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AN ASYMPTOTIC-PRESERVING ALL-SPEED SCHEME FOR
FLUID DYNAMICS AND NONLINEAR ELASTICITY\ast 
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Abstract. An implicit relaxation scheme is derived for the simulation of multidimensional
flows at all Mach numbers, ranging from very small to order unity. An analytical proof of the
asymptotic-preserving property is proposed and the divergence-free condition on the velocity in the
incompressible regime is respected. The scheme possesses a general structure, which is independent of
the considered state law and thus can be adopted to solve gas and fluid flows, but also deformations
of elastic solids. This is achieved by adopting the Jin--Xin relaxation technique in order to get a
linear transport operator. The spatial derivatives are thus independent of the equation of state
and an easy implementation of fully implicit time discretizations is possible. Several validations on
multidimensional tests are presented, showing that the correct numerical viscosity is recovered in
both the fully compressible and the low Mach regimes. An algorithm to perform grid adaptivity is
also proposed, via the computation of the entropy residual of the scheme.
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1. Introduction. In the propagation of flows of gases and of other compressible
materials, complex and nonstationary phenomena are generated. The complexity
is often related to the local stiffness of the involved media, to the geometry of the
physical problem, or to boundary and initial conditions. All these aspects can produce
waves propagating at very different speeds inside the considered materials, giving rise
to specific numerical problems.

The accurate simulation of these phenomena requires the construction of numeri-
cal schemes that are able to deal with different regimes. The Mach numberM is given
by the ratio between the flow velocity and the speed of sound, namely it measures
how much faster the acoustic waves are with respect to the flow velocity. In gas and
fluid dynamics, M is used to identify the regime of the considered flow, ranging from
fully compressible (local Mach number of order unity or higher) to incompressible
(very small local Mach number).

Standard explicit-upwind codes developed for the simulation of compressible flows
usually fail in approximating fluid flows or solid deformations at low speed. This is
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mainly due to the excessive numerical viscosity introduced on the slow waves by
an upwind Godunov-like spatial discretization when the Mach number of the flow
becomes small, as proved in [23, 22, 15]. Specifically, an upwind scheme on a Cartesian
grid leads to pressure fluctuations of order \scrO (M), while in the continuous case the
pressure fluctuations are of order \scrO 

\bigl( 
M2

\bigr) 
.

Moreover, when explicit methods are used to solve low Mach number flows, the
time step \Delta t becomes extremely small due to the enforcement of the CFL stabil-
ity condition. By imposing this constraint, \Delta t is roughly proportional to the Mach
number M :

(1.1) \Delta t \leq \Delta x

\lambda max
=

\Delta x

max| u\pm c| 
=M

\Delta x

max| u (M \pm 1) | 
,

\Delta x being the space step and \lambda max the fastest characteristic speed. For the Euler
system we have that \lambda max = u \pm c, c being the sound speed and u the velocity.
Consequently, compressible codes require an increasingly large computational time as
the incompressible regime is reached.

The derivation of all-speed solvers is motivated by all the above mentioned reasons.
In general, the purpose of an all-speed scheme is to handle both the compressible
regime and the incompressible one. To this end, the derivation of preconditioning
methodologies has been triggered by Chorin [11] and by Turkel [42, 43], proposing
a modification of the Roe matrix that moderates the numerical diffusion of upwind
schemes, inside a fully implicit time discretization [45]. More recent methods falling
in this category have been proposed in [32, 6, 44]. However, the main problem of
these techniques is related to the difficulty in handling the nonlinearities of classical
upwind discretizations (e.g., approximate Riemann solvers) within the fully implicit
time integration.

Numerical schemes based on low Mach asymptotics have been proposed by Klain-
erman and Majda [27, 28]. Klein adapted this technique to derive an operator splitting
into convection and pressure waves [29]. These methods have been derived for the low
Mach number regime, but they also have been the starting point for the development
of different all-speed schemes. These are mainly based on the separation of the fast
and slow scales that are respectively integrated in time explicitly and implicitly in an
IMEX logic, producing stability conditions on \Delta t that are independent of the Mach
number. Some examples may be found in [8, 9, 14, 12, 36, 16].

Klainerman and Majda have also shown that solutions of the compressible Euler
equations converge to the solutions of the incompressible Euler equations as the Mach
number tends to zero [27]. The asymptotic-preserving (AP) property is a consistency
criterion for numerical schemes that have to deal with these two regimes. This prop-
erty was first introduced by Jin in [25]: a scheme is AP if its lowest order multiscale
expansion is a consistent discretization of the incompressible limit. Thus, an AP
scheme for the Euler equations should provide a consistent and stable discretization
independently of the Mach number. In the fully compressible regime, it should pos-
sess the desirable features of a compressible solver (e.g., good resolution of shocks
and discontinuities and nonoscillatory solution profiles). Moreover, it should provide
a consistent discretization of the incompressible equations when M \rightarrow 0.

In the present work, our interest is the numerical simulation of flows with Mach
numbers ranging from the incompressible limit to compressible regimes with M \simeq 
\scrO (1). To this end, we have derived in [2] an implicit all-speed scheme, which is
here extended for the accurate solution of multidimensional flows. Moreover, its AP
property is proved analytically and numerically. The scheme has a general formulation
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that can be adopted without any structural modification for the simulation of waves
propagating inside materials with different behavior, such as fluids and elastic solids.
The ability of the scheme in dealing with very general equations of state (EOS) is
achieved by adopting the Jin--Xin relaxation technique [26]. With this method, the
fluxes are relaxed at the continuous level and a linear transport operator is obtained:
this avoids a direct dependence of the spatial derivatives on the specific EOS. The
second advantage consists in the fact that Riemann solvers are not necessary and
fully implicit time integrators are easily implemented. This allows us to get rid of
the acoustic stability constraint (1.1), avoiding the requirement of a time stepping
decreasing as M \rightarrow 0, which would enormously increase the computational effort.
The spatial discretization is built by a suitable combination of upwind and centered
fluxes, in order to recover the correct viscosity at all speeds. The ability of the
scheme in moderating the numerical viscosity with respect to standard explicit-upwind
methods is here investigated by solving the Gresho vortex test and also different two-
dimensional (2D) Riemann problems involving material waves. Moreover, we propose
an adaptive mesh refinement (AMR) algorithm, specifically designed for this all-speed
scheme. We build a numerical estimate of the scheme entropy production and use it as
an error indicator to drive the mesh refinement and coarsening. This estimate is also
useful to assess the fact that the all-speed discretization is superior in approximating
the different waves with respect to standard upwind-like schemes.

The structure of the paper is the following. In section 2 we briefly revise the
asymptotic analysis of the Euler equations for fluid dynamics. The 2D all-speed
relaxation scheme is presented in section 3. Then, the AP property is analytically
proved in section 4. The scheme is validated on fluid dynamics tests in section 5, where
we also describe the AMR algorithm based on the entropy residual for the all-speed
scheme. Then, the scheme is extended to solve nonlinear elasticity problems in section
6, where two different limits occurring in elastic solids are analyzed. Conclusions are
drawn in section 7.

2. Asymptotic analysis of the continuous Euler equations. Let us con-
sider the 2D Euler system:

(2.1)

\left\{     
\partial t\rho +\nabla x \cdot (\rho u) = 0,

\partial t (\rho u) +\nabla x \cdot (\rho u\otimes u+ pI) = 0,

\partial t (\rho e) +\nabla x \cdot ((\rho e+ p)u) = 0,

\rho being the density, u the velocity field, p the pressure, I the identity matrix, and e
the total energy per unit mass, which is given by the sum of the kinetic energy and
the internal energy per unit mass \epsilon :

(2.2) e =
1

2
| u| 2 + \epsilon .

For fluid dynamics problems, we consider the following state law, which extends the
applicability of the ideal gas EOS:

(2.3) \epsilon (\rho , s) =
\kappa (s)

\gamma  - 1
\rho \gamma  - 1 +

p\infty 
\rho 

=
p+ \gamma p\infty 
\rho (\gamma  - 1)

.

The internal energy is written as a function of the density and the entropy s and we
have used the definition of the pressure for the second equality (see [46, 31]). Here,
\gamma = cp/cv is the polytropic gas constant, \kappa (s) = exp ((s - s0) /cv) with s0 reference
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entropy and p\infty is a constant describing the intermolecular interactions, typical of
stiffened gases, liquids, and also some solids. The perfect gas EOS is recovered by
setting p\infty = 0. The general formulation for the speed of sound reads as follows:

(2.4) c =

\sqrt{} 
\partial p

\partial \rho 

\bigm| \bigm| \bigm| \bigm| 
s=const

=

\sqrt{} 
\gamma (p+ p\infty )

\rho 
.

We now briefly revise the analysis of the low Mach number regime in fluid dy-
namics. For simplicity of notation, we consider a perfect gas, i.e., p\infty = 0.

2.1. Nondimensional Euler system. To write the nondimensional Euler sys-
tem, we follow Klainerman and Majda's works [27, 28] by decomposing each quantity
into a product of a reference value (denoted with the subscript \ast ) and a dimensionless
number (denoted with\widehat \cdot ), e.g., \rho = \rho \ast \widehat \rho for the density. The reference value is a ``scal-
ing"" factor and it should be chosen in such a way that the dimensionless value is of
order one. In this perspective, the reference pressure p\ast is defined with the reference
sound speed c\ast =

\sqrt{} 
p\ast /\rho \ast (see definition (2.4)), which is also used in the scaling of

the energy.
After some simple algebraic manipulations, most of the reference quantities cancel

out, leading to the nondimensional Euler system (we omit the hat notation \widehat \cdot for the
sake of simplicity): \left\{       

\partial t\rho + div (\rho u) = 0,(2.5)

\partial t (\rho u) + div (\rho u\otimes u) +
1

M2
\nabla p = 0,(2.6)

\partial t (\rho e) + div ((\rho e+ p)u) = 0.(2.7)

The nondimensional Euler system depends only on a single nondimensional refer-
ence quantity. This is the reference Mach number, defined as the ratio between the
reference flow velocity and the reference sound speed as follows:

(2.8) M =
u\ast 

c\ast 
.

The nondimensional state law takes the following formulation:

(2.9) p = (\gamma  - 1)

\biggl[ 
\rho e - M2

2
\rho | u| 2

\biggr] 
.

2.2. Low Mach number asymptotics. In order to analyze the asymptotic
behavior of the Euler equations in the zero Mach number limit, we perform an ex-
pansion of the scaled variables in terms of the Mach number [23]. The density is
expanded as follows:

(2.10) \rho = \rho 0 +M\rho 1 +M2\rho 2 +\scrO 
\bigl( 
M3

\bigr) 
,

and all other variables are developed in the same way. The terms of zeroth order
(subscript \cdot 0) represent the zero Mach number limit. By inserting this expansion in
the scaled system (2.5)--(2.6)--(2.7) and collecting terms with equal powers of M , one
obtains

\bullet order \scrO 
\bigl( 
1/M2

\bigr) 
,

(2.11) \nabla p0 = 0;
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\bullet order \scrO (1/M),

(2.12) \nabla p1 = 0;

\bullet order \scrO (1), \left\{     
\partial t\rho 0 +\nabla \cdot (\rho 0u0) = 0,(2.13)

\partial t (\rho 0u0) +\nabla \cdot (\rho 0u0 \otimes u0) +\nabla p2 = 0,(2.14)

\partial t (\rho e)0 +\nabla \cdot ((\rho e)0 u0 + p0u0) = 0,(2.15)

with the first order of the state law

(2.16) p0 = (\gamma  - 1) (\rho e)0 .

Relations (2.11) and (2.12) prove that the pressure is constant in space up to
fluctuations of order M2. Hence, we can write the following pressure asymptotic:

(2.17) p (x, t) = P0 (t) +M2p2 (x, t) ,

where P0 (t) is a thermodynamic pressure constant in space. In the presence of open
boundaries, the thermodynamic pressure P0 is imposed to be equal to the exterior
pressure Pext. For the sake of simplicity, we assume that the exterior pressure does
not change in time, i.e., P0 is constant in both space and time. From (2.16), we
deduce that also the energy is constant in space and time and the incompressibility
constraint \nabla \cdot u0 = 0 is easily derived.

Introducing this constraint into the continuity equation (2.13), the material de-
rivative of the density is zero D\rho 

Dt = 0. This means that the density is constant along
a trajectory of any fluid element. Therefore, when the incompressibility constraint is
respected, the density of the fluid is constant in time and space, i.e., \rho 0 = const, in
the case where the initial density of the fluid is constant in space.

With the study of the asymptotics carried out above, system (2.13)--(2.14)--(2.15)
reduces to the incompressible Euler system in its nondimensional form. This system
is the zero Mach number limit of the compressible Euler system and reads as follows:

(2.18)

\left\{     
\rho 0 = const,

\rho 0 (\partial tu0 + (u0 \cdot \nabla )u0) +\nabla p2 = 0,

\nabla \cdot u0 = 0.

3. Implicit relaxation all-speed scheme. To allow for an efficient and robust
numerical procedure, we adopt the multidimensional Jin--Xin relaxation approach [26]:
a linear hyperbolic relaxation system is built to approximate the original system (here
the Euler system (2.1)) with a small dissipative correction. Thanks to the linearity
of the advection terms, the spatial derivatives lose their dependence on the state law.
Numerical schemes are then derived in a general formulation that is not related to
the EOS of a given material. Nonlinear terms appear only in the right-hand side
of the relaxation system, thus only diagonal terms are interested by the need of a
linearization in the discretization process.

A fully implicit time integration of the relaxation system is proposed. Thus,
acoustic CFL constraints are not required and a centered spatial discretization of the
stiff parts when the M \rightarrow 0 can be adopted, without stability issues. This is crucial
to get the correct numerical viscosity in the low Mach number regime.
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3.1. The Jin--Xin relaxation. Letting x = (x1, x2) be the coordinates in the
canonical basis of \BbbR 2, u = (u1, u2) the velocity components, system (2.1) may be
rewritten in a general compact form in the following way:

(3.1) \partial t\bfitpsi + \partial x1
F (\bfitpsi ) + \partial x2

G (\bfitpsi ) = 0,

where we have adopted the directional splitting of the flux function, with \bfitpsi \in \BbbR n and
F (\bfitpsi ) , G (\bfitpsi ) \in \BbbR n. This is a system of n equations, with (x, t) \in 

\bigl( 
\BbbR d,\BbbR +

\bigr) 
, with

d = 2. In our case, we have n = 4 and the conservation variables and the fluxes along
the two directions read as follows:

(3.2) \bfitpsi =

\left[    
\rho 
\rho u1
\rho u2
\rho e

\right]    , F (\bfitpsi ) =

\left[    
\rho u1

\rho u21 + p
\rho u1u2

(\rho e+ p)u1

\right]    , G (\bfitpsi ) =

\left[    
\rho u2
\rho u1u2
\rho u22 + p

(\rho e+ p)u2

\right]    .
The corresponding Jin--Xin relaxation system is constructed by introducing two

vectors containing the relaxation variables v \in \BbbR n and w \in \BbbR n in the two directions,
approximating the fluxes F (\bfitpsi ) and G (\bfitpsi ), respectively. The relaxation system of
dimension n\times (d+ 1) takes the following formulation:

(3.3)

\left\{         
\partial t\bfitpsi + \partial x1

v + \partial x2
w = 0,

\partial tv +A1\partial x1
\bfitpsi =

1

\eta 
(F (\bfitpsi ) - v) ,

\partial tw +A2\partial x2\bfitpsi =
1

\eta 
(G (\bfitpsi ) - w) .

The small positive parameter \eta is called the relaxation rate. The right-hand sides of
the second and third equations are stiff source terms and are the only nonlinear parts
of the system. The state law dependence is given by the fluxes in the sources, thus
the EOS expression does not enter in the resulting linear transport operator.

The relaxation matrices A1 and A2 are positive diagonal matrices and are chosen
by enforcing the subcharacteristic condition [34, 46]:

(3.4) A1  - F\prime (\bfitpsi )
2 \geq 0 and A2  - G\prime (\bfitpsi )

2 \geq 0 \forall \bfitpsi .

Specifically, we construct these matrices by a priori estimating the wave speeds \lambda i of
the original system (2.1). In the simplified case of A = A1 = A2 = diag\{ ai\} , the
eigenvalues of the relaxation system are computed as

(3.5) \mu j = \pm 
\surd 
ai, i = 1, ..n, j = 1, ..2n,

thus having \mu 1 \geq max| u  - c| , \mu 2 = \mu 3 \geq max| u| , and \mu 4 \geq max| u + c| for the Euler
system (for more details on the construction of the relaxation matrices see [2]). We
remark that the relaxation is performed direction by direction, namely the equations
on the relaxation variables are 1D problems.

The relaxation system (3.3) approximates the original system (3.1). This can be
shown by applying the Chapman--Enskog expansion of the variables for small \eta [10]:

(3.6)

\Biggl\{ 
v = v0 + \eta v1 +\scrO 

\bigl( 
\eta 2
\bigr) 
,

w = w0 + \eta w1 +\scrO 
\bigl( 
\eta 2
\bigr) 
.
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At leading order \scrO \eta (1) (zero relaxation limit \eta \rightarrow 0), the original system is easily
recovered, with the relaxation variables identically equal to the fluxes:

(3.7)

\left\{     
v0 = F (\bfitpsi ),

w0 = G (\bfitpsi ),

\partial t\bfitpsi + \partial x1
F (\bfitpsi ) + \partial x2

G (\bfitpsi ) = 0.

The state satisfying (3.7) is called local equilibrium. Then, after some manipulations,
the following first order approximation in expansion (3.6) is obtained:

(3.8)

\left\{                   

v1 =  - 
\Bigl( 
A1  - F\prime (\bfitpsi )

2
\Bigr) 
\partial x1
\bfitpsi ,

w1 =  - 
\Bigl( 
A2  - G\prime (\bfitpsi )

2
\Bigr) 
\partial x2\bfitpsi ,

\partial t\bfitpsi + \partial x1
F (\bfitpsi ) + \partial x2

G (\bfitpsi ) = \eta 
\Bigl[ 
\partial x1

\Bigl( \Bigl( 
A1  - F\prime (\bfitpsi )

2
\Bigr) 
\partial x1
\bfitpsi 
\Bigr) 

+ \partial x2

\Bigl( \Bigl( 
A2  - G\prime (\bfitpsi )

2
\Bigr) 
\partial x2
\bfitpsi 
\Bigr) \Bigr] 
,

where F\prime (\bfitpsi ) and G\prime (\bfitpsi ) are the Jacobian matrices of the flux functions. It is ev-
ident that satisfying the subcharacteristic condition (3.4) amounts to ensuring the
dissipative nature of system (3.8).

3.2. Numerical discretization. The derivation of the scheme is here extended
to solve 2D problems. System (3.3) is discretized with finite volumes on a Cartesian
mesh. The first reason for this choice is due to the fact that the parallelization is
very efficient on this kind of grid. Moreover, on a Cartesian grid, the direction-by-
direction relaxation approximation (3.3) is easily discretized. As pointed out above,
this produces 1D problems on the relaxation variables.

3.2.1. Implicit time discretization. We adopt a fully implicit integration in
time with the aim of avoiding the acoustic CFL constraint (1.1). The resulting scheme
possesses a general structure, with a time integrator that is not based on the specific
EOS. Letting \Delta t = tn+1  - tn be the time stepping, the implicit discretization at first
order is a simple backward Euler scheme and reads

(3.9)

\left\{               

\bfitpsi n+1  - \bfitpsi n

\Delta t
+ \partial x1v

n+1 + \partial x2w
n+1 = 0,

vn+1  - vn

\Delta t
+A1\partial x1

\bfitpsi n+1 =
1

\eta 

\bigl( 
F
\bigl( 
\bfitpsi n+1

\bigr) 
 - vn+1

\bigr) 
,

wn+1  - wn

\Delta t
+A2\partial x2\bfitpsi 

n+1 =
1

\eta 

\bigl( 
G

\bigl( 
\bfitpsi n+1

\bigr) 
 - wn+1

\bigr) 
.

The nonlinear fluxes in the right-hand sides are solved with one iteration of the
Newton's method, which is enough to obtain convergence for the proposed first order
scheme. The resulting approximation consists in a Taylor expansion,

(3.10) F
\bigl( 
\bfitpsi n+1

\bigr) 
\simeq F (\bfitpsi n) + F\prime (\bfitpsi n)

\bigl( 
\bfitpsi n+1  - \bfitpsi n

\bigr) 
,

and the same holds for G (\bfitpsi ). F\prime (\bfitpsi n) and G\prime (\bfitpsi n) are the Jacobians of the fluxes in
the two directions and can be computed analytically. Linearization (3.10) introduces
a coupling among all the equations and the following linear system is obtained:

(3.11)

\left\{     
L\Psi n+1 +MVn+1 +NWn+1 = r,

P\Psi n+1 +QVn+1 = s\bfone ,

T\Psi n+1 +UWn+1 = s\bftwo ,
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where \Psi n+1, Vn+1, and Wn+1 are the vectors containing the grid point values of the
conservative and relaxation variables and the matrices structure is given by the spa-
tial discretization (see section 3.2.2). Relation (3.10) implies that the Jacobians enter
only on the diagonal terms of the submatrices of P and T. The full linear system is
solved with the GMRES iterative solver implemented in the PETSc library [5].

Scheme (3.9) is fully implicit and thus unconditionally stable (see [2]). Never-
theless, \Delta t has to be chosen accordingly to the desired accuracy. If the aim is the
accurate resolution of material waves, the enforcement of a material CFL condition is
recommended. The material Courant number is defined on the speed of the material
wave as \nu mat = \mu mat\Delta t/\Delta x, where we use the ``material"" eigenvalue of the relaxation
system \mu mat =

\surd 
amat \geq max| u| , with \mu j defined in (3.5). A material CFL condi-

tion is enforced by setting \nu mat \leq 1. This way the problem of a Mach-dependent
\Delta t shown by relation (1.1) is avoided. On the other hand, since the material CFL
does not depend on the speed of the fast waves, these waves are not captured in the
low Mach limit. If an accurate resolution also of the acoustic waves is required, a
standard acoustic CFL has to be enforced, adapting relation (1.1) to the relaxation
system. This gives \nu ac = \mu max\Delta t/\Delta x, where \mu max =

\surd 
amax \geq max| u+ c| .

3.2.2. All-speed spatial discretization. Let \Delta xl be the grid spacing in the
xl direction and \Omega ij the control volume centered in the node (i\Delta x1, j\Delta x2). For a
generic variable h, hij denotes the approximate cell average of the variable in the cell
Cij =

\bigl[ 
xi - 1/2,j , xi+1/2,j

\bigr] 
\times 

\bigl[ 
xi,j - 1/2, xi,j+1/2

\bigr] 
and hi+1/2,j denotes the approximate

point value at the cell interface xi+1/2,j . The spatial discretization of (3.3) reads

(3.12)

\left\{             
\partial t\bfitpsi ij +

vi+1/2,j  - vi - 1/2,j

\Delta x1
+

wi,j+1/2  - wi,j - 1/2

\Delta x2
= 0,

\partial tvij +A1

\bfitpsi i+1/2,j  - \bfitpsi i - 1/2,j

\Delta x1
=

1

\eta 

\bigl( 
F
\bigl( 
\bfitpsi ij

\bigr) 
 - vij

\bigr) 
,

\partial twij +A2

\bfitpsi i,j+1/2  - \bfitpsi i,j - 1/2

\Delta x2
=

1

\eta 

\bigl( 
G

\bigl( 
\bfitpsi ij

\bigr) 
 - wij

\bigr) 
.

The numerical fluxes in (3.12) are computed by constructing a convex combination
of upwind and centered schemes. This is based on the local Mach number of the flow
Mloc. For a generic variable h this yields

(3.13) hi+1/2,j = f (Mloc)
\bigl( 
hi+1/2,j

\bigr) 
upw

+ (1 - f (Mloc))
\bigl( 
hi+1/2,j

\bigr) 
cent

.

The same holds for direction x2. The function f (Mloc) has to satisfy 0 \leq f (Mloc) \leq 
1 (in the numerical experiments we choose f (Mloc) = min\{ 1,Mloc\} ) and Mloc is
computed at the previous time step at the numerical interface xi+1/2,j . This allows
us to recover the correct numerical viscosity for each considered regime [2, 3].

The numerical fluxes with the centered scheme are computed as follows:

(3.14)
\bigl( 
hi+1/2,j

\bigr) 
cent

=
1

2
(hi+1,j + hij) .

This discretization is stable inside the adopted fully implicit framework. Since we
are centering all conservative and relaxation variables, the pressure gradients result
to be discretized with central differencing, thus providing the correct Mach scaling
[15]. The upwind scheme is built along the characteristic variables of the relaxation
system, as in [26], getting the following numerical fluxes along direction x1:

(3.15)

\left\{   
\Bigl( 
\bfitpsi i+1/2,j

\Bigr) 
upw

= 1
2

\bigl( 
\bfitpsi i+1,j +\bfitpsi ij

\bigr) 
 - 1

2A
 - 1/2
1 (vi+1,j  - vij) ,\bigl( 

vi+1/2,j

\bigr) 
upw

= 1
2 (vi+1,j + vij) - 1

2A
1/2
1

\bigl( 
\bfitpsi i+1,j  - \bfitpsi ij

\bigr) 
.
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The full 2D implicit all-speed scheme then reads
(3.16)\left\{                                         

\bfitpsi n+1
ij  - \bfitpsi nij

\Delta t
+

1

2\Delta x1

\bigl( 
vn+1
i+1,j  - vn+1

i - 1,j

\bigr) 
 - f (Mloc)A

1/2
1

2\Delta x1

\bigl( 
\bfitpsi n+1
i+1,j  - 2\bfitpsi n+1

ij +\bfitpsi n+1
i - 1,j

\bigr) 
+

1

2\Delta x2

\bigl( 
wn+1
i,j+1  - wn+1

i,j - 1

\bigr) 
 - f (Mloc)A

1/2
2

2\Delta x2

\bigl( 
\bfitpsi n+1
i,j+1  - 2\bfitpsi n+1

ij +\bfitpsi n+1
i,j - 1

\bigr) 
= 0,

vn+1
ij  - vnij

\Delta t
+

A1

2\Delta x1

\bigl( 
\bfitpsi n+1
i+1,j  - \bfitpsi 

n+1
i - 1,j

\bigr) 
 - f (Mloc)A\bfone 

1/2

2\Delta x1

\bigl( 
vn+1
i+1,j  - 2vn+1

ij + vn+1
i - 1,j

\bigr) 
=

1

\eta 

\bigl( 
F
\bigl( 
\bfitpsi n+1
ij

\bigr) 
 - vn+1

ij

\bigr) 
,

wn+1
ij  - wn

ij

\Delta t
+

A2

2\Delta x2

\bigl( 
\bfitpsi n+1
i,j+1  - \bfitpsi 

n+1
j,i - 1

\bigr) 
 - f (Mloc)A

1/2
2

2\Delta x2

\bigl( 
wn+1
i,j+1  - 2wn+1

ij +wn+1
i,j - 1

\bigr) 
=

1

\eta 

\bigl( 
G

\bigl( 
\bfitpsi n+1
ij

\bigr) 
 - wn+1

ij

\bigr) 
.

4. The asymptotic-preserving property. The AP property is defined con-
sidering a continuous physical model \scrS M (in our case the compressible Euler system
(2.1)) that involves a perturbation parameter M (the acoustic Mach number). The
perturbation parameter can range from M \simeq 1 to M \ll 1 values. In the Euler case,
there exists a reduced system \scrS 0, which is the limit system of \scrS M as M \rightarrow 0, i.e., \scrS 0
is the incompressible system (2.18). Then, let \scrS \Delta M be a numerical scheme providing
a consistent discretization of \scrS M , with discrete time and space steps \Delta = (\Delta t,\Delta x).
The scheme \scrS \Delta M is said to be AP if the two following properties are verified [25]:

1. its stability condition is independent of M , namely the time step \Delta t does not
depend on the Mach number of the flow;

2. as M goes to zero, there exists the limit discrete \scrS \Delta 0 , which provides a con-
sistent discretization of the continuous limit system \scrS 0.

Here we show that scheme (3.16) is AP. Property 1 is satisfied, since the scheme
is fully implicit and thus unconditionally stable. In order to prove that property 2 is
respected, we write the limit discrete scheme \scrS \Delta 0 as M \rightarrow 0 of the implicit relaxation
scheme and show that it is consistent with the continuous limit model \scrS 0.

In what follows, we begin with the nondimensionalization of the scheme and then
we carry out the analysis of its asymptotics. We expose the reasoning on the time
semidiscrete scheme (3.9) for readability. The extension to the full time and space
discretization is straightforward.

4.1. Nondimensional implicit relaxation scheme. In deriving the nondi-
mensional implicit relaxation scheme, we adopt the same notation of section 2.1.
Here, we also have to scale the relaxation variables v and w: due to the relaxation
leading order (3.7), these variables have the same physical dimensions of the fluxes
F (\bfitpsi ) and G (\bfitpsi ) defined in (3.2). By considering the pressure as predominant, we
choose to scale v2 and w3 using the speed of sound. Thus, we obtain the following
nondimensional formulation of the semidiscrete scheme (3.9) (we omit from now on
the subscript \widehat \cdot for simplicity of notation):

1. The nondimensional conservation of mass, setting z1 = [v1, w1]
T
, reads

(4.1)

\left\{     
\rho n+1  - \rho n +\Delta t\nabla \cdot zn+1

1 = 0,

zn+1
1  - zn1 + a1\Delta t\nabla \rho n+1 =

\Delta t

\eta 

\Bigl( 
(\rho u)

n+1  - zn+1
1

\Bigr) 
.
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2. The nondimensional conservation of momentum is given by the two parts:
(4.2)\left\{               

(\rho u1)
n+1  - (\rho u1)

n
+\Delta t

\biggl( 
\partial x1

vn+1
2

M2
+ \partial x2

wn+1
2

\biggr) 
= 0,

vn+1
2  - vn2
M2

+ a2\Delta t\partial x1
(\rho u1)

n+1
=

\Delta t

\eta 

\biggl( \bigl( 
\rho u21

\bigr) n+1
+
pn+1

M2
 - vn+1

2

M2

\biggr) 
,

wn+1
2  - wn2 + a2\Delta t\partial x2 (\rho u1)

n+1
=

\Delta t

\eta 

\Bigl( 
(\rho u1u2)

n+1  - wn+1
2

\Bigr) 
,

(4.3)\left\{               

(\rho u2)
n+1  - (\rho u2)

n
+\Delta t

\biggl( 
\partial x1

vn+1
3 +

\partial x2
wn+1

3

M2

\biggr) 
= 0,

vn+1
3  - vn3 + a3\Delta t\partial x1

(\rho u2)
n+1

=
\Delta t

\eta 

\Bigl( 
(\rho u1u2)

n+1  - vn+1
3

\Bigr) 
,

wn+1
3  - wn3
M2

+ a3\Delta t\partial x2
(\rho u2)

n+1
=

\Delta t

\eta 

\biggl( \bigl( 
\rho u22

\bigr) n+1
+
pn+1

M2
 - wn+1

3

M2

\biggr) 
.

3. Setting z4 = [v4, w4]
T
, the nondimensional conservation of energy is given by

(4.4)\left\{     
(\rho e)

n+1  - (\rho e)
n
+\Delta t\nabla \cdot zn+1

4 = 0,

zn+1
4  - zn4 + a4\Delta t\nabla (\rho e)

n+1
=

\Delta t

\eta 

\Bigl( \Bigl( 
(\rho e)

n+1
+ pn+1

\Bigr) 
un+1  - zn+1

4

\Bigr) 
,

with the scaled state law

(4.5) pn+1 = (\gamma  - 1)

\biggl( 
(\rho e)

n+1  - M2

2
\rho n+1| u| n+1

\biggr) 
.

4.2. Asymptotics of the implicit relaxation scheme. In the spirit of study-
ing the low Mach number asymptotics, we develop all scaled variables, i.e., both con-
servative and relaxation variables, in powers of the Mach number, as done in (2.10).
The expansion of the scaled relaxation variable v1 reads as follows:

(4.6) (v1)
n+1

=
\Bigl( 
v0,\=\eta 1

\Bigr) n+1

+M
\Bigl( 
v1,\=\eta 1

\Bigr) n+1

+M2
\Bigl( 
v2,\=\eta 1

\Bigr) n+1

+\scrO 
\bigl( 
M3

\bigr) 
,

where we have introduced the notation with two superscripts, the first one indicating
the order in the power ofM and the second one indicating the order in the power of \eta .
Here, we are keeping \eta = \=\eta fixed. Terms of zeroth order (superscript \cdot 0,\eta =0) represent
the zero Mach number limit in the zero relaxation limit. Relaxation variables may be
expanded also in powers of \eta , as in a Chapman--Enskog expansion (3.6). One could
then combine expansions (4.6) and (3.6) and write a full expansion for v and w in
powers of both M and \eta . The expansion for v1 reads

(v1)
n+1

=
\Bigl( 
v0,01

\Bigr) n+1

+ \eta 
\Bigl( 
v0,11

\Bigr) n+1

+M

\biggl( \Bigl( 
v1,01

\Bigr) n+1

+ \eta 
\Bigl( 
v1,11

\Bigr) n+1
\biggr) 

+M2

\biggl( \Bigl( 
v2,01

\Bigr) n+1

+ \eta 
\Bigl( 
v2,11

\Bigr) n+1
\biggr) 
+\scrO 

\bigl( 
M3

\bigr) 
+\scrO 

\bigl( 
\eta 2
\bigr) 
.

(4.7)

By setting M = 0 and \eta = 0, the incompressible Euler system can be recovered.
Since we need to preserve the low Mach number behavior in the expansions

introduced above, we require that \eta \ll M . This is necessary to recover the cor-
rect zero relaxation limit (i.e., v = F (\bfitpsi )+\scrO (\eta ) and w = G (\bfitpsi )+\scrO (\eta ) as presented
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in section 3.1) also in the case of M \rightarrow 0. More precisely, we require that \eta < M2, in
order to preserve the terms of order \scrO 

\bigl( 
M2

\bigr) 
and \scrO (M) when substituting expansion

(4.7) in the nondimensional scheme. These terms cannot be canceled if we want to
analyze the low Mach number regime.

We begin by substituting expansion (4.6) in powers of M in the scaled relaxation
scheme (4.1)--(4.2)--(4.3)--(4.4) and we collect terms of equal power of M :

1. order \scrO M
\bigl( 
1/M2

\bigr) 
:

(4.8)

\left\{     
\partial x1

\Bigl( 
v0,\=\eta 2

\Bigr) n+1

= 0,\Bigl( 
v0,\=\eta 2

\Bigr) n+1

 - 
\Bigl( 
v0,\=\eta 2

\Bigr) n
=

\Delta t

\eta 

\biggl( 
pn+1
0  - 

\Bigl( 
v0,\=\eta 2

\Bigr) n+1
\biggr) 
,

and the same holds for w0,\=\eta 
3 . At this point, we substitute expansion (3.6) in

powers of \eta in (4.8) (once again, the same holds for variable w3):\left\{             
\partial x

\biggl( \Bigl( 
v0,02

\Bigr) n+1

+ \eta 
\Bigl( 
v0,12

\Bigr) n+1
\biggr) 

= 0\Bigl( 
v0,02

\Bigr) n+1

+ \eta 
\Bigl( 
v0,12

\Bigr) n+1

 - 
\Bigl( 
v0,02

\Bigr) n
 - \eta 

\Bigl( 
v0,12

\Bigr) n
=

\Delta t

\eta 

\biggl( 
pn+1
0  - 

\Bigl( 
v0,02

\Bigr) n+1

 - \eta 
\Bigl( 
v0,12

\Bigr) n+1
\biggr) 
.

We are interested in the zero relaxation limit \eta \rightarrow 0, hence we collect the terms
\scrO \eta (1/\eta ) in the last equation, obtaining (v0,02 )n+1 = pn+1

0 and (w0,0
3 )n+1 =

pn+1
0 . This is plugged into (4.8), obtaining\left\{   

\Bigl( 
v0,02

\Bigr) n+1

= pn+1
0 ,

\partial x1
pn+1
0 = 0,

\left\{   
\Bigl( 
w0,0

3

\Bigr) n+1

= pn+1
0 ,

\partial x2
pn+1
0 = 0.

It is clear then that \nabla pn+1
0 = 0 is respected.

2. order \scrO M (1/M):

(4.9)

\left\{     
\partial x1

\Bigl( 
v1,\=\eta 2

\Bigr) n+1

= 0,\Bigl( 
v1,\=\eta 2

\Bigr) n+1

 - 
\Bigl( 
v1,\=\eta 2

\Bigr) n
=

\Delta t

\eta 

\biggl( 
pn+1
1  - 

\Bigl( 
v1,\=\eta 2

\Bigr) n+1
\biggr) 
,

and the same holds for w1,\=\eta 
3 . After inserting the expansion in powers of \eta ,

taking the zero relaxation limit \eta \rightarrow 0, and collecting the terms \scrO \eta (1/\eta ), we
obtain the following relations:\left\{   

\Bigl( 
v1,02

\Bigr) n+1

= pn+1
1 ,

\partial x1p
n+1
1 = 0,

\left\{   
\Bigl( 
w1,0

3

\Bigr) n+1

= pn+1
1 ,

\partial x2p
n+1
1 = 0.

This means that also \nabla pn+1
1 = 0 is respected.

3. order \scrO M (1):
\bullet for the conservation of mass we have
(4.10)\left\{       
\rho n+1
0  - \rho n0 +\Delta t\nabla \cdot 

\Bigl( 
z0,\=\eta 1

\Bigr) n+1

= 0,\Bigl( 
z0,\=\eta 1

\Bigr) n+1

 - 
\Bigl( 
z0,\=\eta 1

\Bigr) n
+ a1\Delta t\nabla \rho n+1

0 =
\Delta t

\eta 

\biggl( 
(\rho u)

n+1
0  - 

\Bigl( 
z0,\=\eta 1

\Bigr) n+1
\biggr) 
.
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Once again, we expand in powers of \eta and take the zero relaxation limit
by collecting terms of order \scrO \eta (1/\eta ), obtaining\left\{   

\Bigl( 
z0,01

\Bigr) n+1

= (\rho u)
n+1
0 ,

\rho n+1
0  - \rho n0 +\Delta t\nabla \cdot (\rho u)n+1

0 = 0.
(4.11)

\bullet For the conservation of momentum we have
(4.12)\left\{                                 

(\rho u1)
n+1
0  - (\rho u1)

n
0 +\Delta t

\biggl( 
\partial x1

\Bigl( 
v2,\=\eta 2

\Bigr) n+1

+ \partial x2

\Bigl( 
w0,\=\eta 

2

\Bigr) n+1
\biggr) 

= 0,\Bigl( 
v2,\=\eta 2

\Bigr) n+1

 - 
\Bigl( 
v2,\=\eta 2

\Bigr) n
+ a2\Delta t\partial x1

(\rho u1)
n+1
0

=
\Delta t

\eta 

\biggl( \bigl( 
\rho u21

\bigr) n+1

0
+ pn+1

2  - 
\Bigl( 
v2,\=\eta 2

\Bigr) n+1
\biggr) 
,\Bigl( 

w0,\=\eta 
2

\Bigr) n+1

 - 
\Bigl( 
w0,\=\eta 

2

\Bigr) n
+ a2\Delta t\partial x2

(\rho u1)
n+1
0

=
\Delta t

\eta 

\biggl( 
(\rho u1u2)

n+1
0  - 

\Bigl( 
w0,\=\eta 

2

\Bigr) n+1
\biggr) 
,

(4.13)\left\{                                 

(\rho u2)
n+1
0  - (\rho u2)

n
0 +\Delta t

\biggl( 
\partial x1

\Bigl( 
v0,\=\eta 3

\Bigr) n+1

+ \partial x2

\Bigl( 
w2,\=\eta 

3

\Bigr) n+1
\biggr) 

= 0,\Bigl( 
v0,\=\eta 3

\Bigr) n+1

 - 
\Bigl( 
v0,\=\eta 3

\Bigr) n
+ a3\Delta t\partial x1 (\rho u2)

n+1
0

=
\Delta t

\eta 

\biggl( 
(\rho u1u2)

n+1
0  - 

\Bigl( 
v0,\=\eta 3

\Bigr) n+1
\biggr) 
,\Bigl( 

w2,\=\eta 
3

\Bigr) n+1

+
\Bigl( 
w2,\=\eta 

3

\Bigr) n
+ a3\Delta t\partial x2

(\rho u2)
n+1
0

=
\Delta t

\eta 

\biggl( \bigl( 
\rho u22

\bigr) n+1

0
+ pn+1

2  - 
\Bigl( 
w2,\=\eta 

3

\Bigr) n+1
\biggr) 
.

In the expansion in powers of \eta , terms of order \scrO \eta (1/\eta ) give expressions
for (v2,02 )n+1, (v0,03 )n+1, (w0,0

2 )n+1, and (w2,0
3 )n+1. This yields

(4.14)\left\{                     

\Bigl( 
v2,02

\Bigr) n+1

=
\bigl( 
\rho u21

\bigr) n+1

0
+ pn+1

2 ,\Bigl( 
w0,0

2

\Bigr) n+1

= (\rho u1u2)
n+1
0 ,\Bigl( 

v0,03

\Bigr) n+1

= (\rho u1u2)
n+1
0 ,\Bigl( 

w2,0
3

\Bigr) n+1

=
\bigl( 
\rho u22

\bigr) n+1

0
+ pn+1

2 ,

(\rho u)
n+1
0  - (\rho u)

n+1
0 +\Delta t\nabla \cdot (\rho 0u0 \otimes u0)

n+1
+\Delta t\nabla pn+1

2 = 0.

\bullet For the conservation of energy we adopt the same procedure of the con-
servation of mass, getting

(4.15)

\left\{   
\Bigl( 
z0,04

\Bigr) n+1

=
\Bigl( 
(\rho e)

n+1
0 + pn+1

0

\Bigr) 
un+1
0 ,

(\rho e)
n+1
0  - (\rho e)

n+1
0 +\Delta t\nabla \cdot 

\bigl( \bigl( 
\rho e)n+1

0 + pn+1
0

\bigr) 
un+1
0

\bigr) 
= 0.
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This goes with the \scrO M (1) state law

(4.16) pn+1
0 = (\gamma  - 1) (\rho e)

n+1
0 .

Scheme (4.11)--(4.14)--(4.15) is clearly a consistent discretization of the Euler system in
its incompressible limit, derived in (2.13)--(2.14)--(2.15). This means that the scheme
is AP. Nevertheless, in what follows, we show that the incompressibility constraint
\nabla \cdot un+1

0 = 0 is respected.
Relations \nabla pn+1

0 = 0 and \nabla pn+1
1 = 0 imply that pn+1 is constant in space up

to fluctuations of order M2. From the state law (4.16), we get that also (\rho e)
n+1
0 is

independent of space. We can rewrite the conservation of energy (4.15) as follows:

(\rho e)
n+1
0  - (\rho e)

n
0 +\Delta t

\Bigl( 
un+1
0 \nabla (\rho e)

n+1
0 + (\rho e)

n+1
0 \nabla \cdot un+1

0

+un+1
0 \nabla pn+1

0 + pn+1
0 \nabla \cdot un+1

0

\bigr) 
= 0,

which becomes, due to the previous considerations on pn+1
0 and (\rho e)

n+1
0 ,

(4.17) (\rho e)
n+1
0  - (\rho e)

n
0 +\Delta t

\Bigl( 
(\rho e)

n+1
0 + pn+1

0

\Bigr) 
\nabla \cdot un+1

0 = 0.

We now assume that the boundary conditions are such that pn+1
0 is independent of

n too, i.e., pn+1
0 = pn0 = \cdot \cdot \cdot = p10 = p00 and the same for pn+1

1 . Of course, this means

that also the energy is independent of n, namely (\rho e)
n+1
0  - (\rho e)

n
0 = 0. Inserting this

inside (4.17), one obtains directly the incompressibility constraint \nabla \cdot un+1
0 = 0.

The proof of the AP property for the fully discrete scheme (3.16) easily follows by
introducing discretization (3.13) into the spatial derivatives of (4.11)--(4.14)--(4.15),
in the limit M \rightarrow 0. This implies that a fully centered discretization is adopted in the
incompressible limit, i.e., the numerical viscosity is consistent with the incompressible
regime.

5. Numerical validations on fluid dynamics problems. At first, the Gresho
vortex test case is analyzed, in order to verify that the scheme possesses the correct
numerical viscosity in the low Mach number regime. This test shows that the proposed
scheme is able to preserve the incompressible regime at all times, after setting an
incompressible initial flow. The vortex is solved for both perfect and stiffened gases.
Then, we introduce an estimate of the numerical entropy production of the scheme.
We use this indicator to show that the all-speed discretization is more precise with
respect to an upwind one and also to perform grid adaptivity. Taking into account the
AP estimates derived in section 4.2, we set \eta = 10 - 8 in all the proposed computational
experiments.

5.1. The Gresho vortex. We test the relaxation all-speed scheme (3.16) on
the classical Gresho vortex test case [21, 33]. This vortex is a stationary solution
of the incompressible Euler equations, where centrifugal forces are exactly balanced
by pressure gradients. A rotating vortex is positioned at the center (0.5, 0.5) of the
computational domain [0, 1] \times [0, 1]. The initial conditions are specified in terms of

the radial distance r =

\sqrt{} 
(x - 0.5)

2
+ (y  - 0.5)

2
in the form
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\rho (x, y, 0) = 1,

u1 (x, y, 0) =  - u\phi (r) sin\phi ,
u2 (x, y, 0) = u\phi (r) cos\phi .

The rotation is initiated by imposing a simple angular velocity distribution of

u\phi (x, y, 0) =

\left\{     
5r, 0 \leq r \leq 0.2,

2 - 5r, 0.2 \leq r \leq 0.4,

0, r \geq 0.4,

p (x, y, 0) =

\left\{     
p0 +

25
2 r

2, 0 \leq r \leq 0.2,

p0 +
25
2 r

2 + 4 (1 - 5r  - ln 0.2 + ln r) , 0.2 \leq r \leq 0.4,

p0  - 2 + 4 ln 2, r \geq 0.4.

and the background pressure is adjusted such that it matches the maximum Mach
number Mmax:

(5.1) p0 =
\rho (u\phi )

2
max

(\gamma M2
max)

=
\rho 

(\gamma M2
max)

since the maximum velocity (u\phi )max = 1, which is reached in r = 0.2.
We follow the flow over one full rotation of the vortex with different Mmax in a

perfect gas. This is completed at time t = 1. We compare the results obtained with
the relaxation all-speed scheme (3.16) with the results of a standard explicit-upwind
discretization of the relaxation system. All the Gresho vortex tests are performed on
a uniform grid of 128\times 128 cells, with a material CFL constraint of \nu mat = 0.2. In test
1 we set Mmax = 10 - 1: the initial condition in t = 0 is presented in Figure 1(a). In
Figures 1(b) and 1(c), we compare the results of the relaxation all-speed scheme (3.16)
and of the explicit-upwind scheme of [26]. A comparison with the initial Mach number
distribution shows that the all-speed spatial discretization accurately preserves the
shape of the vortex, due to the convex combination of upwind and centered fluxes.
Instead, an upwind scheme is too diffusive for the targeted regime and thus the shape
of the vortex is lost. We also plot the results obtained after two and three rotations
of the vortex in Figure 2, confirming that the all-speed scheme is able to recover the
correct weakly incompressible solution also after long times.

For tests 2 and 3 we setMmax = 10 - 2 andMmax = 10 - 3, respectively. The results
after one full rotation are reported in Figure 3 for the relaxation all-speed scheme

(a) Initial (b) All-speed (c) Explicit-upwind

Fig. 1. Test 1: Gresho vortex with Mmax = 10 - 1 (initial condition and results at time t = 1
of the relaxation all-speed scheme and of an explicit-upwind scheme).
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(a) t = 2 (b) t = 3

Fig. 2. Test 1: Gresho vortex with Mmax = 10 - 1, results at time t = 2 and t = 3 obtained
with the relaxation all-speed scheme.

(a) Initial (b) All-speed (c) Explicit-upwind

(d) Initial (e) All-speed (f) Explicit-upwind

Fig. 3. Tests 2 and 3: Gresho vortex with Mmax = 10 - 2 (first row) and with Mmax = 10 - 3

(second row). Initial condition and results at time t = 1 of the relaxation all-speed scheme and of
an explicit-upwind scheme.

and the explicit-upwind scheme [26]. The shape of the two vortices is completely
diffused when adopting an upwind flux discretization, whereas the all-speed convex
combination accurately preserves the initial vortex shape for both cases, besides a
small noise probably due to directional splitting.

In Table 1, we report the total kinetic energy in the simulation domain at time
t = 1 relative to the total kinetic energy at time t = 0 for the three tests. With the
all-speed scheme, the kinetic energy reduces by about 1.5 percent over one rotation of
the vortex. However, this loss is clearly independent of the Mach number of the flow.
On the contrary, when adopting conventional upwind discretizations, the dissipation
rate of kinetic energy consistently increases as the Mach number decreases.
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Table 1
Total kinetic energy Ekin,tot (t = 1) after one full rotation of the Gresho vortex relative to its

initial value Ekin,tot (t = 0) for different maximum Mach numbers.

Mmax = 10 - 1 Mmax = 10 - 2 Mmax = 10 - 3

All-speed 0.985 0.987 0.984
Explicit-upwind 0.652 0.355 0.273

Table 2
Global pressure fluctuations pfl after one full rotation of the Gresho vortex for different maxi-

mum Mach numbers.

Mmax = 10 - 1 Mmax = 10 - 2 Mmax = 10 - 3

All-speed 1.02 \cdot 10 - 2 1.06 \cdot 10 - 4 1.15 \cdot 10 - 6

Explicit-upwind 3.37 \cdot 10 - 3 3.43 \cdot 10 - 5 1.86 \cdot 10 - 6

We also perform a study on the pressure fluctuations pfl = (pmax  - pmin) /pmax,
computed on the same grid at time t = 1 for the three considered Mach numbers.
These results are reported in Table 2 and they show that pressure fluctuations scale
exactly with M2 when adopting the all-speed convex combination. We can thus infer
that the simulated flow is kept in the incompressible regime by the proposed numerical
scheme. This is clearly not the case with an upwind spatial discretization. The scaling
of pfl as M , theoretically expected for this latter scheme, can be asymptotically
reached for small Mach numbers (it can be seen by comparing the simulations with
Mmax = 10 - 2 and Mmax = 10 - 3).

We here adapt the standard Gresho vortex test case to a water flow. It suffices
to adjust the background pressure (5.1) with the stiffened gas state law as follows:

p0 =
\rho (u\phi )

2
max

(\gamma M2
max)

 - p\infty .

The initial density is set to \rho = 1000Kg/m3 and the water parameters \gamma = 4.4 and
p\infty = 6.8 \cdot 108 are given with state law (2.3). The results for Mmax = 10 - 2 obtained
with the two schemes are reported in Figure 4 at time t = 1. The all-speed scheme is
preserving the vortex shape also in the case of water.

5.2. Numerical entropy production. The behavior of the all-speed discretiza-
tion on the different waves can be assessed by studying an a posteriori error indicator.

(a) Initial (b) All-speed (c) Explicit-upwind

Fig. 4. Water Gresho vortex with Mmax = 10 - 2 (initial condition and results at time t = 1 of
the relaxation all-speed scheme and of the explicit-upwind relaxation scheme).
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We adopt the numerical entropy production introduced in [38, 39], since the entropy
is naturally available for any system of conservation laws with an entropy inequal-
ity and has a well-defined physical meaning. Moreover, the entropy production of a
scheme scales as the truncation error in the regular regions and its behavior allows us
to distinguish between contact discontinuities and shocks. In [39] it has been shown
that if the solution is locally smooth, Sn+1

ij = \scrO (hr) with r equal to the order of

the scheme. On the other hand, Sn+1
ij = \scrO (1) if there is a contact discontinuity and

Sn+1
ij = \scrO (1/h) if there is a shock in the considered cell.

Let us consider the entropy pair (\eta , \bfitzeta ). The entropy inequality \partial t\eta +\nabla x \cdot \bfitzeta \leq 0 has
to be integrated with the finite volume scheme used to integrate the hyperbolic system
that we are interested in solving. Coherently with discretizations (3.9)--(3.12), we
employ a first order implicit scheme for time integration in a finite volume framework.
We get the following numerical entropy production in every cell:
(5.2)

Sn+1
ij =\eta 

\bigl( 
\bfitpsi n+1
ij

\bigr) 
 - \eta 

\bigl( 
\bfitpsi nij

\bigr) 
+

\Delta t

\Delta x1

\Bigl( 
\zeta n+1
1;i+1/2,j  - \zeta 

n+1
1;i - 1/2,j

\Bigr) 
+

\Delta t

\Delta x2

\Bigl( 
\zeta n+1
2;i,j+1/2 - \zeta 

n+1
2;i,j - 1/2

\Bigr) 
,

where we are considering the spatial discretization of the two components of the nu-
merical entropy flux \bfitzeta = (\zeta 1, \zeta 2). The interface values have to be computed according
to the all-speed convex combination (3.13). This is equivalent to a Lax--Friedrichs
scheme with a numerical viscosity modulated by the local Mach number, namely

(5.3) \zeta n+1
1;i+1/2,j =

1

2

\bigl( 
\zeta n+1
1;i+1,j + \zeta n+1

1;i,j

\bigr) 
 - 
\surd 
amaxf (Mloc)

2

\bigl( 
\eta n+1
i+1,j  - \eta 

n+1
i,j

\bigr) 
.

In the numerical experiments, we build the entropy pair on the physical entropy of
the Euler system, as follows:

\eta (\bfitpsi ) =  - \rho log
\biggl( 
p+ p\infty 
\rho \gamma 

\biggr) 
, \bfitzeta (\bfitpsi ) = \eta (\bfitpsi )u.

The proposed estimate can also be adopted as a criterion that is able to pivot
mesh adaptivity. An effective adaptive algorithm has to be driven by an indicator
able to provide a robust a posteriori measure of the local error and also to recognize
the qualitative structure of the flow. This will be the focus of section 5.2.2.

5.2.1. 2D Riemann problem. We use the entropy production to compare the
behavior of the all-speed and upwind discretizations on contact waves. We study
a Riemann problem in the squared domain [0, 1] \times [0, 1], with the following initial
conditions [30, 41]:

(p, \rho , u1, u2) (x1, x2, t = 0) =

\left\{         
(1, 1, 0, - 0.4) , \Omega 1,

(1, 2, 0, - 0.3) , \Omega 2,

(0.4, 1.0625, 0, 0.2145) , \Omega 3,

(0.4, 0.5197, 0, - 1.1259) , \Omega 4,

where we have introduced the subdomains \Omega 1 = [0.5, 1]\times [0.5, 1], \Omega 2 = [0, 0.5]\times [0.5, 1],
\Omega 3 = [0, 0.5] \times [0, 0.5], and \Omega 4 = [0.5, 1] \times [0, 0.5]. This test is characterized by the
following wave pattern: two contact waves, one left moving shock, and one right

moving rarefaction: C21,
\leftarrow  - 
S 32, C34,

 - \rightarrow 
R 41.

We adopt a grid of 256 \times 256 cells and we enforce an acoustic constraint on the
time step \nu ac = 0.9, in order to have stability for the explicit-upwind scheme and
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(a) Density: explicit-upwind (b) Density: all-speed

(c) Entropy: explicit-upwind (d) Entropy: all-speed

Fig. 5. 2D Riemann problem at time t = 0.3: comparison between the explicit-upwind relaxation
scheme and the relaxation all-speed scheme. Density plots (30 contours, from 0.53 to 1.98) and
numerical entropy production. In panel (a) R indicates a rarefaction, S a shock, and C a contact
wave.

to have a good resolution of all the propagating waves. In Figure 5 we compare the
density contours and the numerical entropy production for the two schemes. It is
evident from the density contours that the all-speed property helps in keeping sharp
the two contact waves and the shock. The contact wave at the bottom of the domain
is in the low Mach number regime, with M \simeq 8 \cdot 10 - 3. Also the small vortex in the
center is more accurately captured by the all-speed scheme. The entropy plots confirm
that the all-speed discretization is superior in capturing the solution structure. For
both schemes, the entropy production is higher in the shock wave region, as expected
by the theory of [39]. The all-speed discretization produces more entropy than the
explicit-upwind one, confirming that this region is more accurately resolved by the
proposed scheme.

5.2.2. Adaptive mesh refinement. As anticipated above, the numerical en-
tropy production can be exploited to decide where to locally refine or coarsen the
mesh. In order to reduce the computational costs, the discretization of the solution
can be done by using nonconforming hierarchical meshes. Specifically, we use the
AMR techinque [7].

Octree-meshes allow for a strong reduction of the number of degrees of freedom
where the problem exhibits smooth behavior and also for a strongly localized increase
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Fig. 6. Decomposition of a squared domain and corresponding quadtree [40].

of information in areas needing more accuracy. Octrees are a hierarchical data struc-
ture based on the principle of recursive decomposition of space. Each internal node
has exactly four children (quadtree) for 2D problems and eight children (octree) for
3D problems. Here we focus on quadtree meshes, which are nonconforming hierarchi-
cal meshes defined in a square as shown in Figure 6. We use the Bitpit library [17]
for the efficient implementation of our computational grid. The hierarchical nature of
the grid makes mesh generation, adaptivity, and partitioning very efficient and with a
low-memory footprint. The data structure is based on a linear quadtree [18], namely
only the leaves of the tree structure are stored. This structure is easily dispatched to
a distributed memory architecture and parallel communications are limited to only
the first layer of neighboring cells. This constraint is perfectly in line with the stencil
of the proposed numerical scheme (3.16). A Z-order index is assigned to every cell
[35]. More details on the library can be found in [17, 40].

We design an AMR algorithm based on the entropy production (5.2). We start
from a uniform coarse grid of 2d \times 2d grid points. This grid is associated to the
minimum level Lmin = d of the quadtree data structure. At every refinement, each cell
of the grid may be replaced by four children. Let Lmax be the maximum refinement
level allowed for a grid. At the end of every time step, the following procedure is
implemented:

1. the quantity Snij is computed in every cell with (5.2);
2. if | Snij | > Sref and if the level of refinement of cell Cij does not equal Lmax,

then the cell is marked for refinement; this cell is thus split into four children
and cell averages in the newly created cells are set by taking the cell average
of the ``ancestor"";

3. if | Snij | < Scoa for all four children and if the level of refinement of cell Cij
does not equal Lmin, then the cell is marked for coarsening; the four children
are replaced by the ancestor cell and the cell average in the ancestor is set by
taking the mean of the cell averages of the four children;

4. the time step \Delta t is computed with the chosen CFL constraint using the
smallest cell size of the grid.

We test the AMR algorithm on the previous 2D Riemann problem (section 5.2.1).
We set Lmin = 5, Sref = 0.002, and Scoa = 0.0001 and we enforce a material CFL
constraint \nu mat = 0.3. Lmax is varied from 6 to 9 and these grids at time t = 0.3 are
reported in Figure 7. We observe that the entropy criterion is pivoting the AMR in
the correct way, since the refinement levels are introduced where the four waves occur.
By comparing the grids of Figure 7 and the solution structure in Figure 8, we can see
that the postshock region is refined also after the solution has become smooth. For
this reason, the refinement needs to be further optimized. In Figure 8 we compare
the density profile obtained with a uniform grid built with Lmin = Lmax = 10, which
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(a) Lmax = 6 (b) Lmax = 7

(c) Lmax = 8 (d) Lmax = 9

Fig. 7. Grids for the 2D Riemann problem at time t = 0.3, obtained with Lmin = 5 and with
different Lmax (Lmax = 6: 3916 cells, Lmax = 7: 10,030 cells, Lmax = 8: 22,918 cells, Lmax = 9:
68,251 cells).

gives 1,048,576 cells and the density obtained with the AMR by setting Lmin = 5
and Lmax = 10, which gives a total number of cells of 146,578 at the end of the
simulation. The solution structure, the different waves, and the small vortex in the
center are accurately approximated for both grids, gaining a very similar precision
(the small oscillations that can be seen on the contours of Figure 8(b) are due to the
visualization software that is not able to fully handle quadtree grids). However, it
is evident that with the AMR technique the computational effort is reduced, since
the number of degrees of freedom is consistently reduced (by about 10 times). The
CPU times required with the uniform grid and with the AMR grid, using 32 cores,
are respectively 9.25 \cdot 103 and 1.61 \cdot 103 seconds.

6. An extension to nonlinear elasticity. As anticipated above, the relaxation
all-speed scheme (3.16) can be adopted also for the simulation of flows with more
complex EOS. Specifically, the accurate approximation of the deformation of elastic
solids can be addressed. To this end, we adopt a monolithic Eulerian model describing
different materials with the same system of conservation laws. The model derivation
has been exstensively discussed in several previous works [19, 37, 20, 2]. Here we
briefly report the 2D system and the chosen hyperelastic state law.
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(a) Uniform (Lmin = Lmax = 10) (b) AMR (Lmin = 5, Lmax = 10)

Fig. 8. Density for the 2D Riemann problem at time t = 0.3. Comparison between uniform
(number of cells: 1,048,576) and AMR grids (number of cells: 146,578).

Let \Omega 0 \in \BbbR 2 the initial (or reference) configuration of a continuum and \Omega t \in \BbbR 2

the deformed configuration at time t. The considered system of conservation laws
models fluids and hyperelastic solids in the Eulerian framework, thus it is written in
the deformed configuration \Omega t. As for fluids, the equations describing the evolution of
elastic solids are the conservation of mass, momentum, and energy. In addition, a law
for the description of the deformation is needed: this is done with the introduction of
equations of transport of the backward characteristics. These functions describe the
continuum in the Eulerian framework: for a time t and a point x in the deformed
configuration, the corresponding initial point \xi in the initial configuration is given,
i.e., Y : \Omega t \times [0, T ] \rightarrow \Omega 0, (x, t) \rightarrow Y (x, t). One can also introduce the forward
characteristics X (\xi , t), defined as the image at time t in the deformed configuration
of a material point \xi belonging to the initial configuration, i.e., X : \Omega 0 \times [0, T ] \rightarrow 
\Omega t, (\xi , t) \rightarrow X (\xi , t). The corresponding Eulerian velocity field u is defined as u :
\Omega t \times [0, T ]\rightarrow \BbbR 2, (x, t)\rightarrow u (x, t). Forward and backward characteristics are related
as follows: Y (X (\xi , t)) = \xi . By differentiating this latter relation, one gets

(6.1)

\Biggl\{ 
\partial tY + u \cdot \nabla Y = 0,

Y (x, 0) = x, x \in \Omega t.

Since the stress tensors have a direct dependence on [\nabla Y ], the gradient of (6.1) is
taken as a governing equation (see for details [2, 13]). The full monolithic Eulerian
model thus is written as follows:

(6.2)

\left\{         
\partial t\rho +\nabla x \cdot (\rho u) = 0,

\partial t (\rho u) +\nabla x \cdot (\rho u\otimes u - \sigma ) = 0,

\partial t ([\nabla xY ]) +\nabla x (u \cdot [\nabla xY ]) = 0,

\partial t (\rho e) +\nabla x \cdot 
\bigl( 
\rho eu - \sigma Tu

\bigr) 
= 0.

Here \sigma is the Cauchy stress tensor, which is derived through the chosen EOS. The
total energy e is still given by expression (2.2), but now the internal energy \epsilon has to
account for the behavior of different materials, including gases, liquids, and solids.
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Table 3
Typical parameters for different materials.

Material \gamma p\infty \chi 
[Pa] [Pa]

Perfect biatomic gas 1.4 0 0
Stiffened gas (water) 4.4 6.8 \cdot 108 0
Elastic solid (copper) 4.22 3.42 \cdot 1010 5 \cdot 1010

Therefore, we adopt the following general constitutive law [24, 20]:

(6.3) \epsilon (\rho , s, [\nabla xY ]) =
\kappa (s)

\gamma  - 1
\rho \gamma  - 1 +

p\infty 
\rho \underbrace{}  \underbrace{}  

general gas

+
\chi 

\rho 

\bigl( 
trB  - 2

\bigr) 
\underbrace{}  \underbrace{}  
neohookean solid

,

where B is the normalized Cauchy stress tensor:

B =
B

J
=

[\nabla xY ]
 - 1

[\nabla xY ]
 - T

J
, J = det ([\nabla xY ])

 - 1
.

The energy function (6.3) includes different physical behaviors. The first part is
exactly the internal energy (2.3) for gases and liquids. The last term describes the
variation of energy in a neohookean elastic solid due to elastic deformations (\chi is the
shear elastic modulus). As shown in Table 3, classical models are obtained by specific
choices of the coefficients.

The general expression of the Cauchy stress tensor \sigma is easily obtained [13, 1]:

(6.4)

\left\{   \sigma (\rho , s, [\nabla xY ]) =  - p (\rho , s) I+ 2\chi J - 1

\biggl( 
B  - trB

2
I

\biggr) 
,

p (\rho , s) =  - p\infty + k (s) \rho \gamma .

We rewrite the Eulerian model (6.2) in the compact formulation with the direc-
tional splitting (3.1), having \bfitpsi ,F (\bfitpsi ) ,G (\bfitpsi ) \in \BbbR n with n = 8:
(6.5)

\bfitpsi =

\left[            

\rho 
\rho u1
\rho u2
Y 1
,1

Y 2
,1

Y 1
,2

Y 2
,2

\rho e

\right]            
, F (\bfitpsi ) =

\left[            

\rho u1
\rho u21  - \sigma 11

\rho u1u2  - \sigma 21

u1Y
1
,1 + u2Y

1
,2

u1Y
2
,1 + u2Y

2
,2

0
0\bigl( 

\rho e - \sigma 11
\bigr) 
u1  - \sigma 21u2

\right]            
, G (\bfitpsi ) =

\left[            

\rho u2
\rho u1u2  - \sigma 12

\rho u22  - \sigma 22

0
0

u1Y
1
,1 + u2Y

1
,2

u1Y
2
,1 + u2Y

2
,2\bigl( 

\rho e - \sigma 22
\bigr) 
u2  - \sigma 12u2

\right]            
.

In this notation, the superscript i indicates the component of Y and the subscript ,j
stands for the direction along which the derivative is calculated. With this formu-
lation, the Jin--Xin relaxation system (3.3) is easily constructed, by introducing the
relaxation variables vectors. Then, the implicit time integration and the all-speed
spatial discretization are adopted just as in the case of fluid dynamics, with the an-
alytical derivation of the Jacobians of the fluxes F (\bfitpsi ) and G (\bfitpsi ) to be used inside
linearization (3.10) (for the Jacobians derivation see Appendix A). Thus, the scheme
has exactly the same formulation derived for the Euler equation case: this means
that the relaxation all-speed scheme introduced in section 3 can solve flows with more
complex EOS, including elastic deformations, without any substantial modification.
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6.1. Low Mach number limits in elastic solids. We now analyze the low
Mach number regime in compressible elastic solids. This regime can be seen as a small
deformation or a deformation that is slow with respect to other propagating waves.
Along with the sound speed, which is computed as for fluid dynamics with expression
(2.4), we define an ``elastic speed"" in the following way:

(6.6) uel =

\sqrt{} 
2\chi 

\rho 
.

We can thus define an ``isochoric Mach number"" on this elastic speed as the ratio
between the isochoric speed and the advective velocity [2]:

(6.7) M\chi =
u

uel
=

\sqrt{} 
\rho u2

2\chi 
.

Therefore, two different scales can be distinguished. They can be identified when
the Eulerian system is nondimensionalized. As done for the standard case of the Euler
system in section 2.1, every variable is decomposed into a product of a reference value
and a dimensionless number. By using the definitions of the two Mach numbers (2.8)
and (6.7) and by using the speed of sound to scale pressure and total energy, we get
the following formulation of the nondimensional Eulerian system (for simplicity of
notation we lose the hat \widehat \cdot on the nondimensional variables):

(6.8)

\left\{                 

\partial t\rho +\nabla x \cdot (\rho u) = 0,

\partial t (\rho u) +\nabla x \cdot (\rho u\otimes u) +
\nabla xp
M2

 - 2\chi 

M2
\chi 

\nabla x
\biggl( 
J - 1

\biggl( 
B  - trB

2
I

\biggr) \biggr) 
= 0,

\partial t ([\nabla xY ]) +\nabla x (u \cdot [\nabla xY ]) = 0,

\partial t
\rho e

M2
+\nabla x \cdot 

\biggl( 
\rho e

M2
u+

\biggl( 
p

M2
 - 2\chi 

M2
\chi 

\nabla x
\biggl( 
J - 1

\biggl( 
B  - trB

2
I

\biggr) \biggr) \biggr) 
u

\biggr) 
= 0.

Here we have substituted the expression for the stress tensor (6.4) inside the conser-
vation equations, in order to separate terms scaling withM and withM\chi . The scaled
state law reads

(6.9)
\rho e

M2
=

1

2
\rho | u| 2 + p+ \gamma p\infty 

M2 (\gamma  - 1)
+
\chi 
\bigl( 
trB  - 2

\bigr) 
2M2

\chi 

,

where again both the acoustic and the elastic Mach numbers are present.
Two different low Mach number regimes can be observed:
1. Acoustic and elastic low Mach regime, namely M \ll 1 and M\chi \ll 1. This

case can be verified only if the parameters of the considered material are such
that \scrO (p\infty ) \simeq \scrO (\chi ). We thus get that the two Mach numbers are of the same
order, i.e., \scrO (M) \simeq \scrO (M\chi ). Copper can be representative of this limit, since
p\infty = 3.42 \cdot 1010Pa and \chi = 5 \cdot 1010Pa. In this regime, the gradient of the
stress tensor \sigma fully scales as \scrO (M2), i.e., the entire stress tensor gradient
introduces stiffness in system (6.8). All propagating waves are consistently
faster with respect to the material waves, since both the acoustic and elastic
terms of the EOS are large and of the same order of magnitude.

2. Acoustic low Mach regime, namely M \ll 1 and M \ll M\chi . This is verified
if the material parameters are such that p\infty \gg \chi , giving an acoustic Mach
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number consistently smaller with respect to the elastic Mach number. This
limit can be observed in rubber-like materials. In this regime, the gradient
of stress tensor \sigma can be split into two different scales: the acoustic scale,
which is represented by the pressure gradient, and the elastic one, which is
represented by the gradient of the elastic deformation. Only the pressure
gradient is responsible for the stiffness of system (6.8) and in the EOS only
the acoustic part is consistently large. Thus, only the longitudinal acoustic
waves are consistently faster with respect to the deformation, whereas the
shear elastic waves have a speed which is similar to the material deformation.

Physically, M \leq M\chi is always verified. Therefore, with the aim of recovering the
correct numerical viscosity in both low Mach regimes, the proposed convex combi-
nation of upwind and centered fluxes (3.13) still holds for the all-speed scheme. For
a detailed study of the low Mach regime in elastic solids and of the behavior of the
different waves, we refer the reader to [2, 1]. In the following section we will solve two
different Riemann problems representing the two limits inside two elastic solids.

6.2. Numerical validations in elastic solids. We test the relaxation all-speed
scheme on two 2D Riemann problems on the squared domain [0, 2]\times [0, 2]. Simulations
are performed on a uniform grid of 256 \times 256 cells. For the first test, the domain is
filled with copper (for the EOS parameters see Table 3), i.e., \chi \simeq p\infty . The initial
condition is the following:

(p, \rho , u1, u2) (x1, x2, t = 0) =

\left\{         
\bigl( 
109, 8900, 0, 0

\bigr) 
, \Omega 1,\bigl( 

109, 8900, 0, 0
\bigr) 
, \Omega 2,\bigl( 

109, 8900, 0, 0
\bigr) 
, \Omega 3,\bigl( 

105, 8900, 0, 0
\bigr) 
, \Omega 4,

where we have introduced the subdomains \Omega 1 = [1, 2] \times [1, 2], \Omega 2 = [0, 1] \times [1, 2],
\Omega 3 = [0, 1] \times [0, 1], and \Omega 4 = [1, 2] \times [0, 1]. Copper is at rest and at high pressure
everywhere, except for the right-bottom part of the domain \Omega 4, which is at a pressure
of 105Pa and hence it is compressed by the surrounding copper. Two material waves
are present due to the initial pressure discontinuity: they represent the deformation
of copper in \Omega 4 and they are slow if compared to all the other propagating waves.
With this initial condition, we have M \simeq M\chi \simeq \scrO 

\bigl( 
10 - 3

\bigr) 
on the two material waves

at the edges of \Omega 4, i.e., this test is representative of the acoustic and elastic low
Mach regime.

In Figures 9(a)--9(b), we show the density profiles at final time t = 10 - 4s obtained
with the standard explicit-upwind relaxation scheme and with the all-speed relaxation
scheme, by enforcing the same acoustic CFL \nu ac = 0.45, which gives \Delta t = 8.8 \cdot 10 - 7.
It is evident that the all-speed spatial discretization accurately approximates the two
material waves, which are instead diffused by an upwind-like discretization. Then, in
Figures 9(c)--9(d), we solve the same problem with the all-speed relaxation scheme
by enforcing a material CFL constraint \nu mat = 0.2, which gives \Delta t = 7.8 \cdot 10 - 6, and
\nu mat = 0.3, which gives \Delta t = 1.17 \cdot 10 - 5: the accuracy on the material waves is
maintained also with large material time steps. Of course the fast waves are diffused,
since their speed is too high to be followed by a material \Delta t, as explained in section
3.2.1. In Figure 10 we report the components \sigma 11 and \sigma 22 of the stress tensor, the
pressure, and the velocity field u, which is of course continuous on the two material
waves. We report these profiles obtained with the acoustic CFL condition, in order
to show all the propagating waves with a good resolution.
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(a) Explicit-upwind (\Delta t = 8.8 \cdot 10 - 7) (b) All-speed (\Delta t = 8.8 \cdot 10 - 7)

(c) All-speed (\Delta t = 7.8 \cdot 10 - 6) (d) All-speed (\Delta t = 1.17 \cdot 10 - 5)

Fig. 9. Copper Riemann problem: density profiles at time t = 10 - 4s (20 contours: from 8882 to
8935). (a) Explicit-upwind scheme with \Delta t = 8.8 \cdot 10 - 7, given by \nu ac = 0.45. (b), (c), (d) All-speed
relaxation scheme with \Delta t = 8.8 \cdot 10 - 7, \Delta t = 7.8 \cdot 10 - 6 (given by \nu mat = 0.2) and \Delta t = 1.17 \cdot 10 - 5

(given by \nu mat = 0.3), respectively.

The second test is instead representative of the acoustic low Mach regime. In
order to simulate a rubber-like material, we adopt the EOS parameters \gamma = 4.4,
\chi = 8 \cdot 105Pa, and p\infty = 6.8 \cdot 108Pa and the following initial conditions:

(p, \rho , u1, u2) (x1, x2, t = 0) =

\left\{         
\bigl( 
108, 1000, 0, 0

\bigr) 
, \Omega 1,\bigl( 

108, 1000, 0, 0
\bigr) 
, \Omega 2,\bigl( 

108, 1000, 0, 0
\bigr) 
, \Omega 3,\bigl( 

9.8 \cdot 107, 1000, 20, 20
\bigr) 
, \Omega 4.

We impose a small initial pressure discontinuity and also an initial velocity field in
\Omega 4. The velocity field is imposed in order to analyze the propagation of slow shear
waves. In this framework, we get M \simeq 2.5 \cdot 10 - 3 and M\chi \simeq 0.125 on the two material
waves at the edges of \Omega 4. Thus, the longitudinal acoustic waves are consistently
faster with respect to all other waves, including the material and the shear elastic
waves. In fact, these latter waves propagate with a speed similar to the deformation
velocity (this wave pattern is briefly presented in the previous section and analyzed
in detail in [2]). In Figures 11(a)--11(b) we show the density contours at final time
t = 3\cdot 10 - 4s: we compare the results obtained with the all-speed relaxation scheme and
with the explicit-upwind relaxation scheme. For both schemes we enforce \nu ac = 0.45,
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(a) \sigma 11 (b) \sigma 22

(c) p (d) u

Fig. 10. Copper Riemann problem: normal components of the stress tensor \sigma , pressure p, and
velocity field u at time t = 10 - 4s (\nu ac = 0.45).

which gives \Delta t = 5.6 \cdot 10 - 6, in order to have a good resolution of all waves. It is
evident that the all-speed scheme is providing a more accurate approximation of the
deformation waves also for this specific low Mach number limit. In Figures 11(c)--
11(d) the stress tensor component \sigma 21 is plotted and we can focus on the shear elastic
waves approximation. At time t = 3 \cdot 10 - 4s these slow waves are still very close to the
material waves. We can observe that the sharpness and the correct magnitude of the
shear waves are accurately approximated by the all-speed discretization, whereas the
upwind scheme is once again diffusive. These results are consistent with the results
of a similar 1D test proposed in [2].

7. Conclusions and future developments. In this work we have proposed an
asymptotic preserving scheme to solve flows of compressible materials at all speeds.
The scheme exploits the relaxation method proposed by Jin and Xin, in order to deal
with an advective operator that is independent of the EOS. Thanks to this, we have
been able to simulate fluid flows and elastic deformations without any modification
of the scheme structure.

A proof of the asymptotic preserving property has been proposed, showing that
the incompressibility condition is respected by the scheme. The Gresho vortex tests
have shown that by setting an incompressible initial flow, the scheme is able to pre-
serve the incompressible regime at all times, with pressure fluctuations of order M2.
The scheme has also been tested on the solution of Riemann problems, accurately
approximating material waves propagating in both fluids and elastic materials. The
material waves are kept sharp also with large material time steps. Moreover, an
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(a) \rho explicit-upwind (b) \rho all-speed

(c) \sigma 21 explicit-upwind (d) \sigma 21 all-speed

Fig. 11. Rubber-like Riemann problem: density (30 contours, from 994 to 1005) and tangential
stress \sigma 21 at time t = 3 \cdot 10 - 4s (\nu ac = 0.45).

adaptive mesh refinement algorithm has been designed for the proposed scheme, pro-
viding a consistent reduction of the computational effort. The algorithm is based on
the estimate of the scheme entropy production, which has also been used to study the
accuracy of the proposed spatial discretization.

Different improvements will be proposed in the future, including the extension of
the scheme to higher orders and the derivation of suitable preconditioners that can
provide a more efficient solution of the linear system. The scheme will also be applied
to the simulation of multimaterial problems such as low speed impacts. This can be
done with the introduction of a level set function to track the physical interfaces and
by extending the implicit multimaterial scheme proposed in [4] to multidimensional
problems. Moreover, the AMR technique will be extensively analyzed and improved.

Appendix A. Jacobian of the fluxes in elasticity. The Jacobians of the
fluxes F (\bfitpsi ) and G (\bfitpsi ) inside the Eulerian model (6.2) can be computed analytically.

We introduce the notation \sigma jk,\psi i , which stands for the derivative of the jk, j, k = 1, 2,
component of the tensor \sigma with respect to the conservative variable \psi i, i = 1, ..8.
These derivatives are computed using definition (6.4) of \sigma , where it can be useful to
rewrite the pressure as function of the energy as follows:

p =  - \gamma p\infty + (\gamma  - 1)

\biggl( 
\rho e - 1

2
\rho | u| 2  - \chi 

\bigl( 
trB  - 2

\bigr) \biggr) 
.

We recall that tensor \sigma is symmetric, i.e., \sigma 12 = \sigma 21. The expression for F\prime (\bfitpsi ) is
here reported,
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\bfF 
\prime 
(\bfitpsi ) =

\left[                         

0 1 0 0

 - u2
1  - \sigma 11

,\psi 1
2u1  - \sigma 11

,\psi 2
 - \sigma 11

,\psi 3
 - \sigma 11

,\psi 4

 - u1u2  - \sigma 21
,\psi 1

u2  - \sigma 21
,\psi 2

u1  - \sigma 21
,\psi 3

 - \sigma 21
,\psi 4

 - 
u1Y

1
,1 + u2Y

1
,2

\rho 

Y 1
,1

\rho 

Y 1
,2

\rho 
u1

 - 
u1Y

2
,1 + u2Y

2
,2

\rho 

Y 2
,1

\rho 

Y 2
,2

\rho 
0

0 0 0 0

0 0 0 0

 - Eu1 + \sigma 11u1

\rho 
 - u1\sigma 

11
,\psi 1

+
\sigma 21u2

\rho 

E  - \sigma 11

\rho 
 - u1\sigma 

11
,\psi 2

 - u1\sigma 
11
,\psi 3

 - 
\sigma 21

\rho 
 - u1\sigma 

11
,\psi 4

 - u2\sigma 
21
,\psi 4

0 0 0 0

 - \sigma 11
,\psi 5

 - \sigma 11
,\psi 6

 - \sigma 11
,\psi 7

 - \sigma 11
,\psi 8

 - \sigma 21
,\psi 5

 - \sigma 21
,\psi 6

 - \sigma 21
,\psi 7

0

0 u2 0 0

u1 0 u2 0

0 0 0 0

0 0 0 0

 - u1\sigma 
11
,\psi 5

 - u2\sigma 
21
,\psi 5

 - u1\sigma 
11
,\psi 6

 - u2\sigma 
21
,\psi 6

 - u1\sigma 
11
,\psi 7

 - u2\sigma 
21
,\psi 7

\Bigl( 
1  - \sigma 11

,\psi 8

\Bigr) 
u1

\right]                    

,

and a similar expression is derived for G\prime (\bfitpsi ) in the same way.
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