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Abstract In this work, we study the effect of a magnetic
field on the growth of cosmological perturbations. We de-
velop a mathematical consistent treatment in which a per-
fect fluid and a uniform magnetic field evolve together in a
Bianchi I universe. We then study the energy density per-
turbations on this background with particular emphasis on
the effect of the background magnetic field. We develop a
full relativistic solution which refines previous analysis in
the relativistic limit, recovers the known ones in the New-
tonian treatment with adiabatic sound speed, and it adds
anisotropic effects to the relativistic ones for perturbations
with wavelength within the Hubble horizon. This represents
a refined approach on the perturbation theory of an isotropic
universe in GR, since most of the present studies deal with
fully isotropic systems.

1 Introduction

The formation of large scale structures across the Universe
is one of the most fascinating and puzzling questions, still
opened in theoretical cosmology. Among the long standing
problems of this investigation area is the determination of
the basic nature and dynamics of the cold dark matter [1],
responsible for the gravitational skeleton on which the bary-
onic matter falls in, forming the radiative component of the
present structures.

However, also the peculiarity of the matter distribution
across the Universe, in particular the possibility for large
scale filaments [2], as well as hypotheses for structure fractal
dimension [3,4] call attention for a deeper comprehension.

In this respect, we observe that the Universe plasma na-
ture, both before the Hydrogen recombination and, for a part
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in 105 also in the later matter dominated era [5,6], has to be
taken into account.

At the recombination the Universe Debye length is of the
order of 10 cm and therefore the implementation of a fluid
theory, like General Relativistic Magneto-hydrodynamics is
to be regarded as a valid and viable approach to treat the
influence of the primordial magnetic field [7] on the evolu-
tion of perturbations [6]. Nonetheless, the smallness of such
magnetic field, as constrained by the Cosmic Microwave
Background Radiation (CMBR) up to 10−9 G [8,9,10,11,
12,13,14], significantly limits the impact of the plasma na-
ture of the cosmological fluid on the evolution of pertur-
bations. As shown in [6,15], the presence of the magnetic
field is able to trigger anisotropy in the linear perturbations
growth and it can be inferred that in the full non-linear
regime, such anisotropy grows up to account for the forma-
tion of large scale filaments.

Apparently, a weak point in the perspective traced above
consists of the small plasma component surviving when the
Hydrogen recombines and in the observation that the most
relevant cosmological scales enter the non-linear regime in
such a neutral Universe. Instead, it can be surprisingly
demonstrated [5,6,15] that the coupling between the neu-
tral and ionized matter is very strong at spatial scale of cos-
mological interest (for overdensities of mass greater than
106 solar masses, the Ambipolar Reynold number is much
greater than unity for redshift 10 < z < 1000). Thus, the dy-
namical features, for instance anisotropy, that we recover for
the plasma component clearly concern the Universe bary-
onic component too. This statement is not affected by the
presence of dark matter gravitational skeleton in formation,
simply because the radiation pressure prevents, up to z∼ 100
the real fall down of the baryonic fluid into the gravitational
well. In fact, the large photon to baryon ratio, about 109 (also
constant during the Universe evolution), maintains active a
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strong Thomson scattering process, even after the hydrogen
is recombined into atoms [16,17,18,5,6].

These considerations are to underline that a single fluid
General Relativistic Magneto-hydrodynamics formulation is
an appropriate tool to investigate the impact of the Universe
plasma features on structure formation, at least for a large
range of the cosmological thermal history.

In this context many works have been developed, mainly
assuming as negligible the backreaction of the magnetic field
on the isotropic Universe, see [19] and references therein.
However, the presence of a magnetic field rigorously vio-
lates the isotropy of the space and the (essentially) flat
Robertson-Walker geometry must be replaced by a Bianchi
I model. This paper faces the general question of how the
linear perturbations evolve on a background Bianchi I cos-
mology, thought as a weak perturbation of the isotropic case,
but treated in its full generality for arbitrary large magnetic
fields.

We discuss in detail the structure of the perturbation
equations in the synchronous gauge and the specific form
of the spectrum time dependence in specific important lim-
its, like the large scale limit, when the dependence on the
wavenumber can be suppressed, and the sub horizon limit,
when the dependence on the wavenumber is dominant.

Furthermore, the change of the Jeans scale, when pass-
ing from the ionized to the (essentially) recombined Uni-
verse, is determined for the small scales, shedding light on
the role of the magnetic field and on the real nature of the
gauge perturbations.

We recover the slowing-down of the growing mode in
super-horizon scales, long known in FRW models. This ef-
fect is very small given the upper limits on the cosmological
magnetic fields, of order O

(
v2

A

)
� 1. At sub-horizon scales,

we generalise the solutions of [20] and [21], which in turn
generalise the results of [19]. While they consider random
(i.e. isotropic) magnetic fields to preserve the FRW model,
we work in the anisotropic case and also consider a nonvan-
ishing sound speed.

Finally, we stress that, along the whole analysis, we com-
pare our results with previous achievements in literature,
providing a significant contribution to the understanding of
the different effects that the Universe anisotropy, due to the
magnetic field, induces on the perturbation evolution and
stability.

We notice that there is another paper about this mat-
ter [22], which was the first analytical study to address this
issue. There, the authors study the model in 3 different phys-
ical limits with specific anisotropies, while we completely
relate the background anisotropy to the magnetic field.

The paper is structured as follows: in section 3 we sum-
marize the exact GRMHD equations in the 3+1 covariant
formalism; in section 4 we find the solution for the back-
ground Bianchi I model, then we write the equations for the

perturbations in synchronous gauge in section 5 and we find
the gauge modes in section 6; finally we solve our system in
some specific cases in section 7 and we compare our results
with present literature.

2 General properties of the Bianchi I models

As we already said, it is impossible to accommodate a mag-
netic field in a isotropic model. Moreover, although present
observations show that the isotropic FRW model describes
very well the present universe, it is only a very special de-
scription of the universe towards the initial singularity, while
the general one should incorporate anisotropy [23,24].

In the first stage of the universe evolution the matter
contribution is negligible, while it is necessary to have a
isotropic matter field to achieve the isotropization of the
model [25,26]. The general solution is constructed through
the Bianchi VIII and IX models [23,24,26], but we will fo-
cus for simplicity on a single Kasner era and so we will use
a Bianchi I model.

The Bianchi I model is similar to the FRW one, but with
three different scale factors. It is intrinsically anisotropic
in vacuum, i.e. the three cosmic scale factors are never all
equal; moreover, in vacuum one of the three scale factor al-
ways decreases with time, meaning that one of the spatial
direction is contracting.

Near enough to the cosmological singularity, any mat-
ter source in the form of perfect fluid energy density, having
equation of state p = wρ always behaves as a test fluid, i.e.
it induces negligible backreaction, as far a 0 < w < 1. Since
the background magnetic field energy density is a radiation-
like term in the Universe and it is associated to an equation
of state p = ρ/3, near enough to the singularity, we can ex-
pect a typical vacuum solution of the Kasner form [24,26].

The more general Bianchi IX model can be described
as a succession of Kasner epochs, in which the different di-
rections exchange time evolutions, alternating moments of
growing and decreasing [26]. For more detailed informa-
tions regarding the Bianchi models we recommend [27].

Clearly, as soon as the Universe expands enough, the
matter source can no longer be negligible and, if the
pressure term is isotropic, the solution must correspondingly
isotropize, i.e. the three scale factors tend to be equivalent.
This process of isotropization is particularly efficient in the
case of an inflationary paradigm [28,26], when a vacuum
energy, having an equation of state p =−ρ is dominating
the Universe dynamics.

The relevance of our study for the structure formation
takes place when the isotropization process reduced the
Bianchi I cosmology to a flat Robertson-Walker Universe,
except for the residual intrinsic anisotropy due to the pres-
ence of a background magnetic field.
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There exist already a large number of studies regard-
ing Bianchi I models, analysing cases with different val-
ues for the barotropic index w of the matter source in ad-
dition to the magnetic field. [29] was probably the first to
address their stability. [25] studies the effect of a pure mag-
netic matter component, [30] contains analytic solutions for
dust w = 0 and radiation w = 1/3, [31] contains solutions
for w = 1 and 1/3≤ w≤ 1 and for the pure magnetic case,
[32] analyses the case of vacuum energy w =−1. The nature
of the solutions depends on the values of various constants,
it can collapse isotropically or anisotropically, only in the
longitudinal or in the transverse direction towards the Big
Bang. In general the magnetic fields accelerates expansion
(or decelerates collapse) in the transverse direction of the
magnetic pressure and it decelerates expansion (or acceler-
ates collapse) in the direction of the magnetic tension. For
general properties of the solutions, see [33].

Some interesting cases are analysed in [30]: if B2/ρ → 0
towards the singularity then the magnetic field effects are
negligible; if B2/ρ does not approach 0, then it is constant
and both fluids determine the dynamics, or the magnetic
field causes a rapid expansion in the transverse direction and
this change of the dynamics causes B2/ρ → 0. Moreover,
[32] shows that in presence of a cosmological constant the
magnetic field has a strong effect at early times, decelerat-
ing the collapse in the transverse direction and accelerating
it in the longitudinal one, and is negligible at later times,
when the vacuum energy causes accelerated expansion in
both directions; the authors also describe the shape of the
singularity.

It should be noted that in general the presence of the
magnetic field causes a slowing down in the process of
isotropization, making the shear more important; this way
the CMB gives a strong constraint on primordial homoge-
neous magnetic fields [9,10].

3 Basic equations

We will now recap the fundamental equations we’ll need
later; their derivation can be found in [19]. Following [19]
we define the magnetic field as the spatial part of the Fara-
day tensor Fµν in the frame comoving with the cosmological
fluid; we will use the ideal MHD approximation to turn off
the electric field. These equations can be easily obtained in
the covariant 3+1 formalism [34,35,36,37], as done in [38,
39,19,40]; we will solve them, however, in a fixed
synchronous gauge. We will assume geometric units for the
speed of light c and Newton’s gravitational constant G in
witch c = 8πG/c4 = 1.

We describe an anisotropic system with a metric gµν

with positive spatial signature (−,+,+,+) filled by a per-
fect fluid with energy density ρ , isotropic pressure density p,

4-velocity uµ and energy momentum tensor

Tµν = ρuµ uν + phµν , (1)

where hµν is the comoving spatial projector

hµν = gµν +uµ uν , (2)

and a uniform magnetic field with Faraday tensor Fµν .
The time derivative of a generic tensor T ν

µ is

Ṫ ν
µ = uρ

∇ρ T ν
µ , (3)

its spatial projected derivative

Dρ T ν
µ = h σ

ρ h α
µ hν

β
∇σ T β

α , (4)

the totally antisymmetric spatial tensor

εµνρ = ηµνρσ uσ , (5)

where ηµνρσ is the totally antisymmetric tensor with
η0123 = 1/

√
−g, and the irreducible components of the ve-

locity derivative are

θ = ∇µ uµ = Dµ uµ (6a)

σµν = 1
2

(
Dµ uν +Dν uµ

)
− 1

3 hµν hαβ Dα uβ (6b)

ωµν = 1
2

(
Dµ uν −Dν uµ

)
, ωµ = 1

2 εµνρ ω
µρ (6c)

Aµ = u̇µ = uν
∇ν uµ . (6d)

It is now possible to describe the electromagnetic field in
the Lorentz-Heaviside units: the electric field is Eµ =Fµν uν ;
the magnetic field is Bµ = εµνρ Fνρ/2, with magnetic energy
B2 = Bµ Bµ and energy momentum tensor

Tµν =
1
2

B2uµ uν +
1
6

B2hµν +Πµν (7a)

Πµν =
1
3

B2hµν −Bµ Bν . (7b)

The equations that describe our system are the Maxwell equa-
tions

Ḃ〈µ〉 =
(

σµν + εµνρ ω
ρ − 2

3
θhµν

)
Bν (8a)

εµνρ Dν Bρ = h ν
µ Jν − εµνρ Aν Bρ (8b)

ωµ Bµ =−1
2

Jµ uµ (8c)

Dµ Bµ = 0, (8d)

where Jµ is the electric 4-current, and the projected Einstein
equations

Rµν uµ uν =
1
2
(ρ +3p+B2) (9a)

h ν
µ Rνρ uρ = 0 (9b)

h ρ

µ h σ
ν Rρσ

=
1
2

(
ρ− p+

1
3

B2
)

hµν +Πµν

(9c)
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in which Rµν is the Ricci tensor.
The interaction between the fluid and the magnetic field

is given by

∇
µ T EM

µν =−Fµν Jµ . (10)

It is possible to use the Maxwell equation (8a) to find the
conservation law for the magnetic energy

˙(B2) =−4
3

θB2−2σµν Π
µν , (11)

and to derive the fluid energy conservation law from the tem-
poral part of the Bianchi identities uµ ∇ν T µν = 0

ρ̇ =−(ρ + p)θ ; (12)

from the spatial projected Bianchi identities hµ

ρ ∇ν T ρν = 0
it is possible to find the momentum conservation law(

ρ + p+
2
3

B2
)

Aµ

=−Dµ p− εµνρ Bν
ε

ραβ Dα Bβ −Πµν Aν

(13)

which, using

εµνρ Bν
ε

ραβ Dα Bβ =
1
2

Dµ B2−Bν Dν Bµ , (14)

gives(
ρ + p+

2
3

B2
)

Aµ =−Dµ p

− 1
2

Dµ B2 +Bν Dν Bµ −Πµν Aν .

(15)

4 Background model

We assume that our system is homogeneous and perturbed
at first order by weak inhomogeneous perturbations. At the
background level we have a homogeneous universe with an
isotropic perfect fluid and a uniform magnetic field: such
field cannot live with an isotropic metric, such as FRW, but
it can be accommodated in an anisotropic model. We must
use one of the Bianchi models because of the homogeneity
and our model fits best in a Bianchi I universe, which is the
simplest anisotropic generalization of FRW, so our metric in
synchronous gauge is

gµν = diag
(
−1,a2

1(t),a
2
2(t),a

2
3(t)
)
. (16)

These type of models were widely studied in literature
in different assumptions and physical limits (see for exam-
ple [41,30,31,25,32]); we are here interested mainly in their
behaviour after the matter-radiation equivalence, where the
magnetic field can be reasonably small compared to the mat-
ter component. This regime was already studied in different
works, for example by [25] in radiation dominated universe;

here we will recap [10], which accounts for different type of
anisotropic stresses in both radiation an matter dominated
universe. We will, however, amend for their time behaviour
in matter dominated universe and we will not neglect higher
order corrections in the isotropic components.

We assume that the magnetic field is oriented along the
3 axis, so the system is axisymmetric and a1 = a2; for
simplicity we call a = a1 = a2 and c = a3. We have
uµ = (1,0,0,0).

It is now straightforward to write the Einstein
equations (9)

2
ä
a
+

c̈
c
=−1

2
(
ρ +3p+B2) (17a)

ä
a
+

ȧ
a

(
ȧ
a
+

ċ
c

)
=

1
2
(
ρ− p+B2) (17b)

c̈
c
+2

ȧ
a

ċ
c
=

1
2
(
ρ− p−B2) (17c)

and the energy conservation laws for the system (12) and (11)

ρ̇ +

(
2

ȧ
a
+

ċ
c

)
(ρ + p) = 0 (18)

˙(B2)+4
ȧ
a

B2 = 0. (19)

We define the Alfvén velocity, which is the energy ratio
between magnetic field and fluid (note the factor 1/2 which
differs from the usual definition)

v2
A =

B2/2
ρ

, (20)

witch is responsible for the intensity of the anisotropies, the
isotropic expansion H and the anisotropy parameter S

3H = 2
ȧ
a
+

ċ
c
, S =

1
H

(
ȧ
a
− ċ

c

)
. (21)

If we now assume a barotropic fluid with equation of state
p = wρ and w = const the Einstein equation (17a) becomes

3Ḣ +H2
(

3+
2
3

S2
)
=−

[
1
2
(1+3w)+ v2

A

]
ρ, (22)

subtracting equation (17c) from equation (17b) we get

HṠ+ ḢS+3H2S = 2v2
aρ (23)

and summing 2 times equation (17b) to equation (17c) we
eventually have

3Ḣ +9H2 =

[
3
2
(1−w)+ v2

A

]
ρ. (24)

From the definition of v2
A (20) and from the energy conser-

vations (18) and (19) we have

˙(v2
A) =

˙(B2)/2− ρ̇v2
A

ρ
= v2

AH
(

3w−1− 4
3

S
)
. (25)
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If we now assume that the magnetic field energy is small
compared to the fluid energy we have v2

A� 1 and if we write

H = H(0)+H(1), ρ = ρ(0)+ρ(1) (26)

with H(1),ρ(1) = O
(
v2

A

)
it is easy to see from equations (22)

and (24) that at 0-order in v2
A we recover FRW and we have

H(0) =
2

3(1+w)t
, ρ(0) = 3H2

(0), S(0) = 0. (27)

The anisotropy is described by S and equation (23) be-
comes at first order in v2

A

Ṡ+
1−w
1+w

S
t
=

4
1+w

v2
A
t
, (28)

while equation (25) gives

˙(v2
A) =−

2
3

1−3w
1+w

v2
A
t
. (29)

The isotropic part is contained in equations (22) and (24),
which form a system whose solution is

ρ(1) =
4

1+w
H(1)

t
− 4

3(1+w)2
v2

A
t2 (30)

Ḣ(1)+2
H(1)

t
=−2

9
1−3w
(1+w)2

v2
A

t2 . (31)

We are interested only in anisotropies caused by the
magnetic field so we will put to 0 the homogeneous solu-
tion of each equation, with the exception of (29).

4.1 Radiation dominated universe

For radiation dominated universe w = 1/3 and equation (29)
gives

v2
A = v2

A0 = const . (32)

Equation (28) then gives

S = 6v2
A = 6v2

A0. (33)

From equation (30) we get ρ .
From the definitions (21) we can get the values of a and

c. Finally we have

v2
A = v2

A0 = const, t0 = const (34)

a∼
(

t
t0

)1/2(
1+ v2

A0 ln
(

t
t0

))
(35)

c∼
(

t
t0

)1/2(
1−2v2

A0 ln
(

t
t0

))
(36)

H =
1
2t

(37)

ρ =
3

4t2 (1− v2
A0). (38)

4.2 Matter dominated universe

For matter dominated universe w = 0 and eq. (29) gives

v2
A = v2

A0

(
t
t0

)−2/3

, v2
A0, t0 = const . (39)

From equation (28) we get

S(t) = 12v2
A(t). (40)

For the isotropic part we proceed as before: eq. (31)
gives

H(1) =−
2
3

v2
A(t)
t

(41)

From equation (30) we get ρ .
From the definitions (21) we can get the values of a and

c. Finally we have

v2
A = v2

A0

(
t
t0

)−2/3

(42)

a∼
(

t
t0

)2/3

−3v2
A0 (43)

c∼
(

t
t0

)2/3

+9v2
A0 (44)

H =
2
3t
(1− v2

A(t)) (45)

ρ =
4
t2

(
1
3
− v2

A(t)
)
. (46)

5 Perturbed equations

We perturb all the quantities that govern our system while
keeping synchronous gauge, thus the perturbed metric is

gµν = gB
µν +δgµν (47a)

δgµ0 = 0, (47b)

where B means the background value; we can define

γµν = δgµν (48a)

gµρ gρν = δ
ν

µ =⇒ δgµν =−γ
µν , (48b)

where the indices of γµν are raised and lowered with the
unperturbed metric gB

µν . In the following we write the trace
of γµν as γ = γ k

k . The fluid velocity perturbation is δuµ ,
with

uµ uµ =−1 =⇒ δu0 = 0. (49)

The fluid energy perturbation is δρ and the fluid pressure
perturbation is δ p = v2

S δρ; it holds

ẇ =−3H(1+w)(v2
S−w) (50a)

w = const =⇒ v2
S = w, (50b)
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but we keep v2
S as an arbitrary function and possibly different

from w; the reason of this choice will be clear in section 7.2.
The perturbed magnetic field must remain pure spatial at

all orders, as shown in appendix Appendix A, so the condi-
tion Bµ uµ = 0 holds at all perturbative orders and the per-
turbation to the magnetic field satisfies

δ (Bµ Bµ) = δ (B2) = γ33B3B3 +2c2
δB3 B3 (51a)

Bµ uµ = 0 =⇒ δB0 = c2B3
δu3 . (51b)

Accordingly to [24,16] the perturbed Christoffel sym-
bols are

δΓ
ρ

µν =
1
2

gρσ

B

(
∇

B
µ γνσ +∇

B
ν γµσ −∇

B
σ γµν

)
(52)

and the perturbed Ricci tensor is

δRµν = ∇
B
ρ δΓ

ρ

µν −∇
B
ν δΓ

ρ

µρ . (53)

We are now ready to perturb the exact equations of sec-
tion 3. We notice that, because of the homogeneity of the
background model, when applied to the perturbation of a
scalar quantity the comoving time derivative ṡ is the same as
the synchronous time derivative ∂0s, so we make no differ-
ence between them in the following. The fluid energy con-
servation (12) becomes

˙δρ +

(
2

ȧ
a
+

ċ
c

)
(δρ +δ p)

+(ρB + pB)

(
∂i δui +

1
2

γ̇

)
= 0

(54)

and the magnetic field energy conservation (11) gives

˙(δ (B2))+4
ȧ
a

δ (B2)+2B2(0)

·
(

∂i δui−∂3 δu3 +
1
2

γ̇− 1
2

γ̇
3

3

)
= 0.

(55)

The Einstein 00 equation is (we will always use Einstein
equations with a lower and an upper index)

1
2

γ̈ +
ȧ
a

γ̇−
(

ȧ
a
− ċ

c

)
γ̇

3
3

+
1
2
(δρ +3δ p)+

1
2

δ (B2) = 0,
(56)

while the 33 equation reads

∂k∂
3
γ

k
3 −

1
2

(
∂k∂

k
γ

3
3 +∂3∂

3
γ

)
+

1
2

γ̈
3

3 +
1
2

(
2

ȧ
a
+

ċ
c

)
γ̇

3
3 +

1
2

ċ
c

γ̇

− 1
2
(δρ−δ p)+

1
2

δ (B2) = 0;

(57)

to remove ∂3∂ kγ 3
k from the last equation we need to use the

derivative of the 03 equation with respect to the 3 index

∂0

(
∂3∂

k
γ

3
k

)
−∂3∂

3
γ̇ +2

ȧ
a

∂3∂
k
γ

3
k

−
(

ȧ
a
− ċ

c

)
∂3∂

3
γ−
(

ȧ
a
− ċ

c

)
∂3∂

3
γ

3
3

=−2(ρB + pB)∂3 δu3 .

(58)

If we had used equations (9) we would have found the same
results.

By imposing the null divergence of the magnetic field (8d)
we get

∂i δBi +
1
2

B3
∂3γ = 0. (59)

The last equation we need is the conservation of the mo-
mentum (15) (note that Aµ has only the first order compo-
nent): we define an index P∈ {1,2} that lies on the plane or-
thogonal to the background magnetic field and we write the
divergence of the momentum conservation on the 12-plane
(∂1()

1 +∂2()
2)

(ρB + pB)

(
∂0∂P δuP +2

ȧ
a

∂P δuP
)

+B2
B

[
∂0∂P δuP +

(
2

ȧ
a
+

ċ
c

)
∂P δuP

]
+∂P δuP

∂0

(
pB +

1
2

B2
B

)
+∂P∂

P
(

δ p+
1
2

δ (B2)

)
−B3

∂3∂P δBP

+B2
B

(
1
2

∂P∂
P

γ
3

3 −∂P∂
3
γ

P
3

)
= 0

(60)

and the derivative of the 3 component along the 3 axis

(ρB + pB)

(
∂0∂3 δu3 +2

ċ
c

∂3 δu3
)

+∂3 δu3
∂0

(
pB +

1
2

B2
B

)
+∂3∂

3
(

δ p+
1
2

δ (B2)

)
+2

ȧ
a

B2
B∂3 δu3

−B3
∂3∂3 δB3− 1

2
B2

B∂3∂
3
γ

3
3 = 0.

(61)

The system (54)-(61) fully characterizes the evolution of
the perturbed quantities and it is the ground of the following
analysis. Compared to [22] we fully related the background
anisotropy to the magnetic field, without the need of addi-
tional hypothesis.



7

6 Gauge Modes

Fixing the synchronous gauge does not end the freedom of
coordinate choice: we can still make a gauge transformation
preserving the synchronous gauge.

We follow the same scheme as of [26]: we make a generic
coordinate transformation of the form

xµ → xµ + ε
µ (62)

with small εµ and we keep terms up to O(ε).
The metric tensor becomes

g′µν(x
′) = gµν(x)−gµσ (x)∂ν ε

σ −gρν(x)∂µ ε
ρ . (63)

If we define

∆gµν = g′µν(x)−gµν(x) =−gµλ (x)∂ν ε
λ

−gλν(x)∂µ ε
λ − ε

λ
∂λ gµν(x)

=−∇µ εν −∇ν εµ

(64)

to preserve the synchronous gauge we need ∆g0µ = 0 which
gives ε0 = ε0(x j) and

ε
P = ε̃

P(x j)+∂
P

ε
0(x j)a2

∫ dt
a2 , (65a)

ε
3 = ε̃

3(x j)+∂
3
ε

0(x j)c2
∫ dt

c2 , (65b)

where ε0(x j) and ε̃ i(x j) are arbitrary functions of the spa-
tial coordinates: we still have 4 unused degrees of freedom
represented by the functions ε0 and ε̃ i.

If we take the functions ε0 and ε̃ i of the same order of the
perturbations then the transformation given by equation (64)
can be seen both as a gauge transformation and as a transfor-
mation of the functions γµν within fixed synchronous gauge:
in the latter case equation (64) gives the value of ∆γµν . In
the same way the stress-energy tensor transforms as

∆Tµν =−Tµλ ∂ν ε
λ −Tλν ∂µ ε

λ − ε
λ

∂λ Tµν

=−Tµλ ∇ν ε
λ −Tλν ∇µ ε

λ − ε
λ

∇λ Tµν

(66)

and if we see these as transformations on the physical vari-
ables instead of the coordinates we obtain the gauge modes
for δTµν . Substituting the explicit expression of Tµν as the
sum of the fluid and the magnetic field components we see
that the transformation acts separately on the two compo-
nents and we get for the fluid density perturbation

∆ δρ =−ε
0
ρ̇

B

= 3H(ρB + pB)ε0 = 3H(1+w)ρB
ε

0.
(67)

In section 5 we linearised the equations and so the gauge
transformations solve our equations and we call them gauge
perturbations or gauge modes: these solutions are not phys-
ical because they correspond to a simple change in the ref-
erence frame. We are looking for a physical solution for the

time dependence of δρ so the most interesting gauge trans-
formation is given by equation (67).

Having the knowledge of gauge modes it is possible to
construct gauge invariant variables, in a similar way as done
in [42]. We have

∆ δui = ∂
i
ε

0 (68)

so our main scalar variable should be

δρ
GI = ∂

i
∂i δρ−3H(1+w)ρB

∂i δui (69a)

∆ δρ
GI = 0. (69b)

It is easy to check that it is exactly the variable used in [19],
expressed in synchronous gauge. We will, however, not need
it because the vorticity part H∂i δui decays in time with re-
spect to ∂i∂

i δρ /ρB and we are interested in late time dy-
namics. We will also not need the laplacian, because we’ll
use Fourier expansions so it will reduce to a multiplicative
term: for late times we can assume δρ to be gauge invariant.

It is possible to watch this approximation from another
perspective, shown in Appendix Appendix B.

7 Analytical Solutions

If we write the perturbations as Fourier transforms we see
that the system imposes different evolution to the perturba-
tions that propagates along the background magnetic field,
with ∂P(. . .) = 0, and the perturbations that propagates or-
thogonally to the background magnetic field, with
∂3(. . .) = 0. These different modes are however coupled by
the magnetic stress-energy tensor tensorial nature.

To simplify the equations we use the barotropic state
equation for the fluid, so pB = wρB with w = const and
δ p = v2

S δρ , and the Fourier expansion for the spatial part
of the perturbations, so the spatial dependence is of the form
eik jx j

. We define the new variables

∆ =
δρ

(1+w)ρB (70)

G =
1
2

γ (71)

T =
1
2

γ
3

3 (72)

M =
δ (B2)

B2
B

. (73)

Our differential equation system is not simple but we can
solve it for small magnetic fields by keeping only terms up to
first order in v2

A: we shall remember that S is already at first
order while ∆ , G, T and δui have also a 0-order (FRW) part;
M has only the 0-order part because it is always multiplied
by v2

A because δ (B2) = B2
BM = 2ρBv2

AM. In the same way,
looking at our system also T is always multiplied by v2

A:
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this is because it does not affect density perturbations unless
some anisotropy is present.

We also use eq. (50b) to discard terms proportional
to w− v2

S or to ˙(v2
S), unless multiplied by kiki or k3k3. This

is because, while they are equal to 0 for w = const, we will
need them in sec. 7.2.

The fluid energy conservation equation (54) in the new
variables reads

Ġ =−∆̇ −∂i δui . (74)

Similarly we rewrite the magnetic energy conservation
(55)

Ṁ =−2
(
∂P δuP + Ġ− Ṫ

)
= 2

(
∆̇ + Ṫ +∂3 δu3) , (75)

where we found the last equality by using the fluid energy
conservation.

Combining Einstein 33 equation (57) with its derivative
with respect to time and using the derivative of Einstein
03 equation (58) with respect to the 3-index in order to take
care of ∂i∂

3γ i
3 terms we get an equation for T . Because T

only appears in the system in terms that are multiplied by v2
A,

we will only need this equation at 0-order:

3(1+w)
...
T +10

T̈
t
+2

1−3w
1+w

Ṫ
t2 −8

∂3 δu3

t2

+2
G̈
t
+

2
3

1−3w
1+w

Ġ
t2

−2
(
1− v2

S
) ∆̇

t2 +
4
3
(1− v2

S)
1+3w
1+w

∆

t3

+3(1+w)(kikiṪ − k3k3Ġ) = 0

(76)

We can use the fluid energy conservation equation (74)
to eliminate G from the other equations. This way the Ein-
stein 00-equation (56) reads

∆̈ +2H
(

1+
1
3

S
)

∆̇ − 1
2
(1+3v2

S)(1+w)ρ∆

+∂0∂i δui +2H
(

1+
1
3

S
)

∂i δui

+
4

3(1+w)
S

Ṫ
t
− 4

3(1+w)2 v2
A

M
t2 = 0.

(77)

We obtain the evolution equation for the divergence of
the 4-velocity by summing eqs. (60) an (61); we then use
equation (57) to remove the ∂i∂

3γ i
3 term and equation (59)

to remove the divergence of the magnetic field. Doing so we

find(
1+

2
1+w

v2
A

)
∂0∂i δui+

+

[
(2−3w)H +

(
v2

A
1+w

+
1
3

S
)

4
3(1+w)

1
t

]
∂i δui =

=−v2
S∂i∂

i
∆ −

v2
A

1+w
∂i∂

iM

+
2

1+w
v2

A∂0∂3 δu3 +2
(

v2
A

1+w
+S
)

2
3(1+w)

∂3 δu3

t

− 2
1+w

v2
A

[
T̈ +

2
1+w

Ṫ
t
+

2
3(1+w)

Ġ
t

]
+

4
3(1+w)

(1− v2
S)v

2
A

∆

t2 .

(78)

We will need also equation (61) which reads, using equa-
tion (51a) to remove ∂3 δB3,

∂0∂3 δu3+

(
2−3w− 4

3
S
)

H∂3 δu3+∂3∂
3(v2

S∆) = 0. (79)

Thus we restated the dynamical system (54)-(61) in a
more suitable form which is more appropriate for the fol-
lowing analysis.

7.1 Radiation dominated universe at large scales

In radiation dominated universe we have w = v2
S = 1/3 and

at large scales we can set k2 ≈ k3k3 ≈ 0. It is easy to check
that, once we get rid of the scale dependent terms, eq. (76),
(77) and (78) reduces respectively to

2
...
T +5

T̈
t
−4

∂3 δu3

t2 − ∂0∂i δui

t
− ∆̈

t
− 2

3
∆̇

t2 +
2
3

∆

t3 = 0

(80)

∆̈ +
(
1+2v2

A
) ∆̇

t
− (1− v2

A0)
∆

t2 +6v2
A

Ṫ
t
− 3

4
v2

A
M
t2

+∂0∂i δui +
(
1+2v2

A
) ∂i δui

t
= 0

(81)

(
1+

3
2

v2
A

)
∂0∂i δui +

1+4v2
A

2
∂i δui

t
=

=
3
2

v2
A∂0∂3 δu3 +

27
4

v2
A

∂3 δu3

t

− 3
2

v2
AT̈ − 9

4
v2

A
Ṫ
t
+

3
4

v2
A

∆̇

t
+

1
2

v2
A

∆

t2 .

(82)

This system, together with (75) and (79), is satisfied by a
power law solution and could be reduced to a pure algebraic
problem, but we found simpler to solve it for v2

A = 0 and
then look perturbatively for the corrections in v2

A. We found

∆ =
∆gauge

t
+∆growt1−2v2

A0 +∆1t1/2−2v2
A0 +∆2t1/2+4v2

A0 . (83)
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It can be shown that the t1/2 modes are related to a non-
vanishing divergence of the background velocity
∂i δui = iki δui: strictly speaking, we should have imposed
the ki ≈ 0 condition, thus finding only the t and 1/t modes:

∆ =
∆gauge

t
+∆growt1−2v2

A0 (84)

and recovering the usual FRW solution in the limit v2
A→ 0.

Using (67) and (37) we find that 1/t is a gauge mode,
while t1−2v2

A0 is the physical growing mode, with the correc-
tion due to the magnetic field.

We find our solution simpler than the one of [19], and
with a clearer physical interpretation of the solutions, but our
physical growing mode follows a slightly different temporal
law, although this correction is small given v2

A� 1. We also
find simpler the comparison of our solution with the non
magnetic one of [16].

We see in (84) that the magnetic field reduces the grow-
ing rate of density perturbations, but by an amount of or-
der O

(
v2

A

)
� 1. This effect has long been known, and it is

due to the extra magnetic pressure. A similar behavoiur was
found in [19] and [22], although with the differences stated
above.

We finally note a difference between our solution (83)
and the one of [19]: the non dominant mode is t1/2 in our
formalism, while t−1/2 in their. At a more careful analysis,
our equations tend correctly to the ones of [16] for v2

A→ 0
and we obtain in such limit the same solutions of [17,26],
including the t1/2 mode. Such discrepancy is therefore be-
tween the synchronous and covariant formalisms, and it is
besides the purposes of our paper.

7.2 Matter dominated universe at small scales

In this section we analyse the perturbations in a matter domi-
nated universe (w = 0), in the regime in which the
anisotropies are small with respect to the background. We
expand in Fourier the spatial part of each quantity like eik jx j

,
with k j = const, and we define k2 = kiki.

Being at small scales means k2� H2 and assuming
v2

S,v
2
A� 1 we can greatly simplify our equations, keeping

only terms in v2
S or v2

A that are multiplied by k2 and drop-
ping terms of order v2

S and v2
A. This means that the effect

of the sound speed and the Alfvén speed is relevant only at
very small scales, as we will see from the solutions of our
equations. This approximation, although still relativistic and
so comparable to other result in literature, for example [19],
will give the nonrelativistic limit, as shown in section 7.2.2

7.2.1 Sound speed and Alfvén speed

First we need some considerations regarding the sound
speed. From a formal point of view, the sound speed is re-

lated to the barotropic index w by (50a) and w = const im-
plies v2

S = w, so it should vanish. From a physical point of
view we need a nonvanishing sound speed and we can also
estimate its value. While formally the best solution to this
problem would be using a two fluid model, with a differ-
ent equation of state for perturbations, here we will simply
drop the relation between v2

S and w and assume that the per-
turbed fluid follows a different equation of state with respect
to the background fluid. This is correct in the Newtonian ap-
proximation and it’s in fact the standard way of handling
things [16,6], while putting v2

S = 0 at the end will recover
the full covariant value of our calculations for studying pure
magnetic effects.

We proceed as in [16]: we use an adiabatic sound speed

v2
S =

δ p
δρ
∼ γ p

ρ
∼ ρ

γ−1 ∼ t2(1−γ) (85)

where γ is the heat ratio. We write ν = γ−4/3≥ 0 so

v2
S = v2

S0

(
t
t0

)−2(ν+ 1
3 )
. (86)

We can estimate more precisely the sound speed value,
and it’s possible to show that the adiabatic sound speed is
[16,6]

v2
S
∣∣
z<zrec

=
1
3

kBTbσ

mp + kBTbσ
, v2

S
∣∣
z>zrec

=
5
3

kBTb

mp
, (87)

where zrec is the redshift value at recombination, kb is the
Boltzmann constant, Tb is the baryons temperature,
mp is the proton mass and σ is the specific entropy, whose
value is σ = 4aSBT 3/3nbkB ≈ 1.5 ·109, being aSB the Ste-
fan–Boltzmann constant and T the gas temperature. We ne-
glected any anisotropic effects in temperature, because they
would be related to the next order corrections. The baryons
temperature is the same of the photons until z≈ 100, due to
residual Thomson scattering, and decreases faster thereafter:

Tb|z>100 = Tγ = Tγ

∣∣
z=0 (1+ z), Tγ

∣∣
z=0 ≈ 2.7K (88a)

Tb|z<100 ∝ (1+ z)2. (88b)

Comparing the two expressions we see that right after
recombination and until complete decoupling, so for
zrec = 1100 > z > 100 = zdec, we have ν = 0 and the cosmic
medium behaves like a nonrelativistic fluid with γ = 4/3:
the total energy density is dominated by hydrogen rest mass
but the pressure is dominated by radiation. After the end of
Thomson scattering effects and until reionization, for 100 >

z > 10, ν ' 1/3 and the cosmic medium behave like a rela-
tivistic fluid with γ ' 5/3. The plot of the sound speed and
of the Alfvén speed is in fig. 1.
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Fig. 1: Plot of the sound speed and the Alfvén speed. We
see that sound speed dominates until recombination, where
suddenly the Alfvén velocity becomes important.

We define two constants addressing the effect of sound
speed and Alfvén speed after recombination. Taking the time
dependence of k2 depending only on the 0-order part of the
background metric because it always appears multiplied by
v2

S or v2
A, we have respectively

Λ
2
S = v2

Sk2t2γ−2/3, Λ
2
A = v2

Ak2t2. (89)

For a more detailed discussion about the sound speed
see [43].

7.2.2 Analytical solutions

Using the assumptions of section 7.2 we can greatly simplify
our equations. The energy conservation (74) and the mag-
netic field energy conservation (75) retain the same form.
The Einstein 00-equation (77) now reads

∆̈ +
4
3t

∆̇ − 2
3t2 ∆ +∂0∂i δui +

4
3t

∂i δui = 0. (90)

The momentum conservation 78 becomes

∂0∂i δui +
4
3t

∂i δui =−v2
S∂i∂

i
∆ − v2

A∂i∂
iM (91)

and its counterpart along the z-axis remains (79):

∂0∂3 δu3 +
4
3t

∂3 δu3 + v2
S∂3∂

3
∆ = 0. (92)

We need the Einstein 33-equation only at 0-order in the mag-
netic field, after being multiplied by v2

A, so equation (76) in
our limit reads

v2
A∂i∂

iṪ + v2
A∂3∂

3(∂i δui + ∆̇) = 0. (93)

With some algebra it is possible to reduce this system
to a single equation. Expanding the spatial part in Fourier,
defining the anisotropy parameter µ of the solution as

k3k3 = µ
2k2 (94)

and using the constants (89) we find, after some algebra,

9t4
∆
(4)+60t3

∆
(3)

+
[
76+9Λ

2
S t−2ν +18Λ

2
A
]

t2
∆
(2)

+
[
8+12Λ

2
S (1−3ν)t−2ν +24Λ

2
A
]

t∆ (1)

+
[
6Λ

2
S
(
−ν +6ν

2 +3µ
2
Λ

2
A
)

t−2ν

−12µ
2
Λ

2
A
]
∆ = 0,

(95)

where ∆ (i) is the i-th derivative of ∆ . This corresponds ex-
actly to equation (29) of [6], except for a difference in the
definition of v2

A and so in ΛA.
We believe interesting to analyse separately the two cases

of ν = 0 and ν = 1/3, instead of studying them together as
in [6].

7.2.3 Post recombination evolution

For 1100 > z > 100 we have ν = 0. The solution of (95) is

∆ = ∆itxi , (96)

where ∆i are arbitrary constants and

x1 =
(
−1+

√
δ−
)
/6 x2 =

(
−1−

√
δ−
)
/6 (97a)

x3 =
(
−1+

√
δ+

)
/6 x4 =

(
−1−

√
δ+

)
/6 (97b)

δ± = δ1±6
√

δ2 (97c)

δ1 = 13−18Λ
2
S −36Λ

2
A (97d)

δ2 =
(
−2+6Λ

2
A +3Λ

2
S
)2−24µ

2
Λ

2
A
(
−2+3Λ

2
S
)
. (97e)

The only possible growing solution is x3, and the require-
ment is that it holds one of the conditions

µ > 0 and Λ
2
S <

2
3

(98a)

µ = 0 and Λ
2
S +2Λ

2
A <

2
3

; (98b)

using (89) and (26), making explicit the presence of New-
ton’s constant we get ρ = 1/6πGt2, conditions (98) become

µ > 0 and k < kJ =

√
4πGρ

v2
S

(99a)

µ = 0 and k <

√
4πGρ

v2
S +2v2

A
< kJ . (99b)

While the first one is the standard Jeans condition, the sec-
ond one means that, orthogonally to the background mag-
netic field, there is a heavier requirement dependent on the
strength of the magnetic field: some modes could grow in
every direction but the one of the field. The presence of the
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magnetic field also imposes a slowing down of the growing
mode:

x3 ≤ x3|ΛA=0 =
1
6

(
−1+

√
25−36Λ 2

S

)
, (100)

where the equal sign holds only in absence of a magnetic
field, that is only if ΛA = 0.

7.2.4 Late times evolution

This is exactly the case analysed in [6]. For z < 100 we
have ν > 0 and the solution of (95) is

∆ = ∆itxi 2F3

[
ai1,ai2

bi1,bi2,bi3
;−

Λ 2
S t−2ν

4ν2

]
, (101)

where ∆i are arbitrary constants, 2F3 is a generalized hy-
pergeometric function with constant coefficients ai j, bi j de-
pending only on the constants ν , ΛS, ΛA (see app. Appendix
C for the explicit value of the coefficients) and

x1 =
(
−1+

√
δ−
)
/6 x2 =

(
−1−

√
δ−
)
/6 (102a)

x3 =
(
−1+

√
δ+

)
/6 x4 =

(
−1−

√
δ+

)
/6 (102b)

δ± = 13−36Λ
2
A±12

√(
1−3Λ 2

A

)2
+12µ2Λ 2

A. (102c)

The solutions can grow only if the argument of the hy-
pergeometric functions is small, i.e. if

Λ
2
S /4ν

2t2ν � 1 : (103)

this way we have

∆ = ∆itxi

(
1+O

(
Λ 2

S t−2ν

4ν2

))
. (104)

Condition (103) is the standard Jeans condition [16]: us-
ing (89) and (26), eq. (103) translates in [6]

k� kJ =

√
24ν2πGρ

v2
S

. (105)

The only solution in (104) that can grow is 3: x3 > 0 only
if it holds one of

0 < µ ≤ 1 (106a)

µ = 0 and Λ
2
A <

1
3
. (106b)

The first one means that, in any direction but orthogonal
to the background magnetic field, the only necessary con-
dition is the standard one. The second one is an additional
condition that must hold for perturbations propagating or-
thogonally to the background magnetic field, and using (89)
and (26) it reads [6]

k < kA =

√
2πGρ

v2
A

. (107)

The presence of this new condition makes possible the ex-
istence of Jeans unstable modes, that orthogonally to the
background magnetic field are stabilized by the magnetic
pressure if kA < kJ and kA < k < kJ [6].

Studying the growing rate of this solution with more
care, we see that x3 satisfies

µ = 1 =⇒ x3 = x3|ΛA=0 =
2
3

(108a)

µ 6= 0 =⇒ x3 < x3|ΛA=0 : (108b)

orthogonally to the background magnetic field the grow-
ing rate is unchanged, while in other directions it is slowed
down, depending on the field strength.

7.3 Full relativistic case

If we put v2
S = 0 we recover the exact relativistic solution.

As we can see from the previous solutions, the growing con-
dition is

µ > 0 (109a)

µ = 0 and k < kA =

√
2πGρ

v2
A

. (109b)

Moreover, the solution is

∆ = ∆itxi (110)

with xi given by (97) with ΛS = 0, or equivalently by (102).
If we compare our result with [19], we identify the

anisotropic behaviour and we obtain the correct Newtonian
limit of [6]. However, our solutions are different and we are
unable to explain such discrepancy: we can argue they may
have found some sort of average effect, however this is not
clear, given the strong anisotropy of the model: the magnetic
Jeans wavenumber is present only in one direction, the one
with µ = 0.

In case Λ 2
A � 1 we have

x(12) =
1
6

(
−1±

√
1−72µ2Λ 2

A

)
(111a)

x(34) =
1
6

(
−1±

√
25−72(1−µ2)Λ 2

A

)
(111b)

and setting µ2 = 1/3 the solutions x3 and x4 recover eq. (31)
of [20] and eq. (31) of [21], so our small scales solution of
sec. 7.2 is a generalization of their work, while including a
nonvanishing sound speed and pressure.



12

8 Numerical integration

To better show our results, we numerically integrated the
system (54)–(61), using estimates from [44] to set the nu-
merical values for the background functions. We followed
the same procedure of [6] to determine the initial conditions:
we started the integration from a very early time and we
verified that the initial perturbations were outside the Hub-
ble horizon and we used the large scale solution to match
the initial conditions to the growing mode; in our case such
conditions come from eq. (84).

We assumed to perturb only the baryon component
of the universe, while leaving the CDM component
unperturbed; a rigorous treatment should rely on a multi–
fluid model, but we ague that we can still extract meaning-
ful information within our approximation. Practically speak-
ing, this assumption means that every quantity present in
our equations at perturbative level must be replaced by its
baryonic component, while the background model still de-
pends on CDM. Our equations are still correct, because the
background interaction is only due to energy density, while
at perturbative level every dependence on CDM disappears,
except from background quantities.

We choosed to study the same scales of [6],
i.e. k ≈ (17,1.7,0.37) Mpc−1 normalized at present
time, corresponding to baryonic masses of
M ≈ (1.5×108,1.5×1011,1.5×1013) M� and roughly
equivalent respectively to a dwarf galaxy, a galaxy and a
galaxy cluster. The results of the numerical integration are
shown in figure 2.

Our results must be compared to the ones of [6]. Until
equivalence (z≈ 3400) we are in radiation dominated uni-
verse and the comparison is obvious: our solutions grow,
while theirs decay; this is because in [6] the authors always
consider matter dominated universe.

After equivalence, in both cases we are subject to a de-
caying period, followed by a new growth after recombina-
tion, but in our case this happens for a shorter time; most
of the anisotropic effects comes in this era, because before
equivalence the thermal pressure is much stronger than the
magnetic one and most of the anisotropy is suppressed, so
they are less relevant in our simulations. This is clear in
fig. 2b, where we see almost no anisotropy. As a further
confirmation, it can be shown that ∆(z≈ 10)/∆(z≈ 1100)
has the same value in both the analysed cases, so
the main anisotropic contribution comes from the
region 3400 . z . 1100.

After recombination we have a behaviour similar to [6],
because here we are at scales were the Newtonian approxi-
mation is correct. The apparent discrepancy in the oscillat-
ing behaviour of fig. 2a is mainly due to the (small) differ-
ence in the numerical values of the background functions,
because the oscillating behaviour is very sensible to such
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(a) Perturbations at dwarf galaxy scale: k ' 17Mpc−1,
M ≈ 1.5×108 M�.
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(b) Perturbations at galactic scale: k ' 1.7Mpc−1, M ≈ 1.5×1011 M�.
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(c) Perturbations at galaxy cluster scale: k ' 0.37Mpc−1,
M ≈ 1.5×1013 M�.

Fig. 2: Density perturbations evolution in time, relative to
their initial value. While some anisotropy is present in (a)
because of the magnetic Jeans length (see sec. 8 and [6]),
most of the anisotropic effects of [6] here are suppressed
because of thermal pressure in the radiation dominated era.
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numbers; however, the qualitative evolution is the same, with
the µ = 0 case beginning to decay because of the magnetic
Jeans length [6] (eq. (99b) and (107)). In this region our so-
lution has a slightly faster growth than [6], we argue this
may be caused by some residual relativistic effects, but it
has to be investigated with more care.

Moreover, in the last region we should be outside of the
linear regime, so we would need a full nonlinear treatment.

9 Conclusion

We developed above a self-consistent scheme for the analy-
sis of cosmological perturbations in the presence of a mag-
netic field. We set up in the synchronous gauge a dynamical
scheme which accounts for the effects induced by the mag-
netic field both on the background and the first order formu-
lation. To this end, we considered a Bianchi I model, whose
anisotropy with respect to the flat Robertson-Walker geome-
try is due to the privileged direction defined by the magnetic
field.

We first solve in detail the equations describing the
anisotropic background and then we analyse the perturba-
tion dynamics, having awareness of the gauge contribution
analytical form.

We amended for the previous analysis in [19] in the case
of a super-horizon wavelength of the perturbation. In par-
ticular, our solution has a clearer comparison with the non
magnetic one. We recovered the slowing-down of the grow-
ing mode caused by the magnetic pressure, and so of or-
der O

(
v2

A

)
� 1. This effect has long been known in FRW

models and has been analysed in Bianchi I models with par-
ticular anisotropies by [22], while we worked always relat-
ing the background anisotropy to the magnetic field without
additional assumptions.

We refined the results of [19] for the sub-horizon wave-
length of the perturbations, showing that an anisotropic treat-
ment is required. We also generalised the results of [20]
and [21], while including a nonvanishing sound speed and
considering the anisotropic case.

We finally enforced the Newtonian limit obtained in [6],
completing it with the relativistic analysis, also facing a nu-
merical treatment. We showed that the relativistic regime
limits the anisotropy induced by the magnetic field.

Overall, despite the assumption of a Bianchi I
background, most of our solutions reproduce those obtained
on an FRW background. At a closer look, the Bianchi I
anisotropy enters the system via the S function defined in (21).
At small scales the relevant terms are the ones with k2, and
none of those are related to such anisotropy. However, when
the condition H2 � k2 does not hold, such terms become
important; unfortunately, in this case the system would be
much more complicated that the one of sec. 7.2. On the

other hand, at large scales the background anisotropy sur-
vives, and we argue that it is mainly related to the perturbed
fluid velocity. In particular, it can be shown that the so-
lutions proportional to t1/2 in (83) are related to δui, and
more precisely in ∆2t1/2+4v2

A0 we have both ki δui 6= 0 and
k3 δu3 6= 0, while in ∆1t1/2−2v2

A0 it holds k3 δu3 = 0; the so-
lutions ∆growt1−2v2

A0 and ∆gauge/t, on the other hand, both
have ki δui = k3 δu3 = 0.

We stress that, in order to solve the equations, we as-
sumed a small magnetic field and so all the effects we stud-
ied are related to v2

A� 1, and they become relevant only at
small scales, due to the large wavenumber k2� H2 and to
the also small sound speed v2

S. This is clear by looking at
fig. 1.

Appendix A: Magnetic field at perturbative level

In literature there are different definitions of the magnetic
field at a perturbative level, but it is easy to recognize that
not all of them satisfy the required properties. After a care-
ful analysis we concluded that the correct one, at least with
respect to the physical phenomenon we study here, it the
one of [19] made through the 3+1 formalism. This way, the
magnetic field is defined as the spatial projected part of the
Faraday tensor Fµν , while the electric field as the temporal
one

Eµ = Fµν uν (A.1a)

Bµ =
1
2

εµνρ Fνρ =
1
2

ηµνρσ Fνρ uσ (A.1b)

and we have

Bµ uµ = 0 (A.2)

at all orders.
There are two important reasons for this requirement.

The first one is that the electromagnetic field is decomposed
in electric and magnetic components by the observer and we
are interested in its interaction with the cosmological fluid,
so the natural observer is the fluid itself. Beside that, we
force a vanishing electric field Eµ = 0 through the assump-
tion of infinite conductivity of the medium, thus we work
in the limit of ideal MHD. To do this we need these fields
to be defined with respect to the fluid. Using this definition
there are no induced fields, reflecting the fact that the co-
variant form of Maxwell’s formulae and of the electric and
magnetic field definitions already incorporates the effects of
relative motion [19].

The second reason is that with different definitions we
would have a nonvanishing trace for the perturbed magnetic
stress energy tensor, while this way all goes well and it is
traceless. This is easy to check using the definition of per-
turbations from section 5.
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Appendix B: Gauge behaviour in late times

We will analyse here the FRW case, to clarify the mean-
ing of δρ becoming gauge invariant for late times. Follow-
ing [16] and using the Newtonian approximation we see that
the solutions after recombination are

δ± ∝ t−1/6J∓ 5
6ν

(
Λ t−ν

ν

)
, (B.3)

where γ = ν +4/3 > 4/3 is the heat ratio of the fluid (after
recombination γ ' 5/3), δ = δρ /ρ ,

Λ = t2γ−2/3v2
Sk2 (B.4)

is a constant, v2
S is the squared sound speed and k the

wavenumber. The functions Ja(z) are the Bessel functions:
when their argument is large they oscillate, but when the ar-
gument is small they behave like

δ± ∝ t(−1±5)/6. (B.5)

The growing mode is the physical solution we are looking
for, while the other one decays to zero.

We cannot speak of gauge modes in Newtonian theory,
but the decaying mode corresponds exactly to the relativistic
gauge mode, and as expected it decays in time with respect
to the growing one. This means that, for large times, gauge
modes naturally decay to zero and we can neglect them as
long as we are looking only for the growing ones.

It should be noted that in our calculations we are in the
same situation: we cannot have a relativistic sound speed
different from w in a single fluid model, but we make this
approximation in section 7 because from a physical point
of view we need a nonvanishing sound speed. This way we
“break” the gauge invariance, but the gauge modes manifest
themselves in one of the decaying solutions. We are only
looking for growing modes, so we can safely neglect them.

Appendix C: Late times solution coefficients

We report here the values of the coefficients of the hyper-
geometric function appearing in (101), using δ± defined in

eq. (102c):

a(12)1 = 1∓
√

δ−/12ν−
√

1−72µ2Λ 2
A/12ν (C.6a)

a(12)2 = 1∓
√

δ−/12ν +
√

1−72µ2Λ 2
A/12ν (C.6b)

a(34)1 = 1∓
√

δ+/12ν−
√

1−72µ2Λ 2
A/12ν (C.6c)

a(34)2 = 1∓
√

δ+/12ν +
√

1−72µ2Λ 2
A/12ν (C.6d)

b(12)1 = 1∓
√

δ−/6ν (C.6e)

b(12)2 = 1∓
√

δ−/12ν−
√

δ+/12ν (C.6f)

b(12)3 = 1∓
√

δ−/12ν +
√

δ+/12ν (C.6g)

b(34)1 = 1∓
√

δ+/6ν (C.6h)

b(34)2 = 1∓
√

δ+/12ν−
√

δ−/12ν (C.6i)

b(34)3 = 1∓
√

δ+/12ν +
√

δ−/12ν . (C.6j)
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