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Abstract: β-cell dedifferentiation has been recently suggested as an additional mechanism
contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated
that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted
in the generation of an undifferentiated cell population. Additional evidence from in vitro human
β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells,
thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the
microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature
human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated
in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we
observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated.
Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the
control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated
upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell–cell contacts are
needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302
microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and
inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype.
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1. Introduction

It has been previously demonstrated that in vitro culture of native adult human pancreatic islets
derived from non-diabetic donors resulted into the generation/expansion of an undifferentiated
cell population [1]. Several studies demonstrated that the resulting cell population derives from
an epithelial to mesenchymal transition (EMT) program which induces specialized islet cells to
lose endocrine pancreatic markers (dedifferentiation) while acquiring a mesenchymal/multipotent
phenotype [2–4]. Moreover, additional evidence from in vitro human β-cell lineage tracing experiments
demonstrated that dedifferentiated cells derive also from β-cells, thus representing a potentially ideal
in vitro model of β-cell dedifferentiation [5–7].
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The dedifferentiation process plays an important role during embryonic development, generating
cells with stem-cell properties. Indeed, most adult tissues arise from a series of conversions of epithelial
cells into dedifferentiated cells and from the reverse process [8]. However, whether dedifferentiation
represents a physiological or a pathological process contributing or not to islet neogenesis/regeneration
or dysfunction remains to be fully established [9,10]. Recently, several studies demonstrated that
a phenomenon resembling β-cell dedifferentiation occurs both in type 1 (T1D) and type 2 diabetes
(T2D) [11–16]. Indeed, several endocrine-positive/hormone-negative islet cells have been identified by
analyzing pancreas sections from patients with T2D [11]. However, even though dedifferentiated cells
have been detected using multiple histological approaches, their molecular architecture has not yet
been fully elucidated. Several efforts pursuing this goal have been made by analyzing a number of
pathways underlying the phenotype loss in in vitro dedifferentiated β-cells.

MicroRNAs are short endogenous RNA, 19–24 nucleotides long, which negatively regulate
gene expression through their binding to the 3′UTR of mRNAs target with subsequent mRNA
degradation or translational inhibition [17]. Depending on their target genes, expression levels,
and cell/tissue distribution, microRNAs may regulate both stem-cell phenotype induction and
differentiated/specialized cell phenotype functional maintenance [18]. Deregulation/modulation of
the expression of specific microRNAs may alter or totally change the cell fate, thus making them
optimal potential targets to modulate cells phenotype plasticity [19,20]. Specifically, several microRNAs
have been identified as peculiar modulators of β-cell phenotype and function [21,22]; indeed, it has
been previously demonstrated that several microRNAs, including miR-375 as well as microRNAs
defining β-cell/epithelial cell phenotype (e.g., miR-200s, miR-30s), were downregulated during
in vitro dedifferentiation, underlining their pivotal role in the β-cell phenotype maintenance [23,24].
Therefore, it is conceivable to hypothesize that during this process several other microRNA families
may play a role in the induction of a dedifferentiated phenotype.

Here, we identified the activation of the pluripotent-specific miR-302s microRNA cluster during
in vitro dedifferentiation of non-diabetic human pancreatic islet cells leading to the hypothesis of a
potential role for such microRNAs in the regulation and induction of β-cell dedifferentiated phenotype.

2. Results

2.1. MicroRNA Expression Profiles of In Vitro Dedifferentiated Islet Cells

We and others have previously demonstrated that prolonged human pancreatic islets culture
results in delamination, adhesion, and migration of endocrine cells from islet native architecture; such
morphological changes are associated to the loss of pancreatic-endocrine phenotype, in a process
resembling epithelial–mesenchymal transition (EMT) [1,5]. Although the peculiar mechanisms and
transcriptome analysis of this process have been clearly reported, the contribution of microRNA is
poorly understood and deserves further analysis.

To this aim, we dedifferentiated in vitro human pancreatic islets cells (see Methods section and
reference [1]) derived from n = 3 non-diabetic organ donors (Age 63.3± 23.3 year; BMI 24.8± 1.3 Kg/m2)
and compared them to fully differentiated human native islet cells (n = 3) (Age 54.6 ± 21.3 year;
BMI 25.4± 1.8 Kg/m2) (extended donors characteristics reported in Supplementary Table S1).

Firstly, in order to confirm the loss of differentiated/mature endocrine phenotype and to set
the stage for global microRNA analysis, we evaluated the expression of marker genes associated
to endocrine-pancreatic and to undifferentiated/mesenchymal phenotype, both in human native
pancreatic islets and in dedifferentiated islet cells. As expected, the results showed a significant
reduction of endocrine pancreatic marker genes expression (INS, GCG, SST, NEUROD1, PDX1) and a
concomitant activation of undifferentiated/mesenchymal phenotype associated markers (NES, VIM,
ZEB1, ZEB2, TWIST1) (Supplementary Figure S1a,b). Subsequently, we analyzed the expression profile
of microRNAs (768 microRNAs) in human pancreatic islets derived from n = 3 non-diabetic multiorgan
donors and in n = 3 in vitro expanded and dedifferentiated islet-derived cells. A total of 342 microRNAs
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were detected (cutoff Ct < 35.0 in all replicates of at least one group) (Supplementary Figure S2) and
123 of them resulted differentially expressed (fold change cutoff <0.35, >2.5, p < 0.05 unpaired t-test
False Discovery Rate (FDR) corrected); of these, 110/123 (89.4%) were significantly downregulated
(for the complete list of downregulated microRNAs see Supplementary Figure S3) and 13/123 (10.5%)
were upregulated in dedifferentiated islet-derived cells vs. fully differentiated/mature islet cells
(Figure 1).

Figure 1. MicroRNA profiling of dedifferentiated human islet cells. Volcano plot analysis showing
differentially expressed microRNAs in in vitro dedifferentiated human pancreatic islet cells vs. human
native pancreatic islets. Black dots represent detected microRNAs based on the relative mean fold
change (-Log FC) and p-values. Fold change cutoff (red lines) was set at 2.5-fold while p-values cutoff
(blue line) was set at 0.05 based on FDR corrected Student’s t-test on normally distributed dCt values.
The position and the identification name of upregulated microRNAs on the volcano plot is indicated
by black dotted lines.

In accordance with previous reports, among downregulated microRNAs in dedifferentiated
islet-derived cells, we detected miR-375 and miR-141-200 families, previously associated with
β-cell function and epithelial phenotype, which clustered together in the global hierarchical
clustering analysis (see detail in Supplementary Figure S4a). Furthermore, within this group of
microRNAs we also detected islet-enriched/β-cell specific microRNAs and islet/β-cell development
associated microRNAs (miR-9, miR-155, miR-30a, miR-30d, miR-25) (Supplementary Figure S3),
thus additionally confirming the loss of β-cell/endocrine-pancreatic phenotype upon in vitro
dedifferentiation. Despite the quite large amount of downregulated microRNAs, those found
upregulated represented the minor part (13 microRNAs: miR-99a, miR-100, miR-137, miR-199a-5p,
miR-199a-3p, miR-214, miR-302a-3p, miR-302b-3p, miR-302c-3p, miR-302d-3p, miR-367, miR-337-3p,
and miR-708) (detailed hierarchical clustering analysis in Supplementary Figure S4b).

Collectively, these results demonstrate that 35.8% of detected microRNAs were differentially
expressed upon in vitro dedifferentiation of non-diabetic human pancreatic islets and that only a minor
part of those differentially expressed (13/123 microRNAs) were upregulated during this process, thus
possibly representing biomarkers of dedifferentiation. We focused on this last set of microRNAs, since
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their upregulation during dedifferentiation may target key genes involved in islet/β-cell function
and phenotype maintenance, thus leading to their downregulation and to the potential loss of a
differentiated/mature endocrine phenotype.

2.2. miR-302 MicroRNAs Expression Is Switched-On during Islet Cells Dedifferentiation

In order to confirm the upregulation of the 13 differentially expressed microRNAs in
dedifferentiated islet cells, we validated their expression using single assay stem–loop RT-qPCR
in the same samples previously profiled and in additional human pancreatic native islet preparations
and dedifferentiated islet-derived cell samples (a total of n = 6 native human pancreatic islet samples;
n = 7 dedifferentiated islet-derived cell samples) (donors characteristics reported in Supplementary
Table S1). The analysis confirmed the results obtained in the profiling stage (Figure 2), thus revealing
the significant upregulation (p < 0.05, non-parametric Mann–Whitney U test) of those microRNAs
upon in vitro dedifferentiation of non-diabetic human pancreatic islet cells.

Of note, among upregulated microRNAs we identified five microRNAs belonging to miR-302s
cluster [25], whose expression was low/null in native/mature islets but strongly and significantly
induced upon dedifferentiation (Figure 2i–m). miR-302s have been described to be highly involved in
pluripotent-stem cell maintenance and in the acquisition of undifferentiated phenotype [26,27], thus
potentially suggesting an unprecedented role for these microRNAs in islets/β-cells dedifferentiation
and reinforcing the view of microRNAs as active participants in the loss of islets/β-cells phenotype.

Figure 2. Cont.
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Figure 2. Validation of differentially expressed microRNAs in dedifferentiated islet cells. Stem–loop
RT-qPCR single assay validation of 13 identified upregulated microRNAs in dedifferentiated human
pancreatic islet cells. Single assay RT-qPCR validation of n = 6 native human islets and n = 7 islet-derived
mesenchymal cells of miR-99a (a), miR-100 (b), miR-137 (c), miR-337-3p (d), miR-708 (e), miR-214 (f),
miR-199-3p (g), miR-199-5p (h), miR-302a (i), miR-302b (j), miR-302c (k), miR-302d (l), and miR-367 (m).
Data are reported as normalized 2−∆Ct values together with mean ± SD. Mann–Whitney U test,
* p < 0.05.

2.3. Upregulated MicroRNA Target Key Genes with Multiple Roles in Endocrine/Epithelial Phenotype Maintenance

In order to identify the pattern of target genes regulated by the entire set of upregulated
microRNAs in dedifferentiated islet-derived cells and potentially involved in this process, we adopted a
bioinformatic approach using a microRNA-target gene prediction algorithm (Targetscan 6.2) followed
by a gene ontology (GO) classification profiling (David 6.7) (bioinformatic workflow scheme in
Figure 3a). Overall, for the 13 upregulated microRNAs, we identified 196 target genes involved in
differentiation, cell-adhesion or proliferation functions. In order to obtain a more in depth functional
classification, the set of identified predicted target genes were analyzed using David 6.7 (Figure 3a).

The results showed that most of them belong to “cell-adhesion” (GO0007155, p = 5.18 × 10−26),
“cell–cell signaling” (GO0007267, p = 2.88 × 10−5) and “positive regulation of development”
(GO0051094, p = 9.12 × 10−15) (Figure 3b and Table 1).

Table 1. Gene ontology (GO) terms segregation of 196 predicted target genes of upregulated
microRNAs. GO term category, GO ID and specification, number of genes (count), and p-value
of each specific GO term is reported.

Category Term Count p Value

GOTERM_BP_FAT GO:0007155 cell adhesion 41 5.18 × 10−26

GOTERM_BP_FAT GO:0051094 positive regulation of developmental process 21 9.12 × 10−15

GOTERM_BP_FAT GO:0006928 cell motion 19 8.66 × 10−9

GOTERM_BP_FAT GO:0007267 cell–cell signaling 16 2.88 × 10−5

GOTERM_BP_FAT GO:0040008 regulation of growth 14 1.16 × 10−6

GOTERM_BP_FAT GO:0016055 Wnt receptor signaling pathway 11 4.45 × 10−8

GOTERM_BP_FAT GO:0008284 positive regulation of cell proliferation 10 0.00329
GOTERM_BP_FAT GO:0051046 regulation of secretion 6 0.016312
GOTERM_BP_FAT GO:0032925 regulation of activin receptor signaling pathway 4 4.40 × 10−5

GOTERM_BP_FAT GO:0046324 regulation of glucose import 3 0.024159
GOTERM_BP_FAT GO:0032868 response to insulin stimulus 8 8.33 × 10−6
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Figure 3. (a) Scheme diagram of bioinformatic analysis workflow using Targetscan 6.2 and David
6.7 algorithms. (b) Graphical representation of GO terms classification of predicted target genes of
upregulated microRNAs: GO Term ID alongside with number of gene included are reported.

Additionally, we further selected some of them based on their functional relevance and on David
6.7 classification; such final evaluation resulted in a stringent selection of 92 predicted target genes
strongly associated with the main biological processes involved in dedifferentiation/loss of phenotype.

To determine whether the 92 selected target genes were differentially expressed during in vitro
dedifferentiation, we evaluated their levels in human native islets (n = 3) and dedifferentiated islet
cell samples (n = 3), initially analyzed for microRNA expression profiles. The results revealed that
48/92 genes were significantly differentially expressed. Among them, 44/92 genes were downregulated
while 4/92 genes were upregulated in dedifferentiated islet cells vs. human native pancreatic islets
(Figure 4a,b).

Collectively, these results demonstrate that upregulated microRNAs upon in vitro
dedifferentiation of human pancreatic islets may control several genes involved in epithelial
cell adhesion, cell–cell signaling, and β-cell phenotype maintenance; such genes were shown to
be mostly downregulated during this process and their differential expression is in line with the
upregulation of the targeting microRNAs.
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Figure 4. MicroRNA target genes expression profiling. (a) Hierarchical clustering analysis showing
expression levels of selected target genes in human native islets (Hi1, Hi2, Hi3) and dedifferentiated
islet cells (Dediff.A, Dediff.B, Dediff.C). Expression values of each target gene are reported as ∆Ct
and fitted into color scale (blue: high expression; red low/null expression). (b) Volcano plot analysis
showing differentially expressed genes (selected based on the functional bioinformatic analysis) in
dedifferentiated human islet cells (n = 3) vs. native islets (n = 3). Single black dots represent each
detected gene based on the relative mean fold change (-Log FC) and p-values. Fold change cutoff
(red lines) was set at 2.5-fold while p-values cutoff (blue line) was set at 0.05 based on Student’s t-test
on normally distributed ∆Ct values.

2.4. miR-302 MicroRNA Target Several Genes Involved in β-Cell Function and Are Regulated by Cell–Cell
Contacts during In Vitro Dedifferentiation of Human Islets

We observed that among 92 analyzed genes in human pancreatic islets vs. in vitro dedifferentiated
islet cells, 34 are putatively targeted by miR-302s microRNAs. Among those, 19/34 were
downregulated and in line with the upregulation of miR-302s, 14/34 did not show any significant
differential expression and 1/34 resulted upregulated upon in vitro dedifferentiation (Figure 5).
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Figure 5. miR-302s target genes are involved in the loss of epithelial phenotype. miR-302 family are
downregulated in islet-derived dedifferentiated cells respect to native human islets and are mainly
involved in cell adhesion and motion, cell–cell signaling, cell growth, development and differentiation,
WNT signaling pathway and insulin stimulus, as well as regulation of secretion. The scheme reports
the entire set of analyzed miR-302s target genes; downregulated genes in islet-derived dedifferentiated
cells are reported in red, while those upregulated are in green. Grey highlighted miR-302s target gene
did not show any significant differential expression upon dedifferentiation.

We further categorized downregulated miR-302 target genes and demonstrated that most of them
are involved in cell–cell adhesion (ITGB4, CDH6, CD44, BARX2, ASH1L, LAMA3), in β-cell phenotype
control and/or function (NeuroD1, KAT2B, PPARα, DRD1) or in the control of WNT/β-catenin
signaling (FZD3, FZD6, ZBTB33, KREMEN1), thus suggesting that the transcriptional activation of
miR-302s is associated with the loss of phenotype of human pancreatic islet cells.

Previously, miR-302 microRNAs have been demonstrated to be highly expressed in pluripotent
stem cells [26,27] where they are transcriptionally controlled by Nanog and Oct3/4 transcription
factors [28–30]. We hypothesized that the potential activation of such stem cell factors during human
islet in vitro dedifferentiation may drive the activation of miR-302s. However, the expression analysis
of Nanog and Oct3/4 in in vitro dedifferentiated islet cells vs. human native islets showed low/null
expression of these factors without any significant transcriptional activation during dedifferentiation.
More recently, the transcription of miR-302 microRNA cluster genes have also been demonstrated
to be under the control of Wnt/β-catenin signaling; additionally, other studies demonstrated the
activation of this signaling pathway during in vitro human islet cells dedifferentiation [31–33]. Since the
modulation of Wnt signaling pathway is promoted also by sequestration/release of β-catenin from
cell–cell adhesion proteins (e.g., Cadherins) [34], we hypothesized that establishment or disruption
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of cell–cell contacts may modulate the expression of miR-302s. Therefore, to verify such hypothesis,
we cultured dedifferentiated islet cells at low (4000 cells/cm2) or high cell density (100,000 cells/cm2)
in order to establish whether forced cell–cell contacts could induce a reduction of miR-302s expression.
Indeed, the expression of miR-302s was significantly lower in high cell density vs. low density culture
(Figure 6a), suggesting that cell–cell contacts can modulate miR-302s expression through Wnt or other
signaling pathways.

We and others have previously demonstrated that in vitro expanded and dedifferentiated islet
cells are able to re-differentiate upon a specific 21 days culture protocol [1,35]; such differentiation
program toward endocrine-pancreatic phenotype is also characterized by re-establishment of cell–cell
contacts with the formation of pseudo-islets, starting from day 3 of differentiation at which most
dedifferentiated cells maintained cell–cell contact [1]. Therefore, to determine whether cell–cell
contacts may re-establish miR-302s expression, we analyzed their expression during re-differentiation
phase at different time points (-3, -7, -11, -14, -18, -21 days of differentiation). Indeed, expression of
miR-302s during re-differentiation was shown to be progressively reduced alongside with the ongoing
re-establishment of cell–cell contacts (Figure 6b).

Collectively, these results underline the potential role of pluripotent-associated microRNA,
miR-302, during in vitro dedifferentiation of human pancreatic islets and suggest that cell–cell contacts
may contribute to the activation of their expression.

Figure 6. Cell–cell contacts contribute to the modulation of miR-302s expression. (a) miR-302 family
members expression evaluation using stem–loop RT-Real Time PCR in dedifferentiated islet cells
cultured at different density (4000 cells/cm2 vs. 100,000 cells/cm2) for 48 h. Values are reported
as mean fold change ± SD vs. low density plated dedifferentiated islet cells. n = 3 independent
experiments using three different human islets-derived dedifferentiated cells preparations, p-value
Student’s t-test * p < 0.05. (b) Evaluation of miR-302s expression during re-differentiation of human
islet-derived dedifferentiated cells, starting from day 3 and evaluated at day 7, 11, 14, 18, and 21.
Values are reported as mean fold change ± SD vs. day 3 of re-differentiation. n = 3 independent
experiments using three different human islets-derived dedifferentiated cells preparations, p-value
Student’s t-test * p < 0.05.
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3. Discussion

Human β-cell dedifferentiation, or loss of phenotype, has been recently addressed as a new
potential mechanism of β-cell dysfunction in diabetes pathogenesis [36]. Importantly, it has been
suggested that this process can be reversible, thus opening the possibility of a re-establishment of
a fully functional β-cell phenotype as a therapeutic approach. However, the obvious difficulties of
molecular analysis of dedifferentiated cells, mainly due to the lack of evident biomarkers of this
process, is slowing down the discovery of the detailed mechanisms associated to the loss of β-cell
phenotype. Therefore, in vitro modeling of dedifferentiation could represent an ideal opportunity to
uncover potential in situ biomarkers able to identify dedifferentiated cells.

Human pancreatic islet cells in vitro dedifferentiation, due to prolonged culture timing
and in specific conditions, has been demonstrated to lead to the loss of endocrine-pancreatic
phenotype [1]. Indeed, in several previous studies, we and others have elucidated some of the
mechanisms leading to the loss of endocrine-pancreatic phenotype and to the acquisition of an
undifferentiated/mesenchymal-progenitor phenotype. Additionally, using in vitro β-cell lentiviral
lineage tracing approach during human pancreatic islets in vitro dedifferentiation, it has been shown
that β-cells can undergo to dedifferentiation process thus validating this model as a tool to study
this phenomenon in β-cells [5,6]. Furthermore, some of the markers associated to the acquisition of
β-cell undifferentiated/mesenchymal phenotype (e.g., Vimentin) have been recently demonstrated
to be hyper-expressed in pancreatic islets analyzed from sections derived from pancreata of type
2 diabetic multiorgan donors [37]; these results further corroborated the validity of such in vitro
dedifferentiation method. Therefore, using this in vitro model, we evaluated the expression profiles
of microRNAs in human native islets and in dedifferentiated islet cells in order: (i) to gain further
insights into the molecular mechanisms of dedifferentiation; (ii) to uncover potential biomarkers
able to identify dedifferentiating/dedifferentiated islet cells from fully mature cells; (iii) to identify
putative therapeutic targets in order to reverse the dedifferentiation process and to re-establish a fully
functional β-cell.

By employing an unbiased profiling approach, we found that most of the differentially expressed
microRNAs were downregulated (110/123, >80%) upon human pancreatic islet cells dedifferentiation,
while only 13 were significantly upregulated. This is in line with microRNA expression variations
usually observed during loss/acquisition of phenotype, where microRNAs buffer gene expression and
restrain or facilitate cell fate decision [20]. Indeed, the set of identified downregulated microRNAs
includes also those highly expressed in islets or in β-cells, which are reported to be responsible
for the maintenance of endocrine-pancreatic phenotype by targeting “disallowed genes”, thus
repressing abnormal cell responses or phenotypic changes [38,39]. This is the case for miR-30 and
miR-200 families, previously reported to be involved in epithelial cells phenotype maintenance
by repressing mesenchymal phenotype markers (e.g., miR-30 targets Vimentin and Snail) [24],
or miR-375, miR-7a, and miR-9 which, more specifically, have been demonstrated to finely control β-cell
function [40–42]. Overall, the set of 110 downregulated microRNAs during in vitro dedifferentiation
(Supplementary Figure S3) may represent a microRNA core network needed by islet cells to maintain
a mature phenotype and to specify their function.

From the other side, the 13 upregulated microRNAs may represent novel biomarkers of islet
cells dedifferentiation and may target key genes whose repression facilitates the acquisition of an
undifferentiated phenotype or involved in endocrine pancreatic cell functions. Particularly, the global
analysis of their predicted target genes, highlighted a significant role in cell–cell adhesion or cell–cell
signaling, whose function is essential for the maintenance of epithelial phenotype. Importantly, among
the 13 upregulated microRNAs, we identified some of them previously addressed as pivotal for
the acquisition and the modulation of mesenchymal phenotype during EMT process; these include:
miR-99a, miR-100, miR-214, miR-137, miR-337-3p, miR-199a-3p/5p, and miR-708 [43–48]. Of note,
some of them have also been previously associated to islets and/or β-cell function and dysfunction
in diabetes; indeed, miR-199a has been demonstrated to be upregulated in pancreatic islets from
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ob/ob and db/db diabetic mice [42], in which β-cell dedifferentiation has been clearly established.
MiR-708 has been recently reported to be upregulated in β-cells during metabolic/inflammatory stress
conditions; moreover, it has been demonstrated to control the expression of neuronatin (Nnat) [49]
whose expression was found reduced upon dedifferentiation in the present work. MiR-337 expression
has been correlated to glucose-responsiveness of MIN6 β-cells [50], thus suggesting its potential role
in the regulation of insulin secretion and β-cell function. Collectively, these data suggest that during
islet cells dedifferentiation some upregulated microRNAs may induce β-cell dysfunction and EMT
entry, thus rendering them strongly involved in the loss of β-cell phenotype.

Interestingly, among upregulated microRNAs we identified those belonging to the miR-302s
family. MiR-302s are specifically expressed in pluripotent/undifferentiated stem cells, where they
control several aspects of stemness [26]. Indeed, they have been reported to be controlled by
stem-cell associated transcription factors Oct3/4 and Nanog, but also by transcription factors
associated to Wnt/β-catenin signaling (Tcf/Lef) [28,31]. Additionally, overexpression of miR-302s
microRNAs have been reported to be sufficient to reprogram somatic cells, thus inducing generation
of induced-pluripotent stem cells (IPSCs) [51]. Here, we showed that miR-302s are upregulated
during human pancreatic islet cells dedifferentiation and are associated to the loss of islets/β-cell
phenotype. Using a bioinformatic approach followed by experimental evaluation of target genes
expression, we demonstrated that upregulation of miR-302s was associated to the downregulation of
target genes mostly involved in cell–cell adhesion and β-cell phenotype control (NeuroD1 and Kat2b).
Additionally, we explored the potential cues which lead or contribute to the activation of
miR-302 expression; specifically, we suggest that re-establishment of cell–cell contacts inhibits
miR-302 expression. These evidence were corroborated by two different experimental settings,
employing: (i) a forced cell–cell contact re-establishment by culture density experiments; (ii) the
induction of a re-differentiation program which primarily led to the formation of pseudo-islets
characterized by high cell–cell contacts. We hypothesized that disruption or re-establishment of
cell–cell contact may modulate β-catenin signaling through the expression of E-cadherin, which,
in turn, can bind β-catenin thus modulating the interaction with the downstream factors [34]. Therefore,
the reduction of E-cadherin may enhance the availability of β-catenin to interact with downstream
effectors, thus allowing the activation of miR-302s expression potentially mediated by Tcf/Lef factors.
On the contrary, re-establishment of cell–cell contacts may reduce the bioavailability of β-catenin,
thus reducing miR-302s transcriptional activation. The contribution of cell–cell contacts to miR-302s
expression has also been demonstrated using a specific re-differentiation program; during such process
we detected also the re-expression of one miR-302s target gene (NeuroD1), thus suggesting that
miR-302s may target NeuroD1 and that the downregulation of such a microRNA cluster may remove
the post-trancriptional inhibition and allow NeuroD1 upregulation [1].

Although establishment or disruption of cell–cell contacts have been reported to modulate Wnt
signaling pathway, potentially leading to miR-302 transcriptional modulation, we cannot exclude that
additional cues may activate others specific signaling which, in turn, can control miR-302 transcription.
Additional experimental evidences, focusing on the direct modulation of Wnt signaling pathway
using inhibitors or activators, are needed in order to verify the contribution of this pathway in the
transcriptional activation of miR-302 cluster genes.

Further evidence of miR-302s involvement in β-cell fate control has been provided by
microRNA profiling during human IPSCs differentiation toward endocrine-pancreatic phenotype;
indeed, we demonstrated that miR-302s expression was reduced during endocrine pancreatic
differentiation [20], thus suggesting that the backward process (dedifferentiation) is likely to enhance
their expression.

Although our data, and other previous published evidence, pointed to an important role for
miR-302 during dedifferentiation process and in the maintenance of undifferentiated phenotype,
we cannot decipher whether miR-302s activation represent a direct consequence of dedifferentiation
mechanism or a specific triggering factor of such process. Previous studies indicated miR-302s
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overexpression in mature cells, without any other additional factors, was able to induce the loss of
mature phenotype and the acquisition of an undifferentiated/stem-cell like one; therefore, it is not
unlikely that miR-302s upregulation alone may strongly contribute to the loss of β-cell phenotype.
Therefore, additional studies are strongly needed in order to clarify whether miR-302s upregulation is
a prerequisite for dedifferentiation triggering or is merely a consequence of the alteration of a more
complex molecular network.

Another important point would be to assess whether those microRNAs found to be differentially
expressed during in vitro dedifferentiation are mirrored by a similar differential expression in
pancreatic islets derived from T2D donors and specifically selected based on their degree of
dedifferentiation; this could be accomplished by laser capture microdissection and selection of those
islets containing dedifferentiated cells vs. those retaining a fully mature phenotype.

The detailed uncovering of these molecular mechanisms and the potential confirmation of
their involvement in diabetes may open the way for future therapeutic approaches involving the
use of microRNA modulators; indeed, the use of inhibitors of miR-302s family members (or other
microRNAs upregulated during dedifferentiation) may re-establish the correct molecular homeostasis,
thus reducing the consequences of miR-302s hyperexpression and, potentially, restore β-cell function.
Moreover, the low/null expression of miR-302 in mature native pancreatic islets represents a
therapeutic advantage, permitting the desired inhibition only where miR-302 is hyperexpressed thus
having no adverse off-target effects where miR-302 is not expressed (i.e., in not dedifferentiated cells).

In conclusion, these data demonstrate that microRNAs belonging to the miR-302 cluster are
associated to islet-cell/β-cell dedifferentiation—i.e., a phenomenon involved in T1D and T2D
development—suggesting that such group of microRNAs and their related target genes may represent
novel candidate therapeutic targets in diabetes mellitus.

4. Materials and Methods

4.1. Human Pancreatic Islets Isolation and In Vitro Islet Dedifferentiation

Human pancreatic islets from non-diabetic multiorgan donors (see Supplementary Table S1)
were isolated using pancreas collagenase enzymatic digestion and gradient separation as previously
described [1]. Some pancreatic islet preparations were hand-picked and then used for RNA extraction
(Hi native); others were hand-picked and then cultured to induce de-differentiation (Dediff. Hi)
(see Supplementary Table S1). Dedifferentiation was induced as previously described [1]. Briefly,
50 hand-picked islet equivalents (IEQ), without dissociation, were cultured in 100 mm plastic tissue
culture dishes (Falcon; Becton Dickinson, San Jose, CA, USA) in growth medium (modified RPMI
1640 medium (11.1 mM glucose) (Sigma Aldrich, St. Louis, MO, USA) supplemented with 10%
FBS (Stem Cell Technologies Inc., Vancouver, BC, Canada), 2 mM L-glutamine, 100 U/mL penicillin,
100 mg/mL streptomycin, 250 ng/mL amphotericin B, (Sigma Aldrich) and maintained at 37 ◦C in 5%
CO2 and 95% humidified air. After 15 days of culture, adherent dedifferentiated islets were detached
with 0.25% trypsin-2 mM EDTA (Sigma Aldrich) and seeded at a density of 12,000 cells/cm2 for two
passages and then subjected to downstream analysis. Dedifferentiated and expanded islet cells were
re-differentiated as previously described [1] and analyzed at different time-points of differentiation
(3 days, 7 days, 11 days, 15 days, 18 days, 21 days), or cultured at low density (4000/cm2) and high
density (100,000/cm2) in standard growth medium in 6-well adhesion petri dishes for 48 h, then
detached and analyzed for microRNA expression levels.

4.2. RNA Extraction and Quality Evaluation

Total RNA, including small RNA fraction, was extracted using miRNeasy Mini Kit (Qiagen, Valencia,
CA, USA) and treated with DNase I using RNase-free DNase set (Qiagen) to eliminate genomic DNA.
RNA quality was assessed using Agilent Bioanalyzer 2100 (Agilent Technologies- Santa Clara, CA,
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USA); RIN value ≥6 was considered acceptable for Taqman Array Microfluidic cards and stem–loop
RT-qPCR analysis.

4.3. MicroRNA Expression Profiles Using Taqman Array Cards

MicroRNA expression profiling was performed using Taqman™ MicroRNA Array Human
Panel A + Panel B v2.1 (Life Technologies, Carlsbad, CA, USA) in order to evaluate the expression
of 768 microRNAs. Megaplex™ Reverse Transcriptase reaction, was performed according to the
manufacturer’s protocols (Life Technologies) using 500 ng of total extracted RNA. ViiA7 PCR
instrument platform was used to analyze Taqman array cards and Expression Suite 2.1 software
(Life Technologies, Carlsbad, CA, USA) was used to evaluate amplification plot efficiencies and to
analyze data. Analysis was performed by using 2−∆Ct method following normalization with small
nuclear RNAs, RNU44 and RNU48.

Hierarchical clustering analysis plot was computed in order to obtain a global view of microRNA
expression levels and to identify clustered group of microRNAs. Differentially expressed microRNAs
were identified by performing a Volcano-plot analysis by applying a cut-off fold change of >2.5
(upregulated) or <0.4 (downregulated) and a statistical cutoff of FDR corrected p-value of p < 0.05 using
Student’s t-test on normalized ∆Ct values. Hierarchical clustering analysis plot and volcano plot
were elaborated using Spotfire 5.0 (Tibco, Somerville, MA, USA) and GraphPad 5.0 (GraphPad Prism,
La Jolla, CA, USA), respectively.

4.4. MicroRNAs Stem–Loop Single Assay RT-qPCR

In order to analyze microRNA expression in single assay reaction, 10 ng of extracted RNA from
six samples of native human islets and from seven samples of islet-derived dedifferentiated cells
were subjected to reverse transcription reaction, performed using stem–loop reverse transcriptase
protocol followed by real-time PCR using specific Taqman™ microRNA expression assay in 96-well
plate (all from Life Technologies), according to manufacturer’s suggestions. Ct values were analyzed
by using Expression Suite 2.1 software and normalized using endogenous RNU44 and RNU48.

4.5. Predicted Target Genes Bioinformatic Analysis

In order to investigate the main functions in which differentially microRNAs were involved,
we firstly performed a bioinformatic analysis on Targetscan 6.2 (http://www.targetscan.org/vert_61/).
Among predicted target genes we selected 196 genes based on their function (differentiation,
proliferation, cell adhesion). A further deep bioinformatic functional analysis was performed by
using DAVID 6.7 algorithm (https://david-d.ncifcrf.gov/); based on gene ontology categories and
p-values, a final selection of 92 predicted target genes that putatively play an essential role in human
islets development and function were identified.

4.6. Genes Expression Analysis

Expression analysis of endocrine-pancreatic and undifferentiated/mesenchymal genes expression
was performed using Improm-II reverse transcriptase reaction protocol (Promega, Madison, WI, USA),
followed by Taqman Gene expression assays analysis using real-time PCR (Life Technologies). 250 ng
of total RNA/reaction were reverse transcribed and 25 ng of corresponding cDNA were employed to
analyze each selected gene.

Identified and predicted 92 target genes (retrieved using the bioinformatic approach described
above) were analyzed using Taqman Array 96 well Fast plate, specifically designed in a custom
format (Life Technologies), containing lyophilized corresponding Taqman Gene expression assays.
In this case, 500 ng of total RNA from each sample was reverse transcribed using Improm-II reverse
transcriptase reaction. Then, a master mix containing Universal PCR Master Mix II, RNAse-free water
and 500 ng of total cDNA were added to each well and then analyzed following manufacturer’s

http://www.targetscan.org/vert_61/
https://david-d.ncifcrf.gov/
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protocol (Life Technologies). GAPDH and β-Actin housekeeping genes were adopted to normalize
gene expression results.

4.7. Statistical Analysis

Statistical significance was determined using Mann–Whitney non-parametric U test or two-tailed
paired t-test (GraphPad Prism 5.0). P values less than 0.05 (p < 0.05) were considered statistically significant.

4.8. Ethics Statement

Pancreata were collected after informed consent was obtained in writing from family members.
The islet isolation center has permission to prepare isolated islets and to use them for scientific
research if they are not suitable for clinical islet transplantation, in accordance with national laws
and our institutional ethical rules (Comitato Etico per la Sperimentazione dell’Azienda Ospedaliera
Universitaria di Pisa).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/4/1170/s1.
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