
  

Water 2019, 11, 2579; doi:10.3390/w11122579 www.mdpi.com/journal/water 

Article 

Reductive/Oxidative Sequential Bioelectrochemical 
Process for Perchloroethylene Removal 
Marco Zeppilli *, Edoardo Dell’Armi, Lorenzo Cristiani, Marco Petrangeli Papini  
and Mauro Majone 

Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; 
dellarmi.1653747@studenti.uniroma1.it (E.D.); lorenzo.cristiani@uniroma1.it (L.C.); 
marco.petrangelipapini@uniroma1.it (M.P.P.); mauro.majone@uniroma1.it (M.M) 
* Correspondence: marco.zeppilli@uniroma1.it; Tel: +39-064-9913716; Fax: +39-064-90631 

Received: 31 October 2019; Accepted: 4 December 2019; Published: 6 December 2019 

Abstract: An innovative bioelectrochemical reductive/oxidative sequential process was developed 
and tested on a laboratory scale to obtain the complete mineralization of perchloroethylene (PCE) 
in a synthetic medium. The sequential bioelectrochemical process consisted of two separate tubular 
bioelectrochemical reactors that adopted a novel reactor configuration, avoiding the use of an ion 
exchange membrane to separate the anodic and cathodic chamber and reducing the cost of the 
reactor. In the reductive reactor, a dechlorinating mixed inoculum received reducing power to 
perform the reductive dechlorination of perchloroethylene (PCE) through a cathode chamber, while 
the less chlorinated daughter products were removed in the oxidative reactor, which supported an 
aerobic dechlorinating culture through in situ electrochemical oxygen evolution. Preliminary fluid 
dynamics and electrochemical tests were performed to characterize both the reductive and oxidative 
reactors, which were electrically independent of each other, with each having its own 
counterelectrode. The first continuous-flow potentiostatic run with the reductive reactor (polarized 
at −450 mV vs SHE) resulted in obtaining 100% ± 1% removal efficiency of the influent PCE, while 
the oxidative reactor (polarized at +1.4 V vs SHE) oxidized the vinyl chloride and ethylene from the 
reductive reactor, with removal efficiencies of 100% ± 2% and 92% ± 1%, respectively. 

Keywords: reductive dechlorination; oxidative dechlorination; bioelectrochemical systems; 
bioremediation  

 

1. Introduction 

Chlorinated aliphatic hydrocarbons (CAHs) are among the most frequent groundwater 
contaminants due to their intense use as solvents or degreasing agents in the mechanical industry 
coupled with unregulated and inappropriate disposal procedures [1]. CAHs, due to their low 
solubility, are particularly persistent in the environment; however, their low solubility is sufficiently 
high to overcome the concentration limits established for human health [2]. Engineered 
bioremediation and natural attenuation (NA) processes permit CAH removal from contaminated 
groundwater directly in situ, which usually results in an environmentally friendly and cost-effective 
treatment with respect to conventional technologies such as pump-and-treat [3–5]. The engineered 
bioremediation consists of stimulating the microbial activity that is naturally present in the 
soil/groundwater matrix to remove pollutants through their metabolic activity [6]. The highly 
chlorinated CAHs can be removed by a reductive dechlorination (RD) reaction through sequential 
steps in which the chlorinated molecule loses a chlorine atom at each step until the complete 
dechlorination of the molecule [7]: For this reaction, the microorganisms usually need an electron 
donor such as hydrogen, which can be produced by fermenting organic substrates that provide for 
the slow release of hydrogen [8]. In terms of chlorinated ethenes, such as tetrachloroethene (PCE), 
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the main limitation and risk of RD is represented by its last step, where vinyl chloride is transformed 
into ethylene, which usually is the most difficult step (only a few microorganisms are able to perform 
it); therefore, vinyl chloride is the most toxic intermediate of RD, with specific carcinogenetic activity 
for humans [9,10]. Indeed, due to the high electronegative character of chlorine, highly chlorinated 
compounds are more affected by RD, whereas the tendency for chlorinated compounds to be 
degraded by RD decreases with a decrease in the number of chlorine atoms: indeed, less chlorinated 
compounds such as cis-DCE and VC are more easily oxidized by microbial degradation. Several 
research works have reported on the capability of mixed dechlorinating aerobic cultures to oxidize 
cis-DCE and VC via cometabolic pathways that involve the presence of a substrate [11–13].  

Thus, a sequential anaerobic/aerobic biodegradation approach has been proposed in the 
literature to overcome the disadvantages of incomplete RD and to promote the complete 
mineralization of chlorinated pollutants by adding an oxidative treatment of less chlorinated 
intermediates. The sequential stimulation of anaerobic/aerobic biodegradation has been applied in 
pilot tests by injecting electron donors and nutrients in an aquifer to stimulate anaerobic RD, while 
oxygen was provided through biosparging or direct water electrolysis [14,15]. However, some 
limitations and disadvantages need to be carefully considered, such as the possibility of decreasing 
aquifer quality as well as the precipitation of ferric iron and related clogging effects when oxygen is 
injected into an aquifer [16].  

The reductive/oxidative environment can be easily created by using bioelectrochemical systems 
[17–19] and more precisely by using microbial electrolysis cells (MECs), which have been widely 
explored using a cathode as an electron donor for RD [20,21]: meanwhile, a counterelectrode, the 
anode, is used for the creation of an oxidizing environment. Several works have been conducted in 
two-chamber bench-scale reactors under continuous flow conditions [22,23], which have shown the 
effect of applied potential and the loading rate of TCE in the cathode compartment. Moreover, the 
oxidation of less chlorinated compounds has been shown using an aerobic mixed culture able to 
oxidize cis-DCE into CO2 by using ethylene as a cosubstrate: this research showed an increase in the 
oxidation rate of cis-DCE when an oxidizing potential able to obtain electrochemical oxygen 
evolution was used [24].  

The first arrangement of sequential reductive/oxidative involved the use of graphite granules as 
electrode material for both reduction and oxidation processes [25,26]. Moreover, anodic oxidation 
performance was poor, and the study showed the scavenging effect of graphite, which strongly 
reduced oxygen evolution [27], resulting in a strong limitation of the oxidative microbial 
dechlorination of the less chlorinated CAHs. On the other hand, the study clearly showed the 
possibility of obtaining the complete removal of the contaminant by using an oxidizing step in which 
a rutile electrode allowed for in situ oxygen evolution in the anodic chamber, which was necessary 
for the cometabolic degradation of the VC. It was noteworthy that oxygen evolution in the anodic 
chamber could inhibit RD through its diffusion, and the presence of an ion exchange membrane not 
only allowed for electrical separation and ion transfer, but also limited oxygen diffusion; however, 
the use of an ion exchange membrane as a separator resulted in considerable investment costs, which 
strongly limited the scale-up of the process [28]. However, as mentioned above, the use of a graphite 
counterelectrode as a “sacrificial anode” permitted ion exchange membrane removal from the 
bioelectrochemical cell in favor of a cheaper separator that allowed for free diffusion of the electrolyte 
and avoided the cell shortcut. Moreover, the free diffusion of the electrolyte could limit the pH split 
phenomena, which promoted the acidification of the anolyte and the alkalization of the catholyte 
[29,30], which could cause biomass inhibition and a loss of energy due to overpotential establishment. 

In this study, the first scale-up of a reductive/oxidative bioelectrochemical process is presented 
with an innovative tubular configuration of the reactors, which adopted a membrane-less 
configuration where no ion exchange membranes were used for the separation of electrode 
compartments. The sequential reductive/oxidative bioelectrochemical process was then realized 
through the separation of the two dechlorinating steps into two different tubular MECs, each one 
equipped with a working electrode and its own counterelectrode. In this way, the two reactors were 
completely independent of each other, so that the potential of the working electrode could be 
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independently selected and optimized, as were the fluid dynamic parameters concerning the 
bioelectrochemical dechlorinating reactions. The reductive reactor and the oxidative reactor were 
hydraulically connected in a series, where the effluent from the first reductive step was used to feed 
the following oxidative step of the process.  

2. Materials and Methods 

2.1. Sequential Process Setup 

The sequential system consisted of two tubular reactors, i.e., the reductive and the oxidative 
reactor. 

The reductive reactor was a 105-cm-high column with a diameter of 10 cm, giving an empty 
volume of 8.24 L. The tubular MEC was equipped with several side ports that allowed for the 
insertion of the current collectors and the reference electrode (Ag/AgCl in saturated solution of KCl). 
The counterelectrode of the reductive reactor consisted of a concentric tube filled with graphite 
granules enveloped by a double layer of a grid in plastic material and a permeable textile membrane 
that avoided the shortcut of the circuit and allowed for electrolyte migration: the membrane was 
constituted by a multifiber layer of HDPE (high-density polyethylene), also known as textile 
nontextile membrane. The counterelectrode contained a 30 cm graphite rod connected to a titanium 
wire as a current collector: the length and the diameter of the counterelectrode were 85 cm and 5 cm, 
respectively, giving a volume of 1.7 L.  

The oxidative reactor consisted of a tubular glass reactor with a length of 40 cm and a diameter 
of 10 cm, and the empty volume was 3.14 L. Three side ports allowed for the insertion of the current 
collectors of the working and counterelectrode as well as the insertion of the Ag/AgCl reference 
electrode. The counterelectrode volume was 0.18 L, and it was constituted by a graphite granule 
tubular envelopment. The working electrode included three pieces of rutile-type mesh electrode 
connected by a titanium wire and inserted into a silica bed, which permitted biofilm formation on 
the dechlorinating microorganisms.  

The two reductive and oxidative reactors were separately polarized using an AMEL 549 model 
potentiostat that allowed for control over the respective working electrodes through the utilization 
of a three-electrode configuration. The reductive and the oxidative reactors (Figure 1) were 
hydraulically connected in a series and fed with the same peristaltic pump: The synthetic 
contaminated medium was fed to the bottom of the reductive reactor, while the outlet flow from the 
top of the reductive reactor was fed to the bottom of the oxidative reactor. Three different 50 mL 
sampling cells allowed for the characterization of the CAH concentrations through headspace 
sampling: The sampling cells were located at the inlet and outlet of the reductive reactor and at the 
outlet of the oxidative reactor.  

The influent solution was a mineral medium composed of 1 g/L NaCl, 0.5 g/L MgCl2 * 6H2O, 0.2 
g/L KH2PO4, 0.3 g/L NH4Cl, 0.3 g/L KCl, 0.015 g/L CaCl2 * 2H2O, 0.05 g/L Na2S, 2.5 g/L NaHCO3 [31], 
1 mL/L metal solution [32], and 10 mL/L vitamin solution [33]: The mineral medium was then 
contaminated with PCE to obtain a theoretical concentration of 100 μM. The influent and the effluent 
solutions were collected into Tedlar bags® (Supelco, Cerritos, CA, USA), which consisted of a self-
collapsing bag that permitted the quantification of liquid and gaseous flow rates. 
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Figure 1. Schematic view of the reductive/oxidative bioelectrochemical process (A) and pictures of 
the two tubular reactors and the sacrificial counterelectrode (B). 
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2.2. Tracer Test 

A tracer test was conducted using a KCl 0.02-M solution as a conservative tracer (performed 
with a flow rate of 30 L/d), and the conductivity of the outlet of the reactor was continuously 
monitored by a conductometer Handylab® 330 (SI-analytics, Weilheim, Germany). The conductivity 
of the outlet solution was utilized to build an F-curve according to the following equations, and the 
first derivate method was then used for the flex point of the F-curve determination, which 
represented the experimental hydraulic retention time (HRT). The plug flow reactor (PFR) and the 
continuous stirred tank reactor theoretical curves were also reported together with the F-curve to 
graphically show the fluid dynamic behavior of the reactors.  

2.3. Cyclic Voltammetry  

Cyclic voltammetry was performed using a Biologic SP-300 potentiostat (Biologic, Seyssinet-
Pariset, France) that allowed for the automatic acquisition of the curves, where both of the reactors 
were investigated with the following voltage scan rates: 10–1–0.65–0.3–0.08 mV/s. The potential range 
investigated for the electrode reaction in the reductive reactor was from 0 to −1.1 V versus SHE, using 
the cathode as a working electrode, while the oxidative reactor electrode reaction was investigated in 
the range +1 to +2 V versus SHE, using the anode as a working electrode. For each scan performed, 
the mineral medium was recirculated with a flow rate of 21 L/d in order to maintain good mixing of 
the electrolyte, and two cycles of each curve were performed. 

2.4. Analytical Methods 

The CAHs and the ethylene, ethane, and methane were detected using a Dani Master Gas 
chromatograph equipped with a flame ionization detector (FID). The reactors’ headspace was 
analyzed by a DANI master gas chromatograph (GC) equipped with a thermal conductivity detector 
(TCD) (DANI Instruments, Contone, Switzerland) to determinate the H2, O2, and CO2 concentrations. 
The aqueous-phase concentrations were calculated by converting the headspace gaseous 
concentrations using tabulated Henry’s law constants under liquid–gas equilibrium condition 
assumptions [34]. The compound concentration was reported as the total amount (e.g., in moles) with 
respect to the volume of the liquid phase, which represented the “nominal” concentrations.  

2.5. Calculations 

The average rate and coulombic efficiency of RD in the reductive reactor were evaluated 
according to the following equations: 

RD (mA) = Q (L/d) x (2 x [TCE]+ 4 x [cis-DCE]+ 6 x [VC] + 8 x [Eth]) + F/s/d (1) 

CE (RD)% = RD (mA)/Current (mA) x 100 (2) 

where Q is the liquid flow rate, F is the Faraday constant (96,485 C/mol), and s/d represents the 86,400 
s in a day. The nominal concentrations of the reductive dechlorination products are expressed in mM, 
while 2, 4, 6, and 8 are the numbers of moles of electrons required for the respective formation of RD 
intermediates from 1 mol of PCE. The coulombic efficiency of the reductive dechlorination (CE(RD)) 
represents the amount of electricity utilized for the dechlorination reaction. With the same approach, 
and in accordance with the literature [35,36], the coulombic efficiency for methane production was 
evaluated within the reductive reactor by evaluating the methane production rate and transforming 
it into a current according to the following equation: 

CH4 (mA) = F (L/d) x 8 [CH4] x F/s/d (3) 

in which F is the outlet gaseous flow rate expressed as L/d, 8 is the number of electrons consumed to 
reduce 1 mol of CO2 into CH4, F is the Faraday constant, and s/d represents the 86,400 s in a day. 
Equation (4) is  

CO2 + H+ + 8e−  CH4 +2 H2O (4) 
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The methane coulombic efficiency was then calculated as the ratio of the produced methane to 
the average current flowing in the circuit: 

CE (CH4)% = CH4 (mA)/Current (mA) x 100 (5) 

In the oxidative reactor, the oxidation rate for the chlorinated compounds was evaluated by 
considering the stoichiometry of the VC and ethylene complete oxidation: 

C2H3Cl + 2.5 O2  2CO2 + H2O + HCl (6) 

C2H4 + 3O2  2CO2 + 2H2O (7) 

in which 2.5 and 3 mol of O2 are required for VC and ethylene oxidation, respectively. Considering 
the water oxidation reaction. 

2H2O  O2 + 4H+ + 4e− (8) 

in which 4 electrons are produced for each mole of oxygen produced, considering a complete 
conversion of the oxidation current into oxygen, the coulombic efficiency for the oxidative reactor 
can be expressed as: 

CE (ox)% = (VC removal x 2.5 + Eth removal x 3)/(Oxidative current (O2)) x 100 (9) 

Energy consumption was evaluated by considering the amount of applied energy in a day 
(expressed as kWh/d), which was calculated by the product of the average current and the average 
cell voltage for both the reduction and oxidation reactors (according to the following expression): 

kWh/d = [I (mA) x ΔV (V)reduction] + [I (mA) x ΔV (V)]oxidation] (10) 

Moreover, the energetic cost for m3 of treated groundwater was evaluated by dividing the 
energy consumption by the flow rate (expressed as m3/d). 

2.6. Chemicals 

The analytical standard and feed solutions were prepared with chemicals of analytical grade. In 
particular, CAHs, ethylene, and methane were purchased from Sigma-Aldrich (Milano, Italy). 

3. Results 

3.1. Preliminary Fluid Dynamics and Electrochemical Characterization of the Tubular Reactors 

After the setup of the two tubular reactors, a tracer test was utilized to characterize their fluid 
dynamic behavior and to assess the effect of the internal counterelectrode on the flow path of fluid 
particles. Figure 2 reports the F-curves obtained for the reductive (Figure 2A) and oxidative reactor 
(Figure 2B). Both tests clearly show the typical profile of a plug flow reactor (PFR) with a dispersion 
effect that slightly deviates from the ideal PFR profile.  
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Figure 2. Tracer test results for the reductive reactor (A) and for the oxidative reactor (B). Plug flow 
reactor (PFR) and continuous stirred tank reactor CSTR theoretical curves are also reported. 
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including the counterelectrode), meaning that the counterelectrode was fully crossed by the fluid 
particles without any distinction between the two compartments. On the other hand, the tracer test 
of the oxidative reactor resulted in an experimental HRT of 0.7 h, which was a value similar to the 
HRT of the working electrode only; in other words, in the case of the oxidative reactor, the 
experimental HRT clearly showed that the counterelectrode was only partially crossed by the fluid 
particles. The last difference probably was a direct effect of the different packing materials utilized 
for the working and counterelectrode in the oxidative reactor, i.e., a lower porosity in the silica beds 
can provide for an increase in the linear velocity of the particles and the partial exclusion of the 
counterelectrode with respect to fluid particle movement.  

Table 1. Tracer test results. HRT: hydraulic retention time. 

HRT Reductive Reactor Oxidative Reactor 
Working electrode (h) 2.6 0.8 

Overall reactor (h) 3.3 1 
Experimental (h) 3.3 0.7 

After the tracer test, the two reactors were filled with the mineral medium, and cyclic 
voltammetry experiments were then performed adopting different scan rates for the two reactors. 
The voltage scan rates were in the range from 10 to 0.08 mV/s. The utilization of very low voltage 
scan rates derived from the necessity to minimize the transient disturbances caused by the capacitive 
current of the high surface electrode, i.e., the nonfaradic current deriving from the charge–discharge 
process of the capacitive layer of the electrode surface [37,38]. The reductive reactor cyclic 
voltammetry tests were conducted by polarizing the cathodic chamber from 0 to −1.1 V versus SHE, 
while for the oxidative reactor, the potential range of the rutile-type anodic electrode was from +1 to 
+2 V versus SHE. In Figure 3A, the reductive reactor cyclic voltammetry values are reported, where 
the curve shapes clearly show the absence of any active redox sites in the potential range explored: 
the current increase in the range of −0.8–1.0 V versus SHE was a typical representation of the 
evolution of H2 from proton reduction (which was the only reduced product from the cathodic 
process). In Figure 3B, the oxidative reactor’s cyclic voltammetry shows an asymptotic increase in 
current due to oxygen evolution starting from the potential of +1.2 V versus SHE, without any other 
redox site in the explored range of potentials. The main effect of the scan rate on the cyclic 
voltammetry shape was clearly that with a slow voltage scan rate, the diffusion layer, which is the 
layer for the diffusion of electroactive species from the bulk to the electrode surface, was thicker and 
generated a lower current in comparison to a fast scan rate, which on the contrary, generated smaller 
diffusion layers and higher currents [39]. Moreover, the effect of the voltage scan rate was more 
evident in the reductive reactor’s cyclic voltammetry compared to the oxidative reactor’s cyclic 
voltammetry: this effect could be explained by the strong difference in terms of specific surface area, 
which was much higher for the cathodic chamber of the reductive electrode. 
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Figure 3. Cyclic voltammetry at different scan rates for the reductive (A) and oxidative reactor (B). 
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Figure 4. Time course of perchloroethylene (PCE) and its dechlorination products during the startup 
of the reductive reactor during the first 13 days after inoculation. 
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Figure 5. Perchloroethylene concentration in the reductive reactor influent and effluent during the 
continuous flow run at −450 mV. 
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electroactive methanogens [40,41]) accounted for 22% ± 4% of the current (methane coulombic 
efficiency). Hence, the global recovery of the current reached 27% ± 4%, which means that a high 
amount of current was probably lost in parasitic reactions in the reductive reactor, such as in the 
hydrogen shortcut between the cathode and the anode or in the presence of bioelectrochemical 
oxidation of the ammonium nitrogen and the sulfide present in the mineral medium. In more detail, 
in the inner counterelectrode part of the reductive reactor, both ammonium nitrogen and sulfide 
could be bioelectrochemically oxidized into nitrate and elemental sulfur, respectively, as has been 
reported in the literature [42–44]. Even though the anion determination did not show the presence of 
nitrate or sulfide removal, the presence of bioelectrochemical oxidation cannot be excluded due to 
the possibility of an oxidation/reduction electron loop; therefore, the contribution of each mechanism 
could not be quantified in the electron balance of the process. 

As described above, the outlet from the reductive reactor constituted the influent of the oxidative 
reactor, which was operated by keeping the anode (i.e., the working electrode) polarized at +1.4 V 
versus SHE. On the basis of voltammetry, this potential was chosen in order to ensure the O2 
production necessary for the oxidative dechlorination pathway [24]. Figure 7 shows the complete 
removal of the VC (Figure 7A) and ethylene (Figure 7B) through the oxidative step (below the 
instrumental detection limit).  

 
Figure 7. Removal of the vinyl chloride (A) and ethylene (B) in the oxidative reactor during the first 
continuous-flow potentiostatic condition explored. 
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As is reported in Figure 7, the oxidative reactor performed an average removal efficiency of 100% 
± 2% for the VC (Figure 7A) and 92% ± 5% (Figure 7B) for the ethylene; moreover, the methane was 
also removed in the oxidative rector with an average removal efficiency of 43% ± 4%. By taking into 
account the average current flowing in the oxidative reactor (11.3 ± 0.9 mA) and the stoichiometry of 
the oxidative reactions, the coulombic efficiency for the VC and ethylene oxidation accounted for 5% 
± 1% and 2% ± 1% of the current, respectively, while the methane removal allowed for a coulombic 
efficiency of 8% ± 1%. Moreover, methane can also be used as a substrate for the cometabolic 
oxidation of less chlorinated compounds [12]; thus, methane production in a reductive reactor, which 
usually is the main competitive mechanism in a reductive dechlorination reaction [22], can positively 
affect the oxidative step of dechlorination by increasing the substrate availability of the aerobic 
biomass [45]. 

All of the main parameters for the reductive and oxidative reactors are reported in Table 2, which 
summarizes the main results of the sequential process for the −450 mV versus SHE run. 

Table 2. Main performance of the sequential reductive/oxidative process in the three different 
potentiostatic conditions explored. 

Reductive Reactor Potential −450 mV versus SHE 
PCE removal rate (μmol/d) 191 ± 13 
PCE removal efficiency (%) 100 ± 1 

Coulombic efficiency of reductive dechlorination (RD) (%) 5 ± 1 
Coulombic efficiency CH4 (%) 22 ± 4 
Oxidative Reactor Potential +1.4 V versus SHE 

Vinyl chloride (VC) removal efficiency (%) 100 ± 2 
Ethylene removal efficiency (%) 92 ± 5 

Coulombic efficiency of oxidative VC-ethylene (%) 7 ± 2 
Coulombic efficiency of oxidative CH4 (%) 8 ± 1 

In terms of mass balance, the ethane-backbone daughter products were compared to the influent 
PCE in the reductive reactor: the mass balance (expressed as reducing products) detected with respect 
to the influent PCE removed in the reactor was on average only 36%, which indicated a large amount 
of lost PCE. A possible explanation for the PCE losses could be, in part, an overestimation of the 
influent PCE concentration due to its extremely low solubility in the medium, which resulted in 192 
mg/L [46]. Another possible mechanism that was difficult to estimate was the possible degradation 
of less chlorinated compounds in the counterelectrode of the reductive column, which could have 
been due to the possible presence of dechlorinating oxidizing microorganisms. The latter mechanism, 
in which the oxidative environment of the counterelectrode could promote the selection of oxidizing 
dechlorinating microorganisms, could also have been sustained by the value of the counterelectrode 
potential (+1.13 V versus SHE), which in turn was sufficient for oxygen evolution even if the daily 
analysis of the gaseous phase did not show any oxygen production during the −450 mV versus SHE 
run. In this sense, the oxygen scavenging effect of graphite, which has been revealed in previous 
research [26], might be insufficient to hinder oxygen formation in the anodic counterelectrode. 

The amount of energy consumed by the whole process was assessed in accordance with the 
average current and the average potential difference utilized for the continuous run of the sequential 
dechlorination process: the overall energy consumption was 0.09 kWh/m3 of reactor, which resulted 
in an energetic cost of 0.62 kWh/m3 of treated water, a considerably low energy consumption that can 
be converted into an average cost of 0.12 euro/m3 of treated water by using the current electricity cost 
for industrial applications in Italy. 

4. Conclusions 

The innovative reactor configurations permitted an effective sequential reductive/oxidative 
bioelectrochemical process that permitted the complete mineralization of perchloroethylene into 
nonharmful compounds, driving microbial dechlorinating metabolism through the use of electric 
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currents. The new reactor configuration (with an internal counterelectrode) avoids the use of ion 
exchange membranes as a separator, resulting in a cost-effective and versatile process. The sequential 
bioelectrochemical reductive/oxidative process was able to perform the complete mineralization of 
PCE, which was completely removed in the first reductive step with a removal efficiency of 100% ± 
1%, while vinyl chloride, the main reduction product along with ethylene from the first reductive 
step, was successfully removed in the oxidative reactor with a removal efficiency of 100% ± 2%. The 
coulombic efficiency, i.e., the number of electrons that are effectively utilized for electrode reactions, 
resulted in only 5% ± 1% for the reductive dechlorination, while in the oxidative reactor, the 
coulombic efficiency was 7% ± 2% for the oxidation of vinyl chloride and ethylene. A methanogenesis 
reaction resulted from the main competitive reaction (observed in the reductive reactor), where it was 
responsible for the utilization of 22% ± 4% of the reductive current; however, the methane produced 
in the reductive reactor could also give an additional positive effect because it could be used by 
aerobic dechlorinating microorganisms as a substrate, boosting dechlorinating aerobic activity. 

Even if the required current densities for contaminant removal are quite low, the coulombic 
efficiencies of the dechlorinating reactions resulted in quite low values. For this reason, future 
investigations will be focused on optimizing the efficiency of the reactions by supplying a lower 
reductive potential. We will also investigate in more detail the presence of parasitic and side reactions 
that promote an electron loop between the anodic and cathodic chamber. Despite the low columbic 
efficiency reached in the reductive step, the sequential process showed an energy consumption of 
0.62 kWh/m3, quite promising results especially with respect to the conventional pump-and-treat 
approach. 
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