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Abstract. Some conditional models to deal with circular longitudinal responses are proposed, extend-
ing random effects models to include serial dependence of Markovian form, and hence allowing for
quite general association structures between repeated observations recorded on the same unit. The
presence of both these components implies a form of dependence between them, and so a compli-
cated expression for the resulting likelihood. To handle this problem, we introduce an approximate
conditional mode and a full conditional model, with no assumption about the distribution of the time-
varying random effects. All of the discussed models are estimated by means of an EM algorithm for
nonparametric maximum likelihood.

Keywords. Hidden Markov models; Initial conditions; Finite mixtures; Conditional models.

1 The embedding approach

Let us introduce the random vector Y;;, foruniti=1,...,/attimet=1,...,T, following a d-dimensional
Normal distribution, with mean p;; and covariance matrix X, i.e. Y;; ~ Ny(pir, %). The random unit
vector
Uy, = Yi
el

is said to follow a projected Normal distribution, i.e. U; ~ PNy (i, X); see Wang and Gelfand (2013).
The general version of the projected normal distribution allows asymmetry and bimodality, i.e differ-
ent shapes can be modelled. However, the general projected normal distribution is not identified and
substantially increases the computational burden required in the estimation step. The distribution of U,
is unchanged if (p;,X) is replaced by (cp;,c>X) for any ¢ > 0, but this lack of identifiability can be
addressed imposing constraints on ¥. Wang and Gelfand (2013) suggest to set one of the variances in 3
to 1 to provide identifiability, resulting in a four-parameter distribution. Other constraints could be also
considered as e.g. restricting the determinant of 3 to equal 1.

The U, variable can be converted to an angular random variable, say ®;,, relative to some direc-

tion treated as 0. Indeed, any ®;, can be obtained from the radial projection of the bivariate normal
distribution by using the arctan* function defined by Jammalamadaka and SenGupta (2001; p. 13), i.e.
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®;; = arctan® <§’—ﬁ) = arctan” (%ﬁ) The following explicit relation exists between Y;; and the circular
variable ©;
Yir R;; cos 0
Y' — it — 1 ) 1 — R U
u |:Yit2 Rir sin eit it

Where Rit — ||Y11‘||

In the following, we will focus exclusively on the case X =1 and d = 2 (i.e. on circular data). If
in addition, p;; = 0, then U;, is uniformly distributed on the circle; otherwise the distribution of Uy is
unimodal and rotationally symmetric about its mean direction g, /||t ||. Indeed, departure from zero
for the two means, in the case of an identity covariance matrix, creates one mode in the trigonometric
quadrant with the same sign of the means, e.g. if ;1 > 0 and w;» < 0, where g, = (ui1, tir2), then the
mode is in the quadrant with positive cosine and negative sine.

The joint density f(0;,ri | pir,I) can be easily obtained by transforming the bivariate normal dis-
tribution of y;, to polar coordinates, i.e. f(0;,r; | pir,I) = f(riwi | pig, Drie and, thus, f(0; | pir,I) =
S f(8irsrir | i, D)drig = &(pirt, tir2; 0,X) + i1 €08 Oy + i sin Oy, i.e. 0 ~ PNy (payr, I), with ¢(-) denoting
the density function of the bivariate normal distribution.

In empirical applications, the angle ©;, is usually collected. However, as discussed above, we prefer
to work with its radial projections as the resulting model can be easily dealt with by using standard
regression modelling strategies. In other words, we model Y;, and focus our interest upon the parameter
vector u;, which is modelled, in a regression framework, by defining a multivariate linear mixed model,
as defined in the following sections.

2 The random effects model

The temporal evolution of the random effects can be conveniently described by including a vector of
time-varying random effects, say b; = (b;1,bi2). Regarding b;,’s distribution, we assume a (hidden)
Markov chain with states by = (bx1,br0),k = 1,...,K, initial probabilities Tty = Pr(b;; = by) = m; and
transition probability matrix IT = {7 j;, } with 7t; 4, = Pr(b; =by | b; 1 =by) =T, t > 1, i.e. Markov
chain’s parameters will be assumed independent on any covariates and shared among subjects.

The modelling framework is completed by defining the regression model (see also Maruotti et al.,
2016)
Mirj = X?tﬁj + bitj? .] = ]727
where x;; = (1,%i1,. .., Xiip,0i—1), Bj = (Boj; B1j,---,Bpj: Bpr1,;) represents the (p+2)-dimensional vec-
tor of regression parameters referred to the j-th projection and b; = (b;1,b;2) denotes a set of subject-
and projection-specific random effects. However, in order to easily implement the estimation steps, the
following multilevel specification can be considered

2
Mirj = Z dirj(x;, 8+ bir)
j=1
where we use a set of indicator variables d;;j, with dy;; = 1.Vi=1,... . I, =1,...,T, j = 1,2 iff the j-th
projection is to be modelled and O otherwise. Using a matrix notation

ki =X; 3" +b;
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where
Mirl * * /61 * bill
= . x, =T ®xg, = vec = , b =vec(by) = .
it [Uitj 1 it 20X, B (B) [,32] it (bir) [bit2:|

If the covariates are not the same for both projections, some of the elements of 3; would be set equal
to zero.

We would remark that the circular mean direction and concentration, i.e., the circular counterpart

of the mean and precision of a linear random variable, are respectively g; = arctan® (Z’—;?) and ¢; =
1

(v /2) Y2 exp(—yi) (o (Yir) + 11 (i) ), where y;; = ||pir||> /4 and I,(y) is the modified Bessel function of
the first kind of order v, see Wang and Gelfand (2013). Both z; and c¢;; depend on the means of the
projections hence the regression type specification of u;,; can adjust for change in mean direction and
concentration due to different levels of covariates.

2.1 Likelihood inference

Inference for the proposed model is based on the log-likelihood

1
() = Y log {ZZ [ﬂtbl, T 17,0 T T/ (i | xic, i) £ (80 ’XiO»biO)] }

i=1 bi bir t>1 t

with the sum };, extended to all possible configurations of b;; and where A is a short-hand notation
for all non-redundant parameters. However, inferences can be highly sensitive to misspecification of
f(8ip | Xi0,bjp). Thus, we rewrite the previous expression as

!
(A) = 2108{2‘ -y [ﬂ:bil (8i0) [ Tow b (8i0) [ £ (8t | xir, i) £ (6o | XiO)] }
i=1

bii b;r r>1 t

or equivalently

1
LN ]8i0) = Zlog{Z"'Z [ﬁbn(eio)nnbi,bi,_l(eiO)H.f(eit | Xifvbif)] }
i=1 bii  bir

>1 t

resulting in a conditional likelihood, where 7y, (8;0) and 7y, p, , (6i0) allows the random effects distri-
bution to dependent on ;.
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