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ABSTRACT

Context. The Love number h2 describes the radial tidal displacements of Mercury’s surface and allows constraints to be set on the
inner core size when combined with the potential Love number k2. Knowledge of Mercury’s inner core size is fundamental to gaining
insights into the planet’s thermal evolution and dynamo working principle. The BepiColombo Laser Altimeter (BELA) is currently
cruising to Mercury as part of the BepiColombo mission and once it is in orbit around Mercury, it will acquire precise measurements
of the planet’s surface topography, potentially including variability that is due to tidal deformation.
Aims. We use synthetic measurements acquired using BELA to assess how accurately Mercury’s tidal Love number h2 can be deter-
mined by laser altimetry.
Methods. We generated realistic, synthetic BELA measurements, including instrument performance, orbit determination, as well as
uncertainties in spacecraft attitude and Mercury’s libration. We then retrieved Mercury’s h2 and global topography from the synthetic
data through a joint inversion.
Results. Our results suggest that h2 can be determined with an absolute accuracy of ±0.012, enabling a determination of Mercury’s
inner core size to ±150 km given the inner core is sufficiently large (> 800 km). We also show that the uncertainty of h2 depends
strongly on the assumed scaling behavior of the topography at small scales and on the periodic misalignment of the instrument.
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1. Introduction

Knowledge of Mercury’s interior is key to understanding its for-
mation and thermal evolution. Geodetic measurements are ef-
fective in constraining models of Mercury’s interior structure.
For example, the high density of 5429.30 kg/m3 (Margot et al.
2018) and the quadropole moments of the gravity field show
that the planet possesses a large metallic core, and Earth-based
radar observations of its spin state have proven that the core and
silicate shell are mechanically decoupled (Margot et al. 2007,
2012). Measurements of tides (Mazarico et al. 2014b; Verma &
Margot 2016; Genova et al. 2019) and global contraction (Byrne
et al. 2014) can further constrain interior models (Padovan et al.
2014; Knibbe & van Westrenen 2015). Recent modeling efforts
are in agreement on Mercury’s being composed of a solid outer
shell of about 400 km thickness and a large metallic liquid core
(Hauck et al. 2013; Padovan et al. 2014; Knibbe & van Westre-
nen 2015; Margot et al. 2018; Steinbrügge et al. 2018a; Gen-
ova et al. 2019). However, the existence and size of a potential
solid inner core is still uncertain (Margot et al. 2018, and ref-
erences therein). Recently, Genova et al. (2019) found evidence
for a solid inner core whose radius is probably between 0.3 and
0.7 times that of the outer core. Better observational constraints
on the inner core size are essential to understanding Mercury’s
thermal evolution (Hauck et al. 2018), thereby gathering infor-
mation on the evolution of its orbital state and capture in a 3:2

resonance (Noyelles et al. 2014; Knibbe & van Westrenen 2017),
as well as the workings of its dynamo (Christensen 2006).

In October 2018, the European Space Agency (ESA) and
the Japanese Aerospace Exploration Agency (JAXA) jointly
launched the BepiColombo mission to Mercury (Benkhoff et al.
2010). In December 2025, the Mercury Planetary Orbiter (MPO)
and the Mercury Magnetospheric Orbiter (MMO) will separate
and enter their respective orbits around the innermost planet.
One of the instruments aboard the MPO is the BepiColombo
Laser Altimeter (BELA, Thomas et al. 2007; Hussmann et al.
2018). BELA will measure the global topography of Mercury
with an average accuracy of 2 m and at a horizontal resolution
that varies as a function of latitude, reaching less than 250 m
at the poles and less than 3 km at the equator. It will also mea-
sure the surface roughness, local slope, and albedo at the laser
wavelength of 1064 nm (Steinbrügge et al. 2018b). Apart from
exploring the surface, BELA will also facilitate further insights
into Mercury’s deep interior by measuring the h2 tidal Love num-
ber and contributing to the determination of Mercury’s 88-day
libration amplitude φ0.

The h2 tidal Love number describes the radial component of
the surface displacement caused by solar tides. The displacement
ur is proportional to the second-degree tidal potential V2 as

ur(θ, λ, t) = h2
V2(θ, λ, t)

g
, (1)
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Fig. 1. Map of the peak-to-peak amplitude of radial displacement ur of
Mercury’s surface due to tides, assuming h2 = 0.85.

where g = µ'/R
2 = 3.70 ms−2 is the gravitational attraction

at the surface, µ' = 22031.78 km3s−2 (Folkner et al. 2014) is
Mercury’s gravitational parameter, R = 2439.7 km (Archinal
et al. 2011) is the radius of Mercury, θ and λ are co-latitude and
longitude, and t is time. The Love number h2 is a bulk quan-
tity that can be computed from radial profiles of density, shear
modulus, and viscosity (Segatz et al. 1988; Moore & Schubert
2000). Model calculations predict 0.77 < h2 < 0.93 (Stein-
brügge et al. 2018a). For h2 = 0.85, the peak-to-peak amplitude
of the resulting surface displacement ur reaches the maximum
of 2.13 m at (θ = 90◦, λ = 0◦/180◦), the minimum of 0.11 m at
(θ = 29◦/151◦, λ = 0◦/180◦), and 0.67 m at the poles (Fig. 1).
These small amplitudes make the detection of the displacement
very challenging. Both h2 and the Love number k2, which de-
scribes the change of the gravitational potential due to tides,
are highly sensitive to the thickness and rheology of the mantle
and only weakly depend on the properties of the core. However,
forming the ratio h2/k2 and the linear combination 1+k2−h2, also
called the diminishing factor, alleviates the resulting trade-offs
(Wu et al. 2001; Wahr et al. 2006; van Hoolst et al. 2007; Stein-
brügge et al. 2018a). These derived quantities are rather sensitive
to the inner core size, which could be inferred to ±100 km given
error-free measurements of k2 and h2 if the inner core radius ex-
ceeds 800 km (Steinbrügge et al. 2018a). To distinguish between
a small and a large inner core, h2 would have to be measured
with an absolute accuracy of 0.05 (Steinbrügge et al. 2018a).
Other than on Earth, h2 has previously only been measured on
the Moon (Mazarico et al. 2014a; Thor et al. 2018). The tidal
signal has not yet been detected in measurements by the Mercury
Laser Altimeter (MLA, Cavanaugh et al. 2007) aboard the MEr-
cury Surface, Space ENvironment, GEochemistry, and Ranging
(MESSENGER) mission (Solomon et al. 2007). The incomplete
coverage, a comparably small volume of data, and the limited
measurement accuracy of the instrument hinder the successful
retrieval of h2.

Due to the eccentricity of its orbit and the triaxiality of the
inertia ellipsoid, Mercury is predicted to librate at its 88-day or-
bital period with an amplitude of (Peale 1972),

φ0 =
3
2

B − A
Cm

(
1 − 11e2 +

959
48

e4 + ...

)
, (2)

where e is the eccentricity and A and B are the equatorial mo-
ments of inertia. Since the core is decoupled from the outer shell
and does not participate in the 88-day libration, only the polar
moment of intertia of the outer shell Cm contributes to the de-
nominator in Eq. 2. Peale (1976) proposed a method for deter-
mining the ratio between the polar moments of inertia of Mer-

cury’s outer shell and the whole planet Cm/C from four quanti-
ties: the amplitude of its 88-day librations φ0, the obliquity, and
the quadropole moments J2 and C22 of the gravity field. This mo-
ment of inertia ratio reveals the mass distribution within the core.
The 88-day libration amplitude is currently the limiting factor on
the accuracy of the moment of inertia ratio (Margot et al. 2018).
In Eq. 2, the influence of a solid inner core on the libration am-
plitude is not considered. If the radius of Mercury’s solid inner
core is larger than 1000 km, couplings between the inner core
and the solid shell could noticeably influence the libration of the
latter (van Hoolst et al. 2012). Furthermore, the libration am-
plitude of the solid shell depends on the radial density structure
of the core (Dumberry et al. 2013). Margot et al. (2007, 2012)
found φ0 = 38.5 ± 1.6 arcsec using Earth-based radar measure-
ments. Stark et al. (2015c) used a MESSENGER-based digital
elevation model (DEM) and MLA data to find a very similar re-
sult of φ0 = 38.9 ± 1.3 arcsec, equivalent to 460 ± 15 m at the
equator. While these two methods are based on surface observa-
tions and therefore directly assess the libration of the solid outer
shell, gravity allows for the measurement of the libration ampli-
tude of the whole planet, with a larger uncertainty, however, of
2.9 arcsec (Genova et al. 2019). See Stark et al. (2018) for an
overview of measurements of Mercury’s rotation.

In this study, we simulate BELA measurements and investi-
gate the expected accuracy with which the tidal Love number h2
would be retrieved. The most straightforward way for determin-
ing tidal elevation changes appears to be the comparison of data
taken at different phases of the tidal cycle at points where differ-
ent ground tracks intersect. However, Steinbrügge et al. (2018b)
found that the determination of h2 from a crossover analysis is
not likely to be possible with sufficient accuracy in the nominal
one-year mission. One reason why the crossover analysis is less
promising is that for the near-polar orbit of the MPO, crossover
points are abundant only at high latitudes, where the tidal ampli-
tude reaches only one third of the maximum value at the equa-
tor (Fig. 1). Another reason is the highly acute angles at which
the ground tracks intersect due to the slow rotation of Mercury.
Instead of using crossovers explicitly, we solve simultaneously
for h2 and the static global topography. In this inversion, the
emphasis is on retrieving the Love number h2, not on obtain-
ing an optimal elevation model, which is only a by-product in
this analysis. Accurate elevation models are, of course, required
for geomorphologic analyses. The basic method of a joint inver-
sion has been pioneered by Koch et al. (2008, 2010). Koch et al.
(2008) parametrized the topography using spherical harmonics
but found that the method is computationally too expensive to
reach sufficient resolutions. Koch et al. (2010) then parametrized
the topography on an equirectangular grid, using cubic B-splines
in latitude direction and step functions in longitude direction, but
without considering neither error sources in the orbit and point-
ing of the spacecraft nor the uncertainty in Mercury’s spin state.
Here, we use an expansion in 2D cubic B-splines to investigate
the retrieval accuracy for h2. Our simulations include the orbit of
the spacecraft, the instrument performance, the surface topogra-
phy, the orbit determination, and attitude knowledge, focusing
particular attention on potential systematic biases that may af-
fect the results. Previously, we (Thor et al. 2018) applied the
same method to data from the Lunar Orbiter Laser Altimeter
(LOLA) and retrieved a value for h2 for the Moon, which is in
good agreement with the value obtained by crossover analysis
(Mazarico et al. 2014a).
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2. Simulation of measurements

For our simulated laser range measurements, we attempt to ac-
count for the most relevant sources of random or systematic er-
rors in a realistic way. We use a topography model for Mercury
that is expanded in spherical harmonics up to a degree of 7999,
corresponding to a resolution of 958 m. Due to computational
limitations, surface roughness at a smaller scale is treated as
a random contribution for each individual range measurement.
The spacecraft ephemeris and the associated errors in the radial
and horizontal components have been obtained from numerical
simulations of the Mercury Orbiter Radio science Experiment
(MORE). For the instrument range error, we assume a random
noise which is independent from shot to shot. The location of
the laser footprints is affected by a random pointing jitter, a sys-
tematic pointing error, and an error in the assumed libration.

In our simulated measurement campaign, the nominal oper-
ation of the MPO begins on March 15, 2026, 4:00 a.m. UTC.
Our simulation of the orbit commences with an initial state pro-
vided by ESA mission analysis at that epoch. We base the prop-
agation of the orbit on the Hgm005 model of Mercury’s gravity
field (Mazarico et al. 2014b), including perturbations by the Sun,
tides, and solar radiation pressure. The MPO will have an elliptic
orbit with 400 km altitutde at pericenter and 1500 km at apocen-
ter at the start of the science phase.

We simulate nadir-pointing measurements of BELA at a 2 Hz
shot frequency. Instrument performance, surface albedo, slope,
and roughness, as well as solar noise all influence the signal-
to-noise ratio (S/N) of the measurement (Gunderson et al. 2006;
Gunderson & Thomas 2010). The S/N affects whether BELA can
successfully detect the laser return from ground. Performance
modeling has shown that for moderate slopes up to 20◦ and an
albedo of 0.19, the probability of false detection is close to zero
when the spacecraft altitude is below 1050 km (Steinbrügge et al.
2018b). This is also considered as the nominal maximum opera-
tion altitude for BELA. We adapt this threshold for our simula-
tion as a pessimistic scenario, leaving us with 30,282,149 mea-
surements in the one-year nominal mission. The range error is
similarly determined by the S/N and is almost never larger than
2 m (Steinbrügge et al. 2018b). We simulate the range error by
adding Gaussian noise with a conservative standard deviation of
2 m to each measurement.

For known spacecraft altitude, the dominant signal contained
in the measured altimetric range is the static surface topography.
We generate a synthetic topography of Mercury in three steps.
First, we use a global DEM derived from stereophotogrammet-
ric data acquired by the Mercury Dual Imaging System (MDIS,
Hawkins et al. 2007; Becker et al. 2016) aboard MESSENGER
to generate a spherical harmonic model up to degree L. Second,
we extrapolate the spherical harmonic model following a power
law alb up to degree 7999, where l is the spherical harmonic de-
gree, and a and b are parameters (see Table 1). The spherical
harmonic coefficients are randomly distributed around zero with
variance σ2 = alb(2l + 1)−1. The spherical harmonic model is
transformed into a regular equispaced grid using Féjer quadra-
ture (Schaeffer 2013) and sampled at each measurement loca-
tion using Lagrange interpolation. Third, Gaussian noise is used
to model the topographic power contained in degrees 8000 and
higher. The amplitude of this contribution has been determined
under the assumption that the spectral power distribution from
l = 8000 to infinity is the same as for L < l < 8000.

It is well known that planetary topography at large scales
can be described using power laws, reflecting the fractal nature
of topography (Turcotte 1987). Previous studies often found that
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Fig. 2. Power spectrum of Mercury’s topography by MDIS (Becker
et al. 2016), three simulated spectra based on power laws that extrapo-
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0
0.2
0.4

tides [m]

-2
0
2 large-scale

topography [km]

-10
0

10
random noise [m]

-5

0

5
radial orbit
determination [cm]

-2

0

2
lateral orbit
determination [m]

-2
0
2 systematic

pointing error [m]

-2
0
2

pointing jitter [m]

04:45 05:00 05:15 05:30 05:45
Mar 16, 2026   

-4

0

4

libration [m]

Fig. 3. Contributions of each of the simulated signals to range mea-
surements of the altimeter for the time span of one orbit of the MPO,
using topography case 1. Libration, pointing, and orbit determination
errors contribute to the depicted range measurements mainly through
their lateral effect, sampling the topography at a slightly different loca-
tion. Only measurements with a range < 1050 km are shown. During the
depicted time frame, the spacecraft altitude ranges from 1050 km down
to 400 km and back to 1050 km. Random noise contains the range er-
ror and the Gaussian noise representing small-scale topography. Signals
vary for each orbit and each random realization.

a power law with an exponent −2.5 < b < −2 approximates the
variance spectrum of topography well (Bills & Kobrick 1985;
Balmino 1993; Ermakov et al. 2018). At smaller scales, how-
ever, it is uncertain if a single power law can be an appropriate
representation of topography (Landais et al. 2015). Global data
sets have limited resolution and the distribution of morpholo-
gies over the surface is inhomogeneous. Therefore, we consider
three power laws which are extrapolations of the real topogra-
phy of Mercury at different scales for our simulations (see Fig. 2
and Table 1). Figure 3 shows large-scale topography and random
noise for case 1 (b = −3.3) over the time frame of one orbit of
the MPO. The MDIS topography defines most of the large-scale
topography. The exponent b = −3.3 is in agreement with the
spectral slope of the MDIS topography in the spectral range of
800 < l < 1000, where the results can be considered reliable. We
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Table 1. Three power laws used for the simulation of small-scale topography in this study, characterized by the parameters a and b. These power
laws are used from spherical harmonic degree L to 7999. The resolution is half the equivalent Cartesian wavelength to spherical harmonic degree
L. Gaussian noise represents power contained in even higher degrees.

Case a [m2] b L resolution [km] Gaussian noise [m]

1 3.1 × 1010 -3.3 900 8.5 3.8
2 4.6 × 108 -2.65 450 17.0 10.1
3 1.05 × 107 -2 250 30.7 36.2

use this as our baseline case. However, to account for a possibly
rougher topography at small scale, we also consider the less op-
timistic cases 2 and 3 which feature spectral slopes that are less
steep.
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normal to the spacecraft orbital plane, and the transversal variance com-
ponentσT of the initial positions for each one-day arc. The figure agrees
with Fig. 4 of Imperi et al. (2018).
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Fig. 5. Propagated formal standard deviations of position as a function
of time for a typical one-day arc. Quantities σR, σN , and σT indicate
the radial component, the component normal to the spacecraft orbital
plane, and the transversal component, respectively. The light blue and
light red zones depict the X-band (navigation) and Ka-band (scientific)
tracking periods, respectively. The black dashed lines indicate the two
reaction wheels desaturation maneuvers present on each arc.

The Mercury Orbiter Radio science Experiment (MORE) de-
termines the orbit of the MPO (Milani et al. 2001; Iess et al.
2009; Imperi et al. 2018). Ground antennas track the MPO
with a multifrequency radio link providing range and range
rate measurements accurate to 20 cm and 0.04 mm/s, respec-
tively, at 10 s integration time. The set of synthetic observables
used in this simulation comprehends only range-rate measure-
ments (every 10 s) and the Italian Spring Accelerometer (ISA,
Iafolla et al. 2010) readings, to cope with mismodeling of all
non-gravitational accelerations (Lucchesi & Iafolla 2006). The

MPO’s trajectory is retrieved as a solution of the orbit determina-
tion process (Tapley et al. 2004, chapter 4). We used a weighted
least-squares filter with a constrained multi-arc approach, con-
sisting of a partitioning of the orbit in consecutive one-day arcs
(Imperi et al. 2018). The estimated parameters include the space-
craft state vectors (position and velocity) at the center of the arc,
gravity spherical harmonic coefficients up to degree and order
50, the k2 tidal Love number, coefficients describing Mercury’s
obliquity and libration, reaction wheels desaturation maneuvers,
and calibration parameters for the ISA. The ISA error, driven
by thermal variations of the sensing elements, consists of a low
frequency (Mercury orbital period, 88 d) and a high frequency
(BepiColombo orbital period, 2.3 h) contribution. The first com-
ponent is modeled by a bias and a bias rate. A new set of these
parameters is estimated for every arc. The second component is
modeled as a sinusoid at the BepiColombo orbital period. The
amplitude of this sinusoid is estimated as a global parameter for
the full one-year data set (Iafolla et al. 2007). This approach,
followed in Imperi et al. (2018), shall suppress the residual sys-
tematic accelerations to a level below 2 · 10−8 m/s2, which cor-
responds to a range rate signal well below the expected accu-
racy (Iess et al. 2009). Residual non-gravitational accelerations
at these levels would not introduce any statistically significant
bias in the estimated parameters. The numerical simulations of
Mariani (2017, Sec. 5.2) also support this assertion. Because ISA
readings will not be available during the desaturation maneuvers,
additional coefficients describing these maneuvers are estimated.

Unlike range, the range rate (or Doppler) measurements are
differential, thus largely immune from systematic errors. In order
to account for the uncertainties in the MPO’s trajectory and to
provide an ensemble of trajectories to be used in the generation
of BELA synthetic observables, we perturb the six components
of the spacecraft state vectors of each arc with 100 error realiza-
tions. The errors δl in the state vectors are samples of random
variables following a multivariate Gaussian distribution,

f (δli) =
1√

(2π)6 det Pi

exp
(
−

1
2
δl>i P−1

i δli
)
,

where Pi is the covariance submatrix of the spacecraft state vec-
tor of the i-th arc. The standard deviation of the spacecraft posi-
tion at the center of each arc is shown in Fig. 4. The perturbed
initial condition vectors are then propagated up until the begin-
ning of the next arc, thus providing a member of the ensemble
of possible MPO trajectories. The difference between these per-
turbed trajectories and the reference trajectory represents the or-
bit determination error. It is on the order of a few centimeters in
radial direction and meters in transverse and normal directions
(Fig. 5), and it is degraded substantially when maneuvers occur
during periods without tracking. In fact, after orbit insertion, the
MPO will perform daily maneuvers for reaction wheel desatura-
tion and attitude control, but no more orbit maneuvers (Benkhoff
et al. 2010). In Fig. 5, the first desaturation maneuver occurring
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during the navigation passage is estimated well, while the sec-
ond one is outside the tracking pass and its estimation is limited
by the level of the inter-arc constraints (1 m in position). The lat-
eral components of the orbit determination error affect the laser
range because the altimeter samples the topography at a different
location than the assumed one. Hence, this effect depends on the
local topographic slope. The range signal caused by the lateral
orbit determination error is typically significantly larger than the
radial orbit determination error, which directly affects the range
(Fig. 3).

The BELA requirement for the attitude knowledge of the in-
strument is 20 arcsec. We simulate a 20 arcsec systematic error
representing a thermal effect and a 2 arcsec jitter. This is a worst-
case assumption because a constant pointing offset, which is less
critical for the h2 estimation, is likely to dominate the total at-
titude knowledge uncertainty. The systematic pointing error is
simulated as 20 arcsec · cos M, where M is the mean anomaly
of Mercury. It mimics a thermal effect as it is correlated with the
Sun-Mercury distance. The direction of the systematic pointing
error is randomly chosen but kept constant over the whole mis-
sion. The direction of the pointing jitter is randomly chosen for
each measurement and its amplitude has a standard deviation of
2 arcsec. The pointing affects the range measurements because
the altimeter samples the topography at a different location re-
sulting in a range error on a sloped surface. The additional in-
crease in range due to a longer laser path when pointing slightly
off-nadir is negligible at an off-nadir angle of 20 arcsec. With
increasing spacecraft altitude, the pointing error causes a larger
effect. In Fig. 3, the altitude ranges from 1050 km over 400 km
back to 1050 km. In our model, for topography case 1, the stan-
dard deviation of the range signal caused by pointing misalign-
ment is 3.2 m at perihelion and aphelion.

The second-degree tidal potential is given by (Murray & Der-
mott 1999),

V2(θ, λ, t) = −
µ�R2

2r3(t)

(
3 cos2 ψ(θ, λ, t) − 1

)
, (3)

where µ� = 132712440041.9394 km3s−2 (Folkner et al. 2014) is
the standard gravitational parameter of the Sun, r is the distance
between the center of mass of Mercury and the Sun, and ψ is
the Mercury-centric angle between the location of the footprint
(θ, λ) and the Sun. We access the DE430 ephemerides (Folkner
et al. 2014) which allow for the computation of r and ψwith high
accuracy using Spacecraft, Planet, Instrument, Camera-matrix,
Events (SPICE) kernels (Acton et al. 2018). Higher degrees of
the tidal potential are negligibly small. Mercury’s 3:2 spin-orbit
resonance causes a permanent tidal bulge which peaks at 35
cm at (0◦ N, 0◦ E). We remove the static potential responsible
for this tidal bulge using Mercury’s averaged orbital elements
a = 57.90909 × 106 km and e = 0.2056317 (Kaula 1964; Stark
et al. 2015a). Finally, we use the remaining dynamic potential
V2 to compute ur(t) at each measurement location using Eq. 1
and an a priori h2 = 0.8. The tidal displacement measured by the
altimeter within one orbit of the spacecraft (Fig. 3) can reach a
range of up to 1.4 m when the spacecraft orbits along zero lon-
gitude close to perihelion.

We simulate the 88-day libration of Mercury using the de-
scription of Mercury’s resonant rotation by Stark et al. (2015a).
The amplitude error of the libration is randomly generated and
represents the current uncertainty level of 1.3 arcsec. This is a
conservative value because the BepiColombo mission is likely to
provide an updated estimate with lower uncertainty. A 1.3 arc-
sec libration translates into a lateral signal of 15 m at the equator,

which has a radial effect of up to a few meters. At the poles, the
libration has no effect. The correlation between libration and sys-
tematic pointing signal in Fig. 3 is due to the similar lateral shift.
The right ascension and declination of Mercury will be deter-
mined by MORE with uncertainties < 0.2 arcsec, corresponding
to an error of < 3 m on the surface (Imperi et al. 2018), assuming
that the core and solid shell have the same pole. Therefore, the
error caused by the uncertainty of the pole orientation is negligi-
ble and not considered in this study.

3. Solution strategy

For the simultaneous retrieval of h2 and global topography from
the simulated data, we follow the strategy of Koch et al. (2010).
A single observation

Tk(θk, λk, tk) = Tstat(θk, λk) + ur(θk, λk, tk) + ek (4)

= Tstat(θk, λk) + h2
V2(θk, λk, tk)

g
+ ek , (5)

at co-latitude θk, longitude λk, and time tk is modeled to contain
the static topography Tstat at that location, the surface displace-
ment ur, and measurement and model errors ek. Here, (θk, λk)
is the simulated spacecraft position, which, in the presence of
orbit and pointing errors and an uncertainty in the libration, is
slightly offset from the actually sampled position on the ground.
The static topography is parametrized as an expansion in local
basis functions,

Tstat(θk, λk) =

I∑
i=1

J∑
j=1

ci j fi(θk) f j(λk) , (6)

where fi(θk) and f j(λk) are the basis functions and I and J are
their number in latitude and longitude direction, respectively,
and ci j are the basis function coefficients. Koch et al. (2010)
used step functions for the basis functions in latitudinal direc-
tion fi and compared the use of step functions, piecewise linear
functions, and cubic B-splines for the basis functions in longitu-
dinal direction f j. They achieved the best results when applying
cubic B-splines and recommended for them to be applied in both
directions for further studies. Here we apply cubic B-splines,
given by Koch et al. (2010), Eqs. 11, 14 - 17, as basis func-
tions in both directions. The splines are defined on an equirect-
angular grid, onto which the topography is projected. The grid
cell size is 360◦/J. Since the cells are square, J = 2I. Because
the 2D cubic splines are only non-zero within the 16 surround-
ing grid cells, each spline coefficient ci j is only influenced by
measurements Tk from 16 grid cells. Compared to spherical har-
monics, cubic splines are advantageous because of their locality,
which allows for a much higher topography resolution (Stein-
brügge et al. 2019). At the same time, splines are smooth enough
to model planetary topography well, thus providing a good com-
promise between global spherical harmonic basis functions on
the one hand, and step functions as entirely local basis functions
on the other hand.

We solve the observation equation (Eq. 4) simultaneously for
the coefficients ci j describing the static topography and for h2
with a regularized least-squares inversion, minimizing

(Ax − T)>(Ax − T) + αx>Rx ,

where x is the parameter vector containing the coefficients ci j
and h2, T is a vector containing the K observations Tk, A is the
design matrix resulting from Eq. 4, R is a regularization matrix,
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and α is the regularization parameter. The regularization serves
to stabilize the solution in areas that suffer from limited observa-
tions and minimizes the second derivative of the topography at
the grid points (θi, λ j),

∇ · ∇Tstat(θi, λ j) =

i+1∑
r=i−1

j+1∑
s= j−1

crs∇ · ∇S rs(θi, λ j)

=

i+1∑
r=i−1

j+1∑
s= j−1

crs

(
∂2

∂θ2 S rs(θi, λ j) +
1

sin2 θ

∂2

∂λ2 S rs(θi, λ j)
)
, (7)

where S i j(θ, λ) = fi(θ) f j(λ) are the 2D cubic B-spline basis
functions. We set the regularization parameter α = 10−6K/(IJ),
which allows for a stable solution of the linear equation system,
while keeping the inevitable bias on the h2 result small.

4. Results
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Fig. 6. Standard deviation, bias and RMSE of h2 from 100 random re-
alizations as a function of grid resolution for topography case 1 (see
Table 1).

We generated 100 independent random realizations of mea-
surements as described in Sec. 2. They differ in the topographic
model at degrees l > L, direction of the systematic attitude er-
ror, synthetic determined orbit, and all other randomly generated
error sources. From each of these, we solved for h2 (Sec. 3) us-
ing topographic grids of different resolutions. From the result-
ing 100 h2 values, we computed standard deviation, bias, and
root-mean-square error (RMSE; Fig. 6). We first focused on the
results achieved using the topography model of case 1. At reso-
lutions lower than 16 grid points per degree, there is a noticeable
bias in the results that can be explained by our usage of the MDIS
topography model up to degree L = 900. Since there is only a
single realization of MDIS topography model, the results of 100
random realizations are not distributed evenly around the a pri-
ori value of h2 but around a value which is specific to this single
random realization. When the topography is modeled by a suffi-
ciently fine grid (& 15 grid points per degree) during the solution,
the true topography can be almost entirely captured, causing the
bias to vanish. Which resolution is sufficiently fine, depends on
the degree L up to which only a single topography realization
is used. The RMSE provides a measure of the 1σ uncertainty at
which h2 can be retrieved from the data. It continually decreases
with increasing resolution and reaches its minimum at the high-
est investigated resolution of 28 grid points per degree at a value
of ±0.012.

Next we investigate the influence of different error sources
on the uncertainty of h2 in the topography case 1 (Fig. 7). To
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Fig. 7. Uncertainty of h2 from simulations as a function of resolution of
the topographic grid and its decomposition into the components caused
by each of the error sources. The uncertainty is given by the RMSE
from 100 random realizations of model and measurement errors. The
RMSE induced by pointing jitter and the lateral component of the orbit
determination error are both < 0.0004 at all resolutions.

make the assessment, we generate synthetic data sets where only
a single error source is simulated and all other error sources van-
ish. These simulations include a single realization of topogra-
phy up to L = 7999 because the lateral components of orbit
and pointing errors and the uncertainty in Mercury’s libration
only cause a range error when combined with topographic vari-
ation. The bias caused by this specific topography realization is
subtracted before computing the RMSE presented in Fig 7. The
uncertainty induced by the simulated large-scale topography de-
creases strongly with increasing resolution as more of it is mod-
eled by the topographic grid. Still, the main source of uncertainty
at all resolutions up to 24 grid points per degree is the incom-
plete representation of the large-scale topography by the splines.
This shows the importance of choosing a realistic model for the
large-scale topography. The uncertainty induced by systematic
misalignment of the instrument becomes the main contributor
for resolutions from 24 grid points per degree. At such high reso-
lutions, the cross-track distance will often be larger than the grid
resolution. The solution is overparametrized and can therefore fit
the perturbed measurements very well instead of smoothing out
the perturbations. This is a likely cause for the increase in un-
certainty with a denser topographic grid. This trade-off between
large-scale topography error and systematic pointing error will
eventually lead to an optimal topographic grid resolution. We
note that this optimal resolution depends strongly on some of the
assumptions taken, such as the power law used for representing
topography at intermediate and small scales, the magnitude of
the pointing error, and the specific measurement geometry. For
example, we found that an increase of the amplitude of the sys-
tematic pointing error by a factor of five will cause an increase in
pointing-related h2 uncertainty by a factor of five, resulting in an
optimal resolution at about 14 grid cells per degree. If future real
data indicates that the pointing error may be large, one should
consider adjusting the grid resolution accordingly. Since usually
the pointing error is unknown, a weighted average of solutions
for different resolutions provides a good estimate of h2.

All other error sources are small in comparison to the large-
scale topography and systematic pointing errors. The largest of
them is the uncertainty in Mercury’s libration amplitude, fol-
lowed by the random noise representing range error and small-
scale topography, orbit determination, and finally, pointing jitter.
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Even though the magnitude of the random noise is much larger
than the magnitude of the systematic pointing error and the li-
bration (Fig .3), the resulting uncertainty is smaller. This shows
that the retrieval is only weakly influenced by strong normally
distributed noise, but strongly affected by small systematic ef-
fects. Similarly, the h2 uncertainty resulting from radial errors in
the orbit determination on the order of centimeters is larger than
the uncertainty resulting from the lateral component of the orbit
determination, which has a magnitude on the order of meters, by
a factor of about 3.

Fortunately, we find that none of the modeled error sources
cause a systematic bias in the h2 results. However, we note that
a much larger than expected systematic pointing error would
have the potential to cause such a bias. The longer measured
range caused by misalignment by an angle p with respect to
the nadir case leads to an error of (1/ cos p − 1)h on a surface
with zero slope, where h is the spacecraft altitude. This error be-
comes large at perihelion and aphelion, when extreme temper-
atures cause maximum misalignment. Similarly, the measured
tidal displacement reaches maxima at perihelion and aphelion.
The maximum tidal displacement is measured over the equator
when h ≈ 400 km. For the case of p = 20 arcsec, this corre-
sponds to a radial error of only 1.9 mm, but for p = 100 arcsec,
the radial error is 4.7 cm. These radial errors cause a systematic
bias of h2 of 0.0012 and 0.027 for p = 20 arcsec and p = 100 arc-
sec, respectively. While the bias in the former case, representing
the maximum expected error, is negligibly small, the latter case
illustrates the necessity of high pointing stability. We note that
this systematic bias is independent of the grid resolution.

All results discussed so far were obtained using topography
case 1 (Table 1). The h2 uncertainties retrieved from case 2 and
case 3 at a resolution of 24 grid points per degree are ±0.017
and ±0.041, respectively. These values are significantly larger
because the topography is less smooth. These cases would bene-
fit from using a topographic grid with higher resolution, because
the imperfect modeling of the topography dominates the h2 un-
certainty.

5. Discussion and conclusions

The results show that the small-scale topography of Mercury
is the primary obstacle in accurately measuring its solid body
tides. This does not come as a surprise because our initial aim
was to detect dm-range radial displacements in measurements
taken at different, not perfectly known locations on the surface.
While splines model the topography at large scales well, their
resolution is not sufficient to model topography at small scales
below 1.5 km, which therefore contributes to the measurement
uncertainty. This is a fundamental limitation of the measurement
method. For simulations, a suitable description of topography at
these scales is essential. From Preusker et al. (2017, Fig. 10)
we estimate that the MDIS DEM has an effective resolution of
at least 15 km, equivalent to L = 511. This justifies using the
MDIS topography spectrum to degree L = 450 in topography
case 2 and to degree L = 250 in topography case 3. The effec-
tive resolution of the MDIS DEM is not globally uniform and
may be lower in the southern hemisphere, where images were
taken from higher altitudes than in the northern hemisphere. Fig.
10 of Preusker et al. (2017) represents a location close to the
equator that might represent an average. To our knowledge, no
mechanism could cause a flattening of the slope of the spectrum
at higher degrees. On the contrary, it seems likely that the spec-
trum becomes even steeper at higher degrees, as the spectrum
derived from the MDIS DEM suggests (Fig. 2). Planetary to-

pography spectra have been found to follow regionally different
power laws at scales > 10 km, but power laws with an exponent
b ≈ −3.4 at scales < 10 km (Aharonson et al. 2001). The power
law exponent b = −3.3 used in topography case 1 represents this
most likely behavior at small scales.

Nevertheless, even for the two topography cases with flatter
slopes, the uncertainty is < 0.05, which is the necessary con-
dition to further constrain interior models. An h2 determination
with an accuracy of 0.05 would permit a distinction between a
small and a large inner core, whereas an accuracy of 0.01 would
allow for a determination of the size of the inner core to about
±150 km (Steinbrügge et al. 2018a). This value is close to the
accuracy limit imposed by other uncertainties in the model of
Steinbrügge et al. (2018a). Ultimately, only the global laser alti-
metric data set acquired by BELA will reveal the spectral slope
of Mercury’s topography, which is one of the factors in the ob-
tainable accuracy of h2 determination.

So far, we have used a conservative estimate of instrument
performance when assuming that the altimeter only takes mea-
surements at a spacecraft altitude of 1050 km or less. We also
carried out a test considering all measurements up to a space-
craft altitude of 1500 km. This modified experiment uses N =
51, 800, 617 measurements and yields a minimum uncertainty of
±0.012, which is reached at a resolution of 24 grid points per
degree. This shows that an improved instrument performance
does not produce significantly better results in terms of h2. A
reason for this behavior may be that the pointing error, one of
the two dominant error sources, increases with spacecraft alti-
tude. However, in terms of global topography coverage a better
performance of BELA is highly desirable.

The MORE radio science investigation will provide a highly
accurate estimate of the combined pole orientation of solid inner
core and outer shell. If there is evidence for a significant devi-
ation between the orientations of the two poles, future research
should investigate the impact of the pole position knowledge on
the h2 determination.

An extension of the nominal one-year orbital phase of the
MPO by another year might be possible. We also simulate a
two-year mission, during which a total of N = 59, 630, 203 mea-
surements would be taken. The resulting uncertainty is ±0.010,
marking a noticeable improvement over the one-year case. Fur-
ther extensions of the mission may improve the determination of
h2 even more.

Apart from constraining Mercury’s inner core size by mea-
suring its Love number h2, BELA data will also enable a more
accurate determination of Mercury’s 88-day libration amplitude
φ0 and obliquity, which provide additional insights into the inte-
rior structure. While the estimation of the retrieval accuracy of
φ0 from BELA is out of the scope of this study, improved de-
termination from either BELA data alone or a combination of
BELA data and imagery can be expected. Stark et al. (2015b,c)
derived the current best estimate of the 88-day libration ampli-
tude by co-registering MLA tracks and a terrain model derived
from MDIS stereo images. Imperi et al. (2018) also found that
the 88-day libration amplitude can be determined with an un-
certainty of 0.13 arcsec by BepiColombo’s gravity experiment.
The global altimetric coverage achieved with BELA measure-
ments and the reliable orbit determination by MORE will al-
low for a more accurate determination of geodetic parameters
of Mercury and, therefore, improve the results of Peale’s experi-
ment (Peale 1976). Both a measurement of h2 and improved re-
sults from Peale’s experiment would deepen our understanding
of Mercury’s interior structure and evolution.
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