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Abstract: Data analysis in high energy physics often deals with data samples consisting of a
mixture of signal and background events. The sPlot technique is a common method to subtract the
contribution of the background by assigning weights to events. Part of the weights are by design
negative. Negative weights lead to the divergence of some machine learning algorithms training
due to absence of the lower bound in the loss function. In this paper we propose a mathematically
rigorous way to train machine learning algorithms on data samples with background described by
sPlot to obtain signal probabilities conditioned on observables, without encountering negative event
weight at all. This allows usage of any out-of-the-box machine learning methods on such data.
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1 Introduction

Experimental data obtained in high energy physics experiments usually consists of contributions
from different event sources. We consider the case, where the distribution of some variables
is known for each source and call these variables discriminative. Usually, the variable is the
reconstructed invariant mass, and the probability densities are estimated by a maximum likelihood
fit. The distribution of other (control) variables also presents interest, as an analysis quality check or
a training sample of a machine learning algorithm. The sPlot technique [1] allows to reconstruct the
distribution of the control variables, provided they are independent of the discriminative variables.
sPlot assigns weights (sWeights) to events, some of them negative. This does not present a problem
for simple one-dimensional analysis tools, like histograms, but is an obstacle for multivariate
machine learning methods that require the loss function to be bounded from below.

This paper is structured as following. In section 2 we briefly introduce the sPlot technique. In
section 3 we describe the literature concerning machine learning on data weighted with the sPlot.
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In section 4 we discuss the implications of negative event weights on training of machine learning
algorithms. In section 5 we propose methods to robustly obtain class probabilities conditioned
on the control variables. In section 6 we present experimental results that demonstrate practical
viability of the proposed method.

2 sPlot

The full derivation of sPlot is present in [1]. Here we briefly recite the key formulas. Take a
dataset populated by events from Ns sources. Let pk(m) be probability density function of the
discriminative variable m of the i-th species; Nk the number of events expected on the average for
the k-th species; N – the total number of events; me – the value of m for the e-th event. Define
matrix V:

V−1
nj =

N∑
e=1

pn(me)pj(me)(∑N s

k=1 Nkpk(me)
)2 (2.1)

The sWeight for the e-th event corresponding to the n-the species is obtained using the following
transformation:

sWeightn(me) =
∑Ns

j=1 Vnjpj(me)∑Ns

k=1 Nkpk(me)
(2.2)

If the dataset is weighted with sWeights, the distribution of the control variables will be an unbiased
estimate of the corresponding pure species. In the rest of the paper we deal with the two species
scenario, named signal and background. An example of sPlot application is present on figure 1.
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Figure 1: An example of sPlot application. To the left: the known distributions of m. To the right:
the mixture and reconstructed distribution of x.

3 Related work

There are several works concerning machine learning and sWeights: [2–5]. They propose a training
procedure for the case where a classifier is desired to separate the same signal and background
that are defined by the sPlot. Take each event twice, once as signal, once as background with the
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corresponding sWeights, then train the classifier as usual. The works also demonstrate practical
viability of using machine learning methods on data weighted with sPlot. They, however, do not
attempt to analyze the core issue of negative weights impact on machine learning algorithms, liming
themselves to requiring that the classifier supports negative weights.

Another possible approach is suggested by [6] – classification without labels (CWoLa). It
is possible to use the discriminative variable to define regions with different signal/background
proportions, then train a classifier to separate them, without using any weights or true labels. The
authors prove that the optimal classifier for this case would also be the optimal classifier for signal
against background. This method ignores the per-event probability information. In our experiments
(presented in section 6), CWoLa has worse quality on a real finite dataset than the methods that use
this information.

4 The problem of negative weights

Let us consider an event with positive signal weight ws > 0 and negative background weight wb < 0
and the classic cross-entropy loss function:

L = −ws log(ps) − wb log(1 − ps), (4.1)

where ps is the model output – the predicted probability of this event being signal.

lim
ps→1

L = − (−|wb |) lim
ps→1

log(1 − ps) = −∞. (4.2)

Thus, directly incorporating sWeights into the cross-entropy loss causes it to lose the lower bound.
The same holds for themean squared error and other losseswithout an upper bound in the unweighted
case. Training most machine learning algorithms is an optimization problem, and, for some
algorithms, such as a large-capacity fully-connected neural network, negative event weights make
this optimization problem ill-defined, as the underlying optimization target loses the lower bound
as well. An example illustrating diverging training is present on figure 2. The model training using
the sWeights as event weights quickly diverges in contrast to the same model training using the true
labels or our losses. The model trained on true labels does not even start to overfit – the test score
keeps climbing, while the test score of the model trained with sWeights as event weights drops
dramatically. As expected, the test ROC AUC for the model that was trained using the true labels
is the best among all methods.

However, most machine learning algorithms do not blindly minimize the loss value on the
training dataset, as this is likely to lead to overfitting. They add various regularization terms to the
optimized functional that, in general, penalize model complexity or overconfidence. We are not
aware of peer-reviewed literature exploring the impact of regularization on learning with negative
weights. One such technique appears in discussions within the High Energy Physics community [7].
They propose avoiding the unbounded loss by requiring leafs of decision tree to have positive total
weight. It is also possible to regularize neural networks into having bounded loss. For example,
by using the L2 regularization on weights and taking the root of the degree equal to the number of
layers plus one from the cross-entropy loss.
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Figure 2: Learning curves of a neural network trained on the Higgs dataset using the true labels
and the artificially introduced sWeights. Likelihood and Constrained MSE methods are described
in section 5, CWoLa in [6], the dataset in section 6, and the network in appendix B.

Nevertheless, it is unclear how negative weights combined with such regularization would
affect classifier performance. A more detailed study falls outside of the scope of this paper, which
presents a principled approach to avoid the problem entirely.

5 Our approaches

5.1 sWeights averaging (Constrained MSE)

Let m be the variable that was used to compute the sWeigths, x the rest of the variables. It can be
shown that:

E
m
[w(m) | x] =

psignal(x)
pmix(x)

. (5.1)

The formal proof is available in appendix A.1. Notice, that the right-hand side of (5.1) is the optimal
output of a classifier, while the left-hand side can be estimated by a regression model. Our first
proposed approach is to perform mean-square regression directly on sWeights. Since the optimal
output lies in [0, 1], one can easily avoid a priori incorrect solutions by, for example, applying
sigmoid function to the model output. The resulting loss function is the following:

L =
∑
i

(
wi −

e fθ (xi )

1 + e fθ (xi )

)2

, (5.2)

where wi is the sWeight and fθ(xi) is the model output. This loss has been implemented for the
CatBoost machine learning library [8] and is available on GitHub.1

1https://github.com/kazeevn/catboost/tree/constrained_regression
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5.2 Exact maximum likelihood

Alternatively, one can invoke Maximum Likelihood principle and avoid the sPlot technique alto-
gether. This leads to the following loss function (derivation is in A.2):

L(θ) = −
∑
i

log
[

fθ(xi)psignal(mi) + (1 − fθ(xi))pbackground(mi)
]
, (5.3)

where fθ(xi) is the output of the model; psignal(mi) and pbackground(mi) are the probability densities
of the signal and background m distributions.

Note, that by substituting psignal|background(mi) by the class indicator (yi = 1 if xi is a signal
sample, yi = 0 otherwise) in loss (5.3), a conventional expression for cross-entropy loss can be
obtained.

6 Experimental evaluation

To demonstrate viability of our methods on practical problems, we tested them on the UCI Higgs
dataset [9, 10]. We used neural network and gradient boosting models, their detailed description is
in B. The dataset is the largest open dataset from the field of High-Energy Physics. It has 28 tabular
features. We split it into train and test parts containing 8.8 · 106 and 2.2 · 106 events respectively.
The dataset is labeled and it does not feature sWeights, so we introduced them artificially. For both
signal and background events we added a virtual "mass" distributed as shown on figure 1 and used
it to compute sWeights. We also compared with the CWoLa method [6] by splitting the data into
a signal-majority and a background-majority regions. The signal region was chosen with center at
m = 4 (center of the signal m distribution) and width so that it would include half of the events.

The results are present on figures 2 and 3. As expected, training on true labels gives the best
performance. Constrained MSE and Likelihood loss functions show the same performance, both
methods outperform CWoLa. For Catboost, directly using sWeights as event weights results in
stable training and the same performance as in our methods. For neural networks, using sWeights
as event weights leads to divergent training. The performance difference between the methods gets
smaller with train dataset size increase. The code of the experiments is available on GitHub.2

7 Conclusion

Training a machine learning algorithm on a dataset with negative weights means dealing with a
loss that potentially has no lower bound. The implications depend on the algorithm in question. In
our experiments, neural network training diverges, while gradient boosting over oblivious decision
trees does not.

Our contribution is the two loss functions that allow amachine learning algorithm to obtain class
probabilities from background-subtracted data without encountering negative event weight at all.
The probability of an event with given control variables values to be signal is the expected sWeight,
that can be estimated by a regression with the corresponding loss function (5.1). We invoke
the Maximum Likelihood principle to construct a loss function that avoids sPlot and associated
problems with negative event weights (5.2).

2https://github.com/yandexdataschool/ML-sWeights-experiments
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(a) CatBoost
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Figure 3: Experimental evaluation of performance of different loss functions on the Higgs dataset
as a function of train dataset size. sWeight – cross-entropy weighted with sWeights, it is not reported
for the neural network due to divergence of optimization and, hence, highly stochastic nature of the
results; True labels – logloss using the true labels; Constrained MSE – our loss function defined by
(5.2); Likelihood – our loss function defined by (5.3); CWoLa – method from [6];

Our work paves a rigorous way to use any machine learning methods on data with sPlot-based
background subtraction.
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A Proofs

A.1 Constrained MSE

Let m be the variable that was used to compute the sWeigths, x be the rest of variables and f (x) is
any smooth function of x.

Ex∼psig( f (x)) =
∫

dx f (x)psig(x)

define

W(x) =
psig(x)
pmix(x)

Then

Ex∼psig( f (x)) =
∫

dx f (x)W(x)pmix(x) (A.1)

By definition of sWeights:

Ex∼psig( f (x)) =
∫

dxdm · w(m) f (x)pmix(x,m),

where w(m) is the sWeight.

Ex∼psig( f (x)) =
∫

dxdm · w(m) f (x)pmix(x)pmix(m|x)

Rearrange the multipliers in the double integral:

Ex∼psig( f (x)) =
∫

dx f (x)pmix(x)
∫

dmw(m)pmix(m|x)

From equation A.1∫
dx f (x)W(x)pmix(x) =

∫
dx f (x)pmix(x)

∫
dmw(m)pmix(m|x)
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Therefore,
W(x) =

∫
dmw(m)pmix(m|x) = Em(sWeight(x,m))

A.2 Exact maximum likelihood

Let us denote signal and background classes as S and B, model parameters as θ. By definition of
the log-likelihood l(θ):

l(θ) =
∑
i

log p(xi,mi | θ) =
∑
i

log [p(xi,mi | θ, S)P(S) + p(xi,mi | θ,B)P(B)] . (A.2)

Since xi and mi are assumed to be independent within individual classes, expression (A.2) can
be simplified further:

l(θ) = ∑
i

log [p(xi | θ, S)p(mi | S)P(S) + p(xi | θ,B)p(mi | B)P(B)] =∑
i

log [P(S | xi, θ)p(mi | S)p(xi) + p(B | xi, θ)p(mi | B)p(xi)] =∑
i

log [P(S | xi, θ)p(mi | S) + P(B | xi, θ)p(mi | B)] + const, (A.3)

which leads to the following loss function:

L(θ) = −
∑
i

log [ fθ(xi)p(mi | S) + (1 − fθ(xi))p(mi | B)] (A.4)

B Models parameters

B.1 Neural Networks

For the experiments with fully-connected neural networks we use networks with 3 hidden layers:
128, 64, 32 neurons for the experiments with 8.8 · 106 and 8.8 · 105 samples in the training sets,
and 64, 32, 16 neurons in cases of 8.8 · 104 and 8.8 · 103 training samples. Model capacity varies
to adjust for the low sample sizes.

All networks use leaky ReLu (0.05) activation function. Networks are optimized by adam [11]
algorithm with learning rate 2 · 10−4, β1 = 0.9, β2 = 0.999 for 2.2 · 106 steps (32 full ’passes’
over the original training sample) with batch size 128; learning rate is set to the value lower than
commonly used ones due to high variance of the gradients for CWoLa.

Each experiment is repeated 5 times with varying training dataset (if subsampled) and initial
weights, however, within each experiment networks for different methods have identical conditions:
they share initial weights, are trained on the same subsample and use identical sequence of batches.

Due to use of log function, loss function (5.3) might become computationally unstable for
networks with large weights. For the experiments with 8.8 · 104 training samples, l2 regularization
is introduced to the exact maximum likelihood loss function. This regularization does not affect
results in any significant way, besides limiting network weights to computationally stable values.

– 8 –



B.2 CatBoost

We use CatBoost with the following parameters: 1000 trees, leaf_estimation_method="Gradient",
version 0.10.2 with our losses added and check for negative weights removed: https://github.
com/kazeevn/catboost/tree/constrained_regression. Each experiment is repeated 10
times with varying training dataset (if subsampled).
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