEO from the launcher (detumbling),
or as an effective backup solution.

SFor the readers who are new to these systems, the low power-to-torque ratio is a direct
consequence of the magnetorquer operating principle, described by Lorentz’s force. As detailed
in section [6.1} the torque produced by a magnetorquer arises from the interaction between the
geomagnetic field and the magnetic dipole moment generated by the actuator, when an electric
current is induced in the coil. It follows that the only power required to drive the system is that
necessary to induce the electric current, while the contribute of the geomagnetic field is "offered for
free" by the Earth.
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1.5 Goal of the research project

This research project is aimed at developing new techniques of mission analysis,
which can lead to further development of space science missions using CubeSat
technology. Two main objectives have been pursued, related to both deep space
exploration and LEO missions, and are outlined in the following paragraphs.

Ballistic capture The exploration of the solar system using CubeSats requires
adequate techniques to design low-energy trajectories. The effectiveness of these
techniques, thus their suitability to drive actual mission analysis, should be evaluated
depending on their capability to predict ballistic captures and their behavior in time.

Part of my research activity was dedicated to the development of a method for
systematic design of internal ballistic captures. Internal trajectories were selected
because of their relatively short time to capture, as outlined in section [1.3.3]

The method aims at providing a topological description of transit and capture
trajectories, including information on the total time and osculating orbital elements at
capture. Based on this classification, two guidance strategies were developed, allowing
modification to the ultimate behavior of trajectories to match the desired mission
requirements. These strategies are effective with modest velocity variations (AV')
and are tailored to be implemented on compact continuous thrusters, compatible
with CubeSats.

The method was originally developed in the dynamical framework of the three-
dimensional, or spatial, circular restricted 3-body problem (CR3BP) and was later
extended to the more general elliptic restricted 4-body problem (ER4BP), which
is adequately accurate for application on several scenarios of interest, such as the
Sun-Earth-Moon system or Jupiter and its Galilean moons.

Magnetic Attitude Determination and Control The development of a simple,
reliable and effective purely magnetic ADCS is a goal of my research project.
The target is to achieve a low mass, low power and low cost ADCS, tailored
for nanosatellites performing space science missions around the Earth. Attitude
determination is obtained from the only measurements of a three-axis magnetometer
and a model of the geomagnetic field, without the use of any Kalman filter. The
determination process starts from the estimation of the angular rates, which are
used as an input, along with geomagnetic field data, to estimate the attitude matrix.
To enhance the computational efficiency of the system, complex matrix operations
are arranged into a form of the Faddeev algorithm, which can be conveniently
implemented on the FPGA core of a CubeSat OBC using systolic array architecture.
The performance and the robustness of the algorithm are evaluated by means of
both numerical analyses in Matlab Simulink and hardware-in-the-loop simulations.
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1.6 Structure of the thesis

The thesis is organized into 8 chapters, covering the two topics studied in my PhD
research project: the development of internal ballistic capture design techniques and
the implementation of a magnetic attitude determination and control system for
CubeSats.

In Chapter [1] the goals and challenges of current space science missions using
CubeSats are introduced. An overview of the state of the art for both ballistic
capture and ADCS is provided, with the aim of indicating the crucial aspects before
to contextualize them into a rigorous and complex mathematical framework. Based
on this analysis, the goal of the research project is stated. The CR3BP and the
Hamiltonian formalism represent the theoretical background to develop novel design
techniques for internal ballistic captures. This background is discussed in Chapter
including an in-depth analysis of previous works in the field.

In chapters [3] and 4] a method for systematic design of internal ballistic captures,
with desired capture time and osculating orbital elements at capture, is presented.
The method is verified by means of numerical simulations on the Earth-Moon and
the Jupiter-Ganymede systems, investigating the effects of solar gravitational pertur-
bation as well. Two low-thrust guidance strategies, producing powered permanent
capture and desired modifications of the orbital elements at capture, are presented
and verified for the mentioned cases.

In Chapter [5] the results developed for the CR3BP are extended to the ER4BP,
taking advantage of canonical transformations. This new technique allows designing
Earth-Moon internal ballistic captures including the gravitational pull of the Sun
from the design phase, instead of considering it as a perturbation to be compensated.
Further extension of the model can help identifying capture orbits which are stable
with respect to orbital resonance, as proved for the Jupiter-Europa-lo system.

In Chapter [6] the theoretical background of magnetic ADCS is introduced, before
to implement a magnetometer-only angular rate determination and detumbling
method and a magnetometer-only attitude determination strategy. The previous
results are then arranged in the form of the Faddeev algorithm, to allow efficient
hardware implementation. The implemented algorithm are verified by means of
hardware-in-the-loop simulations discussed in Chapter [7] in which the design and
development of a ground-based facility for ADCS experimental testing is introduced.

Closing remarks are discussed in Chapter [8] including a critical evaluation of the
results obtained in terms of the PhD project objectives, possible implementations
and recommendations.
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Chapter 2

Hamiltonian dynamics for the
circular restricted 3-body
problem

The characterization of low-energy trajectories, resulting from the gravitational
interactions in a restricted 3-body model, is the final aim of this chapter. Such an
environment can be conveniently modeled as a dynamical system, whose solutions
are the desired trajectories. For the sake of characterization, a qualitative approach
is preferred to investigate the 3-body dynamical system, providing an elegant, global
and compact representation of the solutions and of their properties. Based on
these properties, the ultimate behavior of low-energy trajectories is evaluated and
techniques for space mission design are developed. These techniques can be finally
used to determine specific solutions of the problem, through a quantitative approach,
as detailed in chapters

Low-energy trajectories are studied under the hypotheses of the circular restricted
3-body problem, which can provide effective solutions for a relevant number of space
missions. Qualitative dynamics provides powerful tools for this analysis, which were
developed since the 18th century, by Euler [49] and Lagrange [94]. In the 19th
century, the great effort by mathematicians of the caliber of Jacobi [81], Hill [73, [74],
Poincaré [139] and Birkhoff [I5], set the bases for more recent developments by
Moser [117, [165] and Conley [28, 29] among the others.

2.1 The circular restricted 3-body problem

The circular restricted 3-body problem represents the reference mathematical
framework in which the majority of low-energy trajectories are designed. The 3-body
system includes two celestial bodies, named the primaries, of mass m1 and mo E] and
a body of negligible mass m, such that mi > mg >> m.

Lthe subscripts 1 and 2 always refer to the primaries throughout the manuscript
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The primaries move around their common center of mass (O) along circular
orbits at the constant rate
G (m1 + mg)

(a1 + a2)3

where G = 6.67408¢ — 11{;—; is the gravitational constant and a; indicates the
distance of the i-th primary from O [I71]. The motion of m, resulting from the
only gravitational effects of the two primaries, can be described in an inertial, or
sidereal, reference frame {é,lﬁ[ , ZA} centered in O. As sketched in Figure the
problem is studied considering the position of the primaries at the initial time (to)
such that P1(tg) = (—a1,0,0) and P2(tg) = (az2,0,0), with = pointing towards ma,

Z orthogonal to the orbital plane of the primaries and H completing the rectangular
frame.

Figure 2.1. The sidereal reference frame for the CR3BP

The dynamic equations of motion for m in the sidereal frame are given below

[1]:

:—G(ml R3 —l—mg“ :2)

R3
_ H—H, H—H,
H = =G (my 2l 4 my 112 ) (2.1)
_ _2, Z—7s
Z— G(m]_ R3 "‘mQ R% )

where the dot indicates the time derivative and R; = \/(E —E) 4 (H— H)* + (Z - Z;)*
are the distances of m from the primaries m; and ms. It can be noticed that, in the
hypothesis of the CR3BP, the segment P, P, rotates with constant angular velocity
w around O. Therefore the CR3BP can be conveniently reformulated referring to the
rotating, or synodic, reference frame {EA )1, q, with é connecting the two primaries
and pointing towards mao, QA' parallel to Z, thus orthogonal to the orbital plane of

the primaries, and 7 completing the rectangular reference frame. A sketch of the
synodic reference frame is shown in Figure
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Replacing the sidereal coordinates by the synodic ones, system can be
expressed as follows

5—2007.]—0025:— ( ffl_i_mf&)
i 4 2w — w?n = -G (m1 Rm +m2"R;?2) (2.2)

C__G<mlf §] _|_m2C Cz)

Typically, the dimensionless form of system [2.2] is preferred and this is obtained after
introducing the units of mass (MU), distance (DU) and time (TU)

MU = mq + mo
DU =a1 +as

TU =1/w =/ 2%

From the definition of MU, the dimensionless masses of the primaries can be
expressed in terms of the only mass parameter p < %

mi /MU =1—p
ma/MU = p

Also the dimensionless positions of the primaries, 1 = a;/DU and x9 = a2/DU,
can be expressed in terms of y, based on the definition of the center of mass.

a1 +ag = DU . r1=1—1m9 . T1=—p
—aimi + asms =0 i =B To=1—p

Figure 2.2. The synodic reference frame for the CR3BP

The CR3BP dynamics in the synodic frame, using dimensionless coordinates
[%,7, 2], is expressed by the following set of equations

_ (- #)(H#) _ p(z—1+p)

T—2y—x = 3 3
j+20—y=—"Fy - Ly (2:3)
z:flr_i,’“”zf%z
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where r; = \/(x + 1) + 92+ 22 and ry = \/(x — 14 p)? + 2+ 22 Systemcan
be set in the compact form

. . 9U

T—-2y=%

j+2i =90 (2.4)
Z:%

In equations [2.4] the scalar potential function U was introduced

2 2
1—
gty toe B (2.5)
2 1 79

It is known from Poincaré that the CR3BP has only one integral of motion [139]
and this can be determined operating as follows on the pontential function
ou ou ou
VU = i+ i+ 25 = b+ e + S 2.6
i o TV, 4. (2.6)
where r = (z,y, z). Because U is a function of the spatial coordinates (x,y, z) only,
then % = a'c%—g + g)%—(y] + é%—g and equation can be rewritten as follows

au
L+ Yy + 22 = — (2.7)
dt
Calculating the integral over time of equation [2.7] produces the above mentioned
integral of motion, indicated as C and named the Jacobi constant

U —i* 4+ 2 =C (2.8)

The Jacobi constant provides useful information regarding the regions of motion

of m. It is worth recalling that the totality of solutions for a dynamical system with
three degrees of freedom, such as the three-dimensional CR3BP, is included within the
a six-dimensional manifold F' (z,y, z, %, y, 2), named the phase space. The existence
of C reduces the phase space to a five-dimensional subspace F'(z,y, z, %,9, 2) = C,
in which each and every point represents a particular solution of the CR3BP for a
fixed value of C.
The manifold can be further reduced after isolating points in the phase space
characterized by a magnitude of the velocity equal to zero, producing the zero
velocity surface (ZVS) F (x,y, 2,0,0,0) = C, also named Hill surfaces. The explicit
expression for the ZVS, obtained introducing equation [2.5] into equation [2.8] is
reported below

x2+y2+2<1_”+“>:0 (2.9)
™ T2

An analysis of equation shows that the ZVS are always symmetric with respect
to the [Z, §] and [, 2] planes and, for the limiting case u = 1/2, also with respect to
the [, 2] plane. The ZVS are the locus of points where the velocity of m is equal
to zero, therefore they define the boundary for the regions of motion, a subspace
expressed by the following equation

1—
x2+y2+2<u+u><0
1 T2
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The shape of the ZVS changes with C' and so do the regions of motion, as shown in
Figure 2.3 where the ZVS are sketched as level surfaces with the parameter C'.

Figure 2.3. Sketch of the zero velocity surfaces as a function of C, the position of the
primaries is indicated by P; [185]

For a clear description of the change in the regions of motion with C, it is better
to refer to the zero velocity curves (ZVC), produced by the intersection of the ZVS
with the plane z = 0. The ZVC for six values of C' are shown in Figure 2.4 where
the white areas represent the regions of motion and C' decreases from case (a) to (f).

Figure 2.4. Sketch of the zero velocity curves with C decreasing from (a) to (f)
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Considering the case (a) in Figure m can move only in the proximity of
the primaries or at very long distance from both of them, outside the outer circle
bounding the dashed area where the motion is not allowed. As C' decreases, the
regions of motion surrounding the primaries collide (b) and this occurs for a value
of the Jacobi constant indicated as C1, in correspondence of the libration point L,
discussed in detail in section For C' < (1, the primaries are included in the
same region of motion (c-f), therefore transit from one to the other is allowed. In (c)
and (d), an inner and an outer region of motion exist, the former surrounding the
primaries and the latter far away from them. As C decreases, it can reach the value
Cy, where these two regions merge into a single one (d), with the collision occurring
at the libration point L. Therefore, for C' > Cs only one region of motion exists
(e-f), thus the motion of m can evolve indefinitely in the proximity of the primaries
or away from them.

It can be noticed from cases (b-d) that, as C decreases from C; to Cs, the
"neck" surrounding L; widens. If the Jacobi constant is slightly smaller than Cf,
a linear formulation of equations represents an accurate approximation of the
real dynamics inside the mentioned neck. The same consideration applies in the
surrounding of Ls when the Jacobi constant is smaller but close to Cs. setting the
bases for the characterization of low-energy trajectories.

2.2 Collinear equilibrium points and linear dynamics in
the equilibrium region

A total of five equilibrium (or libration) points exist for the CR3BP, all belonging
to the [Z, g] plane. Three out of five equilibrium points, indicated as L1, Ly and L3
are named collinear, because they belong to Z. Their location can be determined
from system by setting the time derivatives equal to zero

A-p)ztp)  p=ltp) _ o
3 3

v ST T2
y— Sy~ hy=0 (2.10)
lr_if‘z + %z =0

Producing L;y = L; , =0 for i =1,2,3,r =/(z + M)Q, ro =1/(x —1+ ,u)2 and

@+ pf? o —1+pf*

s Aty ple—1+p (2.11)

A close analytical solution of the fifth grade equation does not exist, but the
location of the three real solutions can be inferred by studying the sign of the
absolute values at the denominator, leading to

Lig:—p<z<l-—p
Lyy:ax>1—p (2.12)
L37I:$<—/,L
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The stability of the collinear equilibrium points can be studied using the small
deviation equations, obtained from the linear equations of motion calculated at L;.
From the linear expansion of equation [2.5]it follows

VU = VU* + (r — v*) V?U + ... + 0 = FV2U (2.13)

where the symbol * indicates a value calculated at L;, r iZS the onsition2vect0r,
F=r—r"andr* = (2 — L; 4,y,2). It can be proved that gﬂ% = aazaUz = gygz =0,

then the linear equations of motion are given by the following system

~ 92U

. . 2

y+2m—y%20 (2.14)
U _

2T 29202 0

System [2.14] can be conveniently rearranged in the matrix state space form, intro-
ducing the velocities u = &, v = ¢ and w = 2.

[z ] [ 0 0 0 1 00 z

U 0 0 0 0 10 Y

Z 0 0 0 0 01 z
o | | 14+292 0 0 0 20 u (2.15)

0 0 1-42 0 -2 00 v

lw | | 0 0 -2 0 0 0] | w,|

where T = x — L; , and, for the sake of compactness, the parameter V2 =— gjgz is
02U _ 02U

introduced, which verifies the following equalities 1 4 2v? = 5o05 and 1 — v = 5y0y "
The dynamic matrix in is hereafter indicated as A.

The characteristic equation for the system can be calculated from |[A\I — A,
where I is the identity matrix

A4 (2 - 72) A2 4+ (1 - 72) (1 + 272) =0 (2.16)

The solutions of equation [2.16] are the six eigenvalues +a, +j5 and +jv, where j
indicates the imaginary unit. As indicated by Routh-Hurwitz criterion [77), [155], for
a stable equilibrium equation [2.16] should have two real negative roots, leading to
the condition (1 —~?2) > 0, which is not verified for the collinear libration points, as
can be inferred from the solutions [2.12| or determined numerically.

It follows that, because (1 — 72) < 0 then the equilibrium at he collinear libration
points is unstable, thus any perturbation acting on m will lead it to depart from the
equilibrium point.

The phase space surrounding the collinear equilibrium points L;, in which the
linear system [2.15] provides an adequately accurate description of the actual dynamics
of the CR3BP, is named the equilibrium region. It can be noticed that, inside the
equilibrium region, the in-plane motion, evolving onto the [z, | plane, is uncoupled
from the out of plane motion, along 2. The out of plane motion is stable and periodic,
as described by

(2.17)

2z = 271 cosyt — 279 sin vyt
w = — (271 sinyt — 29 cos yt)
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where the coefficients v, and 73, reported in system [2.19] are obtained from the
initial condition.

The in-plane motion is more complex and includes both unstable aperiodic terms
and stable periodic ones

7 = a1e® 4+ age™ + 23 cos Bt — 2P sin Bt
y = a10e® — agoe™ ™ — 27 (B sin Bt + B3 cos f3t)
u = ajae® — asae™ — 23 (B sin Bt + B cos [t)

v = ajace® — asace™ — 287 (B cos Bt — By sin Bt)

(2.18)

where 0 = —2a/ (a? ++92 — 1), 7 = =28/ (=% +~v* — 1) and the coefficients a1,
a2, B and (B9 are calculated from the initial condition and reported the set below

. (1+2’YQ)560+(1*’72)yo+aUO*aﬂvo
a= 2[(1—7)o2+a?]
(1+272 To— 1—72 TYo— QU9 —Qovo
2= 2[(1—)0% 7]
By = (1+2W2)5¢0+57’vo
L= 072+ 5] (2.19)
_ (1=9?)Tyo+Buo
B2 = — =y
n=7%
Y2 = 5

where the subscript 0 indicates the value calculated at {5 = 0. Referring to systems
and libration point orbits can be classified depending on the value of the
parameters a1 2, 812 and 7 2, obtaining

e a1 = ag = 1 = [y = 0 — vertical harmonic motion

e a1 = ay =71 =y =0 — planar periodic, or Lyapunov, orbit
e a1 = ag = 0 — quasi-periodic three-dimensional orbit

e a1 = 0 — trajectory asymptotic to a quasi-periodic orbit

e a9 = 0 — trajectory departing from a quasi-periodic orbit

Regarding the quasi-periodic orbit, it can be noticed that the amplitude of the in-
plane and out of plane oscillations depends, respectively, on 1 2 and 71 2. As will be
clarified in section [2.3] the value of the mentioned parameters depends on the energy
of the system, or equivalently on C. For C just below C;, the in-plane amplitude
is greater than the out of plane, therefore the corresponding quasi-periodic orbit
about L; is a Lissajous orbit. As C decreases, the amplitude for the two oscillations
becomes comparable and the Lissajous is replaced by a quasi-halo orbit. If the
in-plane and the out of plane motion are perfectly coupled, then the dynamics evolves
onto a plane tilted with respect to [Z,¢] and the resulting trajectory is called a halo
orbit. The results discussed in this manuscript refer to values of the Jacobi constant
slightly smaller than C7 or Cs, therefore quasi-periodic Lissajous orbits are going to
be considered. A representation of libration point orbits is shown in Figure[1.5
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2.3 Hamiltonian formalism and Siegel-Moser canonical
transformation

A deeper insight on the dynamical behavior in the equilibrium region, surrounding
the collinear libration points L; and Lo, was provided by Conley, for the limiting
case of the planar CR3BP. Conley’s work leads to a clear and compact topological
classification of transit, bouncing and capture orbits, including a characterization
on the capture time, and the representation of all of these results on a simple
two-dimensional plot of the phase space [29]. This result can be extended to the
spatial CR3BP, after rearranging the CR3BP using the Hamiltonian formalism.

In the Hamiltonian model, the dimensionless position and velocity coordinates are
replaced by the conjugate positions [q1, 2, ¢3] = [z, y, 2] and momenta [p1, p2, p3] =
[u—y,v + z,w]. The dynamic equations of motion, equivalent to system can

be expressed as follows
. OH

=2
. Py (2.20)
P="9q

where H is the Hamiltonian function for the CR3BP P} reported below [I71]

1 l—p  p
H = (pi + 05 +p3) + (a2 — por) — ( —+ 7’2) (2.21)

Introducing equation into system the following set representing the CR3BP
dynamics is obtained

q=p1+aq

G2=p2—q

gs = p3

b= py — (1_#)7%11+H) _ u(q1;§1+u) (2.22)
P2 = —p1 — % - %,2

with r = \/(q1 +1)? + 63 + q3 and ry = \/(cn —1+p)’+ @ +a
The linear form of system about L;, equivalent to system [2.15| can be ob-
tained after deriving the linear Hamiltonian function. This is done by applying the
translations

{Cﬁ =q —Lig

p~2 =p2 — L’L'7I

and expanding in power series the non polynomial terms of equation reported
in the Appenix A, producing the following result

1 3 . 1 1
Hy =3 (pf + pa? +p§) + (p1g2 — podi) — K <q12 - 5(1% - 2(13) (2.23)

2By replacing conjugate coordinates with dimensionless position and velocity components it
results H = —2C
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1—

with K = T _f#'g 1 _“H_M;;. The linear system associated to Ho can be expressed
in matrix form as follows (for the sake of compactness the tilde sign was removed)
[ ¢ ] [0 1 0 1 0 0] [ @11
G2 -1 0 0 0 1 0 q2
g | |0 0 0 0 01 q3
pr | [2K O 0 0 1 0| m (2.24)
pz 0 -K 0 -1 0 O P2
Lps] LO O —-K 0 0 0] [ps]

A crucial step in the development of Conley’s Hamiltonian representation is the
definition of a coordinate transformation (x,y) = Tn (q,p) that

o diagonalizes A
e is canonical

o verifies the reality condition, thus transforms complex variables (x,y) into the
real ones(q, p)

Such a transformation was proposed by Siegel and Moser and can be obtained as
follows [165]. First the eigenvalues of A, indicated as +p, £jA\; and £j\o, are
collected in the diagonal matrix A

p 0 0 0 0 0
0 —p O 0 0 0
{00 gM 0 0 0
A= 0 O 0 —jA O 0 (2.25)
0 O 0 0 Jjh 0
0 0 0 0 0 —jAal
The permutation P is then applied to A
1 2 3 456
b= <1 4 2 5 3 6) (2.26)
obtaining the Siegel-Moser form
(p O 0 O 0 0 7
0 jAr 0 O 0 0
{00 gX2 O 0 0
T= 0 0 0 —p 0 0 (2.27)
0 0 0 0 —jX\ 0
0 0 0 O 0 —JjA2

For the canonical condition to be verified, T must be transformed into a symplectic
-1
form. Setting B = (J_lTTJ) , with

1
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and isolating from B the (3 x 3) block
Bl :Bi><j Z7]: 17273

then matrix Q can be defined as follows
_|B1 O
0 [ ¢ o
Post-multiplying the inverse of Q to T results into the symplectic matrix

S=TQ 1 (2.29)

Indicating s; the i-th column of S and considering equations ([2.27) and (2.29)), it can
be noticed that s; and s4 are real vectors, while sa, s3, s5 and sg are complex ones.

For the reality condition to be satisfied a final step is required. Setting k1 = 1/4/s2s3

and kg = 1/4/s3sg and arranging these parameters into the following matrix

1 0 00 0 O
0k 0 0 0 0
0 0 k 0 0 0

R=100 01 0 o
ooooﬁo
00000%

The desired transformation matrix Tn can be finally obtained from the following
multiplication

Tn = SR (2.30)

Applying equation [2.30| produces the transformation

[371 T2 T3 Y1 Y2 y3]T:TN [fh @ g3 P1 D2 p3}T (2.31)

where x1,y1 € R, 72,y2,73,y3 €C, y2 = S (22) + iR (22), y3 = I (23) + jN (v3),
j =+v—1, R and S indicating, respectively, the real and imaginary part [165].

The Hamiltonian function in the transformed coordinates can be expressed as
follows

A A
H = priyy + 5 (03 +93) + 5 (o3 +93) + O3 (ai ) (2:32)

Therefore the linear Hamiltonian can be obtained from equation (2.31)) by neglecting
the higher order terms O3 [104]

Ao 9\, A2/ o o
Hy = priy1 + (302 + Z/z) T3 (533 + ys) =h (2.33)
It is worth recalling that the Hamiltonian function for the CR3BP is constant and
equal to —2C' and the canonical transformation [2.30] preserve this condition. In fact,
as reported in equation H, is equal to the constant i, named the energy level
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and corresponding to the energy of the linear system.
The solution of the linear system corresponding to equation [2.33] are given below

x1 = oelt

Y1 = age Pt

T2 = [ cos (A1t) + jfasin (Mit)
y2 = —p1sin (A1t) + j B2 cos (Ait)
x3 = 71 cos (Aat) + jye sin (Aat)
y3 = —71 sin (Agt) + jy2 cos (Agt)

(2.34)

where a1 2, f1,2 and 71,2 are constants related to the initial conditions, equivalent to
those given in system [2.19]

Inside the equilibrium region, the three functions px1y1, % (l‘% + y3 ) and % (ac% + yg)
are local integrals of the system and represent a fraction of h [I17]. Each term
depends on a distinct couple of variables, thus they can be represented in distinct
spaces. Particular interest will be devoted to the level surface pxiyi1, correlated to
the parameters a1 and a, on which the set of initial conditions corresponding to
ballistic captures can be represented.

2.4 The flow in the equilibrium region and Conley’s
theorem

A topological analysis of the flow corresponding to Hs leads to a rigorous de-
scription of the equilibrium region and allows predicting the behavior of trajectories
crossing it. According to equation the linear dynamics evolves inside a five-
dimensional phase space, hereafter represented by the 5-ball B centered in L;. Once
fixed the energy level h > 0, the flow inside B is characterized by the composition of
the three local integrals of motion defined by Moser [I17]. These correspond to the
flow of an unstable critical point, evolving onto the [Z1, 1] plane and described by
the hyperbolas

O<m1y1§%:k

2.35
k= —% <zy1 <0 (2.35)

and the flow of two centers, corresponding to two uncoupled harmonic oscillators
respectively onto the [Z2,§2] and the [Z3, 3] plane

A1
Z=5 (3 +43) =M (2.36)
Z=2 (23 +43) = ho (2.37)
9 3 3

Based on the previous considerations, the following statement can be formulated: any
point in B characterized by 1 = y; = 0 is associated to a trajectory always evolving
inside B. Equivalently, any point of a trajectory crossing B is characterized by
z1 # 0 and y; # 0. The flow onto the [#1, §1] plane is therefore sufficient to identify
trajectories which cross B, but does not provide complete information regarding the
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behavior of these trajectories outside the equilibrium region. To achieve this result
the parameter ¢ is introduced, such that, if € is small enough, it is possible to define
a subspace L of B satisfying the following conditions
A A

|x1 + yll <e

In fact, £ represents the equilibrium region, as originally defined by Conley [2§].
The straight lines |1 — y1| < & represent a boundary of £. As sketched in Figure
each (green) straight line separates one of the primaries from L;, which is the
origin of the reference system. It follows that, to transfer between the two primaries
the spacecraft m should cross both the straight lines, thus the equilibrium region,
and this is in fact coherent with the definition of transit trajectories provided before.
Another boundary of £ onto the [1, 1] plane is represented by the (green) limit
hyperbolas. These correspond to solutions of equation [2.35 when the whole energy
of the system is associated to the unstable flow (k = h/p); in such a case, the flow
occurs only onto the [Z1,§1] plane

h
Ty = £—
p

For k < h/p, the flow is described by the hyperbolas x1y; = £k, onto the [21, §1]
plane, and by the periodic terms onto the [Z2, 2] and [Z3, y3] planes. Hyperbolas
characterized by x1y; < 0, represented in Figure by black solid lines, cross both
of the green straight lines |21 — y1| < €, separating the primaries, and are in fact
representative of transit trajectories. Differently, solution xz1y; > 0, named bouncing
trajectories and represented by black dashed lines in Figure [2.5] only cross one of the
green straight lines, thus are not suitable to perform transfers between the primaries.

Having characterized the flow inside the equilibrium region, it is of interest

to investigate the ultimate behavior of orbits crossing the equilibrium region. A
rigorous description is given by Conley [29], based on the topological description
of £ which, as defined by equation [2.35] is equivalent to the product of a 4-sphere
S* with an interval |z; — y1| < e. Considering the projection of S* onto the [&1, 1]
plane, the intersection of the axes with a straight line |z + y1| < € produces four
open line segments [; and four closed ones I, shown in Figure The intersection
between these segments and S* are topologically equivalent to 4-disks (;) and
annular 4-dimensional surfaces (}).
As shown in Figure [2.6] the flow associated to transit orbits defines a mapping
between disks, in particular between /; and lo, when heading to mo, and between I3
and l4, when heading to m;. Differently, the mapping associated to bouncing orbits,
which do not cross the equilibrium region, is between the annuli 15 and I5 (to ma)
or I and I} (to my). Asymptotic orbits, corresponding to the axes, represent the
boundary between the disks and the annular surfaces.
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x 107
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Figure 2.5. Sketch of the flow onto the [, §1] plane. The boundaries of the equilibrium
region are depicted in green [24].
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Figure 2.6. Projections of the 4-disks (orange) and annuli (purple) onto the [Z1, §1] plane

Recalling system the time required a by transit trajectory pzri1y; = —k to

move from any point Py = (x1(to),y1(t0)), to P* = (21(t*) = y1 (to) , y1(t*) = 21 (t0))
can be determined as follows

1 t
t* —tg = ——log ylto)

5108 ) (2.39)

Assuming for the sake of simplicity ¢y = 0, it can be noticed that ¢* tends to infinity as
x1(to) or y1(to) approaches zero. Correlations between the time t* and the ultimate
behavior of orbits outside the equilibrium region will be highlighted in Chapter
showing that for initial conditions corresponding to t* — oo the corresponding
trajectories spend a long time orbiting one of the primaries, before to enter again
the equilibrium region. Such trajectories are in fact trapped by the gravitational
field of the given primary, and are therefore called ballistic captures.
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In conclusion to this section, the classification of orbits based on the topological
analysis of the linear dynamics onto the [Z1,§1] plane is provided

o Lissajous quasi-periodic orbits, evolving only inside the equilibrium region,
are characterized by 1 = 22 =0

e Bouncing orbits, which never cross the equilibrium region, correspond to
the hyperbolic segments determined by x1y; > 0

e Transit trajectories, which cross the equilibrium region, alternately towards
mg and towards mq, correspond to the hyperbolic segments determined by
z1y1 <0

o Ballistic capture trajectories, which cross twice the equilibrium region
with relatively long time separating the two crossings
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Chapter 3

Long-term capture orbits for
low-energy space science
missions

In the previous section it was introduced the theoretical background to investigate
internal low-energy trajectories in the CR3BP, including an Hamiltonian representa-
tion of the linear dynamics in the vicinity of the collinear libration points L; and
Lo. This allowed characterizing the ultimate behavior of trajectories based on their
topological location inside the equilibrium region. Particular interest was devoted
to transit trajectories, which allow designing orbital transfers between two celestial
bodies, such as the Earth and the Moon, showing that the time t*, required to cross
the equilibrium region, rises rapidly for trajectories which are close to those ones
asymptotic to (or from) quasi-periodic orbits.

The characterization of capture orbits was proposed in the form of a theorem by
Conley, in the limiting case of the planar CR3BP, stating that: if asymptotic orbits
exist then near any such there is a capture orbit [29].

This section is aimed at presenting an extension of Conley’s theorem to the spatial
CR3BP, leading to a topological location of three-dimensional ballistic captures
inside the equilibrium region.

3.1 Conley’s theorem for the spatial circular restricted
3-body problem

We consider a 4-sphere T in £ determined by x1 — y; = 0, such that any orbit
crosses the sphere if and only if it crosses £, and the following definitions

e a transit trajectory is one which crosses 7 arbitrarily early

e an asymptotic trajectory is one converging to, or departing from, a quasi-
periodic solution in £. The limit set of asymptotic trajectories is the quasi-
periodic libration point orbit

e a capture orbit is one which crosses 7 after some relatively long time
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The existence of transit orbits for values of the Jacobi constant just below C; was
proved first by Conley, for the planar CR3BP, and further extended to the spatial
case by Appleyard in his unpublished PhD thesis [3],[29]. Recently, a method to prove
the existence of transit orbits for values of the Jacobi constant relatively smaller
than C; was proposed by Moeckel [I15]. Once ascertained the existence of transit
trajectories, the topological location of capture orbits inside the equilibrium region
can be determined, by investigating possible combination of mappings for the flow
outside the equilibrium region.

The two segments of lines x1 + y; = +¢ included between the limit hyperbolas
x1y1 = —h/p correspond to the two 4-spheres bounding the equilibrium region £
which are hereafter referred to as the bounding spheres. As indicated in Figure [2.6
the flow in £ is such that any transit trajectory enters the equilibrium region crossing
the disk 7 or I3 and leaves the region crossing the disk ls or 4. Therefore, two subsets
of the bounding spheres can be determined: H,, collecting the points leaving £, and
‘H;, collecting the points entering L, therefore l1,l3 € H; and lo,l4 € H,. Based on
this definitions, the above-mentioned mapping between disks can be expressed as
follows

U ={P ely|3t >0+ f(P,t) €ls} (3.1)
Uy = {73 clzdt <0+ f(P,t) S l2} (3.2)
where U;,Us € L and the point P is such that f(P,t) is a solution of the linear

system E

Recalling that transit and capture trajectories always cross the equilibrium region
twice, then for any point on a trajectory leaving the equilibrium region (P € ls), the
minimum time for the second crossing can be defined as follows

ti = min{t > 0|f (P,t) €l3,P € l2} (3.3)

The point on the same trajectory of P corresponding to t; is given by the flow
mapping
Pi = f(P,ti) (3.4)

Similar considerations apply for any point on a trajectory entering the equilibrium
region (P € l3), such that

to = max{t < 0|f (P,t) € 2, P € l3} (3.5)

Po = f(P,to) (3.6)

It is worth to highlight that the two mappings defined above refer to a flow which
evolves outside the equilibrium region. In fact, t; is evaluated from the instant
the trajectory leaves the equilibrium region until it enters it again and similar
considerations hold for t,.

From the definitions [3.1] and [3.2] it is possible to say that the domain of P; is
Uy, while that of P, is Us. The projection of disks Iy and I3 onto the [Z1,91] plane,
shown in Figure [2.6] provide further information regarding the flow mappings.

LAll the results obtained in this subsection hold if replacing I3 with [; and Il with l4.
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The extreme points of these segments belong to the reference axes, therefore they
do not represent transit trajectories, but asymptotic ones instead. It follows that
the subsets lo and I3 are open in, respectively, H, and H;. According to Lemma 5.1
and Theorem 5.1 in [29], the openness of I and I3 verifies that the P; and P, are
continuous, inverse each other and define homeomorphisms from domain to range.

Previous result indicates that any orbit crossing lo twice must cross I3 once
sometime in between and vice-versa. It is equivalent to say that for a trajectory
leaving the equilibrium region towards one of the primaries, i.e. mo, the previous
crossing must have been in the direction from m; to mo, as sketched in Figure 3.1}
The same condition does not necessarily hold if considering two disks belonging
to the same bounding sphere, such as [; and l3. To examine this case, we have to
recall that 7 separates £ and is transverse to the bounding spheres. Therefore any
trajectory crossing twice the equilibrium region must hit 7 in both its hemispheres.
It follows that a transit trajectory can not cross twice in a row disks which belong
to the same bounding sphere.

Figure 3.1. Sketch of a transit trajectory onto the [2, 4] plane

The openness of I5 in H, and that of I3 in H; imply that also i/, and Uy are
open in Iy and I3, as can be verified from equations and Consequently,
a point belonging to the boundary of either U; or Us, indicated as oy and s,
is not mapped to I3 or lo. According to this, a point P € 0l NIy belongs to
a trajectory which departs asymptotically from the quasi-periodic orbit (it has
coordinates x1 = 0), crosses L (P € l3) and, at the same time, can not be mapped
to I3 (equation is not verified for P € dU). In conclusion, such a point can only
belong to a trajectory which departs asymptotically from the quasi-periodic orbit
and takes indefinite time to cross twice the equilibrium region, it is thus a capture
orbit. Similar considerations apply for P € 0lUs N 3, belonging to a capture orbit
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which converges asymptotically to the quasi-periodic orbit, as the one sketched in

Figure [3.2]

Figure 3.2. Sketch of a capture orbit (black solid line) and of the asymptotic trajectory
close to it (blue dashed line) onto the [2, ¢1] plane

The analysis presented in this section is equivalent to that performed by Conley for
the planar CR3BP [29] and proves that, also for the spatial case, inside the equilibrium
region capture orbits are located in the proximity of asymptotic trajectories. In the
following sections, this result is verified by means of numerical analyses.

3.2 Ballistic capture in the Earth-Moon system

Qualitative analysis discussed in sections [3.1] provided the topological characteri-
zation of trajectories crossing the equilibrium region, based on only two transformed
Hamiltonian coordinates: x; and y;. In particular, capture orbits can be character-
ized by z; or y; approaching zero, a condition which, according to equation |2.39
corresponds to t* — Fo0.

This result is here verified by means of numerical analysis on the Earth-Moon
system, according to the parameters reported in Table [3.1]. Low-energy trajectories
departing from the equilibrium region surrounding the libration point L; and heading
to the Moon are calculated by integrating the full nonlinear equations of motion in
system @, over a time corresponding to ¢y = 15 years. The Runge-Kutta family
methods implemented in the Matlab function ode113 are used for this purpose [5],
setting a fixed time step of t;, = 15/100000 ~ 4730sec, and relative and absolute
tolerances equal to, respectively, le-18 and 1le-19.

The integration stops when one of the following conditions are matched

e q1 < L1, occurring when the trajectory crosses the equilibrium region heading
to my

o the total time of the simulation is equal to 15 years (¢ = ty)
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The dataset produced as output is a 100000 x 7 matrix, where the elements of the
first column are time values corresponding to the Hamiltonian coordinates ¢; and
p; on the same row and in columns 2-4 and 5-7. If the integration stops for ¢ < ty,
then the elements of the dataset corresponding to ¢ > t are defined as NaN, so that
they can be easily filtered during the post-processing of data.

The initial states for the integration are selected among those which should
correspond to transit trajectories (x1y; < 0) and capture orbits (1 — 0 or y; — 0),
through the following systematic procedure

1. A value for the energy level h and the radius of the bounding spheres ¢ are
selected, defining the boundary of the equilibrium region (equation [2.38))

2. A grid onto the [%1, 91| plane is created by means of the following parametric
curves, sketched in Figure [3.3]

h h

ziy1 = —hg/p hy=0,—,2—, .. h
np, np
3 £

lz1+ |l =ex exr=0,—,2—,....¢
Ne  TNg

where ny and n. are, respectively, the number of grid elements for the parame-
ters h; and gy,

3. The x; and y; components of the initial states, indicated as oy and ag, are
selected corresponding to the intersections of the parametric curves

4. The xs, y2, x3 and y3 components of the initial states, hereafter indicated
as f1, B2, 71 and 2, are selected randomly, within the constraint defined by

equation [2.38]

x 10
0.2 T T T T T T T 7]
0
0.2F
0.4 \ - -
06 \ -
0.8f ' 3
A <
“A2F g
i, —
1 L 1 L 1 1
0.2 0 0.2 04 0.6 038 1 1.2

1.4
x % 104
;

Figure 3.3. Sketch of the grid for the selection of the initial conditions onto the [4, i ]
plane
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Because the aim is that of verifying that capture trajectories are characterized by
either x; or y; approaching zero, then the values a; and as should be selected
limiting either one or the other to be adequately far from zero. In particular, capture
orbits are here investigated in the vicinity of a; = 0, thus the following constraint is
set ag < af*?®.

The trajectories considered for this analysis cross the equilibrium region once,
towards the Moon, or twice, first towards the Moon and then approaching Li. The
former are said long-term capture orbits, while the latter can be either (short-term)
capture orbits or transit trajectories and can be distinguished based on the time gap
(t.) between two consecutive crossings of the equilibrium region. The time at each
crossing, corresponding to the condition x1 + y1 = €, can be determined from the
output data of the integration, then the time gap can be easily computed.

Table 3.1. Earth-Moon simulation parameters

Parameter Symbol Value

mass parameter n 1.215362e-2
x coordinate of L; [DU] Ly, 0.83690020
energy level h le-8

radius of the bounding sphere ¢ 7.5e-4
Jacobi constant C 3.18836
grid elements for hyperbolas np 20

grid elements for straight lines n, 70
maximum value of a fa% -6.5e-3
simulation time [years] tr 15

As indicated in Table the numerical analysis on the Earth-Moon system was
performed for a total of 1000 initial conditions, corresponding to C slightly smaller
than the critical value for L;. For each of the trajectories calculated, the values of
t. are compared with a; and t*, as shown in Figure [3.4

The results in Figure confirm the behavior expected for the low-energy
trajectories, with captures orbits corresponding to a; — 0 and ¢, increasing as oy
approaches zero. Out of the total 1000 trajectories, 120 long-term capture orbits
were identified. For these, the number of revolutions about the Moon over the 15
years was calculated, resulting on average equal to 177. A projection of a capture
trajectory onto the [#, ] and the [#1, §1] planes are shown in Figure

All of the trajectories calculated almost lay onto the [Z,g] plane. If considering
the transformed Hamiltonian coordinates, and in particular equations and
[2.37] it follows that the out of plane local integral Z; is negligible with respect to
the in-plane local integral Z;, as shown in Figure It is worth noting that the
"flatness" of internal low-energy trajectories is a known issue (see section and it
limits their application to design real missions, which can require higher inclinations.
Similarly, examining Figure [3.5] it can be noticed that the order of magnitude for
the radius at pericenter is le — 2 DU. In fact, the minimum value calculated for
the radius at pericenter was r;”m = 5760 km which, considering the mean radius
of the Moon Ry = 1737 km, corresponds to the minimum altitude at pericenter
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™" = 4023 km. A number of missions could require closer approaches to the
celestial body, therefore a solution to control both the inclination and the radius at

pericenter for a capture orbit is proposed in Chapter [4

1 1

0.9

0.8 108

80.7
06" 06 ,
g %
£ 0.5 -
© =

04r 04

03

0.2} \ 0.2

*e sbeo @ @ 01

O Il 1 Il 1 Il 1 Il Il
0 05 1 15 2 25 3 35
ol %1076

Figure 3.4. Comparison of ¢, (colorbar) and ¢* with a; for the Earth-Moon system
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Figure 3.5. A capture orbit around the Moon projected onto the [, §] and the [Z1, §1]
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Figure 3.6. Comparison between the magnitude of the in-plane and out of plane oscillatory
components for a capture orbit around the Moon
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3.3 Effects of the Solar gravitational perturbation on
ballistic capture

The theoretical and numerical analyses performed in section [3.1] and [3.2] confirmed
the possibility to extend Conley’s theorem from the planar to the spatial CR3BP.
Because this PhD research project is dedicated to space science missions in the solar
system, it could be argued that the Sun gravitational influence, representing a fourth
body perturbation, can not be neglected. This is particularly true when investigating
trajectories over long time intervals, as did in the previous section [91} 146, [147].

The components of the acceleration associated due to the Sun perturbation are
reported below

iy = —G ms(;cs—xs) + ms(f;—ws) (1—p)+ ms(fg—xs)u

5 1,5 2.5
tps = —G ms(%—ys) + ms(r??s—ys) (1—p)+ ms(Tyg;ys)lu (3.7)
s = —G ms(:3—Zs) + mS(rzgl_ZS) (1—p)+ mS%Q_ZS)M

S 1,5 2,9

where the subscript S refers to the coordinates of the Sun

re =/ (@ —25)° + (y — ys)> + (2 — 25)°

and for the i-th primary

Tig = \/(1:@- —5)” + (yi —ys)* + (2 — 25)°

The acceleration components in system can be converted into the dimensionless
form, dividing by TU?/DU?3, and added to the corresponding terms in system
before to be converted to Hamiltonian variables and integrated numerically. During
the integration process, the position of the Sun is updated, assuming a relative motion
along a circular orbit, centered in O and with radius equal to 1AU = 1.496e + 8km.

The effects of the solar gravitational perturbation are hereafter examined for two
test cases

o Earth-Moon system, based on the same initial conditions referred in section
allowing a comparison between the results for the unperturbed and the
perturbed case

o Jupiter-Ganymede system, selecting the initial conditions as in section
and showing that for some scenarios the mentioned perturbation has marginal
effects.

For both the systems, each initial condition is propagated considering 8 different
initial positions of the Sun. This is defined by the angle 65 between & and the
straight line from O to the center of the Sun. The values for fg are selected in the
range (0;360)deg, with an angular displacement equal to 45deg, leading to a total of
8000 trajectories computed for each system.
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3.3.1 The perturbed Earth-Moon system

The initial conditions selected in section [3.2] and the parameters reported in Table
[3.1] are here propagated in a dynamical model which includes the acceleration due
to the sun Sun gravitational field, given by equation 3.7 The effects of the solar
gravitational perturbation on the long-term behavior of the low-energy trajectories is
dramatic. As shown in Figure 3.7 and [3.8] regardless the initial position of the Sun,
the behavior of capture time ¢, with 4 is no more predictable. It can be noticed
as well that, for 6g € (—45;45)deg ballistic capture is more favorable with respect
to the case 0g € (45;315)deg. In particular, for g = 135deg and g = 270deg none
initial state propagates into along-term ballistic capture. This sets a strict constraint
on the launch window, limiting it to those dates corresponding to adequate values
of Ag for the sake of ballistic capture.

The number of revolutions around the moon for long-term capture orbits is
affected as well, as reported in Table The changing number of revolutions with
fs leads supposing that also the shape, namely the osculating orbital elements, of
capture orbits are affected by the Sun gravity field. This aspect will be investigated
in chapter [4]

Table 3.2. Mean number of revolutions around the Moon for long-term capture orbits

Osldeg] No. orbits
0 304

45 182

90 110

135 none

180 96

225 164

270 none

315 195

Unperturbed 177

The numerical analysis on the Earth-Moon system including the solar gravita-
tional perturbation highlights the remarkable impact of such a perturbation on the
long-term behavior of low-energy trajectories. A strategy to compensate the effects
of the solar gravitational perturbation and producing low-thrust permanent capture
is discussed in section [3.4]
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3.3.2 The perturbed Jupiter-Ganymede system

The existence of long-term capture orbits in the Jupiter-Ganymede system, per-
turbed by the solar gravitational field is investigated. A total of 1000 initial states
is calculated following the procedure proposed in section and the parameters in
Table B3l

Table 3.3. Jupiter-Ganymede simulation parameters

Parameter Symbol Value

mass parameter I 7.80609493e-05
x coordinate of L; [DU] Ly, 0.97058430
energy level h le-8

radius of the bounding sphere & 8.5e-3

Jacobi constant C 3.007643

grid elements for hyperbolas ny 40

grid elements for straight lines n. 160

maximum value of axa ay' -7.5e-3
simulation time [years] ty 15

Each initial state is propagated for the 8 values of g considered for the previous
case. As shown in Figure [3.9] and the behavior of t. as a function «;, is
consistent with that predicted by the model proposed in section despite the
presence of the Sun. Long-term capture orbits exist for each value of 0g and the
mean number of revolutions around Ganymede is not significantly affected by the
initial position of the Sun, as reported in Table In conclusion, the effects of the
solar gravitational perturbation are negligible in this scenario. This can be explained
noting that the components of the acceleration introduced by the Sun perturbation,
reported in equation are negligible due to r/ r% ~ 0 and r;/ rg ~ 0.

Table 3.4. Mean number of revolutions around Ganymede for long-term capture orbits

Osldeg] No. orbits
0 165
45 159
90 161
135 160
180 164
225 164
270 162
315 161

Unperturbed 163
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The projections of a capture orbit onto the [#,{]) and the [Z1,¢;]) plane are
reported in Figure [3.11] showing that the order of magnitude for the radius at
pericenter is le — 3 DU, with DU = 6.283e + 8 km. The mean radius of Ganymede
is Ry = 2634 km, it follows that, as noticed for the Earth-Moon system, the altitude
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at pericenter is considerably high. The magnitude of Z; with respect to z1 and y;
is shown in Figure It can be noticed that the maxima of Z; are approximately
located at L; and Ls.
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3.4 A strategy for powered permanent capture

In this section, a method to produce powered permanent capture from an initial
transit trajectory is proposed. The method is based on the topological properties of
the flow in the equilibrium region, leading to the definition of a powered capture
condition in terms of the transformed Hamiltonian variables x1 and y;. When these
are converted to the position and velocity space, the total AV required by the
maneuver can be easily obtained. A preliminary feasibility study is finally performed,
aimed at verifying that the AV required by the strategy proposed is compatible
with current technology available on the market for CubeSats.

The base idea is that of taking advantage of the natural dynamics of the system to
reduce the energy required to produce powered permanent capture. As proved in the
previous sections, inside the equilibrium region, a transit trajectory is characterized
by z1 # 0 and y; # 0, and a long-term capture by either z; = 0 or y; = 0. Indicating
with ag(tg) and as(tp) the coordinates of a transit trajectory inside the equilibrium
region at time g, such a trajectory can be converted into a capture orbit at time
t > to if one of the following conditions is verified

= Aal(t — t(]) o (t) = (t()) + Aal(t — to) =0 (3.8)
or equivalently
3 Aag(t — t(]) : OQ(t) = Oéz(to) + Aag(t — t(]) =0 (3.9)
It follows that
AOél (t - to) = —Oél(to) (310)
and
Aag(t - t()) = —ag(to) (3.11)

In order to develop a guidance strategy, Aa; and Aas should be converted into a
value of AV, to be provided by some propulsion system. For the sake of simplicity,
lets consider the case represented by equation the same considerations will apply
for equation The transformation from the Hamiltonian variables to the position
and velocity coordinates is given by system and the a1 component is reported
below, for the sake of clearness

(1+29%) Zo + (1 —92) yo + aug — aovg
2[(1 —92) 02 + a?]

al(to) =

Assuming that the position and velocity coordinates are always known and exact,
(i.e. the satellite is equipped with an accurate inertial measurement unit), then oy
can be calculated at any instant of time and the following expression for A« (¢t — tp)
can be set, in which we assume impulsive increments for the velocity components du
and dv

(14+292) Zo + (1 —92) yo + a (up + du) — ao (vg + 6v)
2[(1=9?) 0%+ a?]

Aa1 (t — t()) = (3.12)

2Tt is worth recalling that the symbol ~indicates here that the origin of the reference frame is
translated to L;.
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Introducing equation [3.12]into [3.10| produces the following result
_ 2 2\ - 2
5u—051}——a {(1—1—27 )l‘o—l— (1—7 )y0+au0—a0vo} (3.13)

The solution of equation [3.13] can be selected for any combination of Ju and dv.
These are expressed as a fraction of the total Aay required
du= Ky [(1+27?) %o + (1 —v%) yo + aug — acvg) (3.14)
dv = K, [(1+29%) &0 + (1 —42) yo + aug — aov] '

where the gains K, and K, can be conveniently selected depending on the perfor-
mance of the thruster and are hereafter set equal to K, = —é and K, = a—la For a
real system, thrust will not be provided instantaneously, but over a time interval Jt.
It is possible to take advantage of equation [3.14] to evaluate the thrust acceleration

to be provided for setting the capture condition [3.9

_ ou

== (3.15)

Qg
It is worth noting that, because of some inherent limits of the system, the thruster
might not be capable to provide the whole acceleration required in just one burn.
Multiple burns ought to be provided to complete the maneuver which, nevertheless,
must be accomplished within time ¢, when the trajectory departs from the equilibrium
region. In fact, once left the equilibrium region, the linear model on which this
method is based will not be adequate to describe the dynamics of the system.
Including the acceleration term given by equation [3.15|into the dynamic equations
of motion, the total velocity variation required by the thruster can be calculated

during the integration, according to the following expression
Au = t 6—udt (3.16)

t, Ot

The strategy is verified by applying it to the initial conditions selected for both
the perturbed Earth-Moon and the perturbed Jupiter-Ganymede systems, discussed
in section [3.3.1] and [3.3.2] The results are shown in Figures It can be
noticed that powered permanent capture can be obtained for all the initial conditions
and all the scenarios investigated, with the only exception of the Earth-Moon system
for g = 135 deg. Under this condition, the solar gravitational perturbation is so
strong that it rapidly leads the spacecraft to drift away from the equilibrium region,
not allowing the capture strategy to produce its effect. Nevertheless, also in this case
the strategy produces a remarked mitigation of the sun gravitational perturbations
and long-term captures can be obtained for «; = 0. The maximum Awu and Aw
calculated for each 0g for the two systems are reported in Tables and

Numerical analyses indicate that, except for extremely adverse scenarios, the
strategy proposed leads to the desired capture condition. The suitability of the
proposed solution for CubeSat missions is now evaluated, calculating the thrust
acceleration required and investigating if thrusters compliant with this performance
are nowadays available on the market, or under development.
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Table 3.5. Maximum AV with respect to fg and for the Sun-perturbed Earth-Moon system

Os [deg] Au [m/sec] Awv [m/sec]
0 3.836e-1 5.160e-2
45 1.158 1.557e-1
90 1.431 1.925e-1
135 - -

180 2.269e-1 3.052-2
225 1.652e-3 2.222e-4
270 1.095 2.931e-1
315 1.084e-1 1.458e-2

Unperturbed 9.458e-2 1.272e-2

Table 3.6. Maximum AV with respect to 6g and for the Sun-perturbed Jupiter-Ganymede
system

Og [deg] Au [m/sec] Av [m/sec]
0 3.512e-2 4.588e-2
45 3.596e-2 4.697e-3
90 3.619e-2 4.729e-3
135 3.533e-2 4.616e-3
180 3.511e-2 4.587e-3
225 9.326e-2 1.218e-2
270 8.708e-2 1.138e-2
315 3.534e-2 4.616e-3

Unperturbed 3.582e-2 4.479e-3

The minimum thrust acceleration needed to perform all the maneuvers is de-
termined as the ratio between maximum velocity variation required AV™* = 1.45
m/sec (corresponding to g = 90 deg in Table and the maximum time to
cross the equilibrium region. According to the results of numerical analyses (see
Figure the equilibrium region is crossed in a time approximately equal to 1
day, therefore, the minimum thrust acceleration required is equal to

- Avmaw

Lday ~1.68¢—5 m/sec?

al

Such an acceleration is easily produced by the ion-thrusters already developed
for CubeSats aimed at solar system exploration [4, 21}, 32]. These are typically
6U platforms [126] with mass approximately equal to 15 kg. Referring to such
a spacecraft, the minimum thrust required to successfully conclude the capture
strategy is equal to 252 uN.
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Chapter 4

Dynamics of capture orbits
from equilibrium region analysis

In chapter [3| the existence of internal ballistic captures for the spatial CR3BP and
the topological location of initial conditions corresponding to capture orbits was
determined. Such a topological description defaults when the acceleration arising
from the solar gravitational perturbation is included in the integration process.
This occurs for the Earth-Moon system, on which the effects of the perturbation
can be that strong (fs = 135 deg and s = 270 deg) to suppress ballistic capture.
To overcome this issue, a strategy producing low-thrust permanent capture was
developed and verified by numerical analysis, which confirmed its effectiveness and
suitability to be implemented on CubeSats.

Capture orbits calculated in chapter [3] both ballistic and powered, are character-
ized by low inclination and high radius at pericenter. It produces strict limitations
when implementing a real mission, whose requirements typically include specific
values for the inclination [I8|[34], and the peri- and apocenter radius [18, 27, 3T}, 103].
In the following sections, a method to correlate the osculating orbital elements of a
capture orbit and its topological description inside the equilibrium region is provided.
The results are verified by means of numerical analysis onto the Earth-Moon system,
including an evaluation on the effects of solar gravitational perturbation.

4.1 Influence of the energy level on the orbital elements
at capture

In this section, correlations between the osculating orbital elements at capture and
the energy fractions h; and heo, corresponding to the magnitude of the in-plane and
out of plane periodic oscillators for long-term capture orbits inside the equilibrium
region, are deduced.

The motivation in investigating such correlations arises from a result of the
numerical analyses in section showing that both transit and capture trajectories
departing from the equilibrium region are characterized by low values of z, and
in particular z = 0 along the whole trajectory if the initial conditions verify the
equality (x% + yg) = 0. An interpretation of this result can be provided referring to
equation describing the flow in the equilibrium region as the sum of three local
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integrals of motion, each one corresponding to a fraction of the total energy level h
of the system

MWy+%Q£+£)+%(@+y@:h

In particular, for a long-term capture orbit 1 = 0 or y; = 0, then the first local
integral is null. The energy fraction of the other integrals can then be indicated as
follows

A1
Zy A2 <$2 + yQ) = ho (4.2)
5 \*3 3

with hy + hs = h. According to equation and the above mentioned numerical
result, for a long-term capture orbit the condition z = 0 corresponds to ho = 0.
Because for hy # 0 also (23 + y3) # 0 then z # 0, it can be guessed that the higher
the value of the energy fraction ho the higher the maximum magnitude of z and
in particular: for a capture orbit, the higher the energy fraction hy the higher the
inclination of the orbit.

The guessed correlation betweeen hy and the inclination at capture can be
formulated as follows. First the space and velocity coordinates can be expressed as
a function of xs, x3,yo, y3 from the inverse of transformation [2.31

z = ki (v2 + jy2)
= ka (22 + jyo)

z = k3 (w3 + jys) (4.3)

u = ky (72 — jy2)

v = ks (v2 — jy2)

w = kg (3 — jys3)

where the coefficients k; can be determined from transformation [2.31] [L65]. The
magnitude of the angular momentum can be calculated from the components in
system producing the following result

Q| = (xv — yu)* + (yw — 20)? + (zu — wz)* = [(x% + yg) (k1ks — k2k4)}2 +

‘1‘(1% + ?J?%) {[k1ke (2 + jy2) + kska (22 — jyo))* —[koks (z2 + jya) + kske (x2 — jy2)]*}

(4.4)
Introducing equations [£.1] and [£.2] into equation [£.4] leads to
4h2 2h
QI = =5 ks — koke) + TERTRE (a3 — 03 + 2game) +

+k3k; (953 +y5— 2j$2y2) k3k3 (iﬂz Y3 + 219023/2) — k2kg (953 +ys— 2j$2y2> +

4h
A11k3k6(qu4 koks)] (4.5)
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As can be inferred from transformation kk% = kok? and k2k? = ksk2 then
equation [4.5| reduces to

4h} 8hih
QP = 5 (kiks — haka)® + )\11/\22 kako (kika — koks) (4.6)
1

Similarly the component of Q along z is given by

2h
Qz = (.7}1} — yu) = (I‘% + y%) <k1k5 — k2k4) = Tll (k1]€5 — k2k4> (4.7)

The osculating inclination can finally be determined as follows

Q: 2 (kyks — koka)

Ccost = = =

2
Q| \/4;%1 (kiks — k2k4)2 n 8}@)@ kske (ki1ka — koks)

1

8hqho
A1A2

4h?
Tgl(klk5*k2k4)2+
1

k3ke(k1ka—koks)

4h2

T;(k1k5—k2k4)2
1

1

1
hoAikake(ki1ka—koks) B 1+ kK ho
\/1 2 (hks—haks )2 \/ i

(4.8)

Then the following equation can be guessed, correlating the inclination with the

energy fractions E|
1
1

Equation [£.9] will be verified by numerical analyses performed in sections and
4.2.2)

According to equation [£.9] the higher hs the higher i, nevertheless the energy
level can not grow indefinitely, so neither can ha. The upper and the lower bound
for h are both related to properties of the equilibrium region. A lower bound on
h can be defined in terms of the Jacobi constant, recalling that H = —2C'. In the
equilibrium region, where terms of order higher than 2 can be neglected, Hy = h
represents an accurate approximation of the full Hamiltonian function and therefore
h ~ —2C'. We should recall now that the topological description presented in section
at the basis of all the development discussed here, is verified only if transit
trajectories exist, thus if the Jacobi constant is smaller than the critical value C; (see
section . Equivalently, the topology of the equilibrium region is not described
by equation if h exceeds an upper bound at which energy transfers can occur
between the in-plane and the out of plane components [82].

Beside the inclination, two other parameters should be defined to characterize
capture orbits, the osculating semimejor axis (a) and eccentricity (e). A correlation

(4.9)

1~ CoS

1t is worth noting that the equation was developed based on the dimensionless component instead
of dimensional ones. Nevertheless, the proportionality is preserved through the transformation,
because it is homothetic.
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between the energy fraction h; and a is guessed, based on the fact that as hq increases
the allowed region of motion inside the ZVS broadens EL The correlation can be
extended to the radius at peri- and apocenter using the Tisserand’s relation

1
5. tya (1 — e?) cosi = constant (4.10)

a
Considering a fixed value of the inclination, equation implies that e decreases
as a increases. Therefore, increasing h; can lead to capture orbits with significantly
different pairs of r, and 7,. This conjecture will be verified by the numerical analyses

in section [£.2.7] and [£.2.2

4.2 Numerical investigation of the osculating orbital el-
ements at capture

The correlations between the osculating orbital elements at capture and the energy
fractions, conjectured in the previous section, are verified here by means of numerical
analysis on the Earth-Moon system, considering ballistic captures about the Moon.
This is achieved by propagating the full nonlinear equations of motion for the CR3BP
[2:22] on a set of initial conditions, in the neighborhood of the libration point L,
systematically selected through the following method

1. long-term capture orbits heading towards the primary mo are selected, corre-
sponding to the initial condition ay = 0E|

2. the boundaries of the equilibrium region are set, defining the values of h and e

3. ne elements on the x; axis are selected according to the following grid

oW="¢c n=01,..ne (4.11)

e

4. the following parametric representations for the energy fractions are defined

MW= "h n=0,1,..,0 (4.12)
np
WY =h—h n=01,..n, (4.13)

5. introducing equations and into equations and produces a

parametric representation for the integrals Z' and Z3',defining

(m)
(#3+13)" n=01,.m (4.14)

(n)
(x§+y§) n=0,1,..,n, (4.15)

Tt is worth recalling that a similar behavior is observed for Keplerian orbits, where a is
proportional to the Keplerian energy.
3Equivalent results can be achieved selecting long-term captures towards ms.
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6. The phase angles for the complex variables zo and x5 can be defined as follows

X1 = 2tan! <1%§(2;2)) (4.16)
X2 = 2tan™! <1f§:(3w)3)> (4.17)

7. a number m, of equivalently spaced phase angles are selected in the range
[0; 27], according to the following grid

Xgm) - mﬁ2ﬂ- m= 07 17 ey My (418)
X

= mﬂgw m=0,1,..,m, (4.19)
X

8. Given Z]" and Z¥ and equations and the remaining initial conditions

are defined
{ mn) \/Z”cosxl —l—j\/Z{lsinXgm) (4.20)

= /47 smx1 —i—j\/Z{Lcongm)

m") \/ZnCOSXQ +j\/Z{lsinXgm) (4.21)
mn) ,/Z”sme +j\/Z{Lcosx§m)

A total of 1000 initial conditions are calculated through the procedure indicated
for three test cases, corresponding to different energy levels

e h =1le—8, selected as in section such that the corresponding C' is slightly
lower than the critical value C

e h =8.5e — 3, calculated to have a maximum z of the same order of magnitude
as the radius of the sphere of influence of the Moon rsor [9], according to

2
rsor =a (mQ) i (4.22)
m

1

e h = 1le — 4, selected between the above mentioned ones.
The values of € for each h were selected through an iterative process
1. a guessed value for ¢ is selected

2. the initial conditions corresponding to the guess are determined and used to
integrate system [2.22] over a few time steps

3. the Jacobi constant is calculated for the final state of each trajectory

4. the maximum (C™4%), minimum (C™") and mean (C™¢") value of the Jacobi
constant are evaluated
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5. if maz{|C™aT — Cgmean| |C™in — C™ean|l is smaller than the last significant
digit of C™¢®™ (i.e. le — 8), then the value of ¢ is accepted, otherwise it is
recalculated.

The integration process is performed using Matlab ode113 [5], with relative and
absolute tolerances set to le-18 and 1e-19. A further stop condition is considered,
along with those indicated in section occurring when the spacecraft altitude
decreases below 50 km. The initial conditions are propagated over a time ty = 3
years, with fixed time step t; = 3/100000 ~ 946sec and considering the parameters
in Table [A.1] In sections [I.2.2[4.3] the acceleration due to the sun Sun gravitational
field, expressed by equations is considered.

The results from the numerical analysis are then post-processed to investigate
the osculating orbital elements at capture. As the trajectory departs from the
equilibrium region and is captured by mo, the Tisserand’s relation stabilizes
to a constant value T,. This process is monitored and the time ¢, when the error
between the calculated Tisserand’s relation and T enters the band £5% is considered
as the initial capture. The minimum value of the osculating radius at pericenter
(rp) is evaluated as the minimum distance between m and mg, from time ¢, to a
desired one £ y

7p = min{ro(t)} teo <t <ty (4.23)

Indicating with ¢, the time at 7,, then the related radius at apocenter is calculated
as follows
rq (tp) =7 = max{ry (t)} tp,—T <t <t,+T (4.24)

where T is the approximated orbital period for the osculating capture orbit, calculated
as the time gap between the maximum 7o before and after r,. Similarly, the
inclination and the eccentricity are calculated at t,, according to equation and
the following expression o
Tq—T
e=——7r (4.25)
Tq +Tp
The mean, maximum and minimum value of for 7, 74 (t), i (tp) and e (t,) are
calculated for all the energy levels and their behavior with respect to A1 and hs is
investigated, to evaluate the suitability of conjectures in section [4.1

Table 4.1. Earth-Moon simulation parameters at different energy levels

energy level h le — 8 le —4 8.5e — 3
Jacobi constant C 3.18836 3.18796 3.15222
radius of the bounding sphere ¢ 1.10158e-2 1.10158e-2  2.873000e-2

mass parameter 7 1.215362¢-2

x coordinate of L; [DU] L;, 0.83690020

grid elements for hyperbolas np 10

grid elements for straight lines n, 5

grid elements for phase my 10

simulation time [years] tr 3

mission time [days] ter 30
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4.2.1 The unperturbed Earth-Moon system

The numerical integration of the initial conditions for the unperturbed Earth-Moon
system produces capture orbits, regardless the energy level considered. Monitoring
the Tisserand’s parameter indicates that the time required to cross the equilibrium
region and enter the ballistic capture condition is equal to t.o = 1 day. The frequency
of impact trajectories increases with h as shown in Table This behavior is a
direct consequence of the fact that lower radius at pericenter, thus higher probability
of impact, can be obtained at higher h, as detailed later in this section.

Table 4.2. Number of lunar impact trajectories with time

t 15 days 30 days 60 days 1 year 3 years
h=1le—38 0 0 1 256 256
h=1le—4 0 69 99 246 246
h=8be—3 345 350 360 370 370

The mean, maximum and minimum value for 7, 74 (t,), i (t,) and e (t,), were
calculated and reported in Figures It can be noticed that, even though the
mean value of 7, increases with h; up to one order of magnitude (Figure , SO
does the gap between the maximum and the minimum value (Figure . A similar
behavior, though less marked, is registered for r, (t,) (Figures [4.3{f4.4). This result,
together with that of 7, represents a numerical validation of what conjectured in
section stating that an increase of a with hy corresponds to a decrease of e. For
the sake of completeness, the behavior of e (t,) with h; and h; is shown in Figures

[4.5] and 4.6
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Figure 4.1. Mean values of 7, as a function of hq/h for the three energy levels
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Figure 4.6. Maximum and minimum values of e (t,) as a function of h;/h for the three
energy levels

Results from the numerical analysis reported in Figure and show that
the inclination increases considerably with ho, up to a maximum inclination of 87
deg. More in detail, for h = le — 8 and h = 1le — 4 higher inclinations corresponds
to higher hy/hi, while this condition is not verified for h = 8.5e — 3, where the
maximum value corresponds to hy/h = 0.33. To explain this fact, it is possible
to notice that capture orbits corresponding to high energies are remarkably not
planar and thus far from the Keplierian model from which equation was obtained.
Nevertheless Figure [£.9] shows that z increases monotonically with hy confirming
also the other conjecture in section [£.1]
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Figure 4.7. Mean values of i (¢,) as a function of hy/h for the three energy levels
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Further correlations can be inferred from the results of the numerical results,
which allow correlating the values of the osculating orbital elements to x1 and xa2,
indicating the initial conditions corresponding to their extremal values. In particular,
it was noticed that the maximum for 7, and the minimum r, (¢,) correspond to the
same condition y; = 0 deg. Another relevant result for the aim of mission design,
is related to the inclination, whose maximum and minimum value occur at xy; = 0
deg and y; = 90 deg. Converting transformed Hamiltonian coordinates into out of
plane position and velocity, the two conditions correspond, respectively, to z™** and
wmaa:'

In conclusion to this section we can summarize the main results obtained

e 1 and [ are the initial conditions related to the osculating orbital elements
a and e, with 7)*** and r)"" corresponding to, respectively, x1 = 45 deg and

P P
x1 = 0 deg
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e corresponding to high energy levels, $; and p2 have a secondary effect on i,
reducing it

e 71 and 72 are the initial conditions related to the osculating orbital element
1, with ¢™* and ™" corresponding to, respectively, x2 = 0 deg and x1 = 90

deg.

These results will be used to develop the guidance strategies aimed at changing the
orbital elements at capture, discussed in section

4.2.2 The Sun-perturbed Earth-Moon system

The unperturbed model provided some crucial information on the validity of the
conjectures proposed in section Nevertheless, for an accurate evaluation of the
results on the Earth-Moon system, the effects of solar gravitational perturbation
should be considered, and these are examined propagating the same initial conditions
in section To be consistent with the results obtained on the capture time in
section the numerical analyses are performed based on the values of the initial
angular displacements 6g. In Table the number of impact trajectories for each
fs and h are reported and it can be noticed that, if compared to the unperturbed
results in Table the number increases only for the highest energy level. This
result can be interpreted after examining Figures 4.1044.13

Table 4.3. Number of lunar impact trajectories with time

h=1le—8

Os[deg] 0 45 90 135 180 225 270 315
15 days 0 35 124 87 104 106 124 109
30 days 0 94 124 87 104 106 124 116
60 days 0 123 124 112 104 106 124 124
1 year 124 124 124 124 124 124 124 124
h=1le—14

Os[deg] 0 45 90 135 180 225 270 315
15 days 0 117 71 107 130 121 &5 116
30 days 0 117 90 124 130 121 &5 122
60 days 0 123 94 127 131 126 108 122
1 year 135 135 135 135 135 135 135
h=85b5e—3

Osldeg] 0 45 90 135 180 225 270 315
15 days 365 369 355 378 381 375 359 372
30 days 379 390 382 390 387 387 387 390
60 days 386 390 390 390 389 389 390 390

1 year 390 390 390 390 390 390 390
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The results of the perturbation on the variation of the mean values of r}, and i(¢,)
are shown in Figures {.T0H4.13] It can be noticed that the Sun gravitational pull
produces a similar effect on both 7, and i(t,) for h = le — 8, the former is increased
up to a factor two and the latter up to one order of magnitude. The behavior is
rather more complex for h = 8.5e — 3, the effect is almost independent from f¢ and,
in particular, increases i for ho/h < 0.6 and decreases it for ha/h > 0.6.

The complexity in predicting the effects of the solar gravitational perturbation
indicates the need for a more accurate model, capable of including the presence of the
Sun in a preliminary phase though providing an equivalently simple representation of
the ultimate behavior of orbits, based on their topological location in the equilibrium
region. Such a model is presented in chapter [5
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4.3 A guidance strategy to change the orbital elements
at capture

In the previous sections, correlations between the osculating orbital elements at
capture and the initial conditions of orbits in the equilibrium region were conjectured
and verified by means of numerical analyses. Operating as in section the value
of the initial conditions 1, B2, 71 and <9 can be modified by thrust acceleration
producing adequate changes in the velocity of the spacecraft. A method to adjust the
mentioned parameters, is proposed here, aimed at modifying the osculating orbital
elements of a capture orbit, with focus on the orbital inclination and the radius
at pericenter. The model is verified including also the effects of solar gravitational
perturbation.

As indicated by equation the inclination at capture depends on the energy
level and in particular on the fraction ho, which can be modified by thrusting along
Z producing a change in the velocity Aw. The value of Aw can be calculated based
on equations [2.17] for the out of plane oscillatory motion, rearranged as follows

w(t) =7/ ("} +13) cos (vt + ¢) (4.26)

Including equation [4:2] into the previous one leads to

w(t) = v4/ 2)\};2 cos (vt + ¢) (4.27)

Recalling that the inclination can be related to ho by equation then the Aho
necessary to produce the desired change of inclination A7 can be expressed as follows

Ahg = f(i)hy cos Ai (4.28)

where the function f(i) can be obtained numerically, from the linear regression of
numerical data in sections and reported below

f(i) = (5.48921 - i — 8.44624) - 10~ (4.29)

Based on this, the impulsive change of velocity necessary to produce the desired A¢
can be determined from equation

2f(i)hy cos Ai

" (4.30)

ow =7y

Finally the corresponding mean thrust acceleration can be calculated from the finite
increment a, = Aw/At

2f(i)h A
o = o [TOME ) = ke fFiyeos (w3

where the constant K, includes the gain of the thruster.
Similarly the value of 7, can be minimized (or maximized) recalling that, accord-
ing to the results in section the corresponding initial condition is characterized
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by x1 = 45 deg (x1 = 0 deg). Given a trajectory crossing the equilibrium region, it is
possible to provide a Av (or Au) producing a variation of 5 verifying x1 = 45 (see
equation . If the use of continuous thrusters is considered again, the acceleration
to be provided to obtain the required Awv, can be calculated applying the mentioned
conditions to equation [2.1§]

b (042 (8-1-Lu) . (B-1)y
== |- . - — 4.32
At( AT + A1 +7’ v (4.32)

ay

The suitability of equations and is verified by applying them E| to
increase the inclination and reducing the radius at pericenter of a capture orbit
characterized by h = le — 3 corresponding to C' = 1.18273) and hy = 0. The
trajectory, sketched in Figure for the 8g = 0, enters the equilibrium region from
m1 and crosses it heading to mo, with cy = 0. Except for the mentioned ones, all the
initial conditions were selected randomly, according to the methods and constraints
discussed in section [1.2] The inclination and radius at pericenter of the capture orbit
for different fg are reported in table [4.4]

x10*

3 |—trajectory
initial position
xL,

Moon

7 [km]
o

&L, [km] x10%

Figure 4.14. Projection onto the [é, ﬁ} plane of the initial capture trajectory for h = le —3
and g = 0 deg.

4As in section the accelerations are converted to the Hamiltonian components and integrated

with system [2:22]
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Table 4.4. Values of i(¢,) and r, for the ballistic capture orbit

Os [deg] i [deg] rp [km]
0 0.21 7565
45 0.18 10013
90 0.19 8143
135 0.25 6107
180 0.34 7077
225 0.30 9653
270 0.28 9166
315 0.30 6495

The resulting changes on 4 and r, for three different test cases, characterized by
the energy provded, are reported in Tables and The results indicate that
the Aw required by the out of plane maneuver for a marked Ai can be considerably
larger than the corresponding Av required to minimize 7.

Table 4.5. Ai and corresponding Aw with 0g

Ahy — 3.11e-5 1.32e-4 3.9e-4
1 05 [deg] Ad[deg] | Aw [Z]  Ai[deg] | Aw [Z] Ad [deg] | Aw [2Z]
0 6.31 | 18.45 25.42 | 78.79 71.61 | 236.46
45 5.96 | 20.00 25.42 | 78.79 71.65 | 260.31
90 6.40 | 20.89 25.12 | 89.41 67.90 | 265.69
135 7.08 | 19.32 27.41 | 89.55 72.60 | 249.17
180 6.81 ’ 18.32 26.51 ’ 78.22 70.90 ’ 234.52
225 6.13 | 19.33 24.22 | 82.64 75.36 | 249.90
270 6.09 | 20.91 24.34 | 89.52 72.80 | 266.04
315 6.54 | 19.96 26.52 | 85.33 75.61 | 259.13
Table 4.6. r, and corresponding Av with 05
K, — le-3 2-3 2.5¢-3
L 0s [deg] 1y [km] | Av [JZ] 7y [km] [ Av [Z] 7y [km] | Av [ 2]
0 4763 | 31.19 3295 | 55.24 2804 | 62.01
45 5083 | 33.83 3252 | 57.17 2696 | 66.36
90 3897 | 34.66 2342 | 58.34 1872 | 67.62
135 6441 | 31.92 2226 | 57.28 1833 | 63.14
180 4342 | 30.75 3011 | 52.56 2561 | 61.25
225 5207 | 32.85 3448 | 55.72 2891 | 64.77
270 4347 | 34.90 2635 | 57.70 2131 | 68.02
315 3431 | 32.96 2142 | 55.83 1790 | 64.85
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It is worth noting that the values of AV in Tables and are remarkably
higher than those reported in Table [3.5]to produce permanent capture. In particular,
the maximum value Aw™* = 266.04 m/sec is associated to a Ai = 72.8 deg for
0s = 270 deg. Considering that t.o = 1 day is the time required to cross the
equilibrium region, then the mean acceleration required is equal to

Awmax
mar __ ~ _ 2
al" = Tday 3.08¢ —3 m/sec

As discussed in section [3.4], the corresponding value of the thrust required for the
maneuver can be calculated considering a typical 6U CubeSat aimed at solar system
exploration, with mass mgg = 15 kg.

F"* =meggal ™" ~4.62e —2 N

Similarly, the maximum acceleration and thrust required to minimize r,, for the
(Av™** = 68.02 m/sec and fg = 270 deg, corresponding to an altitude of about 340
km from the lunar surface, are calculated and reported below

A max
a," " = 12@3/ ~ 7.87e —4 m/sec

F"% =megal ™ ~1.18¢ -2 N

The maximum values for the thrust, required by the guidance strategies proposed
(capture, minimization of r, and change of inclination) are reported in Table

Table 4.7. Maximum thrust [N] required by a 15 kg CubeSat for the guidance strategies

capture minimum 7, Ai

F,=248¢—-4| F,=335e—-5 F,=118¢e—2 F,=4.62e—2

The maximum thrust and corresponding AV provided by some commercial
thrusters [4], 21} 22} 32] are reported in Table . All the devices are compatible
with the requirements of the capture strategy, but only one of is suitable to perform
the other strategies in the worst case examined, and it is the BGT-X1 green
monopropellant thruster [22]. A point should be stressed here, the worst case
referred to in this analysis is definitely extreme, in fact corrections such as Ai = 72.8
deg and Ar, = 7035 km are not typically required by ordinary mission corrections.
In this perspective, the use of ion thrusters, and in particular RIT 10 EVO [4], is
suitable for ordinary mission profiles, in which Ai of few degrees and Ar, of a few
kilometers are required.
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Table 4.8. Properties of some commercial thrusters compatible with a 6U and 15 kg
CubeSat

RIT 10 EVO [4] BIT-1 2I] BIT-3[2I] BGT-X1 [22] IFM Nano [32]

Max thrust [N] 5e-3 1.85e-4 1.15e-3 0.1 5e-4
Power [W] 50 8 75 4.5 40
Total mass [kg] 1.8 0.75 1.5 1.5 0.87
Volume [U] 2 1 2 1 1
Max AV [m/sec] 28.8 1.07 6.62 576 2.88

For the sake of completeness, the Av and Aw required for the worst cases in
Tables and are compared with those required to perform the same maneuver
using a "traditional" single impulse approach. The minimum impulse Aw]%g required
for a change of inclination Ai = 72.80 deg can be calculated as follows

- 2G
Aw[pin — \/ R?Tj (1 - cosAi) ~ 324 m/sec (4.33)
The minimum impulse Av|%g required to reduce the radius at pericenter from
rp0 = 9166 km to r}, ; = 2131 km is given by the following equation

. 2 1 2 1
Avly = |Gm2 || — = —— | = | — ———— || = 198 m/sec
Tpf  Tpf T Taf Tp0  Tp0 Tt Ta0

(4.34)
Both the impulsive changes of velocity are sensibly higher than those obtained from
continuous thrust, with difference in Aw and Awv equal to, respectively, 58 m/sec
and 130 m/sec. The result confirms the validity of the guidance strategies as suitable
alternative solutions. The orbit produced by applying both Aw™%* and Av™** is
represented in Figure showing notable differences with with respect to initial
one, in Figure [£.14]

—trajectory
initial position

x10* * L1

Moon

0
x10* ° 8 10 k
x-L, [km] y tkm]

Figure 4.15. A sketch of the resulting capture orbit with i = 72 deg and h, = 340 km
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In this chapter, as in Section [3.4] guidance strategies were proposed to drive
the satellite into the desired capture orbit. To perform such maneuvers, knowledge
regarding the state of the spacecraft, namely its position and velocity, is necessary.
This task is achieved by means of a navigation system which operates in synergy
with the guidance actuators. An analysis of navigation strategies is beyond the scope
of this work, which assumes the state to be known, nevertheless some indications are
worth to be outlined. Studies in the field indicate that navigation accuracy below
100 meters in position and 0.1 cm/sec in velocity might be required, and this could
be achieved by using radio telescopes on-ground and X-band antenna on-board [158].
To guarantee communication between the satellite and the ground station, regardless
of its attitude, omnidirectional coverage is needed, thus a minimum of two patched
antennas. Due to power limitations, the satellite might not be able to communicate
during some phases, such as maneuvering. Therefore an inertial measurement unit
capable to update the state of the spacecraft based on the last data received and the
measurements from the on-board devices (three-axis accelerometers and gyroscopes)
would be required.
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Chapter 5

Design of low-energy

trajectories in the Elliptic
Restricted 4-Body Problem

Internal low-energy trajectories have been investigated extensively in the previous
chapters, developing a method for the systematic selection of the initial conditions
corresponding to transit trajectories and capture orbits. These methods led the
design of guidance strategies aimed at producing powered permanent capture and
modifying the orbital elements at capture, in particular allowing adjustment on the
inclination and radius at peri- or apocenter.

As emerged in sections and the effects of the solar gravitational
perturbation can be as relevant to alter the behavior of the flow in the equilibrium
region and, consequently, the ultimate behavior of orbits. This result is substantiated
by several mission-oriented works, indicating that real missions may require more
accurate models, not only because of the gravitational perturbations but also because
the orbits of the primaries are not circular [11, [64} (65 68, O1]. In fact, final trajectories
are typically calculated after a long iterative process, which consists in the numerical
integration of the nonlinear equations of motion using refined models and the results
from the CR3BP as initial guess.

A significant improvement in mission design should be driven by the development
of tools which include the effects of the mentioned perturbations though providing a
compact description similar to that obtained for the CR3BP. This result is achieved
here in the dynamical framework of the spatial Elliptic Restricted 4-Body Problem
(ER4BP). In particular, the model is developed based on a theorem by Conley and
Easton [30], stating that the basic topological properties of the phase space flow
of the CR3BP are persistent in the presence of perturbations. It follows that a
representation of the ER4BP dynamics equivalent to the phase space description of
the CR3BP can be developed when the effects of the eccentricity and the gravitational
pull of the fourth body are not prominent.

A topological characterization of internal low-energy trajectories in the ER4BP,
equivalent to that discussed for the CR3BP, is achieved using the Hamiltonian
formalism and applying canonical transformations to reduce the Hamiltonian function
for the ER4BP to a form equivalent to that of the CR3BP. In this way, the accuracy
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of the ER4BP is preserved, while its complexity is addressed to the coordinate
transformation only. In this new model, the guidance strategies discussed in chapters
and can be still applied, and powered permanent capture and adjustment of
the orbital elements at capture can be performed [24] 25 26]. The model is verified
by means of numerical analyses on the Sun-Earth-Moon system, proving that a
systematic selection of initial conditions can still lead to the design of capture orbits,
and on the Jupiter-Europa-Io system, in which the initial conditions can be selected
to take advantage of the effects of orbital resonance on quasi-periodic orbits.

5.1 A dynamical model for the Sun-Earth-Moon system

Low-energy trajectories are here investigated in the dynamical framework of the
ER4BP, consisting of three primaries of masses mj > mo > mg and the spacecraft,
whose mass m is negligible if compared to the others. The 4-body system is studied
under the hypotheses that the spheres of influence of the primares are "nested" and
in particular

e mgy and mg form a binary system, with center of mass Oy, under the gravitational
pull of the primary my

e mg orbits mo along a Keplerian orbit with semimajor axis a; and eccentricity
€b

e the relative motion of Oy and m; with respect to the center of mass O of
the whole system represents a Keplerian orbit with semimajor axis a and
eccentricity e

e the orbital plane of the binary system and that of m; and O, are tilted of an
angle e.

Such a model is suitable to describe the Sun-Earth-Moon system.
A sketch of the system is shown in Figure [5.1], where the distances m; — O, Oy — O,
ms — Op and mg — Oy are indicated as A1, As, a1 and as and can be calculated based
on the definition of center of mass and noting that A; + As = a and a1 + as = ay,
producing the following result
_ (matms)R(t)
{Al(t) = ! (5.1)
A(t) = =57~

_ ey (5.2)

{al(t) = 77243%,5?
ax(t) = 75mia

—e2 _ .2
with M = 23, m;, R = %’ Ry = ap(1-e3)

) where 6 and 6, indicate the
true anomaly of m, and that of ms.

(1+eyp cos b
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Figure 5.1. Sketch of the 4-body system

The dynamic equations of motion for m can be written in an inertial reference
frame {E, H, Z}, centered in O with = pointing from my to Op at the initial time g,

Z parallel to the angular momentum vector of the (mq, Op) system and H completing
the rectangular reference frame

= m i1 (0 ma[=2—X1i2(6,0 m i3(0,0
2=_0{ 1= Xl()]+ 2[=E )1;2( b)] y ma[E-Xis( b)]}

R
> m[H H(e)] mo[H—Ha(0,05)] | malH—Hs(0,0,)]
H G{ 1 R 1 + 2 R%Q b _|__ 3 R3 b } (5'3)
Z=-G{™ ZR1Z1( )| malZ RZ; 0.00)] 4 malZ I%"»(@ﬁb)}}

where (5;, H;, Z;) indicate the coordinates of the i-th primary, and R; indicates
the distance between m and the i-th primary. System can be rearranged in a
reference frame [5 1, CA], centered in Oy with f pointing from ms to ms, f parallel to
the angular momentum vector of the binary system and 7 orthogonal to the others.
It is worth noting that such a reference frame rotates rigidly with the primaries in
the binary system at the angular velocity 01, The system is studied con51der1ng an
1n1t1al position of the primaries such that § and 7 are parallel to, respectively = and
The rotating frame can be transformed into the inertial one by the following
sequence of transformations

1. a rotation Rg (€) about 7, rotating é parallel to Z and producing the frame
&7, 2]

2. a rotation Rz (6 — 6,) about Z, rotating £ parallel to R(t) and producing the
frame {é”,ﬁ”,Z}

A

3. a translation along £” from Oy to O and producing the frame P( Y, Z}

4. a rotation R3 (#) about Z, producing [_, H Z} by rotating £&” and 7"’ parallel

to, respectively, = = and H.

Tt is worth noting that this hypothesis does not cause any loss of generality and is selected only
to provide a simpler representation.
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The equations for the transformation are given below

Z=Xcosf —Ysiné
H = Xsinf +Y cosf (5.4)
Z =Ecose+ (cose
with
X = As(t) + Ecosfcose + etasin B —  cos Ssine
{Y = —¢sin S cose + etacos S+ (sin Ssine
where 8 =6, — 0.

The coordinates of the primaries in the binary system can be easily determined
from Figure and correspond to Py = (—a1,0,0) and P3 = (a2,0,0). Trans-
formation can be applied to express P2 and P35 in the inertial coordinates,
obtaining
E9 =cosf (A; — ay cos Bcose) + aj sin Fsinf cos e
Hy =sinf (As — aj cos fcose) + ag sin B cosf cose (5.5)

Z2 = —ai sin e

E3 = cosf (Az + ag cos B cos€) + ag sin 3 sin b cos €
Hs = cosf (Ag + ag cos fcose€) + agsin sin f cos e (5.6)

73 = agsine

Similarly, the coordinates of m; in the inertial frame are simply given by P; =
(—Ajcosf,—A;sin6,0), and can be converted to rotating ones from equation
obtaining
& = —Acosfcose
m = —Asin (5.7)
(1 = Acosfsine
Introducing equations [5.515.6] into system [5.3] allows representing the dynamics in
the rotating frame coordinates

X =0V +20Y + 02X + 9%

V= —0X+-0X +6°y + 3¢ (5.8)
=
A

with V = G Y°2_; m;/R;. Introducing the units of distance, mass and time reported
below

DU = R(t)
MU =M (5.9)

The position of the primaries can be expressed in dimensionless coordinates

ry=p1—1
y1 =0 (5.10)
Z1 =0
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13 cos [ cos €Rp (1)

mf:“‘ﬁ(k%@w

in eRy(t

Yo = Mgs(l_,uclo)sREtgb (5.11)
yo — _ pasineRy(t

2 (=) R(?)

_ 2 cos (B cos €Rp (1)
N (= O

_ pa2sinBcoseRp(t)
ys =~ Rw (5:12)
_ posineRy(t)
37 =R
with p; = §#. Equivalently, system can be rearranged in the dimensionless form

given below

z

¥ =u
Yy =v
2=

W =2+K(0) (% +2) (5.13)

v'=—=2u+ K (0) (%—Fy)
oy
w' =K (0) (g#—z) —z
where the time derivative is replaced by the derivative in 6, indicated by the apos-

trophe /', K () = sand v=Y7 &

1
1+ecos =1 r; "

The dependence of the ER4BP on 6 (or equivalently on time) does not allow
defining any equilibrium point. In fact, trying to calculate an integral of motion
analogous to the Jacobi constant (see equations 2.8)) produces the following
equation

v v v
"1 /i ///:KH{/ ov o, YY
T +yy +2z ()8xx+ayy+az

2o+ y'y + z’z} =
ov
00
It can be noticed that the right hand side of equation [5.14] can not be integrated, as

clarified by the extended expression below

=a"2 +y'y + 2" = K (0) [ + 2+ 9y + z/z} (5.14)

0 0
/ (2" + "y + 22 dH:/ K (0) {m—i-x’a:—i-y'y—i-z’z} df =
0p=0 00=0 89

_ 1 2 2 2 / 1 2 2 2
_K(e)[fu+2(a; +y +z)]— KO [U—|—2(a: +y?+22) | do -
_>1<x/2+/2+2/2)_’_/32_

2 Y 2

= K(0) {U + 1 ($2 +y2 + 22)] - ) {’U + 1 ($2 + 9% + zQ)] do (5.15)
2 0p=0 2

In particular, the last term on the right hand side of equation [5.15] depends on the

system dynamics [5.13] whose analytic solution is not known, therefore it can not be

evaluated analytically. Because neither an integral of motion nor the equilibrium

points exist for the ER4BP, further processing is required to define a flow equivalent

to that for the linear CR3BP dynamics in the equilibrium region. This process is

described in detail in section 5.2



84 Design of low-energy trajectories in the Elliptic Restricted 4-Body Problem

5.2 Hamiltonian formalism and normal forms

System [5.13| can be expressed using the Hamiltonian formalism

q =2
o (5.16)
P = "o

where the Hamiltonian function can be determined including the conjugate positions
[q1, 92, 93] = [z, y, 2] and momenta [p1, p2,ps] = [u — y,v + x, w] into equation

1 a3 N
H =3 (@ + 6+t +03+ 93+ 20102 — 2201 )+~ K (0) [Zl +5(d+a+a)

i—1 T 2
(5.17)

where 7; = \/ Z;”,j:l (gj — qj7i)2 = p% represents the distance between the spacecraft

and the i-th primary of coordinates (¢14, 2., ¢3,)-

A form of equation equivalent to the linear Hamiltonian for the CR3BP
can be developed, allowing extending the results of the topological analysis
based on the Siegel-Moser representation, discussed in sections [2.4] and B.I} A first
step consists in isolating the terms associated to the perturbations (the eccentricities
and the gravitational energy of the fourth body), expanding in power series the
non-polynomial terms of equation It is worth highlighting that for u;/r to
be considered as a perturbation its value must be small, therefore the motion of m
must be investigated far from m;y ﬂ An example of such a scenario is represented by
Earth-Moon internal low-energy trajectories in the Sun-Earth-Moon system.

Indicating with F'(e, ep, p11/a) the non-polynomial terms in equation the
expansion produces the following expression

3
Wi 1
F (e, ep,m/a) = K (0) [ZTZ +5 (++d3)
i=1 "1

= F* + {6?95 + ebgi + /;16(/(3561) + o(e, eb,,ul/a)] (5.18)
where the symbol * identifies the function evaluated at the point of linearization
(e = ep = p1/a = 0) and, for the sake of simplicity, the term p; /r; was replaced by
the parameter , based on the fact that 1 ~ a for the scenario examined here.

For the sake of compactness, the expanded expression of the terms in equation
[.1§ is reported in the appendix, except for the first one whose formulation is
straightforward

2 43 1/, 2 2
Fr="S4 2 2 5.19
r§+r§+2(Q1+QQ+Q3> ( )
with
w2 w2

*
CERRVIVE R

2Similar results can be obtained for any other primary, following the same procedure described
below.
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B3 H2

5

B S -1+ 0+ i+
© mag +ma3

Including equations and into equation [5.17| results in the expression below

J— 1 2 2 2 ,Uf2 /.,L3
H = 9 (p1 +p3 + 03+ 2p1g2 —2p2q1) — E _ E_‘_
oF OF m OF
L oe T 0e, T a 9(ui/a) 5.20
{e e +€baeb + 2 9 (/) +0(6,€b,/~01/a)} (5.20)

Comparing equation [5.20] to [2.21], it can be noticed that the terms in the square
brackets of equation [5.20| represent a perturbation. Therefore, based on a theorem
by Conley and Easton which proves the robustness of the linear CR3BP topological
properties with respect to small perturbations [30], equation can be linearized
with respect to the collinear libration point L; or Ls. The selection of the rotating
frames for the 3-body and the 4-body system is such that, in the dimensional form,
the coordinates of the mentioned points are the same for both the models. The
linear Hamiltonian for the ER4BP is reported below (see appendixes B and C)

2

L/, 2 2 ~ 2 43 q§
%=§@+m+m+%m—%m)4(%—5—5

_l’_

2 2
1
—ecosf lDl ((ﬁ — %2 — q23> —1—5 (cﬁ—i—q%—i—q%) + Dy (Gy cos  cos e — qa sin B cos € + g3 sin €)

5¢5 543
—ecosf ng (cjf — % - ;153)] —ep [Dy (q1 cos fcose — gasin S cose + g3 sine) + Ds| +

1 2 5¢3 5‘]?2,
—— | Dg (g1 cos fcose —gasinBcose+ gzsine) + Dy +Dg | G1 — == — == || =h
a

2 2
(5.21)
) and the value of the coefficients D; is reported

— 1—p p
where K = (\Li,zww R P R
in Appendix C.
The perturbation terms can be absorbed by a canonical transformation (q, p, 8y, 0) —
(Q,P), producing the transformed linear Hamiltonian function having the same

form as equation [2.23

S 90, —0) S

H P)=H 0,0 — .22
2(Q7 ) (q7 P, Oy, ) + a(eb _ 0) 89 + 86 + 0(67 €p, Nl/a) (5 )
The form in equation is achieved by introducing a generating function S(q, p, 65, 6)
such that
a (5.23)
Q- fi

For the sake of compactness, the transformation is detailed in Appendix D, consid-
ering here only the result, given below

1 1 1
H2—2(P12+P22+P32)+P1Q2—P2Q1—K<Q%—2@%—262%) =h (524)
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The Hamiltonian function expressed by equation provides a description of the
ER4BP dynamics equivalent to that of the linear CR3BP dynamics. It follows that
transformation [2.31] can be applied, producing a description in the Siegel-Moser
variables, reported below

Hy = paag+ 5 (53 4+ 03) + 52 (43 +43) = h

The result obtained in this section, substantiating Conely and Easton theorem
[30], can be interpreted referring to lunar capture orbits. In particular, initial con-
ditions corresponding to capture orbits for the (unperturbed) Earth-Moon system,
selected as discussed in section [3.2] can be converted into initial conditions corre-
sponding to capture orbits for the ER4BP, by applying the canonical transformation
defined by the generating function [5.23] This result is confirmed in the next section
by means of numerical analysis.

5.3 Ballistic capture in the Sun-Earth-Moon system

In chapter [3] a model aimed at predicting the ultimate behavior of internal
low-energy trajectories, based on their topological properties when crossing the
equilibrium region, was developed. The model was verified by means of numerical
analyses, proving its suitability for the unperturbed CR3BP and lacking of accuracy
when relevant fourth body perturbation is considered. According to the result
in section a canonical transformation can be defined such that the initial
conditions determined for the CR3BP can be converted into initial conditions for
the ER4BP preserving the topological properties characterizing them. It follows
that, propagating these initial conditions in the ER4BP produces trajectories whose
ultimate behavior is equivalent to that of the corresponding trajectory calculated
for the CR3BP. Such a result is here verified by means of numerical analysis on the
Sun-Earth-Moon system.

The initial conditions selected in section [3.2]are transformed according to equation
and propagated using the full nonlinear equations of motion for the ER4BP
The process is performed using Matlab ode113 function, setting a fixed time step of
tr = 15/100000 = 4730sec and relative and absolute tolerances equal to, respectively,
le-18 and le-19. Both the stop conditions and the simulation parameters (see Table
are the same as in section to allow a comparison of the results. The mass
of the Sun is set to m; = 1.9885¢ + 30kg.

Figure shows the behavior of ¢, according to c; and ¢*. It can be noticed that

the systematic behavior shown in Figure [3.4] is recovered, with capture trajectories
corresponding to ae; — 0. Nevertheless, it emerged that ¢* is not an indicator as
good as it is for the CR3BP. A total of 108 long-term capture orbits were identified
with a mean number of revolutions around the Moon equal to 180.
Even though an equilibrium region does not exist for the ER4BP, because of the
time dependence of the problem, due to the eccentric motion of the primaries and
the fourth body, the solution proposed in the previous section allows defining a
subset of the phase space in which a compact representation of transit trajectories
and capture orbits is similar to that in the equilibrium region for the CR3BP.
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Figure 5.2. Comparison of . (colorbar) and t* with «; for the Sun-Earth-Moon system
modeled in the ER4BP

5.4 A dynamical model for the Jupiter-Europa-Io sys-
tem

The method proposed in sections and [5.2] can also provide useful information
regarding the effect of orbital resonance in restricted 4-body system. A model is
developed here for applications on the Jupiter-Europa-Io system, whose masses are,
respectively, m1 >> mgy > mg and the mass of the spacecraft is negligible. The
system is modeled as indicated below [

e the center of mass of the system is indicated as O

e the relative motion of mo and mq with respect to O describes a Keplerian
orbit with semimajor axis a and eccentricity e

e the relative motion of ms and m; with respect to O describes a Keplerian
orbit with semimajor axis a, and eccentricity e,

e the orbital plane of the two system are tilted of an angle e.

The subscript p is selected to indicate the system whose smaller primary (ms)
produces the fourth body perturbation. A sketch of the system is shown in Figure
5.3, where the distances between the primaries and the center of mass can be

2
calculated by equations and replacing Ry with R, = %, where 0,

indicates the true anomaly of m; in the (m,m3) syste
Considering the inertial reference frame [é, H , Z}, centered in O with £ pointing
from m1 to mo at the initial time tg, Z parallel to the angular momentum vector of

the (m1, ma) system and H completing the rectangular reference frame, the dynamic
equations of motion of m can be expressed using system

3Tt can be noted that both mo and ms orbit m;, differently than the Sun-Earth-Moon system,
discussed in section @ where m3 orbits mo and they together revolve around mj.
4In not indicated, the symbols have the same meaning as in section
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Figure 5.3. Sketch of the Jupiter-Europa-Io system

These can be rearranged in the reference frame [g,ﬁ,q, centered in O and

rotating at the same angular velocity ép of the (my, mg) system. Axis f lays in
the orbital plane of the (mi,m3) system, f is parallel to the angular momentum
vector of (my,mg) and 7 is orthogonal to the others. For the sake of simplicity, it is
possible to assume that at g f points from my to mg, therefore 7 is parallel to H.
Coordinates in such a non-uniformly rotating frame can be calculated from the
inertial ones by applying the following transformations

1. a rotation Ro(—¢) about H producing the intermediate frame [2/, H', Z]

A~

2. a rotation R3(—6) about Z producing the final frame [£,%, ¢] frame

which produce the following expression

&€ =cose(Ecosf + Hsinh) + Zsine
n = —Zsin6, + H cosf (5.25)
(= —sine(=cosf+ Hsinf) + Zcose

The same process indicated in section can be repeated (from equation to

considering the transformation and the following set of auxiliary Variableﬂ

for system
X =¢&cose — (sine

Z =¢sine+ (cose

A new expression is required because they depend on the transformation between the inertial
and the rotating reference frame, which is different for the two models considered.
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The result is that equations of motion in the dimensionless form, equal to system
are obtained for the new model and are reported below for the sake of clearness

/

¥ =u
y=v

Z/:w/

u' =2v+ K (6) (%—l—az)
o' =—2u+ K (0) (3 +v)
w’zK(G)(%—I—z)—z

The coordinates of the i-th primary in the inertial frame are (2;, H;, Z;); it can be
noticed that Z9 = Agcosf, Hy = Assinf and Zs = 0. These can be converted into
the corresponding coordinates in the rotating frame by applying the transformation
The coordinates of the remaining primaries can be easily determined in
the rotating frame, corresponding to §& = —ajcos (6, — ), m = —aysin (6, —6),
& = agcos (0, —0), n3 = agsin (0, — 0) and ¢(; = (3 = 0. Considering the unit of
distance in equation the position of the primaries in dimensionless coordinates
can be expressed as follows

x] = —Rfégzg’) 1512 cos (6, — 0) cose
R, (6, .
Y1 = — REQ ) 15‘;2 sin (6, — 0)
21 = —R]’%Egﬁ) 15712 cos (6, — 0) sine
Tg =g —1
y2=0 (5.27)
z9 = 0
Rp(gp) 229

T3 = R Tom CO8 (6, — 0) cose
Ry(0 .
v = g oin (0~ )
b

23 = Rﬁ(z)) 15; cos (6, — 0)sine

A peculiarity of the Jupiter-Europa-Io system is that it shows orbital resonance,
in fact the orbital period of Europa and that of Io are related by a ratio which is
(almost) an integer number, and in particular n = 2.01, therefore 6, = nf. The
effects of resonance on the quasi-periodic libration point orbits and some particular
solutions are investigated in the following section.

5.5 Resonance analysis and quasi-periodic solutions

Operating as in section the system dynamics [5.13| can be expressed using the
Hamiltonian formalism. Based on this representation, the Hamiltonian function can
be expanded in power series to highlight the dependence on the perturbation terms,
which for the Jupiter-Europa-Ilo system are the eccentricity e and the mass of the
fourth body causing the perturbation p;, which can be arbitrarily selected between
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the two smaller primaries. If selecting Io (u3) as the casue of the perturbation the
following form of the Hamiltonian function is obtained (see the appendix)

1 ~ M1 2
Ho— S (240242 _ _ M K2
5 (PR 4+ 03+ 03) + prgz — podi Tt

3
,ug{Q% %p [¢1 cos (6, — ) cose + gasin (6, — 8) + g3 cos (6, — 0) sine| } +
1

1
+e ['uf + = ((ﬁ +q5+ q%)] cost + o(e, u3) (5.28)

ry 2
where the symbol * indicates the function evaluated at the point of linearization
(e = 0,3 = 0).

Introducing an adequate generating function (see equation and the canonical
transformation the Hamiltonian function above can be expressed as the sum of
three local integrals of motion [2.33] representing the linear dynamics, and higher
order terms. The derivation of the function is reported in Appendix E and F and
leads to the following expression

A
Hy = pxiyy + -

2 (a;% + yg) + 22 (a:§ t ?J%) + Hy (x,,0,,0) (5.29)

2

The order three terms of equation [5.29| can be absorbed by means of a further
canonical transformation (x,y,6,,0) — (R, S), producing

oS  9(0,—0) 9S

H H _
Z(Xay)+ 3(X>y)+a(6p_0) 90 + BY
A A
= pRiS1+ 5 (B3 +3) + 5 (B3 +83) + H;* (R, S,0,,0) (5.30)

As opposite to the Sun-Earth-Moon case, discussed in Section [5.1] the canonical
transformation is unable to absorb the term Hs completely. Namely, it is known as
the problem of small denominators, because the canonical transformation defaults
when some coefficients at its denominator approach zero (see the coefficients bg’;)k;l
EZ) in Appendix G).

For the Jupiter-Europa-Io system this occurs because of n = 2.01, therefore, some
order three terms of the Hamiltonian function can not be absorbed and these are
given by

or b

H3* =2(Rs+ S3) (b%) cos? @ + bg%) cosfsin 6 + bg%) sin? 0) (5.31)

Stationary points for the residual term ﬁgres can be calculated, as indicated in
Appendix H, producing the following result

$ss=km, keZ
_ o oHpe (5.32)
Poe = T
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The existence of stationary points, setting to zero the residual terms of the Hamil-
tonian function, implies the existence of orbits which show quasi-periodic behavior
also in presence of the orbital resonance. This result is verified by means of numerical
analysis, propagating different initial conditions selected in the neighborhood of
Jupiter-Europa libration point L; and evaluating the effects of the gravitational
perturbation of Io on the resulting trajectories. The the vertical oscillator is selected
for this study, characterized by initial conditions null onto the [Z1, 9] and [Z2, o]
planes, corresponding to a; = as = 1 = B2 = 0, and selecting randomly the initial
conditions onto the [Z3, §3] plane. The full nonlinear equations of motion are
integrated using Matlab odel18 solver, setting relative and absolute tolerance equal
to le-18 and 1le-19. The simulation parameters are reported Table [5.1] and a sketch
of the orbits of the primaries in the rotating reference frame is shown in Figure

Table 5.1. Parameters of the Jupiter-Europa-Io system

Parameter Symbol Value

Mass of Jupiter m 1.899e+27 kg
Mass of Europa ma 4.799e+24 kg
Mass of Io ms 8.932e+22 kg
Jupieter-Europa semimajor axis a 6.711e+5 km
Jupieter-lo semimajor axis ap 4.218+5 km
Jupieter-Europa eccentricity e 0.0094
Jupieter-lo eccentricity ep 0.0041
Inclination between the orbital planes € 0.430 deg

The initial conditions are propagated for a total time corresponding to 200 times
a3

the orbital period of Europa 15 = 27/ &1
vertical oscillator is reported in Figure

. The effect of the orbital resonance on a

x10°

Jupiter
* Europa
‘- lo

4 2 0 2 4 6
=[km] %10°

Figure 5.4. The orbits of Jupiter, Europa and Io in the rotating reference frame
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Figure shows a marked increase in the amplitude of the oscillations, from
approximately 5.1e — 08 to 2.9¢ — 04 DU. To prove that this result is addressed to the
orbital resonance introduced by lo, the same initial conditions are propagated setting
m3 = e, = 0. The result is shown in Figure and indicate that the amplitude of
the oscillations is constant if the fourth body is discarded, thus it confirms that the
result shown in Figure [5.5]is due to the gravitational perturbation of lo.

ik L ' ":.‘l ||II‘!. L
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Figure 5.5. Effect of resonance on the amplitude of the vertical oscillations
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Figure 5.6. Non-resonant behavior of the vertical oscillator in the CR3BP

Finally, the trajectory associated to one of the stationary points determined in
section [5.4] is computed, to verify its quasi-periodic behavior. In particular, the
trajectory is calculated setting qz~53,s = 0 and ﬁgms = le — 15. The resulting path,
reported in Figure shows that quasi-periodic oscillations have (almost) constant
amplitude, which never exceeds the limit value 1.0e — 05 DU. The quasi-periodic
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trajectory in the inertial reference frame (2, H, Z) is reported in Figure Because
the magnitude of the out of plane oscillations is small, this component is plotted
after multiplying it by a factor 1le+03, to provide a clearer representation.

5
2><1D

1.5

o l'\l T ‘“l “\W\u v A || | Hn w | “ I n‘ “hu\ “‘
"» “' TTTITY

=}
=
N

v iy
M m 'M W il ’ \N'V i

-1.5

0 20 40 60 80 100 120 140 160 180 200
No. Orbits [#]

Figure 5.7. Quasi-periodic behavior of the vertical oscillator associated to a stationary
point in the ER4BP
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Figure 5.8. Orbit of the primaries and quasi-periodic orbit in the inertial reference frame

The model presented in this chapter allows an in-depth investigation on the be-
havior of transit, capture and quasi-periodic trajectories in the dynamical framework
of the spatial ER4BP. The model takes advantage of the robustness of the CR3BP
flow in the neighborhood of the collinear libration points L1 and Lo, which allows
setting the Hamiltonian function for the ER4BP to a normal form equivalent to that
of the CR3BP. Based on this, the tools developed for the topological characterization
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of orbits in the CR3BP can be applied also to investigate low-energy trajectories in
the ER4BP. Furthermore, when orbital resonance occurs, small denominators theory
allows isolating the higher order terms of the Hamiltonian function associated to the
resonance. Selecting an adequate canonical transformations allows defining initial
conditions for trajectories which are quasi-periodic in presence of the resonance.
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Chapter 6

Purely magnetic attitude
determination and control
systems for space science
missions in LEO

Mission operations often require the capability to orient the spacecraft towards a
specific direction. To achieve this goal both an adequately accurate knowledge of
the spacecraft orientation in space, namely its attitude, and autonomous feedback
control on the attitude, by means of some actuators, are required. The on-board
system producing these operations is named the attitude determination and control
system (ADCS) and represents a fundamental element in spacecraft design.

The success of a space science mission based on CubeSat platforms operating in
LEO strongly depends on the performance and robustness of the ADCS, given the
fact that most of the payload used for space science applications can operate only
at some prescribed attitude [I72]. The design of ADCS for CubeSats is a rather
challenging task, because the limited power and computational resources available
on board, together with the low development budget, set strict constraints on the
complexity of the algorithms and on the selection of actuators and sensors. It is
worth to highlight that the latter are typically components-off-the-shelf (COTS)
which are not specifically developed for space (or high-performance) applications.

High-precision ADCS designed for CubeSats are nowadays available on the
market, though not common, and include star trackers, sensors which can produce
attitude determination with accuracy higher than 0.01 deg, and compact reaction
wheels, which can provide a control torque of the order of some mN [93], [182]. These
systems are rather expansive, if compared to other CubeSat on-board systems, and
can require a significant volume or power to operate adequately. Commonly, attitude
determination sensors, such as magnetometers and gyroscopes, are micro electro-
mechanical systems (MEMS) and electric coils, named magnetorquers, are used as
actuators. MEMS gyroscopes are accurate angular rate sensors, nevertheless, because
of technological limitations, they usually have structure defects which produce high
drift and require compensation, thus opening to alternative methods of angular rate
determination [38]. As a consequence of it, magnetometer-only solutions started
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being developed and are gathering growing attention [8}, [63), [70} [72] [79, 109, 110} 13T,
132, [145, 157, 161, [168]

In this chapter, the design of a purely magnetic ADCS is proposed, including

the design of algorithms for the attitude control and determination. The aim of the
system is representing an effective backup solution in case of failure of the primary
ADCS, increasing the overall reliability of the platform. Such a solution is specifically
developed for CubeSats and takes into account the constraints set by the use of
COTS devices, the power budget and the computational resources available. In
particular, the software part is designed to be implemented on the FPGA core of
a standard on-board computer (OBC) and therefore further constraints are set in
order to maximize area usage efficiency.
Two attitude control algorithms are developed, to produce both stabilization after
deployment (detumbling) and coarse pointing using the only input form a three-axis
mangetometer and the torque produced by three magnetorquers, mutually orthogonal.
A magnetometer-only attitude estimation algorithm is finally implemented, providing
an input to increase the pointing accuracy of the system.

6.1 Attitude dynamics and magnetic control

Attitude dynamics is modeled considering the spacecraft as a rigid body, free to
rotate about its center of mass under the only effect of the control torque. The
principal axes of inertia are used to define a body-fixed reference frame which rotates
rigidly with the spacecraft F, = [Zy, s, 2p]. Spacecraft attitude can be defined by
means of the Euler angles (¢, 1,1) correlating F3 with an inertial reference frame,
selected here as the geocentric inertial (GCI) frame, indicated as F; = [Z;, §s, 2i]
[181], by means of the attitude matrix [181]

Fy = AF,

The angular velocity at which F; rotates with respect to JF; represents the angular
velocity of the spacecraft, whose components are the angular rates w = [wy, Wy, w].
Based on this representation, attitude dynamics can be defined by the following set
of kinematic and Euler equations

¢ = wy + sin p tan Yw, + cos p tan Yw,

¥ = wy cos ¢ — sin pw,

#}__ﬂnwwy—amwwz

cos 6
Sy (6.1)
Wy = T WyWz + Tz
. Jo—J.
Wy = sz LWy + Ty
. Jo—Jyz
Wy = 7Jzy Wywy + Tz)

where J; and 7; indicate, respectively, the principal moment of inertia and the
external torque along the direcion i = x, y, z.

It is worth noting that system is singular for § = k% k €Z. This can be
avoided using the quaternion representation instead of Euler angles [36]. The former
will be used for the numerical integrations discussed in the following sections, but the
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Euler angles are preferred for the representation of the results. Attitude dynamics
equations based on quaternions are reported below

€1 = %eoww + €ow, — €3wy

€y = %Gowy — €1W, + €3Wy

€3 = %eowz + €lwy — €Wy

€0 = *%61% + eowy + €3w;

1/'} _ sin pwy —Ccos Yw, (62)
cos 0

Wy = JyJ;xszwa + Tz

Wy = Iz y‘]*wzwz + 7y

W, = L;jwwmwy + Tz)

where ¢ represents the scalar part of the quaternion.

The control torque 7 is provided by external devices, and depends on the control
law defined during the design phase and the characteristic of the actuator. In
particular, considering a magnetorquer, consisting of an electromagnetic coil, the
torque produced is given by the interaction between the magnetic dipole moment
produced by the device m and the geomagnetic field crossing the coil surface By,
according to the following equation [I81]

T=m x By (6.3)

where the subscript b indicates the value measured in the body frame. The magnetic
dipole moment of a coil is given by the simple expression m = NAIf, where N and
A are, respectively, the number of turns of and the area enveloped by the coil, I is
the electric current in the conductor and 7 represents the direction orthogonal to
the coil. If three mutually orthogonal coils are installed on the CubeSat, then the
resulting torque has a component along each direction of F, and three-axis control
can be achieved.

Given a fixed design for the magnetorquer, and assuming that each one of them
is orthogonal to one axis of Fy, the only control parameter which allows modulating
the torque is the electric current. In fact, control laws are designed to correlate
the value of the current provided to each coil to the desired attitude motion. In
particular, this is achieved by developing adequate closed-loop control laws which
process the feedback provided by on-board sensors, to calculate the values of I. This
task is performed in the next two sections.

6.2 Detumbling and magnetomter-only angular rates
determination

When a spacecraft is deployed to its final orbit it can happen that the angular
rates are much higher than those desired for attitude maneuvering. The high
rotational kinetic energy is provided partly by the deployment system and mostly
by the launcher upper stage, whose angular rates change during the flight and the
deployment. This happens because as the mass of the rocket changes (propellant
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ejection, staging, satellite deployment,etc) so do the moments of inertia. Predicting
the magnitude and direction of the spacecraft angular velocity is complex and, in the
general case, the satellite will be tumbling. Therefore, a specific detumbling control
must be designed to stabilize the spacecraft within the minimum time compatible
with the mission requirements. After the spin motion of the spacecraft has been
damped to the desired level, the control policy can be switched to pointing or
attitude maneuvering and mission operations can start.

A detumbling control is proposed in this section, aimed at producing the desired
stabilization based on the only input of a three-axis magnetometer and the control
torque produced by magnetorquers. This can be a suitable backup solution to
recover missions in which the ADCS sensor addressed to angular rate measurement
(i.e., a gyroscope) is not capable of providing any information, because of a failure
or saturation. The algorithm does not require any a-priori information about the
satellite RAAN (2), true anomaly (), inclination(i), attitude and angular rates.

The proposed detumbling control represents a variation of the classical B-dot in
which [181]

m = —Kde (64)

where K is the control gain. The B-dot can be easily implemented approximating

the time derivative with the finite difference between two consecutive samplings Bl(ok)
of the magnetometer

B, = i (B~ B

where f; is the sampling frequency of the magnetometer.

It can be noticed that the torque can be maximized by setting m orthogonal to
By,. According to equation[6.4] this is not guaranteed by the classical B-dot, therefore
it is reformulated in the following way. The time derivative of the geomagnetic field
vector can be expressed as follows [I81]

Bb = Bi —w X Bb (65)

The term B; in equation represents the rate of change of the magnetic field
due to the orbital motion of the spacecraft and is negligible when the rates are
higher than 0.13 deg/sec for a LEO satellite [36], which is the case examined here.
Consequently, during the detumbling, equation can be approximated as follows

By, =By xw=B xw, (6.6)

where w, is the projection of the w orthogonal to By. The following expression for
m is then set, verifying the orthogonality

m = Kd (wL X Bb) (67)

It is now necessary to determine the expression of w, . Because the cross product does
not allow inverting equation then the following guessed expression is considered

_BbXBb

W) = ‘Bb’2 (6.8)
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The suitability of equation can be verified by introducing equation into
as follows

B, xB . B, B .
b b:Bb+Bb<|']D3b’2b>me (6.9)

Bb:BwaL:Bbxi
By |?

It is known that the B-dot control is Lyapunov stable and this property is
extended to the proposed modification [36]. It follows that the magnitude of w
decreases monotonically approaching zero. Nevertheless, for a variety of missions,
maintaining a residual angular rate along one axis is desirable, therefore the capability
to estimate the angular rates and modulate the detumbling control according to
them represents an interesting challenge.

Angular rates determination is performed here based on three consecutive sam-
plings from the three-axis magnetometer. According to equations [6.7] and [6.8]
the vectors By, w,; and m are mutually orthogonal and the following auxiliary
rectangular reference frame F, can be defined

B
51 = |B7:‘
&2 = 1 (6.10)
£3 =~

The simple case of a spacecraft with spherical mass distribution is considered first,
before to extend the result to the general case. Under this hypothesis, the last three
equations of system [6.2) can be expressed by the following vector equation as follows

mxBy T
V= ——— = — 6.11
“ J J (6.11)

where J is the moment of inertia of the spacecraft. Equation indicates that the
control torque can only produce a change in the angular rate along the direction &»,
thus the attitude motion produces a rotation of F, around &;. Considering short
intervals of time, such that the change B; is negligible and compatible with the
sampling frequency of common MEMS magnetometers f; = (1;100) Hz, then the
only change in By, is produced by the attitude motion of the spacecraft. In fact, By,
is measured by a magnetometer fixed to the spacecraft and therefore rotates with
it. Consequently, the vector By, is always orthogonal to &2, as shown in Figure
Furthermore, any rotation of By, around &, can only be caused by a rotation of the
spacecraft about the same axis. The rotation between two consecutive values of By
can be calculated by the cross product and leads to the following expression for the
angular velocity

koo Tak—1
Bbeb

k
WK = fob (6.12)
B2
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Figure 6.1. Rotation of By, with respect to the auxiliary frame

Equation [6.12] allows estimating the unknown angular rates of a spherical space-
craft based on three consecutive measurements of By,. When extending the results
to a spacecraft with a generic mass distribution, the full tensor of inertia J should
be considered instead of J into equation [6.11]

w=J"1"(~wxJw+m x By) (6.13)

Therefore changes in the angular rates along the & and &3 direction are not null
and depend on the shape of the tensor. Nevertheless, the general behavior described
before is preserved and the main drawback in using equation for a generic mass
distribution is related to the high frequency disturbance caused by the non-linear
terms in equation [6.13]

The effect of the non-linear term introduces high errors in the determination.
These can be compensated by adding the following term to equation [6.12

Awk = — ;371 (—wk_l X ka_l) (6.14)

which attempts to discard the non-linear term based on the previous estimation of
the angular rates. The sum of equtions and can finally be processed by a
second-order Bessel low-pass filter, characterized by the following transfer function

3
(S/fco)2 +3 (S/fco) +3
where f., is the filter cutoff frequency.
The proposed algorithms for detumbling control and angular rate determination

are validated by means of numerical analysis, in section [6.4] and tested by hardware-
in-the-loop simulations, discussed in chapter [7}

H(s) = (6.15)
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6.3 B-pointing and magnetometer-only attitude deter-
mination

Attitude control requires, in the vast majority of cases, attitude determination.
CubeSats are not typically equipped with attitude sensors, such as star trackers,
therefore attitude is estimated from the inputs of a three-axis gyroscope, measuring
the angular rates, together with a three-axis magnetometer and/or a Sun sensor,
which can define the attitude of the spacecraft with respect to a reference vector,
represented by the geomagnetic field for the first device and the Sun direction for
the second one. The implementation of a backup solution, allowing attitude control
though coarse or with degraded performance allows increasing the reliability of the
system, therefore the chances of success for the mission. Such a solution might be
necessary in the unlucky event of an attitude device failure or of anomalies in flight
operations.

The attitude control and determination strategy proposed in this section rep-
resents a backup solution suitable for implementation on CubeSats. The strategy
consists of three phases

1. detumbling and angular rate determination, based on the algorithms discussed
in section producing the stabilization after the deployment at a desired
spin of rotation

2. B-pointing, leading the spacecraft to some desired attitude with respect to the
geomagnetic field, producing a predictable attitude motion

3. magnetometer-only attitude estimation, which provides the attitude matrix
relating Fp, to JF;, allowing higher accuracy pointing.

The first phase was discussed in the previous section and allows stabilizing the
spacecraft with desired angular rates.It is wort to focus now on the following phases,
which provide increasing control on the spacecraft.

B-pointing control is aimed at producing a desired attitude for the spacecraft with
respect to the geomagnetic field By. The magnetic dipole moment for B-pointing is
reported below

m, = K,By, x (7 x &) (6.16)

where K, is the control gain and 7 represents the unit vector in the body frame
that will be aligned with By. For the sake of clearness, setting 7 = &3, the control
defined by equation leads &y to be parallel to By,. In fact, it can be noticed that
vector mp produces a torque orthogonal to the plane defined by # and By, whose
magnitude increases with the angular displacement between the two mentioned
vector, as a consequence of the product # x &;.

The B-pointing control does not allow setting a fixed attitude with respect to a
direction J; because the only reference vector is the magnetic field measured by the
three-axis magnetometer. Nevertheless it produces a predictable attitude for the
spacecraft which is suitable for operations in backup mode, as shown by the numerical
analysis in section and the hardware-in-the-loop (HiL) simulations discussed in
chapter [7l During the B-pointing control, attitude estimation is performed, based on
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the only measurements of a three-axis magnetometer and a model of the geomagnetic
field, stored on the on-board computer.

Magnetometer-only attitude determination is a challenging task, mainly because
the measurements from a three-axis magnetometer can provide information on
only two axes of the spacecraft attitude. To resolve all three axes either some
constraints on the attitude motion or a filtering process are required. Typically
this second solution is implemented, using some form of the Kalman filter leading
to models which can reach an accuracy below 5 deg on attitude and 0.01 deg/sec
[72, 109, 145], 161) [168]. It is worth noting that, such a Kalman filter processes all
the 6 (or 7) attitude dynamics variables defined in equation (6.2), therefore an
implementation on FPGA would be rather complex and, furthermre, would require
considerable area and power usage. These might might exceed the limit of the device
that, it should be recalled, is shared with the other on-board systems.

The solution proposed in this section does not depend on the use of a Kalman
filter and it only relies on the measurements of a three-axis magnetometer and
the geomagnetic field data stored on the OBC memory, providing the values of
B;. Indicating with A* the attitude matrix from Fy to F; at time t;, the following
equality can be expressed

Bf = A*Bf (6.17)

Then calculating the time derivative at both sides
Bf = A* (B + wk x Bf) (6.18)

Except for the attitude matrix, all the quantities in equations [6.17] and [6.18] can be
determined or measured. In particular, wi can be calculated from equation m and

equation [6.18] can rearranged as follows

i35 = A (B 1 f x BY) = A% (1‘3’;+B|lg];ﬂ]23§ XB;;) _
[— (BT’;B’g) BF + (BT’;B’g) B'g}
B

= A* [ BF + = Ak (¢ Bfel)  (6.19)

Based on equations and [6.19] two vectors (B and B) can be defined in the
two reference frames Fp, and F;, allowing the implementation of the unsymmetrical
TRIAD for estimating matirx A [7], [177]

Ak = [131583584} [ﬁffgfm} (6.20)
where the unit vectors are defined as followsl
by = &}
by = SL 2051
2T B (6.21)

Bgzi)lxgz
64:61X83

Tt is worth noting that even though B; is neglected in the derivation of equation its direction
b1 can provide useful information and is in fact used to estimate the attitude matrix



6.4 Numerical validation of the algorithms 103

A o Bik
bl — ‘Bikl
by = B
27 Bl (6.22)

r3 = 71 X T
7y = 71 X fg

Equation produces the attitude matrix which can be used to convert any
vector in the inertial frame to the corresponding one in the body frame and vice-versa.
Considering the given direction 7;, the corresponding valuein the body frame can be
calculated by A* and it can be introduced in equation replacing &7, producing
magnetic pointing towards 7

my, = KBy, x (7 x 7 ) (6.23)

For instance, if 7; represents the radial position of the satellite in GCI and 7 = &,
my, will produce nadir-pointing.

The use of the same equation for more processes (i.e. B-pointing, nadir-
pointing,etc) is particularly convenient when using FPGA, because the same structure
implementing one equation can be use multiple times, reducing area usage, a detailed
in chapter

6.4 Numerical validation of the algorithms

The algorithms in sections and are validated by means of numerical analysis,
using Matlab Simulink ode8 fixed step solver to integrate system [6.2] setting a time
step of 0.1 sec. The attitude dynamics of a 3U CubeSat is simulated, considering the
inertial properties and magnetorquer design reported in Table The CubeSat
has volume 340 x 10 x 10 mm? and a total mass of 4 kg.

Table 6.1. Simulation parameters

Moments of inertia

Jz [kgm?] 6.5e-3
Jy [kgm?] 4.09e-2
J, [kgm?] 4.09e-2
Coils

Ny 320
N, 220
N, 220
Ay [m?); 3.2e-3
Ny [m?] 1.49e-2
N, [m?] 1.49e-2

To represent effective backup solutions and increase the chances of success for the
mission, the algorithms proposed should be effective under unknown or uncertain

2The parameters are those of Tigrisat, the 3U CubeSat designed and launched by the School of
Aerospace Engineering of Sapienza University of Rome in 2014
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deployment conditions, within the limits of LEO CubeSat missions. Therefore,
montecarlo numerical simulations are performed, for a total of 100 different initial
conditions selected considering an error up to 10% on the estimation of the moments
of inertia and random initial: RAAN, true anomaly, inclination, altitude, attitude
and angular rates. The range for the initial conditions were selected considering
that the vast majority of CubeSat LEO missions are performed in sun-synchronous
orbits which are almost circular (e < 0.03) and polar. In Table the range for
each initial condition is reported

Table 6.2. Initial conditions

Orbital elements

Q2,6 € [—180; 180] deg

i € [80;100] deg

h € [400;700] km

Attitude

©, 9,1 € [—180;180] deg

W, Wy, w, € [—10;10] deg/sec

The detumbling and the angular rates estimation algorithms were tested first.
The results of the integration (calculated for K; = 3e + 4) are reported in Figure
showing the behavior of angular rates in time, and Figure [6.3] showing the error
between the angular rates calculated by the ode solver and the ones estimated by
the algorithm. A time equal to 3 orbital periods (T},) is considered for the purpose
of the analysis and it can be noticed that both the algorithms produce the expected
result, with both the angular rates and the estimation errors approaching zero. The
effectiveness of the detumbling can be evaluated in terms of the rotational kinetic
energy, reported below

1
T, = §wTIw (6.24)

For all the initial conditions the rotational kinetic energy decreases by a factor 1000
and the error on the estimation of the angular rates enters the error band +0.2
deg/sec. In Table [6.3] the results for the worst case w = [10,10,10] deg /sec are
reported in detail. In here, detumbling and settling time indicate, respectively, the
time required for T,(¢) /T, (to) = 1/1000 and maz{w;} < £0.2 deg/sec.

Table 6.3. Selected results for w = [10, 10, 10] deg /sec and ¢ = 97.79 deg

Altitude [km] 700 600 500 400
Detumbling time [sec] 7961 6228 5170 4374
Settling time [sec] 1454 1541 1102 1022
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Figure 6.2. Behavior of angular rates during the deumbling for 100 initial conditions
selected as in Table [6.2]
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Figure 6.3. Error on the estimation of angular rates during the deumbling for 100 initial
conditions selected as in Table [6.2]
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It is worth noting that the settling time is almost independent from the initial
conditions. This aspect is further emphasized in Figures[6.4H6.6] showing the behavior
of the estimation error with time for different values of f; and considering an error
of the 10% on J, and J,.
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Figure 6.4. Estimation errors on angular rates for 1Hz (solid line), 8 Hz(dashed line) and
10 Hz (dotted line) sampling frequency
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Figure 6.6. Detail of Figure in the time interval 0-600 sec

The B-pointing and attitude estimation algorithms can then be verified using
the same parameters in Table It is worth recalling that the attitude estimation
algorithm produces the attitude matrix A. Estimating the error on the matrix
produces results which are difficult to interpret, therefore a comparison in terms of
the Euler angles is discussed first, for the above mentioned worst case w = [10, 10, 10]
deg /sec, h = 700km and i = 97.79 deg. The effectiveness of B-pointing in producing
the target attitude 7 = [1,0,0] can be examined from Figure
The comparison between the Euler angles calculated by the ode solver and by the
estimation algorithm, along with the corresponding errors, are shown in Figures
and The final value of the errors can be evaluated from Figure and are
equal to Ap = 3.67 deg, A = 4.99 deg and Ay = 15.60 deg.
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Figure 6.7. Attitude behavior with respect to geomagnetic field for w = [10, 10, 10] deg /sec,
h = 700km and ¢ = 97.79 deg
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The Mean Squared Error (MSE) between the attitude matrix calculated from the
results of the ode solver and from the attitude estimation algorithm is calculated for
the mentioned case and represented in Figure The final value of MSE for the
test case considered assumes a final value of 1.172e-2, entering the +10% error band
(with respect to the final value) in 16680 sec. This tool can be used for montecarlo
analysis over the 100 initial conditions previously introduced, aimed at evaluating
the robustness of the algorithm. The values for the MSE of the simulations are
shown in Figure [6.12]
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Figure 6.11. Meas Squared Error calculated for w = [10, 10, 10] deg /sec, h = 700km and
1=97.79 deg



6. Purely magnetic attitude determination and control systems for space
110 science missions in LEO

0.8

0.6

MSE

0.4

0.2

f s Y < T N - = — —— T PR

4000 6000 8000 10000 12000
time [sec]

0 . —
0 2000 14000 16000 18000

Figure 6.12. Behavior of the mean squared error with time during the detumbling and
B-pointing for 100 initial conditions selected as in Table

Figure [6.12] indicates that the maximum value for MSE can be as high as
0.04. This relatively high error is related to the low sampling frequency which can
be simulated in Simulink, in order to limit the time of the simulations. In the
next chapter, HilL simulations are performed on a real CubeSat OBC using a real
magnetometer.
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Chapter 7

Hardware implementation and
experimental testing

The successful development of an ADCS starts from concept design and should
include numerical and experimental validation of the algorithms and hardware, to
confirm its performance and robustness in different operative scenarios. CubeSat
ADCS are typically based on COTS sensors that are not specifically developed for
space applications, and are often developed based on novel system architecture,
such as the algorithms presented in chapter [6] For this reason, experimental testing
should represent an essential part of the development process. Nevertheless, because
of the limited budget and development time available for CubeSat missions, the
effort dedicated to tests is limited and typically focused on numerical simulations,
which do not provide any feedback regarding real hardware [169, [180)].

It is known from statistical analysis that the majority of CubeSat mission end in
failure right after the deployment. Even though, according to statistical analysis
[T01], the impact of ADCS failure on the number of “dead on arrival” CubeSats
seems to be marginal, a system-oriented interpretation of the results provides a
clearer view on the issue. In fact, if ADCS failures may not affect the functionality of
the other on-board systems, they do not allow those systems to operate in the design
conditions, jeopardizing the mission, eventually causing its failure. Some strategies
for low-cost software-in-the-loop or even hardware-in-the-loop (HiL) testing of ADCS
have been proposed in the recent past [37, [62] [162] 179], outlining suitable low-cost
solutions to improve the reliability of CubeSat missions.

In this final chapter, the implementation of a Hardware-in-the-Loop (HiL) setup
is discussed. The setup is used to test the ADCS algorithms presented in Chapter [6]
evaluating their performance.

7.1 Hardware-in-the-loop setup

Numerical analysis in section provided an overview of the performance of
the ADCS algorithms previously introduced. Nevertheless, the characteristics of
real hardware on which the mentioned algorithm should work were not taken into
account. These are finally considered in HiL. simulations discussed here. A sketch of
the HiL setup is shown in Figure
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It consists of

o a3 x3x3m3 Helmholtz cage [86], used to reproduce the Earth magnetic field
B, at any orbital position of the satellite, estimated by the orbital propagator
running on the facility control computer (see below)

e FPGA-based OBC, on which the control algorithm are implemented and
providing as output the electric current for the magnetorquers

e 12-bit MEMS three-axis magnetometer, measuring the magnetic field generated
by the Helmholtz cage

« facility control computer, propagating the orbital motion to calculate B; and
integrating the attitude dynamics equations determining the Euler angles and
angular rates.

In the HiL. simulations presented, attitude dynamics is simulated using Matlab
Simulink fixed step ode8 integrator. The integration time for the software is
synchronized with the time of the HiLL simulations, which can be selected to be up
to 10 times faster than real time.

Helmholtz cage

OBC Facility control
magnetometer computer
B, Ve
—
-t
(“pve=‘|’) B
Orbital B
coordinates {1 Facility control
computer
i <
. T

Figure 7.1. Sketch of the HiLL setup

It is worth noting that, since the spacecraft attitude dynamics is simulated,
the magnetometer will not read values of the magnetic field in F, (By), but in
Fi instead (B;). Therefore, the coordinate transformation from (B;) to (By) is
performed at each iteration by Simulink, based on the values of (B;) measured
by the magnetometer and the Euler angles calculated integrating system [6.2} The
calculated value of (By) is then processed by the OBC, to determine the magnetic
dipole moment required to perform the detumbling and B-pointing control, according
to equations [6.7] and Once determined m, the value of the current on the i-th
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mi

coil is calculated as I; = N (i = z,y,2) and sent to the power board, which
feeds the magnetorquers.

The Helmholtz cage used is that of the Flight Mechanics Laboratory "Michele
D. Sirinian", part of the School of Aerospace Engineering at Sapienza University of
Rome [164]. The magnetic field generated by each pair of coils of the Helmholtz

cage can be estimated by the following approximated relation

~ 2uoNI. 2
o (14 K2) V2 + K2

where g is the permeability of free space, N = 54 is the number of turns of each
coil, I = 1.24 m is the half length of the side of the coils, kK = 0.5445 is the ratio
of the distance between two coils and I, is the electric current in the coils, whose
determination is explained in the next paragraph. The facility was designed to
operate in the range +/- 2 Gauss along each direction. The Helmholtz cage are
activated and controlled by a system including

B

(7.1)

e 3 power supplies, each one feeding one pair of coils, allowing the generation of
a magnetic field vector with desired intensity and direction

e a facility control computer, on which the orbital motion of the satellite is
simulated, based on the input orbital parameters, and the corresponding value
of B; for each position of the satellite is calculated in real-time, using either
the dipole or the IGRF model [36]

e a calibrated three-axis magnetometer, measuring the magnetic field in the
central and constant region of the Helmholtz cage.

All the mentioned elements form a closed-loop system which operates according to a
control code implemented in Matlab and operating as follows

1. the orbital propagator is updated and the target value of B; is calculated

2. the facility control computer receives the measurement from the magnetometer
Bn

3. based on the error between the nominal and the measured value, B; — B,,,
a PID controller estimates the currents I.; to be provided by the i-th power
supply to recreate the desired B;

4. the i-th power supply is set to the corresponding I.; and the magnetic field
vector inside the cage is modified

5. the loop repeats until stop command is sent.

The duration of each cycle can be selected in the range [0.1; 1] sec, therefore allowing
accelerated simulations up to a factor 10.

The ADCS algorithms were implemented on the FPGA core of the CubeSat
OBC ABACUS [130]. Because attitude and angular rates are determined in two
different steps, the size of the vectors and matrices computed through the process
are limited to 3 X 1 and 3 x 3. All the vector and matrix operations are rearranged
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into the following matrix equation of size 3, which can be implemented on FPGA
by means of the Faddeev algorithm [51], using a single systolic array architecture
[14), (133, [176).

U=WX'Y+7Z (7.2)

The angular rates estimation in equation can be rearranged in a form suitable
for systolic array implementation, by setting the following values for the matrices in

equation [7.2]

W= (BEx BE - 1)[1,1,1]
T

X = Bk, Bk, 1

Y =1

Z=0

where 1 and 0 indicate the 3 x 3 identity and zero matrices.
Similarly, the attitude determination algorithm in equation [6.20] can be rearranged
as follows

7.2 Hardware-in-the-loop simulations

The HiL system discussed in section allowed experimental verification of
the algorithms presented in Chapter [6] Some relevant results are collected and
commented hereafter, to provide a highlight on the performance and limits of the
ADCS system.

The HiL simulations of the detumbling and B-pointing algorithms are discussed
first, for the test cases reported in Table The two algorithms are not applied at
the same time, as for numerical simulations, because of the constraints on the power
usage, fixed to 250 mW for each coil. The coils used in the setup have N = 400,
A =9.03e — 3 m? and work at a supply voltage of Viive = 3 V, consequently the
current is limited to Iy = 83 mA, corresponding to a maximum |m| = 0.3 Am?
for each coil. The detumbling algorithm is applied first using a high value for Ky,
then when the angular rates decrease to 0.01 deg/sec, the B-pointing is activated at
K, = 30 and lower Ky = 500.
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Table 7.1. HiL parameters for three test cases (TC) at th deployment

Parameter Symbol Value
Altitude h [km)] 600
Inclination i [deg] 97.79
Eccentricity e 0
Euler angles  [p, 9, ] [0,0,0]
Angular rates  [wg, wy,w,] [5,3,—3]
Parameter TC1 TC2 TC3
Only detumbling
Ky 1000 1000 1000
K, 0 0 0

Detumbling and B-pointing

P [1,0,0] [0,0.5v2,0.5v2] [0,0.5v2,0.5v2]

Ky 500 500 500
K, 30 30 30
Model Dipole Dipole IGRF

The Euler angles with respect to the target attitude for the three test cases are
reported in Figures|7.2 showing that the detumbling is successfully completed
within 1.5 orbital periods and the B-pointing produces the desired attitude. The
minimum[, maximum and mean error on the Euler angles are estimated for all the
test cases after a time corresponding to 5 orbital periods, and reported in Table

Table 7.2. Error on the Euler angles for the B-pointing algorithm without attitude
determination

Error TCl1 TC2 TC3

AYmaer 18.78 9.24  7.38
Amean 498 001  -0.07

AVpin  0.03  -9.41 -5.58
AUpae  12.71 1042 6.63
Amean  0.03  -0.03  0.06

AVmin  0.07  -9.73 -6.58
AVpmer 1344 10.14 5.99
AVpean  0.06  -1.71 -0.04

It can be noticed that the error on the Euler angles for TC1 (< 19 deg/sec) is
sensibly higher than that for TC2 and TC3 (< 11 deg/sec). Analysis of results from
the HiL simulations, indicate that this is due to the selection of the target attitude.
In fact, for # = [1,0,0] the ADCS will drive the satellite as long as the magnetic
field measured Z is equal to the magnitude of the magnetic field |B|. Obviously,

!The minimum here indicates the maximum error with negative sign.
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the measured value at time t can never exceed |Byp| then the control shows aperiodic
behavior, limiting its accuracy. Differently, when the control is shared by two or

more components, such as for 7 = [O, 0.5v/2, 0.5\/5}, then the measurements in

and 2, can, at different times, exceed the target value 0.5v/2|By| and the behavior
of the control is therefore oscillatory, about the target value. This can be proved by
observing that the maximum and minimum error for for TC2 and TC3, reported
in Table 2, are (almost) equally distributed about the mean value. This is not the
case for TC1, in which the maximum value is much larger in magnitude than the
minimum one.
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Figure 7.2. Euler angles for the Test Case 1, # = [1,0,0] and dipole model
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Figure 7.3. Euler angles for the Test Case 2, 7 = [0, 0.5v/2, 0.5\/ﬂ and dipole model
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Figure 7.4. Euler angles for the Test Case 3, 7 = [0, 0.5v/2, 0.5\/5] and IGRF model

The behavior in time of the angular rates for the three test cases is plotted in
Figures showing that the dumbling phase is successfully concluded in 1.5
orbital periods at most, reaching the final value in the range +0.2 deg/sec.
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Figure 7.5. Euler angles for the Test Case 1, # = [1,0,0] and dipole model
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Figure 7.7. Euler angles for the Test Case 3, # = [0, 0.5v/2, 0.5\/5] and IGRF model

After validating the control section of the algorithm, the performance of the
estimation algorithms are evaluated. These are implemented using systolic array
architecture, based on the arrangement in equations and corresponding to
the resources indicated in Table [7.3] As in section [6.4] the Euler angles inferred
from the attitude estimation are compared to those calculated by the ode solver.
The comparison and the error are reported in Figures [7.8] and [7.9] for the worst
case w = [10,10, 10] deg /sec, h = 700km and i = 97.79 deg. The maximum errors
from HiL simulations are lower than those calculated from numerical analysis, and
correspond to Ay = 3.96 deg, A = 2.69 deg and Ay = 1.41 deg. The higher
accuracy of the real system is related to the higher sampling frequency of the real
hardware, corresponding to 100 Hz for the MEMS three-axis magnetometer and
set to 1000 Hz for the OBC. In fact, these values can not be set for the numerical
integrations, which are performed at a time step of 0.1 sec, to limit the computational
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time. Also the value of the MSE on the estimated A converges to a considerably
lower value, equal to 1.247e-8.
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Figure 7.8. Behavior of Euler angles during the detumbling and B-pointing in HiL
simulations for w = [10, 10, 10] deg /sec, h = 700km and i = 97.79 deg
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Table 7.3. Resources utilization and power required for the attitude and angular rates
estimation algorithms

Resource Utilization
Look Up Table 4738

Flip Flop 2576

DSP 30

Power [W] 0.277

Finally, the angular rates are examined, by comparison with the corresponding
values from the ode solver, producing the estimation errors shown in Figure
The steady state error of £0.2 deg/sec is reached in the settling time of 11771 sec,
approximately equal to 2 orbital periods.
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In conclusion, the Hil. simulations showed that the ADCS algorithms introduced
in Chapter [6] and previously verified numerically, are suitable for being implemented
with hardware commonly used on CubeSats. The performance of the implemented
algorithms confirm those from numerical simulations, indicating the benefit of higher
sampling frequency in producing a more accurate estimation on attitude. Constraints
related to the power usage, the properties of the power board and of the actuators,
limit the maximum magnetic dipole moment, thus the maximum control action.
This must be split into two segments, producing first the detumbling and then the
B-pointing. The change between the two phases is produced by a modification of
the control gains for the two algorithms. Taking advantage of the determination
algorithms, the switching condition can be defined in terms of the angular rates,
activating it when their value is smaller than some selected threshold.
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Chapter 8

Conclusions

This manuscript collects three years of research that focuses on space science
missions and aims at providing new techniques which can enhance solar system
exploration and low Earth orbit missions using CubeSats.

Low-energy trajectories are needed to achieve orbital transfers between the
celestial bodies in the solar system by means of small satellites. In particular, limiting
the transfer time is a strict constraint when using CubeSats, because their on-board
systems are based on COTS devices, which are not designed to operate in the hostile
space environment beyond Earth. Internal transfers, existing in the dynamical
framework of the CR3BP were selected based on this consideration. A Hamiltonian
description of the phase space surrounding the collinear equilibrium points L or
Lo, named the equilibrium region, was produced and the flow mappings in this
region were investigated. The analysis allowed characterizing three-dimensional
transit and capture orbits, based on their topological location in the equilibrium
region. Furthermore, correlations between the capture time and the behavior of the
osculating orbital elements at capture were identified for long-term ballistic captures.

The effects of the gravitational perturbation by a fourth body, such as the Sun,
were evaluated, proving they can have dramatic impact on the topological description
provided for the CR3BP. To mitigate or compensate these effects, low-thrust guidance
strategies were developed, allowing powered permanent capture and adjusting the
osculating orbital elements at capture. A comparative analysis was set, verifying
that the continuous thrust required is lower than that for traditional impulsive
maneuvers. Furthermore, the availability of thrusters compatible with the thrust
requirements for different scenarios was investigated. The analysis indicates that
recent ion-thrusters are suitable devices to produce permanent capture and make
small corrections to the orbital elements. When significant changes are required, the
use of monoprop thrusters seems to be the only solution compatible with CubeSat
mass, volume and power constraints.

The model proposed for the CR3BP was finally extended to the ER4BP, which
allows taking into account the presence of a fourth body, such as the Sun, and the
eccentric motion of the primaries from the early analysis (or design) phase. The use
of canonical transformations allowed defining a new set of coordinates that sets the
Hamiltonian function for the ER4BP in a form equivalent to that of the CR3BP in
the neighborhood of Li and Ly. Therefore, the systematic topological description of
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transit trajectories and capture orbits, obtained for the CR3BP, was extended to the
ER4BP. The advantage introduced using this model can be expressed in terms of:
(1) extended launch window, capture conditions were in fact verified regardless the
position of the primary causing the perturbation, and (2) savings in AV required,
because the higher accuracy of the model produces a more accurate injection into
the target orbit, therefore reducing the use of thrusters for orbital corrections.

For CubeSats operating in LEO, new techniques aimed at improving the reli-
ability of the ADCS were investigated, and discussed in the two final chapters of
the manuscript. A purely magnetic ADCS was developed, including two control
algorithms, producing the detumbling and pointing of the spacecraft, and two esti-
mation algorithms, to determine the angular rates and the attitude matrix, based
only on the input of a three-axis magnetometer. The algorithms were verified by
means of numerical analysis, proving their suitability in producing the desired tasks.
In particular, the detumbling algorithm is an implementation of the classical B-dot
algorithm, which ensures the orthogonality condition between the control vector,
the magnetic dipole moment produced by the magnetorquers, and the geomagnetic
field vector, increasing the efficiency. Magnetic pointing is performed without any
attitude information, with accuracy down to 10 deg, suitable for the ADCS proposed,
which is meant to be a backup solution to be activated if some complex scenarios
do not allow the correct use of the primary system or strategy. Attitude and an-
gular rate determination algorithm were verified as well, proving their robustness
under unknown or uncertain conditions at the deployment, by means of montecarlo
simulations.

A final verification on the performance and robustness of the ADCS was per-
formed by means of HiL. simulations, using a Helmholtz cage facility to recreate the
magnetic environment along the orbit and a real device, a 12-bit MEMS three-axis
magnetometer. The algorithms were implemented on the FPGA core of a CubeSat
OBC, after arranging them in the form of the Faddeev algorithm. This allows
taking advantage of systolic array architecture to increase the usage efficiency of the
OBC. HiL simulations verified the suitability of the control algorithms, proving the
results obtained from the numerical analysis, and allowed defining the accuracy of
the angular rate and attitude estimation algorithms, lower than, respectively, 0.2
deg/sec and 5/deg.

Even though the characterizing features of solar system and LEO mission show
different criticality and readiness level, the research performed for this thesis indicates
that, regardless of the aim of the mission, the development of space science using
CubeSats is now mature enough to lead the development of, and take advantage
from, new dedicated techniques for mission analysis, supporting the project from
the early design phase to experimental test.
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Appendix

Appendix A - Power series expansion of the non polyno-
mial terms of the Hamiltonian function for the CR3BP

The Hamiltonian function for the CR3BP is expressed by equation which, for
the sake of clarity, is reported below

1 1-—
H:5(P%+?§+?§)+(P1Q2—p2m)— ( N+M)
1 r9

Translating the origin of the system at L;
{(fl =q —Lig
p2=p2— Liy

The Hamiltonian function, up to an inessential constant, can be written as follows

1 B o B 1-—
H = B (p% + pa? —i—pg) + (p1g2 — P2q1) — 1 Liw — ( K + M) (8.1)
I} T2

The previous equation can be rearranged in a linear form after expanding in
power series the non polynomial terms, given below

L—p 1—pu
1 ~ 2 2 2%
(@ + p+ Liz)* + 63 + 3]
LAl H
T2

1
(@ =14 p+ Lig) + a3 + a3
Introducing the auxiliary variables

_2¢1 (Lig + ) +@1° + a3 + 63

¢ Low + 1

_ 2G1 (Lig +p—1)+ @2+ g3 + ¢
(Liw + p— 1)

Then the non polynomial terms can be rearranged as follows

n

l—p 1—pu
" |Lie + ol (1)

[SIE
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B p

- 1
"2 |Lig+p—1/(1+n)?

Therefore, the non polynomial terms can be set in a linear form from selecting the
second order terms of the expansions in £ and 7

-y 1-u ( 13 1354 4> 1y < 1>
= 1—— ~ — (1 — —
r1 |Lia + pl 6 5 2465 " o) |Lia + p <

" 1—p ( Lo LB, 185 4> 1—p ( 1)
Ll St - n to NP (12
ra |Lig+p— 1| (7 Liw+ 10— 1| "

21Ty 246

Producing the second order Hamiltonian function

1 . S - 1—p 0
Hy = = (pi + p2° +p3) + (142 — 2G1)— lL', - ( - ) +
2( ) o\ Liw ) (Lig+p—1)°
L—p <~2 L o 12) H <~2 L o 12)
SR S R N Sy | [ — - S 8.2
Tt aP \ 72758 LT 5% ) (82
According to the definition of L;,, the term in square brackets is zero, then
equation [8.2] reduces to equation [2.23]
1 - - - 1 1
Hy =3 (0 + 52 +13) + (a2 — o) — K <Q12 — 5% - 2(13)
with K = 1 2 + [
Appendix B - Power series expansion of the non poly-
nomial terms of the Hamiltonian function for the Sun-
Earth-Moon ER4BP
In this appendix, the series expansions in equation are developed in detail.
We consider first the expansion in e, reported below
*
oF , 3K()*[M2 ps 1 ] pi 01/
o L K*
el = o §+2(q1+q2+q3)+ Zrz de
where the superscript * indicates the function evaluated at point (e = 0, e, = 0, 1 /a = 0).
Noting that % = —cosf, K* =1, dl/” |* = —ﬁ%’? and
391 ‘* _
ap? 2| = [2ab,u,3 cos 0 (appi3 + aqy cos 3 cos € — age sin B cos € + ags sin €)] /a?
2

‘9p3 2|* = — [2appz cos O (—appuz + aqy cos B cos € + aga sin B cos € + agz sine)] /a

then %—ZP can be rearranged as follows

or ., _ p2 k3 1y 2 2
% ——C00|:r2++2((]1+QQ+Q3):|+
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0 1 1 2 cos 6
_ H2fi3ap COS (g1 08 3 cos € — ga sin fcos € + g3 sin ¢) < L] > _ u2u3ag cos < U3
rl* 3l a

Similarly for the expansion in e

or wi 01/7; -
8eb lz 8eb ]

i

Including the values

dm ‘* 0

802 2[* = [2apps cos Oy (apus + agy cos B cos e — agasin B cos € + agz sine)] /a?

8p3 2% = — [2app2 cos O (—appz + aqi cos 3 cos € + aga sin f cos € + ags sin €)] /a?
Produces

2 pi3ay cos Oy, (

1 )_,Ua,ugag cos 0y, ( K3
a

Beose — qzsin fcose + gy si )( .
COS D COS € Sin O COS € S1n €
q1 q2 q3 Tg‘* r%]* o2

3 T3

Finally the expansion in p;/a must be evaluated to complete the process

OF x 1ok 1 (91/’/"2 61/1"3 x| _ 1 125 8[)2 M3 apg
‘ =K 3 * + p2 | + p3 | — 3% 3% 3%

O /a il O /a Opr/a ril ra[*Opr/a  r3l* Opa/a

The first term can be neglected, because the system is studied in the proximity of

the binary system. The remaining terms can be calculated introducing the following
values for the partial derivatives

0,
aulﬁa =—-2(q1 +1)
Op2  __ 2appssin e(aq3+abu3 sine)  2(aqi+apps cos 5 cos €) (a—app3 cos B cos €) +
dpi/a a
_ 2apps3 cos esin B(agz— ab,ug sin 3 cos €)
a
Op3  __ _ 2apuzsine(agz—apuzsine)  2(agqi+apps cos B cos €)(atapp2 cos B cos €) +
oui/a a a
__ 2app2 cos esin B(aga+appe sin B cos €)
a

Appendix C - Linear form for the Hamiltonian function
for the Sun-Earth-Moon ER4BP

System is linearized about the collinear libration point L; or Lo of the CR3BP,
with coordinates L; = [L; 4,0,0,0, L; ;,0]. The goal is achieved by series expansion
of equation up to second order terms in ¢; and p;. The result is equivalent to
the linear Hamiltonian function for the CR3BP and a perturbation term which can
be absorbed, as shown in Appendix D by a canonical transformation. As a first step,
the origin of the coordinate system is translated to L;, by applying ¢ = q1 — L,
and po = pa — L. Then introducing the mass parameter p = ps/ (u2 + ps), the
non-polynomial terms of equation can be rearranged as in Appendix A

2 1—p
5 |Lig + | (1462

3|* B

12

A

12

Ty

3‘*

)

)
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B2 _ 1—p
3 |Lig + pl (1 +m)'?

producing

Lo 1—p 1—p 2 1.2 1.2
{rz |Lm+m3 ILi z+u|3 (ql 202 2‘13)

K3 2 1.2 1.2
= Tata 1P Tt (91~ 2% qu)

1 2 5.2 5.2

§’ - |Lz 1""/1‘ [ L, x+M|5 (ql 242 2q3>
Y 2— ~2 5.2 _ 5.2
= (el Vs s (ql 242 2‘13)

Introducing the previous values into equation results into equation

Appendix D - Canonical transformation absorbing per-
turbation terms for the Sun-Earth-Moon ER4BP

The second order terms in e, e, and up of equation can be absorbed by a
canonical transformation (q, p, 6y,6) — (Q, P) defined from the generating function
S verifying equation If the transformed coordinates [5.23] are introduced into
equation the perturbation terms can be expressed as follows

Fy = E1 (05,0) Q1 + E2(0y,0) Q2 + E3 (0, 0) Q3 + E4 (05,0)

The generating function can be determined starting from the general form of
order two reported below

S = q1 Pi+qaPatq3 Ps+f1 (0, 0) g1+ f2 (0, 0) Patf3 (05, 0) g2+ f4 (06, 0) Pr+f5 (63, 0) g3+ f6 (0, 0) P:
where the functions fi are selected according to the form of F;, such as
fi (B, 0) = bt cos  + b sin O + b, cos 3 + by sin 8

The change of coordinates associated to transformation is reported below

@ =Q1— fa p1=Pi+ fi
G2 = Q2 — f2 p2 =P+ f3
=Q3— f6 p3 =P+ f5

Introducing the above listed coordinates leads to the following expression (where
the superscript ’ indicates the derivative with respect to 8).

Then the value of the coefficients bj- must be selected to produce equation
corresponding to the following conditions

_f3+2(|L +‘3+f7"acl u]Li’$+u—1‘3)f4+f{+E1:0
~fi - (|L L+ fracl — plLis + p—1P) fo+ f5 + By = 0
T + fracl = plLig + 1 —1P) fo+ fi + B3 = 0
fi—f+fi=0
fat+ fa+fo=0

fs+fe=0
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The solutions, determined using symbolic algebra and the software Matlab, are
reported below

1 1—u .
bl = —FEycosf+ —— cos+ ———" cosf + F;sinf
! ‘Li,x+M’3 ‘Li,:n +,UJ_ 1’3
) mcose%— miu"_mcose—}—ElsinG—Egcose
27 tan 6
7 1—p
b2 = —cosf + — FEy
! (lLi,x+M!3 |Ligz +p—1[3
2
cos” 0 I 1—p
b= —— + —-E
b sind (\Li,w ol Lig +p— 1P )
] 1—p _
- |Li,otnl? + |Li,ot+p—1[3 %
1= — .
sin 0
b3 = F3sinf
b5 = —F3cosf

All the bé not indicated are equal to zero.

Appendix E - Power series expansion of the non polyno-
mial terms of the Hamiltonian function for the Jupiter-
Europa-lo ER4BP

The Hamiltonian function for the Jupiter-Europa-Io system modeled in the ER4BP
is introduced in equation The perturbations related to e and us can be isolated
by expanding the non-polynomial terms as reported below

3
_ pi Lo 9 o\ s oF . oF .
F(e,,ug) =T [;T}+ 5 (ql + 45 +Q3) =F +6E‘ +,Uz387'us| +0(€,,u,3)
where the superscript * indicates the function evaluated at point (e = 0, u3 = 0).
It can be noticed that K(0)* = 1 and R(t)* = a, therefore the term F* can be
expressed as follows

x| M1 K2 } 2 2 2

Similarly, the dimensionless distances 7} are determined based on the results aj = 0

ap(lfel%)

m, as reported below
P P

*
and a; =

1

{(Q1 — )’ + 3 + q%} ?
1

(@ —po +1° + 63 + 63

1

3

3

1
2] 2

{(ql — 2 — %COS(HP —0) 0086)2 + (qg - %Sin(ﬁp - 9))2 + (qg - %m(ep - 9)51116) ]
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The expression for the expansion in e is given below

de'  Oe = +2(q1+q2+q3)

3 *
81/77
+ 1D o ]

=1

ol/r; |* _

and introducing <+ __1 9pi

1
2r3 Oe

8—F]* = —cosf ['uf

leads to the following result

Lo, o o
9e = + B ((J1 + g3 +Q3)]

Similarly, the derivative in us can be expanded as follows

oF , 0 N ol/ry 01/rs op1 , 1

O =(M+M3)|=u1/1\+ 3 /3!=—‘§1*ﬂ\+3*

Ous Opuz \r1 713 Ous Oz T [* Ops 73]
where
o1 ey 001 22&;[((11—#2)008(0 —0)cose+ qasin (0, — 0) + g3 cos (A, — 0) sin €]
ous Oms a p p p

Merging the two equations above results into the expression for the partial derivative
in p13

oF H1 as . . 1
— == —= — cos (6, — 0) cose + gosin (6, — 0) + g3 cos (0,0) sin €]+ ——
e Ti)’|* a [(q1 — p2) ( D ) q2 ( D ) +a3 ( D ) ] r§’|*

Introducing the equations above results into equation (5.28|), whose order three
terms are reported below

_1 2 2 2 ~ M1 K2
H = B (pl + D3 +p3) + P1g2 — P2G1 — E - 7§+

3
/J{),{Q% % [¢1 cos (6, — 0) cose + qasin (6, — 8) + g3 cos (6, — 0) sine|} +
1

1
2y (@+d+ %3)] cost) + o(e, 13)

+e L5 5

Appendix F - Linear form and canonical transformation
for the Hamiltonian function of the Jupiter-Europa-lo
ER4BP

In order to set the Hamiltonian function for the ER4BP in its normal form, equation
should first be expanded in power series about the collinear equilibrium point
Ly or Lo, with coordinates L; = [L;,,0,0,0, L; ;,0]. It is worth noting that the
term 1{,3% in the equation can be neglected, because the motio is investigated far
from mg, obtaining the following expression for the Hamiltonian

G 6

1
H=Hy+ Hy = (p}+03+93) + P12 — p2 — 0 (qf—2—2)+
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+ecosf H2
L —po

3 — po % { 112 }qg { 12 ]q?%
+ecosd [—i—l}—&— l-——7—— |+ |l - = +
{ 11— pof? 2 1 —paf?] 2 1 —paf?] 2

+ c1(0p, ) g1 + c2(0p, 0)q2 + c3(0p, 0) g3+

3k 6 in (6, —0 (6, —0)
402 {{QCOSQ(QP 9)60326——+Sm(p )+cos Squ }4—
cose | 2] |12 |2
3ky (sin(0,—0)+1 cos (0 —0)sine + 1
{ ( p ) q% ( ) 2} +0(€ /1*3)
cos € | 2] | 2]
where ¢ = \qfizlli‘ + \q{+gi—1\3’ c1 = kycosf+kycos (0, —0), ca = QCO“ sin (0, — 0),
c3 = 7_’“2;3“6 cos (0, — 0), k1 = eugfl and ko = 74”2%‘2‘15 COS €.

The order three terms of equation can be absorbed by a canonical trans-
formation (q,p,0y,0) — (Q,P), producing H = Hs (Q,P) + H4(Q,P,6,,0). The
transformation is achived by introducing a generating function S such that

__ 08
__ 0S8
Q=5

The Hamiltonian function after the transformation is reported below

05 9(6,~0) , S
a(0,—0) 00 90

H(Q,P)=H(q,p),0p,0) +

The generating function can be defined starting from the general form reported
below

S =qPL+q@Ps+ f1(0p,0)q1 + f2(0p,0)Pa + f3(6,,0)q2 + f1(0p, 0)P1+

+q3Ps + f5(0p,0)q3 + f6(6p,0)Ps

where the functions f;(6,,6) have to be accurately selected to absorb order three
terms. The change of coordinates associated to transformation is reported below

@ =Q1— fa p=P+ fi
G2 =Q2— f2 p2 =P+ f3
q3=0Q3— fs p3 = P3+ f5

Introducing the above listed coordinates leads to the following expression (where
the superscript ” indicates the derivative with respect to 6)

1
§(P12+P22+P32)+P1Q2—P2Q1—00 <Q1—QQ—%’>+

+Pifi+ Pofs — Pifo+ Pafs+ Pofo+ Pify+ Psfs + Ps fg+
+Qa2f1 — Q1f3 + 2¢c0Q1 fa — coQafo + Q1f1 + Qafs — coQsfe + Qs fi+
+c1Q1 + c2Q2 + c3Q3
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The next step is setting to zero the terms in f; and ¢; in the previous equation.
According to the expressions of ¢; the following form for f;(6,,0) can be selected

£:(0,,0) = b1 cos 0 + b sin 0 + b\ cos (6, — 0) + b sin (6, — ) (8.4)

where the coefficients b;- can be determined introducing the new coordinates into
the transformed Hamiltonian, producing the following expression

Pifi+ Pofs — Pifo+ Pofs+ Pofy+ Pify + Psfs + Psfo+

+Q2f1 — Q1f3 +2bQ1f1 — c0Q2f2 + Q1f] + Qafs — bQs3fs + Qs f5+
+c1Q1 + c2Q2 +¢e3Q3 =0

The calculated values for the coefficients are reported below, where n = 6%”.

(B _ _k
bl - 2(c01—1)
pld) — _ Fi(co=2)

17 2¢o(co—-1)
b(l) Kk

2 2(co—1)
b(2) — _ k1

2 co(co—1) 5 )
@ " ”2—2"+00—%>
N

T ni4and +n2+(44co)—2con—2c5+2co
pd) — __ ka(n?—n—cot2-gos
3 nt4-4n34n?+(4+co)—2con—2c2+2co

ko (n3 —3n242n—con+co— %>

b(l) o 2cose

4 B n4+4n3+n2+(4+co)—QCon—ch+200
2

) _ o (2n—2—7n 2+ 20 +2

4 _n4+4n3+n2+(4+co)7200n72c(2)+2co

b(G) - _ ko tane

3 2(n2—2n—co+1)

b7 = by (n— 1)

All the bé not indicated are equal to zero. Based on the results in the system above,
the Hamiltonian can be obtained from the following change of coordinates

q1 = Q1 — b cosf — b cos (6, — 0)
g2 = Q2 — b3sinf — b3 sin (6, — 0)
q3 = Q3 — b§ cos (6, — 0)
p1 = Py + b}sin6 + bl sin (6, — 0)
p2 = Ps + b} cos 6 + b3 cos (6, — 0)
p3 = P3 + bisin (6, — 0)

Appendix G - Canonical transformation absorbing order
three terms for the Jupiter-Europa-lo ER4BP

The form of the order-three terms in equation is reported below, collecting
terms in Q and P

Hsz = a2000Q% + a1100Q1Q2 + a1010Q1P1 + a1001Q1 P2 + a0200Q% + a0110Q2P1+
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+a0101Q2Ps + ao020PE + aoo11 P1Ps + aoo02P3 + baoQ3 + b11Q3P3 + boa Pi+
+b10Q3 + bo1 P3

These order three terms can be absorbed by means of a canonical transformation
producing the change of coordinates (Q,P,6,,0) — (R,S), defined by the following
generating function

S = Q151 + Q252 + Q353 + Q1Q2 + Q% + Q3 + Q3 + f2000Q7 + for00Q3+

+£00205F + f000253 + frz22ST + Fraz2Ss + f1001Q152 + foo11.51 52
+f1000Q1 + f0100Q2 + fo01051 + fo001.S2 + g20Q3 + G025 + gu2S5+
+910Q3 + 90153

The functions f; ; r.1(0p,0) and g; ;(6p,6) depend on some coefficients b
which should be selected to verify the following equality

oS  0(0,—6) 05 B
a6, —0) 00 20
A2
2

Aiming at investigating the effects of resonance on quasi-periodic orbits (Q; = 0,
P, =0), then the generating function reduces to

S = Q151 + Q252 + Q353 + Q3 + Q3 + f0200Q3 + f000253 + frzz2S5+

+f0100Q2 + fo00152 + 920Q3 + 90253 + 92253 + 910Q3 + 90153

Corresponding to the following change of coordinates

Q1= R

Q2 = Ro — 253(fooo2 + frzz2) — fooor

Q3 = R3 — S3(g02 + g11) — go1

P =5

Py = 2Ry(1 + fo200) + S2(1 — 4 fo002 — 4 feza2) — 2fo001 + fo100
P3 = 2R3(1 + goo) + S3(1 — 4g02 — 4911) — 2901 + g10

(n)
i7j7k7

, and b))

HQ(Ra S) + H3(R7 S) +

A1

= pR1S1+ 5 (B3 + 83) + 57 (B3 + 53)

Appendix H - Determination of stationary points for the
Jupiter-Europa-lo ER4BP

It is known from the problem of small denominators that the canonical transfor-
mation discussed in Appendix H defaults in the case of resonance, that is when the
(n) (n)

: or by, is close to zero.
1,5,k,1 (]

In fact, the denominator of b%) = b(()ll), b%) = b(()21) and bg%) = b(()ﬁl) is equal to zero for

n = i\ + €. Considering the Jupiter-Europa-Io system, n = 2.01 and Ao = 2.15,
therefore, the residual order-three term of H is given by

denominator of some coeflicients, b

H3® =2 (R + S3) (b%) cos? 6 + b%) cosfsin 0 + bg%) sin? 9)
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A periodic solution for the residual term H3®® can be calculated based on the

following property of transformation [2.31] [165]

Ry = p3el?®s
S3 = jpze P

Applying the property above to the equation produces the following form for
the residual terms of the Hamiltonian function

H = % <j67j¢>3 . €j¢3) Kb%) _ bg%)) (€2j9 4 672]'9) n b%) (62]'0 _ 6723‘9) i 2b%) o 2b§%)

The previous equation can be rearranged using Euler’s formula on the exponential
terms

Hye* = =22 (0] + 057 + 57 ) cos (65 —20)

The dependence on the true anomaly 6 can be absorbed by introducing the
canonical transformation (ps, ¢3,6) — (ps3, ¢3) defined by the following generating
function

S = p3d3 — 2ep30

The corresponding change of coordinate is reported below (the variables not reported
are not transformed)

p3 = p3
¢3 = ¢3 + 2¢0
which produces in the end

Hye* = =22 (bl +b{5) +bi5) ) cos ¢ — 267

Stationary points exist for the equation above, corresponding to

~ TEes

{qggvszkiﬂ', keZ

43
D, @O
blO +b10 +b10
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