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Introduction

The present thesis consists of three distinct parts, concerning various aspects of abelian
and irregular varieties. The first two are related each other by the common use of the
generic vanishing theory as one of the principal tools, while the third one deals with the
stability of special vector bundles on an abelian variety. The following paragraphs give
an account of our main results.

The basepoint-freeness threshold of a polarized abelian variety

In the first chapter we show the results of the preprint [14], regarding syzygies of polarized
abelian varieties.

The study of equations defining projective varieties comes out very naturally in alge-
braic geometry and it has received considerable attention over the years. For a smooth
projective curve C of genus g endowed with a line bundle L, a classical result of Casteln-
uovo, Mattuck and Mumford says that, if degL ≥ 2g + 1, then L is projectively normal,
i.e. the morphism associated to the linear system |L| embeds C in P := P(H0(C,L)∨) as
a projectively normal variety. Further works of Saint-Donat and Fujita proved that, if
degL ≥ 2g + 2, then C is in addition cut out by quadrics, that is the homogeneous ideal
IC/P of C in P is generated by elements of degree two. Some years after these results,
Green realized that such statements could be unified and generalized to a very satisfying
statement about syzygies.

Let us recall some terminology about syzygies of projective varieties. Let X be a
projective variety and let L be a very ample line bundle on X. Consider the section
algebra RL =

⊕
mH

0(X,Lm) determined by L, viewed as a module over the polynomial
ring SL = Sym H0(X,L). Like any finitely generated SL-module, RL admits a minimal
graded free resolution

E• : 0 −→ Ed −→ . . . −→ E1 −→ E0 −→ RL −→ 0,

and it is natural to ask when it is as simple as possible, up to a certain step p. Namely,
given an integer p ≥ 0, the line bundle L is said to satisfy the property (Np) if the first
p steps of the minimal graded free resolution E• are “linear”. In particular, (N0) means
that L is projectively normal, and (N1) means that, in addition, the homogeneous ideal
IX/P of X in P = P(H0(X,L)∨) is generated by quadrics. The first non-classical condition
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is (N2), that means that the relations among these quadrics are generated by linear ones,
and so on. As said, these notions were introduced1 by Green ([30]), and, intuitively, they
consist of an increasing sequence of “positivity” properties of L. We refer to §1.4 for a
more detailed description of the property (Np).

Green’s theorem is the following: if C is a smooth projective curve of genus g, L is a line
bundle on C, and

degL ≥ 2g + p+ 1,

then L satisfies the property (Np).

Afterwards, several works focused in finding extensions of this result to other classes
of varieties (see e.g. [31] for the projective space, and [25] for a more general result).
A natural candidate is the class of abelian varieties, which we are more interested in.
Indeed, the above classical results on equations defining projective curves have analogues
for abelian varieties: a classical result of Koizumi ([47]) states that if L is an ample line
bundle on a complex abelian variety A and m ≥ 3, then Lm is projectively normal (see [81],
[80], and [82] for a proof of the same result in positive characteristic, based on Mumford’s
ideas), and a well known theorem of Mumford and Kempf says that, when m ≥ 4, the
homogeneous ideal of A in the embedding given by Lm is generated by quadrics ([64], [45,
Theorem 6.13]), i.e. Lm is normally presented in Mumford’s terminology.

Based on these classical facts and motivated by the aforementioned result of Green on
higher syzygies for curves, Lazarsfeld conjectured that, for an ample line bundle L on an
abelian variety, Lm satisfies the property (Np) if m ≥ p+ 3 ([52, Conjecture 1.5.1]). This
was proved by Pareschi in characteristic zero ([67]), partially building on previous works
of Kempf ([44], [45]). Pareschi and Popa also proved a stronger version of it in [70].

On the other hand, more recently, Küronya, Ito and Lozovanu ([50], [41], [61]), build-
ing on previous works of Hwang-To ([40]) and Lazarsfeld-Pareschi-Popa ([54]), used com-
pletely different methods – involving local positivity and Nadel’s vanishing theorem – in
order to prove (over C) effective statements for the syzygies of abelian varieties of dimen-
sion 2 and 3 endowed with any polarization, in particular with a primitive polarization,
that is a polarization that cannot be written as a multiple of another one.

In the first chapter we show a general result, Theorem A below, that, in particular,
provides at the same time a surprisingly quick proof of Lazarsfeld’s conjecture, extending
it to abelian varieties defined over a ground field of arbitrary characteristic, and a proof
of the criterion of Lazarsfeld-Pareschi-Popa ([54]), relating local positivity and syzygies.
In order to state it, let us introduce some other terminology. We will work with abelian
varieties over an algebraically closed field K of arbitrary characteristic. Let l be an ample
class in the Néron-Severi group NS(A) = PicA/Pic0A. In [42], Jiang and Pareschi studied,
among other things, the (generic) cohomological rank h1(A, I0〈xl〉) of the Q-twisted sheaf
I0〈xl〉, where I0 is the ideal sheaf of the identity point 0 ∈ A. Here I0〈xl〉 is just a
formal symbol for the pair (I0, xl), with x ∈ Q, up to a natural equivalence relation
defined in §1.2, and it reflects the idea that we are twisting I0 by the “Q-polarization”

1The present terminology was introduced in [32] by Green and Lazarsfeld.



4

xl. The cohomological rank function h1(A, I0〈xl〉) is the “rank of the cohomology” of
such Q-twisted sheaf I0〈xl〉 (see again §1.2 for precise definitions), viewed as a function
of x ∈ Q:

h1
I0,l : Q→ Q≥0,

where
h1
I0,l(x) := h1(A, I0〈xl〉).

Regarding syzygies, it actually suffices to consider the basepoint-freeness threshold

ε1(l) := Inf{x ∈ Q | h1
I0,l(x) = 0}, 2

that is the value starting from which the function h1
I0,l is zero. The name is motivated

by the fact that ε1(l) ≤ 1 and ε1(l) < 1 if and only if the polarization l is basepoint-
free, i.e. any line bundle L representing l has no base points, as noted by Jiang and
Pareschi ([42]). Quite surprisingly, the basepoint-freeness threshold also characterizes the
projective normality of l. Indeed, ε1(l) < 1

2
if and only if l is projectively normal, meaning

that L is projectively normal for all line bundles L representing the class l ([42, Corollary
E]). For the sake of clarity, let us spend some words on how Jiang and Pareschi proved
such result. Basically, assuming that L is basepoint-free, they consider the cohomological
rank function h1

ML,l
, where ML is the syzygy (or kernel) bundle associated to L, i.e. the

kernel of the evaluation morphism of global sections of L that, by definition, sits in the
exact sequence

0→ML → H0(A,L)⊗OX → L→ 0.

Then, using the Fourier-Mukai transform associated to the Poincaré line bundle, they give
a formula expressing the function h1

I0,l in terms of h1
ML,l

([42, Proposition 8.1]). From this

result, it is derived that l is projectively normal if and only if ε1(l) < 1
2

(see in particular
[42, Corollary 8.2(b)]).

The relation between projective normality and, more in general, higher syzygies of L, and
the vector bundle ML is classical and it will be addressed in §1.4. Indeed, a well established
condition ensuring the property (Np) for L in characteristic zero is the vanishing

H1(X,Mp+1
L ⊗Lh) = 0 for all h ≥ 1. (0.1)

It seems a good place to point out that, despite the fact that in [42] the authors assume
that the characteristic of the ground field K is zero, the basic theory of cohomological
rank functions works over an algebraically closed ground field of arbitrary characteristic as
well, as we show in §1.2. The advantage of working with Q-twisted sheaves becomes clear
in §1.5, where we prove that if ε1(l) < 1

p+2
, then the vanishing (0.1) holds (Proposition

1.5.9). Therefore, we are led to ask ourselves if the vanishing (0.1) still implies the property
(Np) for L, in arbitrary characteristic. This turns out to be true, thanks to a criterion
due to Kempf ([44]) reducing the property (Np) of syzygies to the surjectivity of certain
multiplication maps of global sections, inductively defined, and that has the advantage

2In [42] this is denoted by β(l).
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to work in arbitrary characteristic. Since Kempf’s argument is somewhat obscure, we
provide full details in §1.4. We hope that this will be useful for extending to arbitrary
characteristic some of the known results concerning syzygies of projective varieties in
characteristic zero.

To sum up, our main result is that ε1(l) indeed encodes information about the syzygies
of the section algebra of L:

Theorem A. Let (A, l) be a polarized abelian variety defined over an algebraically closed
field K, and let p be a non-negative integer. If

ε1(l) <
1

p+ 2
,

then the property (Np) holds for l, i.e. it holds for any line bundle L representing l.

As already mentioned, we have that Theorem A gives a very quick – and characteristic-
free – proof of Lazarsfeld’s conjecture (see Corollary 1.5.7 and the comment below it).
Moreover, it also implies that the polarization ml satisfies the property (Np), as soon as
m ≥ p + 2 and l is basepoint-free (see [70] for a more precise result). More in general,
defining

t(l) := max{t ∈ N | ε1(l) ≤ 1

t
},

we obtain

Theorem B. Let p and t be non-negative integers with p+1 ≥ t. Let l be a basepoint-free
polarization on A such that t(l) ≥ t. Then the property (Np) holds for ml, as soon as
m ≥ p+ 3− t.

However, one of the main features of Theorem A is the chance to be applied to primitive
polarizations, i.e. those that cannot be written as a multiple of another one. This is one
of the reasons why it would be quite interesting to compute, or at least bound from
above, the invariant ε1(l) of polarized abelian varieties (A, l). In this perspective, as
already mentioned, an interesting issue arises in connection with a criterion of Lazarsfeld-
Pareschi-Popa ([54]), where they prove that:
if there exists an effective Q-divisor F such that its multiplier ideal J (A,F ) is the ideal
sheaf of the identity point of the abelian variety A and 1

p+2
l− F is ample, then l satisfies

the property Np (see [50],[41],[61]).
Therefore, one is lead to consider the threshold

r(l) := Inf{r ∈ Q | ∃ an effective Q-divisor F on A s.t. rl−F is ample and J (A,F ) = I0}.3

The relation with the basepoint-freeness threshold is in the following Proposition, based
on Nadel’s vanishing theorem.

3Note that this set is non empty, i.e. r(l) < +∞. Proof: let k be a sufficiently large positive integer
such that the Seshadri constant of M = Lk is strictly bigger than 2 dimA. Such a k exists because of the
homogeneity of the Seshadri constant. Then, by Lemma 1.2 of [54], there exists an effective Q-divisor F
on A such that J (A,F ) = I0 and F ≡num

1−c
2 M , for some 0 < c� 1. If we now take r > 1−c

2 k, we have
that rl− F is ample.



6

Proposition C. Assume K = C. Then ε1(l) ≤ r(l).

This, combined with Theorem A, provides a different and simpler proof of the criterion
of Lazarsfeld-Pareschi-Popa.

We note that in the papers [50], [41] for dimension 2 and [61] for dimension 3, the
authors, in the spirit of Green’s and Green-Lazarsfeld’s conjectures on curves, show ex-
plicit geometric conditions ensuring the property (Np) by means of upper bounds on the
threshold r(l) (or related invariants) and applying the criterion of [54]. This suggests to
look for similar estimates directly for the basepoint-freeness threshold ε1(l). Namely, a
natural question is if ε1(l) is less than or equal to

Inf{r ∈ Q+ | (DdimZ
r · Z) > (dimZ)dimZ for any abelian subvariety {0} 6= Z ⊆ A},

where Dr := rL (see in particular [41, Question 4.2]). This is true for complex abelian
surfaces, thanks to the Proposition C and [41].

In addition to syzygies, we show that the basepoint-freeness threshold also gives in-
formation on the (local) positivity of the polarization l. This part (§1.6) is new and it is
not included in the preprint [14]. Recall that a line bundle P is k-jet ample, k ≥ 0, if the
restriction map

H0(A,P )→ H0(A,P⊗OA/Ik1x1⊗ . . .⊗I
kr
xr )

is surjective for any distinct points x1, . . . , xr on A such that
∑

i ki = k+ 1. In particular,
0-jet ample means globally generated and 1-jet ample means very ample. In general k-
jet ampleness implies the related notion of k-very ampleness, which takes into account
0-dimensional subschemes of lengh k + 1. Both notions were introduced by Beltrametti,
Francia and Sommese in [7]. We have the following

Theorem D. Let (A, l) be a polarized abelian variety defined over an algebraically closed
field K, and let k be a non-negative integer. If

ε1(l) <
1

k + 1
,

then L⊗N is k-jet ample, for any nef line bundle N on A.

Finally, the basepoint-freeness threshold ε1(l) is related to the Seshadri constant
ε(A,L) measuring the local positivity of a line bundle L representing the class l.

Proposition E. We have the inequality ε1(l) · ε(A,L) ≥ 1.

As showed by Demailly, who introduced such constant in [23], there is a crucial interest
in looking for lower bounds on Seshadri constant of ample line bundles, and the above
proposition gives a sharp (see Remark 1.6.8) lower bound for the Seshadri constant in
terms of the basepoint-freeness threshold.
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Derived invariants arising from the Albanese map

The second chapter contains the results of the paper [15], by G. Pareschi and me. An
extension of the main theorem of [15] to pushforward of pluricanonical bundles is also
included (see Theorem F below).

To a smooth complex projective variety X (henceforth called variety), one can asso-
ciate its derived category D(X) = Db(Coh(X)), that is the bounded derived category of
the abelian category Coh(X) of coherent sheaves on X (we refer to the book [38] for a
general treatment). Here, it suffices to say that D(X) is a triangulated category obtained
by “localizing” the (homotopy) category of bounded complexes of coherent sheaves on
X with respect to the class of quasi-isomorphisms, i.e. by “pretending” that morphisms
of complexes that induce isomorphisms in cohomology, are isomorphisms in D(X). Of
course, the objects of D(X) are bounded complexes of coherent sheaves on X.

Given another variety Y , we say that X is D-equivalent (or derived equivalent) to Y
if there exists an exact equivalence

ϕ : D(X)→ D(Y )

between their derived categories. It is very natural to ask which geometric information
are preserved under derived equivalence. Namely, if two varieties have equivalent derived
categories, what can we say about their geometry?

For instance, it is well known that the dimension of the variety, the Kodaira dimension,
and the canonical ring are derived invariants. Moreover, in order to have a non-trivial
example in mind, recall that an abelian variety is always D-equivalent to its dual, as
proved by Mukai in the pioneering paper [63]. A big deal of interest in the above question
grew after a celebrated reconstruction theorem of Bondal and Orlov ([9]): if the (anti)-
canonical line bundle of X is ample, then X is isomorphic to Y .

Recently, Popa and Schnell showed that the dimension of the Albanese variety q(X) =
h0(Ω1

X) = h1(OX) is a derived invariant ([76]). This allows to begin studying irregular va-
rieties (those with irregularity q 6= 0) under derived equivalence, and, in this perspective,
the canonical cohomological support loci of X, i.e. the closed algebraic subsets of Pic0X
defined as

V i(X,ωX) = {α ∈ Pic0X | hi(X,ωX ⊗ α) 6= 0},

are of particular interest, due to their connection with the birational geometry of X (see
e.g. [68] for a survey). Therefore, it is natural to investigate the behavior of these loci
under derived equivalence. In [75] Popa conjectured that, if X and Y are D-equivalent,
then there exist isomorphisms V i(X,ωX) ' V i(Y, ωY ), for all i ≥ 0. A more precise
version of this conjecture – proved by Lombardi for i = 0 and partially for i = 1 ([57]) –
was proposed by Lombardi and Popa ([59, Conjecture 11]).

We prove a general result in the above direction. LetX be a smooth complex projective
variety, and let

aX : X → AlbX
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be the Albanese morphism. We prove, roughly speaking, that the cohomology ranks

hi(AlbX, aX∗ωX ⊗ α)

are derived invariants, for all i ≥ 0, and α ∈ Pic0X. So far we are not able to prove Popa’s
conjecture in general, but we succeed if we allow to replace the canonical line bundle ωX
with its pushforward aX∗ωX under the Albanese morphism, as explained hereafter. In
particular, in the case of varieties of maximal Albanese dimension,4 this settles in the
affirmative (a strengthened version of) the conjecture of Lombardi and Popa (we refer to
Corollary H for the precise statement). In this direction previous results in low dimension
were obtained by Popa, Lombardi and Abuaf ([75], [57], [59], [1]).

Another conjecture, often attributed to Kontsevich, predicts that derived-equivalent
varieties have the same Hodge numbers. In this direction, the derived invariance of the
Hochschild homology and the Hochschild-Kostant-Rosenberg isomorphism give, for any
integer k ∈ Z, ∑

i−j=k

hi,j(X) =
∑
i−j=k

hi,j(Y )

for the Hodge numbers of two derived equivalent varieties X and Y . This fact, along with
Hodge symmetry and Popa-Schnell result, implies that Kontsevich’s conjecture is true up
to dimension 3 ([76, Corollary C]). In arbitrary dimension, it holds for varieties of general
type. Indeed, the “birational” analogue of Bondal-Orlov theorem, due to Kawamata
([43]), says that derived equivalent varieties of general type are K-equivalent – this is
a stronger notion than birationality – and it is known that K-equivalent varieties have
the same Hodge numbers by Kontsevich’s motivic integration (Batyrev [4], Kontsevich).
However, in general, the derived invariance of the Hodge numbers h0,j is not even known.
As a consequence of the invariance of the cohomological ranks of the sheaves aX∗ωX , it
follows that the h0,j’s of varieties of maximal Albanese dimension are derived invariants
(see the below Corollary G).

Turning to precise statements, let ϕ : D(X) → D(Y ) be an exact equivalence. As
shown by Rouquier ([78], see also [76]), ϕ induces an isomorphism of algebraic groups

ϕ : Aut0X × Pic0X → Aut0 Y × Pic0Y.

We choose normalized Poincaré line bundles so that to a closed point α ∈ Pic0X (resp.
β ∈ Pic0Y ) corresponds the line bundle Pα on X (resp. Pβ on Y ). Essential for our
arguments is a result of Lombardi, from which it follows that if hi(AlbX, aX∗ω

m
X⊗Pα) > 0

for some i ≥ 0 and m ∈ Z, then ϕ( idX , Pα) is of the form ( idY , Pβ) for a β ∈ Pic0Y . If
this is the case, we will abusively denote

β = ϕ(α).

Theorem F. Let i ≥ 0 and m ≥ 1. In the above notation, hi(AlbX, aX∗ω
m
X ⊗ Pα) > 0 if

and only if hi(AlbY, aY ∗ω
m
Y ⊗ Pϕ(α)) > 0. If this is the case, then

hi(AlbX, aX∗ω
m
X ⊗ Pα) = hi(AlbY, aY ∗ω

m
Y ⊗ Pϕ(α)).

4This means that dim aX(X) = dimX. Being of maximal Albanese dimension is a derived invariant
property ([57]).
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In [15] we proved the above Theorem only for m = 1. However, by following the
same argument of [15] and using a recent result of Lombardi-Popa-Schnell ([60]), it is not
difficult to extend it to the pluricanonical case (see §2.2).

Using the fact that ϕ is an isomorphism of algebraic groups, we obtain the derived
invariance of the Hodge numbers h0,j, in the case of varieties of maximal Albanese dimen-
sion.

Corollary G. Let X and Y be smooth complex projective varieties with equivalent derived
categories. Then, for all i ≥ 0 and m ≥ 1,

hi(AlbX, aX∗ω
m
X ) = hi(AlbY, aY ∗ω

m
Y ).

In particular, if X is of maximal Albanese dimension, then, for all j ≥ 0,

h0,j(X) = h0,j(Y ).

Notice that in the maximal Albanese dimension case, RiaX∗ωX = 0 for i > 0 (Grauert-
Riemenschneider vanishing theorem) and therefore hi(X,ωX) = hi(AlbX, aX∗ωX). This
proves the last part of the Corollary, taking m = 1.

Given a coherent sheaf F on a smooth projective variety X its cohomological support
loci are the following algebraic subvarieties of Pic0X:

V i
r (X,F) = {α ∈ Pic0X | hi(X,F ⊗ Pα) ≥ r}.

For r = 1 we simply denote V i
r (X,F) = V i(X,F). Again, by Grauert-Riemenschneider

and projection formula, it follows that V i
r (X,ωX) = V i

r (AlbX, aX∗ωX) in the maximal
Albanese dimension case.

As already mentioned, it has been conjectured by Popa ([75]) that all loci V i(X,ωX)
are derived invariants of smooth complex projective varieties. This conjecture has been
verified by Lombardi and Popa, only for the components containing the origin of Pic0X,
unconditionally on the Albanese dimension for i = 0, 1, dimX − 1, dimX (see [57],[59])
and in dimension 3 (see [57]), and for varieties of maximal Albanese dimension in di-
mension 4 (see [59]). The following corollary fully proves Popa’s conjecture for varieties
of maximal Albanese dimension, and, in general, the analogous statement for the loci
V i
r (AlbX, aX∗ω

m
X ).

Corollary H. Let X and Y be varieties with equivalent derived categories. For all i ≥ 0
and r,m ≥ 1, the Rouquier isomorphism induces an isomorphism between V i

r (AlbX, aX∗ω
m
X )

and V i
r (AlbY, aY ∗ω

m
Y ).

In particular, if X is of maximal Albanese dimension, then for all i ≥ 0 and r ≥ 1, the
cohomological support loci V i

r (X,ωX) and V i
r (Y, ωY ) are isomorphic.

The method of proof of Theorem F makes use of many essential results concerning the
geometry of irregular varieties based on generic vanishing theory: generic vanishing the-
orems, the relation between the loci V 0(X,ωmX ) and the Iitaka fibration, the Chen-Jiang
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decomposition, linearity theorems and their relation – via the Bernstein-Gel’fand-Gel’fand
correspondence – with the Castelnuovo-Mumford regularity of suitable cohomology mod-
ules. This material is reviewed in §2.1 and §2.2.

We would just like to briefly explain why does replacing ωmX with aX∗ω
m
X work. For

simplicity, let us assume m = 1. The main point is that the sheaf aX∗ωX is always a
generic vanishing sheaf thanks to a fundamental theorem of Hacon ([35]). This means
that it is “well-behaved” with respect to the Fourier-Mukai transform with kernel the
Poincaré line bundle on AlbX × Pic0X. Moreover,

H0(X,ωX ⊗ Pα) = H0(AlbX, aX∗ωX ⊗ Pα)

and we know, by the result of Lombardi ([57, Proposition 3.1]), that

H0(X,ωX ⊗ Pα) ' H0(Y, ωY ⊗ Pϕ(α)),

if h0(X,ωX⊗Pα) 6= 0. That is the case i = 0 of Theorem F. Roughly, our method derives
Theorem F from the case i = 0 by means of the derived invariance of the Hochschild
multiplicative structure, combined with the result of Lazarsfeld, Popa and Schnell, saying
that the cohomology module ⊕

i

H i(AlbX, aX∗ωX ⊗ Pα)

is generated by its degree zero part H0(AlbX, aX∗ωX ⊗Pα) as a module over the exterior
algebra Λ∗H1(AlbX,OAlbX).

Next, we turn to some applications of Theorem F and especially of Corollary H. It
is known by the seminal work of Green and Lazarsfeld [33] that the positive-dimensional
components of the loci V i

r (X,ωX) are related to the presence of irregular fibrations, i.e.
morphisms with connected fibres onto lower-dimensional normal projective varieties – here
called base of the fibration – whose smooth models have maximal Albanese dimension.
Therefore, as sought by Popa ([75]) and in the spirit of previous works of Lombardi
and Popa ([57], [59], and especially [58]), the part of Corollary H concerning varieties of
maximal Albanese dimension implies the derived invariance of the presence or absence of
certain irregular fibrations and, moreover, the invariance of the set itself of such fibrations.
This imposes striking restrictions to the geometry and topology of the Fourier-Mukai
partners. An example of this is Theorem 2.3.3, concerning irregular fibrations of minimal
base-dimension on varieties of maximal Albanese dimension.

Just to give the flavour of the application, let us recall some notions appearing in the
statement of Theorem 2.3.3. An irregular fibration

g : X → S

is said to be χ-positive if χ(ωS′) > 0 for a smooth model S ′ of S (hence for all of them).
χ-positive fibrations might be seen as the higher-dimensional analogue of fibrations onto
curves of genus ≥ 2, which were classically studied by Castelnuovo and de Franchis ([13],
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[22]). Unconditionally on the Albanese dimension, Lombardi proved the invariance of the
equivalence classes of the set of fibrations over curves of genus ≥ 2 ([58]). For varieties of
maximal Albanese dimension we note that, as a consequence of Orlov’s theorem on the
derived invariance of the canonical ring, the equivalence classes of all χ-positive irregular
fibrations are derived invariants (Proposition 2.3.8).

On the other hand, even in the case of varieties of maximal Albanese dimension, it is
unclear what happens for non χ-positive fibrations, especially when the base is birational
to an abelian variety. Theorem 2.3.3 gives a positive result about the derived invariance
of the equivalence classes of a certain type of irregular fibrations which are not necessarily
χ-positive, and include certain fibrations onto abelian varieties.

Finally, we remark that Theorem F also provides some information about derived in-
variance of fibrations of varieties of arbitrary Albanese dimension. In fact, a well known
argument using Kollár decomposition shows that positive-dimensional irreducible compo-
nents of the loci V i

r (AlbX, aX∗ωX) form a subset of the set of the irreducible components
of the loci V i

r′(X,ωX) for some r′ ≥ r. Hence, via the Green-Lazarsfeld theorem, they
correspond to some irregular fibrations. However at present it is not clear to us how to
describe them.

Stability of syzygy bundles on an abelian variety

The third chapter concerns a joint work (in progress) with Mart́ı Lahoz. Let (X,L) be
a polarized smooth variety over an algebraically closed field k. We recall that a locally
free sheaf E on X is said to be slope stable with respect to L if, for any proper non-trivial
subsheaf F ⊂ E, one has

(det(F) · LdimX−1)

rk(F)
<

(det(E) · LdimX−1)

rk(E)
.

Suppose that L is globally generated. We already dealt with the kernel bundle ML

associated to L, that is the kernel of the evaluation morphism of global sections of L

0→ML → H0(X,L)⊗OX → L→ 0,

concerning syzygies. Here, we are mainly interested in its stability.

In recent years stability of kernel bundles has been investigated by several authors. In
the case of a smooth curve of genus g, the picture is well understood: in particular ML is
semistable, if degL ≥ 2g (see e.g. [24]). For smooth projective surfaces, Ein-Lazarsfeld-
Mustopa ([27]) – based on previous results of Camere ([11]) – proved the slope stability of
MLd with respect to L, for d sufficiently large, and, in arbitrary dimension, they obtained
the same for varieties with Picard group generated by L, strengthening an argument of
Coandǎ for the projective space (see [20], [27, Proposition C]). In op.cit., the authors also
conjectured that such a result should hold for any smooth projective variety.
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Note that if
ϕL : X → P := P(H0(X,L)∨)

is the morphism associated to the linear system |L|, then the slope stability of ML with
respect to L is equivalent to the slope stability of the pull back ϕ∗LTP of the tangent bundle
of P. Indeed, from the Euler exact sequence it follows that

M∨
L = ϕ∗LTP⊗L∨,

and, as it is well known, dualizing and tensoring by a line bundle does not affect the
slope stability. Moreover, note that slope stability with respect to L only depends on the
numerical class of L up to a positive real or rational multiple.

The main result of the third chapter is the following

Theorem I. Let (X,L) be a polarized abelian variety defined over an algebraically closed
field k and let d ≥ 2. Then the syzygy bundle MLd is Gieseker semistable with respect to
L.

Recall that, if (X,L) is a polarized abelian variety, then Ld is globally generated for
any d ≥ 2.

Theorem I recovers the classical case of elliptic curves, and it solves in the affirmative
the aforementioned Conjecture 2.6 of [27] in the case of abelian varieties (see Remark
3.0.2). For complex abelian surfaces, Camere ([11]) proved that ML is slope stable, if L
is base point free and h0(L) ≥ 7.

The proof of Theorem I goes as follows: first we prove a stronger result in the case
of a simple abelian variety (Proposition 3.1.1), and then, since polarized simple abelian
varieties are dense in their moduli space (Remark 3.1.4), we use the properness of the
relative moduli space of Gieseker semistable sheaves, in order to get a semistable sheaf
on X, that turns out to be isomorphic to the original kernel bundle.



Acknowledgments

I wish to thank my advisor, Giuseppe Pareschi, for his assistance. I am deeply indebted
with him and the content of this thesis owes a lot to his line of thought.

The work surrounding Chapter 3 developed during my visit at Universitat de Barcelona.
My gratitude goes to Mart́ı Lahoz, Joan Carles Naranjo and the Institute of Mathematics
of the University of Barcelona (IMUB) for their kind hospitality, and the National Group
for Algebraic and Geometric Structures, and their Applications (GNSAGA-INdAM) for
financial support.
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Chapter 1

Syzygies and positivity of polarized
abelian varieties

1.1 Background results on the Fourier-Mukai-Poincaré

transform

We start by fixing some notations. Let K be an algebraically closed field. If A is an
abelian variety over K, i.e. a complete algebraic group over K, we will always denote
its dimension by g. A polarization l on A is the class of an ample line bundle L in the
Néron-Severi group NS(A) = PicA/Pic0A. Its corresponding isogeny is denoted by

ϕl : A→ Â,

where Â = Pic0A is the dual abelian variety. Recall that deg(ϕl) = χ(l)2 = (h0(l))2. For
b ∈ Z,

µb : A→ A, x 7→ bx

denotes the multiplication-by-b isogeny of degree b2g. We denote by P (or by PA, if

it is necessary) the normalized Poincaré line bundle on A × Â, and, for a closed point

α ∈ Â, the corresponding line bundle on A is Pα := P|A×{α}. Here D(A) denotes the
bounded derived category of coherent sheaves on A. Given a complex F ∈ D(A), we
denote by F∨ = RHom(F ,OA) its derived dual, and by higen(A,F) the dimension of the

hypercohomology H i(A,F⊗Pα), for α general in Â.1 Given an object F ∈ D(A), we
usually drop out the notations R (resp. L) for right (resp. left) derived functors, but we
distinguish between the derived tensor product ⊗ and the usual one ⊗ = L0⊗. If G is a
sheaf on A, we denote by Gn = G⊗n the n-th tensor power of G.

The Fourier-Mukai equivalence (Mukai [63]) with kernel the Poincaré line bundle P is

ΦP = ΦA→Â
P : D(A)→ D(Â), ΦP(F) = pÂ∗(p

∗
A(F)⊗P)

1This makes sense thanks to the semicontinuity theorem for hypercohomology of bounded complexes
(see [34], 7.7.4 and Remark 7.7.12 (ii)).

16
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where pA : A× Â→ A and pÂ : A× Â→ Â are the two projections. Its inverse is

ΦÂ→A
P∨[g] : D(Â)→ D(A).

Let us recall that ΦP∨(·) = (−1Â)∗ΦP(·). For reader’s convenient we list some useful
results – mostly due to Mukai – concerning the above Fourier-Mukai-Poincaré equivalence
in use in this chapter:
- Exchange of direct and inverse image of isogenies ([63], (3.4)). Let f : B → A be an

isogeny of abelian variety and let f̂ : Â→ B̂ be its dual isogeny. Then

ΦPB
(f ∗F) = f̂∗ΦPA

(F), ΦPA
(f∗G) = f̂ ∗ΦPB

(G) (1.1)

for any F ∈ D(A), G ∈ D(B).
- Fourier-Mukai functor and Grothendieck-Verdier duality ([63], (3.8) or [73], Lemma 2.2).
Let F ∈ D(A). Then

(ΦP(F))∨ = ΦP∨(F∨)[g]. (1.2)

- Fourier-Mukai transform of a non-degenerate line bundle ([63, Proposition 3.11(1)]).
Given a non-degenerate line bundle N on A (this means that χ(N) 6= 0), we still have

an associated isogeny ϕN : A→ Â. The Fourier-Mukai transform ΦP(N) is a locally free

sheaf (concentrated in cohomological degree 0) on Â, denoted by N̂ , of rank equal to
|χ(N)|. Moreover,

ϕ∗NN̂ ' (N∨)⊕|χ(N)|.

This applies, in particular, to any ample line bundle L on A. Therefore, we have

ϕ∗l L̂ ' (L∨)⊕h
0(L) = H0(A,L)⊗L∨. (1.3)

- Hypercohomology and derived tensor product ([73, Lemma 2.1]). Let F ∈ D(A) and

G ∈ D(Â). Then

H i(A,F⊗ΦÂ→A
P (G)) = H i(Â,ΦA→Â

P (F)⊗G).

- Weak Index Theorem and Fourier-Mukai transform ([73, Lemma 2.5]). Let F ∈ D(A).
Then

RiΦP(F) = 0⇐⇒ H i(A,F⊗ΦÂ→A
P (N)) = 0 (1.4)

for any sufficiently positive ample line bundle N on Â.

1.2 Q-twisted complexes of coherent sheaves and co-

homological rank functions on abelian varieties

Let (A, l) be a polarized abelian variety. Similarly to [53, §6.2A], one can give the following

Definition 1.2.1. A Q-twisted object F〈xl〉 is an equivalence class of pairs (F , xl) where
F ∈ D(A) is a bounded complex of coherent sheaves on A, x ∈ Q is a rational number
and the equivalence is, by definition,

(F⊗Lm, xl) ∼ (F , (m+ x)l),

for any line bundle L representing l and m ∈ Z.
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Note that an untwisted object F may be naturally seen as the Q-twisted object F〈0l〉.
Moreover, by definition, we have that F⊗Pα〈xl〉 = F〈xl〉, for any α ∈ Â. Tensor products
and pullbacks of Q-twisted objects are defined as one can expect:

Definition 1.2.2. Let F〈xl〉 and G〈yl〉 be two Q-twisted objects on A, then

F〈xl〉⊗G〈yl〉 := (F⊗G)〈(x+ y)l〉,

where ⊗ denotes the derived tensor product. If f : B → A is an isogeny of abelian
varieties, then

f ∗(F〈xl〉) := (f ∗F)〈xf ∗l〉.

The above definition of a Q-twisted object works as well for any projective variety.
On abelian varieties, in addition, it is possible to define the cohomologies hi(F〈xl〉) of
a Q-twisted object, and to study them as functions of x ∈ Q. This allows to develop a
generic vanishing theory for Q-twisted objects, as inaugurated by Jiang and Pareschi in
[42].

Cohomological rank functions were essentially introduced by M. A. Barja ([2]), who
mainly considered the case of h0(F〈xl〉), and called it continuous rank function. The
continuous rank functions were then further studied as functions continuously extended
over R by Barja, Pardini and Stoppino in [3], especially in relation with the volume
function. Subsequently, Jiang and Pareschi ([42]) studied cohomological rank functions2

hiF ,l : Q→ Q≥0,

where i ∈ Z, F ∈ D(A), and l is a polarization on A. They are defined as follows: if
x = a

b
∈ Q and b > 0, then

hiF ,l(x) = hiF(xl) =
1

b2g
higen(A, (µ∗bF)⊗Lab).

The definition is dictated from the fact that the degree of the multiplication-by-b homo-
morphism µb : A→ A is b2g and µ∗b(l) = b2l. Therefore the pullback via µb of the rational
class a

b
l is abl and, as explained in Remark 2.2 of op.cit., one may think of hiF ,l(x) as

the (generic) cohomological rank hi(A,F〈xl〉) of the Q-twisted complex F〈xl〉. In [42]
the authors introduced such notion assuming that the characteristic of the ground field
K is zero. However the above definition makes sense in any characteristic. The main
point consists in showing that it does not depend on the representation x = a

b
. To this

purpose we need to verify that the quantity higen(A,F) is multiplicative with respect to
any isogeny µm:

higen(A, µ∗mF) = m2ghigen(A,F). (1.5)

This is checked in op.cit. under the assumption that char(K) = 0. However the same thing
can be checked removing such assumption as follows. By cohomology and base change,
higen(A, µ∗mF) is the generic rank of the Fourier-Mukai-Poincaré transform RiΦP(µ∗mF).

2In op.cit. such functions are extended to (continuous) real functions, but we don’t need this here.
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Moreover, RiΦP(µ∗mF) = µ̂m∗R
iΦP(F) ([63] (3.4)), where µ̂m : Â→ Â is the dual isogeny

of µm, i.e. it is the multiplication-by-m isogeny of Â. Since the morphism µ̂m is in any
case flat, the generic rank of µ̂m∗R

iΦP(F) is that of RiΦP(F) multiplied by the degree
of µ̂m. Therefore we get (1.5). Granting this, hiF(xl) is well-defined and it extends the
usual (generic) cohomology of untwisted objects: if we take another representation of x,
say x = am

bm
, then

hiF(xl) =
1

(bm)2g
higen(A, (µ∗bmF)⊗Labm2

)

=
1

(bm)2g
higen(A, µ∗m((µ∗bF)⊗Lab))

=
1

b2g
higen(A, (µ∗bF)⊗Lab).

(1.6)

Although we do not need this here, we remark that from the above discussion it follows
that the basic properties satisfied by the cohomological rank functions described in §2 of
[42] work in any characteristic. In particular, the fundamental transformation formulas
with respect to the Fourier-Mukai-Poincaré transform are still true:

Proposition 1.2.3 ([42], Proposition 2.3). Let F ∈ D(A), i ∈ Z and let l be a polarization
on A. Then, for x ∈ Q+,

hiF(xl) =
xg

χ(l)
hg−iϕ∗l ΦP∨ (F∨)(

1

x
l)

and, for x ∈ Q−,

hiF(xl) =
(−x)g

χ(l)
hiϕ∗l ΦP (F)(−

1

x
l).

We point out that one of the meaningful facts is that x is exchanged with the inverse
1
|x| . These formulas have several consequences. Among other things, Jiang and Pareschi
proved

Proposition 1.2.4 ([42], Corollary 2.6). Let F ∈ D(A) and i ∈ Z. For each x0 ∈ Q
there are ε−, ε+ > 0 and two polynomials P−i,F ,x0 , P

+
i,F ,x0 ∈ Q[x] of degree ≤ g such that

P−i,F ,x0(x0) = P+
i,F ,x0(x0) and

hiF(xl) = P−i,F ,x0(x) for x ∈ (x0 − ε−, x0] ∩Q
hiF(xl) = P+

i,F ,x0(x) for x ∈ [x0, x0 + ε+) ∩Q.

In particular, for x0 ∈ Q, the function hiF ,l is smooth at x0 if and only if the two poly-

nomials P−i,F ,x0 and P+
i,F ,x0 coincide. If this is not the case x0 is called a critical point.

In applications we will mostly consider the “maximal critical point” of h1
F ,l where F is

a sheaf on A. This is the value starting from which the function h1
F ,l is zero. Note that

Serre vanishing holds for Q-twisted sheaves : given a coherent sheaf F there is a x0 ∈ Q
such that hiF(xl) = 0 for all i > 0 and for all rational x ≥ x0 ([42], p.7 (c)). We point
out that we are not saying that the maximal critical point of the function h1

F ,l is always
rational, however, as it will be clear later on, in our cases this does not cause any trouble.
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1.3 Generic vanishing theory for Q-twisted sheaves

Following §5 of [42], one can extend the usual notions of generic vanishing to the Q-twisted
setting:

Definition/Theorem 1.3.1 ([42], Theorem 5.1). (1) A Q-twisted sheaf F〈xl〉, with
x = a

b
, is said to be GV if

codimÂ Supp(RiΦP((µ∗bF)⊗Lab)) ≥ i, for all i > 0.

Equivalently the transform3 ΦP∨((µ∗bF∨)⊗L−ab) is a sheaf concentrated in cohomological
degree g, i.e.

ΦP∨((µ∗bF∨)⊗L−ab) = RgΦP∨((µ∗bF∨)⊗L−ab)[−g].

(2) It is said to be IT (0) if the transform

ΦP((µ∗bF)⊗Lab) = R0ΦP((µ∗bF)⊗Lab)

is concentrated in cohomological degree 0.

Remark 1.3.2. (a) The above definitions do not depend on the representation x = a
b
.

For example, for any i, RiΦP(µ∗mF) = µ̂m∗R
iΦP(F) ([63] (3.4)) where µ̂m is the dual

isogeny of µm, therefore, by cohomology and base change, we see that Supp(RiΦP(µ∗mF))
corresponds to the image of Supp(RiΦP(F)) via the isogeny µ̂m. Then one proceeds as
in (1.6).
(b) They neither depend on the line bundle L representing the class l. Indeed, thanks to
the exchange of translations and tensor product by elements of Pic0A ([63], (3.1)), if L0

is another line bundle algebraically equivalent to L, then RiΦP((µ∗bF)⊗Lab0 ) is a translate
of RiΦP((µ∗bF)⊗Lab).

By cohomology and base change one has that

Supp(RiΦP((µ∗bF)⊗Lab)) ⊆ {α ∈ Â | H i(A, (µ∗bF)⊗Lab⊗Pα) 6= 0}
=: V i((µ∗bF)⊗Lab)

(1.7)

and, if V i+1((µ∗bF)⊗Lab) = ∅, then equality holds. Moreover, we have that the Q-twisted
sheaf F〈xl〉 is GV if and only if

codimÂ V
i((µ∗bF)⊗Lab) ≥ i,

for all i > 0 and for any representation x = a
b

([73, Lemma 3.6]). By cohomology and
base change again, F〈xl〉 is IT (0) if and only if

V i((µ∗bF)⊗Lab) = ∅
3Recall that ΦP∨(·) = (−1Â)∗ΦP .
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for all i > 0 and for any representation x = a
b
. In particular, we see that an IT (0)

Q-twisted sheaf is GV .

Let us present now some properties of IT (0) (resp. GV ) Q-twisted sheaves, that will
be useful later on. Note that ample (resp. nef) Q-twisted bundles, as defined in [53,
§6.2A], satisfy analogous formal properties (see Lemma 6.2.8 and Proposition 6.2.11 of
[53]). Moreover, a line bundle on an abelian variety is IT (0) if and only if it is ample
([71, Example 3.10(1)]), and Debarre (resp. Pareschi-Popa) proved that any IT (0) (resp.
GV ) sheaf is ample (resp. nef), see [21] and [72].

Proposition 1.3.3 ([72], [35], [42]). Let F〈xl〉, G〈yl〉 be Q-twisted sheaves on A, with G
locally free. Let f : B → A be an isogeny of abelian varieties. Then:
(1) F〈xl〉 is IT (0) (resp. GV ) on A if and only if f ∗(F〈xl〉) is IT (0) (resp. GV ) on B.
(2) If F〈xl〉 is GV and G〈yl〉 is IT (0), then F〈xl〉⊗G〈yl〉 is IT (0).
(3) F〈xl〉 is GV if and only if F〈(x+ y)l〉 is IT (0) for all y ∈ Q+.
(4) F〈xl〉 is IT (0) if and only if F〈(x− y)l〉 is IT (0) for sufficiently small y ∈ Q+.

Proof. (1): Let us give the proof only in the IT (0) case, being the other one completely
analogue. Let F〈xl〉 be an IT (0) Q-twisted sheaf. If x = a

b
, by definition µ∗bF⊗Lab is an

IT (0) sheaf, i.e.
ΦPA

((µ∗bF)⊗Lab) = R0ΦPA
((µ∗bF)⊗Lab)

is a locally free sheaf on Â. Since f is an isogeny of abelian varieties, we have that

µ∗b(f
∗F)⊗(f ∗L)ab = f ∗((µ∗bF)⊗Lab).

Hence f ∗(F〈xl〉) = f ∗(F)〈xf ∗l〉 is IT (0) if and only if f ∗((µ∗bF)⊗Lab) is an IT (0) sheaf.
By (1.1), we have

ΦPB
(f ∗(µ∗bF⊗Lab)) = f̂∗ΦPA

(µ∗bF⊗Lab), (1.8)

where f̂ : Â→ B̂ is the dual isogeny, and the right-hand side of (1.8) is still a locally free
sheaf concentrated in cohomological degree 0.

(2): This is a Q-twisted version of the “preservation of vanishing” (see [72, Proposition
3.1]). Let x = a

b
and y = c

d
, with b, d > 0. Hence x+ y = ad+bc

bd
. We want to prove that

µ∗bd(F⊗G)⊗L(ad+bc)bd

is an IT (0) sheaf on A. By hypothesis F〈xl〉 is GV , therefore µ∗d(F〈xl〉) = µ∗d(F)〈xd2l〉
is GV , thanks to (1). This means that

(µ∗bµ
∗
dF)⊗Labd2 = (µ∗bdF)⊗Labd2

is GV . Likewise, if G〈yl〉 is IT (0), we have that

(µ∗dµ
∗
bG)⊗Lb2cd = (µ∗bdG)⊗Lb2cd

is IT (0). Now we apply the following
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Lemma 1.3.4 (Pareschi-Popa [72], Proposition 3.1). Assume that F is a GV sheaf and
G is an IT (0) locally free sheaf. Then F⊗G is IT (0).

(3): This is Hacon’s criterion ([35]), rewritten with the language of Q-twisted sheaves (see
[42, Theorem 5.2]). Let x = a

b
. Then F〈xl〉 is GV if and only if (µ∗bF)⊗Lab is a GV sheaf.

By Hacon’s criterion (see [73, Corollary 3.11]) this is equivalent to

H i(A, (µ∗bF)⊗Lab⊗ΦÂ→A
P (N−k)[g]) = 0,

for i > 0, where N is an ample line bundle on Â and k � 0, i.e.

(µ∗bF)⊗Lab⊗ΦÂ→A
P (N−k)[g] ∼= (µ∗bF)⊗Lab⊗(−1A)∗(ΦÂ→A

P (Nk))∨ (1.9)

is an IT (0) sheaf, where the isomorphism follows from (1.2). Let L be a representative of

the class l, and denote Q = Lb
2

and d = h0(A,Q). Taking N = (det Q̂)∨, we have

µ∗dkΦ
Â→A
P (Nk) = ϕ∗Qϕ

∗
Nµ
∗
kΦ

Â→A
P (Nk) = (Q−dk)⊕h

0(Nk), (1.10)

thanks to (1.3) (see also the proof of [8, Prop. 14.4.3]). Therefore, by applying µ∗dk to the
right-hand side of (1.9), we have that

(µ∗dkbF)⊗Lab(dk)2

0 ⊗(−1A)∗(Lb
2dk)⊕h

0(Nk)

is IT (0) by (1), where L0 is a line bundle algebraically equivalent to L. By definition this
is equivalent to the fact that F〈(x+ 1

dk
)l〉 is IT (0). Since x+ y = (x+ 1

dk
) + (y − 1

dk
), by

(2) we have that

F〈(x+ y)l〉 = F〈(x+
1

dk
)l〉⊗OA〈(y −

1

dk
)l〉

is IT (0), for k sufficiently big.

(4): Similar to (3). By Definition 1.3.1 we know that F〈xl〉 is IT (0) if and only if

ΦP((µ∗bF)⊗Lab) = R0ΦP((µ∗bF)⊗Lab).

Equivalently, by (1.4),

(µ∗bF)⊗Lab⊗ΦÂ→A
P (Nk) is an IT (0) sheaf, (1.11)

for any ample line bundle N on Â, with k � 0. Then one proceeds similarly as before,
by noting that (1.11) is true if and only if F〈(x− 1

dk
)l〉 is an IT (0) Q-twisted sheaf.

The following Lemma is a very particular case of [73, Theorem B] and it will be used
in §1.6. Here we prefer to provide a direct proof, that uses the language of Q-twisted
sheaves. Note that, by the previous discussion, it is indeed an if and only if.

Lemma 1.3.5. Let N be a line bundle on A. If N is nef, then it is GV .
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Proof. For all x = a
b
∈ Q+, we have that N〈xl〉 is an ample Q-twisted line bundle, because

µ∗b(N〈xl〉) = (µ∗bN)〈abl〉

is ample and µb is an isogeny ([53, Lemma 6.2.8(ii)]). An ample line bundle on an
abelian variety has no higher cohomology (see [65, §16]), therefore N〈xl〉 is IT (0). Now
Proposition 1.3.3(3) implies that N is GV .

1.4 Syzygies and the property (Np)

Let us recall the definition and the geometric meaning of the property (Np). Let X be a
projective variety defined over an algebraically closed field K. If L gives an embedding

φ|L| : X ↪→ P = P(H0(X,L)∨),

then L is said to satisfy the property (Np) if the first p steps of the minimal graded
free resolution E•(L) of the algebra RL :=

⊕
mH

0(X,Lm) over the polynomial ring
SL := Sym H0(X,L) are linear, i.e. of the form

SL(−p− 1)⊕ip // SL(−p)⊕ip−1 // . . . // SL(−2)⊕i1 // SL // RL
// 0

Ep(L) Ep−1(L) E1(L) E0(L)

Thus (N0) means that L is projectively normal (and in this case a resolution of the
homogeneous ideal IX/P of X in P is given by . . . → E1(L) → IX/P → 0); (N1) means
that IX/P is generated by quadrics; (N2) means that the relations among these quadrics
are generated by linear ones and so on.

Writing K = SL/SL+ as the quotient of the polynomial ring SL by the irrelevant
maximal ideal SL+ :=

⊕
m≥1 SymmH0(X,L), it is well known that dimK(TorSL

i (RL,K)j)
computes the cardinality of any minimal set of homogeneous generators of Ei(L) of degree
j, therefore

Ei(L) =
⊕
j

TorSL
i (RL,K)j⊗KSL(−j)

and L satisfies the property (Np) if and only if

TorSL
p (RL,K)j = 0 for all j ≥ p+ 2.4 (1.12)

A well established condition ensuring the property (Np) for L in characteristic zero is
the vanishing

H1(X,Mp+1
L ⊗Lh) = 0 for all h ≥ 1, (1.13)

4TorSL
0 (RL,K)1 is always trivial, because we are dealing with the complete linear series |L| and the

corresponding embedding is linearly normal. Moreover the vanishing TorSL
p (RL,K)j = 0, for all j ≥ p+2,

forces TorSL
i (RL,K)j = 0, for all 0 ≤ i ≤ p and j ≥ i + 2 (see the proof of Proposition 1.3.3 in [52] for

details).
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where ML is the kernel bundle associated to L, i.e. the kernel of the evaluation morphism
H0(X,L)⊗OX

ev−→ L. Indeed, tensoring the Koszul resolution of K by RL and taking
graded pieces, we see that the property (Np) for L is equivalent to the exactness in the
middle of the Koszul complex

Λp+1H0(X,L)⊗H0(X,Lh)→ ΛpH0(X,L)⊗H0(X,Lh+1)→ Λp−1H0(X,L)⊗H0(X,Lh+2)

for all h ≥ 1 (see [52, pp. 510–511] for details). This can be expressed in terms of the
kernel bundle of L. Namely, taking wedge products of the short exact sequence defining
ML,

0→ML → H0(X,L)⊗OX → L→ 0,

we get
0→ Λp+1ML → Λp+1H0(X,L)⊗OX → ΛpML⊗L→ 0.

Tensoring it by Lh and taking global section, we see that the exactness of the Koszul
complex above is equivalent to the surjectivity of the map

Λp+1H0(X,L)⊗H0(X,Lh)→ H0(X,ΛpML⊗Lh+1),

that in turn follows from the vanishing

H1(X,Λp+1ML⊗Lh) = 0 for all h ≥ 1. (1.14)

Now, if char(K) = 0, Λp+1ML is a direct summand of Mp+1
L and in particular (1.13) implies

(1.14); otherwise said L satisfies the property (Np). If char(K) > 0, the exterior power
Λp+1ML may no longer be a direct summand of the tensor power Mp+1

L , hence the above
discussion does not apply. Nevertheless in this section, following an approach essentially
due to G. Kempf, we prove that (1.13) implies the property (Np) for L, even in positive
characteristic.

Let us start by recalling two definitions and an algebraic lemma of Kempf ([44], see
also [79, §2]):

Definition 1.4.1. For any Li’s (not necessarily ample) line bundles on X, let K(L1) =
H0(X,L1) and, for n > 1, define K(L1, . . . , Ln) inductively by the exact sequence:

0→ K(L1, . . . , Ln)→ K(L1, L3, . . . , Ln)⊗K(L2)→ K(L1⊗L2, L3, . . . , Ln).

In particular K(L1, L2) is the kernel of the multiplication map of global sections
H0(X,L1)⊗H0(X,L2)→ H0(X,L1⊗L2).

Definition 1.4.2. Let S be a polynomial ring over K and let R be a finitely generated
graded S-module.
(1) Define T 0(R) := R, T 1(R) := Ker[R(−1)⊗KS1 → R] and inductively

T i(R) := T i−1(T 1(R)).

(2) Define

di(R) := min{d ∈ Z | T i(R) is generated over S by elements of degree ≤ d}.
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Lemma 1.4.3 (Kempf [44], Lemma 16). Let S = K[x0, . . . , xr] be a polynomial ring,
graded in the standard way, over K = S/(x0, . . . , xr). Let R be a finitely generated graded
S-module. If j > p− i+ di(R) for all 0 ≤ i ≤ p, then

TorSp (R,K)j = 0.

Due to some obscurities in Kempf’s argument and for the sake of self-containedness, we
prefer to give a proof of the above Lemma, which closely follows that of Kempf.

Proof of Lemma 1.4.3. Consider the exact sequence

0→ T 1(R)→ R(−1)⊗KS1
α→ R.

The image R′ of α is a graded submodule of R. The quotient module Q = R/R′ is of
finite length, hence its Castelnuovo-Mumford regularity reg(Q) = max{d | Qd 6= 0} ([29,
Corollary 4.4]). Moreover Q is zero in degrees > d0(R), therefore

TorSp (Q,K) is zero in degrees > p+ d0(R). (1.15)

Indeed, if TorSp (Q,K)j 6= 0 for a j > p + d0(R), then reg(Q) ≤ d0(R) < j − p. But, by

definition, reg(Q) = Sup{k − i | dimK(TorSi (Q,K)k) 6= 0} and so we get a contradiction.
Now (1.15) implies that the map

TorSp (R′,K)→ TorSp (R,K)

is surjective in degrees > p + d0(R). Therefore, in order to prove the statement, it is
enough to prove that TorSp (R′,K)j = 0, if j > p + d0(R). From the long exact sequence
associated to

0→ T 1(R)→ R(−1)⊗KS1
α→ R′ → 0,

we get

TorSp (R(−1)⊗KS1,K)
α∗→ TorSp (R′,K)

δ→ TorSp−1(T 1(R),K).

Note that α∗ is the multiplication by S1 in the first variable. Since α∗ is also the multi-
plication by S1 in the second variable, it is the zero map. Therefore δ gives an inclusion

TorSp (R′,K) ⊆ TorSp−1(T 1(R),K)

and we may repeat this procedure p times, obtaining

TorS−1(T p+1(R),K) = 0.

If now L is an ample line bundle on X, S = SL and R = RL, the link between the
previous definitions is given by

T i(RL) =
⊕
m≥i

K(Lm−i, L, . . . , L︸ ︷︷ ︸
i

). (1.16)



26

Proof. If i = 0, then T 0(RL) = RL and K(Lm) = H0(X,Lm). So (1.16) is true. By
definition

T i(RL) = T i−1(T 1(RL)) = T i−1(Ker[RL(−1)⊗KH
0(X,L)→ RL]),

and

0→
⊕
m≥i

K(Lm−i, L, . . . , L︸ ︷︷ ︸
i

)→
⊕
m≥i

K(Lm−i, L, . . . , L︸ ︷︷ ︸
i−1

)⊗H0(X,L)→
⊕
m≥i

K(Lm−i+1, L, . . . , L︸ ︷︷ ︸
i−1

).

Therefore (1.16) holds, by induction on i.

The next Lemma allows to reduce the property (Np) for L to the vanishing (1.13), in a
way that avoids the exterior power of ML.

Lemma 1.4.4. (1) For all n ≥ 0 and h ≥ 1, one has

H0(X,Mn
L⊗Lh) = K(Lh, L, . . . , L︸ ︷︷ ︸

n

),

if L is basepoint-free.

(2) Let i ≥ 0 and h ≥ 1. If L is basepoint-free and H1(X,M i+1
L ⊗Lh) = 0, then the

multiplication map

K(Lh, L, . . . , L︸ ︷︷ ︸
i

)⊗H0(X,L)→ K(Lh+1, L, . . . , L︸ ︷︷ ︸
i

)

is surjective.

(3)(Rubei [79], p. 2578). Let i ≥ 0. If the multiplication maps

K(Lh, L, . . . , L︸ ︷︷ ︸
i

)⊗H0(X,L)→ K(Lh+1, L, . . . , L︸ ︷︷ ︸
i

)

are surjective for all h ≥ 1, then di(RL) = i+ 1.

Proof. (1): If n = 0, then by definition H0(X,Lh) = K(Lh) for all h ≥ 1. Suppose n ≥ 1.
Since L is basepoint-free, its evaluation map is surjective and the kernel bundle ML sits
in the short exact sequence

0→ML → H0(X,L)⊗OX → L→ 0. (1.17)

Tensoring it by Mn−1
L ⊗Lh, one has

0→Mn
L⊗Lh → H0(X,L)⊗Mn−1

L ⊗Lh →Mn−1
L ⊗Lh+1 → 0. (1.18)

Taking global sections of (1.18) and using the inductive hypothesis, we obtain

0→ H0(X,Mn
L⊗Lh)→ H0(X,L)⊗K(Lh, L, . . . , L︸ ︷︷ ︸

n−1

)→ K(Lh+1, L, . . . , L︸ ︷︷ ︸
n−1

).
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Therefore, by definition, H0(X,Mn
L⊗Lh) = K(Lh, L, . . . , L︸ ︷︷ ︸

n

).

(2): Tensoring (1.17) by M i
L⊗Lh, we obtain

0→M i+1
L ⊗L

h → H0(X,L)⊗M i
L⊗Lh →M i

L⊗Lh+1 → 0. (1.19)

From the long exact sequence in cohomology associated to (1.19), and thanks to the point
(1), one has

H0(X,L)⊗K(Lh, L, . . . , L︸ ︷︷ ︸
i

)
α→ K(Lh+1, L, . . . , L︸ ︷︷ ︸

i

)→ H1(X,M i+1
L ⊗L

h) = 0.

Therefore, the multiplication map α is surjective.

(3): By (1.16) and the hypothesis we have that T i(RL) is generated over SL by

K(L, . . . , L︸ ︷︷ ︸
i+1

).

This means that it is generated by the piece of degree m with m− i = 1, i.e. m = i + 1.
Therefore, di(RL) = i+ 1.

1.5 Syzygies of abelian varieties

Using the cohomological rank functions it is possible to introduce several invariants at-
tached to a polarized abelian variety (A, l). Let us recall that, given a line bundle L that
represents the class l, the kernel bundle ML associated to L is by definition the kernel of
the evaluation map H0(A,L)⊗OA → L. If L is basepoint-free, then ML sits in the exact
sequence

0→ML → H0(A,L)⊗OA → L→ 0.

Definition 1.5.1. Let (A, l) be a polarized abelian variety. Then we consider

ε1(l) := Inf{x ∈ Q | h1
Ip(xl) = 0},

where Ip is the ideal sheaf of a closed point p ∈ A and, if l is basepoint-free,

κ1(l) := Inf{x ∈ Q | h1
ML

(xl) = 0},

where ML is the kernel bundle associated to a line bundle L representing l.

Remark 1.5.2. The above invariants are well-defined, i.e. ε1(l) does not depend on the
point p, and κ1(l) is independent from the representing line bundle L. We point out that
– although there are no examples so far – ε1(l) and κ1(l) could be irrational. However, as
it will be clear later on, this does not cause any trouble.
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We call ε1(l) the basepoint-freeness threshold of the polarization l, because of the
following property, that was observed by Jiang and Pareschi in [42]:

(*) ε1(l) ≤ 1 and ε1(l) < 1 if and only if the polarization l is basepoint-free, i.e. any line
bundle L representing l has no base points.

The relation between the two constants of Definition 1.5.1 was established by Jiang
and Pareschi, by using their transformation formulas with respect to the Fourier-Mukai-
Poincaré transform (Proposition 1.2.3):

Theorem 1.5.3 ([42], Theorem D). Let l be a basepoint-free polarization. Then

κ1(l) =
ε1(l)

1− ε1(l)
.

Remark 1.5.4. From this result, in op.cit. it is derived that κ1(l) < 1, i.e. l is projectively
normal, if and only if ε1(l) < 1

2
(see in particular [42], Corollary 8.2 (b)). Our Theorem

A is an extension of the “if” implication to higher syzygies.

Significantly, these invariants are strongly related to the generic vanishing concepts
introduced in §1.3, as explained in [42, §8]. We have

Lemma 1.5.5 ([42], p. 25). Given two polarizations l and n on A – with n basepoint-free
– and a rational number x, the fact that ε1(l) < x (resp. κ1(n) < x) is equivalent to the
fact that the Q-twisted sheaf Ip〈xl〉 (resp. MN〈xn〉) is IT (0).

For reader’s convenience we explicitly write down the case of ε1(l): assume that ε1(l) <
x ∈ Q and fix a sufficiently small η > 0 such that x0 := ε1(l) + η ∈ Q and x0 < x.
By (1.7), Ip〈x0l〉 is GV , therefore Hacon’s criterion (Proposition 1.3.3(3)) implies that
Ip〈(x0 + (x − x0))l〉 = Ip〈xl〉 is IT (0). Conversely suppose that Ip〈xl〉 is IT (0), then
Ip〈(x − y)l〉 is still IT (0), for a sufficiently small y ∈ Q+ (Proposition 1.3.3(4)). Then
ε1(l) < x− y < x. For κ1(n), the argument is similar.

The main result of the present chapter is:

Theorem 1.5.6 (= Theorem A of the Introduction). Let (A, l) be a polarized abelian
variety defined over an algebraically closed field K, and let p be a non-negative integer. If

ε1(l) <
1

p+ 2
,

then the property (Np) holds for l, i.e. it holds for any line bundle L representing l.

Corollary 1.5.7. Let m ∈ N. If

ε1(l) <
m

p+ 2
,

then the polarization ml satisfies the property (Np).



29

Proof. By definition (see §1.2) we have h1
Ip,ml(x) = h1

Ip,l(mx), therefore

ε1(ml) =
ε1(l)

m
.

Now Theorem 1.5.6 applies to ml, because ε1(ml) < 1
p+2

.

As mentioned in the Introduction, Corollary 1.5.7 gives a very quick – and characteristic-
free – proof of Lazarsfeld’s conjecture. Indeed, by (*) above,

ε1(l) ≤ 1 <
p+ 3

p+ 2
.

Therefore, ml satisfies the property (Np), if m ≥ p+ 3. Moreover, it also implies that the
polarization ml satisfies the property (Np), as soon as m ≥ p + 2 and l is basepoint-free
(see [70] for a more precise result). Indeed, if l is basepoint-free, then

ε1(l) < 1 =
p+ 2

p+ 2
,

once again thanks to (*) above.

More in general, defining

t(l) := max{t ∈ N | ε1(l) ≤ 1

t
},

we have

Theorem 1.5.8 (= Theorem B of the Introduction). Let p and t be non-negative integers
with p + 1 ≥ t. Let l be a basepoint-free polarization on A such that t(l) ≥ t. Then the
property (Np) holds for ml, as soon as m ≥ p+ 3− t.

Concerning the proof of the Theorem 1.5.6, the first – and most important – step is
the following

Proposition 1.5.9. Let p be a non-negative integer. If

ε1(l) <
1

p+ 2
,

then Mp+1
L ⊗Lh is IT (0) for all h ≥ 1.

Proof. Let L be a line bundle representing l, and let ML be the kernel of the evaluation
morphism H0(A,L)⊗OA → L. The assumption on ε1(l) implies, in particular, that l is
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basepoint-free and, using Theorem 1.5.3, we get

κ1(l) =
ε1(l)

1− ε1(l)

= −1 +
1

1− ε1(l)

< −1 +
p+ 2

p+ 1

=
1

p+ 1
.

By Lemma 1.5.5, this is equivalent to say that ML〈 1
p+1

l〉 is an IT (0) Q-twisted sheaf. Fix

now an integer h ≥ 1 and write Mp+1
L ⊗Lh = Mp+1

L ⊗L⊗Lh−1 as the Q-twisted sheaf

Mp+1
L 〈(p+ 1

p+ 1
+ h− 1)l〉 =

(
ML〈

1

p+ 1
l〉
)p+1⊗OA〈(h− 1)l〉.

Since Lh−1 is ample – hence IT (0) – if h > 1, or it is trivial if h = 1, and ML〈 1
p+1

l〉 is IT (0),

we have that Mp+1
L ⊗Lh is IT (0) thanks to the “preservation of vanishing” (Proposition

1.3.3(2)).

Proof of Theorem 1.5.6. Let L be a representative of the class l. For all 0 ≤ i ≤ p, we
have

ε1(l) <
1

p+ 2
≤ 1

i+ 2
.

Therefore L is basepoint-free and, thanks to the Proposition 1.5.9, we know that M i+1
L ⊗Lh

is IT (0), for all h ≥ 1. This implies, in particular, that H1(A,M i+1
L ⊗Lh) = 0 for all h ≥ 1.

Hence, by Lemma 1.4.4(2) and (3), we obtain

di(RL) = i+ 1.

Now, if j > p− i+ di(RL) = p+ 1, Kempf’s Lemma 1.4.3 implies that

TorSL
p (RL,K)j = 0.

As explained in (1.12), this is equivalent to the property (Np) for L.

Proof of Theorem 1.5.8. Note that we have already proved the t = 0 case – even without
the basepoint-freeness assumption – and the t = 1 case (Corollary 1.5.7). Hence we may
assume t > 1. By Theorem 1.5.6, it suffices to show that ε1(ml) < 1

p+2
. We have

ε1(ml) =
ε1(l)

m
≤ ε1(l)

p+ 3− t
≤ 1

t(p+ 3− t)
,

where the last inequality follows by definition. Let us impose now the inequality

1

t(p+ 3− t)
<

1

p+ 2
,

or equivalently
t2 − (p+ 3)t+ p+ 2 < 0.

This is satisfied if and only if 1 < t < p+2 and, by hypothesis, we have 1 < t ≤ p+1.
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1.5.1 An upper bound for the basepoint-freeness threshold

One of the main feature of Theorem 1.5.6 is the chance to be applied to primitive polar-
izations, i.e. those that cannot be written as a multiple of another polarization. This is
one of the reasons why it would be quite interesting to compute, or at least bound from
above, the invariant ε1(l) of polarized abelian varieties (A, l). As already mentioned in
the Introduction, by the work of Lazarsfeld-Pareschi-Popa ([54]), one is lead to consider
the threshold

r(l) := Inf{r ∈ Q | ∃ an effective Q-divisor F on A s.t. rl−F is ample and J (A,F ) = I0}.

The relation with the basepoint-freeness threshold is in the following Proposition, based
on Nadel’s vanishing.

Proposition 1.5.10. Assume K = C. Then ε1(l) ≤ r(l).

Proof of Proposition 1.5.10. Let r ∈ Q such that there exists an effective Q-divisor F on
A with

rL− F ample, (1.20a)

I0 = J (A,F ). (1.20b)

In order to prove the Proposition, we need to prove that

h1
I0(rl) = 0.

Writing r = a
b

with b > 0, this means that

h1
gen(abL⊗ µ∗bI0) = 0. (1.21)

But, by (1.20b), the left hand side is h1
gen(abL ⊗ µ∗bJ (A,F )) = h1

gen(abL ⊗ J (A, µ∗bF )),
where we used that forming multiplier ideals commutes with pulling back under étale
morphism (see [53, Example 9.5.44]). Since µ∗bF ≡num b2F , it follows from (1.20a) that
abL− µ∗bF is ample. Therefore (1.21) follows from Nadel’s vanishing.

1.6 Positivity of polarized abelian varieties

1.6.1 A criterion for k-jet ampleness

Let X be a smooth projective variety, let L and P be line bundles on X, with L ample
and P arbitrary. Ein, Lazarsfeld and Yang noted in [28, Remark 1.8] that the asymptotic
vanishing of a certain cohomology group is related to the k-jet ampleness of P . A line
bundle P is k-jet ample, k ≥ 0, if the restriction map

H0(X,P )→ H0(X,P⊗OX/Ik1x1⊗ . . .⊗I
kr
xr )

is surjective for any distinct points x1, . . . , xr on X such that
∑

i ki = k + 1.
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Theorem 1.6.1 (Ein-Lazarsfeld-Yang [28]). Let P be a line bundle on X such that
H1(X,P ) = 0. Then the k-jet amplitude of P is equivalent to the vanishing

H1(X,Mk+1
Ld
⊗P ) = 0,

for d� 0, where Ld := L⊗d.

In op.cit. the authors work over the complex numbers. However, their proof of the above
result is still valid over an algebraically closed field of any characteristic.

Back to the case of a polarized abelian variety (A, l), we want to use Theorem 1.6.1
in order to relate the invariant ε1(l) with the notion of k-jet ampleness. We prove, more
generally, the following

Proposition 1.6.2. Let F be a coherent sheaf on A such that F⊗L∨ is GV , where L is
a line bundle representing the class l. Assuming

ε1(l) <
1

t
,

we have that M t
Ld
⊗F is an IT (0) sheaf, for d� 0.

Proof. Using the Q-twisted language, we write

M t
Ld
⊗F = M t

Ld
⊗L⊗F⊗L∨

=
(
MLd
〈 1

dt
ld〉
)t⊗F⊗L∨.

Since F⊗L∨ is GV , if

κ1(ld) =
ε1(l)

d− ε1(l)
<

1

dt
(1.22)

(i.e. MLd
〈 1
dt

ld〉 is IT (0) by Lemma 1.5.5), we conclude by applying the preservation of
vanishing (Proposition 1.3.3(2)). But (1.22) is equivalent to

ε1(l) <
d

1 + dt
, (1.23)

and the right-hand side of (1.23) grows to 1
t
, as d goes to +∞. Since we are assuming that

ε1(l) < 1
t
, it is certainly possible to take d big enough such that (1.23) is satisfied.

Remark 1.6.3. We point out that, if the stronger inequality ε1(l) ≤ 1
t+1

holds, then it
suffices to take d ≥ 2 in the statement of the previous Proposition 1.6.2.

Corollary 1.6.4 (= Theorem D of the Introduction). Let (A, l) be a polarized abelian
variety defined over an algebraically closed field K, and let k be a non-negative integer. If

ε1(l) <
1

k + 1
,

then L⊗N is k-jet ample, for any nef line bundle N on A.
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Proof. Let L be a representative of l and denote P = L⊗N . It is clearly ample, hence
H1(A,P ) = 0. Since P⊗L∨ = N and a nef line bundle on an abelian variety is GV (see
Lemma 1.3.5), Proposition 1.6.2 gives, in particular,

H1(A,Mk+1
Ld
⊗P ) = 0,

for d � 0. So Ein-Lazarsfeld-Yang characterization (Theorem 1.6.1) implies that P is
k-jet ample.

Corollary 1.6.5. If ε1(l) < m
k+1

, then ml is k-jet ample.

Proof. Since

ε1(ml) =
ε1(l)

m
<

1

k + 1
,

ml is k-jet ample thanks to the previous Corollary 1.6.4.

Recall that we defined t(l) = max{t ∈ N | ε1(l) ≤ 1
t
}. We have the following immediate

application of Corollary 1.6.4:

Proposition 1.6.6. Let k ≥ t be non-negative integers and let l be a basepoint-free
polarization on A such that t(l) ≥ t. Then ml is k-jet ample, if m ≥ k + 2− t.

The Proposition (almost) recovers a result of Bauer-Szemberg ([5]) and it should be
compared with [70].

Proof of Proposition 1.6.6. The Corollary 1.6.5 already proves the t = 0 case – even
without the basepoint-freeness assumption – and the t = 1 case. Assume t > 1. By
Corollary 1.6.4, it suffices to show that ε1(ml) < 1

k+1
. We have

ε1(ml) =
ε1(l)

m
≤ ε1(l)

k + 2− t
≤ 1

t(k + 2− t)
,

where the last inequality follows by definition. Let us impose the inequality

1

t(k + 2− t)
<

1

k + 1
,

or equivalently
t2 − (k + 2)t+ k + 1 < 0.

This is satisfied if and only if 1 < t < k + 1.
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1.6.2 Relation with Seshadri constant

In this subsection we prove that the multiplicative inverse 1/ε1(l) gives a sharp lower
bound for the Seshadri constant ε(A,L) of L.5

Let L be an ample line bundle on A. Denote by ε(A,L) the Seshadri constant of L
and recall that it is always ≥ 1 (see [53, §5.3] for a survey on the theory). We establish
the following elementary relation between ε(A,L) and ε1(l):

Proposition 1.6.7. ε1(l) · ε(A,L) ≥ 1.

Remark 1.6.8. The above inequality is sharp. Indeed a principally polarized elliptic
curve (E,Θ) has ε1(θ) = 1, and ε(E,Θ) = 1 too (see [53, Example 5.3.10]).

For our purposes, it is more useful to consider the multiplicative inverse of ε(A,L). Let
ν : Blp(A) → A be the blowing-up of A at a point p, with exceptional divisor E. The
s-invariant of Ip with respect to L is

sL(Ip) := Inf{s ∈ R | ν∗(sL)− E is a nef R-divisor on Blp(A)}.

Since the Seshadri constant ε(A,L) equals

Sup{ε ∈ R | ν∗(L)− εE is a nef R-divisor on Blp(A)},

we have, by definition,

sL(Ip) =
1

ε(A,L)
.

Proof of Proposition 1.6.7. We prove the inequality ε1(l) ≥ sL(Ip). Remember that
ε1(l) < x = a

b
∈ Q if and only if Ip〈xl〉 is IT (0) (Lemma 1.5.5). This means that

(µ∗bIp)⊗Lab is an IT (0) sheaf,

hence it is ample by Debarre ([21]). Therefore, Ip〈xl〉 is an ample Q-twisted sheaf, because
µ∗b(Ip〈xl〉) = (µ∗bIp)〈abl〉 and µb is a finite surjective morphism (see [53, Lemma 6.2.8(ii)],
and [21, §2(c)]). Therefore, ν∗(Ip〈xl〉) is nef and its quotient ν∗(xl)⊗OBlp(A)(−E) is nef
too ([53, Theorem 6.2.12(i) and (v)]). This implies, by definition, that sL(Ip) is less than
or equal to ε1(l).

Corollary 1.6.9. (1) If l is basepoint-free, then ε(A,L) > 1.
(2) If l is projectively normal, then ε(A,L) > 2.

Proof. (1) is clear. For (2), the projectively normality of l is equivalent to ε1(l) < 1
2

(see
Remark 1.5.4). Therefore

ε(A,L) > 2ε1(l) · ε(A,L) ≥ 2.

5Let us remind that, by definition, ε(A,L) only depends on the numerical equivalence class of L.
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The following Proposition gives a lower bound for ε1(l) in terms of χ(l) and of the
dimension of A.

Proposition 1.6.10. Let l be a polarization on a g-dimensional abelian variety A. Then

ε1(l) ≥ 1
g
√
χ(l) · g!

.

Proof. We just saw that ε1(l) ≥ 1
ε(A,L)

. On the other hand it is well known (see [53,

Proposition 5.1.9]) that

ε(A,L) ≤ g
√

(Lg) = g
√
χ(l) · g!.

Therefore

ε1(l) ≥ 1

ε(A,L)
≥ 1

g
√
χ(l) · g!

.





Chapter 2

Derived invariants arising from the
Albanese map

We will work over C. All varieties appearing in this chapter are assumed to be projective.
A variety without further specification is a smooth complex projective variety. Normal
variety means normal projective variety. An Albanese morphism means an universal
morphism from a fixed variety X to abelian varieties. We will call such a morphism the
Albanese morphism or also the Albanese map of X, and we will denote it aX : X → AlbX.

2.1 Preliminary material on generic vanishing, Chen-

Jiang decomposition and 0-regularity of the canon-

ical module

In this section we recall material used in the sequel, referring to the appropriate sections of
papers as [68], [36], [77], [74], [69] for more thorough surveys. For a morphism of abelian
varieties π : A→ B, we will denote

π̂ : Pic0B → Pic0A

the dual morphism.

Generic vanishing. Let A be an abelian variety. A coherent sheaf G is said to be a
generic vanishing sheaf, or GV-sheaf for short, if

codimPic0AV
i(A,G) ≥ i for all i ≥ 0.

The sheaf G is said to be M-regular if

codimPic0AV
i(A,G) > i for all i > 0.

Remark 2.1.1. If G is GV, then χ(G) ≥ 0 and χ(G) > 0 if and only if V 0(A,G) = Pic0A.
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We have the following well known non-vanishing results (see e.g. [35, Corollary 3.2]
for (a) and [68, Lemma 1.12] for (b) and (c))

Proposition 2.1.2. Let G be a non-zero coherent sheaf on an abelian variety A.
(a) If G is GV, then V i+1(A,G) ⊆ V i(A,G) for all i ≥ 0.
(b) If G is GV, then V 0(A,G) 6= ∅.
(c) If G is M-regular, then V 0(A,G) = Pic0A.

Chen-Jiang decomposition. This concept was introduced by J. A. Chen and Z. Jiang
([19, Theorem 1.1]). The following theorem was proved in [74]. Here we will use only the
case j = 0.

Theorem 2.1.3 (Chen-Jiang decomposition). Let a : X → A be a morphism from a
variety to an abelian variety and let j ≥ 0. Then the sheaf Rja∗ωX decomposes canonically
as

Rja∗ωX =
⊕
i

π∗iFi ⊗ Pαi
,

where πi : A → Bi are quotients of abelian varieties with connected fibres, Fi are M-
regular sheaves on Bi and αi are torsion points of Pic0A.

Note that in the above decomposition we can arrange that π̂i(Pic0Bi)−αi 6= π̂k(Pic0Bk)−
αk, for i 6= k. With this normalization the decomposition is canonical up to permutation
of the summands.

Remark 2.1.4. Theorem 2.1.3 has the following consequences:

(1) For all j ≥ 0, the sheaf Rja∗ωX is a GV-sheaf on A (Hacon [35]).
This is because, by projection formula, the pullback of a GV-sheaf via a morphism of
abelian varieties is still GV.

(2) V 0(A,Rja∗ωX) =
⋃
i(π̂i(Pic0Bi)− αi).

This last equality again follows from projection formula:

H0(A, π∗iFi ⊗ Pαi
⊗ Pα) =

{
H0(Bi,Fi ⊗ Pβ) if α = π̂i(β)− αi with β ∈ π̂i(Pic0Bi)

0 otherwise

(2.1)
This, together with Proposition 2.1.2(c), shows that the locus V 0(A,Rja∗ωX) is the union
of translates of the abelian subvarieties π̂i(Pic0Bi) of Pic0A by points of finite order.1

(3) Keeping the notation of Theorem 2.1.3, let c(i) = dimA − dimBi. Again from
projection formula, combined with Proposition 2.1.2(c), it follows that the support of
V c(i)(A, π∗iFi⊗Pαi

) is equal to the support of V 0(A, π∗iFi⊗Pαi
), namely π̂i(Pic0Bi)−αi.

This implies a result originally due to Ein-Lazarsfeld ([26]): the irreducible components
of the locus V 0(A,Rja∗ωX) of codimension c > 0 are also components of the locus
V c(A,Rja∗ωX).

1By a theorem of Green-Lazarsfeld and Simpson this is actually true – and of fundamental importance
– for all loci V ir (A,Rja∗ωX) for all i, j and r, see §2.3.
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Remark 2.1.5. Theorem 2.1.3 and its consequences hold more generally for the sheaves
Rja∗(ωX ⊗ Pα), where α is a torsion point of Pic0X. This is because ωX ⊗ Pα is a direct

summand of f∗ωX̃ , for a suitable étale cover f : X̃ → X.

Strong linearity and Castelnuovo-Mumford regularity. The relation between
the theory of generic vanishing and the Bernstein-Gel’fand-Gel’fand correspondence was
pointed out in the paper [55], and further developed in [56] and [77].

For a sheaf G on an abelian variety A, let us consider its cohomology module

H∗(A,G) =
⊕
i

H i(A,G), (2.2)

which is a graded module over the exterior algebra EA := Λ∗H1(A,OA). By definition,
each piece H i(A,G) has degree −i. For such a graded module there is the notion of
Castelnuovo-Mumford regularity : H∗(A,G) is said to be m-regular if it is generated by
elements in degrees 0 up to −m, the relations among these generators are in degrees −1
up to −(m + 1), and more generally its kth module of syzygies has all its generators in
degrees −k up to −(m+ k). Equivalently,

TorEA
k (H∗(A,G),C)−(t+k) = 0,

for all k ≥ 0 and t ≥ m + 1 (see [29], p. 124). It has (Castelnuovo-Mumford) regularity
reg(H∗(A,G)) = m if m is the least non-negative integer such that it is m-regular. In
particular, reg(H∗(A,G)) = 0 if and only if it is generated in degree 0 and it has a linear
graded free resolution. In the sequel we will use the case j = 0 of the following Theorem
of Lazarsfeld, Popa and Schnell ([56, Theorem 2.1])

Theorem 2.1.6 (Lazarsfeld-Popa-Schnell). Let a : X → A be a morphism from a variety
X to an abelian variety A. Let α ∈ Pic0X be a torsion point, and let β ∈ Pic0A. Then,
for all j ≥ 0,

reg
(
H∗(A,Rja∗(ωX ⊗ Pα)⊗ Pβ)

)
= 0.

Note that this theorem is stated in [56] in a more restrictive setting, namely only for
RjaX∗ωX , where aX denotes the Albanese morphism of X. However the proof of the
result goes through without any change. The point here is that the Green-Lazarsfeld’s
theorem about computing the higher direct images of the Poincaré bundle by means of
the derivative complex ([33, §3]) holds in the neighborhood of every point in Pic0A, so
that the machinery in [55] and [56] applies.

2.2 Proof of Theorem F

Preliminaries: two results of Lombardi. Again, for sake of brevity, we will state
only those results strictly needed for our arguments, referring to the paper [57] for the
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complete story. Let ϕ : D(X)→ D(Y ) be an exact equivalence and

ϕ : Aut0X × Pic0X → Aut0 Y × Pic0Y

its Rouquier isomorphism. The following result ([57, Proposition 3.1]) will be fundamental
for our arguments.

Theorem 2.2.1. Let m be an integer, and assume that h0(X,ωmX ⊗ Pα) > 0. Then
ϕ( idX , Pα) is of the form ( idY , Pβ), for β ∈ Pic0Y . If this is the case, we will abusively
denote

β = ϕ(α). (2.3)

Let us denote by δ : X → X ×X the diagonal morphism. Again, following Lombardi
([57]), for fixed m ∈ Z and α ∈ Pic0X, we consider the twisted (generalized) Hochschild
homology2

HHm
∗ (X,α) =

⊕
k

ExtkOX×X
(δ∗OX , δ∗(ωmX ⊗ Pα)). (2.4)

It is a graded module over the Hochschild cohomology algebra

HH∗(X) =
⊕
k

ExtkOX×X
(δ∗OX , δ∗OX).

A classical result of Orlov and Căldăraru ([66], [10]), generalized by Lombardi to the
twisted case ([57, Theorem 1.1]), proves

Theorem 2.2.2. In the above notation, let m ∈ Z and α ∈ Pic0X such that h0(X,ωmX ⊗
Pα) > 0. Then the derived equivalence ϕ induces a canonical graded-algebra isomorphism

Φ∗ : HH∗(X)→ HH∗(Y )

and, using notation (2.3), a compatible graded-module isomorphism

Φm
∗,α : HHm

∗ (X,α)→ HHm
∗ (Y, ϕ(α)). (2.5)

In particular, in degree 0, HHm
0 (X,α) = H0(X,ωmX⊗Pα), hence we have the isomorphism

Φm
0,α : H0(X,ωmX ⊗ Pα)

∼→ H0(Y, ωmY ⊗ Pϕ(α)). (2.6)

Going back to the Rouquier isomorphism, it follows that, for all m ∈ Z and r ≥ 1,

ϕ
(
{ idX} × V 0

r (X,ωmX )
)

= { idY } × V 0
r (Y, ωmY ). (2.7)

For m = 1 we will suppress, as it is customary, the index 1 in (2.4) and in (2.5).

2As already mentioned, the setting of Lombardi is more general. Here we are stating only what is
necessary for our purposes.
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Preliminaries: the Iitaka fibration of irregular varieties. Assume that the
Kodaira dimension of X is non-negative. Then the loci V 0(X,ωmX ) are tightly connected
with the Iitaka fibration of X.

After a birational modification of X, we can assume that the Iitaka fibration of X is
a morphism X → ZX with ZX smooth. There is the commutative diagram

X
aX //

fX
��

AlbX

afX
��

ZX
aZX// AlbZX

(2.8)

where afX is a surjective morphism of abelian varieties with connected fibres ([36, Lemma
1.11(a)]). We will make use of the following results of Chen-Hacon and Hacon-Popa-
Schnell:

Theorem 2.2.3. (a) ([36, Theorem 11.2(b)]). For m ≥ 2, the irreducible components of
the locus V 0(X,ωmX ) are translates of âfX (Pic0ZX) by torsion points of Pic0X.

(b) ([18, Lemma 2.2], see also [36], (2) after Lemma 11.1). The irreducible components
of the locus V 0(X,ωX) are translates by torsion points of Pic0X of abelian subvarieties of
the abelian subvariety âfX (Pic0ZX).

Due to the slightly different properties satisfied by the pushforwards of canonical and
pluricanonical bundles (see e.g. the above Theorem 2.2.3), we prefer to distinguish the
proof of Theorem F and to separately deal with the two cases.

Proof of Theorem F – Canonical case. Let α ∈ Pic0X and i ≥ 0 such that

hi(AlbX, aX∗ωX ⊗ Pα) > 0. (2.9)

Step 1. The Kodaira dimension of X and Y are non-negative.

Proof. Indeed, by (2.9), V i(AlbX, aX∗ωX) 6= ∅. Therefore, V 0(AlbX, aX∗ωX) 6= ∅
by Proposition 2.1.2(a). By Remark 2.1.4(2), this yields that V 0(AlbX, aX∗ωX) =
V 0(X,ωX) contains some points α of Pic0X of finite order, say k. This implies that
h0(X, (ωX ⊗ Pα)k) = h0(X,ωkX) > 0. Therefore, κ(X) ≥ 0. Since the Kodaira dimension
is a derived invariant, the same holds for Y .

We have natural embeddings

H1(ZX ,OZX
) ⊂ H1(X,OX) ⊂ HH1(X) = Ext1

OX×X
(δ∗OX , δ∗OX).

The same holds for Y .

Step 2. The second step is the following
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Lemma 2.2.4. Φ1H1(ZX ,OZX
) = H1(ZY ,OZY

).

Proof. This follows at once from the above results. Indeed, combining Theorem 2.2.3(a)
and (2.7), we get that

ϕ(âfX (Pic0ZX)) = âfY (Pic0ZY ). (2.10)

On the other hand, it is well known that the isomorphism Φ1, i.e.3

Ext1
X×X(δ∗OX , δ∗OX) Φ1

//

∼
��

Ext1
Y×Y (δ∗OY , δ∗OY )

∼
��

H0(TX)⊕H1(OX) // H0(TY )⊕H1(OY )

is the first order version of the Rouquier isomorphism (see e.g. [38], discussion after
Proposition 9.45, p.218). Therefore, Step 2 follows from (2.10).

Next, we note that, by Theorem 2.2.3(b), we can gather those irreducible compo-
nents of V 0(X,ωX) = V 0(AlbX, aX∗ωX) which are contained in the same translate of
âfX (Pic0ZX). Hence, using Remark 2.1.4(2), we can gather the corresponding sheaves
appearing in the Chen-Jiang decomposition of aX∗ωX , yielding another canonical decom-
position

aX∗ωX =

rX⊕
j=1

(a∗fXHX,j)⊗ PX,δj (2.11)

defined by the following properties:
the HX,j’s are GV-sheaves on AlbZX (in fact, the direct sum of some pullbacks of M -
regular sheaves from quotient abelian varieties appearing in the Chen-Jiang decomposition
of aX∗ωX), the δj are torsion points of Pic0X, and rX is the number of translates in
Pic0X of the abelian subvariety âfX (Pic0ZX) containing at least one component of the
locus V 0(AlbX, aX∗ωX).
The same sort of decomposition holds for aY ∗ωY :

aY ∗ωY =

rY⊕
k=1

(a∗fYHY,k)⊗ PY,γk .

We claim that
rX = rY := r

and, up to reordering, for all j = 1, . . . , r,

ϕ
(
V 0(X,ωX) ∩ (âfX (Pic0ZX)− δj)

)
= V 0(Y, ωY ) ∩ (âfY (Pic0ZY )− γj).

In fact each component of V 0(X,ωX) (which is a translate of an abelian subvariety of
âfX (Pic0ZX)) is contained in a unique translate of âfX (Pic0ZX). The same happens

3The spectral sequence abutting to ExtiX×X(δ∗OX , δ∗OX) degenerates, see [84, Corollary 2.6].
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on Y . From (2.10) and Lombardi’s theorem (2.7), it follows that the algebraic group
isomorphism ϕ sends such a translate of âfX (Pic0ZX) to the corresponding translate (in
Pic0Y ) of âfY (Pic0ZY ). This proves what claimed.

In fact, since two different translates have empty intersection, we have that:
(*) for i ≥ 0 and for a fixed α ∈ Pic0X, in the decomposition

H i(aX∗ωX ⊗ Pα) =

rX⊕
j=1

H i((a∗fXHX,j)⊗ Pδj+α)

at most one summand is non-zero.
For i = 0 this holds by definition of the above decomposition, and for i > 0, it follows
as above from Proposition 2.1.2(a). Moreover, from projection formula and the fact that
the quotient AlbX → AlbZX has connected fibres, it follows that

H0(AlbX, (a∗fXHX,j)⊗Pδj+α) =

{
H0(AlbZX ,HX,j ⊗ Pη) if δj + α = âfX (η) with η ∈ Pic0ZX

0 otherwise

The same holds for Y . This, combined with (2.6), proves:

Step 3. Keeping the above notation, let α ∈ V 0(AlbX, aX∗ωX) and η ∈ Pic0ZX such that
âfX (η) = α + δj. Then

Φ0,αH
0(AlbZX ,HX,j ⊗ Pη) = H0(AlbZY ,HY,j ⊗ Pϕ(η))

where, via a slight abuse of language, we are denoting ϕ(η) ∈ Pic0ZY the element ν ∈
Pic0ZY such that, by (2.10), âfY (ν) = ϕ(âfX (η)).

Next, we recall that for all α ∈ Pic0X the local to global spectral sequence computing
each graded component HHi(X,α) degenerates ([84, Corollary 2.6]). It follows that the
canonical map from H i(X,ωX ⊗ Pα) to HHi(X,α) is an embedding. More, for α ∈
V 0(AlbX, aX∗ωX) and η ∈ Pic0ZX such that âfX (η) = α+δj, we have the following chain
of canonical embeddings of vector spaces

H i(AlbZX ,HX,j ⊗ Pη) ↪→ H i(AlbX, aX∗ωX ⊗ Pα) ↪→ H i(X,ωX ⊗ Pα) ↪→ HHi(X,α)
(2.12)

(and the same things hold for Y ).4 The first inclusion follows from (2.11) via projection
formula, and the second one follows from Kollár’s theorem on the degeneration of the Leray
spectral sequence of the canonical bundle ([49]), once again combined with projection
formula.

Step 4. Let α ∈ V 0(AlbX, aX∗ωX) and η ∈ Pic0ZX such that âfX (η) = α + δj. Then,
for all i ≥ 0,

Φi,αH
i(AlbZX ,HX,j ⊗ Pη) = H i(AlbZY ,HY,j ⊗ Pϕ(η)).

4In the second space Pα denotes a line bundle on AlbX, while in the third space Pα denotes a line
bundle on X, i.e., strictly speaking, the pullback via the Albanese map of the previous Pα.
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Proof. It is here that we use the multiplicative structure and the Bernstein-Gel’fand-
Gel’fand correspondence. We have the following morphisms of graded algebras:

Λ∗H1(ZX ,OZX
) ↪→ Λ∗H1(X,OX)→ H∗(X,OX) ↪→ HH∗(X).

Therefore, the Hochschild cohomology HH∗(X,α) is a graded module also on all the
graded algebras appearing above. The similar result holds for HH∗(Y, β). From Step 2,
it follows that:

(**) the graded module isomorphism Φ∗,α : HH∗(X,α)
∼→ HH∗(Y, ϕ(α)) of Theorem

2.2.2 is compatible with the isomorphism ∧∗(Φ1) : Λ∗H1(OZX
)
∼→ Λ∗H1(OZY

).

The inclusions (2.12) fit into inclusions of graded modules over the exterior algebra
Λ∗H1(OZX

):

H∗(AlbZX ,HX,j ⊗ Pη) ↪→ H∗(AlbX, aX∗ωX ⊗ Pα) ↪→ H∗(X,ωX ⊗ Pα) ↪→ HH∗(X,α).

For α ∈ V 0(AlbX, aX∗ωX) and η ∈ Pic0ZX such that âfX (η) = α + δj, let us denote

H̃∗(AlbZX ,HX,j ⊗ Pη)

the graded Λ∗H1(OZX
)-submodule of HH∗(X,α) generated by H0(AlbZX ,HX,j ⊗ Pη).

Clearly
H̃∗(AlbZX ,HX,j ⊗ Pη) ⊆ H∗(AlbZX ,HX,j ⊗ Pη) (2.13)

(in fact, the first is a submodule of the second). By Step 3 and (**) it follows that

Φ∗,αH̃
∗(AlbZX ,HX,j ⊗ Pη) = H̃∗(AlbZY ,HY,j ⊗ Pϕ(η)). (2.14)

By projection formula on the decomposition (2.11) it follows that the sheaf HX,j ⊗
Pη is a direct summand of the sheaf afX ∗(aX∗ωX ⊗ P∨δj) ⊗ Pη. Therefore the module

H∗(AlbZX ,HX,j ⊗ Pη) is a direct summand of the module H∗(AlbZX , afX ∗(aX∗ωX ⊗
P∨δj)⊗Pη), which is 0-regular by Theorem 2.1.6, hence, in particular, generated in degree

0. Hence, the module H∗(AlbZX ,HX,j⊗Pη) is generated in degree 0 as well, and we have
equality in (2.13). By the same reasoning, the same thing happens for Y . Hence, Step 4
follows from (2.14).

Step 5. Conclusion of the proof. Let q = dim AlbX = dim AlbY (Theorem of Popa-
Schnell, [76]), and let q′ = dim AlbZX = dim AlbZY (Step 2). Note that, since the
quotient map afX has connected fibres, RkafX ∗OAlbX is a trivial bundle of rank

(
q−q′
k

)
.

Therefore, for η ∈ Pic0ZX such that âfX (η) = α + δj, we have that

hi(AlbX, aX∗ωX ⊗ Pα) = hi(AlbX, afX
∗(HX,j⊗Pη))

=

q−q′⊕
k=0

hi−k(AlbZX ,HX,j ⊗ Pη)⊕(q−q′
k )

where the first equality is (*), and the second equality follows from the Kollár decompo-
sition (plus projection formula) applied to the morphism afX ([49, Theorem 3.1]). The
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same formula holds for Y . Therefore, Theorem F (case m = 1) follows from Step 4 applied
to the last quantity.

Preliminaries for the pluricanonical case: a result of Lombardi-Popa-Schnell.
To deal with the pluricanonical case (m ≥ 2) of Theorem F, we apply recent results of
Lombardi-Popa-Schnell ([60]) on pushforwards of pluricanonical bundles under morphisms
to an abelian variety, whose proofs make use, among other things, of the analytic tech-
niques introduced into algebraic geometry by Cao and Păun ([12], see also [36]), namely
the existence of positively curved singular hermitian metrics on pushforwards of relative
pluricanonical bundles.

Given a morphism a : X → A from X to an abelian variety A, Lombardi, Popa and
Schnell proved that, for any m ≥ 2, a∗ω

m
X shares similar properties with a∗ωX (see op.cit.,

Theorem A and the comment below it):

(1) a∗ω
m
X is a GV sheaf and, moreover, it has a Chen-Jiang decomposition, i.e.

a∗ω
m
X =

⊕
j

π∗jFj⊗Pαj
,

where each πj : A→ Aj is a quotient morphism of abelian varieties with connected fibers,

each Fj is an M -regular sheaf on Aj and αj ∈ Â are torsion points.

(2) V 0(A, a∗ω
m
X ) =

⋃
j(π̂j(Pic0Aj)− αj).

(3) Let α ∈ Pic0X be a torsion point, and let β ∈ Pic0A. Then

reg(H∗(A, a∗(ω
m
X⊗Pα)⊗Pβ)) = 0,

as a module over Λ∗H1(A,OA).

Proof of Theorem F – Pluricanonical case. We closely follow the proof of the case
m = 1. However, the pluricanonical case is easier to treat because of the fact that the
sheaves aX∗ω

m
X , with m ≥ 2, are more “positive” than aX∗ωX . Let α ∈ Pic0X, m ≥ 2

and i ≥ 0 such that
hi(AlbX, aX∗ω

m
X ⊗ Pα) > 0. (2.15)

As before, we divide the proof in several steps.

Step 1. The Kodaira dimension of X and Y are non-negative.

Proof. By (2.15), V i(AlbX, aX∗ω
m
X ) 6= ∅. Therefore, by Proposition 2.1.2(a) together

with (1) and (2) above, V 0(AlbX, aX∗ω
m
X ) = V 0(X,ωmX ) contains some points α of Pic0X

of finite order, say k. This implies that h0(X, (ωmX ⊗ Pα)k) = h0(X,ωmkX ) > 0. Therefore,
κ(X) ≥ 0. The same holds for Y .

In particular, taking notations as in (2.8) and using Theorem 2.2.3(a), together with the
properties (1) and (2) above, we see that aX∗ω

m
X has the following canonical decomposi-
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tion:

aX∗ω
m
X =

rX⊕
j=1

(a∗fXGX,m,j)⊗ Pδm,j
, (2.16)

where the GX,m,j’s are GV sheaves on AlbZX (in fact they are IT (0) sheaves, as noted in
[60, Theorem D]), the δm,j are torsion points of Pic0X, and rX is the number of translates
in Pic0X of the abelian subvariety âfX (Pic0ZX) providing the irreducible components of
the locus V 0(AlbX, aX∗ω

m
X ).

The same sort of decomposition holds for aY ∗ω
m
Y :

aY ∗ω
m
Y =

rY⊕
k=1

(a∗fY GY,m,k)⊗ Pγm,k
.

From (2.10) and Lombardi’s theorem (2.7), we have that

rX = rY := r

and, up to reordering,
ϕ(δm,j) = γm,j

for all j = 1, . . . , r. In fact, since two different translates have empty intersection, we
have that:
(***) for i ≥ 0 and for a fixed α ∈ Pic0X, in the decomposition

H i(aX∗ω
m
X ⊗ Pα) =

rX⊕
j=1

H i((a∗fXGX,m,j)⊗ Pδm,j+α)

at most one summand is non-zero.
For i = 0 this holds thanks to Theorem 2.2.3(a) and the definition of the above decompo-
sition, and for i > 0, it follows from (1) above and from Proposition 2.1.2(a). Moreover,
from the projection formula and the fact that the quotient AlbX → AlbZX has connected
fibres, it follows that

H0(AlbX, (a∗fXGX,m,j)⊗Pδm,j+α) =

{
H0(AlbZX ,GX,m,j ⊗ Pη) if δm,j + α = âfX (η), η ∈ Pic0ZX

0 otherwise

The same holds for Y . This, combined with (2.6), proves:

Step 2. Keeping the above notation, let α ∈ V 0(AlbX, aX∗ω
m
X ) and η ∈ Pic0ZX such that

âfX (η) = α + δm,j. Then

Φm
0,αH

0(AlbZX ,GX,m,j ⊗ Pη) = H0(AlbZY ,GY,m,j ⊗ Pϕ(η))

where, via a slight abuse of language, we are denoting, as before, ϕ(η) ∈ Pic0ZY the
element ν ∈ Pic0ZY such that, by (2.10), âfY (ν) = ϕ(âfX (η)).
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The next step follows from Theorem D of [60]. For the sake of self-containedness we
give a slightly different proof, that is natural in our context and uses the BGG correspon-
dence.

Step 3. Let α ∈ V 0(AlbX, aX∗ω
m
X ) and η ∈ Pic0ZX such that âfX (η) = α+ δm,j. Then,

for all i > 0,

H i(AlbZX ,GX,m,j ⊗ Pη) = H i(AlbZY ,GY,m,j ⊗ Pϕ(η)) = 0.

Proof. By projection formula on the decomposition (2.16), it follows that the sheaf GX,m,j⊗
Pη is a direct summand of the sheaf (afX ◦ aX)∗(ω

m
X ⊗P∨δm,j

)⊗Pη. Therefore, the module

H∗(AlbZX ,GX,m,j ⊗Pη) is a direct summand of the module H∗(AlbZX , (afX ◦ aX)∗(ω
m
X ⊗

P∨δm,j
) ⊗ Pη), which is generated in degree 0 by (3) above. This implies that the mod-

ule H∗(AlbZX ,GX,m,j ⊗ Pη) is generated in degree 0 as well. So we obtain the stated
vanishing from the fact that the cup product between elements of H1(ZX ,OZX

) and
H0(AlbZX ,GX,m,j⊗Pη) is zero (see [36], Theorem 11.2(c) and the reference therein). The
same thing happens for Y .

Step 4. Conclusion of the proof. Let q = dim AlbX = dim AlbY , and let q′ =
dim AlbZX = dim AlbZY . Similarly to the canonical case, for η ∈ Pic0ZX such that
âfX (η) = α + δm,j, we have that

hi(AlbX, aX∗ω
m
X ⊗ Pα) = hi(AlbX, a∗fX (GX,m,j ⊗ Pη))

=

q−q′⊕
k=0

hi−k(AlbZX ,GX,m,j ⊗ Pη)⊕(q−q′
k )

= h0(AlbZX ,GX,m,j ⊗ Pη)⊕(q−q′
i )

where the first equality follows from (***), the second equality is the Kollár decomposition
(plus projection formula) with respect to the morphism afX applied to the trivial line
bundle OAlbX

, and the third one follows from Step 3. The same formula holds for Y .
Therefore, we conclude by applying Step 2 to the last quantity.

2.3 Application to irregular fibrations

Fibrations: terminology. Let X be a variety. A fibration of X is an algebraic
fiber space g : X → S, where S is a normal variety, called base of the fibration. If a
non-singular model of S (hence all of them) has maximal Albanese dimension, such a
fibration is said to be irregular. A non-singular representative of a fibration of X is a
fibration g′ : X ′ → S ′ with both X ′ and S ′ smooth, equipped with birational morphisms
p : X ′ → X and q : S ′ → S such that g ◦ p = q ◦ g′. Two fibrations of X are equivalent
if there is a fibration X ′ → S ′ which is a birational representative for both of them. Let
g be a fibration of X. We denote Pic0(g) the kernel of the restriction map from Pic0X
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to Pic0 of a general fibre. Notice that if g′ is any non-singular representative of g then
Pic0(g) = Pic0(g′), therefore Pic0(g) depends only on the equivalence class of g. Pic0(g)
is an extension of g∗Pic0S by a finite subgroup Γ of Pic0X/g∗Pic0S (see e.g. [69]), hence
it is disconnected, unless Γ = 0.5

Definition 2.3.1. Let g : X → S be an irregular fibration of X and let us set i =
dimX − dimS.

(a) g is cohomologically non-detectable if S is birational to an abelian variety and Pic0(g)
is connected, and cohomologically detectable otherwise. The explanation for such termi-
nology is in Remark 2.3.7 below.

(b) g is weakly-χ-positive if there is a point α ∈ Pic0X such that for a non-singular
representative g′ : X ′ → S ′ (hence for all of them, see Remark 2.3.2 below)

χ(Rig′∗(ωX′ ⊗ Pα)) > 0. (2.17)

Note that an α ∈ Pic0X as in the definition must belong to Pic0(g). Therefore, one can
always assume that α is a torsion point.

(c) g is χ-positive if for a non-singular representative g′ as above (hence for all of them),
χ(ωS′) > 0.

Note that, since ωS′ = Rig′∗ωX′ ([48], Proposition 7.6), a χ-positive irregular fibration
is weakly-χ-positive.

Remark 2.3.2. We keep the notation of the above Definitions. From Hacon’s generic
vanishing (see Remark 2.1.4(1)) and an étale covering trick it follows that Ri(aS′ ◦
g′)∗(ωX′ ⊗ Pα) is a GV-sheaf on AlbS ′. On the other hand, since aS′ is generically fi-
nite, by the combination of Kollár’s vanishing and decomposition ([49, Theorem 3.4]),
RkaS′∗R

hg′∗(ωX′ ⊗ Pα) = 0 for all k > 0 and h ≥ 0, hence Ri(aS′ ◦ g′)∗(ωX′ ⊗ Pα) =
aS′∗R

ig′∗(ωX′ ⊗ Pα). Therefore, having in mind Remark 2.1.1, the condition (2.17) is
equivalent to the condition

V 0(S ′, Rig′∗(ωX′ ⊗ Pα)) = Pic0S ′.

This in turn implies that the condition (2.17) does not depend on the non-singular rep-
resentative.

We denote by b(X) the minimal base-dimension (namely dimS) of the cohomologically
detectable fibrations of X (if there are no such fibrations, we declare that b(X) = 0). The
main result of this section is the following

Theorem 2.3.3. Let X and Y be d-dimensional derived equivalent varieties of maximal
Albanese dimension. Then:

b(X) = b(Y ) := b.

5For fibrations g onto curves the subvariety Pic0(g) is completely described in the work of Beauville
[6].
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Moreover there is a base-preserving bijection of the sets of the equivalence classes of coho-
mologically detectable irregular fibrations of X and Y of base-dimension equal to b. Such
bijection takes χ-positive fibrations to χ-positive fibrations.

Preliminaries: the linearity theorem of Green and Lazarsfeld. The relation
between the loci V i(X,ωX) and irregular fibrations follows from the following fundamental
theorem of Green and Lazarsfeld, with an addition of Simpson:

Theorem 2.3.4 ([33], [83]). Every irreducible component W of the loci V i(X,ωX) is a
linear subvariety, i.e. a translate of an abelian subvariety T ⊂ Pic0X by a torsion point.
More precisely, let π : AlbX → B := Pic0T be the dual quotient. This defines the
composed map f : X → B

X
aX //

f

##

AlbX

π
��
B

(2.18)

Then there is a torsion6 element α ∈ Pic0X such that

W = π̂(Pic0B) + α. (2.19)

Moreover,
dimX − dim f(X) ≥ i. (2.20)

Taking the Stein factorization of the map f , one gets a fibration g : X → S, where
S is a normal projective variety of maximal Albanese dimension, and a finite morphism
a : S → B such that a ◦ g = f . Therefore, in our terminology, g is an irregular fibration
of X. We will refer to it as the fibration of X induced by the component W of V i(X,ωX),
or also the fibration of X induced by the abelian subvariety T of Pic0X parallel to the
component W . In [69, Lemma 5.1], it is shown, in particular, the following

Proposition 2.3.5. The above abelian variety B is the Albanese variety of any non
singular model S ′ of S, and the morphism a, composed with the desingularization S ′ → S,
is an Albanese morphism of S ′. In particular W = π̂(Pic0S ′) + α.

In conclusion, for a non-singular representative g′ : X ′ → S ′ of the induced fibration,
we have the commutative diagram

X ′
aX′

++

g′

��

// X

g

��

aX
//

f

##

AlbX

π
��

S ′ //

aS′
33S a // AlbS ′

(2.21)

6This is due to Simpson.
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Preliminaries: standard components and (weakly)-χ-positive irregular fibra-
tions. We will suppose henceforth that X has maximal Albanese dimension. An
irreducible component W of V i(X,ωX) is said to be standard (see [69]) if there is equality
in (2.20), i.e.

dimX − dimS = i.

The relation between standard components and their induced fibrations is almost canon-
ical. This is the content of the following Lemma, inspired by [58, Theorem 16]. In the
statement we consider the following sets:
- A(X) denotes the set of abelian subvarieties T of the abelian variety Pic0X such that
some of their translates is a standard component of V i(X,ωX) for some index i (clearly
this can happen for only one index i, denoted i(T )).
- G(X) denotes the set of equivalence classes of weakly-χ-positive irregular fibrations of X.

Lemma 2.3.6. The function σ : A(X)→ G(X) taking an abelian subvariety to the class
of its induced fibration (see the above paragraph) is a bijection. Moreover,
(1) σ takes those abelian subvarieties which are themselves (standard) components of
V i(X,ωX) to the equivalence classes of χ-positive fibrations .
(2) the base-dimension of σ(T ) is ≤ dimT .

Proof. First, we need to prove that if T ∈ A(X), then its induced fibration g : X → S
is weakly-χ-positive. Let i = i(T ), and let W be a component verifying (2.19), with
T = Pic0B = Pic0S ′ (see Proposition 2.3.5 and (2.21)). By definition of standard compo-
nent, dimX − dimS = i. Thanks to Kollár vanishing theorem ([48, Theorem 2.1]) and
decomposition ([49, Theorem 3.1]), for a non-singular representative g′ : X ′ → S ′ of the
fibration g, one has that

V i(X ′, ωX′ ⊗ P−α) =
i⋃

j=0

π̂(V i−j(S ′, Rjg′∗(ωX′ ⊗ P−α))), (2.22)

where α ∈ Pic0X is the torsion point appearing in (2.19). Again by Hacon generic vanish-
ing theorem (Remark 2.1.4(1)) and an étale covering trick, codimPic0S′V

i−j(S ′, Rjg′∗(ωX′⊗
P−α) ≥ i− j. Since, as we see using also Proposition 2.3.5, the left hand side must contain
π̂(Pic0B) = π̂(Pic0S ′), we have

V 0(S ′, Rig′∗(ωX′ ⊗ P−α)) = Pic0S ′, (2.23)

i.e., by Remark 2.3.2,
χ(Rig′∗(ωX′ ⊗ P−α)) > 0.

This proves the desired assertion. By the same steps in the reverse order one proves that,
if g : X → S is a weakly-χ-positive irregular fibration such that dimX − dimS = i, then
(the equivalence class of) g induces standard components W in V i(X,ωX) as follows.
Assume that −α ∈ Pic0(g) is such that χ(Rig′∗(ωX′ ⊗ P−α)) > 0. Then

π̂(Pic0S ′) + α = π̂(V 0(S ′, Rig′(ωX′ ⊗ P−α))) + α
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is a standard component of V i(X,ωX). It is clear that the two constructions above are
inverse to each other. Properties (1) and (2) are clear.

Remark 2.3.7 (Cohomologically non-detectable fibrations). The above argument with
the Kollár decomposition also proves that a cohomologically non-detectable irregular fi-
bration g : X → S can’t be induced by a component W of V i(X,ωX) of dimension
≥ dimX − i. Indeed, for such a fibration, we have V 0(S ′, ωS′) = {0̂} because S is bira-
tional to an abelian variety. Therefore, since Pic0(g) = g′∗Pic0S ′, equality (2.23) can’t
hold. Since we know that (2.23) holds as soon as dimX − dimS = i, it follows that
dimX − dimS > i, i.e. a component W inducing such a fibration is non-standard.
Moreover, since dim AlbS ′ = dimS, for such a component

dimW < dimX − i. (2.24)

This explains the terminology cohomologically non-detectable irregular fibration: such a
fibration either it is not induced by any component of V i(X,ωX) for some i (as for example
the projections of a product of elliptic curves) or such a component is non-standard.

At the opposite end, χ-positive fibrations are the easiest to detect. The following
proposition shows that equivalence classes of χ-positive fibrations are derived invariants.

Proposition 2.3.8. Let X and Y be varieties of maximal Albanese dimension with equiv-
alent derived categories. Then there is a base-preserving bijection between the sets of
equivalence classes of χ-positive irregular fibrations of X and Y .

Proof. By Lemma 2.3.6, all χ-positive fibrations on a variety X of maximal Albanese di-
mension are induced by abelian subvarieties which are (standard) components of V i(X,ωX)
for some i. By Proposition 2.1.2(a), such components are contained in V 0(X,ωX), hence
in âfX (Pic0ZX) (Theorem 2.2.3(b)). Therefore χ-positive fibrations, as all fibrations in-
duced by components of V i(X,ωX) for some i, factor, up to equivalence, through the Iitaka

fibration X
fX→ ZX . But, by Orlov’s theorem, a derived equivalence ϕ : D(X) → D(Y )

induces an isomorphism of the canonical rings. Hence the bases of the Iitaka fibrations
ZX and ZY are birational. As we are considering equivalence classes of fibration, we can
assume that ZX = ZY := Z. Therefore the sets of equivalence classes of χ-positive irreg-
ular fibrations of X and Y are both naturally bijective with the set of equivalence classes
of χ-positive fibrations of Z.

Proof of Theorem 2.3.3.

Let us recall that b(X) denotes the minimal base-dimension of the cohomologically
detectable irregular fibrations of X. In general there is no easy way to distinguish the
standard components from the non-standard ones. However, we show that this can be
done in the locus V d−b(X)(X,ωX), and in this case the weakly χ-positive fibrations coin-
cide with the cohomologically detectable ones. In this way Theorem 2.3.3 follows from
Corollary H.
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Step 1. Assume that b(X) > 0.
(a) An irregular fibration g of base-dimension equal to b(X) is cohomologically detectable
if and only if it is weakly-χ-positive. Moreover, it is χ-positive if and only if its base is
not birational to an abelian variety.
(b) Conversely, every irreducible component W of V d−b(X)(X,ωX) such that dimW ≥
b(X) is standard. If this is the case the abelian subvariety parallel to W is also a component
of V d−b(X)(X,ωX) if and only if the corresponding fibration (via Lemma 2.3.6) is χ-
positive.

The argument for Step 1 is well known to the experts (see e.g. [68, proof of Lemma 4.2]).
We start with the following

Claim 2.3.9. Let g : X → S be a cohomologically detectable irregular fibration such that
dimX − dimS = i. Then, keeping the notation above, for at least one α ∈ Pic0(g), the
locus

V 0(S ′, Rig′∗(ωX′ ⊗ Pα)) (2.25)

is positive-dimensional.

Proof. We first observe that if α belongs to a component of Pic0(g) different from the
neutral one, then the locus (2.25) is positive dimensional. In fact, it must be non-empty
thanks to Proposition 2.1.2(b), and if it was 0-dimensional, this would induce via Remark
2.1.4(3) a (0-dimensional) component of the locus V q(S′)(Rig′∗(ωX′⊗Pα). This implies that
dimS ′ = q(S ′) and, via the ever-present Kollár decomposition as in (2.22), this would
induce some elements different from {0̂} in the locus V d(X,ωX), which is impossible.

Therefore we are left with the case when Pic0(g) is connected and V 0(S ′, ω′S) is zero-
dimensional (recall that Rig′∗ωX′ = ωS′). But this, by a Theorem of Ein-Lazarsfeld ([17,
Theorem 1.8]) is equivalent to the fact that S ′ is birational to an abelian variety, i.e. the
fibration would be non-detectable.

We now turn to Step 1(a). Let g : X → S be a cohomologically detectable fibration
with dimS = b(X). We claim that, if it is not weakly-χ-positive, then there is another
cohomologically detectable fibration of lower base-dimension factoring (up to equivalence)
through g, in contradiction with the definition of b(X). Let α ∈ Pic0(g) be as in the
Claim. Then, again by Remark 2.1.4(3), the irreducible components of codimension c,
with 0 < c < q(S ′), of (2.25) are also irreducible components of V c(S ′, Rig′∗(ωX′ ⊗ Pα)),
where i = d − dimS. Via the Kollár decomposition, they induce positive dimensional
components of the locus V i+c(ωX). Via the linearity theorem and Remark 2.3.7, such
a component induces another cohomologically detectable irregular fibration of X, say h,
with d − dimh(X) ≥ i + c = d − dimS + c. Hence dimh(X) ≤ dimS − c, as asserted.
This proves the direct implication of the first equivalence of (a). The other implication is
clear. Passing to the second equivalence, the direct implication is clear. Conversely, let
us suppose that the base is non-birational to an abelian variety. Then, by the Theorem of
Ein-Lazarsfeld as above, V 0(S ′, ωS′) is positive-dimensional. If it was strictly contained in
Pic0S ′, then, as above, its components would induce a cohomologically detectable fibration
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h of smaller base-dimension, against the definition of b(X). This completes the proof of
(a).

Passing to Step 1(b), let W be a positive-dimensional component of V d−b(X)(X,ωX) such
that dimW ≥ b(X). The statement to prove is that the induced fibration g has base-
dimension equal to b(X). If the base-dimension was < b(X) then, by definition of the
integer b(X), the fibration g would be cohomologically non-detectable. This means that
the base would be birational to an abelian variety of dimension < b(X), and therefore, by
(2.19), the component W would have dimension < b(X). The last assertion follows from
the second equivalence of (a) via Lemma 2.3.6. This concludes the proof of Step 1.

Step 2. Conclusion of the proof of Theorem 2.3.3. We make the following

Claim 2.3.10. b(X) > 0 if and only if dimV i(X,ωX) ≥ d − i for some 0 < i < d. If
b(X) > 0, then d−b(X) is the maximal index i with 0 < i < d such that dimV i(X,ωX) ≥
d− i.

Proof. Concerning the first equivalence, if b(X) > 0, then by (a) of Step 1 there is a
weakly-χ-positive fibration g of base dimension b(X), and therefore, by Lemma 2.3.6,
there is a component of V d−b(X)(X,ωX) of dimension ≥ b(X). The other implication
follows from Remark 2.3.7. The last assertion follows by the same reasons.

Now let X and Y be derived-equivalent varieties. By Claim 2.3.10 the integers b(X)
and b(Y) are respectively determined by the dimensions of the various loci V i(X,ωX) and
V i(Y, ωY ). Therefore, Corollary H yields that b(X) = b(Y ) := b. From Step 1, cohomo-
logically detectable fibrations of base dimension equal to b are weakly χ-positive and their
equivalence classes correspond to all components of dimension ≥ b of V d−b(X,ωX) and
such components are standard. Therefore by Lemma 2.3.6 they are in 1–1 correspondence
with the corresponding subset of abelian subvarieties of Pic0X. The same holds for Y .
Therefore by Corollary H the Rouquier isomorphism induces a bijection between the sets
of equivalence classes of cohomologically detectable fibrations of base dimension b on X
and Y .

It remains to prove that there is a bijection preserving, up to equivalence, the bases of
the fibrations.7 To begin, we note that the above-constructed bijection is base-preserving
on the subset of fibrations whose bases are birational to abelian varieties. Indeed, Step
1 shows that they correspond to components of dimension greater or equal than b of
V d−b(X,ωX) such that their parallel abelian varieties, namely g′∗Pic0S ′, are not compo-
nents of V d−b(X,ωX). The same holds for Y . The Rouquier isomorphism sends isomor-
phically such components of V d−b(X,ωX) to components of V d−b(Y, ωY ), say h′∗Pic0R′,
with the same property. Both S ′ and R′ are birational to abelian varieties, and their
Picard tori are isomorphic. Therefore S ′ is birational to R′. Concerning the remaining

7Our notion of equivalence of fibrations is weaker than Lombardi’s notion of isomorphism of irrational
pencils ([58]). However, as in Lombardi’s paper, it can be proved that the bijection of Theorem 2.3.3
is base-preserving not only up to equivalence, but also up to isomorphism of the bases of the Stein
factorizations of the maps f of (2.21).
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fibrations, namely those whose bases are not birational to abelian varieties, by Step 1(a)
they are χ-positive. Therefore Proposition 2.3.8 applies.8

8Here we are not claiming that this bijection coincides with the one constructed above, namely the
one induced by the Rouquier isomorphism. However this is true, but the proof of this fact requires some
tools not in use here.





Chapter 3

Stability of syzygy bundles on an
abelian variety

The content of this chapter is a joint work (in progress) with M. Lahoz. We will freely
use the notation and terminology of [39]. In particular, a (semi)stable sheaf is a Gieseker
(semi)stable sheaf.

We prove the following

Theorem 3.0.1 (= Theorem I of the Introduction). Let (X,L) be a polarized abelian
variety defined over an algebraically closed field k and let d ≥ 2. Then the syzygy bundle
MLd is semistable with respect to L.

When the line bundle L is clear from the context, for any d > 0 we may use the
notation Md := MLd . Moreover, given a sheaf F on X, we denote by F∗ = Hom(F ,OX)
the dual sheaf of F .

Remark 3.0.2 (Slope stability). If g! divides dg−1, where g = dimX, then the rank and
the degree of MLd are coprime,1 so semistability coincides with slope stability (see e.g. [39,
Lemma 1.2.14]). As already mentioned in the Introduction, this settles Ein-Lazarsfeld-
Mustopa conjecture ([27, Conjecture 2.6]) in the case of abelian varieties.

Remark 3.0.3 (Positive characteristic). If char k = p > 0, then we can conclude that
MLd is strongly slope semistable, if d ≥ 2, by [62, Theorem 2.1] (see also [51, Section 6]).

1Proof: let m := gcd(rk(Md),degL(Md)), where degL(Md) := (det(Md) ·Lg−1). Then, by the hypoth-
esis, m also divides the integer

−degL(Md)
dg−1

g!
=
dg

g!
(Lg) = h0(A,Ld) = rk(Md) + 1.

Here the equalities come from (3.2), Riemann-Roch, and (3.3), respectively. So m = 1.

56
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3.1 Proof of Theorem I

Let (X,L) be a polarized abelian variety of dimension g. If the polarization L is globally
generated, the syzygy bundle ML sits in the exact sequence

0→ML → H0(X,L)⊗OX → L→ 0, (3.1)

therefore

det(ML) = L∗, (3.2)

rk(ML) = h0(X,L)− 1 (3.3)

and, using Riemann-Roch, the slope of ML with respect to L is

µL(ML) =
(det(ML) · Lg−1)

rk(ML)
= − g!χ(X,L)

χ(X,L)− 1
.

3.1.1 Stability for simple abelian varieties

We have the following stronger version of Theorem I in the case of simple abelian varieties.

Proposition 3.1.1. Assume X simple and L globally generated. Then the syzygy bundle
ML is slope stable with respect to L.

Recall the following well known lemma:

Lemma 3.1.2. Let (X,L) be a polarized n-dimensional smooth variety over k. Let E be
a vector bundle on X. Suppose that for any integer r and any line bundle G on X such
that

0 < r < rk(E) and (G · Ln−1) ≥ r µL(E), (3.4)

one has
H0(X,ΛrE⊗G∗) = 0.

Then E is slope stable with respect to L.

Proof. If T is a non-trivial destabilizing subsheaf of E of rank r, then

µL(T ) =
(det(T ) · Ln−1)

r
≥ µL(E).

Therefore, by hypothesis, H0(X,ΛrE⊗ det(T )∗) = 0. Since det(T ) ⊆ ΛrE, we have

OX ⊆ ΛrE⊗ det(T )∗

and this gets a contradiction.
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If E satisfies the condition of Lemma 3.1.2, it is said to be cohomologically stable with
respect to L. In order to prove that a vector bundle is cohomologically stable, we will use
the following vanishing result of M. Green:

Lemma 3.1.3 ([30, Theorem 3.a.1], see also [20, Lemma 2.2]). Let L and Q be line
bundles on a smooth projective variety X, with L globally generated. If r ≥ h0(X,Q),
then

H0(X,ΛrML⊗Q) = 0.

Proof of Proposition 3.1.1. We want to prove that ML satisfies the hypothesis of Lemma
3.1.2, that is, ML is cohomologically stable. Let r > 0 and G satisfying Condition (3.4).
If h0(X,G∗) ≤ 1, then, by Green’s vanishing Lemma 3.1.3, we are done. Hence we assume

h0(X,G∗) > 1,

and, since X is simple, G∗ needs to be ample. Indeed, on a simple abelian variety every
non-trivial effective line bundle is ample.2 Now we can rewrite (G · Lg−1) ≥ rµL(ML) as

r ≥ χ(X,L)− 1

g!χ(X,L)
(G∗ · Lg−1).

Note that we have

(G∗ · Lg−1)g ≥ ((G∗)g)(Lg)g−1 = g!χ(X,G∗)(g!χ(X,L))g−1

where the first is the generalized Hodge-type inequality (see [53, Theorem 1.6.1 and Re-
mark 1.6.5]). So we obtain

r ≥ χ(X,L)− 1

g!χ(X,L)
(G∗ · Lg−1) ≥ χ(X,L)− 1

χ(X,L)
g
√
χ(X,G∗)(χ(X,L))g−1. (3.5)

If χ(X,G∗) ≥ χ(X,L), then (3.5) becomes r ≥ χ(X,L)− 1 contradicting r < rk(ML) in
Condition (3.4). Thus χ(X,L) > χ(X,G∗) and (3.5) becomes

r >
χ(X,L)− 1

χ(X,L)
χ(X,G∗) = χ(X,G∗)− χ(X,G∗)

χ(X,L)
.

Since χ(X,L) > χ(X,G∗), this is equivalent to r ≥ χ(X,G∗) = h0(X,G∗), where the
equality comes from the fact that G∗ has no higher cohomology, being ample ([65, §16]).
By Green’s vanishing Lemma 3.1.3, we are done.

Note that the proof is valid in any characteristic.

2Proof: Consider the homomorphism

φG∗ : X → X̂, x 7→ t∗x(G∗)⊗G

where tx : X → X is the translation morphism by the element x ∈ X. The connected component of
Ker(φG∗) containing 0 is an abelian subvariety of X, denoted by Ker(φG∗)0. If it is {0}, then G∗ is ample
(see [65], p. 60). Otherwise Ker(φG∗)0 = X, because X is simple. This means that G∗ ∈ Pic0X. Since
by hypothesis G∗ is effective, it is forced to be equal to OX and this gets a contradiction.
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3.1.2 Stability for non-simple abelian varieties

We start with the following remark. We thank Gerald E. Welters for pointing us the
argument in positive characteristic.

Remark 3.1.4. Given g > 0 and k an algebraically closed field, the set of (d1, . . . , dg)-
polarized simple abelian varieties of dimension g over k is dense in its moduli space Ag(k).

For fields k of characteristic 0, this is a classical result. In positive characteristic, we
can argue as follows. Given (X,L) an ordinary (d1, . . . , dg)-polarized abelian variety, the
set of (X ′, L′) isogenous to (X,L) is dense in the moduli space Ag(k) (see [16, Theorem
2, p. 477]). Hence, if we can produce an ordinary and simple abelian variety (X,L) over
k, we are done. In order to achieve that, we can reduce ourselves to the case of k = Fp,
since both properties are preserved by base change from Fp to our starting k. Finally,
from [37] we get the existence of ordinary and geometrically simple abelian varieties of
any dimension over Fp.

Let (X,L) be a polarized non-simple abelian variety of dimension g. Consider X → T
a family of abelian varieties polarized by a relatively ample line bundle L, such that
(X ,L)0

∼= (X,L), for 0 ∈ T . We will denote by

S := {s ∈ T | Xs is a simple abelian variety}

the corresponding dense subset in T .

Proof of Theorem 3.0.1. By Proposition 3.1.1, for any d ≥ 2 and any polarized simple
abelian variety (Xs,Ls), the corresponding syzygy bundle Md, as defined in (3.1), is slope
stable with respect to Ls. Let Pd(m) := χ(MLd ⊗Lm) be the Hilbert polynomial of MLd .
By [51, Theorem 0.2], we have a projective relative moduli space MX/T (Pd)→ T . Since

Md ∈MXs(Pd)
∼= MX/T (Pd)s

for any s ∈ S and S is dense in T , there is a family F ∈ MX/T (Pd) such that Fs = MLds
for s ∈ S, by the properness of the relative moduli space. Since S is dense, we have

dim Hom(F0,OX) ≥ h0(Xs,M∗
Lds) = h0(Xs,Lds) = h0(X,Ld),

by semicontinuity. Thus, we can consider the following commutative diagram with exact
rows

0 // F0
ψ //

� _

��

H0(X,Ld)⊗OX // Q //

��

0

0 // F∗∗0
// H0(X,Ld)⊗OX

η // Q∗∗

(3.6)

where ψ is injective, since it is generically of maximal rank and F0 is torsion-free, and
Q := cokerψ has the same numerical class of Ld. Let T (Q) ⊂ Q be the torsion subsheaf
of Q, and take the resulting short exact sequence

0→ T (Q)→ Q→ Q′ := Q/T (Q)→ 0. (3.7)
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We have that T (Q) = ker[Q→ Q∗∗] ∼= coker[F0 ↪→ F∗∗0 ] has codimension greater than or
equal to 2, because F0 is torsion-free. Therefore det(T (Q)) = OX and det(Q) = det(Q′)
(see e.g. [46, Chap. V, (6.14) and (6.9)]). Moreover, by applying Hom(·,OX) to (3.7), we
get

0→ (Q′)∗ → Q∗ → T (Q)∗,

and T (Q)∗ = 0 ([39, Proposition 1.1.6(i)]). Hence (Q′)∗∗ ∼= Q∗∗, and

det(Q′) = (det(Q′))∗∗ = det((Q′)∗∗) = det(Q∗∗),

where in the second equality we used that Q′ is torsion-free ([46, Chap. V, (6.12)]).
Being a reflexive sheaf of rank 1, Q∗∗ is a line bundle, and, by the above discussion, it is
algebraically equivalent to Ld, say Q∗∗ = Ld ⊗ α = t∗xL

d, for some α ∈ Pic0X and x ∈ X,
where tx : X → X is the translation by x. Thus the map η is surjective. If not, indeed,
we would have

0→ F∗∗0 → H0(X,Ld)⊗OX
η−→ IZ ⊗ t∗xLd → 0,

where Z ⊆ X is a closed subscheme. From our hypothesis on d, the (pullback along tx of
the) evaluation map for Ld is surjective, so the map η is forced to factor via a non-trivial
linear quotient V of H0(X,Ld):

0 // F∗∗0
// H0(X,Ld)⊗OX

η //

��

IZ ⊗ t∗xL // 0

V⊗OX // IZ ⊗ t∗xL // 0.

Hence, if we denote W := ker[H0(X,Ld) → V ], then W ⊗ OX ↪→ F∗∗0 . This contradicts
the fact that F∗∗0 is slope semistable with respect to L, because it has negative slope.
From the commutativity of the diagram (3.6), we get that the map Q→ Q∗∗ is surjective
too, and, since Q and Q∗∗ have the same numerical class, it is also injective. Therefore,
Q ∼= Q∗∗ and F0

∼= F∗∗0
∼= t∗xMLd . In particular, MLd is semistable.
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