
ORIGINAL RESEARCH
published: 23 July 2019

doi: 10.3389/fnsys.2019.00033

Frontiers in Systems Neuroscience | www.frontiersin.org 1 July 2019 | Volume 13 | Article 33

Edited by:

Preston E. Garraghty,

Indiana University Bloomington,

United States

Reviewed by:

Sacha Jennifer van Albada,

Julich Research Centre, Germany

Sergio E. Lew,

University of Buenos Aires, Argentina

*Correspondence:

Elena Pastorelli

elena.pastorelli@roma1.infn.it

Received: 20 March 2019

Accepted: 08 July 2019

Published: 23 July 2019

Citation:

Pastorelli E, Capone C, Simula F,

Sanchez-Vives MV, Del Giudice P,

Mattia M and Paolucci PS (2019)

Scaling of a Large-Scale Simulation of

Synchronous Slow-Wave and

Asynchronous Awake-Like Activity of

a Cortical Model With Long-Range

Interconnections.

Front. Syst. Neurosci. 13:33.

doi: 10.3389/fnsys.2019.00033

Scaling of a Large-Scale Simulation
of Synchronous Slow-Wave and
Asynchronous Awake-Like Activity of
a Cortical Model With Long-Range
Interconnections
Elena Pastorelli 1,2*, Cristiano Capone 1,3, Francesco Simula 1, Maria V. Sanchez-Vives 4,5,

Paolo Del Giudice 3, Maurizio Mattia 3 and Pier Stanislao Paolucci 1

1 INFN, Sezione di Roma, Rome, Italy, 2 PhD Program in Behavioural Neuroscience, “Sapienza” University, Rome, Italy,
3National Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome, Italy, 4 Systems

Neuroscience, IDIBAPS, Barcelona, Spain, 5Department of Life and Medical Sciences, ICREA, Barcelona, Spain

Cortical synapse organization supports a range of dynamic states on multiple spatial

and temporal scales, from synchronous slow wave activity (SWA), characteristic of

deep sleep or anesthesia, to fluctuating, asynchronous activity during wakefulness (AW).

Such dynamic diversity poses a challenge for producing efficient large-scale simulations

that embody realistic metaphors of short- and long-range synaptic connectivity. In fact,

during SWA and AW different spatial extents of the cortical tissue are active in a given

timespan and at different firing rates, which implies a wide variety of loads of local

computation and communication. A balanced evaluation of simulation performance and

robustness should therefore include tests of a variety of cortical dynamic states. Here,

we demonstrate performance scaling of our proprietary Distributed and Plastic Spiking

Neural Networks (DPSNN) simulation engine in both SWA and AW for bidimensional

grids of neural populations, which reflects the modular organization of the cortex. We

explored networks up to 192× 192modules, each composed of 1,250 integrate-and-fire

neurons with spike-frequency adaptation, and exponentially decaying inter-modular

synaptic connectivity with varying spatial decay constant. For the largest networks the

total number of synapses was over 70 billion. The execution platform included up to 64

dual-socket nodes, each socket mounting 8 Intel Xeon Haswell processor cores @ 2.40

GHz clock rate. Network initialization time, memory usage, and execution time showed

good scaling performances from 1 to 1,024 processes, implemented using the standard

Message Passing Interface (MPI) protocol. We achieved simulation speeds of between

2.3 × 109 and 4.1 × 109 synaptic events per second for both cortical states in the

explored range of inter-modular interconnections.

Keywords: spiking neural network, slow wave activity, asynchronous activity, long range interconnections,

distributed simulation, strong scaling, weak scaling, large-scale simulation

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://www.frontiersin.org/journals/systems-neuroscience#editorial-board
https://doi.org/10.3389/fnsys.2019.00033
http://crossmark.crossref.org/dialog/?doi=10.3389/fnsys.2019.00033&domain=pdf&date_stamp=2019-07-23
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:elena.pastorelli@roma1.infn.it
https://doi.org/10.3389/fnsys.2019.00033
https://www.frontiersin.org/articles/10.3389/fnsys.2019.00033/full
http://loop.frontiersin.org/people/634196/overview
http://loop.frontiersin.org/people/676962/overview
http://loop.frontiersin.org/people/1171/overview
http://loop.frontiersin.org/people/863/overview
http://loop.frontiersin.org/people/1001/overview
http://loop.frontiersin.org/people/634175/overview

Pastorelli et al. Scaling of Distributed Cortical Simulation

1. INTRODUCTION

At the large scale, the neural dynamics of the cerebral cortex
result from an interplay between local excitability and the pattern
of synaptic connectivity. This interplay results in the propagation
of neural activity. A case in point is the spontaneous onset and
slow propagation of low-frequency activity waves during the deep
stages of natural sleep or deep anesthesia (Hobson and Pace-
Schott, 2002; Destexhe and Contreras, 2011; Sanchez-Vives and
Mattia, 2014; Reyes-Puerta et al., 2016).

The brain in deep sleep expresses slow oscillations of activity
at the single-neuron and local network levels which, at a
macroscopic scale, appear to be synchronized in space and time
as traveling waves (slow-wave activity, SWA). The “dynamic
simplicity” of SWA is increasingly being recognized as an ideal
test bed for refining and calibrating network models composed of
spiking neurons. Understanding the dynamical and architectural
determinants of SWA serves as an experimentally grounded
starting point to tackle models of behaviorally relevant, awake
states (Han et al., 2008; Curto et al., 2009; Luczak et al., 2009).
A critical juncture in such a logical sequence is the description
of the dynamic transition between SWA and asynchronous,
irregular activity (AW, asynchronous wake state) as observed
during fade-out of anesthesia, for instance, the mechanism of
which is still a partially open problem (Curto et al., 2009; Steyn-
Ross et al., 2013; Solovey et al., 2015). To help determine the
mechanism of this transition, it may be of interest to identify
the factors enabling the same nervous tissue to express global
activity regimes as diverse as SWA and AW. Understanding this
repertoire of global dynamics requires high-resolution numerical
simulations of large-scale networks of neurons which, while
keeping a manageable level of simplification, should be realistic
with respect to both non-linear excitable local dynamics and to
the spatial dependence of the synaptic connectivity (as well as
the layered structure of the cortex) (Bazhenov et al., 2002; Hill
and Tononi, 2005; Potjans and Diesmann, 2014; Krishnan et al.,
2016).

Notably, efficient brain simulation is not only a scientific tool,

but also a source of requirements and architectural inspiration

for future parallel/distributed computing architectures, as well

as a coding challenge on existing platforms. Neural network

simulation engine projects have focused on: flexibility and
user friendliness, biological plausibility, speed and scalability
[e.g., NEST (Gewaltig and Diesmann, 2007; Jordan et al.,
2018), NEURON (Hines and Carnevale, 1997; Carnevale
and Hines, 2006), GENESIS (Wilson et al., 1989), BRIAN
(Goodman and Brette, 2009; Stimberg et al., 2014)]. Their
target execution platforms can be either homogeneous or
heterogeneous (e.g., GPGPU-accelerated) high-performance
computing (HPC) systems, (Izhikevich and Edelman, 2008;
Nageswaran et al., 2009; Modha et al., 2011), or neuromorphic
platforms, for either research or application purposes [e.g.,
SpiNNaker (Furber et al., 2013), BrainScaleS (Schmitt et al.,
2017), TrueNorth (Merolla et al., 2014)].

From a computational point of view, SWA and AW pose
different challenges to simulation engines, and comparing the
simulator performance in both situations is an important element

in assessing the general value of the choices made in the
code design. During SWA, different and limited portions of
the network are sequentially active, with a locally high rate
of exchanged spikes, while the rest of the system is almost
silent. On the other hand, during AW the whole network is
homogeneously involved in lower rate asynchronous activity.
In a distributed and parallel simulation framework, this raises
the question of whether the computational load on each
core and the inter-process communication traffic are limiting
factors in either cases. We also need to consider that activity
propagates for long distances across the modeled cortical patch,
therefore the impact of spike delivery on the execution time
depends on the chosen connectivity. Achieving a fast and
flexible simulator, in the face of the above issues, is the
purpose of our Distributed and Plastic Spiking Neural Networks
(DPSNN) engine. Early versions of the simulator (Paolucci
et al., 2013) originated from the need for a representative
benchmark developed to support the hardware/software co-
design of distributed and parallel neural simulators. DPSNN
was then extended to incorporate the event-driven approach of
Mattia and Del Giudice (2000), implementing a mixed time-
driven and event-driven strategy similar to the one introduced
in Morrison et al. (2005). Here, we report the performances
of DPSNN in both slow-wave (SW) and AW states, for
different sizes of the network and for different connectivity
ranges. Specifically, we discuss network initialization time,
memory usage and execution times, and their strong and weak
scaling behavior.

2. MATERIALS AND METHODS

2.1. Description of the Distributed
Simulator
DPSNN has been designed to be natively distributed and parallel,
with full parallelism also exploited during the creation and
initialization of the network. The full neural system is represented
in DPSNN by a network of C++ processes equipped with an
agnostic communication infrastructure, designed to be easily
interfaced with both Message Passing Interface (MPI) and
other (custom) software/hardware communication systems. Each
C++ process simulates the activity of one or more clusters of
neighboring neurons and their set of incoming synapses. Neural
activity generates spikes with target synapses in other processes;
the set of “axonal spikes” is the payload of the associated
exchanged messages. Each axonal spike carries the identity of
its producing neuron and its original time of emission [AER,
Address Event Representation (Lazzaro et al., 1993)]. Axonal
spikes are only sent to target processes where at least one target
synapse exists.

The memory cost of point-like neuron simulation is
dominated by the representation of recurrent synapses which,
in the intended biologically plausible simulations, are numbered
in thousands per neuron. When plasticity support is switched
off, the local description of each synapse includes only the
identity of the target and source neurons, the synaptic weight,
the transmission delay from the pre- to the post-synaptic neuron,

Frontiers in Systems Neuroscience | www.frontiersin.org 2 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

and an additional optional identifier for possible different types
of synapse (see Table 1).

When the synaptic plasticity support is switched on, each
synapse takes note of its own previous activation time. For
every post-synaptic neuron spike and synaptic event a Spike-
timing-dependent plasticity (STDP) contribution is computed
using double floating point precision. Individual STDP events
contribute to synaptic Long Term Potentiation (LTP) and
Depression (LTD) through a first order low pass filter operating
at a longer timescale than that of neural dynamics. Intermediate
computations are performed in double precision, while the status
of the low-pass filter is stored in the synaptic representation using
single floating point precision. In the present work, synaptic
plasticity is kept off.

During the initialization phase only, each synapse is
represented at both the processes storing the source and target
neuron because, in the current implementation, each process
sends to each member in the subset of processes to be connected
a single message requesting the creation of all needed synaptic
connections. This memory overhead could be reduced by
splitting the generation of connection requests in group, at the
price of a proportional increase in the number of communication
messages needed by the initialization phase. Indeed this is the
moment of peak memory usage. Afterwards, the initialization
synapses are stored exclusively in the process-hosting target
neurons. For each process, the list of all incoming synapses is
maintained. The synaptic list is double-ordered: synapses with
the same delay are grouped together and are further ordered by
presynaptic neuron index as in Mattia and Del Giudice (2000).
Incoming spikes are ordered according to the identity of the
presynaptic neurons. The ordering of both the synaptic list and
incoming spikes helps a faster execution of the demultiplexing
stage that translates incoming spikes into synaptic events because
it increases the probability of contiguous memory accesses while
exploring the synaptic list.

Because of the high number of synapses per neuron the
relative cost of storing the neuron data structure is relatively
small. It mainly contains the parameters and status variables
used to describe the dynamics of the single-compartment point-
like neuron. Moreover, it also contains the queue of input
spikes (both recurrent and external) that arrived during the
previous simulation time step, with their associated post-synaptic
current value and time of arrival. External spikes are generated

TABLE 1 | Representation of recurrent synapses. Static synapses cost 12 bytes

per synapse. Plasticity support adds a cost of 8 bytes per synapse.

Synaptic representation

Static (12 bytes/synapse) Plasticity (8

bytes/synapse)

Field Source

neuron

ID

Target

neuron

ID

Weight Delay Kind Last

spiking

time

Derivative

Size

(byte)

4 4 2 1 1 4 4

as a Poissonian train of synaptic inputs. In the neuron data
structure, double-precision floating-point storage is adopted for
the variables used in the calculation of the membrane potential
dynamics, while all the other variables and constant parameters
related to the neuron are stored using single precision. Also, we
opted for double precision floating point computations, because
of the dominance of the cost related to the transport and memory
accesses while distributing neural spikes to synapses.

In DPSNN there is no memory structure associated with
external synapses: for each neuron, for each incoming external
spike the associated synaptic current is generated on the fly from
a Gaussian distribution with assigned mean and variance (see
section 2.2); therefore external spikes have a computational cost
but a negligible memory cost. The described queuing system
ensures that the full set of synaptic inputs, recurrent plus external,
are processed using an event-driven approach.

2.1.1. Execution Flow: Overview of the Mixed Time-

and Event-Driven Simulation Scheme
There are two phases in a DPSNN simulation: (1) the creation of
the structure of the neural network and its initialization; (2) the
simulation of the dynamics of neurons (and synapses, if plasticity
is switched on). For the simulation phase we adopted a combined
event-driven and time-driven approach partially inspired by
Morrison et al. (2005). Synaptic events drive the neural dynamics,
while the message passing of spikes among processes happens at
regular time steps, which must be set shorter than the minimum
synaptic delay to guarantee the correct causal relationship in the
distributed simulation. The minimum axo-synaptic delay sets the
communication time step of the simulation, in our case 1ms.

Figure 1 describes the main blocks composing the execution
flow and the event- or time-driven nature of each block. The
simulation phase can be broken down into the following phases:
(1) identification of the subset of neurons that spiked during
the previous time step, and (when plasticity is switched on)
computation of an event-driven STDP contribution; (2) spikes
are sent to the cluster of neurons where target synapses exist
(inter-process communication blocks in the figure); (3) the list
of incoming spikes to each process is placed into the double-
ordered synaptic list, waiting for a number of time steps that
match the synaptic delays, at which point the corresponding
target synapses are activated; (4) synapses inject their event into
queues that are local to their post-synaptic neuron and compute
the STDP plasticity contribution; (5) each neuron sorts the lists of
input events produced by recurrent and external synapses; (6) for
each event in the queue, the neuron integrates its own dynamic
equations using an event-driven solver. Periodically, at a slower
time step (1 s in the current implementation), all synapses modify
their efficacies using the integrated plasticity signal described
above. Later sections describe the individual stages and data
representation in further detail.

2.1.2. Spike Messages: Representation and

Communication
Spike messages are defined according to an AER, where each
spike is represented by the identity of the spiking neuron, and
the spiking time. Spikes sharing a target process (i.e., targeting

Frontiers in Systems Neuroscience | www.frontiersin.org 3 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

FIGURE 1 | Execution flow. Each software process composing a DPSNN simulation represents one (or more) clusters of spatially neighboring neurons and their

incoming synapses. Each process iterates over the blocks listed here which simulates the activity of local neurons and incoming synapses, their plasticity and the

exchange of messages through axo-dendritic arborizations. It is a sequential flow of event-driven and time-driven computational and communication (inter- and

intra-process) blocks (see the label on the left of each block). The measure of the relative execution times of the blocks is used to guide the optimization effort and to

drive the co-design of dedicated hardware/software architectures.

Frontiers in Systems Neuroscience | www.frontiersin.org 4 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

the cluster of neurons managed by a process) are packed into
“axonal spikes” messages that are delivered from the source
process to its target processes during the communication phase.
During execution, the “axon” arborization is managed by the
target process in order to reduce the network communication
load. Its construction during the initialization phase involves the
following steps: in a “fan-out” step, each process notifies the
processes which will host the target synapses of its own neurons.
In the next “fan-in” step, each target process stores its own
list of source neurons, and the associated double-ordered list
of incoming synapses. For details about the initial construction
of the connectivity infrastructure and the delivery of spiking
messages see Supplementary Material.

2.1.3. Bidimensional Grids of Cortical Columns and

Their Mapping Onto Processes
Neural networks are organized in this study as bidimensional
grids of modules (mimicking cortical columns) as in Capone
et al. (2019b). Each module is composed of 1,250 point-like
neurons, and further organized into subpopulations. The set of
cortical columns can be distributed over a set of processes (and
processors): each process can either host a fraction of a column
(e.g., ½, ¼), a whole single column, or several columns (up to 576
columns per process for the experiments reported in this paper).
In this respect, our data distribution strategy aims to store in
contiguous memories neighboring neurons and their incoming
synapses. As usual in parallel processing, for a given problem
size the performance tends to saturate and then to worsen, as
it is mapped onto an excessively large number of processors, so
that for each grid size an optimal partitioning onto processes is
heuristically established, in terms of the performance measure
defined in section 2.4.

Each process runs on a single processor; if hyperthreading
is active, more than one process can be simultaneously
executed on the same processor. For the measures in this
paper, hyperthreading was deactivated, so that one hardware
core always runs a single process. In DPSNN, distributing
the simulation over a set of processes means that both the
initialization and the run phases are distributed, allowing the
scaling of both phases with the number of processes, as
demonstrated by the measures reported in section 3.

2.2. Model Architecture and Network
States
For each population in the modular network, specific parameters
for the neural dynamics can be defined, as well as specific
intra- and inter-columnar connectivity and synaptic efficacies.
Connectivity among different populations can be modeled with
specific laws based on distance-dependent probability, specific to
each pair of source and target subpopulation. By suitably setting
the available interconnections between different populations,
cortical laminar structures can also be potentially modeled in the
simulation engine.

The grids (see Table 2) are squares in a range of sizes
(24 × 24, 48 × 48, 96 × 96, 192 × 192). Each local module
is always composed of K = 1, 250 neurons, further subdivided
into subpopulations. We implemented a ratio of 4:1 between

TABLE 2 | Configurations used for the scaling measures of DPSNN.

Grid Number of

columns

Number of

neurons

Number of synapses MPI proc

Recurrent Total Min Max

24 × 24 576 0.72M 0.8G 1.1G 1 64

48 × 48 2,304 2.88M 3.2G 4.4G 4 256

96 × 96 9,216 11.52M 12.9G 17.6G 64 1,024

192 × 192 36,864 46.08M 51.8G 70.3G 1024 1,024

excitatory and inhibitory neurons (KI = 250 neuron/module);
in each module, excitatory neurons (E) were divided into two
subpopulations: KF = 250 (25%) strongly coupled “foreground”
neurons (F), having a leading role in the dynamics, and KB =
750 (75%) “background” neurons (B) continuously firing at a
relatively low rate. Populations on the grid are connected to each
other through a spatial connectivity kernel. The probability of
connection from excitatory neurons decreases exponentially with
the inter-module distance d:

Ctsλ(d) = C0
tsλ × exp(

−d

λ
) . (1)

More specifically, d is the distance between the source (s =

{F,B}), and target (t = {F,B, I}) module, and λ a characteristic
spatial scale of connectivity decay. d and λ are expressed using
inter-modular distance units (imd). For the simulations here
described, the translation to physical units sets imd in the range
of a few hundreds micrometers. Simulations are performed
considering different λ values (0.4, 0.5, 0.6, 0.7) imd, but C0

tsλ
is set so as to generate the same mean number of projected
synapses per neuron (Mt = 0.9 ∗ Kt , t = {F,B, I}) for
all λ values. Connections originating from inhibitory neurons
are local (within the same local module) and also in this
case Mt = 0.9 ∗ Kt , t = {F,B, I}. All neurons of the
same type (excitatory/inhibitory) in a population share the
same mean number of incoming synapses. The connectivity
has open boundary conditions on the edges of the two-
dimensional surface.

Synaptic efficacies are randomly chosen from a Gaussian
distribution with mean Jts and SD 1Jts, chosen in different
experiments so as to set the system in different working regimes
and simulate different states. The procedure for the selection of
the efficacies is based on a mean-field method described below.
Each neuron also receives spikes coming from neurons belonging
to virtual external populations, collectively modeled as a Poisson
process with average spike frequency νext and synaptic efficacy
Jext . Excitatory neurons are point-like leaky integrate-and-fire
(LIF) neurons with spike frequency adaptation (SFA) (Gigante
et al., 2007; Capone et al., 2019b). SFA is modeled as an activity-
dependent self-inhibition, described by the fatigue variable c(t).
The time evolution of the membrane potential V(t), and c(t), of

Frontiers in Systems Neuroscience | www.frontiersin.org 5 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

excitatory neurons between spikes is governed by:

V̇ = −V−E
τm

− gc
c
Cm

+
∑

Jiδ(t − ti − δi)+
∑

Jiextδ(t − t
poiss
i)

ċ = − c
τc
+ αc

∑

k δ(t − t
(k)
sp)

(2)
τm is the membrane characteristic time, Cm the membrane
capacitance, and E the resting potential. SFA is not considered
for inhibitory neurons; that is, in (2), the second equation and
the gc

c
Cm

term in the first are absent. Incoming spikes, generated
at times ti, reached the target neuron with delay δi and provoked
instantaneous membrane potential changes of amplitude Ji.
Alike, external stimuli produce a Jiext increment in the membrane

potential, with t
poiss
i representing the spike times generated by a

Poisson distribution of average νext . An output spike at time t
(k)
sp

was triggered if the membrane potential exceeded a threshold
Vθ . On firing, the membrane potential was reset to Vr for a
refractory period τarp, whereas c was increased by the amount
αc. Once the network connectivity and the neural dynamics have
been defined, synaptic efficacies and external stimuli can be set to
determine the dynamical states accessible to the system, bymeans
of mean-field theory.

We elaborated a dynamical mean-field description for our
simulations. We assume that the input received by the different
neurons in a module are independent but are conditioned by
the same (and possibly time-dependent) mean and variance of
the input synaptic current (Brunel and Hakim, 1999; Mattia and
Del Giudice, 2002).

The gain function φi for this kind of neurons was firstly
found by Ricciardi (1977) as the first-passage time (FPT) of the
membrane potential to the firing threshold, for an integrate-
and-fire neuron with stationary white noise input current, in the
diffusion approximation.

Spike frequency adaptation is an important ingredient for
the occurrence of slow oscillations in the mean field dynamics
(Gigante et al., 2007; Capone et al., 2019b).

The mean-field dynamics for the average activity νi, i =

{F,B, I} is determined by the gain functions φi as follows:

(F,B) :

ν̇i =
φi(

−→
ν ,−→c)−νi

τE

ċi = −
ci
τc
+ αcνi

; (I) : ν̇i =
φi(

−→
ν)− νi

τI
(3)

where τE and τI are phenomenological time constants. The
interplay between the recurrent excitation embodied in the gain
function, and the activity-dependent self-inhibition, is the main
driver of the alternation between a high-activity (Up) state and
a low-activity (Down) state (Mattia and Sanchez-Vives, 2012;
Capone et al., 2019b).

In the mean-field description of the neural module, synaptic
connectivity is chosen so as to match the total average synaptic
input the neurons would receive inside the multi-modular
network. The fixed points of the dynamics expressed by Equation
(3) can be analyzed using standard techniques (Strogatz, 2018).
The nullclines of the system (where ν̇ = 0 or ċ = 0) cross at fixed
points that can be predicted to be either stable or unstable. In the

simulations described here, the strengths of recurrent synapses
Jt,s connecting source population s and target population t, and
of external synapses Jt,ext , is randomly chosen from a Gaussian
distribution with mean Jt,s and variance 1Jt,s = 0.25× Jt,s.

We relied on mean-field analysis to identify neural and
network parameters setting the network’s modules in SW or AW
dynamic regimes. Figure 2A shows an example of nullclines for
the mean-field equations (3) of a system displaying SW. The
black S-shaped line is the nullcline for the rate ν while the red
straight line is the one for the fatigue variable c (for details see
Mattia and Sanchez-Vives, 2012; Capone et al., 2019b). The stable
fixed point, at the intersection of the nullclines, has a low level
of activity and is characterized by a small basin of attraction:
the system can easily escape from it thanks to the noise, and
it gets driven toward the upper branch of the ν nullcline from
which, due to fatigue, it is attracted back to the fixed point, thus
generating an oscillation (see Figure 2B).

Network parameters can also be set in order to have an
asynchronous state, mainly by setting a lower Foreground-to-
Foreground (FF) synaptic efficacy, which generates a more linear
ν nullcline close to the fixed point (see Figure 2C). In this case
the basin of attraction of the fixed point is larger, and oscillations
do not occur, resulting in a stationary asynchronous state (see
Figure 2D), in which neural activity fluctuates around the mean-
field fixed point. Table S1 reports the complete list of synaptic
parameters for both SW and AW states.

2.3. Neural Activity Analysis
The simulation generates the spikes produced by each neuron in
the network. From these, the time course of the average firing rate
for each subpopulation in the network can be computed using
an arbitrary sampling step, which here we set to be 5 ms. Power
spectra are computed using the Welch method (see Figures 6B,E
for examples of SW andAWpower spectra including delta band).

A proxy to experimentally acquired multi-unit activity
(MUA(t)) is computed as the average firing rate of a simulated
module. In similarity with experimental data analysis (Capone
et al., 2019b) we considered the logarithm of such signal

(log MUA(t)
MUAdown

) where the MUAdown is the average MUA(t) in

the Down state. A zero mean white noise is added to emulate
unspecific background fluctuations from neurons surrounding
the module. The variance of such noise (0.5) was chosen to match
the width of experimental log MUA(t)

MUAdown
distributions for bistable

neural populations in their Down state.
For SW, the MUA(t) signal alternated between high and

low activity states (Up and Down states). T(x, y), the Down-
to-Up transition time, is determined by a suitable threshold
and is detected for each point in the spatial grid, defining the
propagation wavefront. V(x, y), the absolute value of wavefront
speed, can be computed as

V(x, y) =
1

√

(
∂T(x,y)

∂x)2 + (
∂T(x,y)

∂y)2
(4)

The average speed during the collective Down-to-Up transitions
is obtained by averaging V(x, y) over all the simulated
positions (x, y).

Frontiers in Systems Neuroscience | www.frontiersin.org 6 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

FIGURE 2 | Dynamical representation of the SW and AW states. (A) Phase space representation of mean-field analysis with a weakly stable fixed point. (B) Firing-rate

time course for an example module, for foreground, background, and inhibitory sub-populations (respectively in black, blue, and red) in the SW state. (C) Phase space

representation of mean-field analysis with a stable fixed point at a high level of activity. (D) Firing-rate time course for an example module, for foreground, background,

and inhibitory sub-populations (respectively in black, blue, and red) in the AW state.

2.4. Performance Measures
Performance is quantified in terms of “strong scaling” and “weak
scaling”: the former refers to keeping the problem size fixed and
varying the number of hardware cores, while the latter refers to
the increase in equal proportions of the problem size and the
number of hardware cores.

As a performance measure we computed the equivalent
synaptic events per second as the product of the total number
of synapses (recurrent and external) and the number of spikes
occurred across the whole simulation, divided by the elapsed
execution time. This way, a comparison of the simulation cost
among different problem sizes and hardware/software resources
(core/processes) can be captured in a single graph. Similarly, we
defined a convenient metric to evaluate the memory efficiency
of a simulation: by dividing the total memory required by
the simulation by the number of recurrent synapses to be
represented. Indeed, as stated in section 2.1 we expect the
memory usage to be dominated by the representation of synapses
which are thousands per neuron.

Scalability measurements were taken on different neural
network sizes, varying the size of the grid of columns and, for

each size, distributing it over a different span of MPI processes.
We selected four grid sizes: 24 × 24 columns, including 0.7M
neurons and 1.1G synapses; 48 × 48 columns including 2.8M
neurons and 4.4G synapses; 96 × 96 columns including 12M
neurons and 17.6G synapses; 192 × 192 columns including
46M neurons and 70G synapses. The number of processes
over which each network size was distributed varied from a
minimum, bounded by memory, and a maximum, bounded by
communication or HPC platform constraints (see Table 2). For
the 192×192 configuration, only one measure was taken because
ofmemory requirements, corresponding to a run distributed over
1,024 MPI processes/hardware cores.

Execution times for SW were measured across the time
elapsed between the rising edges of two subsequent waves, and
for AW across a time span of 3 s. In both cases, initial transients
were omitted.

2.5. Validation of Results and Comparison
of Performances
We used NEST version 2.12, the high-performance general
purpose simulator developed by the NEST Initiative, as a

Frontiers in Systems Neuroscience | www.frontiersin.org 7 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

reference for the validation of results produced by the specialized
DPSNN engine and for the comparison of its performances
(speed, initialization time, memory footprint). The comparison
was performed for both SW and AW dynamical states, for a
network of 4.4G synapses (48× 48 grid of columns). We assessed
the correctness of results using power spectral density (PSD)
analysis of the temporal evolution of the firing rates of each
subpopulation. Figure 3 reports an example of this comparison,
showing the PSD match of NEST and DPSNN for each single
subpopulation in a randomly chosen position inside the grid of
columns. In AW state the average firing rate is about 8.8Hz with
about 1125 synapses per neuron. Not surprisingly, NEST started
to converge to the production of stable Power Spectral Densities
only when the integration time step was reduced down to 0.1ms.
We used this time step for all simulations used for comparison
with DPSNN.

2.6. Execution Platforms
The benchmark measures assessing the DPSNN scalability in
terms of run time, initialization time, and memory usage
herein described, were performed on the Galileo server platform
provided by the CINECA consortium. Galileo is a cluster of 516
IBM nodes, each of which includes 16-cores, distributed on two
Intel Xeon Haswell E5-2630 v3 octa-core processors clocked at
2.40 GHz. The nodes are interconnected through an InfiniBand
network. Due to the specific configuration of the server platform,
the maximum-allowed partition of the server includes 64 nodes.
Hyperthreading is disabled on all cores, therefore the number
of MPI processes launched during each run exactly matches
the hardware cores, with a maximum of 1,024 hardware cores
(or equivalently MPI processes) available for any single run. In
the present version of the DPSNN simulator, parameters cannot
be changed at runtime, and dynamic equations are explicitly
coded (i.e., no meta-description is available as an interface to
the user).

Simulations used for validation and comparison between
DPSNN and NEST were run on a smaller cluster of eight
nodes interconnected through a Mellanox InfiniBand network;
each node is a dual-socket server with a six-core Intel(R)
Xeon(R) E5-2630 v2 CPU (clocked at 2.60 GHz) per socket
with HyperThreading enabled, so that each core is able to run
two processes.

3. RESULTS

3.1. Initialization Times
The initialization time, in seconds, is the time required to
complete the setup phase of the simulator, which is necessary
to build the whole neural network. Measures reported in
Figure 4A show the scaling of the DPSNN initialization time
for four network grid sizes, distributed over a growing number
of hardware cores, which also correspond to MPI processes.
Dashed colored lines represent strong scaling. Weak scaling is
represented by the four points connected by the dotted black
line (each point refers to a 4-fold increase in the network size
and number of used cores with respect to the previous one).
For the explored network sizes and hardware resources, the

initialization time speedup is almost ideal for fewer cores, while
for the highest numbers of cores it is sub-ideal by a factor between
10 and 20%.

Figure 4B reports the scaling of the initialization time for
two different values of the characteristic spatial scale of the
decay of the connection probability (λ), for a single grid size
(96 × 96 columns). As already explained, for all simulations
we kept the total number of synapses per neuron constant.
Going from λ = 0.4 to λ = 0.6 imd, each excitatory
neuron in a column has synaptic connections with neurons
in a number of other columns growing from 44 to 78
(neglecting variations to proximity to columns’ boundaries).
Almost the same scaling is observed for both values of
λ, with expected higher values for the initialization of a
network with longer-range connectivity. Indeed, a dependence
of the initialization time on synaptic connectivity range is
expected, because it affects the proportion of target synapses
residing in different columns, for which MPI messaging is
needed for the connectivity setup, as explained in Materials
and Methods.

3.2. Memory Occupation
In DPSNN, we expect the memory usage to be dominated by
the representation of synapses, which are thousands per neuron,
with only a minor impact of the representation of neurons and
external synapses. Therefore, we defined a memory consumption
metric as the total required memory divided by the number of
recurrent synapses (see section 2.4).

Each static synapse needs 12 bytes (see Table 1). As
described in section 2.1, during network initialization
synapses are generated by the process storing the source
neuron. Subsequently, their values are communicated to
the process containing the target neuron. The result is
that, only during the initialization phase, each synapse is
represented at both source and target processes. Therefore,
we expect a minimum of 24 bytes/(recurrent synapse) to be
allocated during initialization, which is the moment of peak
memory usage.

The measured total memory consumption is between 25 and
32 bytes per recurrent synapse, for all simulations performed,
from 1 to 1,024 MPI processes (Figure 5). From Figure 5A

we observe a different trend of the memory cost vs. number
of cores, below and above the threshold of single-node
platforms (16 cores, see section 2.6). Beyond a single node,
additional memory is mainly required by the buffers allocated
by MPI interconnect libraries that adopt different strategies
for communications over shared memory (inside a node) or
among multiple nodes (Figure 5A). The memory occupation
per synapse has been measured for different network sizes.
Figure 5A shows that, for a given number of cores, the memory
overhead typically decreases for increasing size of the network,
as expected.

Figure 5B shows the impact of the spatial scale of connectivity
decay on the memory footprint. Here the network has size 96
× 96 columns (for a total of 17.6G synapses), and λ = 0.4, 0.6
imd. As expected the memory footprint, mainly dependent
on the total number of synapses, essentially remains constant.

Frontiers in Systems Neuroscience | www.frontiersin.org 8 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

FIGURE 3 | PSD comparison of NEST (red) and DPSNN (blue) simulation output. Comparison performed on a single sub-population located in a specific cortical

column of the simulated neural network grid. From left to right, PSD of foreground excitatory (A), background excitatory (B), and inhibitory (C) neural subpopulations.

FIGURE 4 | Simulation initialization time. (A) Strong and weak scaling of the number of cores, for the four different network sizes described in Table 2. The value of λ

is kept constant, equal to 0.4 imd for the four networks. The nearly linear decrease in initialization time for fixed problem sizes indicates an efficient strong scaling,

while the quality of weak scaling can be evaluated by observing the moderate increase of the initialization time for a 4-fold increase in network size and hardware

resources (black dotted line). (B) Initialization time scaling for a network of 17.6G synapses (96 × 96 grid of columns) using two different λ values: 0.4 imd (light green)

and 0.6 imd (dark green). For higher connectivity ranges, an increase in the initialization time is registered.

FIGURE 5 | Memory usage. (A) Memory footprint per synapse for four different networks sizes, distributed over different numbers of cores. Peak memory usage is

observed at the end of network initialization, when each synapse is represented at both the source and target process, with a minimum expected cost of 24

byte/synapse (afterwards, memory is released on the source process). A different MPI overhead is observable below and over the threshold of single-node platforms

(16 cores). (B) Memory footprint scaling with the number of cores for a network of 17.6G synapses (96 × 96 grid of columns) using two different λ values: 0.4 imd

(light green) and 0.6 imd (dark green). The total number of generated synapses is nearly the same and the memory footprint remains substantially constant.

Note that the relative differences for λ = 0.4, 0.6 imd
decrease as the number of cores increases; this is consistent
with the fact that, given the network size, for larger core

numbers more columns get distributed on processes residing in
different cores. This dilutes the effect of λ, which goes in the
same direction.

Frontiers in Systems Neuroscience | www.frontiersin.org 9 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

3.3. Simulation Speed and Its Scaling
3.3.1. Impact of Simulated State (SW or AW)
DPSNN execution times for SW and AW state simulations are
reported in Figure 6. Figures 6A,B show example snapshots
of the simulated network activity in the SW and AW states,
respectively; Figures 6C,D show corresponding power spectra
of the network activity, confirming the main features predicted
by theory for such states (such as the low-frequency power
increase for SW, the high-frequency asymptote proportional to
the average firing rate, the spectral resonances related to SFA,
and delays of the recurrent synaptic interaction). Figures 6E,F
represent strong scaling for SW and AW: the wall-clock time
required to simulate 1 s of activity, vs. number of processes,
for four network sizes (see Table 2). In the same plots, weak
scaling behavior is measured by joining points referring to
a 4-fold increase in both the network size and the number
of processes.

Simulation speeds aremeasured using the equivalent synaptic-
events-per- second metric, defined in section 2.4. Departures
from the ideal scaling behavior (linearly decreasing strong
scaling plots, horizontal weak scaling plots) are globally
captured in Figure 7A, for both SW and AW states and for
all the problem sizes. For the simulations reported in this
study, the simplified synaptic-events-per- second metric is a
good approximation of a more complex metric separating
recurrent and external events (Poisson noise), as demonstrated
by Figure 7B: looking in more detail, the simulation of
recurrent synaptic events is slower than that of external events
that are locally generated by the routine that computes the
dynamics of individual neurons. In our configurations there
is about one order magnitude more recurrent synaptic event
than external.

As numbers representative of the good scalability of the
simulator, we remark that in the worst cases (1,024 processes; 96
× 96 for SW, 192× 192 for AW), the speedup with respect to the
reference case (24 × 24 on a single process) is about 590 for AW
and 460 for SW, compared with the ideal speedup of 1,024.

We also notice that performance scaling is slightly better for
AW than SW, which is understood in terms of workload balance
(due to the more homogeneous use of resources in AW); it is in
any case remarkable that, although SW and AW dynamic states
imply very different distributions of activity in space and time,
the simulator provides comparable performance scaling figures.

Starting from the simulation speed expressed in terms
of equivalent synaptic events per wall-clock second, DPSNN
simulations presents a slow-down factor with respect to the real

time, variable with the simulated network state and the available

hw resources used for simulation. For example, considering
a commodity cluster as the one used in this paper, able to
allocate up to 64 processes, a network of size 24 × 24 is
about 12 times slower than real-time when simulating a SW
state and about 23 times slower for the AW state. For larger
simulations the slow-down factor increases, due to the not perfect
scaling of the simulator performances. In this case, a 96 × 96
network distributed on 1,024 processes presents a slow-down
factor of about 23 for a SW simulation and of about 31 for the
AW state.

3.3.2. Impact of Communication
Simula et al. (2019) studied the relative impact of computation
and communication on the performance of DPSNN applied to
simulations of AW states. For neural network sizes and number
of processes in the range of those reported in this paper, the time
spent in computation is still dominant, while communication
grows to be the dominant factor when the number of neurons
and synapses per process is reduced. In this paper, we evaluated
the impact of communications on DPSNN performances both on
SW and AW state simulations, using two different approaches.
In the case of SW simulations, the analysis has been carried
out with varying λ (therefore varying the ratio of local vs.
remote excitatory synaptic connections, at a fixed total number
of synapses per neuron): λ = 0.4 imd (60% local connectivity),
λ = 0.6 imd (35% local connectivity); clearly, higher λ results
in higher payload in communication between processes. Also,
Figure 8A shows the known linear dependence of the slow-
wave speed on λ (Coombes, 2005; Capone and Mattia, 2017).
As the wave speed increases, the duration of the Up states
stays approximately constant (not shown), so that an increasing
portion of the network is simultaneously activated, which in
turn may impact the simulation performance. In physical units,
for an inter-modular distance (imd) of 0.4 mm, λ = 0.6 imd
implies a spatial decay scale of 0.24 mm, and the corresponding
speed is ∼15 mm/s, which is in the range of biologically
plausible values (Sanchez-Vives and McCormick, 2000; Ruiz-
Mejias et al., 2011; Wester and Contreras, 2012; Stroh et al., 2013;
Capone et al., 2019b).

Figure 8B shows that the impact of λ on SW simulations
is almost negligible. Figure 9 shows, instead, the impact of
different mean firing rates on AW simulations. Higher firing
rates imply higher payloads. DPSNN also demonstrates good
scaling behavior in this case, with a slight performance increase
for systems with a higher communication payload; this latter
feature is due to communication costs being typically dominated
by latencies and not bandwidth in spiking network simulations.

3.4. DPSNN and NEST: Comparison of
Performances
Table 3 reports a performance comparison between DPSNN and
NEST using the configuration, described in section 2.5. DPSNN
is about 130 times faster than NEST for SW simulations and
about 80 times faster for AW cases, and its initialization is about
19 times faster. The memory footprint of DPSNN is about 2.5
times lower due to the decisions of representing the identities
of presynaptic and post-synaptic neurons with only 4 bytes per
neuron and the storage of weights using only 2 bytes per synapse
(see Table 1). For the comparison of execution speed, we selected
the best execution time for each simulator, for a fixed amount
of used hardware resources; that is, the number of nodes of the
cluster server. On the NEST simulator, we explored the space of
all possible combination of MPI processes and number of threads
during the AW simulations, in order to find the configuration
performing better on a fixed number of hardware resources.
In the same configuration, we also compared the initialization
phase, the memory usage, and the SW execution times.

Frontiers in Systems Neuroscience | www.frontiersin.org 10 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

FIGURE 6 | Simulation time scaling and phenomenological behavior. (A) Time consecutive snapshots of the activity distribution in space, showing the wavefront

propagation during a simulation expressing SW states. (B) Consecutive snapshots of the whole network activity in an asynchronous state. (C,D) Power spectra of

network activity, respectively in SW (C) and AW (D) states. (E,F) Scaling of wall-clock execution time for 1 s of SW (E) and AW (F) simulated activity. In both SW and

AW states, the scaling has been measured on four different network sizes, as in Table 2.

Frontiers in Systems Neuroscience | www.frontiersin.org 11 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

FIGURE 7 | Simulation speed-up. (A) Speed-up of the total number of equivalent simulated synaptic events per wall-clock second evaluated for SW (circles) and AW

simulations (triangles) on the four used network configurations. Dashed lines stand for ideal speed-up of the simulated synaptic events for SW (black) and AW (red).

(B) Scaling of recurrent, external and equivalent (recurrent + external) synaptic events per second for two configurations (24 × 24 and 48 × 48) in the AW state.

FIGURE 8 | Impact of the exponential connectivity parameter λ on SW simulations. (A) Speed of waves generated by the SW model (3.1 Hz) as a function of

connectivity spatial scale λ. Average propagation speed of wavefronts relates to “wave activity” as a function of the parameter λ. For each point, the average is

evaluated over 10 simulations, each time varying the connectivity matrix. In each simulation the average is computed over all observed waves. The vertical bars

represent the standard deviation over different realizations of the connectivity. (B) scaling of SW simulations for two values of the exponential connectivity parameter λ:

0.4 imd (blue) and 0.6 imd (orange). The total number of generated synapses is nearly the same for both λ values, with a different distribution of local and remote

synapses, resulting in an increment of lateral connectivity for larger values, with almost no impact on performance. Scaling has been measured on a grid of 96 × 96

columns, with 12M neurons and 17.6G synapses. Performance is expressed in terms of equivalent simulated synaptic events per wall clock second.

4. DISCUSSION

We presented a parallel distributed neural simulator, with
emphasis on the robustness of its performance and scaling with
respect to quite different collective dynamical regimes. This
mixed time- and event-driven simulation engine (Figure 1) has
been used to simulate large-scale networks including up to 46
million point-like spiking neurons interconnected by 70 billion
instantaneous current synapses.

The development of DPSNN originated from the need
for a simple, yet representative benchmark (i.e., a mini-
application) developed to support the hardware/software
co-design of distributed and parallel neural simulators. Early
versions of DPSNN (Paolucci et al., 2013) have been used to
drive the development of the EURETILE system (Paolucci
et al., 2016) in which a custom parallelization environment
and the APEnet hardware interconnect were tested. DPSNN
was then extended to incorporate the event-driven approach

Frontiers in Systems Neuroscience | www.frontiersin.org 12 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

of Mattia and Del Giudice (2000), implementing a mixed
time-driven and event-driven strategy inspired by Morrison
et al. (2005). This simulator version is also currently included
among the mini-applications driving the development of
the interconnect system of the EXANEST ARM-based HPC
architecture (Katevenis et al., 2016). In the framework of the
Human Brain Project (https://www.humanbrainproject.eu),
DPSNN is used to develop high-speed simulation of SW
and AW states in multi-modular neural architectures. The
modularity results from the organization of the network into
densely connected modules mimicking the known modular
structure of cortex. In this modeling framework, the inter-
modular synaptic connectivity decays exponentially with
the distance.

In this section, we first discuss the main strengths of the
simulation engine and then put our work into perspective by
comparing the utility and performances of such a specialized
engine with those of a widely used general-purpose neural
simulator (NEST).

FIGURE 9 | Impact of different mean firing rates on AW state simulations. A

network with 17.6G synapses (96 × 96 grid of columns) has been simulated

with two different values of mean firing rates, 2.8 Hz (blue) and 8.8 Hz

(orange), corresponding to a different payload in communications. The plot

shows a slight performance increase, in terms of equivalent simulated synaptic

events per second, for systems with higher firing rate (and higher

communication payload).

4.1. Speed, Scaling, and Memory Footprint
at Realistic Neural and Synaptic Densities
DPSNN is a high-speed simulator. The speed ranged from 3×109

to 4.1 × 109 equivalent synaptic events per wall-clock second,
depending on the network state and the connectivity range, on
commodity clusters including up to 1,024 hardware cores. As an
order ofmagnitude, the simulation of a square cortical centimeter
(∼ 27× 109 synapses) at realistic neural and synaptic densities is
about 30 times slower than real time on 1024 cores (Figure 7).

DPSNN is memory parsimonious: the memory required for
the above square cortical centimeter is 837 GB (31 byte/synapses,
including all library overheads), which is in the range
of commodity clusters with few nodes. The total memory
consumption ranges between 25 and 32 byte per recurrent
synapse for the whole set of simulated neural networks and all
configurations of the execution platform (from 1 to 1,024 MPI
processes, Figure 5). The choice of representing with 4 bytes the
identities of presynaptic and post-synaptic neurons limits the
total number of neurons in the network to 2 billions. However,
this is not yet a serious limitation for neural networks including
thousands of synapses per neuron to be simulated on execution
platforms including few hundreds of multi-core nodes. The
size of neural ID representation will have to be enlarged for
simulation of systems at the scale of human brains. Concerning
synaptic weights, as already discussed, static synapses are stored
with only two bytes of precision, but injection of current and
neural dynamics is performed with double precision arithmetic.
When plasticity is turned on, single precision floating-point
storage of LTP and LTD contributions is adopted.

The engine has very low initialization times. DPSNN takes
about 4 s to set up a network with∼ 17×109 synapses (Figure 4).
We note that the initialization time is relevant, especially when
many relatively short simulations are needed to explore a large
parameter space.

Its performance is robust: good weak and strong scaling have
been measured in the observed range of hardware resources and
for all sizes of simulated cortical grids. The simulation speed
was nearly independent from the mean firing rate (Figure 9), the
range of connectivity (Figure 8), and from the cortical dynamic
state (AW/SW) (Figure 7).

4.2. Key Design Guidelines of the
Simulation Engine
A few design guidelines contribute to the speed and scaling
of the simulation engine. We kept as driving criteria the

TABLE 3 | Memory footprint, initialization, and execution times for 10 s of activity in SW and AW states required by DPSNN and NEST to simulate a neural network made

of 2.8M neurons and 4.4G synapses (48 × 48 grid of cortical columns).

Execution platform Init time (s) SW Exec time (s) AW Exec time (s) Memory (GB)

Nodes Cores/Procs. DPSNN NEST DPSNN NEST DPSNN NEST DPSNN NEST

2 48 29.2 603.4 1,143.3 164,555.3 2,371.3 164,008.8 78.8 208.0

4 96 16.3 299.3 620.0 83,305.0 1,257.7 85,025.2 78.4 200.8

8 192 8.3 149.1 360.0 42,601.7 684.9 42,425.2 96.3 197.6

The second column reports the number of processes over which simulations are distributed. In case of DPSNN it corresponds to the number of pure MPI processes, while for NEST it

is the number of Virtual Processes (VP). Each VP is calculated as MPI processes × number of threads, where six threads are used for all NEST simulations.

Frontiers in Systems Neuroscience | www.frontiersin.org 13 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

goals of increasing the locality in memory accesses, the
reduction of interprocess communication, an ordered traversal
of lists and a reduction of backward searches and random
accesses, the minimization of the number of layers in the
calling stack, and a complete distribution of computation and
storage among the cooperating processes with no need for
centralized structures.

We stored in the memory of a process a set of spatially
neighboring neurons, incoming synapses, and outgoing axons.
For the kind of spatially organized neural networks described
in this paper, this reduces the size of the payload and
the required number of interprocess communications. Indeed,
many spiking events will need to reach target neurons
(and synapses) stored in the same process of the spiking
neuron itself.

An explicit ordering in memory is adopted for outgoing
and ingoing communication channels (representing the first
branches in an axonal like arborizations). Explicit ordering in
memory is also adopted for other data structures, like: the
lists of incoming spiking events and recurrent synapses, the
set of incoming event queues associated to different synaptic
delays. Lists are implemented as arrays, without internal pointers.
Also explicit ordering is used for the set of target neurons.
Neurons are progressively numbered with lower bits in their
identifiers associated to their local identity and higher bits
conveying the id of the hosting process. The explicit ordering
of neurons and synapses reduces the time spent during the
sequence of memory accesses that will be followed during the
simulation steps. In particular, lists are traveled only once per
communication step, e.g., first searching for target synapses that
are targets of spiking events and then through an ordered list of
target neurons.

A third design criteria has been to keep the stack of
nested function calls short, following the scheme described
in Figure 1, and attempting to group at each level multiple
calls to computational methods accessing the same memory
structure. As an example, both the generation of external
synaptic events (e.g., Poissonian stimulus) and the temporal
reordering of recurrent and external synaptic events targeting
a specific neuron, is deferred to the computation of the
individual neural dynamics. The execution of this routine
is supported by local queues storing all the synaptic
currents targeting the individual neuron. This queue
of events is accessed during a single call of the routine
computing the dynamics of the neuron. In this case
the data structure supports both locality in memory and
in computation.

Similar design guidelines would be problematic to follow
for general purpose simulation engines that are supposed to
support maximum flexibility in the description and simulation
of the data structures and of the dynamics of neurons,
axonal arborizations and synapses. Moreover, higher abstraction
requires separating the functionality of the simulation engine
into independent modules. This would dictate a higher
number of layers in the calling stack, more complex interfaces
and data structures that hide details like their internal
memory ordering.

4.3. Comparison With a State-of-the-Art
User-Friendly Simulator and Motivations
for Specialized Engines
There is a widely felt need for versatile, general-purpose neural
simulators that offer a user-friendly interface for designing
complex numerical experiments and provide the user with a
wide set of models of proven scientific value. This boosted a
number of initiatives (notably the NEST initiative, now central
to the European Human Brain Project). However, such flexibility
comes at a price. Performance-oriented engines, missing all the
layers required for offering user generality and flexibility, contain
the bare minimum code. In the case of DPSNN, this resulted
in higher simulation speed, reduced memory footprint, and
diminished initialization times (see section 3.4 and Table 3). In
addition, optimization techniques developed for such engines
on use-cases of proven scientific value can offer a template for
future releases of general-purpose simulators. Indeed, this is
what is happening in the current framework of cooperation with
the NEST development team. Finally, engines stripped down
to essential kernels constitute more easily manageable mini-
application benchmarks for the hardware/software co-design of
specialized simulation systems, because of easier profiling and
simplified customizations on system software environments and
hardware targets under development.

4.4. Future Works
The present implementation of DPSNN demonstrated to be
efficient for homogeneous bidimensional grids of neural columns
and for their mapping of up to 1,024 processes, and this
facilitates a set of interesting scientific applications. However,
further optimization could improve DPSNN performance, either
in the perspective of moving simulations toward million-core
exascale platforms or targeting real-time simulations at smaller
scale (Simula et al., 2019), in particular addressing sleep-induced
optimizations in cognitive tasks like classification (Capone
et al., 2019a). For instance, we expect that the delivery of
spiking messages will be a key element to be further optimized
(e.g., using a hierarchical communication strategy). This will
also be beneficial for an efficient support of white-matter
long-range connectivity (brain connectomes) between multiple
cortical areas.

A full exploitation of the model requires parameters
tuned exploiting information provided by experimental data.
Addressing this goal our team is improving tools for the
analysis of both electrophysiological (De Bonis et al., 2019) and
optical (Celotto et al., 2018) recordings (micro-ECoG and wide-
field Calcium Imaging). The main aim is the spatio-temporal
characterization of SWA. We also plan to apply inference
methods to obtain refined maps of connectivity and excitability
for insertion in the simulated model.

DATA AVAILABILITY

The source code of the DPSNN engine and the data that
support the findings of this study are openly available in GitHub
at https://github.com/APE-group/201903LargeScaleSimScaling.

Frontiers in Systems Neuroscience | www.frontiersin.org 14 July 2019 | Volume 13 | Article 33

https://github.com/APE-group/201903LargeScaleSimScaling
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

The DPSNN code also corresponds to the internal svn release 961
of the APE group repository.

AUTHOR CONTRIBUTIONS

EP, PP, and FS improved the simulation engine, measured and
analyzed the scaling. CC, MM, and PD provided the cortical
model. MS-V provided the experimental data for calibration of
simulations. All authors contributed to the final version of the
manuscript and approved it for publication.

FUNDING

This research has received funding from the European Union’s
Horizon 2020 Framework Programme for Research and
Innovation under the Specific Grant Agreements No. 785907
(HBP SGA2), No. 720270 (HBP SGA1), and No. 671553
(EXANEST).

ACKNOWLEDGMENTS

Large-scale simulations have been performed on the Galileo
platform, provided by the CINECA in the frameworks of
HBP SGA 1 and 2 and of the INFN-CINECA collaboration
on the Computational Theoretical Physics Initiative. We
acknowledge Hans Ekkehard Plesser and Dimitri Plotnikov
for their support in setting up NEST simulations. We
are grateful to the members of the INFN APE Parallel/
Distributed Computing laboratory for their strenuous
support. This manuscript has been released as a pre-print at
Pastorelli et al. (2019).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnsys.
2019.00033/full#supplementary-material

REFERENCES

Bazhenov, M., Timofeev, I., Steriade, M., and Sejnowski, T. J. (2002). Model of

thalamocortical slow-wave sleep oscillations and transitions to activated states.

J. Neurosci. 22, 8691–8704. doi: 10.1523/JNEUROSCI.22-19-08691.2002

Brunel, N., and Hakim, V. (1999). Fast global oscillations in networks of integrate-

and-fire neurons with low firing rates. Neural Comput. 11, 1621–1671.

Capone, C., and Mattia, M. (2017). Speed hysteresis and noise shaping of traveling

fronts in neural fields: role of local circuitry and nonlocal connectivity. Sci. Rep.

7:39611. doi: 10.1038/srep39611

Capone, C., Pastorelli, E., Golosio, B., and Paolucci, P. S. (2019a). Sleep-

like slow oscillations improve visual classification through synaptic

homeostasis and memory association in a thalamo-cortical model. Sci.

Rep. 9. doi: 10.1038/s41598-019-45525-0

Capone, C., Rebollo, B., Muñoz, A., Illa, X., Del Giudice, P., Sanchez-Vives, M. V.,

et al. (2019b). Slow waves in cortical slices: how spontaneous activity is shaped

by laminar structure. Cereb. Cortex 29, 319–335. doi: 10.1093/cercor/bhx326

Carnevale, N. T., and Hines, M. L. (2006). The NEURON Book. Cambridge, UK:

Cambridge University Press.

Celotto, M., De Luca, C., Muratore, P., Resta, F., Allegra Mascaro, A. L., Pavone,

F. S., et al. (2018). Paolucci, analysis and model of cortical slow waves acquired

with optical techniques. arXiv:1811.11687.

Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biol.

Cybern. 93, 91–108. doi: 10.1007/s00422-005-0574-y

Curto, C., Sakata, S., Marguet, S., Itskov, V., and Harris, K. D. (2009). A simple

model of cortical dynamics explains variability and state dependence of sensory

responses in urethane-anesthetized auditory cortex. J. Neurosci. 29, 10600–

10612. doi: 10.1523/JNEUROSCI.2053-09.2009

De Bonis, G., Dasilva, M., Pazienti, A., Sanchez-Vives, M. V., Mattia, M.,

and Paolucci, P. S. (2019). Slow waves analysis pipeline for extracting

features of slow oscillations from the cerebral cortex of anesthetized mice.

arXiv:1902.08599.

Destexhe, A., and Contreras, D. (2011). “The fine structure of slow-wave sleep

oscillations: from single neurons to large networks,” in Sleep and Anesthesia,

Chapter 4, ed A. Hutt (New York, NY: Springer New York), 69–105.

Furber, S. B., Lester, D. R., Plana, L. A., Garside, J. D., Painkras, E., Temple, S., et al.

(2013). Overview of the SpiNNaker system architecture. IEEE Trans. Comput.

62, 2454–2467. doi: 10.1109/TC.2012.142

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gigante, G., Mattia, M., and Giudice, P. D. (2007). Diverse population-

bursting modes of adapting spiking neurons. Phys. Rev. Lett. 98:148101.

doi: 10.1103/PhysRevLett.98.148101

Goodman, D., and Brette, R. (2009). The brian simulator. Front. Neurosci. 3:26.

doi: 10.3389/neuro.01.026.2009

Han, F., Caporale, N., and Dan, Y. (2008). Reverberation of recent

visual experience in spontaneous cortical waves. Neuron 60, 321–327.

doi: 10.1016/j.neuron.2008.08.026

Hill, S. L., and Tononi, G. (2005). Modeling sleep and wakefulness

in the thalamocortical system. J. Neurophysiol. 93, 1671–1698.

doi: 10.1152/jn.00915.2004

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.

Neural Comput. 9, 1179–1209.

Hobson, J. A., and Pace-Schott, E. F. (2002). The cognitive neuroscience of sleep:

neuronal systems, consciousness and learning. Nat. Rev. Neurosci. 3, 679–693.

doi: 10.1038/nrn915

Izhikevich, E. M., and Edelman, G. M. (2008). Large-scale model of mammalian

thalamocortical systems. Proc. Natl. Acad. Sci. U.S.A. 105, 3593–3598.

doi: 10.1073/pnas.0712231105

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).

Extremely scalable spiking neuronal network simulation code: from laptops to

exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Katevenis, M., Chrysos, N., Marazakis, M., Mavroidis, I., Chaix, F., Kallimanis,

N., et al. (2016). “The exanest project: interconnects, storage, and packaging

for exascale systems,” in 2016 Euromicro Conference on Digital System Design

(DSD), 60–67.

Krishnan, G. P., Chauvette, S., Shamie, I., Soltani, S., Timofeev, I., Cash, S. S., et al.

(2016). Cellular and neurochemical basis of sleep stages in the thalamocortical

network. eLife 5, 1–29. doi: 10.7554/eLife.18607

Lazzaro, J., Wawrzynek, J., Mahowald, M., Sivilotti, M., and Gillespie, D. (1993).

Silicon auditory processors as computer peripherals. IEEE Trans. Neural Netw.

4, 523–528.

Luczak, A., Barthó, P., and Harris, K. D. (2009). Spontaneous events outline the

realm of possible sensory responses in neocortical populations. Neuron 62,

413–425. doi: 10.1016/j.neuron.2009.03.014

Mattia, M., and Del Giudice, P. (2000). Efficient event-driven simulation of large

networks of spiking neurons and dynamical synapses. Neural Comput. 12,

2305–2329. doi: 10.1162/089976600300014953

Mattia, M., and Del Giudice, P. (2002). Population dynamics of interacting

spiking neurons. Phys. Rev. E 66:051917. doi: 10.1103/PhysRevE.66.

051917

Mattia, M., and Sanchez-Vives, M. V. (2012). Exploring the spectrum of dynamical

regimes and timescales in spontaneous cortical activity. Cognit. Neurodyn. 6,

239–250. doi: 10.1007/s11571-011-9179-4

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J.,

Akopyan, F., et al. (2014). A million spiking-neuron integrated circuit with

Frontiers in Systems Neuroscience | www.frontiersin.org 15 July 2019 | Volume 13 | Article 33

https://www.frontiersin.org/articles/10.3389/fnsys.2019.00033/full#supplementary-material
https://doi.org/10.1523/JNEUROSCI.22-19-08691.2002
https://doi.org/10.1038/srep39611
https://doi.org/10.1038/s41598-019-45525-0
https://doi.org/10.1093/cercor/bhx326
https://doi.org/10.1007/s00422-005-0574-y
https://doi.org/10.1523/JNEUROSCI.2053-09.2009
https://doi.org/10.1109/TC.2012.142
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1103/PhysRevLett.98.148101
https://doi.org/10.3389/neuro.01.026.2009
https://doi.org/10.1016/j.neuron.2008.08.026
https://doi.org/10.1152/jn.00915.2004
https://doi.org/10.1038/nrn915
https://doi.org/10.1073/pnas.0712231105
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.7554/eLife.18607
https://doi.org/10.1016/j.neuron.2009.03.014
https://doi.org/10.1162/089976600300014953
https://doi.org/10.1103/PhysRevE.66.051917
https://doi.org/10.1007/s11571-011-9179-4
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

Pastorelli et al. Scaling of Distributed Cortical Simulation

a scalable communication network and interface. Science 345, 668–673.

doi: 10.1126/science.1254642

Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy,

A. J., and Singh, R. (2011). Cognitive computing. Commun. ACM 54, 62–71.

doi: 10.1145/1978542.1978559

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann,

M. (2005). Advancing the boundaries of high-connectivity network

simulation with distributed computing. Neural Comput. 17, 1776–1801.

doi: 10.1162/0899766054026648

Nageswaran, J. M., Dutt, N., Krichmar, J. L., Nicolau, A., and Veidenbaum, A. V.

(2009). A configurable simulation environment for the efficient simulation of

large-scale spiking neural networks on graphics processors. Neural Netw. 22,

791–800. doi: 10.1016/j.neunet.2009.06.028

Paolucci, P. S., Ammendola, R., Biagioni, A., Frezza, O., Lo Cicero, F., Lonardo,

A., et al. (2013). Distributed simulation of polychronous and plastic spiking

neural networks: strong and weak scaling of a representative mini-application

benchmark executed on a small-scale commodity cluster. arXiv:1310.8478.

Paolucci, P. S., Biagioni, A., Murillo, L. G., Rousseau, F., Schor, L., Tosoratto,

L., et al. (2016). Dynamic many-process applications on many-tile embedded

systems and HPC clusters: the EURETILE programming environment and

execution platforms. J. Syst. Archit. 69, 29–53. doi: 10.1016/j.sysarc.2015.11.008

Pastorelli, E., Capone, C., Simula, F., Sanchez-Vives, M. V., Del Giudice, P., Mattia,

M., et al. (2019). Scaling of a large-scale simulation of synchronous slow-

wave and asynchronous awake-like activity of a cortical model with long-range

interconnections. arXiv:1902.08410.

Potjans, T. C., and Diesmann, M. (2014). The cell-type specific cortical

microcircuit: Relating structure and activity in a full-scale spiking network

model. Cereb. Cortex 24, 785–806. doi: 10.1093/cercor/bhs358

Reyes-Puerta, V., Yang, J.-W., Siwek, M. E., Kilb, W., Sun, J.-J., and Luhmann,

H. J. (2016). Propagation of spontaneous slow-wave activity across columns and

layers of the adult rat barrel cortex in vivo. Brain Struct. Funct. 221, 4429–4449.

doi: 10.1007/s00429-015-1173-x

Ricciardi, L. M. (1977). Diffusion Processes and Related Topics in Biology. Berlin;

Heidelberg; New York, NY: Springer-Verlag Berlin Heidelberg.

Ruiz-Mejias, M., Ciria-Suarez, L., Mattia, M., and Sanchez-Vives, M. V. (2011).

Slow and fast rhythms generated in the cerebral cortex of the anesthetized

mouse. J. Neurophysiol. 106, 2910–2921. doi: 10.1152/jn.00440.2011

Sanchez-Vives, M., and Mattia, M. (2014). Slow wave activity as the

default mode of the cerebral cortex. Arch. Ital. Biol. 152, 147–155.

doi: 10.12871/000298292014239

Sanchez-Vives, M. V., and McCormick, D. A. (2000). Cellular and network

mechanisms of rhythmic recurrent activity in neocortex. Nat. Neurosci. 3:1027.

doi: 10.1038/79848

Schmitt, S., Klähn, J., Bellec, G., Grübl, A., Güttler, M., Harte, A., et al.

(2017). “Neuromorphic hardware in the loop: training a deep spiking

network on the BrainScaleS wafer-scale system,” in 2017 International Joint

Conference on Neural Networks (IJCNN) (Anchorage, AK: IEEE), 2227–2234.

doi: 10.1109/IJCNN.2017.7966125

Simula, F., Pastorelli, E., Paolucci, P. S., Martinelli, M., Lonardo, A., Biagioni, A.,

et al. (2019). “Real-time cortical simulations: energy and interconnect scaling

on distributed systems,” in 2019 27th Euromicro International Conference

on Parallel, Distributed and Network-Based Processing (PDP) (Pavia),

283–290.

Solovey, G., Alonso, L. M., Yanagawa, T., Fujii, N., Magnasco, M. O., Cecchi,

G. A., et al. (2015). Loss of consciousness is associated with stabilization of

cortical activity. J. Neurosci. 35, 10866–10877. doi: 10.1523/JNEUROSCI.4895-

14.2015

Steyn-Ross, M. L., Steyn-Ross, D. A., and Sleigh, J. W. (2013). Interacting Turing-

Hopf instabilities drive symmetry-breaking transitions in a mean-field model

of the cortex: a mechanism for the slow oscillation. Phys. Rev. X 3:21005.

doi: 10.1103/PhysRevX.3.021005

Stimberg, M., Goodman, D., Benichoux, V., and Brette, R. (2014). Equation-

oriented specification of neural models for simulations. Front. Neuroinform.

8:6. doi: 10.3389/fninf.2014.00006

Strogatz, S. H. (2018). Nonlinear Dynamics and Chaos With Student Solutions

Manual:With Applications to Physics, Biology, Chemistry, and Engineering. Boca

Raton, FL: CRC Press.

Stroh, A., Adelsberger, H., Groh, A., Rühlmann, C., Fischer, S., Schierloh, A.,

et al. (2013). Making waves: initiation and propagation of corticothalamic

Ca2+ waves in vivo. Neuron 77, 1136–1150. doi: 10.1016/j.neuron.201

3.01.031

Wester, J. C., and Contreras, D. (2012). Columnar interactions determine

horizontal propagation of recurrent network activity in neocortex. J. Neurosci.

32, 5454–5471. doi: 10.1523/JNEUROSCI.5006-11.2012

Wilson,M. A., Bhalla, U. S., Uhley, J. D., and Bower, J.M. (1989). “Genesis: a system

for simulating neural networks,” in Advances in Neural Information Processing

Systems 1, ed D. S. Touretzky (San Francisco, CA: Morgan-Kaufmann),

485–492.

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Pastorelli, Capone, Simula, Sanchez-Vives, Del Giudice, Mattia

and Paolucci. This is an open-access article distributed under the terms of

the Creative Commons Attribution License (CC BY). The use, distribution or

reproduction in other forums is permitted, provided the original author(s) and the

copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Systems Neuroscience | www.frontiersin.org 16 July 2019 | Volume 13 | Article 33

https://doi.org/10.1126/science.1254642
https://doi.org/10.1145/1978542.1978559
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1016/j.neunet.2009.06.028
https://doi.org/10.1016/j.sysarc.2015.11.008
https://doi.org/10.1093/cercor/bhs358
https://doi.org/10.1007/s00429-015-1173-x
https://doi.org/10.1152/jn.00440.2011
https://doi.org/10.12871/000298292014239
https://doi.org/10.1038/79848
https://doi.org/10.1109/IJCNN.2017.7966125
https://doi.org/10.1523/JNEUROSCI.4895-14.2015
https://doi.org/10.1103/PhysRevX.3.021005
https://doi.org/10.3389/fninf.2014.00006
https://doi.org/10.1016/j.neuron.2013.01.031
https://doi.org/10.1523/JNEUROSCI.5006-11.2012
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/systems-neuroscience#articles

	Scaling of a Large-Scale Simulation of Synchronous Slow-Wave and Asynchronous Awake-Like Activity of a Cortical Model With Long-Range Interconnections
	1. Introduction
	2. Materials and Methods
	2.1. Description of the Distributed Simulator
	2.1.1. Execution Flow: Overview of the Mixed Time- and Event-Driven Simulation Scheme
	2.1.2. Spike Messages: Representation and Communication
	2.1.3. Bidimensional Grids of Cortical Columns and Their Mapping Onto Processes

	2.2. Model Architecture and Network States
	2.3. Neural Activity Analysis
	2.4. Performance Measures
	2.5. Validation of Results and Comparison of Performances
	2.6. Execution Platforms

	3. Results
	3.1. Initialization Times
	3.2. Memory Occupation
	3.3. Simulation Speed and Its Scaling
	3.3.1. Impact of Simulated State (SW or AW)
	3.3.2. Impact of Communication

	3.4. DPSNN and NEST: Comparison of Performances

	4. Discussion
	4.1. Speed, Scaling, and Memory Footprint at Realistic Neural and Synaptic Densities
	4.2. Key Design Guidelines of the Simulation Engine
	4.3. Comparison With a State-of-the-Art User-Friendly Simulator and Motivations for Specialized Engines
	4.4. Future Works

	Data Availability
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References

