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Simultaneous clustering and dimensional reduction
of mixed-type data

Monia Ranalli*, Roberto Rocci**

Abstract:  In real applications, it is very common to have the true clustering structure
masked by the presence of noise variables and/or dimensions. A mixture model is proposed
for simultaneous clustering and dimensionality reduction of mixed-type data: the continuous
and the ordinal variables are assumed to follow a Gaussian mixture model, where, as regards
the ordinal variables, it is only partially observed. To recognize discriminative and noise
dimensions, the variables are considered to be linear combinations of two independent sets
of latent factors where only one contains the information about the cluster structurc while
the other one contains noise dimensions. In order to overcome computational issues, the
parameter estimation is carried out through an EM-like algorithm maximizing a composite

log-likelihood based on low-dimensional margins.

Keywords: Mixture models, Composite likelihood, EM algorithm.

1. Introduction

The aim of cluster analysis is to partition the data into meaningful groups
which should differ considerably from each other. The cluster analysis is
made more difficult by the presence of mixed-type data (ordinal and contin-
uous variables) combined by the presence of dimensions (named noise) that
are uninformative for recovering the groups and could obscure the true cluster
structure. It follows that there are two main points to be addressed: combin-
ing continuous with ordinal variables; taking into account the presence of
noise variables/dimensions. As regards the first point, the literature on clus-
tering for continuous data is rich and wide; the most commonly clustering
model-based used is the finite mixture of Gaussians (McLachlan et al., 2016).
Differently, that one developed for categorical data is still limited. Models
used for ordinal data mainly adopt two approaches developed in the factor

*University of Tor Vergata, monia.ranalli @uniroma?2.it
**University of Tor Vergata, roberto.rocci @uniroma2.it
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analysis framework: Item Response Theory (IRT) (see e.g. Bartholomew et
al. (2011), Bock and Moustaki (2007)), and the Underlying Response Vari-
able (URV) (see e.g. Joreskog, 1990; Lee et al., 1990; Muthén, 1984). In the
URV approach, the ordinal variables are seen as a discretization of continuous
latent variables jointly distributed as a finite mixture; examples are: Everitt
(1988), Lubke and Neale (2008), Ranalli and Rocci (2016a, 2017a, 2017b).
However, this makes the maximum likelihood estimation rather complex be-
cause it requires the computation of many high dimensional integrals. The
problem is usually solved by approximating the likelihood function. In this
regard we mention some useful surrogate functions, such as the variational
likelihood (Gollini and Murphy, 2014) or the composite likelihood (Ranalli
and Rocci (2016a, 2017a, 2017b)). Although it is possible to cluster via a
model based approach continuous or ordinal variables separately, combin-
ing both into a common framework may raise some issues. Following the
URYV approach, Everitt (1988) and Ranalli-Rocci (2017a) proposed a model
according to which both the continuous and the categorical ordinal variables
follow a Gaussian mixture model, where the ordinal variables are only par-
tially observed through their ordinal counterparts. This satisfies the two main
requirements: dealing with ordinal data properly and modelling dependen-
cies between ordinal and continuous variables. As regards the presence of
noise variables, different approaches exist in literature. Several techniques
for simultaneous clustering and dimensionality reduction (SCR) have been
proposed in a non-model based framework for quantitative (e.g.: Rocci et al.,
2011; Vichi and Kiers, 2001) or categorical data (e.g.: Hwang et al., 2006;
Van Buuren et al., 1989). There are also approaches based on a family of
mixture models which fits the data into a common discriminative subspace
(see e.g. Bouveyron and Brunet, 2012; Kumar and Andreou, 1998; Ranalli
and Rocci, 2017b). The key idea is to assume a common latent subspace
to all groups that is the most discriminative one. This allows to project the
data into a lower dimensional space preserving the clustering characteristics
in order to improve visualization and interpretation of the underlying struc-
ture of the data. The model can be formulated as a finite mixture of Gaus-
sians with a particular set of constraints on the parameters. Combining all
pieces together, following the URV approach, in our proposal the continuous
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and the ordinal variables are assumed to follow a heteroscedastic Gaussian
mixture model, where, as regards the ordinal variables, it is only partially
observed. To recognize discriminative and noise dimensions, these variables
are considered to be linear combinations of two independent sets of latent
factors where only one contains the information about the cluster structure,
defining a discriminative subspace, distributed as a finite mixture of Gaus-
sians. The other one contains noise dimensions distributed as a multivariate
normal. The model specification is parsimonious and is able to identify a re-
duced set of discriminative latent factors/dimensions even when there are no
noise variables to be detected. The main drawback of this model is that, in
practice, it cannot be estimated through a full maximum likelihood approach,
due to the presence of multidimensional integrals making the estimation time
consuming. To overcome this issue, we propose to replace this cumbersome
likelihood with a surrogate objective function, easier to maximize, that is the
product of marginal likelihoods. It is a composite likelihood method (Lindsay,
1988; Varin et al., 2011) where surrogate functions are defined as the prod-
uct of marginal or conditional events. In particular, our proposals is based on
the existing results within a mixture model framework Ranalli-Rocci (2016a,
2017a, 2017b). It consists of replacing the joint likelihood with all possible
marginals, like bivariate marginal distributions of ordinal variables and the
marginal distributions of one ordinal variable and all continuous variables.

2. Model specification

Let x = [z1,...,%0] and yo = [Yo11,--.,yp] be O ordinal and O =
P — O continuous variables, respectively. The associated categories for each
ordinal variable are denoted by ¢; = 1,2,...,C; with¢ = 1,2,...,0. Fol-
lowing the underlying response variable approach (URV) developed within
the SEM framework (see e.g. Joreskog, 1990; Lee et al., 1990; Muthén,
1984), the ordinal variables x are considered as a categorization of a contin-
uous multivariate latent variable y° = [y1,...,y0]. According to the URV,
the joint distribution of x and y can be constructed as follows. The latent re-
lationship between x and y? is explained by the threshold model, ; = ¢; <
7((,:)_1 <y <, where —0 = 7(()’) <A< < A/gj_l < 79 = 400
are the thresholds defining the C; categories collected in a set I' whose ele-
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ments are given by the vectors (). To accommodate both cluster structure
and dependence within the groups, we assume thaty = [y”’, y’)’ follows a
heteroscedastic Gaussian mixture, f (y) = Zle Pedp (V5 g, Xg), Where the
pg’s are the mixing weights and ¢, (y; pg, 34) is the density of a P-variate
normal distribution with mean vector u, and covariance matrix X,. Let us
set ) = {p1,....0G, M1, .., G, X1,. ... Bg,I'} € ¥, where W is the pa-
rameter space. For a random i.i.d. sample of size N, (x1,¥%), ..., (Xy, y%),
the log-likelihood is

N G
L) = Y log | Y pets(yei g, B)m (uﬁf,zg")l) , (D
n=1 g=1

where, with obvious notation

(1) (0)
— — FYCI FY(;O — —
0|0 $0|0 . ,,0|0 0|0
o (”";lg ’Zg' ’F> - /(1) .../(O) ¢O(u’””"|9 ’29' )du
'Ycl—l cho—l
O o 00 (5:00\—1/_0 O
""’T?Ig = Hyg + z]g (Eg ) 1(yn — My )
OI0 _ 5100 _ 100 5100\ —15300
29 o 29 29 (29 ) 29 ’

Tn (p,fflf, E?'O, 'y) is the conditional joint probability of response pattern

X, = (cgl), . ,cgo)) given the cluster ¢ and the continuous variables y©. Fi-

nally p, is the probability of belonging to group g subject to p, > 0 and
zg’;l pg = 1. In order to identify the discriminative dimensions, it is assumed
that there is a set of P latent factors y, formed of two independent subsets. In
the first one, there are () (with Q < P) factors that have some clustering in-
formation distributed as a mixture of Gaussians with class conditional means
and variances equal to E(3° | g) = m, and Cov(§® | g) = Q,, respectively.
In the second set there are ) = P — (@ noise factors defining the so-called
noise dimensions, that are independent of ¥ and their distribution does not
vary from one class to another: E(y% | g) = mo and Cov(§© | g) = Q. The
link between y and y is given by a non-singular P X P matrix A, as y = Ay.
The final step is to identify the variables that could be considered as noise.
Intuitively y, is a noise variable if it is well explained by y@. Exploiting the
independence between ¥ and y©, it is possible to compute proportions of
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each variable’s variance that can be explained by the noise factors, and by
one’s complement, the proportions of each variable’s variance that can be ex-
plained by the discriminative factors.

2.1. Construction of surrogate functions

The presence of multidimensional integrals makes the maximum likeli-
hood estimation computationally demanding and infeasible as the number of
observed ordinal variables increases. To overcome this, a composite likeli-
hood approach is adopted (Lindsay, 1988). It allows us to simplify the prob-
lem by replacing the full likelihood with a surrogate function. As suggested
in Ranalli-Rocci (2016a, 2017a, 2017b) within a similar context, the full log-
likelihood could be replaced by the sum of two estimating-block functions:
O(O — 1)/2 bivariate marginals of ordinal variables; O marginal distribu-
tions each of them composed of one ordinal variable and the O continuous
variables. This leads to the following surrogate function

O-1 C;

N o i a
)= > D D 5 log { pymlid) (i), ggu%r(m)}
il = <

=1 1=1 j=i+lc;=1c¢c;

N

N O G G B ~ o ' S
Y>> 0oy {Z pgmd9 (1), 619, 1) (v 1 ,EQOO)] :
n=1j=1¢;=1

g=1

where now, after the reparameterization induced by the reduction model, the
set of parameters is ¥ = {py,....Pc, Mos Ms - - -, Ny Qo, R, ..., Vo, A, v ]
57(12-)03- is a dummy variable assuming 1 if the n-th observation presents the
combination of categories ¢; and ¢; for variables z; and x; respectively, O oth-
erwise; similarly 67({% is a dummy variable assuming 1 if the n-th observation
presents category c; for variable x;, 0 otherwise; Wﬁfﬁz ( pé’j ), Eé’j ), ') is the
probability under the model obtained by integrating the density of a bivari-
ate normal distribution with parameters ( ,U,gj ), b)) éij ), I'(17)) between the corre-
sponding threshold parameters. On the other hand, wﬁg lQ)(u%Q), aéj @), o)
is the conditional probability of variable x; of being in category c; given all
the continuous variables y?. Finally, u, = E(y | g) = AE(y | g), while

¥, = Cov(y | g) = ACov(y | g)A’, as specified previously. The parame-
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ter estimates are carried out through an EM-like algorithm, that works in the
same manner as the standard EM.

2.2. Classification model selection and identifiability

When we adopt a composite likelihood approach, since we do not compute
the joint distribution for each observation, it is not possible anymore to assign
the observation to the component with the maximum a posteriori probability
(MAP criterion) without further computations. To solve the problem we fol-
low the CMAP criterion (Ranalli-Rocci, 2017a, 2017b), according to which
the observation is assigned to the component with the maximum scaled com-
posite fit (scaled by the corresponding mixing weight). As regards model
selection, the best model is chosen by minimizing the composite version of
penalized likelihood selection criteria like BIC or CLC (see Ranalli-Rocci,
2016b and references therein). Finally, as regards identifiability, within a full
maximum likelihood approach, it is well known that a sufficient condition
for local identifiability is given by the non singularity of the information ma-
trix; while a necessary condition is that the number of parameters must be
less than or equal to the number of canonical parameters. Adopting a com-
posite likelihood approach, the sufficient condition should be reformulated
by investigating the Godambe information matrix, that is, the analogous of
the information matrix in composite likelihood estimation. However, as far
as we know, such modification has not been formally investigate yet. About
the necessary condition, we note that the number of essential parameters in
the block of ordinal variables equals the number of parameters of a log linear
model with only two factor interaction terms. Thus it means that we can es-
timate a lower number of parameters compared to a full maximum likelihood
approach. Furthermore, under the underlying response variable approach, the
means and the variances of the latent variables are set to O and 1, respectively,
because they are not identified. This identification constraint individualizes
uniquely the mixture components (ignoring the label switching problem), as
well described in Millsap and Yun-Tein (2004). This is sufficient to esti-
mate both thresholds and component parameters if all the observed variables
have three categories at least and when groups are known. Given the partic-
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ular structure of the mean vectors and covariance matrices, it is preferable to
adopt an alternative, but equivalent, parametrization. This is analogous to that
one used by Joreskog and Sorbom (1996); it consists in setting the first two
thresholds to 0 and 1, respectively. This means that there is a one-to-one cor-
respondence between the two sets of parameters. If there is a binary variable,
then the variance of the corresponding latent variable is set equal to 1 (while
its mean should be still kept free). Finally, we note that the model has the
same rotational freedom that characterizes the classical factor analysis model.
In other words, writing A = [A}, Ay] according to y = [§<,y*']’ , only the
subspaces generated by the columns of A; and A, are identified. In order to
estimate such subspaces, we impose some constraints on the model param-
eters, in complete analogy with what is usually done in the factor analysis
model. In this way, we select a particular solution, one which is convenient
to find, and leave the experimenter to apply whatever rotation he thinks desir-
able, as suggested by Lawley and Maxwell (1962). In particular, we require
a spherical distribution for the noise factors, i.e. g = I, and informative
factors in the first cluster, i.e. ©; = I. Such constraints still allow a rota-
tional freedom by orthonormal matrices. This can be eliminated by requiring
a “lower" triangular form for the two loading matrices. In general, A; and A,
have a lower triangular matrix in the first ) and (P — @) rows, respectively.
Of course, after the estimation the parameter matrices can be rotated to en-
hance the interpretation.

Further details will be given in the extended version of the paper along with
simulation and real data results to show the effectiveness of the proposal.
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