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Abstract

Declarative process modeling languages such as declare describe the be-
havior of processes by means of constraints. Such constraints exert rules on
the execution of tasks upon the execution of other tasks called activations.
The constraint is thus fulfilled both if it is activated and the consequent
rule is respected, or if it is not activated at all. The latter case, named
vacuous satisfaction, is clearly less interesting than the former. Such a dis-
tinction becomes of utmost importance in the context of declarative process
mining techniques, where processes are analyzed based on the identification
of the most relevant constraints valid in an event log. Unfortunately, this
notion of relevance has never been formally defined, and all the proposals
existing in the literature use ad-hoc definitions that are only applicable to
a pre-defined set of constraint patterns. This makes existing declarative
process mining techniques inapplicable when the target constraint language is
extensible, and may contain formulae that go beyond the pre-defined patterns.
In this paper, we tackle this open challenge, and show how the notion of
constraint activation and vacuous satisfaction can be captured semantically,
in the case of constraints expressed in arbitrary temporal logics over finite
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traces. Our solution relies on the annotation of finite state automata to
incorporate relevance-related information. We discuss the formal grounding
of our approach and describe the implementation thereof. We finally report
on experimental results gathered from the application of our approach to
real-life data, which show the advantages and feasibility of our solution.

Keywords: Vacuity Detection, Declarative Process Mining, Constraint
Activation, Linear Temporal Logic, Finite State Automata

1. Introduction

The increasing availability of event data recorded by information systems,
electronic devices, web services, and sensor networks provides detailed informa-
tion about the execution of actual processes within and across organizations.
Process mining techniques can use such event data to discover and enhance
process models, as well as to check whether the actual behavior of a process
conforms to the expected behavior [1]. When a process works in a variable
and knowledge-intensive setting, it is crucial to achieve a trade-off between
flexibility and control [2, 3]. In this situation, declarative approaches provide
a suitable target for process mining, since classical, imperative process models
tend to become too detailed and intricate [4].

The common denominator of declarative process modeling approaches is to
avoid the explicit, exhaustive enumeration of the acceptable sequences of tasks
in a process: the allowed behaviors are implicitly obtained by considering
all sequences of tasks that satisfy a given set of constraints, declaratively
specifying what needs to be accomplished, without stating how. In this way,
process models offer the so-called flexibility by design [5], while remaining
compact. Among the several proposals for declarative process modeling,
declare [3, 6] and dcr graphs [7] employ temporal logics (respectively
over finite and infinite traces) to formalize constraints, and build on the
well-established, automata-theoretic techniques for such logics to carry out
consistency checking, enactment, monitoring, and mining of declarative pro-
cess models.

There is, however, a fundamental issue when applying such logic-based
approaches: although they provide a clear, formal definition of whether
an execution trace satisfies a constraint, they do not give a precise and
generally applicable means to state whether the satisfaction is relevant. Let
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us consider, for example, a constraint imposing that if a request occurs then
it is eventually followed by a grant. In case a request occurs in a trace and,
later on, a grant occurs too, the constraint is satisfied in the trace. If the
request never occurs in the trace the constraint is also satisfied. However, such
a satisfaction is arguably irrelevant, as the trace does not “actively interact”
with the constraint. This is an example of what is called in the literature
vacuous satisfaction [8, 9]. It is evident that for the practical development
of process mining and operational support techniques, such as monitoring,
conformance checking, and discovery, providing a yes/no judgement about
constraint satisfaction is too coarse-grained, and answering the following two
questions becomes essential:

• Relevance: does a trace non-vacuously satisfy a constraint?

• Activation counting : if so, how much relevant is the constraint to the
trace?

In the context of declare discovery, relevance and activation counting are key
to reducing the (potentially large) number of constraints that may be extracted
from an event log, pruning away those that satisfy the traces contained in
the log, but in an irrelevant way [10, 11, 12, 13]. In conformance checking,
activation counting is crucial to compute the so-called health indicators that
measure the “degree of adherence” between a constraint and an execution
trace [14, 15, 16, 17]. Since temporal logic-based formalisms do not provide
a principled way to answer such questions, existing works adopt an ad-hoc
approach, which fixes a predefined set of constraint patterns, and requires
to explicitly spell out the meaning of relevance for each single pattern. This
makes it difficult to understand the suitability and correctness of the proposed
solutions; at the same time it makes them inapplicable when new types of
constraints, going beyond the predefined set of patterns, are considered.

The goal of this paper is to overcome these issues by proposing for the
first time a general, systematic characterization of relevance for temporal
constraints in a finite-trace setting. Our approach is formal because it defines
the notion of relevance on top of the logical semantics of constraints, and op-
erational, since it suitably extends the automata-theoretic approach to handle
relevance. Differently from the line of research on vacuity detection for linear
temporal logic over infinite traces [8, 9], we leverage the finite-trace semantics
to come up with a fully semantical syntax-independent characterization of
relevance. We improve upon the state of the art in the context of declarative
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process mining [18] in that our approach is independent from the repertoire of
constraints under analysis: although we consider declare as the language of
reference, our approach can seamlessly be applied to any temporal logic-based
constraint, because we fully resort on automata underlying their semantics.

We validate our approach along two directions. On the one hand, we report
on the implementation and experimentation of our solution, confirming its
advantages and feasibility. On the other hand, we show that our formal notion
of relevance is compatible with the human intuition exploited in previous
works, whereas counting activations partially diverges. We then conclude
by discussing the reasons for such a divergence, arguing that the problem
of counting cannot in general be tackled satisfactorily without enriching the
representation of constraints with additional features.

This paper is an extended version of [19]. The three main extensions we
provide here are: (i) a more detailed account of our approach, including a
proof that the presented automata-theoretic technique is correct with respect
to our semantical definition of relevance; (ii) an extended description of
our implementation of the presented technique; (iii) a discussion on a new,
general approach for counting activations, examining how it relates to previous
approaches, and spelling out the open challenges of this problem.

The paper is structured as follows. In Section 2, we introduce the prelimi-
nary notions that we use to discuss the problem and propose our solution. In
Section 3, we discuss the motivation behind our contribution. In Section 4,
we describe how to determine whether a constraint is relevant to an execution
trace. Section 5 shows how to identify activations using automata, and thus
distinguish between vacuous and non-vacuous satisfactions. In Section 6, we
describe how we implemented our approach. Section 7 reports on the results
gathered by evaluating our approach on real-life logs. Section 8 discusses the
problem of counting activations in a trace. Section 9 positions our research
with respect to related work in the literature. Finally, Section 10 concludes
the paper and spells out directions for future work.

2. Preliminaries

We start by introducing the preliminary notions used in the rest of the
paper. The concepts defined hereafter constitute the background for the
specification and analysis of declarative processes. Section 2.1 provides the
basic terms to represent the execution of a process. Section 2.2 describes

4



the formal language with which declarative process semantics are expressed.
Finally, Section 2.3 illustrates the declare process modeling language.

2.1. Process Alphabet and Execution Traces

We fix a finite set Σ of tasks, i.e., atomic units of work in a process. This
set provides the alphabet on top of which process execution traces are defined.

Definition 1 (Execution trace). An (execution) trace τ over Σ is a pos-
sibly empty, finite sequence of tasks 〈t1, . . . , tn〉 belonging to the set Σ∗ of
finite sequences over Σ. We use ε to denote the empty trace. �

In this work, we focus on finite traces, so as to reflect that each process
execution is meant, sooner or later, to be completed. In the remainder of
the paper, unless explicitly addressed, we will use the generic term trace to
denote a finite execution trace.

The length of a trace τ , written |τ |, is the number of tasks it contains:
|〈t1, . . . , tn〉| = n. We use the standard concatenation operator over traces:
the concatenation of trace τ1 = 〈t1

1, . . . , t
1
m〉 with trace τ2 = 〈t2

1, . . . , t
2
n〉,

written τ1 · τ2, is trace 〈t1
1, . . . , t

1
m, t

2
1, . . . , t

2
n〉. We define the concepts of prefix

and suffix of a trace τ = 〈t1, . . . , tn〉 respectively as τpre = 〈t1, . . . , tj〉 and
τsuf = 〈tk, . . . , tn〉 for any 1 6 j 6 n and 1 6 k 6 n. We use notation τ · t as
a shortcut for τ · 〈t〉. Finally, the i-th task of trace τ , for any 1 6 i 6 |τ |, is
denoted by τ(i).

2.2. Constraint-Based Process Modeling with Temporal Logics

In a declarative process model, constraints are used to express rules,
best practices, and behavioral patterns that implicitly restrict the amount of
accepted traces. Intuitively, an execution trace is accepted by or complies with,
a declarative process model, if the trace satisfies all constraints contained in
the model.

Usually, the formal underpinning for such intuitive notions is provided
by temporal logics, whose models are indeed traces. In particular, formulae
of the logic are used to capture constraints, and logical consequence to
unambiguously define when a trace satisfies a constraint and is compliant
with a declarative process model [20].

The most widely adopted logic for declarative process modeling is ltl
over finite traces (ltlf [21]). This logic is at the basis of concrete modeling
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languages such as declare. ltlf has the same syntax of ltl [22], but is
interpreted on finite traces.

Definition 2 (ltlf formula). An ltlf formula is inductively defined as:

ϕ ::= φ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ◦ϕ | •ϕ | ♦ϕ | �ϕ | ϕ1 U ϕ2

where φ is a propositional formula over Σ, ◦ is the next operator, • is weak
next, ♦ is eventually, � is always, U is until. �

Definition 3 (Semantics of ltlf). The semantics of ltlf is defined by
the satisfaction relation |=, inductively defined over the structure of the
formula, given a trace τ and a position 1 6 i 6 |τ |, as follows:
• τ, i |= φ if τ(i) satisfies φ (in terms of propositional entailment);
• τ, i |= ¬ϕ if it is not the case that τ, i |= ϕ;
• τ, i |= ϕ1 ∧ ϕ2 if τ, i |= ϕ1, and τ, i |= ϕ2;
• τ, i |= ◦ϕ if i < |τ |, and τ, i+ 1 |= ϕ;
• τ, i |= •ϕ if either i = |τ |, or τ, i |= ◦ϕ;
• τ, i |= ϕ1 U ϕ2 if there exists j such that i ≤ j ≤ |τ |, τ, j |= ϕ2, and for

every k such that i ≤ k < j, we have τ, k |= ϕ1.
The other operators are obtained as combinations of the operators defined
above (see [21]). �

Beyond ltlf , more expressive logics have been exploited as well. Notable
examples are regular expressions [23, 24, 25], which have been used to define an
alternative semantics for declare, and linear-dynamic logic over finite traces
(ldlf ), exploited to monitor declare patterns enriched with meta-constraints
predicating over the truth values of other constraints [26]. Interestingly,
ltlf is strictly less expressive than regular expressions, which, in turn, are
expressively equivalent to ldlf and to monadic second-order logic over finite
traces (msof ) [21, 27, 28].

The most widely adopted approach for consistency checking, enactment,
monitoring, and mining of declarative process models is to leverage the
automata-theoretic approach for temporal logics. This is done by exploiting
the well-known result that a formula in each of the aforementioned logics can
be captured by a corresponding deterministic finite-state automaton (dfa),
which accepts all and only those traces that satisfy the formula.

To abstract away from the specific logic of interest, we employ the generic
term constraint as a way to refer to a formula in any of the logics mentioned
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above. We use ltlf in our examples just for presentation purposes. A
template is a parametric ltlf formula. As pointed out above, all such logics
can be characterized using dfas. We use the term constraint automaton to
refer to the dfa that captures a constraint of interest. When needed, we
indicate a non-deterministic finite-state automaton with nfa.

Definition 4 (Constraint Automaton). Let ϕ be a constraint over Σ.
The constraint automaton Aϕ of ϕ is a dfa 〈Σ, S, s0, δ, F 〉, where: (i) Σ is the
input alphabet (which corresponds to the set of tasks); (ii) S is a finite set of
states; (iii) s0 ∈ S is the initial state; (iv) δ : S ×Σ→ S is the (task-labeled)
state-transition function; (v) F ⊆ S is the set of accepting states. Aϕ has the
property of precisely accepting those traces σ ∈ Σ∗ that satisfy ϕ. Without
loss of generality, we assume that Aϕ is not trimmed, i.e., for every state
s ∈ S and every task t ∈ Σ, δ(s, t) is defined. �

Examples of algorithms that produce the constraint automaton of a given
constraint expressed in ltlf or ldlf can be found in [21, 26, 29].

Given a constraint automaton A = 〈Σ, S, s0, δ, F 〉, and two states s1, s2 ∈
S, we say that s2 is reachable from s1 in A , written δ∗(s1, s2), if s1 = s2,
or there exists a trace that leads from s1 to s2 according to δ. We say that
A accepts a trace τ , or equivalently that τ complies with A, if there exists a
path that reaches an accepting state starting from the initial state such that,
for any 1 6 i 6 |τ |, the i-th transition in the path matches with the i-th task
in τ .

2.3. Declare

declare is a declarative process modeling language originally introduced
by Pesic and van der Aalst in [3, 6] to express rules over the control flow of
a process. More recently, declare has been extended to take into account
other process perspectives that go beyond the pure control flow, such as time
[30, 31] and data [32, 33, 34].

A declare model consists of a set of constraints applied to tasks. Con-
straints, in turn, are based on templates. Templates have a graphical repre-
sentation and their semantics can be formalized using different logics, the
main one being ltlf , making them verifiable and executable. Each constraint
inherits the graphical representation and semantics from its template. The
major benefit of using templates is that analysts do not have to be aware
of the underlying logic-based formalization to understand the models. They
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Template and explanation Formalization Graphical notation

Existence ♦a

1..∗

a

a occurs at least once

Absence2 ¬♦(a ∧©♦a)

0..1

a

a occurs at most once

Responded existence ♦a→ ♦b a •−−−− b

If a occurs, then b occurs

Coexistence ♦a↔ ♦b a •−−−• b

a occurs if and only if b occurs

Response �(a→ ♦b) a •−−−I b

If a occurs, then b occurs eventually afterwards

Precedence (¬bU a) ∨ �(¬b) a −−−I• b

b occurs only if a occurred beforehand

Alternate response �(a→©(¬aU b)) a •===I b

If a occurs, then b occurs afterwards, before a recurs

Alternate precedence (¬bU a) ∨ �(¬b) ∧ �(b→©((¬bU a) ∨ �(¬b))) a ===I• b

If b occurs, it is preceded by a and no other b can recur in between

Chain response �(a→©b) a •=−=−=−I b

If a occurs, then b occurs immediately after

Chain precedence �(©b→ a) a =−=−=−I• b

If b occurs, then a occurs immediately before

Not coexistence ♦a→ ¬♦b a •−−−•‖ b

a and b never occur together

Not succession �(a→ ¬♦b) a •−−I•‖ b

a never occurs before b

Not chain succession �(a→ ¬© b) a •=−=−I•‖ b

a and b occur if and only if no b occurs immediately after a

Table 1: Graphical notation and ltlf formalization of some standard declare templates,
referred to formal parameters a and b
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a •−−−I b eat food •−−−I measure glucose

Figure 1: Response declare template and a possible instantiation

0 1

!e !m

e
m

(a) response(e,m)

0 1

2!e&!m −−
e

m

(b) precedence(e,m)

0 3

2

1

!e&!m !m− !e

e
m

m
e

(c) succession(e,m)

Figure 2: Automata of response, precedence, and succession constraints

work with the graphical representation of templates, while the underlying
formulae remain hidden.

Table 1 summarizes some declare templates, specifying their semantics
by means of ltlf formulae, and their graphical notation. The reader can
refer to [3] for a full description of the language. All the templates of the
list can be instantiated as constraints. For example, the response declare
constraint in Fig. 1 means that every action eat food must eventually be
followed by action measure glucose, and this can be formalized with the ltlf
formula �(eat food→ ♦measure glucose).

Figure 2 shows the constraint automata representing the response, prece-
dence, and succession declare templates (which holds if and only if both
response and precedence hold) grounded on two tasks eat food (e) and
measure glucose (m). For compactness, in the figure, we graphically em-
ploy sophisticated labels as a shortcut for multiple transitions connecting two
states with different task-labels. For example, a transition labeled with !e
is a shortcut for a set of transitions between the same two states, each one
labeled with a task taken from Σ\{e}. A transition labeled with “−” is a
shortcut to denote all transitions corresponding to a task in Σ.

Notably, this compact notation allows us to use the same automaton
regardless of Σ (just assuming that Σ contains the tasks mentioned by the
constraint plus at least one additional task to express any “other” task).
Following Definition 4, in Fig. 2, we do not trim the automata, i.e., we
explicitly maintain all states, including the trap states from which it is not
possible to reach any accepting state (such as state 2 in Fig. 2(b) and in
Fig. 2(c)).
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3. Motivation

When checking whether a process execution complies with a constraint,
one among two outcomes arises: the execution may violate the constraint or
it may satisfy it. In the latter case, the reason for satisfaction may be twofold.
It could be the case that the trace actively interacts with the constraint or
that the constraint is trivially satisfied because there is no interaction with
the trace.

Consider the response constraint in Fig. 1. This constraint is satisfied in a
trace where food is eaten and then the glucose level is eventually measured. In
this case, the constraint is relevant to the trace, since, intuitively, it interacts
with the trace creating an expectation towards measuring the glucose level
when food is eaten. Such an expectation is finally fulfilled in fact. However,
the same constraint is also satisfied by those traces where no food is ever
eaten. This latter case is an example of the so-called vacuous satisfaction
[8, 9]. Discriminating between these two situations is crucial in a variety
of (declarative) process mining tasks, such as conformance checking and
process discovery. In this section, we deepen the motivation behind our work,
considering simple examples that show the need for considering relevance in
process mining, and then reviewing the limitations of the two main existing
approaches for vacuity detection.

3.1. Relevance and Activation Counting in Process Mining

Consider an event log containing a single occurrence of trace:

τw = 〈drink water,measure glucose〉,

and 103 occurrences of:

τf = 〈eat food,measure glucose〉.

A common approach followed by different discovery algorithms for declare
is to extract all tasks present in the log, combine them to create constraints
from the repertoire of patterns offered by declare, and then computing
their support in the log [25, 35, 36]. Support, in turn, depends on how many
traces in the log satisfy or violate the constraint of interest. If one naively
applies this approach without further considering constraint relevance, the
resulting algorithm could return the response constraint ϕf shown in Fig. 1,
and also:

ϕw = drink water •−−−I measure glucose
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with the same degree of importance, as they both have 100 % support in the
log. However, it is a matter of fact that ϕf is more relevant than ϕw, since the
input log is such that it satisfies ϕw only once non-vacuously, and 103 times in a
trivial way. There is no possibility to tackle this fine-grained understanding of
support unless relevance is explicitly taken into account. To do so, approaches
exist for identifying witnesses for a given constraint, i.e., traces where the
constraint is non-vacuously satisfied. These approaches either are based on
a pre-analysis of the ltlf formula underlying the constraint, or are tailored
to the standard declare set of templates. However, the first approach is
syntax-dependent, thus different formulations of the same constraint can lead
to unequal results. The second approach, instead, cannot handle the case
of custom constraints, which can be based on arbitrary, user-specified ltlf
formulae.

Consider again constraint ϕf and its usage to monitor an evolving trace
where new events are dynamically added at run-time, so as to track the exe-
cution of tasks. Consider now three different snapshots within the monitored
execution:
• τ0 = ε;
• τ1 = 〈eat food,measure glucose〉;
• τ2 = τ1 · τ1 · τ1 · τ1.
In all these snapshots, the monitored trace satisfies ϕf , but intuitively it
does so in an increasingly relevant way. This can clearly be seen if one
applies the intuition that ϕf is activated every time its source task eat food
is executed, and computes a health indicator combining the number of times
ϕf is activated with the number of times ϕf is brought back to a satisfied
state. This requires to go beyond the mere notion of constraint satisfaction,
which would simply judge τ0, τ1, and τ2 as compliant with ϕf , without further
distinctions.

3.2. Syntax-Dependent Vacuity Detection

The notion of constraint relevance discussed so far is intimately connected
to the well-known notion of vacuity detection in model checking. Specifically,
[9] introduces an approach for vacuity detection in temporal model checking
for ltl (over infinite traces) to determine whether a given trace is a witness
for an ltl formula. The method extends an ltl formula ϕ to a new formula
witness(ϕ) that, when satisfied, ensures that the original formula ϕ is non-
vacuously satisfied. In this way, whenever a trace complies with witness(ϕ),
it complies with ϕ, and ϕ is also non-vacuously satisfied in the trace. Formula
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witness(ϕ) is generated by considering that a trace τ satisfies ϕ non-vacuously
if τ satisfies ϕ, and τ satisfies a set of additional conditions that guarantee
that every subformula of ϕ does really affect the truth value of ϕ in τ . We
call these conditions vacuity detection conditions of ϕ. They correspond to
the formulae ¬ϕ[ψ ← ⊥] where, for all the subformulae ψ of ϕ, ϕ[ψ ← ⊥] is
obtained from ϕ by replacing ψ by false or true, depending on whether ψ is in
the scope of an even or an odd number of negations. Then, witness(ϕ) is the
conjunction of ϕ and all the formulae ¬ϕ[ψ ← ⊥] with ψ subformula of ϕ:

witness(ϕ) = ϕ ∧
∧
¬ϕ[ψ ← ⊥]. (1)

Consider, for example, the response constraint�(eat food→ ♦measure glucose).
The vacuity detection condition is ♦eat food, so that the witnesses for this
constraint are all traces where �(eat food→ ♦measure glucose) ∧ ♦eat food
is satisfied.

This approach can seamlessly be lifted to ltlf , and it was indeed applied
to declare in [35] for vacuity detection in the context of process discovery,
so as to tackle the issues discussed in Section 3.1. However, the algorithm
introduced in [9] may generate different results for ltlf formulae that are
semantically equivalent but syntactically different. Consider, for instance,
the following logically equivalent formulae (expressing the alternate response
declare template):

ϕ = �(a→ ♦b) ∧�(a→©((¬aU b) ∨�(¬b))), and

ϕ′ = �(a→©(¬aU b)).
When we apply (1) to ϕ and ϕ′, we obtain that witness(ϕ) 6= witness(ϕ′).

We focus on ϕ. Since ϕ = �(¬a ∨ ♦b) ∧ �(¬a ∨©((¬aU b) ∨ �(¬b))),
one of the subformulae of ϕ is ψ = �(¬b). Since ψ is in the scope of an even
number of negations, the corresponding vacuity detection condition is:

¬(�(¬a ∨ ♦b) ∧�(¬a ∨©((¬aU b) ∨ false))) ≡

¬(�(¬a ∨ ♦b) ∨ ♦(a ∧ ¬© (¬aU b))).

Considering that the conjunction of ¬(�(¬a∨♦b)∨♦(a∧¬© (¬aU b)) with
ϕ is always false, this is sufficient to conclude that witness(ϕ) = false.

We now focus on ϕ′. Since ϕ′ = �(¬a ∨©(¬aU b)), its subformulae are:

ψ′1 = ϕ′, ψ′2 = ¬a ∨©(¬aU b), ψ′3 = a(1), ψ′4 =©(¬aU b), ψ′5 = ¬aU b,
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ψ′6 = a(2), and ψ′7 = b.

The corresponding vacuity detection conditions are: (i) true for ψ′1 and ψ′2;
(ii) ¬(�(©(¬aU b))) ≡ ♦(¬© (¬aU b)) for ψ′3; (iii) ¬(�(¬a ∨ false)) ≡ ♦a
for ψ′4 and ψ′5; (iv) ¬(�(¬a ∨©(false U b))) ≡ ♦(a ∧ ¬© (b)) for ψ′6, whose
conjunction with ϕ′ is not always false.

Declarative languages such as declare are used to describe requirements
to the process behavior. In this case, each ltlf rule describes a specific
constraint with clear semantics. Therefore, we need a univocal, syntax-
independent, and intuitive way to diagnose vacuously compliant behavior
with respect to these constraints.

3.3. Ad-Hoc Approaches

An alternative to the syntax-dependent vacuity detection is to restrict the
constraint language considering a pre-defined family of constraint patterns
(e.g., declare) rather than a full-fledged temporal logic, and provide ad-hoc
approaches to vacuity detection, explicitly handling each constraint pattern.
For example, [10, 12, 13, 37] introduce ad hoc approaches to vacuity detection
for declare. However, these approaches fail when declare is extended
with new templates, a feature that has been deemed essential, since the very
first seminal papers on this language [6]. The following example introduces a
template that cannot be expressed by using standard declare.

Example 1. We call progression of a tuple of tasks 〈t1, . . . , tn〉 a sequence
that starts with t1, contains t1, . . . , tn in the proper order (possibly with
other tasks in between), and ends with tn. We use this notion to introduce
a progression response constraint that extends the declare response as
follows: given two tuples U = 〈u1, . . . , uk〉 and V = 〈v1, . . . , vm〉 of source
and target tasks, the progression response constraint states that, whenever
a progression of the source U is observed, then a progression of the target
V must be observed in the future; if this happens, the constraint goes back
checking whether a new progression of the source is observed. This constraint
can be used, e.g., to specify that whenever an order is finalized and then paid,
the future course of execution must contain an order delivery followed by
the emission of a receipt. The ltlf formalization of this constraint is overly
complex. Given a tuple T = 〈t1, . . . , tn〉, we call progression formula the
ltlf formula ΦT

prog = ♦ (t1 ∧ ♦ (t2 ∧ (· · · ∧ ♦tn))). With this notion at hand,
in the general case, the progression response from U to V can formally be

captured in ltlf as �
(
¬ΦU

prog ∨ Φ
〈U,V 〉
prog

)
, where 〈U, V 〉 is the tuple of tasks
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that appends V after U . For example, by using tasks fin, pay, del, rec to
respectively denote the order finalization, its payment, its delivery, and the
emission of a receipt, the aforementioned progression response is formalized
in ltlf as:

� (¬♦(fin ∧ ♦pay) ∨ ♦(fin ∧ ♦(pay ∧ ♦(del ∧ ♦rec))))

To overcome the issue of vacuity detection, the algorithms described
in [10, 37] use an adapted version of the Apriori algorithm first proposed in
[38] as a pre-processing step to detect sets of tasks that are often co-occurring
in the traces. Thereupon, they compute the support of only those constraints
that are exerted on tasks in such sets.

However, even if this approach is reportedly effective for standard declare
templates, it would not suffice for a custom declare constraint such as the
progression response described earlier. In fact, frequent task sets do not
account for the mutual order of occurrence of the items. Therefore, even if fin,
pay, del, rec always occur in this specific order in the traces of the event log,
the progression response constraints expressed over any permutation of those
tasks would all be considered as satisfied. However, only the one mentioned
in Example 1 would be relevant, whilst the other

((
4
2

))
×
(((

4
2

))
− 1
)
− 1 = 89

constraints would only be vacuously satisfied. The calculation is made on
the basis of the following: all possible 2-combinations with repetitions of
tasks from the set of size 4 ({fin, pay, del, rec}) is eligible as a source tuple,
e.g., 〈pay, del〉; for every source, all possible 2-combinations with repetitions
of tasks from that set is a possible target tuple, excluding the combination
that coincides with the source (in the example, all tuples but 〈pay, del〉 are
acceptable). The reason for this last exclusion can intuitively be justified
on the basis of the observation reported in [39]: a (progression) response
constraint that has coinciding source and target is unsatisfiable over finite
traces, because every occurrence of the source would require the occurrence
of the same tuple later on, thus activating the constraint again, and requiring
another occurrence of that tuple, etc.

Another common approach to vacuity detection consists in pruning those
constraints that are assigned with a low confidence, i.e., the support scaled
by the number of traces in which the activation of the constraint occurs [10,
12, 13]. However, activations are well defined only for standard declare
templates (e.g., an activation of response(e,m) = �(e→ ♦m) corresponds to
an occurrence of e in a trace). Instead, no such concept is formally defined for

14



custom templates such as the aforementioned progression response. Therefore,
the confidence-based approach would not be applicable, too.

The definition of relevance and activation counting for the progression
constraint shown in Example 1 can neither be hijacked from the ad-hoc
definitions provided for the core declare patterns, nor easily obtained using
human ingenuity. This is why we aim at achieving a semantical, general
treatment of vacuity, making it possible to seamlessly apply declarative
process mining techniques using constraint patterns that go beyond standard
declare such as the progression response of Example 1.

4. Relevance and Activation of Constraints

This section discusses the core contribution of this paper, i.e., how to
determine whether an execution trace activates a constraint or not. We focus
here on relevance, without attempting to “measure” the degree of relevance by
counting activations. The problem of counting will be discussed in Section 8.

Our approach has three distinctive features:

• It is fully semantical, in the sense that it detects when a trace is a
witness for a constraint, in a way that is completely independent of the
specific syntactic form of the constraint.

• It is general, in the sense that it does not focus on a specific constraint
language, but seamlessly work for all the aforementioned temporal logics,
including ltlf , ldlf , and msof .

• It can seamlessly be applied at run-time or a posteriori, i.e., it can
directly be used to assess relevance of running, evolving traces.

Our approach consists of three steps. Section 4.1 describes the first step, in
which we gain more details about the different states in which a constraint can
be, going beyond the coarse-grained characterization of satisfied vs. violated.
Section 4.2 illustrates the second step, in which we leverage those additional
details to semantically characterize the notion of “witness”, which in turn
constitutes the basis for understanding whether a trace activates a constraint
or not. Finally, Section 5 details the last step, in which we mirror this
approach into the automata-based characterization of the aforementioned
logics to make it operational.
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4.1. Activation States and Relevant Task Executions

To understand in detail how a trace relates to a constraint, we build on
the four truth values provided by rv-ltl [40], which considers ltl in the
light of run-time verification. This approach has recently been adopted for
conformance checking and monitoring of ltlf and ldlf constraints [26, 41, 42].
rv-ltl brings two main advantages in the context of this paper. On the one
hand, it makes our approach directly applicable to monitoring and online
operational support [43, 44]. On the other hand, it provides the basis to check
whether an execution trace actively interacts with a constraint or not.

Definition 5 (rv-ltl truth values). Given a constraint ϕ over Σ, and an
execution trace τ over Σ∗, we say that:
• τ permanently satisfies ϕ, written [τ |= ϕ]RV = ps, if ϕ is satisfied by the

current trace (i.e., τ |= ϕ as per Definition 3), and will remain satisfied
for every possible continuation of the trace: for every τ ′ over Σ∗, we have
τ · τ ′ |= ϕ;
• τ permanently violates ϕ, written [τ |= ϕ]RV = pv, if ϕ is violated by the

current trace (i.e., τ 6|= ϕ), and will remain violated for every possible
continuation of the trace: for every τ ′ over Σ∗, we have τ · τ ′ 6|= ϕ;
• τ temporarily satisfies ϕ, written [τ |= ϕ]RV = ts, if ϕ is satisfied by the

current trace (i.e., τ |= ϕ), but there exists at least one continuation of the
trace leading to violation: there exists τ ′ over Σ∗ such that τ · τ ′ 6|= ϕ;
• τ temporarily violates ϕ, written [τ |= ϕ]RV = tv, if ϕ is violated by the

current trace (i.e., τ 6|= ϕ), but there exists at least one continuation of the
trace leading to satisfaction: there exists τ ′ over Σ∗ such that τ · τ ′ |= ϕ.

We also say that τ complies with ϕ if [τ |= ϕ]RV = ps or [τ |= ϕ]RV = ts. �

Why do we care about such rv-ltl truth values? The intuition is that once a
constraint becomes permanently satisfied (ps) or permanently violated (pv),
then what happens next in the trace is irrelevant to the constraint, since such
truth values are indeed unmodifiable. Temporary states instead are those for
which relevant task executions may still happen.

The rv-ltl truth values can be used to identify, given an execution trace,
which tasks are permitted (or forbidden) next.

Definition 6 (Forbidden/permitted task). Let ϕ be a constraint over Σ,
and τ an execution trace over Σ∗. We say that task t is forbidden by ϕ after
τ , if executing t next leads to a permanent violation state: [τ · t |= ϕ]RV = pv.
If this is not the case, then t is said to be permitted by ϕ after τ . �
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Notice that, by definition, if a constraint is permanently satisfied (respectively,
violated) by a trace, then every task is permitted (respectively, forbidden).
Why do we care about permitted tasks? Intuitively, considering the set of
permitted tasks and how it evolves over time helps when the rv-ltl charac-
terization alone is not informative. Specifically, whenever a task execution
does not trigger any change in the rv-ltl truth value of a constraint, we can
assess relevance in a finer-grained way by checking whether the task execution
causes at least one change in the set of permitted tasks.

We now combine the notions of rv-ltl truth value and permitted task
so as to identify when a task execution is relevant to a constraint. This
combination gives rise to the notion of activation state.

Definition 7 (Activation state). An activation state over Σ is a pair
〈V,Λ〉, where V is one of the four truth values in rv-ltl, i.e., V ∈ {ps, pv, ts, tv},
and Λ ⊆ Σ is a set of permitted tasks. �

As per Definition 5 and Definition 6, not all activation states are meaningful.
For example, we know that if the current rv-ltl value is pv, then no task
can be permitted. We systematize this notion by identifying those activation
states that are “legal”.

Definition 8 (Legal activation state). An activation state over Σ is legal
if it is of one of the following forms:
• 〈ps,Σ〉 (every task is permitted if the constraint is permanently satisfied);
• 〈pv, ∅〉 (if the constraint is permanently violated, nothing is permitted);
• 〈ts,Λ〉, with ∅ ⊆ Λ ⊆ Σ;
• 〈tv,Λ〉, with ∅ ⊂ Λ ⊆ Σ (if the constraint is temporarily violated, there

must be at least one permitted task that triggers a change towards satis-
faction). �

We denote by SΣ the set of legal activation states over Σ.

Definition 9 (Trace activation state). Let ϕ be a constraint over Σ, and
τ an execution trace over Σ∗. The trace activation state of ϕ in τ , written
actStateϕ(τ), is the activation state 〈V,Λ〉, where: (1) V = v iff [τ |= ϕ]RV = v
for v ∈ {ps, pv, ts, tv} (as per Definition 5); (2) for every t ∈ Σ, we have
t ∈ Λ iff t is permitted by ϕ after τ (as per Definition 6). The initial activation
state is the activation state computed for τ = ε.

Trace activation states enjoy the following property.
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Lemma 1. For every constraint ϕ over Σ, and every trace τ over Σ∗, the
trace activation state of ϕ in τ is legal, i.e., actStateϕ(τ) ∈ SΣ.

Proof 1. Immediate from the definitions of trace and legal activation states.�

Example 2. Consider the response constraint ϕf = �(eat food→ ♦measure glucose)
over Σ. The initial activation state of ϕf is 〈ts,Σ〉: all tasks are per-
mitted, and ϕf is temporarily satisfied, since there are traces culminating
in the violation of the constraint. Consider now the trace 〈eat food〉: we
get actStateϕf

(eat food) = 〈tv,Σ〉. Indeed, all tasks are still permitted,
but ϕf is temporarily violated because it expects the future occurrence of
measure glucose.

The execution of a task induces a transition in the trace activation state.
By considering the combination of the current and next trace activation states,
we can understand whether the induced transition is relevant to the constraint
or not.

Definition 10 (Relevant task execution). Let ϕ be a constraint over Σ,
t ∈ Σ be a task, and τ an execution trace over Σ∗. Let 〈V,Λ〉 = actStateϕ(τ)
and 〈V ′,Λ′〉 = actStateϕ(τ · t) respectively be the trace activation states of ϕ
in τ and the one obtained as the result of executing t after τ . We say that
t is a relevant execution for ϕ after τ (or equivalently that t is a relevant
execution for ϕ in actStateϕ(τ)) if V 6= V ′ or Λ 6= Λ′. �

4.2. Activations, Vacuity, and Witnesses

Definition 10 provides the basis to assess whether a task execution is
relevant to a constraint in a given execution context (characterized by the
current activation state). We now lift this notion to a trace as a whole.

Definition 11 (Activation). A constraint ϕ over Σ is activated by a trace
τ over Σ∗ if there exists t ∈ Σ s.t.: (1) τ = τpre · t · τsuf ; (2) t is a relevant
execution for ϕ after τpre (as per Definition 10). �

Example 3. Consider the response constraint of Example 2, and the exe-
cution trace τ = 〈d,m, e,m,m, e, e,m〉 (where d stands for drink water). By
making trace activation states along τ explicit, we get:
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〈ts,Σ〉 d 〈ts,Σ〉 m 〈ts,Σ〉 e 〈tv,Σ〉 m 〈ts,Σ〉 m 〈ts,Σ〉 e 〈tv,Σ〉 e 〈tv,Σ〉 m 〈ts,Σ〉
↑ ↑ ↑ ↑

Arrows indicate the relevant task executions. In fact, the first relevant task
execution is e, because it is the one that leads to switch the rv-ltl truth
value of the constraint from temporarily satisfied to temporarily violated.
The following task m is also relevant, because it triggers the opposite change.
The second following m, instead, is irrelevant, because it keeps the activation
state unchanged. A similar pattern can be recognized for the following two es:
the first one is relevant, the second one is not. Notice that τ complies with ϕf .
Now, consider the not coexistence declare constraint ϕnc = ¬(♦e ∧ ♦m),
and the same execution trace τ as before. We obtain:

〈ts,Σ〉 d 〈ts,Σ〉 m 〈ts,Σ \ {e}〉 e 〈pv, ∅〉 m 〈pv, ∅〉 m 〈pv, ∅〉 . . . 〈pv, ∅〉
↑ ↑

The constraint is, in fact, initially temporarily satisfied, and every task is
permitted. In the second position of τ , the relevant execution of m introduces
a restrictive change that does not affect the truth value of the constraint,
but reduces the set of permitted tasks. The consequent execution of e is
also relevant, because it causes a permanent violation of the constraint. A
permanent violation corresponds to an irreversible activation state, therefore
all consequent task executions are irrelevant independently on how the trace
continues.

Considering the two constraints in Example 3, in one case, the trace
contains relevant task executions, and satisfies the constraint (so that the
trace is a witness for the constraint), whereas in the second case the trace
violates the constraint. In the case of satisfaction, two cases may arise: either
the trace satisfies the constraint and the constraint is relevant to the trace, or
the trace satisfies the constraint without ever activating it. We systematize
this intuition, obtaining a fully semantical characterization of vacuity for
temporal formulae over finite traces.

Definition 12 ((Non-)vacuous satisfaction/witness). Let ϕ be a con-
straint over Σ, and τ a trace over Σ∗ that complies with ϕ (as per Definition 5).
If ϕ is activated by τ (as per Definition 11), then τ non-vacuously satisfies ϕ
and we call τ a witness for ϕ. Otherwise τ vacuously satisfies ϕ. �

Example 4. In Example 3, trace τ activates both the response (ϕf) and
not coexistence (ϕnc) constraints. Now, consider the execution trace τ2 =

19



〈d, d,m, d,m〉. Since τ2 contains m, τ2 activates ϕnc: when the first occurrence
of m happens, the set of permitted tasks moves from the whole Σ to Σ \ {e}.
Furthermore, τ2 does not contain both e and m, therefore it complies with ϕnc.
Consequently, we have that τ2 non-vacuously satisfies ϕnc, i.e., τ2 is a witness
for ϕnc. Since τ2 does not contain occurrences of e, it does not activate the
response constraint. More specifically, τ2 never changes the initial activation
state of ϕf , which corresponds to 〈ts,Σ〉. This also shows that τ2 complies
with ϕf , and, therefore, that τ2 vacuously satisfies ϕf .

5. Checking Relevance Using Automata

We now make vacuity detection operational by leveraging the automata-
theoretic approach.

5.1. Activation-Aware Automaton

To check the relevance of a constraint to a trace, we exploit a combination
of the automata construction technique in [26] with the notion of colored
automata [41]. Colored automata augment dfas with state-labels that reflect
the rv-ltl truth value of the corresponding formulae. We further extend such
automata in two directions. On the one hand, each automaton state is also
labeled with the set of permitted tasks, thus obtaining full information about
the corresponding activation state; on the other hand, relevant executions are
marked in the automaton by “coloring” their corresponding transitions. We
consequently obtain the following type of automaton.

Definition 13 (Activation-Aware Automaton). The activation-aware au-
tomaton Aact

ϕ of an ltlf formula ϕ over Σ is a tuple 〈Σ, S, s0, δ, F, α, ρ〉, where:
• 〈Σ, S, s0, δ, F 〉 is the constraint automaton of ϕ (as per Definition 4 and

[26]);
• α : S −→ SΣ is the function that maps each state s ∈ S to the corresponding

activation state α(s) = 〈V,Λ〉, where:
1. V = ts iff s ∈ F , and there exists a state s′ ∈ S s.t. δ∗(s, s′) and
s′ 6∈ F ;

2. V = ps iff s ∈ F , and for every state s′ ∈ S s.t. δ∗(s, s′), we have
s′ ∈ F ;

3. V = tv iff s 6∈ F , and there exists a state s′ ∈ S s.t. δ∗(s, s′) and
s′ ∈ F ;
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4. V = pv iff s 6∈ F , and for every state s′ ∈ S s.t. δ∗(s, s′), we have
s′ 6∈ F ;

5. Λ contains task t ∈ Σ iff there exists a state s′ ∈ S s.t. s′ = δ(s, t) and
α(s′) has an rv-ltl truth value different from pv.

• ρ ⊆ Domain(δ) is the set of transitions in δ that are relevant to ϕ, i.e.:
ρ = {〈s, t〉 | 〈s, t〉 ∈ Domain(δ) and t is a relevant execution for ϕ in α(s)}
�

Consider a trace τ , a constraint ϕ and the activation-aware automaton Aact
ϕ

of ϕ. By definition, there exists one and only one state s of Aact
ϕ obtained

by replaying τ over Aact
ϕ . Intuitively, the specification of α in Definition 13

makes Definition 5 operational, by drawing the following parallel between the
conditions in Definition 5, and those in Definition 13:
• “ϕ satisfied by τ” translates into checking that s is an accepting state;
• “ϕ violated by τ” translates into checking that s is non-accepting;
• “ϕ remains satisfied for every possible continuation of τ” translates into

checking that all reachable states from s are accepting;
• “ϕ remains violated for every possible continuation of τ” translates into

checking that all reachable states from s are non-accepting;
• “there exists a continuation of τ leading to a violation of ϕ” translates into

checking that it is possible to reach a non-accepting state from s;
• “there exists a continuation of τ leading to a satisfaction of ϕ” translates

into checking that it is possible to reach an accepting state from s.
In addition, condition 5 of Definition 13 correctly reconstructs the notion of
permitted task as a task that does not lead to a permanent violation of ϕ,
i.e., to a successor state of s that is labeled with a permanent violation. As
a consequence of this, the set of permitted tasks in s simply corresponds to
all labels associated to outgoing transitions from s in the trimmed version of
Aact

ϕ (i.e., the version of Aact
ϕ where states associated to a permanent violation

are actually removed).
We now prove that the activation-aware automaton correctly reconstructs

activation and relevance as defined in Section 4.2. We recall that our approach
applies to all those logics that have automata-theoretic characterization in
terms of finite state automata. Therefore, we restrict the following discussion
to ltlf although the results could seamlessly be extended to more expressive
logics, such as regular expressions or ldlf .

Theorem 1. Let ϕ be an ltlf formula over Σ, and Aact
ϕ = 〈Σ, S, s0, δ, F, α, ρ〉

the activation-aware automaton of ϕ. Let τ = 〈t1 · · · tn〉 be a non-empty, finite
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trace over Σ, and s0 · · · sn the sequence of states such that δ(si−1, ti) = si for
1 6 i 6 n.1 Then, the following two properties hold:
• α(sn) = actStateϕ(τ), i.e., α correctly produces the trace activation state

of ϕ in τ (in the sense of Definition 9);
• τ non-vacuously satisfies ϕ (in the sense of Definition 12) if and only if
〈si−1, ti〉 ∈ ρ for some 1 6 i 6 n.

Proof 2. From the correctness of the constraint automaton construction (as
per Definition 4 and [26]), we know that τ satisfies ϕ iff τ is accepted by Aact

ϕ

(i.e., iff sn ∈ F ). This corresponds to the notion of compliance in Definition 5.
The proof of the first claim is then obtained by observing that all tests in
Definition 13, which characterize the rv-ltl values and permitted tasks of the
automaton states, perfectly mirror Definition 5 and 6. In particular, notice
that the labeling of states with rv-ltl values agrees with the construction of
“local colored automata” in [41], proven to be correct in [26].

The second claim immediately follows from the first one, by observing that:
(i) in Definition 13, ρ is constructed by relying on the notion of relevance in
a given activation state (as per Definition 10) as dictated by Definition 11;
(ii) Definition 12 directly builds upon Definition 11. �

It has to be noted that the notion of activation-aware automaton is af-
fected if, instead of considering as constraint automaton the unique, minimal
deterministic finite-state automaton for the constraint of interest, one con-
siders instead a non-deterministic finite-state automaton or a non-minimal
deterministic finite-state automaton.

We first observe that it is essential for the construction of the activation-
aware automaton that the constraint automaton of the formula of interest is
actually deterministic. In fact, for a non-deterministic automaton it is not
possible, in general, to unambiguously associate a state to a corresponding
rv-ltl value. On the other hand, we know that each non-deterministic
finite-state automaton can be determinized [45], consequently resolving such
potential ambiguity.

In addition, our approach is robust with respect to non-minimal equivalent
constraint automata. In fact, one could ask whether two equivalent finite-
state automata would lead to non-equivalent corresponding activation-aware

1Recall that, since Aact
ϕ is not trimmed, then it can replay any trace from Σ∗.
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automata, i.e., automata that would assign different activation states to the
same trace. This is not possible, due to the simple argument that:
• Equivalent deterministic finite-state automata are also equivalent to the

same minimal deterministic finite-state automaton (which is unique up to
isomorphism).
• The necessary and sufficient condition to collapse two states s1 and s2 in a

non-minimal deterministic finite-state automaton is that for each (suffix)
trace τ , the state obtained by replaying τ from s1 is accepting if and only
if the state obtained by replaying τ from s2 is accepting. As a consequence,
the rv-ltl truth value, as well as the set of permitted tasks, coincide for
s1 and s2, i.e., s1 and s2 correspond to the same activation state.

5.2. Construction of the Activation-Aware Automaton

We now comment on how to effectively construct the activation-aware au-
tomaton of a given constraint ϕ. This can be done as a rather straightforward
application of Definition 13, retaining the same computational complexity of
the standard automaton construction. More specifically, the activation-aware
automaton can be obtained by applying the following procedure:

1. The constraint automaton Aϕ of ϕ is built by applying the ldlf2nfa
procedure of [26], and then the standard determinization procedure
to the obtained automaton (thus getting a dfa). Aϕ is then enriched
with α and ρ from Definition 13 so as to obtain the corresponding
activation-aware automaton.

2. Function α is constructed in two iterations.
(a) In the first iteration, the rv-ltl truth value of each state in Aϕ is

computed. This is done by picking each state s of Aϕ and checking
whether: (i) s is accepting or not, (ii) s may reach an accepting
state, and (iii) s may reach a non-accepting state. Depending on
the answers obtained from these three checks, the rv-ltl truth
value of s is unambiguously determined. Notice that this iteration
can be performed in time that is polynomial in the size of the
automaton. This level of complexity will henceforth be denoted as
pTime for the sake of brevity.

(b) The second iteration goes again over each state s of Aϕ using the
rv-ltl truth value of s and of its successor states so as to compute
the set of permitted tasks. This can simply be done by picking
each outgoing transition of s, and adding the corresponding label
to the set of permitted tasks in s provided that the transition
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points to a state whose rv-ltl value is different from permanent
violation. Also this iteration can be performed in pTime.

3. Function ρ is built in pTime by considering all pairs of states in Aϕ,
and by applying the explicit definition of relevant execution.

Table 2 and Fig. 3 respectively list the activation-aware automata of some
standard declare patterns and the activation-aware automaton of a progres-
sion response. State colors reflect the rv-ltl truth value they are associated
to. Dashed, gray transitions are irrelevant, whereas the black, solid ones are
relevant in the sense of Definition 10. Interestingly, relevant transitions for the
progression response are those that “close” a proper progression of the source
or target tasks. This reflect human intuition, but is obtained automatically
from our semantical approach.

Example 5. Consider the precedence declare constraint ϕp expressing that
measure glucose cannot occur until eat food occurs. Its constraint automaton
Aϕp is shown in Fig. 2(b). The corresponding activation-aware automaton
Aact

ϕp
is depicted in Table 2. We explain how Aact

ϕp
is obtained from Aϕp .

We start with the rv-ltl truth values computed for the three states of
Aϕp :
• state 0 is temporarily satisfied, since state 0 is an accepting state, but it is

connected to state 2, which is non-accepting;
• state 1 is permanently satisfied, since state 1 is an accepting “trap” state

only connected to itself;
• state 2 is permanently violated, since state 2 is a non-accepting “trap”

state only connected to itself (this state would in fact be filtered out if one
trims Aϕp).

Consequently:
• the permitted tasks in state 0 are all tasks in Σ except measure glucose,

since its execution would lead to state 2, which is permanently violated;
• the permitted tasks in states 1 and 2 are respectively the entire set Σ

and the empty set, since they are respectively associated to a permanent
satisfaction/violation.

Example 6. Consider the response declare constraint ϕf expressing that
whenever eat food occurs, measure glucose is expected to eventually occur.
Its constraint automaton Aϕf

is shown in Fig. 2(a). The corresponding
activation-aware automaton Aact

ϕf
is depicted in Table 2. We explain how Aact

ϕf

is obtained from Aϕf
.

24



0 1 2

34

!u1 !u2 !u3

!v1!v2

u1 u2

u3
v1v2

0
〈ts,Σ〉

1
〈ts,Σ〉

2
〈ts,Σ〉

3
〈tv,Σ〉

4
〈tv,Σ〉

!u1 !u2 !u3

!v1!v2

u1 u2

u3v1v2

Figure 3: Constraint automaton and activation-aware automaton of a progression response
constraint (with three sources and two targets)

We start with the rv-ltl truth values computed for the two states of
Aϕf

:
• state 0 is temporarily satisfied, since state 0 is an accepting state, but it is

connected to state 1, which is non-accepting;
• state 1 is temporarily violated, since state 0 is non-accepting, but it is

connected to state 0, which is accepting.
Since there is no state in Aϕf

associated to a permanent violation, for both
states 0 and 1 the permitted tasks are all tasks in Σ.

6. Implementation

The implementation of our approach is based on activation-aware au-
tomata. The rationale is to replay the traces on the labeled automata that
represent the constraints under analysis, to check the traversed transitions and
the state reached at the end. The reached state informs about the compliance
of the trace with respect to the constraint. The traversed transitions specify
whether the compliance is vacuous or not.

The implementation of our approach consists of two phases. Section 6.1
describes the first phase, in which the activation-aware automata are computed.
Section 6.2 illustrates the second phase, in which the traces of an event log
are replayed on those automata.

6.1. Generation of Activation-Aware Template Automata

We resort on the technique described in [26] to generate constraint au-
tomata. Thereupon, we enrich the obtained automata to associate every
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template activation-aware automaton template activation-aware automaton
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Table 2: Extended constraint automata for some standard declare templates applied to
tasks e and m
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Figure 4: Minimized deterministic automata for the precedence, response and succession
declare templates

state to its activation state. Automata operations are, however, reportedly
memory-intensive. In order to save space, we adapt the approach by leverag-
ing two strategies.
First, minimized (hence trimmed) automata are initially used, to decrease the
amount of states; states for formerly trimmed transitions are artificially added
at the end of the automata generation. In particular, we reduce the number
of states of the original translation through the algorithm of Hopcroft [46],
which formally guarantees the returned automaton to be unique for equivalent
input automata up to isomorphism, i.e., except for a renaming of states [47].
Second, the symbols of the alphabet of activation-aware automata are made
parametric, so as to have one automaton per template, rather than one per
constraint. We call this type of automaton template automaton. The use
of template automata instead of constraint automata becomes vital when
there is the necessity to check the compliance with respect to large sets of
constraints. This is the case of many discovery algorithms, which instantiate
each template with all possible combinations of tasks that can be found in an
event log, and check their compliance with respect to the log [25, 35, 36]. In
the following, we describe in detail the implemented approach.

The labeling domain of template automata is in our implementation such
that one distinct symbol xi is included for every parameter of the template,
and another one is added to act as a wild-card (×+). “×+” is a symbol denoting
an equivalence class for all those symbols that are different from any xi.
The labeling domain of a template automaton of the declare template
response(x1, x2) has thus three symbols: {x1, x2,×+}. We henceforth denote
such a domain as Σx

×+. The template automata of the precedence, response,
and succession declare templates are shown in Fig. 4. As an example, we
can assume to have a set of tasks (input alphabet) consisting of a, b, c, d. If
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we consider the response constraint response(a, b), then a is assigned to the
first parameter of the response template, x1, and b to its second parameter,
x2. ×+ thus signifies any other task but a and b, i.e., c and d.

Denoting the mapping function for the assignment of parameters to tasks
as µ : Σx

×+→ Σ, we remark that µ is surjective, and (only for standard declare
templates) injective for Σx

×+ \ {×+}. In other words, for standard declare,
we assume that different parameters are not assigned to the same task, in
line with the limitation posed by the definition of declare constraints. A
detailed discussion about the unsatisfiability over finite traces of constraints
violating this restriction, such as response(a, a), can be found in [39]. For
other templates, such as the progression response, the injectivity does not
hold.

Once the (trimmed) template automata are obtained, their states are
enriched so as to bear information about the activation states. As per
Definition 5, the activation state is a pair, consisting of (i) a truth value in
rv-ltl, V , and (ii) the set of permitted tasks, Λ. The truth value of every
state is assigned as follows:
V = pv if the state is non-accepting and has no outgoing transition;
V = tv if the state is non-accepting yet it has at least one outgoing transi-

tion;
V = ts if the state is accepting and has either no outgoing transitions, or

at least one non-looping outgoing transition;
V = ps if the state is accepting and only has looping transitions.

Note that no state in the template automaton can be assigned a truth value
of pv, unless the automaton has only an initial non-accepting state and no
outgoing transitions. Indeed, transitions leading to non-accepting states that
are sink nodes do not appear in the trimmed automaton. In other words, the
trimming leads to automata that only keep the permitted tasks as transitions
going out of states, as it can be seen by comparing Figs. 4(b) and 4(c) to
Figs. 2(b) and 2(c), respectively. Owing to this, it is sufficient to have at least
one outgoing transition for a non-accepting state to be assigned a truth value
of tv. Examples are states labeled as 1 in the automata in Fig. 4(a) and
Fig. 4(c): both for response(x1, x2) and succession(x1, x2), the occurrence of
the task assigned to x1 makes the constraints temporarily violated, because a
following occurrence of the x2-task can make the trace still compliant. An
accepting state whose outgoing transitions are all looping is assigned with
ps because it marks a stage at which the trace is compliant, no matter what
follows. This is the case, e.g., for state 1 in the automaton in Fig. 4(b): once
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Figure 5: Minimized deterministic automata for the precedence, response and succession
declare templates with activation states

the task assigned to x1 for precedence(x1, x2) occurs, the constraint becomes
permanently satisfied. An accepting state with at least one non-looping
transition is assigned a truth value of ts, because the automaton is minimal
[46]. This is the case, e.g., for state 0 in the automata in Fig. 4(a) and
Fig. 4(b), and states 0 and 2 in the automaton in Fig. 4(c).

At this stage, the calculation of the set of permitted tasks is rather
straightforward: for every state, the permitted tasks correspond to all the
labels of the outgoing transitions. This is due to the fact that (i) the outgoing
transitions leading to non-accepting sink-node states do not appear in trimmed
minimal automata, and (ii) no outgoing transitions share the same label in
a deterministic automaton. The outcome of the aforementioned steps over
the template automata in Fig. 4 are depicted in Fig. 5. Since the evaluation
of the activation state is made by locally inspecting the state under analysis
and its outgoing transitions, no state needs to be processed more than once.
A traversal of the automaton starting from the initial state is thus sufficient,
and, in the worst case, all transitions have to be gone through once. Therefore,
the time complexity of the computation of the activation states of a template
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Figure 6: Minimized deterministic activation-aware automata for the precedence, response,
and succession declare templates

automaton is O(|S| ·
∣∣Σx
×+
∣∣), where S is the set of states and Σx

×+ is the labeling
domain.

Once the activation states are assigned to states, the template automata
are made activation-aware by computing the set of relevant transitions (as
per Definition 13). To do so, every state is visited once, and transitions are
included in the set of relevant ones if and only if:

1. the rv-ltl truth value of the next state differs from the one of the
current state (e.g., 〈0, x1,1〉 and 〈1, x2,0〉 in Fig. 5(a)), or

2. the set of permitted tasks of the next state differs from the one of the
current state (e.g., 〈0, x1,1〉 in Fig. 5(b)).

The evaluation of the stated conditions over the template automata of Fig. 5
are depicted in Fig. 6. Dashed, gray transitions are irrelevant, as opposed
to the black, solid ones. The time complexity of this operation is again
O(|S| ·

∣∣Σx
×+
∣∣).

Finally, template automata are augmented so as to make the transition
function left-total as per Definition 4, i.e., to make them capable of replaying
non-compliant traces. To that extent, nodes having activation state 〈pv,Σx

×+〉
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Figure 7: Deterministic activation-aware automata for the precedence, response and succes-
sion declare templates

are added and linked to every state whose set of permitted tasks is strictly
contained in Σx

×+ (e.g., states labeled as 0 in Fig. 6(b) and Fig. 6(c)). The
transitions linking the source state to the new state are labeled by the tasks of
Σx
×+ that are not included in the set of permitted tasks (e.g., x2 for the 0-states

both in Fig. 6(b) and Fig. 6(c)). The activation-aware template automata of
the response, precedence, and succession declare templates are depicted in
Fig. 7. The activation-aware template automaton of the progression response
is depicted in Fig. 8. The time complexity of this last operation remains
O(|S| ·

∣∣Σx
×+
∣∣).
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Figure 8: Activation-aware automaton for the progression response template (with three
sources and two targets)

6.2. Replay of an Event Log on a Template Automaton

Having built the activation-aware template automata, we can verify for a
given event log whether each trace violates or not a constraint. If it complies
with it, we can also decide whether the satisfaction is vacuous or not. To
this end, we rely on the notion of constraint cursor. The constraint cursor
is meant to act as a pointer which walks along the automaton as the trace
unfolds. In a template automaton, we create one cursor for every constraint
we want to check, i.e., for every assignment of tasks in Σ to the n parameters
of the template. In this way, we avoid to keep in memory multiple copies
of the automata, i.e., one for each constraint instantiating the templates to
be checked against the log. Nevertheless, we are able to keep information
about the status of every constraint during the replay of the log. For example,
given a set of tasks Σ = {a, b, c, d, e, f, g, h} and the succession declare
template, we have one cursor for every assignment of the parameters to an
ordered pair of tasks, e.g., succession(a, b), succession(b, a), succession(f, h),
and succession(e, f). Every cursor maps the assigned tasks to the respective
parameters that label the transitions of the template automaton. Any other
task in Σ is mapped to×+. For instance, the cursor of succession(a, b) maps a
to x1 and b to x2. Tasks c, d, . . . , h are all mapped to×+.

Every step of the cursor is subsequently dictated by the occurring tasks
in the trace. At the beginning, the cursor points at the initial state of the
template automaton. Considering the automaton depicted in Fig. 7(c), the
succession(a, b)-cursor points at state 0. For each task in the trace, the cursor
moves from the current state along the outgoing transition mapped to the task.
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Figure 9: Deterministic activation-aware automaton of the succession declare template
with some constraint cursors at the end of the replay of trace 〈a, a, b, d, c, d, e, g, a, b〉

A walk on the automaton is the replay of a trace through a constraint cursor.
Given the example trace 〈a, a, b, d, c, d, e, g, a, b〉, the succession(a, b)-cursor
first moves to state 1 of the template automaton depicted in Fig. 7(c) along
transition 〈0, x1,1〉, since the first event in the trace is an occurrence of a,
which is mapped to x1. Thereupon, the next move is along 〈1, x1,1〉. The
third task, b, moves the cursor along 〈1, x2,2〉. The fourth task, d, moves the
cursor along 〈2,×+,2〉. At the end of the trace, the cursor points at state 2.

The replay of a full trace leads to three possible assessments of the trace
with respect to the constraint under analysis.

1. If the walk ends in a state denoting a temporary (tv) or permanent
violation (pv), then the trace is considered as non-compliant.

2. If the walk terminates in a state denoting a temporary (ts) or permanent
satisfaction (ps), then the trace is considered as compliant with the
constraint.

3. The fulfillment is categorized as non-vacuous only if a relevant transition
has been traversed at least once during the walk. Otherwise, the trace
is vacuously compliant.

Figures 9 and 10 show constraint cursors, depicted as trapezia, at the end of the
replay of the example trace 〈a, a, b, d, c, d, e, g, a, b〉. The state they point at is
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Figure 10: Deterministic activation-aware automaton of the progression response template
(with three sources and two targets) with some constraint cursors at the end of the replay
of trace 〈a, a, b, d, c, d, e, g, a, b〉

linked by a dash-dotted line. The shape’s bounding line and color indicate the
compliance of the trace with the constraint. Dashed white trapezia denote vac-
uously satisfied constraints. Examples of such constraint cursors are the ones
referring to succession(f, h), in Fig. 9, and progression response(b, e, c, d, f),
in Fig. 10. Solid white trapezia indicate non-vacuously satisfied ones (see
succession(a, b) in Fig. 9 and progression response(b, c, d, e, g) in Fig. 10).
Cursors of constraints that are violated by the trace are filled with a grey
color, such as succession(e, f) in Fig. 9 and progression response(a, c, d, g, e)
in Fig. 10.

7. Evaluation

In order to validate our approach, we have embedded it into a Java
software prototype for the discovery of constraints from an event log (based
on the algorithm presented in [35]).2 The approach has been run on two
real-life event logs taken from the collection of the IEEE Task Force on
Process Mining: the log used for the Business Process Intelligence (BPI)
challenge 2013 [48], and a log pertaining to a road traffic fines management
process [49]. The tests have been conducted on a machine equipped with an

2The tool is available at https://github.com/cdc08x/MINERful/blob/master/

run-MINERful-vacuityCheck.sh
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Intel Core processor i5-3320M, CPU at 2.60GHz, quad-core, Ubuntu Linux
12.04 operating system. In our experiments, for the discovery task, we have
considered four templates belonging to the repertoire of standard declare,
i.e., existence, alt. precedence, coexistence, and not chain succession, and three
variants of the progression response with numbers of sources and targets
respectively equal to 2 and 1, 2 and 2, and 3 and 2. In the remainder, we call
these templates prog.resp2:1, prog.resp2:2, and prog.resp3:2, respectively.

Figure 11 shows the trends of the number of progression response con-
straints discovered from the BPI challenge 2013 log with respect to the number
of traces (vacuously and non-vacuously) satisfying them. Figures 11(a) to 11(c)
relate to progression response templates with an increasing number of pa-
rameters. On the abscissae of each plot lies the number of traces where the
constraints are satisfied. The number of discovered constraints lies on the
ordinates.

The analysis of the results shows how crucial the strive for vacuity detection
is in order to avoid the business analyst to be overwhelmed by a significant
number of irrelevant constraints. The discovery algorithm detected, indeed,
that 66 prog.resp2:1, 139 prog.resp2:2, and 1 272 prog.resp3:2 constraints
were vacuously satisfied in the entire log. The reason why the number of
irrelevant returned constraints is higher for prog.resp3:2 than for prog.resp2:1
and prog.resp2:2 is twofold. On the one hand, this is because prog.resp3:2
can only be activated when three different tasks occur sequentially, whereas
prog.resp2:1 and prog.resp2:2 only require two tasks to occur one after
another to be activated. Another reason is that the implemented algorithm
checks the validity in the event log of a set of candidate constraints obtained
by instantiating each template with all possible combinations of the tasks
available in the log. Therefore, the higher number of parameters of prog.resp3:2
leads to a higher number of candidate constraints. Figure 11(d) shows the
same trend when using the standard declare templates mentioned above
for the discovery. Overall, the computation took 9.442 s, out of which 0.426 s
were spent to build the automata, and the remaining 9.016 s to check the log.

We illustrate that our technique is sound by comparing the results obtained
from the road traffic fines management log using our implemented prototype
with the constraints discovered by MINERful [25] and the Declare Miner [10].
The constraints discovered by our tool, using a minimum threshold of 100 %
of witnesses in the log, are:
• Existence(Create fine)
• Alt. precedence(Create fine,Add penalty)
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Figure 11: Trends of the number of the discovered constraints with respect to the number
of traces satisfying them

• Not chain succession(Create fine,Add penalty)
• Alt. precedence(Create fine,Appeal to judge)
• Alt. precedence(Create fine, Insert date appeal to prefecture)
• Alt. precedence(Create fine, Insert fine notification)
• Not chain succession(Create fine, Insert fine notification)
• Alt. precedence(Create fine,Notify result appeal to offender)
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• Not chain succession(Create fine,Notify result appeal to offender)
• Alt. precedence(Create fine,Receive result appeal from prefecture)
• Not chain succession(Create fine,Receive result appeal from prefecture)
• Alt. precedence(Create fine, Send appeal to prefecture)
• Not chain succession(Create fine, Send appeal to prefecture)
• Alt. precedence(Create fine, Send fine)
• Alt. precedence(Create fine, Send for credit collection)
• Not chain succession(Create fine, Send for credit collection)

Such constraints are a subset of the ones returned by MINERful using the
same templates, because MINERful has no vacuity detection mechanism, and
coincide with the ones returned by the Declare Miner. The derived constraints
suggest that Create fine occurs in every trace and precedes many other tasks.
In addition, some tasks cannot directly follow Create fine. Also, we discovered
that the following progression response constraints are non-vacuously satisfied
by around 53 % of traces:
• Prog.resp2:1(Create fine, Insert fine notification,Add penalty)
• Prog.resp2:1(Send fine, Insert fine notification,Add penalty)
• Prog.resp2:1(Create fine, Send fine,Add penalty)
• Prog.resp2:1(Create fine, Send fine, Insert fine notification)
• Prog.resp2:2(Create fine, Send fine, Insert fine notification),Add penalty)

Although not always activated, the first two in the list are never violated.
The last three are instead violated by approximately 26 % of traces. Similar
results cannot be obtained with MINERful and the Declare Miner. The
former is indeed not designed to discover non-standard declare constraints.
The latter offers that facility, but only provides an ad-hoc mechanism for
vacuity detection. As mentioned in Section 3, this means that, in order
to discriminate between vacuously and non-vacuously satisfied progression
response constraints using the Declare Miner, a new, ad hoc procedure should
be implemented and embedded in the Declare Miner code. This should be
done for every type of constraint that is not covered by standard declare.

8. From Relevance to Counting and Related Issues

The natural further step in this line of research is to extend our approach
towards the possibility of counting activations, and use this fine-grained
information to define the degree of adherence of a trace to a constraint. This
is not only relevant to process monitoring but also crucial in the context of
declarative process discovery, when the discovery algorithm extracts those
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constraints that are not fully supported by the input log [50]. In this case,
“relevance heuristics” must be devised so as to rank candidate constraints, and
these are typically based on various notions of activation counting, defined in
an ad-hoc way for each of the core declare patterns.

In this section, we argue that the framework presented in this paper may be
used as a formal basis for counting activations, limiting ourselves to the case of
satisfied constraints. We introduce a possible way of counting and relate this
to the previous, ad-hoc approaches for counting activations in declare. Our
conclusion is that the problem of counting cannot satisfactorily be approached
without enriching the constraints of interest with further information.

8.1. Counting Activations

As shown in Section 4, and, in particular, in Definitions 10 and 11, our
semantic notion of activation is applied to single tasks present in a trace.
Consequently, Definition 11 lends itself to the following notion of strength,
based on relevant task counting.

Definition 14 (Satisfaction strength). A trace τ over Σ∗ has satisfaction
strength 1 ≤ k ≤ |τ |, for a constraint ϕ, if τ complies with ϕ, and there are
exactly k positions j1, . . . , jk such that, for each 1 ≤ i ≤ k, task τ(ji) is a
relevant task execution for ϕ after the prefix of τ ending at position ji − 1.�

Intuitively, Definition 14 states that a trace compliant with a constraint has
satisfaction strength k if it contains exactly k tasks which, in their position
within the trace, represent activations of the constraint. As a consequence, we
also get that a trace has satisfaction strength 0 for a constraint if it vacuously
satisfies that constraint.

We show how this notion of counting behaves in some simple cases.

Example 7. Consider the response(e,m) constraint, together with trace
τ = 〈d,m, e,m,m, e, e,m〉 of Example 3. As clearly witnessed by the discussion
in Example 3, this constraint has satisfaction strength 4 over τ , since there
are four positions leading to a relevant evolution of the activation state.

Example 8. Consider the precedence(e,m) constraint. Its satisfaction strength
is either 0 or 1. In fact, this constraint has satisfaction strength 0 if the con-
sidered trace does not contain any execution of e or m, and it has satisfaction
strength 1 if the considered trace contains at least one execution of e that is
not preceded by any execution of m. When e occurs, the constraint becomes
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permanently satisfied, and, therefore, all suffixes will not be relevant to it. Con-
sidering traces τ0 = ε, τ1 = 〈e,m〉, and τ2 = τ1·τ1·τ1·τ1 = 〈e,m, e,m, e,m, e,m〉
from Section 3.1, precedence(e,m) has satisfaction strength equal to 0 over
τ0, and equal to 1 over both τ1 and τ2.

We use Examples 7 and 8 to discuss how this approach relates to the ones
present in the literature [14, 51], and argue that a suitable notion of counting
requires to have additional information attached to the constraint of interest.

8.2. On the Suitability of Counting Strategies

By considering the response declare constraint, [14, 51] count activations
similarly to the approach presented here: the more times the constraint is
moved from temporary satisfaction to temporary violation by the trace of
interest, the more weight the traces get in terms of compliance. In general,
this correspondence holds over those declare relation templates that have
a forward orientation in time, such as response, alternate response, and
chain response in Table 1. There is still quite an important difference: the
approaches in [14, 51] do not consider, as we do here, the activation of the
constraint as a whole, but they instead focus on the activation of the constraint
source. For unary constraints applied to single tasks, the source is that task.
For binary constraints (such as response), instead, the source is intuitively
the task that “triggers” the constraint, i.e., the task associated to the dot
graphical element when it comes to the graphical representation of declare
patterns. In the case of Examples 3 and 7, this means that those approaches
increase the strength of compliance every time e is executed, whereas in our
case such execution only matters if it has an impact on the constraint.

This distinction creates a discrepancy between our approach and those
in [14, 51] when it comes to negation templates (such as not coexistence,
not succession, and not chain succession), as well as for those relation templates
that either do not have any temporal orientation (such as responded existence
and coexistence), or have a backward orientation (such as precedence, alternate
precedence, and chain precedence). Take, for example, the case of precedence.
With our approach (see Example 8), the satisfaction strength ranges from 0
to 1. With [14, 51], instead, the constraint strength increases every time the
source task is executed, even when the precedence is in a permanent state of
satisfaction.

The difference between counting on tasks as opposed to constraints as
a whole requires further investigation. There is, in addition, an orthogonal
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dimension that deeply impacts counting and cannot be captured when tasks
are just represented as propositions. This dimension is about data carried by
tasks, as well as effects induced by task executions within the organizational
setting.

Data may be used to correlate tasks. Such correlations may be used, in
turn, to create multiple instantiations of the same constraint and track their
simultaneous evolution depending not only on the execution of tasks, but also
on the data they carry. This is, e.g., studied in [51, 52]. To appreciate this
fine-grained distinction, consider again trace τ in Example 3, where task e
stands for “eat food”, and task m stands for “measure glucose”. Measuring
the satisfaction strength would in this case be radically different if all those
task executions refer to the same person (thus having that two consequent
executions of e are idempotent), or whether they refer to different persons.
This distinction can only be considered and reflected into counting, if tasks
are enriched with data attributes (in this example, the person identifier).

Beyond data attributes, one may also consider the effect of tasks. Imagine,
for example, to have a response declare constraint relating a task “add item
to order”, and a task “pay order”. In this case, the more items are added to
an order, the more paying the order may be deemed as important, intuitively
connecting the notion of compliance to the price of the order. Again, taking
this aspect into consideration, when measuring compliance strength, is only
possible if the representation of constraints and tasks is suitably enriched.

In conclusion, we believe that a suitable notion of counting cannot be
defined in general, unless the impact of time, resources, and data is explicitly
incorporated into the constraint language. This is matter of future work.

9. Related work

Our research relates to process mining applied, in particular, to the field
of declarative process mining [18]. The idea of employing mining in the
context of workflow management systems has been originally introduced in
[53]. Processes were modeled as directed graphs in which vertices represented
activities and edges stood for the dependencies between them. Cook and
Wolf, at the same time, investigated similar issues in the context of software
engineering processes [54]. From [53] onwards, several techniques have been
proposed in the stream of process mining [55].

In the area of declarative process mining, [35] first proposed an automated
discovery algorithm based on the instantiation of a set of candidate declare
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constraints later checked against event logs by replaying the traces on con-
straint automata to determine their support. In our approach, we resort on
constraint automata as well, though we introduce the notion of activation-
aware automaton to detect the cases in which constraints are only vacuously
satisfied. The approach presented in [35] has been improved in [10] where the
number of candidates to be checked is reduced through the Apriori algorithm,
originally developed by Agrawal and Srikant for mining association rules [38].
That was the first attempt to avoid that vacuously satisfied constraints could
enter the final result set using ad-hoc techniques (valid for standard declare).
The Apriori algorithm and the declare-specific vacuity detection approach
have also been utilized in [37], where a sequence analysis-based algorithm
has been proposed for declare discovery. In [56], the same approach has
been applied for the refinement and repair of declare models based on logs,
and for guiding the discovery task based on prior domain knowledge. Our
approach is generic in that it applies to any constraint whose semantics is
expressible by means of a finite state automaton.

In [57, 58], the authors presented an approach for the mining of declarative
process models expressed through probabilistic logics. The approach first
extracts a set of integrity constraints from a log. Then, the learned constraints
are translated into Markov Logic formulae that allow for a probabilistic
classification of the traces. In [59, 60], the authors describe an approach based
on Inductive Logic Programming techniques to discover declare models.
These approaches are not equipped with vacuity detection techniques such as
the one presented in this paper.

In [23, 24, 25], the authors introduce MINERful, a two-step algorithm
for the discovery of declare constraints. The first step of the approach is
the building of a knowledge base, with information about temporal statis-
tics about the (co-)occurrence of tasks within the log. Then, the validity
[23] and the support [24, 25] of constraints is computed by querying that
knowledge base. The value assigned to support is calculated by counting
the activations not leading to violations of constraints. However, there is no
specific measure to tackle vacuity and the approach has not been extended
beyond the default repertoire of declare templates. In [12, 13], the authors
propose an extension of MINERful to discover target-branched declare
constraints, i.e., constraints in which the target parameter is replaced by a
disjunction of actual tasks. Branched declare constraints and, in particular,
target-branched declare constraint can be expressed using ltlf . Therefore,
our solution can be utilized for branched declare models as well.
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Another approach for the discovery of declare models is described
in [36]. The presented technique is based on the translation of declare
templates into SQL queries on a relational database instance, where the
event log has previously been stored. The query answer assigns the free
variables with those tasks that lead to the satisfaction of the constraint in
the event log. The methodology has later been extended towards multi-
perspective declare discovery [61], to include data in the formulation of
constraints, as described in [34]. Beforehand, an approach for discovering
data-ware constraints was proposed in [62], and an approach for dealing with
the time perspective was introduced in [63]. Recently, approaches for taking
into account activity lifecycles in declare discovery have been proposed in
[64, 65]. The consideration of event data and activity lifecycles in the analysis
of constraints relevance is still an interesting open challenge that we aim at
tackling in future work.

An algorithm for discovering dcr graphs has been proposed in [66]. Since
dcr graphs employ temporal logics to express their semantics, our approach
can be applied to this set of constraints, too. Approaches for the online
discovery of declare models have been presented in [67, 68, 69]. Our
approach can be used to complement these approaches since it is based on
the rv-ltl semantics that is suitable to be used to check running, evolving
traces.

Finally, we remark that studies have been conducted to remove inconsis-
tencies and redundancies from discovered declarative models [50, 70]. The
proposed solutions resort on the language-inclusion and cross-product of
automata underlying constraints. Our approach is complementary to them:
the removal of inconsistencies and redundancies is a correction and simpli-
fication step to be carried out ex-post, analyzing the mutual entailment or
contradiction of constraints, whilst we operate on the set of constraints while
being discovered to ensure their relevance in terms of non-vacuity to the event
log.

10. Conclusion

This paper presents the first semantical characterization of relevance for
constraints (expressed with temporal logics over finite traces) to an event log.
As a side result, we also obtain a semantical notion of vacuous satisfaction
for such logics. Our characterization comes with a concrete approach for
monitoring and checking relevance to running or complete traces, achieved by
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suitably extending the standard automata-theoretic approach for (finite trace)
temporal logics. The carried experimental evaluation confirms the benefits of
our approach, and paves the way towards a more extensive study on mining
declarative constraints going beyond the declare patterns.

The presented solution generalizes the ad-hoc approaches previously pro-
posed in the literature for tackling conformance checking and discovery of
declare constraints. The solution is also compatible with human intuition,
in the sense that it by and large agrees with such ad-hoc approaches when
applied to the declare patterns.

The yet unresolved problem of activation counting paves the path of
our future work. Furthermore, it is in our plans to integrate the presented
approach in a full-fledged framework for declarative process discovery including
(i) the option for the user to define custom templates [71], (ii) the integration
of user-specified domain knowledge [56], and (iii) the automated removal
of inconsistencies and redundancies [50, 70]. Thereupon, we will assess the
efficacy of the proposed approach in the context of thorough business process
analysis initiatives to be conducted with the collaboration of real-world
organizations.

From a more theoretical point of view, a challenge of interest for future
research endeavor is the extension of the notion of vacuity towards multi-
perspective declarative process models [32, 33, 34], where not only tasks but
also artifacts, timestamps, resources, and other event data are considered
in the formulation of constraints. A formal framework that accounts for
relevance detection under multiple perspectives will be of clear benefit to the
expressiveness of the discovered models.

Studies will also be conducted on the approach as a stand-alone module,
to allow for its usage in those fields beyond the scope of process mining yet re-
sorting on constraint-based specifications such as, e.g., knowledge acquisition
and refinement of constraint-based recommender systems [72], configuration
problems in declarative representation of knowledge bases [73], services dis-
covery and behavioral matching [74], and behavioral requirements elicitation
in software engineering [75, 76].
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