Reanalysis of the beam-plasma instability using
the Dyson-like equation formalism
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Abstract —~We analyze the problem of the beam-plasma instability via the analytical treatment of
the so-called Dyson equation. We first compared the prediction of the model constructed by fixing
the electric field amplitude with respect to a N-body Hamiltonian numerical simulation. Then, we
demonstrate that the shortcomings of such an analytical formulation must be essentially identified
with the breaking-down of the self-consistent evolution of the field and the particle distribution
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=, Introduction. — One of the most interesting
paradigm of plasma physics is the so-called beam-plasma
O system [1H3]. In fact, beside the possible laboratory appli-
cations (especially in plasma accelerators [4H6]), this sce-
] nario has important conceptual implications in the prop-
—> erties of the radial transport in Tokamak devices [7./8].
92 The beam-plasma interaction faces the influence that a
©tenuous electron beam has on the Langmuir spectrum of
a thermalized plasma, pumping up to saturation the reso-
(O nant modes, i.e., those modes whose phase velocity is close
s to beam particle speed. In the Vlasov-Poisson scheme,
(O the considered theoretical framework is commonly called
O) bump-on-tail (BoT) paradigm [9-11] and it was proposed
—las a toy model for the radial transport in Tokamak exper-
~ iments [7,|9,[12,|13]: the velocity gradients, which trigger
*= the inverse Landau damping, are mapped into the radial
pressure gradients of fast ions in a toroidal plasma config-
uration [14}15].

Such a parallelism and the highly non-linear character of
the involved physics, make the study of the beam-plasma
instability still an actual problem, essentially in order to
shed light on the different mechanisms (and their relative
relevance) responsible for the observed behavior of ener-
getic particles. In this respect, in Ref. [16] it has been
shown that the beam-palsma dynamics can be properly
characterized by the so-called quasi-linear model [17H20]
only in the late phase of the evolution, while the temporal

[

mesoscales are characterized by a significant degree of con-
vection in the velocity space (for specific considerations on
the role of the self-consistent evolution, see Ref. [21]).

Although the most successful analysis of the beam-
plasma interaction has been provided in Ref. |2, a very
interesting and general theoretical framework for the prob-
lem has been introduced in Ref. [22]. The Vlasov-Poisson
equation is addressed via an expansion of the particle dis-
tribution function in a power series of the electric field
intensity. Then a hierarchy in the different contributions
(poles in the Laplace expansion) is determined, by intro-
ducing a diagrammatic approach. Moreover, an analyti-
cal approach to the solution of the system is derived in
terms of an expansion in Hermite polynomials, for the
beam-plasma interaction in the presence of a monochro-
matic field when the saturated amplitude is assumed as
constant.

The main aim of the present work is to investigate the
predictivity of the analytical treatment presented in Ref.
[22], by means of a comparison with a pure numerical
N-body analysis of the beam-plasma system using the
Hamiltonian formulation discussed in Refs. [16}/23] (and
refs. therein), for the monochromatic case.

We clearly demonstrated that the analytical solution
presented in Ref. [22] fails in predicting the detailed fea-
tures of the distribution function of the fast electrons inter-
acting with the saturated spectrum. In fact, a significant
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bumpiness arises in the distribution profile, together with
an inversion of the velocity gradient that is not observed in
the real simulation experiment. Then, we face the question
concerning the nature of such a discrepancy, in principle
attributed to the truncation of the expansion in Hermite
polynomials. To this end, it is analyzed a Vlasov equa-
tion, obtained by suitably recombining the 0" and k"
components of the Fourier harmonics, i.e., the so-called
Dyson equation [3]. Substituting in this equation a con-
stant amplitude mode, it is shown that the emerging dis-
tribution function has the same irregular behavior of the
one obtained by the expansion truncation. This analysis
clarified that the shortcomings of the analytical solution
of the Vlasov equation can not be attributed to math-
ematical approximation, but they concern the nature of
the addressed assumption, e.g., the exact constant value
of the field amplitude, on which the analysis is built up.

Finally, we insert in the Dyson equation the exact elec-
tric field as extracted from the numerical simulation ex-
periment, based on the N-body code. The obtained dis-
tribution function closely resembles the one produced by
the simulations, underlining that the assumption of a sat-
urated constant electric field is a weak hypothesis and it
is the source of un-predictivity of the study in Ref. [22].

This final result has a deep physical meaning, because
it clearly shows how the self-consistency of the Vlasov-
Poisson evolution is a basic feature of the BoT paradigm:
its breaking-down can lead to make a relevant discrep-
ancy on the late time prediction for the system dynamics.
For instance, the valuable determination of the overlap of
nearly living resonance has been reached by using dynam-
ical system renormalization methods [24], for which the
field amplitude is frozen in. Analogously, all the quasi-
linear approximation of the transport features of fast ions
in a Tokamak are based on assigned spectrum proper-
ties, non self-consistently evolved with the same distribu-
tion function. Although such transport analyses are well
grounded in terms of reliably simplifying assumptions on
the spectrum morphology, the study here developed sug-
gests the necessity of a careful evaluation of the coupled
field and particle evolution.

The main merit of this investigation consists in stressing
how the breaking-down of self-consistency is allowed when
we are interested in qualitative features of the transport.
If we desire to be able to reproduce the fast ion redistri-
bution, we need to keep the field and particle dynamics
strictly coherent.

Vlasov-Poisson equations towards a Dyson for-
mulation. — We start reviewing the main steps of Ref.
[22], which lead to a Dyson equation for the 1D beam dy-
namics. The electron distribution f(¢,z,v) and the elec-
tric field £(¢, z) are Fourier and Laplace transformed pro-

viding
Filev) = /fk(t’v)emdtv Ep(w) = /gk(t)ei“tdt,
0 0

respectively, where fi(t,v) and & (t) denote standard
Fourier k-components. In this scheme, the Vlasov equa-
tion reads as follows:

1f(t=0,v
Fk(w’v):7fko€_ky )Jr
% /‘;‘” B (w . Ee@) y Borw -, v) . (1)
mo o T w— kv

which is naturally coupled to the Poisson equation reading

ikEg(w) = —47ren0/dka(w,v) , (2)
where ng is the homogeneous electron density. For each
Fourier component of the transformed distribution func-
tion the following formal expansion in powers of the elec-
tric field is considered

v) = Z F,E") (w,v),

n>0

with F™W ~Ep.  (3)

By, (w1)Ej, (w2)

GO G]

Figure 1: Diagrammatic representation of Eq..

Let f(v) be the spatially homogeneous initial distri-
bution, then it is possible to close an expression for the

(n)

generic F} via recursion, starting from

(4)

and getting Eq.(5) (see next page), where e and m are the
electron charge and mass, respectively.

In order to deal with this expression, it is convenient to
adopt a diagrammatic representation as shown in Fig[l]
Here, we defined the propagators

F2(w,v) = if(v)w k0

S

Gs(w,v,{wj, k;}) = (OJ — kv — Z(

Jj=1

-1

wj — kjv)) (6)

and the s-th interaction vertex represents the operator
(ie/m) [(dws/27)d,. Of course, it is implied a summation
over all k; under the requirement that they sum up to k.
In the limiting case in which the electrostatic (plasma)
Langmuir modes have constant amplitude, i.e., E(t) =
E,(Co)e_iwlf t with w,f' a real constant (no real frequency
shift will be considered), Laplace-transformed modes are
readily given by
= z'E,(CO) (w— w,f)_l ,

By (w) (7)

thus one can integrate over w, simply replacing it with
. Referring to Flg it is clear that sometimes two ad-
Jacent field lines can be one the conjugate of the other,
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%Ekl (wl)a

Ep, (w2) O o

3 /dwl...

n ie\"
F,E )(w,v) = ()
ki4-+kn=k

2w w — kv

Yw—kv— (W — kyv)

“w—kv—zg “Hws — ko)

(5)

avw—kv—zz L(ws — ksv)

namely E; and E_j, and we will represent it by closing
the two lines in a loop as if the same mode were emit-
ted and then absorbed. Because wf’, = —wf, every time
this configuration occurs the propagators external to the
loop are identical, meaning that, in order to Laplace anti-
transform, one has to integrate at least one non simple
pole. At each order n the highest order for a pole is (the
integer part of) n/2 + 1, leading to a secularity ¢*/2: this
is the reason because we refer to the expansion as for-
mal (no term can be neglected). This is also true in the
more general case in which wy = w,’f + 17y, (the real part
still constant in time) and the condition 7, < wp holds,
where wp is the plasma frequency (in order to actually
have propagating waves): secularities t"/2 are replaced by
exponentially growing factors (wf/ )2

Taking a partial resummation of all and only the heav-
iest diagram of each order (~ (wf/7x)"/?), one finds the
Dyson equation |3,25]

zf( ie 2 +§ /dw dw" E_4(w )><
2 27 w
Eq(w")
w—w —qu

Fo(w,v) =

x O, O Folw—w —w' v), (8)

diagrammatically shown in Fig[2] It sholud be noted that
=0 =—-90+ —& X =0

Figure 2: Diagrammatic representation of Eq..

already in [26] the diagram thecnique was pioneered in
the study of turbulence in plasma physics, obtaining the
Dyson equation shown above. In Eq.7 it is worth focus-
ing our attention on the term Fj because it is the most rel-
evant one, being the initial condition itself homogeneous,
and because it is easy to show how every Fj can be ob-
tained simply by Fy [22].

For completeness, it should be noted that in Ref. [22] this
model is closed with the Poisson equation rewritten in
the following form

dw _ dmeng gk (v)
[ S ao B = -5 /ww,kv7®w
/ Z w2P /!
ek(w,w):w_w,—i-—k w—k OpFo(w —w',v), (9b)

where gy (v) stands for initial spatial inhomogeneities that

we consider already of the same order of F; ,51) (small com-
pared to f(v)). Furthermore, € is a dielectric function of

the plasma. In Ref.[22], it is also shown how Egs.(8) and
can be considered as a generalized quasi-linear model
[17H20].

A solution for monochromatic field.  Following Ref.
[22], let us now investigate an analytic solution for Eq. (8]
in the case of a single Langmuir mode of constant ampli-
tude E}(ﬂo). In the original part of our work, we will outline
the physical content and the shortcomings of such an ap-
proximation. Starting from Eq.7 we assume the validity
of Eq. and we limit the sum over ¢ = +k, correspond-
ing to neglect harmonics of the fundamental mode as they
are higher-order effects [2[27], thus getting
waﬁ — %0 OcFo(w,§),

Fo(W,f) = (10)

w2 — 04262

where we have defined defined
o = V2ek|EL|/m, (11)

(this parameter differs from the bounce (trapping) fre-
quency wp for an O(1) factor) and we have switched the
velocity variable from v to £ = (k/«) (v wf/k), introduc-
ing f(&) = f(v(€)) and the same for Fy(w,§).

Defining ¥(w, §) = a?(w? — a2§2)_18513'0(w,§)7 Eq.
takes the following form

20(0,€) + (a7 — ) W(w,€) = L0 f(0)

closely resembling the equation defining the parabolic
cylinder functions (PCFs) v, (€):

02 () + (2n+1— 2, (€) = 0,
o—€2/2

Since PCFs are an orthonormal basis for differentiable
(&) are the Hermite polynomials), one can

functions (H,
solve Eq. 1) by projecting ¥(w,&) and Og f(§) onto it.
The result, written back in time domain, is

ﬁaazf@
+ Z ST lafqpn €)[1 — cos(av2n +1t)],

(12)

(13a)

(13b)

(14a)

with

m:/%m@%&» (14b)

We conclude by noting how o determines both the time
scale of the process (~ a~1), and the non linear velocity
spread of the resonance (~ «/k).
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Comparison to numerical simulations. — In this
Section, we compare the solution in Eq. with respect
to the self-consistent dynamics of the beam-plasma system
via N-body simulations. The aim of this study is to clarify
the predictivity of the analytic solution of the Dyson ap-
proach presented above versus the real non-linear features
of the beam-plasma interaction.

Hamiltonian description of the beam-plasma system.
In Refs. [112], the beam-plasma system is modelled as a
fast electron beam injected into a 1D plasma. Such a
background plasma is considered as a cold linear dielec-
tric medium (a periodic slab of length L) which supports
longitudinal electrostatic Langmuir waves. This scheme is
isomorphic to the well-known BoT paradigm [9-11}28,/29].
The density np of the addressed beam is taken much
smaller than the density ng of the background electron
plasma, and we introduce the density parameter 7 as
17 = np/ng (of course n < 1). The Langmuir potential
o(z,t) is expressed in terms of M Fourier components
@k, (t) with frequency w; ~wp for j =1, ..., M.

In this work, we use the standard Hamiltonian formu-
lation of the BoT paradigm described in Refs. [16]|23]
(and refs therein), where the broad energetic beam self-
consistently evolves in the presence of the set of Lang-
muir modes taken at the plasma frequency. With this
assumption, the cold background dielectric function, i.e.,
€ = 1 —w}/w?, results to be nearly vanishing |1]. Thus,
the Poisson equation for plasma oscillations can be cast
as an evolutive equation, and a given mode is linearly un-
stable if the resonance condition k; = wp/vr; (where Vpj
is a selected initial velocity of beam particles) is satisfied.
Finally, the force equation describes particle trajectories.

Particle positions along the = direction are labeled by
x; and N denotes the total particle number (i = 1, ..., N).
The beam-plasma system is now governed by the following
N-body system:

z;(t) = v (), (15a)
ie o

0o(1) — —— ) ikjzi(t) 1

0;(t) - ; ki, (t)e + c.c., (15b)

ATnowp o ;
Pr, (t) = —iwper, (t) + iﬁﬁ Z;e_mm(t) , (15¢)
=

where the dot represents the time derivative. For the
sake of convenience, in the numerical analysis we use the
normalization: T; = z;(2r/L), 7 = twp, u; = 0;T; =
v;(2m/L) Jwp, £; = k;(2m /L)~ ¢; = (2r /L) ey, /mw?.
The resonance conditions now rewrite £;u,; = 1, with ¢;
taken as an integer number (best approximation of 1/u,.).

We assume that the initial warm beam is initially dis-
tributed in the velocity space as

Fin(uw) = f(r = 0,u) = e 0-5u—a)*/b* (16)

with @ ~ 0.0015 and b ~ 0.00035. The non-linear simula-
tions are run for a total N = 106 particles using a Runge-
Kutta (4th order) algorithm. The initial conditions for

1077 4 e ~—————

10-10

[®(1)|

10-11
0 100 200 300 400 500 600 700 800

flt,u)

0.0008

0.0010
u

0.0006 0.0012 0.0014

Figure 3: (Color online) Upper panel: temporal evolution of
the electrostatic potential amplitude integrated from normal-
ized Eqs. for n = 0.0035 and ¢, = 912. The vertical dashed
red line represents the saturation time (as indicated in the
plot). Lower panel: correspondent zoom on the positive slope
of the distribution function taken at saturation time 7 = 430
(blue solid). The green dashed line here corresponds to the
initial energetic particle profile f;, of Eq..

positions Z; are set uniformly in [0, 27], and the modes
are initialized with amplitudes O(1071%) (this ensure the
initial linear regime).

For a selected case of interest M =1 (¢, = 1/u, = 912),
the results are shown in Fig for the mode evolution (up-
per panel) and for the distribution function (lower panel).
It clearly emerges the initial exponential growth of the
mode amplitude (linear phase), predicted by the linear
theory, followed by the non-linear saturation when beam
particles became trapped inside the potential wells. Af-
ter the mode saturation occurring at 7¢ (in this case,
7g ~ 430) the amplitude fluctuates near a constant value,
which results to be closed to the saturated amplitude of
the mode (dubbed ¢(7s)). At the same time the dis-
tribution function flattened near the resonance velocity
(ur ~0.0011) (for details, see Refs. [8,/16,30]).

In particular, in Ref. [31], the relevant scalings of the
system have been pointed out and summarized. The sat-
urated field scales quadratically with the observed linear
growth rate g, i.e., |¢(s)| o v#, while the flattening
with of the distribution profile, namely the non-linear ve-
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locity spread Aupnr, scales linearly as a function the same
quantity with the general law Aupnp /u, ~ 8.5y (in the
following plots, we will indicate such a spread with dashed
vertical lines).

Analytical solution.  Let us now compare the analytic
solution in Eq. with respect to the numerical simu-
lations sketched above. In order to fix the (normalized) «
parameter of Eq.7 we consider a constant values of the
mode taken as the time average of the field after satura-
tion and, from Figl3] it clearly turns out how this value
is close to |¢(7g)|. It is important to stress that « is thus

0.8 -
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0_3./
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u

Figure 4: (Color online) Evolution of the distribution func-
tion evaluated from the numerical simulation of the fully
self-consistent N-body system Eqs., for the selected case
M =1, £, =912 and = 0.0035 (same as Fig. The color
scheme is indicated in the plot for different times, while the
green dashed line corresponds to the initial f;, of Eq.. Solid
vertical red line denotes u, and dashed vertical red lines indi-
cate the flattening width predicted by u, + Auny, (the value of
u, is constant in time, due to the absence of frequency sweep-

ing).

related to the non-linear velocity spread introduced above.
Introducing the same scaled variables defined in the pre-
vious subsection, we have to assign the initial condition for
Eq.. Such an initial profile can not concern the linear
growth of the mode, since Eq. has been derived as-
suming a constant mode amplitude. Therefore, we should
assign the initial distribution function taking the one ob-
tained in the simulations at 7g, i.e., fs(u) = f(rs,u),
when the mode amplitude almost froze in. This setup was
done by fitting numerical data via the function
Js(w) = fin = [A(C = u) + Ble >R 17)
(A =794.5, B=0.0028, C =0.0011 and D = 0.000075).
Using Eq.(14b), we evaluate 3, up to n = 58. Such
a limit is imposed by the estimated errors on numerical
integrations carried out by means of QUADPACK library
|32]. The evolution of the distribution function at four
instants after the saturation is plotted in Fig[d]as obtained
by numerical simulations via the N-body code, and in

Fig as predicted by the solution in Eq.(|14al).

0.8 -

—— T=500.0 /
071 7=600.0
—— T=700.0
06/ — T=800.0

0. T T T T T T T
0.00090 0.00095 0.00100 0.00105 0.00110 0.00115 0.00120 0.00125 0.00130
u

Figure 5: (Color online) Evolution of the distribution profile
from analytical solution of normalized Eq.(14a)). Color scheme
and other notations and definitions are from Fig[d]

It clearly emerges that the analytic model and the simu-
lations agree about the position of resonance and its non-
linear velocity spread. However, as already discussed, such
a spread is fixed by «, i.e., by the post-saturation averaged
mode amplitude taken from the simulations, and therefore
this cannot be regarded as an independent prevision. Two
main features about Fig[f] stand out: the reversal of the
slope and the bumpiness of the distribution profiles. The
inverse gradient feature outlines that beam electrons have
an exceeding loss of velocity with respect to the real sys-
tem, reliably due to an over energy supply for maintaining
constant the imposed filed amplitude. The corrugation of
the profile could seem an artifact caused by the truncation
of a series expansion, e.g. the Gibbs phenomenon for the
Fourier series 33|, in this case an expansion in Hermite
polynomials [34]. We will return later on this issue, for
now the basic question remains whether the disagreement
found is mainly caused by the breaking of self-consistency
or by the Dyson-like structure at the base of the model,
i.e., the choice to resum only the most secular term at
each order.

Dyson model with external field. — In this Sec-
tion, we present a Dyson-like equation for the distribution
function which can be numerical solved with an arbitrary
assigned field. The aim is to study what happens if the
self-consistency is restored, albeit in a rather artificial way.
In fact, we will use an external field for the Dyson equa-
tion but its form comes out from the purely self-consistent
N-body code.

Starting from the Vlasov equation in the Fourier space,
we consider the dynamics of homogeneous and inhomoge-
neous terms separately:

Oy fo(t,v - ° EX ()0, fr(t,v) + c.c., 18a
(t,v) = — ’g) k()00 fi(t, v) (18a)

B fr(t,v) = —ikvfy(t,v) + %Ek(t)&, fo(t,v).  (18b)

In Eq.(18b)), we neglect all terms Ey_, f, for ¢ # 0 because
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of 2nd order in the field (as done in the previous Section,
we consider an homogeneous initial condition, therefore
fo(t,v) ~ f(v) is dominant). The solution of Eq.(18b))

with zero initial condition results in
t
filto) = = [dt OB ), (19)
m Jo
which replaced in Eq.(18a]) provides

oufolte) = () 00 S IBL ot ) + el (200)
k>0

Ogi (t,v) = —iqugk(t,v) + Er(t)0y, fo(t,v), (20b)

where we introduced the auxiliary function g; defined by
the second of the equations above.

Constant amplitude field closure.  Let us now analyze
the behavior in time of the distribution function when the
external field is assigned with a constant amplitude, i.e.,
|Ex(7)| = |E,io)|. The aim of this analysis is the compar-
ison with the analytical solution in Eq., in order to
characterize the real source of the evolved profile corru-
gations described above. We thus numerically integrate
Eqgs.(20) assuming a single mode with constant amplitude
(same average of the analytical case) and using the same
set of initial conditions (i.e., the post-saturation distri-
bution). Adopting the same normalization of the consid-
ered variables, the results of the numerical integration of

Eqs.(20) are plotted in Figlf]

0.8 -
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071 T=600.0
—— 1=700.0
06] — T=800.0
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0.00090 0.00095 0.00100 0.00105 0.00110 0.00115 0.00120 0.00125 0.00130
u

Figure 6: (Color online) Distribution function evolved from
Eqgs.(20) by assuming a constant amplitude field (same setup
of Fi. Color scheme and other notations and definitions are
from Fig[]

From the comparison with Fig[p] it is evident how
Eqs.(20) with the constant amplitude field closure signif-
icantly reproduce the analytical results based on the ex-
pansion in the eigenfunctions (truncated at a given order).
We argue from this that not only the two aforementioned
models have the same Dyson-like structure, but also that
the bumpiness already outlined is not an artifact intro-
duced by the expansion truncation. The former statement
means also that the ansatz at the base of the two models

are equivalent, i.e., a partial resummation with only the
one-loop diagram. This has the same consequences to ne-
glect the terms Fj,_, f;, which couple different distribution
Fourier components.

Implication of the self-consistency.  We can now in-
tegrate Eqgs.(20]), by assigning the self-consistent field
evolved from Eqs.. The results are shown in Fig

0.8

—— 1=500.0

0.7 7=600.0
— T1=700.0
064 —— T=800.0

0.
0.00090 0.00095 0.00100 0.00105 0.00110 0.00115 0.00120 0.00125 0.00130
u

Figure 7: (Color online) Evolution of the distribution profile
from the numerical integration of Eqs., with assigned self-
consistent mode generated byEq.. Color scheme and other
notations and definitions are from Fig[d]

and have to be compared with respect to Fig[d] Such
a comparison sheds light on the addressed question: the
main shortcoming of the analytical solution presented in
Ref. |22] is the self-consistency breaking, rather than the
Dyson-like procedure itself. Actually, by artificially restor-
ing the self-consistency, i.e., considering the external field
with its proper evolution, the qualitative and quantitative
agreements with respect to the N-body dynamics is re-
markably improved. In fact, the slope inversion is quite
suppressed and corrugations disappear.

The main merit of the present analysis is to outline how
the Dyson-like procedure of summing the most important
diagram only does not prevent a satisfactory description
of the Vlasov-Poisson dynamics, provided that the self-
consistency is not violated.

Concluding remarks. — We have studied the predic-
tivity of the analytical model proposed in Ref. [22], to de-
scribe the beam-plasma instability when the electric field
saturates and it is assumed constant. Our investigation is
based on the comparison of the analytical Dyson approach
with respect to a simulation experiment, characterized in
terms of the Hamiltonian description discussed in Refs.
[2L[23].

As a first step, we have recognized that the prediction
of the Dyson equation, in correspondence to a fixed ampli-
tude of the electric field, can describe only very qualitative
features of the real dynamics: corrugations of the distri-
bution profile and inversion of the velocity gradients take
place. Then, we have restated the problem without using
the Hermite polynomial expansion, but still retaining fixed
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the electric field amplitude. We have shown that the result
is qualitatively similar to the previous case, i.e., we gain
nothing in the capability to predict the simulation exper-
iment. Finally, we have used this scheme by inserting in
the Dyson equation the electric field evolution obtained by
the simulation experiment, so showing that the resulting
distribution function acquires a more realistic profile.

We argue that the present study can be regarded as
paradigmatic of the shortcomings of breaking down the
self-consistency of the field amplitude and the particle dis-
tribution function profile even in more general context.
Clearly, we can also upgrade the present model by ac-
counting for higher order contributions in the dyagram-
matic schematization proposed in Ref. [22], which could
be responsible for non-diagonal couplings of the monochro-
matic modes.
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