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Abstract

Clusters of galaxies are unique systems in the universe. Being the largest gravitation-
ally bound and virialized structures, they are “at the crossroads of astrophysics and
cosmology”. They host three main components: galaxies; hot, optically-thin plasma
and non-baryonic dark matter. The Sunyaev—Zel’dovich effect, arising from the
scattering of the photons of the cosmic microwave background off the free electrons
in the ionized intra-cluster plasma, is one of the most valuable probes of cluster
properties. Among these, cluster mass is the most important one, since it plays
a central role in cluster-based cosmological studies. Direct measurements of the
Sunyaev—Zel’dovich signal allow the investigation of the thermal pressure and of the
projected velocity of the intra-cluster plasma along the observer’s line of sight. This
Thesis is devoted to the study of these quantities, which both play a relevant role
in getting accurate estimates of cluster masses. More specifically, we focussed on:
(7) the development and validation of an improved imaging algorithm to produce
maps of the thermal component of the Sunyaev—Zel’dovich effect; (i) an application
of the kinetic Sunyaev—Zel’dovich effect to investigate cluster rotation. To this end,
we used microwave data from real cluster observations with the Planck satellite, and
mock data from a set of hydrodynamical simulations of galaxy clusters. Both these
studies yielded interesting results, which can shed new light on largely addressed
but yet unresolved issues in modern cluster science.
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Introduction

The study of galaxy clusters plays a fundamental role in the vibrant field of modern
cosmology. Clusters are the largest gravitationally bound and virialized objects in
the universe, extending to virial radii of the order of a few Mpc!. The constituents
of their total mass budget, which ranges from 10'3*M, to a few 10°Mg), are in the
form of non-baryonic dark matter, hot intra-cluster gas, and hundreds of galaxies.
Galaxy clusters provide an insight on the formation of cosmic structures and they
allow constraining cosmological parameters which are sensitive to the content of
non-relativistic matter in the universe. In these systems, gravity is the dominating
force at play. At the smallest scales, however, the interactions governing the physics
of collisional baryons enter the picture, thus impacting the observable properties of
galaxy clusters and their evolution [see e.g. 454]. For this reason, astrophysics and
cosmology are strictly connected in these systems.

At present, cluster science has to face some open issues, which are often related
to our incomplete knowledge about the astrophysical processes at play, as well as
about their modelling. For instance, the physics of the outermost cluster regions,
where the accretion to the central halo is still ongoing is not fully understood, despite
the enormous progress which has recently been made possible by observations and
simulations [e.g. 459]. Even more important for its cosmological consequences [e.g.
355], is the problem of biases in the estimates of cluster masses, which are also
sensitive to the effects lead by the physical processes characterising the outskirts.
More specifically, the measurement of cluster masses based on the observable thermo-
dynamic properties of the intra-cluster medium, usually rely on the assumptions of
hydrostatic equilibrium and spherical symmetry. However, cosmological simulations
highlighted a discrepancy between the mass values derived from observable-based
methods and the true masses of clusters. A possible reason for this finding could be
the non-fulfilment of the aforementioned conditions, which may originate a bias [e.g.
42].

The work presented in this Thesis tries to shed new light on this topic. To
reach this goal, we exploited the Sunyaev—Zel’dovich effect [424-427] observable at
millimetre wavelengths, with which it is possible to probe both the thermodynamic
properties of the hot intra-cluster plasma and its dynamics. We used both the thermal
and the kinetic Sunyaev—Zel’dovich effects for the study of cluster astrophysics in
the context of two projects. The first one is dedicated to the imaging of the thermal
Sunyaev—Zel’dovich effect for an efficient mapping of pressure structures at cluster

!By definition, 1 parsec (pc) corresponds to the distance at which the mean radius of the Earth
subtends an angle of 1 arcsec. It is equivalent to 3.086 x 10'® m.
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peripheries. The second one explores the possibility of using the kinetic Sunyaev—
Zel’dovich effect to probe the dynamics of the intra-cluster gas, which may have to
be taken into account to solve the issue of the observed mass bias.

The structure of the Thesis is as follows.
Chapter 1 gives a synthetic overview of modern cosmology, providing a general
context for cluster studies, from the basic equations governing the evolution of the
universe, to the theoretical foundations of structure formation.
In Chapter 2 we illustrate cluster formation through an overview on cosmological
simulations. A discussion on the observable properties of clusters is then presented.
Among these, the Sunyaev—Zel’dovich effect is treated in more detail, from both a
theoretical and an observational point of view.
Chapter 3 concerns with the imaging of the thermal Sunyaev—Zel’dovich effect, tai-
lored to the investigation of cluster outskirts. After a short summary on the existing
methods to address the problem of component separation, we present an imaging
algorithm based on wavelet and curvelet decompositions to optimally reconstruct
anisotropies in the Sunyaev—Zel’dovich signal. We applied such a technique to a
sample of nearby, well-resolved galaxy clusters observed by the Planck satellite [333],
and which have been selected for the XMM Cluster Outskirts Project (X-COP
hereafter) [144]. We conclude with the preliminary results on the ongoing study of
the impact of overpressure detected in our maps on the radial pressure profiles of
the intra-cluster gas.
Chapter 4 addresses an interesting, yet poorly explored topic: the presence of global
rotational motions in clusters. Using data from the high-resolution Marenostrum-
mUltidark SImulations of galaxy Clusters (MUSIC hereafter) [403], we first present
a study on a possible rotation via the analysis of the angular momentum of gas and
dark matter. Subsequently, we use the mock kinetic Sunyaev—Zel’dovich signal from
the supposedly rotating clusters to reconstruct the rotational properties inferred
from the angular momentum.

The methods and the results presented in Chapters 3 and 4 are the subjects of
the following original papers:

e A. S. Baldi, H. Bourdin, P. Mazzotta, D. Eckert, S. Ettori, M. Gaspari, and
M. Roncarelli. Spectral imaging of the thermal Sunyaev-Zel’dovich effect in
X-COP galaxy clusters: method and validation. A&A, 630:A121, Oct. 2019;

e A. S. Baldi, M. De Petris, F. Sembolini, G. Yepes, W. Cui, and L. Lamagna.
Kinetic Sunyaev-Zel’dovich effect in rotating galaxy clusters from MUSIC
simulations. MNRAS, 479:4028, Sept. 2018;

e A. S. Baldi, M. De Petris, F. Sembolini, G. Yepes, L. Lamagna, and E. Rasia.
On the coherent rotation of diffuse matter in numerical simulations of clusters
of galaxies. MNRAS, 465:2584, Mar. 2017.

Furthermore, the authors contributed to the following works:

e W. Cui, A. Knebe, G. Yepes, et al. (including A. S. Baldi). The Three
Hundred project: a large catalogue of theoretically modelled galaxy clusters for
cosmological and astrophysical applications. MNRAS, 480:2898, Nov. 2018;
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Chapter 1

Cosmological context

The present Chapter provides an overview on the current cosmological picture.
Specifically, we introduce the basics of the standard cosmological model describing the
dynamics and the geometry of the universe, in the Friedmann-Lemaitre-Robertson—
Walker spacetime. Subsequently, we shortly review the cosmic microwave background
radiation, which is the fossil residue of the Big Bang. The paradoxes raised by
the standard model are then discussed, and a brief presentation of the inflationary
solution is provided. It follows an overview of the theory of the formation of cosmic
structures from the evolution of density perturbations in the linear and in the non-
linear regimes. We conclude reporting the more recent constraints on the present-day
values of the cosmological parameters, together with a short discussion on related
open issues in the context of the cosmological model favoured by observations.

1.1 The standard model of cosmology

The study of galaxy clusters is deeply connected to cosmology. Cluster origin and
evolution is based on the hierarchical scenario of structure formation, according to
which large objects originate from the aggregation of smaller ones, as prescribed by
the standard model of cosmology.

The latter represents our current understanding of the universe, which is built on
fundamental physics and supported by observations. Its cornerstone is the principle
of homogeneity and isotropy, or invariance under translations and rotations, which
states there are no preferred positions or directions in the universe at large scales
(= 100 Mpc).

The universe is expanding since the Big Bang and its evolution is driven by its
mass-energy content, according to Einstein’s theory of general relativity [148].
During the first hundred thousand years after the Big Bang, the universe was
dominated by relativistic matter (or radiation), and everything was in the form of a
primeval photo-baryon fluid. As the temperature reached about ten thousand K,
non-relativistic matter became the dominating component driving the evolution of
the universe. The epoch at which matter and radiation densities were comparable
is called equivalence. About four hundred thousand years after the Big Bang the
universe was cool enough to allow baryons to decouple from photons, and to form
the first neutral atoms. Several independent observations suggest that at the present
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time, about ten billion years after the Big Bang, the expansion of the universe is
mainly driven by two yet unknown physical components: dark energy in the form
of a cosmological constant named A, and a form of non-relativistic, non-baryonic
cold dark matter. For this reason, the current cosmological scenario supported by
observations is called ACDM model [see e.g. 263].

1.1.1 Dynamics of the universe

By virtue of the cosmological principle of homogeneity and isotropy, the spacetime
in an expanding universe can be represented by the Friedmann-Lemaitre-Robertson—
Walker (FLRW) metric [168, 258, 377, 458]:

d 2
ds® = —c2dt® + o> 1_7:”2 + 72(d6* + sin? 0dp?)| | (1.1)

in spherical spatial coordinates, where c is the speed of light. The radial coordinate,
r is che comoving distance and a = a(t), which depends on the time coordinate, is

the scale factor encoding the expansion. The proper distance between two objects is
obtained by multiplying the comoving distance by the scale factor:

d=ar. (1.2)

At the present time, g, the scale factor is ag = a(ty) = 1, therefore proper and
comoving distances coincide. The k constant in equation (1.1) is the spatial curvature,
which is positive, negative or null for close, open and flat universes, respectively.
The dynamics of the universe is given by Einstein’s field equations:

87
G,ul/ = 7TNV 5 (13)
being G, = R, — %gwj the Einstein tensor, R, the Riemann tensor and G the

gravitational constant; g,, is the metric tensor that allows one to compute the
infinitesimal distance element ds® through the relation:

ds? = G drtdz” (1.4)

being & the four-dimensional coordinate vector.
Supposing that the universe is filled with a homogeneous and isotropic perfect fluid
having pressure p and density p, the stress-energy tensor is:

T,ul/ = (020 + p)u,uuu + DY (15)

where # is the four-velocity vector.
Pressure and density are connected via an equation of state of the form:

p=wcp , (1.6)

where the constant w takes the values 0, 1/3 and —1 for non-relativistic matter,
relativistic matter and the cosmological constant, respectively.
Plugging the FLRW metric of equation (1.1) and the stress-energy tensor as in
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equation (1.5), explicitly accounting for a dark energy pressure py = —Ac/(87G)
into the equations (1.3), one obtains the two Friedmann equations [e.g. 263]:

N 2 2

a 8¢ KC Ac

- =—p——+ — 1.7
(a) 3 P72 + 3 (1.7)

from the time component of Einstein’s equations, and

a e 3p Ac?
o_ I = - 1.8
a 3 (’0 + c2> + 3 (1.8)

when considering the spatial components. Equation (1.7) describes the expansion
rate of the universe as a function of time, depending on the dominating components
of the cosmic fluid, while equation (1.8) concerns with the acceleration of the
expansion. In particular, it can be seen that a non-zero cosmological constant leads
to a positive acceleration, while the other components of the cosmic fluid slow down
the expansion. The left-hand side of equation (1.7) is the Hubble parameter, whose
integration describes how the universe expands with time:

a
H=— 1.
, (1.9)

being dimensioned as an inverse time.
By introducing the critical density at the time ¢ as

3H?
cr = 5 1.1
palt) = (1.10)

it is possible to write the first Friedmann equation (1.7) in the following form:

2
RC
Per (1 + a2H2> = Ptot (1'11)

where piot takes into account all mass-energy species. Normalizing both sides of
equation (1.11) to the critical density, the following compact form is obtained:

Dot = 1 — Q. (1.12)

being Q. = —rc?(aH )2, and having introduced the cosmological density parameters,
defined as the ratio between the density of the cosmic fluid (or any of its single
components) and the critical density at a given time: Q = p/p. Such a way of
recasting the first Friedmann equation links directly the mass-energy content of the
universe to its spatial curvature. If the measured values of the cosmological density
parameters is such that their sum equals unity, then the curvature component must
necessarily vanish, by virtue of equation (1.12).
The value of the critical density at the present time is:
2
Per0 = 35 _ 5 78 5 1012 Mg Mpc ™,

8t
where M, is the Solar mass.
The Hubble parameter evaluated at the present time, Hy, is called Hubble constant,
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which is frequently written as Hy = 100 h kms~' Mpc™!, being h a constant
factor [115]. Its inverse gives the Hubble time:

ty =9.78 h™! Gyr ,
which multiplied by the speed of light defines the Hubble distance, dg = cH L
dg =3.00 h~! Gpe .

A further way of writing the first Friedmann equation (1.7), referring to the present-
time values of the cosmological parameters, is the following:

HE (1.13)

which descends from the explicit substitution of all the density terms properly scaled
with redshift in equation (1.11). In particular, the density terms in equation (1.13)
pertain to a universe which has a non-vanishing spatial curvature (), and which
contains relativistic matter (,9), non-relativistic matter (2,,,0), plus a cosmological
constant (£2,; see also section 1.5).

A proper combination of the two Friedmann equations leads to the continuity
equation giving the conservation of mass and energy, that is [e.g. 13§]

p= —3p(1+w)g, (1.14)

where we made use of the equation of state (1.6). By integrating the continuity
equation it is possible to find the evolution of density with time through the scale
factor:

p = poa 0Hw) (1.15)

being pg = p(a = agp), which can be solved for each single component.

The scale factor is related to a fundamental cosmological observable: the redshift,
i.e. the relative difference between the observed wavelength of the electromagnetic
radiation from a source and the emitted one:

p= Dobs g (1.16)

)\em
which, in a non-relativistic regime, arises from the relative motion between the
observer and the source (i.e. the Doppler effect). The cosmological redshift is given
by both the relative motion and the expansion of the universe, which adds a further
velocity component to the peculiar one, called the Hubble flow. The redshift is

connected to the scale factor by:

ap
a =
1+=2

: (1.17)

which implies that the scale factor at any epoch can be determined from a mea-
surement of the redshift. The above relation descends from the geodesic motion of
massless particles in a FLRW universe, according to which the wavelengths of the
electromagnetic radiation emitted by a source keep increasing as the space dilates,
as well as proper distances between objects.
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1.1.2 Distances in cosmology

In general relativity, distances are not measured in space, but rather along radial
null trajectories in spacetime, since they are necessarily based on observations [203].
Astronomical distances are usually determined via a distance ladder: at each step
one applies a suitable method whose calibration is derived from the previous step in
the ladder, to get distances over increasing scales [461].

There are three main definitions of distance which are useful in cosmology: the
comoving distance, the luminosity distance and the angular diameter distance. They
are briefly described in the following.

Comoving distance

The comoving distance gives the separation between two objects both moving with
the Hubble flow. In a FLRW spacetime, a photon travelling along a radial geodesic
from an emitting source at redshift z to an observer at redshift z = 0, is at a
comoving distance [203]:

k12 sin(k~1/2 I(2)) ifk>0
r={7(z) ifr=0. (1.18)
k|72 sinh(|k| Y2 Z(2)) if K <0

The integral Z(z) encodes the dependence on the cosmological parameters through
the first Friedmann equation, being defined as

z 1 da
I(z) = c/ H'dz = c/ H ' — | (1.19)
0 liz a

corresponding to the distance travelled by light from the time ¢ to the present time
to. By integrating equation (1.19) from the time of the beginning of the universe,
t = 0 (corresponding to a = 0), one gets the comoving horizon (also called particle
horizon), which sets the maximum distance within which two objects in the universe
can be in causal contact.

Luminosity distance

In a static universe, the flux received by an observer from an isotropically emitting

source is given by: .

F=_—"5. (1.20)
that is the luminosity of the source, L, over the surface of a sphere having radius
equal to its comoving distance to the observer, r, here coinciding with the proper
distance. If the universe expands, the luminosity is reduced by a factor of (1 + z)2,
being z the redshift of the emitting source. One factor comes from the fact that
energy is greater as the radiation leaves the source. The other one is due to the
radiation being redshifted because of the expansion. The flux received by the observer

in an expanding universe is then:

L

F=——7F%%——— 1.21
4rr2(1 4 2)2 (1.21)



6 1. Cosmological context

so that the luminosity distance is defined as

dr =r(1+=2) . (1.22)

Angular diameter distance

If the universe does not expand, the distance to an object having proper size R and
subtending an angle 6 is given by the approximate relation (for small 6):

r==. (1.23)

In a FLRW universe, the comoving distance R travelled by photons along a radial

direction is given by:
ré
R=_——, 1.24
(1+2) (1:24)
which compared to equation (1.23) gives the definition of the angular diameter

distance: .

T 1z
Depending on the cosmological model, the latter can decrease with increasing redshift
(e.g. in the case of null spatial curvature), making very distant objects to appear
larger.

da

(1.25)

As can be seen from their definitions, the above two distances are linked by the
so-called duality relation [153]:

dr =da(l1+2)?. (1.26)

It is useful to give here the scaling with redshift of the brightness from an extended
source (e.g. a galaxy cluster). Indeed, brightness — also called surface brightness —
is defined as a flux per unit solid angle; the flux scales with redshift as (1 + z)72,
while the solid angle is proportional to the inverse square of the angular diameter
distance. Thus, from the duality relation of equation (1.26), it descends that the
brightness from a source at redshift z scales as

2
S x Z—? o (1+2)71. (1.27)

L
Both the luminosity and the angular diameter distance are sensitive to the
cosmological parameters describing the composition and the dynamics of the universe,
being proportional to the comoving distance. Figure 1.1 shows the three distances
as a function of the redshift for two cosmological models. It can be seen that for low
redshift values the three definitions are equivalent. Indeed, it is possible to show
that by plugging a series expansion of the scale factor around the present-day time
in equation (1.18), the comoving distance at low redshifts coincides with the Hubble

distance, as well as with the proper distance [263].

It is clear that accurate measurements of these distances are crucial to constrain the
cosmological parameters describing the geometry and the dynamics of the universe.
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Figure 1.1. Comoving distance (), luminosity distance (d,) and angular diameter distance
(da) as functions of redshift for two spatially flat cosmologies. Thick curves represent the
case of a universe with a cosmological constant with density parameter 2, = 0.7; thin
curves refer to the case in which non-relativistic matter is the only component [taken
from 138].

However, to determine such distances to an object, either its intrinsic luminosity or
its angular size must be known. For this reason, one refers to standard candles and
to standard rulers, respectively, whose properties are known on a theoretical basis.
Historically, the first observational hint of the expansion of the universe came from
measurements of the spectroscopic velocities of distant galaxies, made by Hubble
in 1929. Relating these velocities to the proper distances, estimated through the
periodicity of the absolute magnitude of Cepheid stars [e.g. 174], he found the
well-known Hubble’s law [210]:

d=vHy"' . (1.28)

Putting v = cz, the above linear relation gives the lowest-order of the relation
between proper distance and redshift (see also Figure 1.1), whose full expression
comes from the integration of the line-of-sight comoving distance of equation (1.19).

1.2 The cosmic microwave background radiation

The photons of the cosmic microwave background (CMB hereafter) represent the
most ancient observable radiation in the universe. Its serendipitous discovery in
1964 [325] represents the second observational milestone of cosmic expansion. They
originated from the annihilation of elementary particles and antiparticles in the early
universe [170, 9, 133]. Before recombination, i.e. the formation of the first neutral
atoms that occurred at redshift z ~ 1100, photons were strongly interacting, mainly
via Thomson scattering [see e.g. 387], with the free charged particles constituting
the primeval plasma, or photo-baryon fluid [324]. The universe was opaque prior to
recombination, thus the CMB photons are considered to come from the so-called
last scattering surface, which is the spherical surface, conventionally centred in our
Galaxy, where the last Thomson scattering happened. Since recombination, photons
could freely propagate. As a consequence of the expansion of the universe, their
wavelength increased, so that at recent epochs they can be detected as a diffuse,
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Figure 1.2. Brightness of the CMB radiation measured by COBE/FIRAS [166]. The error
bars on the experimental data have been enlarged by a factor of 400 to make them
visible. The solid line represents the best-fit curve [taken from http://www.astro.ucla.
edu/~wright/cosmo_01.htm|.

isotropic background with a black body spectrum peaked at microwave frequencies.

The discovery of CMB radiation definitively marked the beginning of observa-
tional cosmology. Since microwave radiation is absorbed by molecular gases in the
Earth’s troposphere, the optimal way to measure the CMB is from space. The very
first space mission dedicated to CMB observations was the COsmic Background
Ezplorer satellite (COBE) [278]. The Far InfraRed Absolute Spectrophotometer
(FIRAS) onboard COBE, equipped with a Martin-Puplett interferometer [274], pro-
duced a measurement of the spectral energy density of the CMB radiation as a
function of the photon frequency, revealing a perfect agreement with a black body
spectrum (shown in Figure 1.2):

2hpv? 1
2 hpv ’
¢ exXp (k’B’J%MB) -1

where hp is Planck constant, and kg is Boltzmann constant. The temperature of
the CMB is, from the combination of several subsequent experiments [165]:

B(v;TcmB) =

(1.29)

Tems = (2.72548 + 0.00057) K .

Measurements from the Differential Microwave Radiometer (COBE/DMR),
revealed for the first time that the temperature of the CMB is not exactly the same
at every position in the sky. More generally, CMB temperature anisotropies are of
two kinds. One has primary anisotropies, which are produced by physical processes
taking place in the early universe, prior to recombination. On the other hand,
secondary anisotropies plus polarization anisotropies occur as the CMB photons
propagate, as a result of gravitational interactions or Thomson scattering off free
electrons [209].

CMB temperature anisotropies are described as functions of the angular scale through
a decomposition in spherical harmonics. Under the assumption of Gaussianity of
the perturbations (see also section 1.3), their statistics is all encoded in the angular
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Figure 1.3. Temperature anisotropies of the CMB from the latest Planck data. (a) All-sky
map in Mollweide projection. Light grey lines highlights the boundaries of the mask
applied to the Galactic region, which is strongly contaminated by foregrounds (see also
section 3.1). (b) Angular power spectrum. Data are shown as red points, while the
best-fit is represented by the cyan curve, favouring a ACDM cosmology [taken from 349].

power spectrum. Figure 1.3 shows the map of the CMB anisotropies and their
angular power spectrum from the most recent data by the Planck satellite [333]. The
physical explanation of the observed power spectrum relies on gravitational effects,
and on the dynamics of the photo-baryon fluid. Indeed, it is possible to distinguish
three main regions: the Sachs—Wolfe plateau on large scales [388], baryon acoustic
oscillations on scales smaller than the comoving sound horizon at recombination,
and the Silk damping on scales below a few arc-minutes [412]. The exact shape
of the power spectrum is sensitive to the cosmological parameters. In particular,
the multipole of the first acoustic peak corresponds to the angular scale of the
comoving sound horizon at recombination, and it constrains the spatial geometry of
the universe, since it depends on the sum of the cosmological parameters [28].

The Sachs—Wolfe effect and its second-order term on smaller scales, known as Rees—
Sciama effect [366], is a gravitational secondary anisotropy. The Sunyaev—Zel’dovich
effect [425] is, instead, a source of scattering secondary anisotropies, which will be
addressed in detail in section 2.2.
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1.3 Paradoxes of the standard model and inflation

The FLRW model of the universe raises some critical aspects, known such as the
horizon paradozx, the flatness paradox and the magnetic monopole paradozx.

The horizon paradox arises from the observed homogeneity of the CMB: temperature
fluctuations due to primary anisotropies are indeed of the order of ATcvmp/ToMmB ~
10~° across the sky. Such small variations could be justified only assuming thermal
equilibrium, made possible by causal contact, of regions within the horizon scale at
recombination. Nevertheless, the angle subtended by the horizon at recombination
today is of the order of 1 degree, meaning that patches in the sky separated by
greater angles were not in causal contact at recombination, raising the question on
how they reached thermal equilibrium to explain the amplitude of the temperature
fluctuations observed today. Moreover, given the homogeneity of the universe, the
standard model does not provide a mechanism capable of originating the density
fluctuations causing the occurrence of anisotropies in the CMB temperature, which
are the seeds for the formation and growth of cosmic structures.

The flatness paradox deals with the spatial curvature of the universe. The value of
the density parameter of curvature measured today, (.o, is found to be consistent
with zero (see section 1.5), implying the spatial flatness of the universe, by means of
equation (1.12). However, the values of the density parameters in the early universe
had to be extraordinarily tuned to provide it ~ 1, given that the curvature
parameter €, increases with increasing time, in a standard scenario [see e.g. 324].
Clearly, a fine tuning is an unsatisfactory and unlikely explanation of spatial flatness.
The last controversial aspect of the FLRW universe is the lack of observational
evidences for the existence of relic particles such as magnetic monopoles. In grand
unified theories such massive particles are expected to be produced in the early
universe as topological defects generated by phase transitions, at temperatures
Tout ~ 102K [e.g. 263].

The inflationary solution

The physical mechanism which could solve all the above paradoxes of the standard
cosmological model, and being responsible for the generation of primeval perturba-
tions is called inflation, proposed in the early 1980s [186, 264, 188].

Inflation is a phase in which the expansion of the universe is exponentially accel-
erated. It is believed to have taken place in the very early stages of the evolution
of the universe, during the radiation-dominated epoch. As it can be seen from the
second Friedmann equation (1.8), the expansion accelerates if the dynamics of the
universe is dominated by some fluid with negative pressure, similar to the modern
cosmological constant. The scale factor during inflation evolves as

a = a;elit=t) (1.30)

being t; the time at which inflation starts, with corresponding scale factor a;. During
this epoch the comoving Hubble distance, (aH)~! = ¢!, decreases with increasing
time, contrarily to the standard behaviour, while the Hubble parameter stays
constant, H = H;. This fact is the key to solve both the horizon and the flatness
problems.
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Figure 1.4. Tlustration of the horizon paradox and its inflationary solution. (a) In the
standard scenario, the comoving Hubble distance grows with time, so it does the horizon
(in the absence of accelerating components as dark energy). Thus, all the CMB regions
which are separated today by angular distances greater than =~ 1° in the sky could not
reach causal contact in the past. This is because their light cones (marked in grey) did
not overlap before the spacetime was terminated by the initial singularity at 7 = 0.
(b) During inflation, the comoving Hubble distance shrinks with increasing time and then
expands during the conventional evolution. Inflation corresponds to an additional span
of (negative) conformal time, during which all the regions in the CMB have overlapping
light cones, and therefore originated from a causally connected region of space [taken
from 33].

Indeed, the comoving horizon distance is proportional to the comoving Hubble
distance; therefore, if it was larger in the past than at recombination, the CMB
would come from regions that were causally connected during inflation, provided
this phase lasts for a sufficient time. If inflation ends at a time t., its duration is
quantified by the number of e-foldings, Ny, defined as

Ny = Hy(to —t;) (1.31)

where H; is the Hubble parameter during inflation. In order to solve all the FLRW
paradoxes consistently with observations, the number of e-foldings in any theory of
inflation must be Ny > 65 [e.g. 187]. Figure 1.4 gives a visual explanation of the
solution to the horizon paradox. The role of inflation is that of providing an additional
span of conformal time between the origin of the universe and recombination, during
which causal connection happened. Conformal time is a convenient rescaling of the
coordinate time by the scale factor, so it is defined as: dr = a~! dt; this quantity is
negative if the scale factor grows exponentially as in equation (1.30).
On the other hand, the curvature cosmological parameter €1, is proportional to
(aH)~2, therefore a decreasing comoving Hubble distance would naturally lead to
smaller values of the spatial curvature in the past, thus solving the flatness paradox.
Finally, the accelerated expansion during inflation caused the number density of
magnetic monopoles to be diluted over a huge volume, thus reducing drastically the
probability of observing them.

The simplest form of mass-energy having negative pressure is a scalar field, ¢
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(or inflaton), which has an associated potential energy density, V(¢). Inflation
corresponds to the phase transition of the inflaton field arising from a spontaneous
symmetry breaking, as prescribed by quantum field theory. At the beginning of
inflation, the inflaton is in a false vacuum state (i.e. a local minimum of the potential),
which is metastable. During the inflationary phase, the field evolves towards the true
vacuum state (global minimum of the potential). To have V() > ¢, and to ensure
this phase lasts enough to drive the total density parameter towards unity, the field
has to “roll” slowly along an almost flat region of its potential. This translates into
the following so-called slow-roll conditions:

1 /V'\?
= — [ — 1 1.32
€ 247TG<V> < (1.32)
1 1
=« 1.
n=gay <L (1.33)

where ’ = di. Inflation ends when the true vacuum state is reached and the slow-roll
conditions are no longer valid. In this regime the kinetic term dominates over the
potential, and the field starts oscillating around the minimum, to eventually decay
into the ordinary matter of the standard model of particles. The latter stage is
called reheating, as the universe gets repopulated after the inflaton domain [28].
Nevertheless, as any other quantum scalar field, the inflaton undergoes spatially-
varying fluctuations, besides its homogeneous evolution. This means that inflation
does not end simultaneously in every position in the universe, so the time at which
inflation effectively ends at the position , is:

te(x) = (te)a + Ote(x) (1.34)

that is an average time plus some fluctuations. The latter can be ultimately translated
into density perturbations which are encoded in the primary anisotropies of the
CMB, and whose evolution over cosmic times depicts the standard scenario of the
formation of cosmic structures, which will be addressed in section 1.4.

Linear density fluctuations from inflation arise from the superposition of many
independent, incoherent modes whose amplitudes and wave numbers are drawn from
the same distribution. Therefore, they are predicted to be Gaussian and adiabatic.
Moreover, under the slow-roll conditions, they are characterized by a scale-invariant
power spectrum, as will be briefly discussed in the next section.

1.4 Formation of cosmic structures

In the standard cosmological scenario, all the gravitationally bound structures
constituting the observable universe today formed from the growth of density
perturbations under the action of gravity [e.g. 109]. To describe the growth of
perturbations whose scales are smaller than the horizon in the domain of non-
relativistic matter, a classical Newtonian treatment is adequate. To study super-
horizon perturbations, as well as the evolution of perturbations in the domain of
relativistic matter within the horizon, general relativity is necessary, instead [we
refer the reader to 301, for a complete review].

In the following, a synthetic overview of the evolution of perturbations on sub-horizon
scales is provided.
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1.4.1 Linear regime

Supposing the universe has a mean density p, perturbed by a density fluctuation dp,
the linear regime holds if dp < p. According to Jeans theory, all perturbations of
size larger than the Jeans’ length grow exponentially, until gravitational collapse
occurs [220].

The starting point is to consider a perfect isotropic and homogeneous fluid obeying
the three fundamental equations of fluid dynamics:

dp

JE— T . = ].-

N + Ve (pu)=0 (1.35)
ou

Par +p(u-Vy)u=—-Vop—pV,d, (1.36)

V2i® = 4rGp (1.37)

which are the continuity equation giving conservation of mass, Euler’s equation
expressing the conservation of momentum, and Poisson’s equation relating the
density of the fluid, p = p(t, ), to the Newtonian gravitational potential ®, being x
the proper position. The pressure of the fluid, p = p(¢, x), is related to its density
by means of a suitable equation of state, and w = w(¢, ) is the velocity of the fluid.
By perturbing density, pressure, velocity and the gravitational potential in the above
equations (1.35), (1.36) and (1.37), and retaining only the first-order terms in the
perturbations, one has:

aép _

L =_V,- 1.

T V- (pdu) (1.38)
pagt“ = AV, 0p — pV 0D | (1.39)
V26® = 4nGép (1.40)

where, by virtue of the equation of state, the pressure perturbation is written as

op = Op 6p=cop, (1.41)
a S
under the adiabatic condition ds = 0, being s the entropy of the fluid and ¢ the
adiabatic speed of sound.
A suitable combination of equations (1.38), (1.39) and (1.40) yields the sound wave
equation for the density perturbations:

1 8%p _47rGﬁ6p

V36p — = =
* c2 ot? c?

(1.42)

It is convenient to express the above wave equation in Fourier space, where in the
linear regime all modes evolve independently from each other. Recurring to the
formal substitutions:
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being 7 is the imaginary unit, w the time pulsation and k the (proper) wave vector
equation (1.42) in the adiabatic regime can be rewritten as

(w? — k*c2)opr, = —4nGpdpy, (1.45)

which has solutions in the form of plane waves:
1 ,
op(t,x) = —= /5pk eltbw £ wkt) g (1.46)
(2m)

Setting w? = 0 in equation (1.45) defines the Jeans’ wave number, ks, and the
corresponding Jeans’ length, [y = %, giving the critical scale for the growth of

perturbations:
i

ly=csy/—== . 1.47

J s Gﬁ ( )
It can be seen that for perturbation sizes [ > I the dispersion relation yields w? < 0,
therefore the solution (1.46) oscillates with amplitude which exponentially grows or
decreases over time. Vice-versa, for perturbation sizes | < I one has w? > 0, thus
the perturbation evolves as a sound wave of constant amplitude.

Perturbations in an expanding universe

When the expansion of the universe is taken into account, all the above equations
must be rewritten in comoving coordinates. The proper position becomes:

x=ar, (1.48)

while the velocity is:
u=Hr+v, (1.49)

being Hx the Hubble flow and v = ar the peculiar velocity. Taking into account the
relation between time and spatial derivatives in proper vs comoving coordinates, the
above steps can be repeated by calculating the linear perturbation of equations (1.35)—
(1.37). One eventually gets the instability equation in a universe dominated by
non-relativistic matter (so that p o a~3), describing the evolution with time of
each comoving Fourier mode (hereafter k = 27 /r):

Op + 2H oy, + (K22 — 4nGp)dy, = 0, (1.50)
having introduced the density contrast:

_ 9pk

p

Sk (1.51)

The solution of equation (1.50) is different for the different energy components.
From the first Friedmann equation, which sets the evolution of the mean density p
with time, it is possible to describe the evolution of linear density perturbations for
each component of the cosmic fluid, depending on the dominating species at a given

epoch.
As a general result, the only component whose Jeans length is always small enough



1.4 Formation of cosmic structures 15

to allow gravity to overcome pressure gradient forces is dark matter. Perturbations
of the density of baryonic matter can grow only after the decoupling from radiation.
Indeed, during radiation domain, the photo-baryon plasma oscillates until the
equivalence, after which baryon perturbations catch up with dark matter ones and
start growing [109]. At the same time, the growth of dark matter perturbations
during radiation domain is suppressed by the Hubble friction term 2H by also in
this case until the equivalence, as they undergo the Meszaros effect [288]. Lastly,
perturbations of relativistic matter density can never grow at any epoch, remaining
in a permanent oscillation state, since the Jeans length for radiation is always greater
than the horizon size.

Typically, the growing mode 6y 4 of a perturbation is a linear function of the scale
factor:

b4+ X a, (1.52)
therefore, if toq is the time at which the matter-radiation equivalence occurs, one
has:

t2 att <t

Sk X 4 1.53
ol {t2/3 at t > toq , (1.53)

where the behaviour of a can be derived from the integration of the first Fried-
mann equation. Outside the horizon, where general-relativistic effects dominate,
perturbations always grow as 0 4 o< a’.

Power spectrum of density fluctuations

Density fluctuations in the universe originate from quantum fluctuations of the
inflaton field, as discussed in section 1.3. Therefore, defining the field of the density
contrast at a given comoving position 7 in the sky as

5y = LT =P (1.54)

its statistics will be completely described by its power spectrum, under the hypothesis
of Gaussianity. The field of the density contrast in Fourier space is:

Iy 1 —ik-r
5(k) = W/é(r)e dr | (1.55)
and the average of the product of fluctuations at different wave vectors k and k' is:
(0(R)3(K)) = (27)*P(k) 6p(k — K') , (1.56)

where dp is Dirac delta function, which ensures the independence of different modes.
The quantity P(k) is the power spectrum of fluctuations, having dimensions of a
power density, which depends only on the modulus of the comoving wave vector, by
virtue of isotropy. The integral of the power spectrum across all wave numbers gives
the variance of the field of the density contrast:

o2 = (82(r)) = (271r>3 / P(k) dk . (1.57)
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Figure 1.5. Variation of the comoving Hubble distance (aH)~! with time and its effect on
a perturbation of comoving size ly. At times 0 <t <t; and ¢ty <t < teq the universe is
radiation-dominated, therefore the comoving horizon grows with time as o t'/2. Inflation
occurs at times t; < t < ty, and the comoving horizon shrinks. The perturbation enters
the horizon for the first time during the domain of radiation, at the time t;, getting
causal connection. It then leaves at the time ¢o (first Hubble crossing) during inflation
and re-enters the horizon at the time ¢5 (second Hubble crossing), when inflation has
ended [taken from 109].

having used that the average of the field (1.54) is zero, by definition.

To ensure the homogeneity prescribed by the cosmological principle, the power
spectrum should have the form of a power law, at least at large scales (low k),
so that P(k) — 0 as k — 0. Furthermore, it cannot lead to a diverging variance,
which implies that its spectral index must necessarily be smaller than —3, from
equation (1.57).

The shape of the power spectrum of primordial perturbations is derived from the
statistics of vacuum fluctuations in the inflaton field. In particular, since inflation
shrinks the comoving Hubble length, perturbations are rapidly thrown out of the
horizon (at the first Hubble crossing), then they re-enter the horizon at the second
Hubble crossing, when the comoving Hubble size increased sufficiently with time.
When they exit the horizon, such perturbations get causally disconnected, so they
“freeze” to the state they had before, until they re-enter the horizon. Figure 1.5 shows
this phenomenon for a perturbation of comoving size [y, as the comoving Hubble
distance varies with time. The calculation of the variance of quantum fluctuations
of the inflaton field at the second Hubble crossing yields a power spectrum:

P(k) o k™1, (1.58)

where ng is the primordial spectral index at the first Hubble crossing, where the power
spectrum was again in the form of a power law, P(k) o k™s. The primordial spectral
index n; is derived from the slow-roll parameters of equations (1.32) and (1.33) [187]:

ns =1+ 2n — 6e , (1.59)

which is ns &~ 1 if the slow-roll conditions hold. This particular kind of primordial
power spectrum, P(k) o k, also called Harrison—Zel’dovich power spectrum, features
the property of scale invariance at horizon crossing, i.e. the power does not vary
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with the scale. Power is indeed defined as [e.g. 109]:

B, = ip(k:) K (1.60)

272
therefore one has Py, ~ const. if P(k) is of the form given in equation (1.58) with n,
close to unity. The property of scale-invariance is inherited also by the fluctuations
of the gravitational potential [191, 324, 472]. Indeed, they behave as

60 o k12 (1.61)

which is clearly independent on the scale, r = 27 /k, for ng ~ 1.

For observational purposes, it is more convenient to refer to the mass variance,
rather than to the variance of the field of the density contrast. Therefore, the
variance (1.57) gets filtered through a Gaussian window function in Fourier space,
with a cut-off wave number corresponding to a characteristic radius, R = 1/kg,
defining a sphere of density p enclosing the mass M = 4/37pR>. Denoting as W (kg)
such a smoothing function (which is the Fourier transform of the W(R) window
function), the mass variance is given by:

1 o
02, = ﬁ/P(k’) W2(kg) k2 dk (1.62)

by virtue of Parseval’s theorem on convolution. For a Harrison—Zel’dovich primordial
power spectrum, the mass variance scales as

o2 o kMt oo M H3/E o g8 (1.63)

while at the Hubble crossing, substituting P(k) o k=3, one gets scale-invariance
with respect to the mass.

Inflationary models constrain the shape of the primordial power spectrum via the
spectral index, but they do not provide any information on its amplitude. Thus, the
normalization of P(k) must be determined observationally. Early galaxy surveys
showed that the square root of the mass variance of galaxy counts, oy = dp /M,
was of the order of unity on the comoving length scale of 84! Mpc [119]. For
this reason, the amplitude of the power spectrum is usually defined through the
og parameter, which is simply the square root of the mass variance (1.62) with
kr = 1/(8h~! Mpc).

The shape of the primordial power spectrum P(k) is not the same at all the inverse
comoving scales k. Indeed, it is sensitive to the epoch at which perturbations re-enter
the horizon, and it gets affected by possible microphysics processes, which manifest
especially at the smallest scales. A natural crossing scale is given by the size of the
comoving horizon at the equivalence, which sets the wave number k¢q. Indeed, if
a matter perturbation is big enough to re-enter the horizon after the equivalence,
it will always grow with time as it did outside the horizon. A perturbation having
smaller size, on the contrary, may enter the horizon during the radiation domain,
undergoing either oscillations (in the case of baryonic matter perturbations) or the
Meszaros stagnation (in the case of cold dark matter perturbations), and its growth
is suppressed.
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Figure 1.6. Linear power spectrum of the density fluctuations of cold dark matter inferred
by a compilation of independent data sets on different scales. The black solid curve is
the best-fit, which is consistent with the prediction from the ACDM with the parameters
from Planck 2018 results, given in section 1.5. The dotted line represents the theoretical
expectation from the add of non-linear effects, while the residuals are shown in the
bottom panel. The peak is at keq = 0.01 Mpc™! [taken from 99)].

Recalling that P(k) o 62 with 0 o a? before entering the horizon, and that the
scale factor at the equivalence horizon crossing goes as aeq k2, one has:

ks for k < keq

P(k) 1.64
(k) {k”s_4 for k > keq , ( )
which is illustrated in Figure 1.6 for cold dark matter. It can be seen that for
a primordial Harrison—Zel’dovich spectrum, the suppression during the radiation
domain scales as k3.

1.4.2 Non-linear regime

As density perturbations grow with time, they get to become comparable or larger
with respect to the mean density. Therefore, the linear regime breaks and the
evolution of perturbations must be studied using a different theoretical approach.

Spherical collapse

The simplest analytical solution in this context is provided by the spherical collapse
model [184]. This model describes the evolution of a single spherical perturbation
in a matter-dominated universe with no spatial curvature (or Einstein—de Sitter
universe). The perturbation can be treated as a universe on its own which evolves
separately with respect to the background, still preserving its spherical shape by
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virtue of Buchdahl’s theorem [76]. Supposing non-linearity occurs at a time ¢;, the
density of the perturbation at this time is given by:

pi = (140:)ps , (1.65)

being p; the background density of the universe, and §; > 1 is the total matter
perturbation, such that the spatial curvature of the perturbation-universe is positive.
During matter domination, the total solution to the instability equation (1.50)
according to linear theory is composed by a growing mode, d;+ and by a decaying

mode, §_, so that:
£\ 2/3 £\ -1

When non-linearity occurs, the spherical perturbation stops expanding with the
Hubble flow. Then, at t = ¢; the velocity §(¢) = 0, which yields the following relation
between the growing mode and the total perturbation:

5, = gai . (1.67)

For the collapse to occur as a consequence of the positive curvature of the per-
turbation, the latter must have a density parameter, €2, greater than one. Being
Q, = (14 6)Q at any time, it must be:

3(1— )

6 _
75 Qs

i s (1.68)

where the quantity on the right hand side of the above inequality gives the critical
value for the collapse at the time t;. As a general prescription, all perturbations
exceeding the critical value will collapse.

The latter happens in three stages, that are: the turn-around phase, the collapse
phase and the virialization phase. The physical size and density of the perturbation
in all these stages are fully determined by the initial conditions.

At the turn-around time ti,, the background density still evolves according to the
first Friedmann equation for flat universes dominated by matter (see equation (1.11)),

so that:
1

6rGtZ,
On the other hand, the evolution of the perturbation can be solved from the first
Friedmann equation from a matter-dominated and positively-curved universe. For
the sake of simplicity, it is also possible to describe the “crunch” of the perturbation
in a more straightforward way. Indeed, the time interval between turn-around and
collapse corresponds to the free-fall time of a uniform sphere:

[ 3m
tcoll - tta = tff = 32Gp 5 (170)
ta

Therefore, being t.o = 2t1a, its density at the turn-around time is given by:

3T 37\ 2
_ S 1.71
Pta 32Gt%a ( 4 ) Pbita. ( )

Pbta = (169)
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and the corresponding critical value set by the linear theory according to equa-

tion (1.68) is:
3 /3m\%/3
6c,ta ~ 5 (4) ~ ]_.06 . (1.72)

After the perturbation contracts, it does not end up as an actual crunch, since at
times t > 2t, a violent relaxation takes place, and the structure rapidly wvirializes.
The conservation of energy between the turn-around and the virialization implies
that:

Tia + Uga = ’Cvir + Usir ) (173)

where the kinetic term at the turn-around, Ky,, vanishes since the energy is only in
form of potential energy (and the perturbation is at its maximum size). Using the
virialization condition, the conservation of energy becomes therefore:

Uvir
Ua = 35, (1.74)
that is
Rta = 2Rvir 5 (175)

which is equivalent to state that between the start of the turn-around and the
virialization the size of the perturbation decreases by a factor of 2. Correspondingly,
its density grows by a factor of 23:

Pvir = Spta = Pcoll 5 (176)

and tvir Z Qtta.
The density contrast, also called spherical overdensity, at virialization is given by:

Avir = Puix - 6vir +1 5 (177>
Pb,vir

and plugging equations (1.69), (1.71) and (1.76) into equation (1.77), one finds:
Ay = 187% = 178 ~ 200 , (1.78)

which is the reason why the virial overdensity is denoted also as A = 200. The
important aspect is that all collapsed objects feature the same final density, whatever
their initial mass. Therefore, for an object which is collapsed at a time ¢, it must
hold p; = const. = Apy 4, that is:

]I\% = %WApb’t . (1.79)
This result can be interpreted as a consequence of the initial power spectrum being
scale-invariant, which translates in the self-similarity of cosmic structures with
respect to time [225]. In this case, if the initial overdensity § would grow only at a
linear rate, the critical value for the perturbation to collapse would be:

5 > teoll 2/3 ~1 2/3
c,coll = Oc,i T ~ 06 -2 ~ 168 . (180)

i
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Figure 1.7. Evolution of the density of a perturbation in the simple spherical collapse
model (upper curve), compared to the evolution of the background universe (lower curve)
in the domain of non-relativistic matter [taken from 319].

This means that whenever perturbations are larger than the critical value of 1.68
in the linear regime, they actually correspond to collapsed spheres with a density
~ 200 times the critical density, whatever their mass.

The critical density at a given time, which is 8 times the density at the beginning of
the collapse, depends only on the underlying cosmology governing the evolution of
the background density. Indeed, here one must keep in mind that the above results
hold true for a flat universe with only matter and no cosmological constant. In a flat
universe with non-zero cosmological constant the virial overdensity is determined
numerically as [73]:

Ayir = 1872 + 82(Qy, — 1) — 39(Q,, — 1)2, (1.81)

where the contribution from radiation has been neglected. More generally, the critical
overdensity is found to depend weakly on the matter and dark energy cosmological
density parameters [251, 149].

Figure 1.7 shows the overall evolution of the density of a spherical perturbation as a
function of the scale factor, as derived from the spherical collapse model.

Halo mass function

The critical value of the overdensity at a given time ¢ (or redshift), d., allows one
to predict whether a given density perturbation smaller than unity at the initial
time ¢; will collapse into a gravitationally bound object at t. Indeed, the growing
mode of the perturbation must satisfy the simple condition 84 = §;(t/t;)%/3 > 6.,
defined in equation (1.68). The characterization of the overdensity field, namely the
determination of its variance, is made possible only through observational quantities,
e.g the mass of collapsed structures. Gravitationally bound structures are usually
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referred to as haloes, which are distinct “units of mass” whose spatial extension
is smaller than the typical distance between them. The mass distribution in the
universe can therefore be investigated on larger scales through the spatial distribution
of such haloes, and on smaller scales by considering the matter distribution within
each single halo. The abundance, the spatial distribution and the inner structure
of haloes all depend primarily on their mass [113]. In this context, it is useful to
overview the theoretical halo mass function according to the formalism by Press &
Schechter [356].

As discussed in section 1.4.1, the overdensity field is a null-averaged Gaussian field.
The associated field of mass fluctuations inherits this property, since it is given
by the smoothing of the overdensity field with a window function of characteristic
spatial scale R = 3M/(47np). Therefore, the probability density function of mass
fluctuations is given by:

2
P(Sp)dops = —5M> dons (1.82)

1

@no3) 7 P ( 203
being 0%, the mass variance defined in equation (1.62). To connect the observation
of massive objects with the properties of the perturbation field, the approach is based
on “predicting” which density contrast will actually produce collapsed objects at
late times, starting from a Gaussian perturbation field in the linear regime. To have
a collapsed object, any density perturbation should be larger than the critical value
0. at a given redshift, which is “calibrated” between the linear and the non-linear
theory with the spherical collapse model. Given a critical density, the probability to
have a mass perturbation corresponding to a density perturbation larger than the
critical value, ., is simply given by the integral of equation (1.82):

P(5 > 6.) = Pus, (M) = /5 P (5ar)dons . (1.83)

However, this quantity is proportional to the number of cosmic structures which can
be either isolated or clustered within larger objects (problem of the cloud-in-cloud
counting). To take into account only the largest possible structures, one must
compute the differential probability distribution function:

O = [Pl (M) ~ Pogy (M + D) (1.84)
where the term P(-5,)(M + dM) is subtracted to avoid to count twice the collapsed
objects which are contained into larger ones. Since it does account only for the
over-dense half of the Gaussian probability distribution function, a factor of 2 is also
missing, which is simply “put by hand” to get the correct result.

The number of collapsed objects per unit mass and comoving volume defines the
halo mass function:

dN
ny (M) = aMav (1.85)
which from (1.84) reads:
o P APs) (M) py AP (55 (M) | doyy
na(M) =2 U A =2 7 dor | (1.86)
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where the mass M at the denominator is needed to correctly take into account the
total number of objects of mass M, and py, = dM/dV = Qp,per.

The quantity:

dP(>6c)(M )

-2
oM do

is called multiplicity function, and it takes a different form for different models
describing the halo mass function, which is therefore compactly written as

dlog o3,
dlog M

Qper
M2

nar(M) = =3 f (o)

. (1.88)

The multiplicity function in the Press—Schechter case is:

2 6 52
flom) = —\/;JM exp (— 20%4) ; (1.89)

yielding the Press—Schechter mass function [356]:

2 6. 52 Qmpcr
nu (M) = \/;O'M P <_ 20%) M?
According to this model, the number of massive objects decreases quadratically
with mass in the low-mass end. On the other hand, the suppression given by
the exponential term implies that at larger critical overdensities (with the critical
value growing when “looking back” at the linear regime), less collapsed objects are
expected. Since gravity has no preferred scales, the non-linear scale is set as the one
corresponding to the mass collapsing at a given redshift, for which the peak height
at that redshift, u = d./oar , equals unity.
The Press—Schechter mass function of equation (1.90) can be derived in a rigorous
way, i.e. with no need to add the ad hoc factor of 2, through the method of excursion
sets [56]. The basic idea consists in taking the primordial Gaussian field of density
perturbations and trying to predict the number of virialized objects that one will
likely count at later times. To do this, one can suppose to take the field and
start evaluating the matter density by filtering the field over spheres of decreasing
radius R. Starting from large radii ensures the largest possible collapsed objects
are considered, and the cloud-in-cloud problem is naturally solved. If linear density
fluctuations are larger than the critical value for the collapse (see equation (1.80))
when smoothed over a scale R, the latter defines a patch that will likely collapse to
form a virialized halo at later times, which will enclose a density about 200 times
the critical density, as prescribed by the spherical collapse model. It can be shown
analitically that each linear Fourier mode in the field of density perturbations, o(k),
follows Brownian-like trajectories across redshift, called excursion sets. Any value
of the critical overdensity at a given redshift acts as a fixed “barrier” for these
trajectories. Therefore, starting from large filtering scales (large masses), each time
a trajectory crosses the critical barrier, one has the collapse of an object at the
corresponding filtering mass. Subsequent crossings correspond to smaller collapsed
objects, which formed earlier.
More generally, the halo mass function is a crucial quantity for cosmological
studies with clusters of galaxies. Indeed, varying cosmology implies varying the

dlog 0%/1
dlog M

. (1.90)
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critical overdensity, as well as the whole process of structure formation, resulting in
different scaling of the halo mass function [see e.g. 7, for a review]. This quantity is
also needed to evaluate the angular power spectrum of the Sunyaev—Zel’dovich effect,
which is another fundamental tool to probe the matter density parameter and og [244].
For this reason, an accurate modelling of the halo mass function is fundamental
to get reliable cosmological constraints. The spherical collapse model upon which
all the above results are based, represents a useful but oversimplified framework
for the study of non-linear growth of perturbations and the formation of collapsed
objects. A more realistic treatment of non-linear growth of density perturbations
is represented by the semi-analytical approach of Zel’dovich approximation [A71].
This simple approach gives acceptable results only in weakly non-linear regimes, and
it can be used to describe the evolution of structures only up to the first collapse.
The most complete picture of the formation of cosmic structures can be achieved
through cosmological N-body simulations, which ultimately allow one to validate
the predictions from both fully analytical and semi-analytical models. For instance,
in the context of estimating the halo mass function, numerical simulations helped in
testing more refined models, with respect to the Press—Schechter result based on the
spherical collapse [409, 222, 408, 435, 436, 50].

In section 2.1.1 a short overview of cosmological simulations is provided; in particular,
in section 4.2 the simulations used in the present Thesis work are introduced.

Self-similarity

The evolution of the observational properties of cosmic structures can be predicted
theoretically — and eventually compared with the result from numerical simulations —
by virtue of their self-similarity with respect to time [225]. Self-similarity implies that
two collapsed haloes at two different redshifts are just scaled versions of each other.
The only underlying assumption is the scale-free shape of the initial power spectrum
of matter perturbations, as predicted by inflation and confirmed experimentally (see
Fig. 1.6). Indeed, as already pointed out earlier in this section, under this condition,
the only physically-relevant scale for the collapse is set by the non-linear mass. The
latter is defined as the mass at which the matter fluctuations M /M, and thus the
mass variance 012\4, are equal to 1. The mass variance scales with the expansion
factor as a power law. Indeed, from equation (1.62), and recalling that the power
spectrum scales as P(k) oc 62 o< a? for growing modes, one has:

o2, =a M~ (s+3)/3 (1.91)

and being a o tY/2 and a o t¥/3 during radiation and matter domination, respec-
tively, it follows that the non-linear mass, Myr,, scales as a power law of time as well.
This is exactly the formulation of the hierarchical scenario: smaller masses collapse
at earlier times; more massive objects form at later times from the aggregation of
the smaller ones.

Any dimensionless statistics depending on the ratio M /My, of a collapsed object
will inherit the self-similarity with respect to time. Such statistical properties are
generally expressed as functions of the overdensity A (defined in section 1.4.2). In
particular, consistently with the spherical collapse prediction, if two objects collapse
at the same time ¢, then self-similarity implies their densities are the same, equal to
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Apyt, being pp; the background density at the time ¢. The latter usually coincides
with the critical density, but it may be replaced by the mean matter density in some
cases. This allows one to define the mass within a sphere enclosing a density equal
to A times the background density as

4
Mp = gnRgA b - (1.92)

In the following, we will always assume pp = p¢r, unless differently specified. Equa-
tion (1.92) implies that any observational quantity related to the radius Ra can be
directly related to the mass at the same overdensity (at a given time or redshift).
Such relations between observables and masses are in form of power laws called
scaling relations [see e.g. 176, for a review|, which are derived under the assumption
of (7) spherical symmetry of the system; (i) hydrostatic equilibrium, and (%) no
dependence of the power law slopes on the mass of the object.

1.5 Cosmological parameters

The current cosmological scenario can be described though two sets of parameters.
The first set describes the dynamics and the geometry of the universe by means of
the expansion rate, the density parameters of all the mass-energy components, the
equation of state of dark energy and spatial curvature. The second set is constituted
by the spectral index and normalization of the power spectrum of primordial density
fluctuations which originated all the gravitationally bound structures we see today.

1.5.1 Dynamics and geometry of the universe

This section is dedicated to the parameters describing the mass-energy content of the
universe, from which its global dynamics and geometry are determined. Specifically,
they are: the Hubble constant; the cosmological density parameters of relativistic
matter, non-relativistic matter, spatial curvature and dark energy, and finally the
equation of state parameter of dark energy.

Hubble constant

As discussed in section 1.1.1, the Hubble constant is the expansion rate of the
universe evaluated at the present time. To date, the most precise estimates of the
Hubble constant are provided by the angular power spectrum of CMB primary
anisotropies, and by direct distance measurements of the absolute magnitude of type
Ia supernovae (which are standard candles upon a proper calibration of their light
curve). There are several other probes of this parameter, based both on high-redshift
and local observables. For instance, recent estimates of Hy include the use of:
galaxy clustering combined with weak lensing [128]; measurements of the angular
diameter distance from joint X-ray and Sunyaev—Zel’dovich measurements from
galaxy clusters [e.g. 53, 247]; gravitational waves from standard sirens [129]; lensed
quasars [467]. All these methods, however, rely on a number of assumptions which
limit their competitiveness in terms of precision, compared to the estimates based
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on type la supernovae and on the CMB.
The most recent work using supernovae quotes [376]:

Ho = (74.03 £ 1.42) kms~ ! Mpc™ ;

on the other hand, the indirect, model-dependent best-fit estimate based on the
latest Planck CMB data reports [348]:

Hy = (67.36 + 0.54) km s~ Mpc™' .

The 4.40 tension between the above measurements represents one of the major open
issues in modern cosmology, which lead to a plethora of proposed possible solutions.
Nevertheless, at the time of writing none of them has convincingly solved the above
tension.

Relativistic matter

Relativistic matter (or radiation) is constituted by all those particles satisfying the
condition:
me? < kpT (1.93)

being m the particle mass and 7" the temperature of the cosmic fluid. At the present
time, the only particles which can satisfy this property are photons, being always
non-relativistic at any temperature, and neutrinos.

The photon content of the universe is mainly in the form of the CMB radiation (see
section 1.2), which is characterized by the spectral energy density of a black body at
the present-day temperature Ty =~ 3 K. The corresponding energy density can be
obtained from Bose-Einstein statistics [62], whose only relevant physical parameter
is given by the thermodynamic temperature. The density of photons relative to the
critical density at the present time is thus estimated to be:

Q0h? =247 x 1075,

meaning that they do not affect significantly the dynamics of the universe.
Another candidate species of relativistic particle is represented by neutrinos. They are
electrically neutral fermions accompanying their corresponding electrically-charged
leptons (electrons, muons and tau) in electro-weak decay processes, by virtue of
the conservation of energy and momentum. These particles have very small masses,
whose values have not been measured directly yet [see e.g. 19, for a recent review].
From the combination of acoustic oscillation data in the late and in the early universe,
plus gravitational lensing measurements, the sum of the three mass eigenvalues of
neutrinos is found to be [349]:

> my, <0.126eV
v

at 95% confidence level. The neutrinos that would contribute to the radiation com-
ponent today, are supposed to constitute a relic background, similarly to the CMB,
called cosmic neutrino background [399, 1]. From basic considerations descending
on the different quantum statistics obeyed by bosons and fermions, it is possible to



1.5 Cosmological parameters 27

derive a theoretical estimate of the temperature of the relic neutrino background,
that is:

4 1/3
T,0= (11) Tens = 1.945K | (1.94)

corresponding to an energy of 0.168 meV, which is still very challenging to observe.

Non-relativistic matter

Non-relativistic matter is constituted by all particles for which it holds:
mc® > kgT | (1.95)

which at the present time include baryons after the decoupling from radiation, and
non-baryonic cold dark matter [see e.g. 470, for a review].

The baryonic component is in form of either galaxies or diffuse gaseous medium,
whose emission can be detected in different bands. Its density may therefore be
constrained from the radiative properties of each observable. The most sensitive
cosmological probes of the baryon density are baryon acoustic oscillations in the power
spectrum of primary CMB anisotropies and the abundance of elements produced in
the Big Bang nucleosynthesis. Also, the ratio between this parameter and the density
parameter of the total of baryonic plus non-baryonic matter can be constrained from
the gas fraction in galaxy clusters [272]. The most recent value from the analyses of
Planck data gives [348]:

Qpoh? = 0.02237 + 0.00015

for baryons, and
Qedmoh? = 0.1200 £ 0.0012 ,

for cold dark matter, so that the inferred total density parameter for non-relativistic
matter is:

Qo = 0.3153 £0.0073 .

Despite it is the dominant contributor to the budget of non-relativistic matter, to
date there is no indication on the nature of dark matter, which is a major issue of
the ACDM model. Candidate dark matter particles must be stable on cosmological
time-scales; they must interact very weakly with electromagnetic radiation, and they
must have a relic density consistent with observations. In this respect, proposals
for candidates include primordial black holes, axions, sterile neutrinos and weakly
interacting massive particles [see e.g. 320, and references therein].

Spatial curvature

As discussed in section 1.2, the angular power spectrum of primary CMB anisotropies
is a probe of the geometry of the universe, which can be inferred from the localization
of the first peak of baryon acoustic oscillations. Indeed, the latter is sensitive to
the sum of the cosmological density parameters. Measurements of the CMB at
sufficiently high angular resolutions allow a precise localization of the peak, which is
found to be consistent with a total density parameter close to unity [e.g. 122]. The
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most recent value of the curvature parameter from the combination of Planck data
with baryon acoustic oscillations is [348]:

Qo = 0.0007 = 0.0019 ,

which is well consistent with a flat universe, in agreement with inflationary predic-
tions.

Dark energy

The Hubble diagram relating the luminosity distance to the redshift of type Ia
supernovae showed for the first time two decades ago that the expansion of the uni-
verse is currently accelerating [375, 326]. As discussed in section 1.3, an accelerated
expansion requires the cosmic fluid to be dominated by some physical component
with negative pressure, dubbed dark energy because of its yet unknown nature.
The simplest scenario assumes dark energy to be in the form of the A cosmological
constant, whose density parameter can be inferred with high precision from CMB
data, relying on the direct estimate of the matter density parameter. Assuming the
universe is spatially flat — as prescribed by inflation and according to the measured
value of the curvature parameter — the most recent constraint on the density of the
cosmological constant from Planck results is [348]:

Q) = 0.6847 £ 0.0073 .

For a non-evolving dark energy component, the equation of state parameter is found
to be:

w = —1.028 4+ 0.032 ,

yielded by the combination of CMB data with lensing, supernovae and baryon acoustic
oscillation data. Such a consistency with the value of —1 is also supported by the
combination of independent constraints from galaxy clusters and supernovae [e.g.
401]. Although the hypothesis of a cosmological constant is supported by many
observational data, such an explanation for the acceleration of the expansion is
unsatisfactory, as it raises the so-called fine-tuning problem and the coincidence
problem [see e.g. 462, 94]. This fact motivated many works aiming at tackling the
origin and the nature of dark energy in a physically-consistent way. For instance,
a number of theories known as quintessence models [e.g. 13] interpret dark energy
as a scalar field evolving with time (similarly to the inflaton). Another possibility
is to consider modifications of general relativity at cosmological scales in extended
theories of gravity [see e.g. 86, for a recent review|. However, none of the theories
proposed so far has been capable of solving the dark energy problem.

1.5.2 Primordial power spectrum of density fluctuations

The primordial power spectrum of the inhomogeneities originated from inflation is
in the form of a power law, as discussed in section 1.4.2. The only two parameters
needed to describe this quantity are therefore its spectral index and its normalization.



1.5 Cosmological parameters 29

Spectral index The primordial power spectrum is expected to be linear with
respect to the inverse comoving scale, corresponding to a scale-invariant power. Its
shape can be primarily probed by primary anisotropies of the CMB, as well as by the
clustering of large-scale structures [e.g. 72, 261]. The latest value from a combination
of Planck, baryon acoustic oscillations and lensing data provides [348]:

ns = 0.9665 = 0.0038

which is well consistent with the deviation from unity predicted from inflation.

Normalization The amplitude of the power spectrum of fluctuations can only be
constrained from direct observations. The most sensitive probes of this parameter
are the CMB primordial power spectrum, the clustering of large-scale structures,
particularly the halo mass function [329, 464] and related quantities such as the
angular power spectrum of the thermal Sunyaev—Zel’dovich effect [244]. The most
recent value obtained from the primary anisotropies of the CMB measured by Planck
is:
og = 0.8111 + 0.0060 |,

which lies in the range expected from other probes, which is 0.7 < o3 < 1.0 [e.g.
454]. An important quantity derived from a suitable combination of og and the
Qo parameter is the normalization of the angular power spectrum of the thermal
Sunyaev—Zel’dovich effect. It is worth mentioning that the estimate of such a
normalization represents another major issue in the context of ACDM cosmology.
Indeed, while being estimated from the very same Planck data, the joint constraints
on og and ¢ from the angular power spectra of the CMB (which allows a direct
estimate) and of the thermal Sunyaev—Zel’dovich effect from cluster counts, show a
significant tension. This problem has been investigated in recent works proposing
different solutions, such as: relying on higher-order statistics; assuming a variation
with redshift and mass of the bias in the estimate of the masses of galaxy clusters;
considering different parametrizations of cluster pressure profiles [389, 390, 386, 52].
Nevertheless, none of the above proposed studies has solved the tension yet.
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Chapter 2

Clusters of galaxies and
Sunyaev—Zel’dovich effect

This Chapter presents an overview of clusters of galaxies and of the Sunyaev—
Zel’dovich effect. The first section starts with an introduction on cosmological
simulations, which are the ultimate tool to theoretically describe the formation of
structures in the universe. Subsequently, a general overview of cluster observables is
provided. Among them, the Sunyaev—Zel’dovich effect, which allows the detection
of clusters in the microwave band, is treated separately in the second section.
Specifically, after a theoretical review of the effect, a short discussion on the existing
dedicated observational techniques is presented.

2.1 Clusters of galaxies

According to the standard model of cosmology, all the gravitationally bound struc-
tures form in a hierarchical way, from the smallest to the largest ones, via aggregation
and merging. Clusters of galaxies represent the latest stage of structure formation,
therefore they are the most recent, largest and gravitationally bound objects [454].
They form at the peaks of the field of density fluctuations [24], and they can ag-
gregate into larger structures, from superclusters to the cosmic web, which are not
virialized yet.

Since a galaxy cluster has not a well-defined boundary which separates it from the
surrounding space, its size is usually quantified by the virial radius, Ryi;. The latter
can be defined in terms of the overdensity at which, according to the simple spherical
collapse model, the structure reaches the equilibrium configuration after a violent
relaxation. In a flat, matter-dominated universe with no cosmological constant, such
an overdensity is A ~ 200 (see also section 1.4.2). Virial radii of galaxy clusters are
of the order of a few Mpc. The mass enclosed within a virial radius, called virial
mass (M), ranges between a few 1013Mg, in the case of galazy groups, and a few
10'M, for the most massive clusters.

The most abundant constituent of the mass of a galaxy cluster is non-baryonic cold
dark matter, which indeed represents roughly 80 per cent of the total. As for baryons,
they are mostly in the form of a diffuse, ionized gas called intra-cluster medium
(ICM hereafter). The latter constitutes about 17 per cent of the total cluster mass,
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while the remaining 3 per cent consists of galaxies.

2.1.1 Cosmological simulations

Numerical simulations of structure formation in the universe provide a more real-
istic theoretical description of the origin of galaxy clusters, and they may help in
understanding cluster properties. The initial conditions of a cosmological simulation
are set according to the favoured cosmological model. In particular, the statistics
of the initial density field is determined by the primordial power spectrum. The
evolution of the field is treated using semi-analytical methods such as the Zel’dovich
approximation in mildly non-linear regimes [e.g. 358]. They eventually set the initial
conditions for the N-body simulation, which is run in a box of a suitable size to
represent a portion of the universe.

The cosmological box gets filled with fluid elements (or particles) of two species: ()
dark matter, obeying the collisionless Boltzmann equation; (i) gas (or baryons),
for which a more complex set of hydrodynamical equations is needed, possibly
accounting also for dissipation due to radiative processes. All the dark matter and
gas particles interact by means of gravity, and their evolution in time is traced
through the numerical integration of their equations of motion. Then, for the i-th
particle one has to solve:

d2’l“i a d’l"i 1
HZQ
V2d(r;) = 386 2o 5(t, ), (2.2)

2a

in comoving coordinates (see also section 1.4). At each snapshot in time, the three-
dimensional positions and velocities of all the particles are known. Therefore, it is
clear that suitable computational resources are needed to run such simulations. An
example showing the evolution of the initial density field in a N-body simulation
is illustrated in Figure 2.1. It can be seen how the two different cosmological
models adopted in this example have a significant impact on the distribution of dark
matter at earlier epochs, while the clustering and the large-scale structure have been
matched at redshift z = 0.

Historically, the first simulation runs were performed in the 1970s and 1980s
following the evolution of only dark matter particles [323, 465]. Between the late
1980s and the early 1990s baryon particles entered the picture, in the so-called
adiabatic or non-radiative (NR hereafter) runs [e.g. 155, 434, 230, 74, 305], which
broadly confirmed the gravity-driven predictions of the self-similar model.
Subsequent observations with X-ray telescopes at high angular resolution revealed
significant differences in the core regions of cluster profiles, compared to the ex-
pectations from the self-similar model. This fact suggested that non-gravitational
processes do have an impact in shaping the observed properties of galaxy clusters.
Therefore, more realistic simulations featuring radiative feedback have been proposed.
In particular, a pre-heating phase at high redshifts (z > 3), possibly due to the
combined action of supernovae and active galactic nuclei (AGN hereafter), has been
postulated [156, 226, 438]. Heating from arbitrary pre-heating mechanisms [e.g.
38, 60, 300], showed that an agreement with observations from the breaking of
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Figure 2.1. Evolution of dark matter distribution on large scales according to a cosmological
N-body simulation run with two different cosmologies [58]. The top and bottom rows
refer to the ACDM and to the Einstein—de Sitter cosmological models, respectively,
assuming a null spatial curvature. Left, middle and right columns correspond to three
different snapshots at the redshift indicated on top of each figure. The yellow circles mark
the positions of galaxy clusters that would emit in X-rays at temperatures T' > 3keV.
The size of each circle is proportional to temperature [taken from 59].

self-similarity requires an injection of energy between 0.5 and 1 keV per gas particle.
Since such an amount of energy cannot be provided by supernovae, AGN have been
proposed as the most likely responsible for pre-heating [e.g. 69].

Further comparison with data suggested that these processes must be complemented
by radiative mechanisms during the formation of the cluster itself, since they intro-
duce additional physically-relevant scales responsible for breaking self-similarity [455].
Specifically, the feedback from supernovae in cluster galaxies [289, 61, 118] and ra-
diative cooling plus star formation (CSF hereafter) have been prescribed [321, 117,
444, 231, 303, 403).

While providing a promising enhancement with respect to numerical schemes based
only on gravity, cooling and star formation mechanisms are not sufficient to solve
the discrepancies between the properties of simulated versus observed clusters. For
instance, the stellar mass of the brightest central galaxies (BCGs) in clusters from
CSF simulations turn out to be a factor of two to three larger than the observed
stellar masses. This motivated the need of a further feedback mechanism associated
to AGN, which turned out to be able to prevent the excess of cooling. AGN feedback
is appreciable on scales that are too small to be followed by the simulation. There-
fore, it is necessary to include this effect via phenomenological prescriptions, based
either on Bondi gas accretion [57, 416] or winds capable to heat the surrounding gas
through shocks [171].

Despite the success of the most recent, state-of-the-art AGN prescriptions [see e.g.
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365], there is not a definitive, concordance recipe of small-scale baryonic processes.
Specifically, the modelling of AGN is an effective theory, whose outcomes strongly
depend on the specific sub-grid scheme which is implemented.

From a computational point of view, the use of modern data-driven techniques based
on machine learning are getting more and more diffused in the context of cosmological
simulations, yielding very promising results [see e.g. 228, and subsequent works].
On the other hand, a great effort is put in the optimization of codes, to exploit at
best the available computational resources in view of the upcoming exascale era of
high-performance computing [e.g. 181].

The two main descriptors which characterize a cosmological simulation are its
resolution in mass and space, and the numerical scheme used to compute the gravi-
tational and hydrodynamical forces between particles [59].

Focussing on the latter aspect, the gravitational interaction between all the fluid
elements in the simulation box can be ideally computed from the direct summation of
the force between couples of particles. Such an approach defines the particle methods,
which are clearly not suitable to treat large simulation volumes. Another strategy
which can considerably reduce the computational time, is represented by the class
of Particle-Mesh (PM) and Particle-Particle/Particle-Mesh (P3M) methods [114],
which are Eulerian schemes based on the partition of the simulation box by means
of a grid. Clearly, the latter limits the resolution of the simulation to the mesh size;
to possibly overcome this issue, variants of mesh-based methods with non-uniform
grid sizes have been proposed [2]. The general idea behind PM techniques consists
in discretising Poisson’s equation over the grid, and then to solve it by means of the
calculation of a Fast Fourier Transform (FFT) [110] or via a multi-grid relaxation
solver. The corresponding gravitational force is computed by differentiating the
potential produced by the Poisson solver and it allows one to update the dynamical
variables of all the particles in each grid shell. The P3M variant is based on splitting
the interaction into a long-range plus a short-range term, so that the first one can
be treated with the classical PM scheme, while the second one is solved using the
more accurate particle-particle direct summation.

Another solution is provided by the Lagrangian (or particle-based) Tree method [27].
With this technique, one computes the gravitational interaction between neighbour-
ing particles by means of a multipole expansion, which is performed after dividing
the particles into different groups. At higher particle density one has increasing
resolution, and each level corresponds to a branch of the tree. On the other hand,
the hybrid Tree-PM method [18] employs the fast PM algorithm on the largest
scales, jointly with the Tree algorithm on the smallest scales.

As for the treatment of hydrodynamical forces, the most used scheme is the La-
grangian Smoothed Particle Hydrodynamics (SPH hereafter) [175]. Differently from
grid-based techniques, this method does not introduce any characteristic spatial
scale in the problem, thus it does not impose any maximum spatial resolution.
Furthermore, it does not constrain the global geometry of the system, thus the
mass resolution can vary, according to the evolution of the local density. The fluid
is divided in mass particles, for which every interaction is smoothed by a kernel
function if the distance between the particles is smaller than the smoothing length,
which sets the range of the kernel. All the relevant physical quantities of each fluid
element (e.g. its temperature, density and so on) are determined by summing over
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the nearby particles located within the smoothing length. Although they are very
sensitive to local conditions, SPH codes allow one to reach a very high resolution,
which is necessary in the implementation of models of radiative processes acting on
the smallest scales.

2.1.2 Short overview of cluster formation

N-body simulations of the evolution of collisionless dark matter particles highlighted
important differences with respect to the predictions of the spherical collapse. In
the following, we briefly report the three most important aspects [248].

i. Real peaks in the field of primordial density fluctuations do not have a sharp
top hat-like edge, nor a constant density (that is a constant barrier setting
the occurrence of the collapse). On the contrary, each peak is characterized by
a radial profile [24]. As a consequence, the collapse of a peak does not happen
all at once, but it occurs at different times in different regions of the peak
itself [136]. Therefore, it is non-trivial to define the mass and the radius of a
cluster, since there is no sharp boundary. A possibility consists in determining
the mass via the friends-of-friends (FoF) algorithm [146], according to which all
the particles located at mutual distances smaller than a given value belong to
the same halo. Despite the FoF-derived mass can take into account the triaxial
distribution of matter, it is not straightforward to relate it to observations.
The latter problem can be easily overcome by adopting a definition of the
mass which refers instead to some overdensity value, under the simplifying
assumption of spherical symmetry.

7. The peaks filtered on a given scale are not isolated, but they are surrounded
by other peaks. Tidal forces between these inhomogeneities originate subse-
quent growth occurring along massive filaments connecting them, and which
constitute the cosmic web [55].

791. The density distribution within the peaks contains fluctuations on all scales,
despite the main scale of a peak is defined by the radius of the window
function W (R) (see e.g. equation (1.62)). This implies the presence of smaller
collapsed substructures within haloes, as a consequence of the collapse to
happen simultaneously on different scales at the earlier epochs. Thus, haloes
at higher redshifts feature a number of substructures which eventually merge
towards the centre, to form a more massive and relaxed system at later epochs.

Once the dark matter halo has formed, matter sets into an equilibrium configuration.
Collisional gas particles get heated by adiabatic compression and shocks produced by
the gravitational collapse, and they set into the potential well of the dark matter halo.
Thus, the kinetic energy they acquired in the collapse gets converted into thermal
energy. The gas temperature reaches values of the order of millions of K, at which
X-ray emission occurs. The gas cools by means of radiative mechanisms (mainly
ionization of hydrogen and helium and bremsstrahlung), as soon as the cooling time
becomes smaller than the Hubble time. The gas then loses the support of hydrostatic
pressure and starts collapsing towards the centre of the halo on dynamical time-scales
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of the order of the free-fall time, and the subsequent violent relaxation involving the
collisionless component settles the structure in a virialized configuration.

On galactic scales, the gas can leave the hot phase to form the stellar component,
as soon as its density has increased sufficiently. Stars may eventually originate
supernovae or black holes [32]. The latter, as well as the central supermassive black
hole in the BCG of the cluster (i.e. the cluster AGN), inject substantial heat into
the ICM via radiative feedback, and they chemically enrich the cluster [398].

Density profiles

The inner structure of collapsed haloes is determined by the density profile tracing
the distribution of the dark and the baryonic matter, which are usually derived
approximating cluster shapes as spherical.

Cosmological simulations indicate that the radial profile of the dark matter density of
collapsed structures after relaxation is well approximated by the universal Navarro—
Frenk-White (NFW hereafter). Its analytical form is [306]

o pcrAcA
pNEwW (1) = (r/rs) (L +1/rs)2

(2.3)

where p., is the critical density at a given redshift, and r is a characteristic scale
radius which localizes the steepening of the profiles (where the logarithmic slope
is equal to —2). Both the normalization value p;A., and the above radius are
particularly sensitive to the cosmological parameters and to the initial conditions
set in the simulation [307]. Indeed, the factor A., = 4pnFw(7s)/per referred to a
given overdensity A, is defined as

A c?’A

Aea = 3 T en) —ca/( 4 ca)] (24)

so that the mass within the radius Ra can be expressed as
4
MNFW(< RA) = §7TR3A A Per - (2'5)

The quantity ca is the concentration of the mass distribution, and it is defined as

TN Ba , (2.6)

Ts

that is the ratio between the reference radius Ra and the scaling radius of the NF'W
profile, 7.
Subsequent numerical works suggested that, more generally, dark matter density
profiles can be written in the form: peam(r) o< (r/rs)~A(1 4 7/rs)A~ 8 [454]. The
NFW case, which still remains the most used, corresponds to the asymptotic inner
slope A =1 and to B = 3. Other parametrizations have A = 1.5 and B = 3 [295],
or A=1and B = 2.5 [362], as determined from the fit to the profiles obtained from
different sets of numerical simulations.

The density profile of the baryonic component is expected to trace the density
distribution of dark matter. Nevertheless, as testified by simulations and measure-
ments of the X-ray surface brightness (see section 2.1.3), the radial profiles of the
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gas density flatten at scales below the Jeans length. Such a smoothing comes from
the support from thermal pressure, since the gas is collisional [59].

Historically, one of the most popular parametrizations for the gas density profile
inferred from observations is the so-called isothermal 3-model proposed by Cavaliere
and Fusco-Femiano [98]. Such a model is based on two assumptions. The first one is
that the matter is in thermodynamic equilibrium, with a constant temperature 7',
independent on the cluster radius. The second assumption is that the gas density is
equal to the density of the galaxy members to some power 5. Under the hypothesis
that the velocities of the galaxies also follow an isothermal distribution, the density
profile of the galaxies derived from optical measurements of the one-dimensional
velocity dispersion, o2, is well represented by a King profile [236]:

pgal(r) = H-F(fﬂg;—aizﬂw . (27)

The parameter r. defines the core radius, with values of the order of hundreds of kpc,
while pgai0 is a normalization density. The dependence on the core radius prevents
the density to diverge at the cluster centre, as it would happen considering a singular

isothermal sphere.
Then, the S-model for the gas density reads:

(r) = PICMO
PO T W PP

(2.8)

being 5 the ratio between the kinetic energy of the galaxies and that of the gas at
temperature 71"
pmgoy
kT
where p is the mean molecular weight of the gas particles in units of the hydrogen
mass, my (which is approximatively equal to the proton mass).
Numerical simulations show that the distribution of galaxies — which are approxima-
tively non-collisional within clusters — can be modelled with the NFW distribution
as well [e.g. 89]. Furthermore, the S-model cannot jointly fit the density profiles
probed by multi-wavelength observations of clusters aiming at a complete analysis
of the thermodynamic properties across the largest possible radial range. Therefore,
a number of alternative analytical fitting profiles have been proposed from both the
theoretical and the observational sides.
A modification of the S-model based on X-ray observations has been introduced by
Vikhlinin and collaborators [453], aiming at a better description of the features in
the core and at the NF'W scale radius r5. Rewriting the density of equation (2.8)
in terms of the electron number density, n. times the ion number density, n;, the
generalized Vikhlinin model reads:

B = ) (2.9)

n TZ(T‘) — n2 (T/TC)_Q 1 + n%Q (2 10)
o O (r/re) 2P [t (rfr ] [ (rfre) 2P ’

where nZ and nZ, are two normalization densities. The 7. and rs scaling radii have
the same physical meaning as in the f-model and in the NFW model, respectively.
The additional slope « sets the cuspiness of the profile near the centre, preventing an
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excessive flattening. On the other hand, the ¢ parameter sets a change of the slope
of the profile near the r, radius, while v controls the width of the transition region.
It is worth to note that one has to impose the condition € < 5, to avoid unphysical
divergences in the core. The third term added in equation (2.10) represents a second
B-model parametrized by re < r. and (2, which further constrains the profile in the
centre. Under the hypothesis that the gas traces the dark matter in the outer cluster
regions, the universal profiles of gas temperature and density descending from the
NFW density profile have been derived theoretically in [243]. A widely-adopted
parametrization of the gas pressure profile, which can be related to the density
via a suitable equation of state (with a non-constant temperature), is given by the
so-called generalized NFW (gNFW). This analytical model has been introduced by
Nagai and collaborators to fit the profiles from a set of hydrodynamical simulations
of clusters [303]. The pressure profile prescribed by the gNFW model for the electron

gas is given by:
Po

A G (rra 0
where in this case the slopes v, a and  refer to the radial regions r/rs < 1, r/rs ~ 1
and r/rs > 1, respectively, while Py gives the pressure within a sphere of radius
RA.

A fundamental thermodynamic quantity which is strictly connected with the
density and temperature of the gas is the entropy, defined as [454]

p(r) = (2.11)

kgT _

K= s = kalTne 23 (2.12)
where the ICM subscript of the density has been dropped for brevity.
The entropy of the ICM can be interpreted in terms of classical thermodynamics, since
it is related to the standard entropy per particle as s, ~ kgln K 3/2 Furthermore,
it represents the constant of proportionality between pressure and density in the
equation of state of an adiabatic mono-atomic gas, i.e. p = K p®/3. Neglecting galaxy
formation processes, the only mechanism that can heat up the intra-cluster gas and
generate entropy, is gravitational heating via shocks driven by hierarchical structure
formation.
The radial profile K (r) is useful to describe the structure of the ICM, and it encloses
its thermodynamic history. Indeed, high-entropy gas tends to float, while low-entropy
gas tends to sink. Therefore, entropy can trace the gravitational potential, since the
gas convects until its isentropic surfaces coincide with the equipotential surfaces of
the dark matter potential. Numerical simulations and observations indicate that
entropy scales with the cluster radius as K (r) o r!-! outside the cluster core. In the
innermost regions, instead, a large scatter from cluster to cluster is found, because of
the non-negligible impact of radiative mechanisms related to galaxy formation [456].

2.1.3 Observational properties

The diverse matter components in galaxy clusters allow us to probe them through
several observables. Indeed, the baryonic components are involved in different
emission and scattering processes, yielding detectable signals from the X-ray to
the radio bands. On the other hand, the dark matter component can be traced
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via its gravitational effects, namely through gravitational lensing. In the following,
we provide an overview of the observable properties of galaxy clusters, namely
the emission in the X-ray, optical and radio bands, plus gravitational lensing. An
extended treatment of the observations of clusters in the microwave band via the
Sunyaev—Zel’dovich effect is provided in the dedicated section 2.2.

X-ray emission

The ICM in galaxy clusters is in the form of a hot, optically-thin plasma, the optical
depth being < 1072, with temperatures ranging roughly between ~ 6 x 105 and
108 K (i.e. at energies between 0.5 and 10 keV). Such values are consistent with the
virial temperature, estimated from the virial theorem to be:

T. — /-LmHG Mvir
vir — .
2k:B Rvir

(2.13)

The most abundant element in the ICM is hydrogen, which is totally ionized at
these temperatures; heavier, partially-ionized elements are also present, and their
abundances are consistent with solar metallicity [12, 286]. Specifically, the most
abundant heavy elements are iron, oxygen, nickel and silicon. They originated from
nuclear reactions or radioactive decay in stars which ended their lives exploding as
either core-collapse or type la supernovae [e.g. 285], depending on their mass and
dynamical configuration [see e.g. 237].

The main emission from such a plasma is in the form of bremsstrahlung radiation
caused by the deceleration of free electrons by nucleons, which is observed in the
X-ray band [387]. Assuming that the electrons belong to an isothermal population
with the velocities following a Maxwell-Boltzmann distribution, the emitted energy
per unit volume and frequency via bremsstrahlung is given by:

h Al
ey(v;T) = Cexp <_k§;> ne T2 Z ZEn; g, T, Z;) , (2.14)
i

where the sum extends to all the ionized nucleon species, having atomic number
Z;; ne and n; are the number densities of electrons and ions, respectively; C is a
numerical constant depending on the electron mass and electric charge, and g(v, T, Z)
is the Gaunt factor, which takes into account quantum effects. Since the major
contribution to bremsstrahlung comes from fully ionized hydrogen, one considers
n; = ne, therefore the volume emissivity is proportional to the square of the electron
number density.

The integral of the volume emissivity per unit solid angle along the line of sight (los)
gives the X-ray brightness (often called surface brightness). In the case of a galaxy
cluster at redshift z, the brightness is:

1

Sx(;T) = (1)

/1 ey(v;T) dl (2.15)

where the (47)~! factor arises from the assumption of isotropic emission, while the
factor (1+ 2)~* takes into account the dimming of the flux and the relation between
the comoving and the angular diameter distance, descending from the expansion of
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Figure 2.2. Spectrum of the X-ray emission from Perseus cluster as measured with the SXS
spectrometer onboard the Hitomi satellite, formerly known as ASTRO-H [429]. The left
panel shows the full spectrum (black line) with the superimposition of the best-fit curve
(in red). The middle and right panels show a zoom in the 5.3-6.4 keV band and in the
7.4-8.0 keV band, respectiely [taken from 200].

the universe (see section 1.1.2).

At sufficiently high temperatures, the continuum spectrum of bremsstrahlung emis-
sion is characterized by peaks at the energies corresponding to the emission lines
from ionized heavy elements, which range between about 2 and 10 keV, as shown
in Figure 2.2. The most prominent emission is due to the complex of iron He,-like
lines marking the transitions from the K shell to the L shell, at energies between
7.5 and 8.5 keV. The emission from lines also scales proportionally to the product of
the number density of ions and electrons, by virtue of the hypothesis of collisional
ionization equilibrium. Indeed, the ionization fraction of an element depends only
on the electron temperature, so its density — which sets the intensity of the corre-
sponding spectral lines — is proportional to the proton density times the abundance
of that element relative to hydrogen.

Given that the emissivity of all X-ray radiative processes in the ICM scales as
nine ~ n?, the X-ray luminosity of galaxy clusters is expressed in terms of a cooling
rate, Acx(T'), depending on the electron temperature T'. Specifically, the cooling
rate is defined in such a way that the quantity n;ne Acx(7") has the dimensions of a
luminosity per unit volume [454]. Therefore,

Ly = / nine Aox (T) dV (2.16)

where the cooling function usually scales as T/2. Considering only hydrogen yields
Lx o< n2TY2,

From joint measurements of the X-ray luminosity and spectral lines, it is possible
to derive the electron number density and temperature, respectively. Therefore,
the thermodynamic properties of the ICM can be fully determined by suitable
combinations of these two quantities. In particular, from the profile of the electron
number density measured at different (projected) distances from the cluster centre,
it is possible to derive the density profile. The latter, in turn, can be used to get the
thermal pressure profile by means of the equation of state. Under the reasonable
hypothesis that the ICM behaves as a perfect fluid and it has a spherical symmetry,
the equation of state reads:

p(r) = ne(r)kpT(r) = 5752 kpT(r) . (2.17)
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Most notably, measurements of density and temperature allow the estimate of the
total mass of a galaxy cluster, assuming that the gas is in hydrostatic equilibrium.
Indeed, by equating the gravitational force to the pressure gradient force and making
use of the equation of state, one has:

_kprT(r) [dlnp(r)  dInT(r)

M, = 2.18
he(<7) Gumyg | dlnr dlnr |’ (2.18)
which can be recast in terms of pressure and density as
dl
Mio(< r) = —L2() d1np(r) (2.19)

Gp(r) dlnr

known as the hydrostatic mass.

Besides bremsstrahlung (free-free) and line emission, the ICM is characterised by
additional, less prominent emission mechanisms, such as the free-bound and the
stimulated two-photon emissions [see e.g. 51].

As a consequence of the proportionality to the squared number density of the
gas, X-ray observations of galaxy clusters are naturally biased towards the brightest
objects. In particular, clusters exhibiting a significantly peaked emission in the core
(named cool core clusters) are more frequently detected, contrarily to the non-cool
core ones. A prominent X-ray emission is expected to efficiently lower the ICM
temperature by means of cooling flows [158, 211], thus lowering the central entropy
(see equation (2.12)) and increasing the support from thermal pressure. Nevertheless,
X-ray spectroscopic measurements do not provide a hint for such a decrease of the
temperature of cluster cores [see e.g. 327, for a review]. Consistently with that, the
observed low star formation rates in the BCGs suggest the presence of a heating
mechanism capable of injecting sufficient energy to balance the cooling due to the
X-ray emission. Recent improvements in hydrodynamical simulations allow the
identification of such a mechanism with the activity of a central AGN (see also
section 2.1.1).

Optical and infrared emission

Optical and infrared emission from clusters is due to the emission from the stars
belonging to the galaxy members. The largest and brightest galaxies are located
at the centre of the cluster, and the predominant morphology is that of early-type
galaxies. The most important observables in this context are the optical richness,
i.e. the number of galaxies inside a given radius, the luminosity and the colour. The
luminosity from galaxies can be related to the galactic mass of the cluster by means
of the luminosity function, ny, via npdL =n Mol dMga1, being n Mol the halo mass
function evaluated at galactic scales.

Spectroscopic measurements yielding the velocity of clusters member galaxies along
the line of sight, hence their velocity dispersion, provide another way of probing
the total mass of a galaxy cluster. Indeed, galaxies in clusters can be regarded as
collisionless particles, since mutual interactions between them are relatively rare.
For a fluid made of collisionless particles in dynamical equilibrium, the mass can be
estimated by virtue of Jeans’ equation. Under the assumption of spherical symmetry
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Figure 2.3. Multi-wavelength views of cluster A2744, superimposed on the optical image.
from Subaru BRz [279]. Left panel. White contours giving the mass distribution
inferred from gravitational lensing as in [287]. Middle panel. X-ray image from
Chandra [463] in the 0.5-2.0 keV band. Right panel. Radio emission traced by the
Very Large Array [193] in the frequency range 1-4 GHz [taken from 448].

in a non-rotating system, the mass is given by [43]:

o2(r) r |dlnng,y(r) = dlno(r)
M _ _r ga r
(<) G dlnr dlnr

2B,(r)| (2.20)

where o2(r) is the velocity dispersion in the radial direction, ng,(r) is the number

density of galaxies normalized to the total number of galaxies themselves, and
By(r) is the anisotropy parameter. The latter is defined from the ratio between the
velocity dispersion along the tangential direction over the dispersion along the radial
direction, 3,(r) = 1 — 02 /(202).

Radio emission

Interferometric observations of galaxy clusters at radio frequencies reveal that the
ICM hosts magnetic fields and cosmic rays [see e.g. 448, for a recent review]. The
diffuse radio emission from a cluster can be classified into radio haloes and radio relics
(or shocks). The main difference between the two is their spatial localization, since
haloes are found at the cluster centre, while the emission from relics occurs at the
peripheries. The emission mechanism leading to this kind of radiation is synchrotron,
which is non-thermal. It is produced by the acceleration of free relativistic charged
particles in the presence of a magnetic field [see e.g. 387]. Free charged particles in
the ICM can be accelerated to relativistic velocities by shock waves or turbulence;
therefore, emission in the radio band is more prominent in merging or disturbed
systems, mostly in the form of radio haloes.

Large-scale magnetic fields in galaxy clusters, which are responsible for such an emis-
sion, have strengths between 0.1 and 10 pGauss [223] which also inhibit mechanisms
of radiative transfer, like heat conduction and spatial mixing of gas.

Gravitational lensing

According to general relativity, light gets deflected in the presence of a gravitational
field, as a consequence of the curvature of the spacetime. Therefore, when the light
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from distant sources encounters a cluster of galaxies, it may produce luminous arcs
or rings, in optical images of the cluster.

The amount of light deflection, which is strictly connected with the gravitational
potential, can be used to infer the distribution of matter within clusters. Indeed, the
integration of the gravitational potential over the so-called lensing plane gives the
lensing potential, whose spatial first derivative coincides with the observed deflection
angle. Proper combinations of the second derivatives of the lensing potential define
instead the components of the lensing matriz. The latter features two important
quantities, named shear and convergence, which quantify the stretching and the
magnification (or de-magnification) of the source image, respectively [see e.g. 29].
The estimates of cluster masses based on gravitational lensing are affected by
biases, though they are less prone to uncertainties in the modelling of astrophysical
properties, For this reason, lensing-derived masses can be more robustly characterized
by means of numerical simulations with respect to e.g. estimates based on ICM
observations. Therefore, the calibration of cluster masses usually relies on lensing
measurements [see e.g. the large project 457]. It is worth to note that, however,
lensing-based mass estimates for single clusters are still characterized by large errors,
mainly due to projection effects connected to cluster asphericity [443, 196]. In this
respect, an improvement in the modelling, especially in the case of the strong lensing
effect, consists in taking into account suitable priors, e.g. galaxy kinematics [79, 37].

2.2 The Sunyaev—Zel’dovich effect

The Sunyaev-Zel'dovich (SZ hereafter) effect is a distortion of the black body
spectrum of the CMB. It occurs when the CMB photons propagate through the
ICM, interacting via inverse Compton scattering with the free electrons [424-426].
If the electrons are at rest with respect to the CMB, there is no net effect when
integrating over all possible scattering directions. On the contrary, if the electrons
have a non-zero velocity in the CMB rest frame, they transfer some kinetic energy
to the photons. The final frequency v; of a photon undergoing a single inverse
Compton scattering with an electron is given by [e.g. 299]:

vr = 1- ﬁeﬂi
- " U
1 — Bepy + 7}'7;71;6@12 (1 — psc)

: (2.21)

where m, is the electron mass, v; is the initial frequency of the photon, u; and pf
are the direction cosines of the incoming and scattered photon with respect to the
electron, and psc is the direction cosine between the incoming and scattered photon.
The factor S, = V. /c is the ratio between the electron velocity and the speed of
light, while v is the Lorentz factor, v = (1 — 63)_1/2. In the case of CMB photons,
the condition hpv;/(ymec?) < 1 holds, therefore the final frequency of the photons
can be written as
1-— /Beﬂi

1= Bep f 7
so that the scattering can be treated in the Thomson limit. The net effect of the
scattering is the redistribution of the photons from the Rayleigh—Jeans to the Wien
region of the spectrum, which produces a change of the specific brightness of the

v =1y (2.22)
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CMB signal [see e.g. 45]. The spectral shape of the distortion depends on the
velocity distribution of the electrons. In this respect, it is possible to decompose
the SZ effect into a thermal and a kinetic component. Furthermore, non-thermal
distributions of relativistic electron velocities, which may occur for instance in the
presence of magnetic fields, are responsible for additional non-thermal terms in the
SZ effect [46, 150].

2.2.1 Thermal component

The thermal SZ (tSZ hereafter) effect is derived assuming that the velocities of
the electrons involved in the scattering follow a Maxwell-Boltzmann distribution.
Since the majority of the observed values of the electron temperature 7" in clusters
of galaxies satisfy the condition T < mcc?/kg, the relations describing the SZ
effect are generally derived in the non-relativistic limit, using the Kompaneets
approximation [246]. Introducing the dimensionless frequency:
hpv
= 2.23

kpTcmp (2.23)
The Kompaneets equation gives the change of the photon occupation number,
n = (e —1)71, with time:

dn . kBTCMB OTNe 0 [$4< T 0On 2>:|

dt ~ mec 22 Ox

—+n+n

2.24
TCMB 8.% ( )

where o is Thomson cross section. Such a quantity can be translated directly into
a change of the specific brightness of the CMB black body, B(v; Tcump), in the limit
T/Tcvs > 1. Figure 2.4 shows the comparison between the unperturbed CMB
spectrum and the same spectrum distorted by the tSZ effect from a fictional massive
having a mass 1000 times larger than the usual values. It can be seen that the
distorted spectrum is not exactly that of a black body, and that the specific brightness
decreases or increases with respect to the unperturbed spectrum, depending on the
frequency.

From the integration of the CMB Comptonization along the path of the radiation to
the observer along the line of sight, the tSZ spectral distortion can be expressed in
terms of the specific brightness as [see e.g. 91]:

Alisz = IomB Y gisz(x) (2.25)

where Ioyp = 2(kgToms)?/(hpe)?, being Teyp the CMB temperature given in
section 1.2.

The y factor of equation (2.25) — also called Comptonization parameter or Compton
y-parameter — encloses the dependence on the physics of the electron gas. It is
defined as

Y= "TQ/ nekyT dl | (2.26)
los

MeC

where the integration is carried along the line of sight (los). If the ICM follows a
perfect gas law, the integrand in equation (2.26) corresponds to p = n kg7, which
is the thermal pressure of the electron gas. Alternatively, it is possible to express
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Figure 2.4. Spectrum of the CMB radiation as distorted by the tSZ effect (solid line). The
dashed line represents the unperturbed spectrum [adapted from 91].

the Comptonization parameter in terms of the optical depth, dr = n.or dl.
The gtz function of equation (2.25) defines the spectral behaviour of the tSZ effect
with respect to the frequency of the incoming radiation:

rte® [m(em +1) 4} .

gtsz(ac)::(egc__l)2 1 (2.27)

It can be seen that this function has a minimum at at 130 GHz, a maximum at
370 GHz, and it vanishes at 217 GHz. Therefore, the tSZ effect manifests as a
decrement (increment) of the specific brightness of the CMB at frequencies lower
(higher) than 217 GHz, as illustrated by the yellow curve in Figure 2.5, when
relativistic corrections are not taken into account. In the Rayleigh—Jeans limit,
the brightness shift of equation (2.25) can be also expressed in terms of brightness
temperature TRy [see e.g. 71, for its definition], so that:

62

ATy =AlLgy —— 2.28

RJ,tSZ tSZ g2 ( )
which is illustrated in Figure 2.6, compared to the variation of the specific brightness.
In terms of fluctuations of the CMB temperature, the change produced by the tSZ
effect can be derived from the intensity shift through the derivative of the black

body function with respect to the temperature. Its final expression is:
ATisz = Tems y fisz(z) (2:29)

where the fisz(x) function is defined as

z(e® +1)

—4. 2.30
1 (2.30)

fisz(x) =

Also in this case, the shift vanishes at 217 GHz and it has the same sign of the
variation in brightness.
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Figure 2.5. Spectral distortions produced by the tSZ (solid lines) and by the kSZ effects for
a cluster approaching the observer (dashed lines). The different colours refer to different
temperatures of the electrons in the ICM, and relativistic corrections are also included
(see also sections 2.2.2 and 2.2.3). All the distortions are derived assuming an optical
depth 7 = 1072 and a Comptonization parameter y = 10~%. The dotted dark red curve
is the un-scattered CMB spectrum multiplied by a factor 5 x 10~ [taken from 299)].

Figure 2.7 shows an example of the presence of the SZ effect (mainly the thermal
component) in the temperature maps from the High Frequency Instrument onboard
Planck satellite [333, 341], centred on a cluster detected with a high signal-to-noise
ratio. At the two lowest frequencies (v < 217 GHz) the cluster can be seen at the
centre of the maps as an excess of negative signal in the temperature fluctuations;
it disappears at the zero frequency of 217 GHz, and it can be seen again at higher
frequencies, as an excess of positive signal. Generally speaking, clusters cannot be
easily seen in raw frequency maps because of the stronger contribution from contam-
inant sources, which motivates the need of efficient techniques for the extraction of
the SZ signal. We will address this topic in detail in Chapter 3.

2.2.2 Kinetic component

If the electrons in the ICM move as a whole relatively to the Hubble flow, an
additional non-vanishing Doppler term of the first order in S, must be taken into
account in the treatment of Compton scattering. This is known as the kinetic SZ
(kSZ hereafter) effect. If the bulk velocity of the cluster projected along the line of
sight is v, (so that here 8. = v,/c), the change of the specific brightness of the CMB
radiation produced by the kSZ effect in the non-relativistic limit is [see e.g. 370]:

U
AlLsz = —IcvB ?p T gksz(z) , (2.31)
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Figure 2.6. Comparison between the shift of the specific brightness (left panel) and of
the brightness temperature (right panel) as produced by the SZ effect (see section 2.2.2
for a description of the kinematic component). Both functions are evaluated in the
Kompaneets approximation for a cluster having a Comptonization parameter y = 1074,
an electron temperature of 10keV and a peculiar velocity of 500kms~!. The dotted line
in the left panel represents the CMB blackbody spectrum times a factor 5 x 1074 [taken
from 91].

which is negative if the cluster approaches to the observer, which corresponds to
vp > 0. The optical depth 7 is given by:

T = neor dl (2.32)

los
while the gxsz(z) function is defined as

xle”

grsz(z) = =1 (2.33)

As can be seen also from Figure 2.5, the latter has the same spectral behaviour of a
Planck black body function, meaning that the kSZ effect does not alter the frequency
dependence of the CMB spectrum. On the other hand, the former appears to have
a slightly different temperature, shifted by:

(%
ATisz = —Tevs ?p T (2.34)

whatever the frequency of the radiation.

This fact is one of the reasons why the kSZ effect is more difficult to be detected
with respect to the thermal one: indeed, since it does not have a characteristic
spectral signature, it cannot be easily disentangled from other sources at millimetre
wavelengths using multi-frequency data. In Kompaneets approximation, the shift
in specific brightness produced by the kSZ effect takes its maximum where the tSZ
is null. Thus, the best frequency for measuring the kSZ effect is around 217 GHz,
where the dominating astrophysical contaminant is the CMB itself.

Another reason why the measurement of the kSZ effect is challenging, is the intrin-
sically lower amplitude of the distortion. If v, is the rms thermal velocity of the
electrons, equations (2.25) and (2.31) yield:

Alisg _ Lup (mec®) vy , (2.35)
AItSZ 2 C kBT v

€
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Figure 2.7. Raw maps of the region around cluster A2142 from the 2015 data release of the
Planck satellite at its six highest frequencies (reproduced with permission). The cluster
can be clearly seen at the centre of the maps through the tSZ effect as a decrement
(increment) of the signal at frequencies lower (higher) than 217 GHz. At the zero
frequency the signal in the map is dominated by the CMB, while at the two highest
frequencies it practically coincides with the emission from dust.

which is equal to 0.085 for projected bulk velocities of 103kms™! and electron
temperatures of 10keV, supposing that the cluster is observed at a frequency at
which gisz(2) ~ grsz ().

In principle, any coherent, non-thermal motion of the electrons in the ICM con-
tributes to the kSZ effect. A very interesting case, which can shed some light on
the problem of mass bias (see section 2.1.3), and which can provide useful insights
on the process of cluster formation is represented by the occurrence of rotational
motions. A detailed study on this component of the kSZ effect is treated in Chapter 4.

A remarkable aspect of the SZ effect which can be immediately seen from all the
expressions shown so far, is that it does not depend on the redshift of the cluster. In
other words, the SZ signal is not affected by the dimming of the specific brightness
which plagues X-ray observations (see section 2.1.3), since both the perturbed and
the unperturbed photons evolve with redshift as a black body. This property makes
the SZ effect a unique probe of the high-redshift universe, as testified by a number
of new discoveries of clusters [see e.g. 192, 47] that would be hard to detect through
emission-based mechanisms with current instruments.

2.2.3 Relativistic corrections

At electron temperatures T' 2 10 keV Kompaneets approximation does not hold, thus
the spectral distortions from the tSZ and the kSZ effect must include relativistic
corrections [e.g. 371]. Specifically, one has to take into account both higher-order
derivatives of the occupation number, and higher-order terms in kg7 /(m.c?) and
Be which occur in the scattering kernel.

Figure 2.5 shows the effect of such relativistic corrections on the spectral distortions
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Aligz and Alygy of equations (2.25) and (2.31), for different values of the electron
temperature. It can be seen that the distortions produced by both the thermal and
kinetic components of the SZ effect are broadened, with a systematic shift towards
higher frequencies. This is due to the fact that the energy shift and broadening
per single scattering are larger at higher electron temperatures, with respect to the
non-relativistic limit.

The terms giving the relativistic corrections to the SZ effect have been derived by
evaluating the Compton collision term with a variety of numerical methods [e.g.
315, 219, 316, 314, 102]. In practice, the spectral functions figz(z), gisz(x) and
gksz(x) get modified according to the electron temperature. Taking relativistic
effects into account allows the use of the SZ effect as a probe of several quantities
which are important for cluster astrophysics and cosmology. They are, for instance:
the electron temperature of both individual [e.g. 357, 103] and stacked targets [e.g.
212, 152]; the relation between the temperature of the CMB and the redshift (when
the cluster temperature is known) [e.g. 31, 267]; two out of the three projected
components of the bulk velocity, the third one being accessible by means of the
polarized SZ effect [e.g. 100].

2.2.4 Observational considerations

Observationally speaking, the SZ effect has been detected roughly twenty years
after it was predicted [224]. Later on, the continuous development of observational
techniques in millimetre astronomy, with the improvement of the detector sensitivity
and of the control of systematic errors [91], has led to a considerable growth of SZ-
based cluster catalogues. At present, the largest available repository of all-sky maps
of this effect is the archive built from the observations with the Planck satellite [333].
It is constituted by the PSZ1 and PSZ2 catalogues, which contain a total of 1245
confirmed detections over 1944 [340, 346]. From the largest ground-based surveys
produced with the data from the 6-m Atacama Cosmology Telescope (ACT) [428]
and the 10-m South Pole Telescope (SPT) [93], instead, there have been detections
of hundreds of clusters, including new discoveries [192, 47].

For electron temperatures between ~ 0.5 and ~ 10keV, and optical depths
7 < 0.01, the change in specific brightness produced by the tSZ effect is relatively
small, ranging from ~ 107° to ~ 1074, As to obtain high-precision measurements of
any weak cosmological signal, the detection of the SZ effect requires a suitable instru-
mental sensitivity. Furthermore, to efficiently reject ground noise and instrumental
emissions, a differential technique i.e. the alternation of the signal from the sky
with some known reference source is also necessary. Lastly, the instrument should
provide a sufficiently high angular resolution on cluster scales, which translates in
large telescope areas, or in the use of the interferometric techniques. Indeed, in
the ideal condition of diffraction-limited observations, the angular resolution of a
telescope is proportional to the ratio between the wavelength of the radiation of
interest and the diameter of the entrance pupil of the optical system [see e.g. 400].
Considering cluster angular sizes, that span from tens of arcseconds to a few degrees
in the case of the farthest and closest objects, respectively, the diameter of the
primary mirror of the telescope for observations at millimetre wavelengths has to be
2 1.5m. This is particularly important to resolve the farthest clusters. Indeed, since
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S7Z measurements are flur measurements, they are proportional to the integral of the
Comptonization parameter over the solid angle subtended by the cluster. If the solid
angle is significantly smaller than the beam size of the instrument — as it is likely
to happen in the case of high-redshift clusters — the signal gets dimmed because it
is diluted over a larger area. For this reason, SZ observations would be effectively
independent on redshift only in the ideal case of infinite angular resolution.

There are two main classes of instruments that are used for the observation of
the SZ effect. They are (7) single-dish telescopes at radio and microwave frequencies
and (7) interferometers, i.e. multiple single-dish radio-telescopes [91]. We will give
here a brief description of them, and we will provide some examples of current and
future relevant experiments.

Single-dish observations

Being mostly suitable for large-scale measurements and cluster surveys, observations
carried out with a single telescope coupled to radio receivers have been made since
the very first attempts to measure the SZ effect. For instance, measurements of
the temperature decrement produced by the tSZ effect at low frequencies towards
nearby clusters, observed at the Owens Valley Radio Observatory (OVRO) at 20.3
and 32 GHz, have been reported in [44] and in [195], respectively.

The number of SZ observations with single-dish telescopes in the microwave band
has then increased significantly since the development of high-sensitivity bolometers.
They are easy-to-build thermal detectors which allow the spanning of a wide range of
frequencies, and that can be easily assembled into arrays to cover large focal planes
and to reduce the observational time [see e.g. 372, for a review|. Some historical
examples are the SCUBA camera at the 15-m James Clerk Maxwell Telescope
[205] operating at 353 GHz, the SuZIE and BOLOCAM cameras at the 10.4-m
Caltech Submillimeter Observatory (CSO) [208, 178], and DIABOLO at the IRAM
30-m telescope [131]. With a frequency coverage between 100 and 300 GHz, the
above instruments allowed the first spectral measurements of the SZ effect, from
the combination of data from different observatories [see e.g. 253]. Through the
years, the performance of bolometers improved drastically, for instance by means
of the use of superconducting materials instead of semiconductors, together with
the development of more efficient techniques to keep the detectors operating in
vacuum at cryogenic temperatures, with better control of systematic errors. For
this reason they have been employed in a variety of recent CMB and SZ-dedicated
experiments. Some examples include the Planck satellite [333], which uses photon
noise-limited germanium bolometers, and ground-based instruments as: MITO [123]
(also employing germanium bolometers), SCUBA-2 [206], APEX-SZ [137], ACT [428],
SPT [93] and MUSTANG [134], all equipped with transition edge sensor (TES)
bolometers. Other projects for SZ observations using new generation TES bolometers,
are normally upgrades of existing ground-based experiments, like ACTpol [312],
SPT-3G [36] and MUSTANG-2 [469], that will produce new cluster catalogues with
improved sensitivity.

Even better performances with respect to bolometers can be reached with kinetic
inductance detectors (KIDs). The operation principle of a KID is based on the
production of abundant non-equilibrium quasi-particles arising from the break of
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Figure 2.8. TSZ signal of cluster PSZ2 G144.83+25.11 from single-dish observations with
four instruments having different angular resolutions (see the beams represented as white
circles in the bottom left corner of each map). Top left. Surface brightness mapped
by NIKA2 at 150 GHz. Top right. Compton y-parameter reconstructed from Planck
HFI data. The blue square gives the size of the region covered by the maps shown in
the other panels. Bottom left. Surface brightness mapped by MUSTANG at 90 GHz.
Bottom right. Temperature signal measured by BOLOCAM at 140 GHz [adapted
from 385, see the references for the single maps therein)].

Cooper pairs [111] in a superconducting material. This phenomenon happens when a
superconductor maintained at temperatures below the critical temperature at which
the superconducting transition occurs, gets illuminated with radiation of suitable
energy. The quasi-particles have a long lifetime, and a variation of their number
density induces a variation of the kinetic inductance of the superconducting element.
Since the kinetic inductance can be treated as an impedance, it can be combined
with a capacitor to build a microwave resonator whose resonant frequency changes
with the absorption of photons [120]. KIDs are currently the best candidates for
large arrays of microwave detectors, also because they are less prone to suffer from
temperature fluctuations and microphone noise, compared to TES bolometers [294].
Some examples of new-generation cameras where bolometers have been replaced
by KIDs are BOLOCAM, superseded by the MUSIC camera [391] at the CSO,
and DIABOLO, replaced by NIKA [294] and NIKA2 [78] at the IRAM observatory.
An example of a recent comparison between the mapping capabilities of different
single-dish observatories coupled to microwave detectors is provided in Figure 2.8.

An alternative observational strategy conceived for the balloon-borne experiment
OLIMPO [276], consists in performing flux observations at a limited number of
frequency bands, together with spectroscopic measurements within each band,
through the use of a differential Fourier transform spectrometer [397]. Other examples
of future SZ-dedicated experiments that will use such a joint photometric and
spectroscopic configuration are KISS [384], CONCERTO [252] and the space-based
MILLIMETRON observatory [414].
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Interferometric observations

The very first imaging of a cluster of galaxies with the SZ effect was obtained
through an interferometric detection at 15 GHz, using five out of the eight 13-m
radio-telescopes constituting the Ryle Telescope [224]. Interferometric arrays are
constituted by a number of single-dish telescopes (array elements), and they are
usually optimized for high resolution observations at radio frequencies of single
point-source targets at small spatial scales in the sky. The output signal is the time-
averaged correlated signal coming from the same source, as observed simultaneously
by all the array elements. It is proportional to the Fourier transform of the signal
from the sky convolved with the beam of each element of the telescope array, at
well-defined spatial frequencies. Specifically, given the baseline b, which is the
component of the vector connecting two array elements oriented perpendicularly
to the source, interferometers are sensitive only to spatial frequencies larger than
b/A (small angular scales), being A the wavelength of the radiation. Thus, in
the case of radio wavelengths, large baselines allow high-resolution measurements
of point-like sources. Interferometers can be used to measure the decrement of
the tSZ effect towards nearby clusters, taking advantage of the larger stability
relatively to systematics and large-scale gradients, in comparison with single-dish
measurements. An example is provided by the case of the OVRO-BIMA array [92],
where a low baseline and a coupling with low-noise cm-wave receivers are used.
Some SZ-dedicated interferometers built over the years are e.g. SZA [204], AMI [11],
AMiBA [201] and ALMA [8]. The latter recently allowed the mapping of the tSZ
effect at 92 GHz with an angular resolution of 5 arcsec, which is the highest resolution
to date achieved in SZ measurements [238].

The interesting recent review by [299] provides an exhaustive perspective on
future high-resolution observatories, in view of the CMB-Stage 4 (CMB-S4) [90].

Observations of the kSZ effect from single clusters

The intrinsic weakness of the kSZ effect makes its detection particularly challenging.
As discussed in section 2.2.2, the temperature anisotropy produced by the kSZ
effect in the hottest clusters can be as smaller as about one order of magnitude
with respect to the one induced by the tSZ effect, thus requiring high-sensitivity
detectors. Furthermore, multi-frequency data are useful to disentangle this signal
from synchrotron and dust, but not from the CMB, which has the same spectrum.
The only feature which allows the distinction between the kSZ effect and the CMB is
their different spatial distribution. Indeed, cluster angular scales are generally much
smaller than the degree-scale of CMB primary anisotropies. Also, both components
of the SZ effect are expected to show strong spatial correlations [167]. This implies
the requirement of another important instrumental feature, that is a sufficiently high
angular resolution.

In any case, the major issue plaguing the measurement of cluster velocities, which
represent the most interesting physical quantity that can be derived from the kSZ
signal, are the large relative errors, mostly due to contaminants of astrophysical
or instrumental origin. Moreover, it should be noticed that the kSZ signal alone is
not sufficient to derive the projected bulk velocity of a cluster, since it is degener-
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ate with the optical depth of the electron gas (see equation (2.34)). The latter is
usually constrained using bolometric or spectroscopic X-ray measurements, whose
uncertainties can significantly contribute to the overall error on the estimate of the
peculiar velocity.

Historically, one of the first attempts to put an upper limit to the kSZ effect and to
cluster peculiar velocities has been made with SuZIE [207]. More recent detections
with higher angular resolutions and new-generation cameras point to very promising
results, despite the aforementioned difficulties [298, 392, 395]. For instance, the
NIKA camera allowed the first high-significance detection of the kSZ effect to date.
Specifically, the kSZ signal towards the complex system MACS J0717.5+3745 has
been detected with a significance of 3.4 and 5.1¢ in two substructures belonging to the
cluster, respectively [4]. However, the constraints on the bulk velocity derived from
the combination with ancillary X-ray data are still affected by large errors. Another
recent study focussed on a sample of ten clusters [396] reported the detection of the
kSZ effect at significances between 2 and 40, with an angular resolution of 70 arcsec.
However, no significant evidence for bulk motions in the single objects has been found.

For the sake of completeness, we mention here an observational strategy applied
to large samples of clusters, with which the kSZ effect has been detected for the first
time [190]. The goal of such a technique is to integrate statistical errors by measuring
cumulative quantities which are dominated by the overall bulk flow. Several works
reported the detection of cluster motions at high significance using this method,
namely by measuring the pairwise momentum between couples of galaxies through
its imprint on CMB data [see 347, 130, 121, 262].






55

Chapter 3

Spectral imaging of the thermal
Sunyaev—Zel’dovich effect

This Chapter is dedicated to the tests and the enhancements of a new spectral
imaging algorithm tailored to mapping the tSZ effect from galaxy clusters. It starts
with an introduction on the general problem of component separation at millimetre
wavelengths, and with an overview on existing techniques. Subsequently, we provide
an introductory summary on wavelet and curvelet decompositions, which constitute
a core feature of our novel algorithm. The latter is then described in all its technical
details, focussing on the improvements that have been implemented to enhance
its stability and the quality of the reconstructed maps. We then illustrate the
application of the algorithm to the target clusters of the X-COP project, which is
a study devoted to the characterization of cluster outskirts. We conclude with a
preliminary scientific application of our new maps, which is the derivation of unbiased
cluster pressure profiles from the masking of overpressure structures detected in the
outskirts.

3.1 The sky at millimetre wavelengths

Between a few tens and a few thousands of GHz, namely from the microwave to the
far infrared region of the electromagnetic spectrum, the sky is very bright. Indeed,
the signal collected at these frequencies is a mixture of contributions from emission
or scattering from either diffuse or point-like astrophysical sources.

At low Galactic latitudes, the most prominent contribution comes from the interstellar
medium in the Galaxy. It consists in both cold and fully ionized gas, mostly in the
form of neutral (HI) or molecular hydrogen, and ionized hydrogen (HII), respectively.
Also, a dust component made of silicate and carbonate grains is present, both in the
cold molecular clouds concentrated in the Galactic plane and in the thin, diffuse halo
of the Galaxy. Figure 3.1 shows the emission observed at the frequencies scanned
by the Low Frequency Instrument (LFT) and the High Frequency Instrument (HFI
hereafter) onboard the Planck satellite. It can be seen that, apart from that of the
CMB, the sky signal comes from: synchrotron, thermal bremsstrahlung, thermal
dust, spinning dust, and carbon monoxide. The first two emission processes dominate
at frequencies below ~ 50 GHz. Thermal dust emission dominates at frequencies
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2 100 GHz, while spinning dust steeply decreases above ~ 40 GHz. The rotational
transition in CO molecules between the levels J = 1 — 0, which traces molecular
hydrogen, is relevant only at frequencies around 115 GHz (see Figure 3.1a).
Besides Galactic emission, also extragalactic sources must be considered. A diffuse
source emitting at high frequencies is given by the infrared radiation from unresolved
and dusty high-redshift objects, which originates the so-called cosmic infrared
background (or CIB) [see 359, and references therein|. The CIB and the Galactic
thermal dust are characterised by a similar spectral energy density, but they can be
disentangled by means of the statistical properties of their spatial fluctuations [see
e.g. 259, and references therein]. In any case, the contribution from the CIB is
subdominant with respect to the Galactic one when focussing on the observations of
low-redshift objects, especially at low Galactic latitudes. On the other hand, among
extragalactic point sources, clusters of galaxies are the most important ones for the
purposes of the present work. They are detectable via the SZ effect at frequencies
up to ~ 800 GHz (see the plot of the tSZ Rayleigh—Jeans temperature in Figure 2.6).
In addition, point-like synchrotron sources at radio frequencies, or dusty galaxies
emitting at infrared wavelengths are also present.

Lastly, all the components of the Solar system emit at high frequencies in the
microwave region. In particular, the so-called zodiacal light is the diffuse signal
emitted by grains and dust particles located in the ecliptic plane [275].

3.1.1 Overview of the dominant signals

In the following, we will shortly describe the most important diffuse sources — namely
synchrotron, free-free and thermal dust — and their spectral characteristics. We
refer the reader to sections 1.2 and 2.2 for the description of the CMB and of the
SZ effect, respectively. For a discussion on the emission from spinning dust (also
referred as to the anomalous microwave emission) and on the complete set of CO
emission lines, see e.g. [343] and references therein.

Synchrotron radiation

Synchrotron radiation is emitted by free charged particles accelerated by a magnetic
field (see also section 2.1.3). Indeed, synchrotron emitters are relativistic electrons
boosted by cosmic rays or by supernovae explosions, which spiral in the Galactic
magnetic field. Besides the H, line of the Balmer series, this is the main emission
mechanism which allows the observation of the HII regions. The spectrum of this
radiation features a flattening at frequencies lower than ~ 1 GHz, while it is well
represented by a single power law with a constant spectral index in the range
[—3.1, —2.5] at higher frequencies. Also, this radiation may be polarized up to a 40%
level.

Free-free (or thermal bremsstrahlung) radiation

Free-free radiation is emitted by free electrons decelerated by nuclei (see also sec-
tion 2.1.3). Therefore, like synchrotron radiation, thermal bremsstrahlung is mostly
produced by the ionized interstellar medium. The spectrum scales as a power law
as a function of the frequency, with a spectral index around —2.1 which varies very



3.1 The sky at millimetre wavelengths 57

v/ 7! VI 7V /)

| T | T T
30 44 70 100 143 217 353 545 857

LS
A
N o

T T

107

T T T
Ll

10'

T T
Ll

10

RMS brightness temperature (LK)

10"

|

| .
10 30 100 300 1000
Frequency (GHz)

(a) Spectra

| e——
5 K @ 408 MHz 500

] [ e—
0.01 mKgry @30 GHz 10 0.001 mK @ 545 GHz 10 0 Kkm/s 100
(b) Maps

Figure 3.1. Dominating emitting sources in the microwave sky as seen by Planck. (a) Root
mean square of the Rayleigh—Jeans temperature at frequencies between 10 GHz and 1
THz. Upper and lower edges of the lines are defined accounting for 93% and 81% of
the sky, respectively. Shaded bands in light grey are centred on the frequencies scanned
by Planck bolometers. (b) Mollweide projection in Galactic coordinates of the all-sky
maps showing the intensity of the signal from the CMB and from microwave foregrounds,
colour-coded as in panel (a) [adapted from 343].
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slightly with the frequency and with the electron temperature, which in this case
can range from a few hundreds to tens of thousands of K.

Emission from thermal dust

Dust consists of small particles of silicate and carbonaceous grains, which originated
from the aggregation of material injected in space during stellar evolution. Dust
populates the various phases of the interstellar medium, and it is a good tracer
of star-forming HI regions. Dust grains efficiently absorb optical and ultraviolet
radiation from e.g. newborn stars, and they are heated up to temperatures of a
few tens of K. Therefore, they emit radiation at infrared wavelengths, and their
contribution is dominant at frequencies of hundreds of GHz [71].

In the Galaxy, different species of dust characterised by specific chemical compositions
and average temperatures, tend to trace both atomic and molecular hydrogen. In
particular, the emissivity of Galactic thermal dust at high Galactic latitudes shows
spatial variations that correlate with the column density of HI, which can be
mapped via the spin-flip emission at 21 cm in the radio band [64]. Moreover, this
dust component has been known from COBE/FIRAS measurements to exhibit the
spectral energy density of a grey body. The latter is defined as a modified black
body, by means of the product with a power law function of the frequency that
accounts for opacity effects:

v

Bra
By (v: Tha) = Tea(v0) (VO) B(viTw) | (3.1)

where B(v;Tiq) is the specific brightness of a black body (or Planck function, see also
section 1.2) at the temperature of the dust grains, Tiq; vy is a reference frequency;
Bia is the spectral index; 1yq(1p) gives the amplitude of the signal. It represents the
value of the optical depth at the reference frequency, defined as

Ta(vo) = / nwaowa(vo) dl | (3.2)

los

being ntq and oq(v) the number density and the cross section of thermal dust grains,
respectively.

The grey body model of equation (3.1) has been adopted by the Planck Collabo-
ration to model the emission from dust across the sky (thus, also at high Galactic
latitudes) [337]. They fit equation (3.1) with vy = 353 GHz to Planck HFI data
at 353, 545 and 857 GHz, plus data at 3000 GHz obtained from a combination of
IRAS [311] and COBE/DIRBE [278] measurements. The best-fit values for the
temperature and the spectral index of the dust grains are found to be:

Tia = (19.7 £ 1.4)K
Bea = 1.62£0.10 ,

which are the average values on the full sky. Nevertheless, in [164] it has been
argued that the flattening of the spectrum in the low frequency range as observed by
the COBE/FIRAS and COBE/DIRBE experiments cannot be modelled from the
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Table 3.1. Best-fit parameters to the double and single grey body models of equations (3.1)
and (3.3), as derived by MF15.

Model fi /e A B2 T Ty N xig
double grey body 0.0485 8.22 1.63 2.82 15.70 9.75 0.980 1.33
single grey body 0 - - 159 19.63 0.999 5.65

extrapolation of a single grey body spectrum. Therefore, a more sophisticated model
featuring two populations of dust grains having different temperatures and spectral
indexes has been hypothesized, to solve such a discrepancy. This motivated the work
by Meisner & Finkbeiner (2015) [280] (MF15 hereafter). Specifically, with the aim
of providing a consistent description of thermal dust emission from 100 to 3000 GHz,
they revisit the dust model proposed in [337] using: Planck data at all the six HFI
bands; COBE/DIRBE data at 1250, 2141 and 3000 GHz, and IRAS data at 3000
GHz. The modified specific brightness of the two grey body is therefore:

v B1 v B2
Bng@;Tl,Tz)—mfl“() BuiTh) +(1- f1) (0) BT, (33)

q2 \o

where the dimensionless constant factors f; and ¢;/go refer to the relative contri-
bution from the coldest component at temperature 77 and the hottest component
at temperature T5. The (1 and (o parameters give the slopes of the two different
power laws, while B(v;T}) and B(v;T») are the corresponding Planck functions
describing the black body spectrum; 91 is a normalization factor. In MF15 they
constrain the free parameters of the model in equation (3.3) via a correlation slope
analysis, setting g = 3000 GHz. In principle, the set of parameters to be determined
by the fit would be (M, f1,q1/q2, 51,11, B2, T>), as observed along all lines of sight.
Nevertheless, assuming that both dust populations are within the same interstellar
radiation field, it is possible to link their two temperatures, 77 and 15, via a power
law whose normalization and slope depend on a proper combination of 81, B2 and
q1/q2 [164]. Despite T} can be derived from the rest of the parameters, it is still
difficult to spatially constrain the entire set, on a basis of five broad-band high-
resolution measurements. Therefore, the parameters 31, 52, f1 and ¢q1/g2 are treated
in the fit as spatially constant across the sky, allowing only for spatial variations of
the temperature 75 and of the normalization factor. Table 3.1 reports the values of
the best-fit parameters set as described above, plus the values of the corresponding
parameters in a possible single grey body scenario (which can be recovered from
equation (3.3) by setting f; = 0). Figure 3.2 shows the corresponding best-fit curves
on top of the available data. It is possible to see that the contribution from the
cold component (represented by the magenta line) is important at low frequencies.
Both the ratio of the average intensities and the value of the reduced chi-square in
Table 3.1 indicate that the two grey body model produces a better description of
the observed data than the single component model. The results from the Planck
Collaboration are also shown, to better highlight that the double grey body model
is more suitable to fit the data at the lowest frequencies.

For our purposes of mapping the tSZ effect from the HFI multi-frequency maps,
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Figure 3.2. Comparison between double and single grey body models, from the fit to the
averaged HFI and DIRBE data between 100 and 3000 GHz (black dots). Red error bars
give the uncertainty per pixel. The bottom panel shows the average intensity from the
data (black dots) and from the grey body model by the Planck Collaboration, both
normalized to the average intensity from the double grey body model of MF15, from
which this figure is taken.

we will rely on the modified model by MF15, given its better performances in the
range [100, 217] GHz (see section 3.3).

3.1.2 Techniques for component separation

Component separation is a necessary operation that must be performed to extract
the signal from a particular source of interest, as the tSZ effect, from the signature
of a mixture of sources registered at multiple frequencies. In millimetre astronomy,
data are usually in form of temperature maps in units of Kcyg, i.e. the measured
quantity is the temperature fluctuation AT relative to the CMB temperature in
K, detected across the sky. Such maps can be expressed at each frequency v
as the superimposition of the signals from N different astrophysical sources (see
section 3.1).

In matrix notation, the problem is usually formulated as

D=A4s+n, (3.4)

where D, and n are vectors representing the observed data and the instrumental
noise, respectively, both having a number of elements equal to the number of observed
frequency channels, V,,. The vector s represents the amplitude of the physical signal
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to separate at a given reference frequency (e.g. the specific brightness, or the
optical depth), while A is a mizing matriz having size N,, x N, which contains the
spectral energy density of each source at the different frequencies, convolved with the
transmission of the instrument at each band. Its entries are therefore A,; = f;(v),
being f;(v) a function describing the spectral energy density of the i-th component.
Therefore, the component separation problem at each frequency is stated as

N
D, = ZAW' Si+nu, (3'5)
)

where, in the context of the estimate of a single component, 7, may also contain
the uninteresting signal from the remaining Ny — 1 components, plus all kind of
contaminants.

The goal is to recover each s; from the available data, D,, while minimizing the
contamination from the remaining sources, treated as nuisances.
The angular resolution and frequency coverage of the instrument collecting the
data under study are important aspects that have to be taken into account, besides
the characterization of its noise. Indeed, ground-based experiments are equipped
with large telescopes, which provide high angular resolutions, but their frequency
coverage is usually limited to a few channels. Indeed, measurements from the ground
are difficult because of the absorption and the emission of radiation at microwave
frequencies by the Earth’s atmosphere. On the other hand, satellites allow observa-
tions at a large number of frequencies, but their telescopes have smaller apertures
(thus moderate angular resolutions), mainly because of the limited housing in space
vectors.
All the algorithms conceived to address the problem of component separation are de-
signed to exploit at best the advantages provided by the observational configuration
in each case. For instance, in deep observations targeting high-redshift objects it is
convenient to isolate clusters by means of methods which are typically employed in
point source detections. On the contrary, to map the tSZ emission from well-resolved
or relatively close objects, techniques used for the extraction of diffuse signals are
more suitable.
The methods to perform component separation can be divided in three main cate-
gories: (7) semi-blind methods (internal linear combinations and matching filters);
(7) blind methods (independent component analysis) and (7) parametric methods.
In the following, we will synthetically overview all the three typologies, focusing on
their application to the extraction of the signal from the tSZ effect. Subsequently,
we will focus on a new method combining the sparse and the parametric approach —
i.e. a spectral imaging algorithm — which constitutes the core of this work.

Semi-blind methods: internal linear combination and matching filters

The Internal Linear Combination (ILC) is a semi-blind technique originally proposed
to extract the CMB primary temperature anisotropies using data from the WMAP
satellite over six frequency bands [35, 151]. This method consists in getting an
estimate (denoted with a tilde hereafter) of the map of a specific source component



62 3. Spectral imaging of the thermal Sunyaev—Zel’dovich effect

by writing it as a linear combination of the maps at all available frequencies:

Ny
5i=Y wi,D, . (3.6)
v

The coefficients w;, used to weight each frequency map are chosen so that they
provide unit response with respect to s;, that is

Ny
Zwi,VAVi =1, (37)

while, at the same time, they allow the variance var(§;) to be minimum. The set of
weights which satisfy both these properties can be found via the method of Lagrange
multipliers, by solving the system:

Vvar(s;)) —AVg=0
3.8
{9 =30 wiy Ay =1 (3:8)
which has solution: —
- | 3.9
Wi T ATC 1A, (39)
where C~! = cov™!(D,,, D,,) is the inverse covariance matrix of the data:
Npix
1
cov(Dy, Dy) = N Z(Dv — (D)) (D = (Du)i) (3.10)
pix "

for each couple of frequencies (v, 1), and being Npix the number of pixels. The A;
vector of equation (3.9) is the column of the mixing matrix encoding the spectral
energy density of the i-th source across all frequencies. In the case of CMB, one has
Ayi—cmp = 1 at all frequencies, and the result from [151] is found.

The only two assumptions on which this technique is based, are the absence of
correlation between the different source components, and a prior knowledge of their
spectral energy density. If the first hypothesis is not fulfilled, though, the final
result can be affected by possible biases, especially when considering sources that
are strongly concentrated in a given region of the sky (e.g. the Galactic plane) [275].
A further drawback of this method is represented by the fact that it cannot properly
account for the different angular resolutions of the frequency channels. Indeed, to
compute the linear combination of equation (3.6), all data maps D, must have the
same angular resolution, which is the lowest one provided by the instrument. This
implies the loss of information at the smallest angular scales in the reconstructed
map, as usually happens with all pixel-based component separation methods [49].
Since its original proposal, the ILC method has been refined to improve its efficiency
in extracting both the CMB [see e.g. 126], and the tSZ signals. In particular, the
advent of the Planck satellite motivated a series of works aiming at optimizing the
ILC technique to map the tSZ effect, like the constrained ILC [369], the Modified
ILC Algorithm, MILCA [215] (which has been adopted by the Planck Collaboration
to map the tSZ across the full sky), and the most recent MILCANN, which features
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the use of neural networks [214]. The main difference with respect to the original
implementation is the addition of further constraints when calculating the weights,
aimed at removing contamination from other existing components as much as
possible, while maximising the response towards the Comptonization parameter.
Further variants of the ILC for the estimate of the tSZ have been proposed to
combine both satellite-based and ground-based data, to exploit both a large number
of frequency channels and high angular resolutions. A relevant example in this
respect is the implementation of the Needlet ILC' (NILC), which features sparse
decomposition [368]. In this method, the localization of the signal in both pixel and
multipole space is achieved thanks to the use of particular wavelet bases defined
over spherical domains, i.e. needlets [183]. They allow one both to select patches
centred on galaxy clusters, and to account for the instrumental beam at different
frequencies via a simple multiplication with the signal in the multipole space, instead
of a convolution in the pixel space. More recently, a combination of data from Planck
and ACT for optimal mapping of the tSZ effect has been proposed with both the
MILCA method, and a matching-filter approach [6].

Filtering techniques allow the separation of a single component based on a prior
knowledge of its spatial distribution, and of the power spectrum of the nuisance
signals. Matched multi-filters (MMF') represent a generalization of existing filtering
techniques for CMB extraction, tailored to separate the tSZ signal from multi-
frequency data [197, 198, 281]. Similarly to the result obtained with ILC techniques,
the map of the component of interest is estimated from a weighted average of all
the available data maps, with the constraint of minimum variance. The weights are
here represented by a spatially-variable filter, which accounts for both the spectral
dependence of the signal of interest and its spatial distribution. The estimated tSZ
signal is therefore given by the convolution:

Nopix
Sisz(ko) = > ¥y (k — ko) - D(k), (3.11)
2

where k is an index to identify a generic pixel, kg is the pixel corresponding to the
cluster centre, and ¥, is the filter vector having IV, components. It accounts for
the cluster scale radius 7. that is a parameter of the spatial distribution of the signal,
which is usually assumed to be spherically symmetric. With a suitable tuning of
these priors, the filter is matched to the the tSZ effect. The frequency dependence
is well-defined when assuming a non-relativistic spectrum (see section 2.2.1), and
the only feature that has to be set is the spatial modelling, which may be e.g. the
projection of a three-dimensional electron density profile following the S-model (see
section 2.1.2). The condition of minimum variance of the filter can be conveniently
expressed in the Fourier space, via the information on the noise power spectrum:

Npix
o2 =3 5() AT P (1) Aisi(1) (3.12)

Te
L

where the index ¢ labels pixels in the Fourier space, §; is the Fourier transform of s;,
and P is the noise power spectrum matrix, which is defined from:

(i () = Popd(e =) (3.13)
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where 7, is the Fourier transform of instrumental noise plus nuisance foregrounds at
the frequency v, and dp is Dirac delta function. An interesting variant of this kind of
methods is based on the use of a Daubechies wavelet filter (see section 3.2.1), under
the assumption that clusters are localized, non-Gaussian and non-spherical objects
in the sky, which may be easily extracted via sparse filtering [328]. Furthermore,
the joint application of matching filters to microwave and X-ray data has been
proven to enhance the signal-to-noise ratio of the detection of clusters from all-
sky surveys [432, 253, 431]. Generally speaking, algorithms based on MMF are
suitable to detect clusters of galaxies by means of their tSZ signal, since they give
the detection probability from the prior knowledge of the source shape. In fact,
filtering methods have been applied to deep surveys delivered by large ground-based
telescopes, as SPT and ACT [445, 192, 47]. Clearly, MMFs cannot be used to
map the source morphology as probed by the Compton y-parameter from single,
well-resolved objects.

Blind methods: independent component analysis

Methods performing a blind source separation do not set any prior modelling of the
components contributing to the total signal. In this case, both the mixing matrix A
and the source vector s are unknown, and they are determined by only assuming
that all the source components are identically distributed, statistically independent
and spatially localized. For this reason, these method are often addressed as to
Independent Component Analysis (ICA). The idea is to solve equation (3.4) by means
of a “separation matrix” W, so that § « WD, while providing the independence
of the entries of the § vector. A possible way of imposing such an independence is
to set to zero all correlation terms:

N4

1 pix
o > 5i(k) 5j(k) =0 where 1 <i# j <Ny, (3.14)

pIX L

although the symmetry of this condition over pairs of sources (i, j) does not provide a
sufficient number of equations to solve the system. To break the symmetry, non-linear
correlation can be nullified, imposing e.g.:

1 Npix
v 2 Fi(k) (k) =0, (3.15)
PIxX L

where F' is some non-linear function. Alternatively, it is possible to assume local
absence of correlations via a piecewise constant variance, setting:

Npix ~
plxs

1 ik) _ 1
T 2 g 50 =0 (3.16)
Relevant examples of this kind of algorithms are the Joint Approximate Diagonaliza-
tion of Eigenmatrices (JADE) [87], and the Spectral Matching ICA (SMICA) [125, 88].
The latter assumes mixed stationary Gaussian components, and it has been developed
mainly to provide an optimal separation of the CMB, using second-order statistics.
JADE, instead, is based on fourth-order statistics and assumes non-Gaussian sources.
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Thanks to this feature, this algorithm has been used in a promising procedure to
detect galaxy clusters via the tSZ effect. Specifically, the JADE method is applied to
the sparse coefficients obtained via a wavelet transform of multi-frequency synthetic
data maps. The use of wavelets ensures the localization of the sources of interest,
while preserving the characteristics of the mixing matrix [331]. Another improvement
in the separation efficiency for CMB and tSZ has been achieved with the Generalized
Morphological Component Analysis (GMCA) [48]. In this method, all the data are
represented through sparse decompositions via non-orthogonal wavelet bases (see
section 3.2.1), chosen so that each single component is sparsely represented in one
of the bases. The separation is realized by imposing that the number of significant
coefficients required to reconstruct the data is minimum.

As in the case of methods based on matched filtering, the major limitation of ICA is
the applicability to very localized sources. Moreover, it does not rely on the known
properties of the components to be separated, which may play a significant role in
enhancing reliability and efficiency in reconstructing the signals of interest.

Parametric methods

As opposed to the class of blind and semi-blind detections, parametric methods
require the modelling of all the source components. With this approach, the latter
are treated as parameters to be estimated via the maximisation of either the spatial
entropy or the likelihood.

In the context of information theory, entropy measures how much information is
contained in a probability distribution [406]. Given a set of N values of a continuous
random variable X, the best guess for its probability distribution P(X), is the least
informative one which maximises the entropy of the variable, defined as

S(X) = — /_ O:O P(X)InP(X") dX’ . (3.17)

In the opposite case, i.e. when the outcome of the distribution is certain, the
optimal choice is the one which minimizes entropy. If only some prior information
is known, it is possible to maximise entropy with the constraints given by the
additional knowledge about the probability distribution. For instance, if the mean
and the variance are known, then the Gaussian distribution is naturally picked by
the principle of maximum entropy. It is worth noting that Gaussianity is a valid
assumption for the CMB component, and in this limit the condition of maximum
entropy corresponds to the technique of Wiener filtering [see 466] to solve the linear
system of equation (3.4) [275].

In a Bayesian approach [439], the X variable represents a parameter of the model, so
that the probability distribution P(X) may be taken as the prior for that parameter.
The Mazimum Entropy Method (MEM) proposed to solve the component separation
problem is indeed based on this choice [202]. Ideally, to access the prior distribution
of the sources, one should measure the empirical distribution of temperature fluctua-
tions they induce over a set of different realizations. Since this is not feasible, it is
possible to pick an entropic prior with the only requirement of subset independence,
coordinate invariance and system independence. In [421] the above approach has
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been extended to map the all-sky signal in harmonic space. Despite they provide
a better reconstruction of non-Gaussian signals with respect to e.g. Wiener filters,
MEM-based procedures may not be completely physically motivated, and they
do not properly take into account the effects arising from the components being
non-stationary.

In a similar way, one may estimate the source component §; as

3; = argmax(L) , (3.18)

Si

where L is the likelihood function, which is related to a chi-square statistics for a

Gaussian process via:
2
L = exp (—X2> , (3.19)

being x? is the usual sum of the squared residuals weighted by the covariance of the
data. This kind of approach has been demonstrated to be particularly robust for the
separation of diffuse components [see e.g. 337, 280]. Examples of applications to
the detection of the tSZ towards clusters include parameter estimates in a Bayesian
fashion through a sampling from the posterior distribution [273, 163, 132], or via
least-squares minimization [234].

In the above paragraphs, we provided a short review of the existing methods for
disentangling the signal from multiple sources contributing to a set of frequency maps.
It is clear that the choice of a given technique is driven by each specific application.
In this context, it is worth mentioning a couple of comparison projects focusing on
several component separation algorithms. For instance, [257] details a component
separation challenge to extract the CMB, Galactic, tSZ and point source signals from
Planck data. An interesting similar work focusing on the production of an all-sky
cluster catalogue based on the extraction of the tSZ effect only is reported in [282].
Here a series of non-parametric methods are tested, i.e.: several variants of the ILC;
a number of different MMF'; a semi-blind, Bayesian technique [135]; the PowellSnakes
filtering algorithm for Bayesian point source detection [95, 96] and GMCA. The main
outcome of this project from a comparison of the relative yields of all methods, is that
they all give consistent results, and they offer promising optimization perspectives,

in the context of observations at moderate angular resolutions as in the case of
Planck.

3.2 Sparse representations

A common operation to extract information from a signal (which may be a sequence
of data over time, or a two-dimensional image), is to decompose it to extract
e.g. its frequency content. In this respect, the most known and used method is
undoubtedly the Fourier transform [see e.g. 70]. It consists in projecting a given
signal characterized by some level of periodicity onto orthonormal bases of sines and
cosines. Referring to a signal f(z) defined over a spatial domain:

o= [ s s, (320)
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where £ = 27 /z is the spatial frequency. The major limitation of the Fourier
transform is that it cannot provide spatial localization, since the basis sines and
cosines extend in space up to infinity. Therefore, all information about where a
certain frequency component is dominating the signal is necessarily lost when the
transform is computed.

To provide localization in both space and spatial frequency, Gabor first introduced
the concept of windowed Fourier transforms, which are obtained by multiplying the
Fourier basis functions with a filter centred at a given position b, G(b — x) [169]. In
this way, one obtains a Gabor transform:

A

(e, b) = [ O:O F(z) G*(b— ) e da | (3.21)

where * denotes the complex conjugation. It can be clearly seen that the effect of the
filter, G, is that of localizing the transform by translating the Fourier kernel, to pick
up a only certain window among the overall spatial extension of the signal. Despite
it provides a basic way of localizing the signal both in space and in spatial frequency,
the Gabor transform (also known as “short-time Fourier transform”) suffers from
the consequences of using a fixed spatial windowing. Indeed, all information encoded
in scales larger than the characteristic size of the filter G is completely lost, whereas
setting a large filter size corresponds to losing spatial resolution. On the other
hand, it is not possible to simultaneously localize information with high-resolution in
terms of both space and spatial frequency, consistently with Heisenberg’s uncertainty
principle [194]. A way of solving this issue, is to generalize Gabor transform allowing
the size of the spatial window to vary, while shifting the kernel over different positions.

3.2.1 Wavelets

The introduction of wavelets might be attributed a posteriori to Haar, who defined
the orthogonal bases of multi-scale step-like functions which carry his name in 19009.
The first rigorous mathematical treatment has been then proposed by Grossmann
and Morlet in the early 1980s [352]. Since then the use of wavelets in signal pro-
cessing increased significantly in a broad range of disciplines, including astronomy.
Indeed, they provide localization in both space and frequency domain in a natural
way, since this feature is encoded in their own mathematical definition.

A wavelet (from the French word ondelette, which means “small wave”), is a contin-
uous function whose dilations and translations constitute an orthonormal basis in
the L2(R) space [182]. A generic wavelet can be written as follows:

() = \}a o(22) (3.22)
where x represents the spatial coordinate, while u and b are two characteristic
parameters. Specifically, u is the scale parameter, which is a positive factor giving
the compression or expansion of the wavelet, while b is the position parameter which
quantifies its translation. It is common to refer to 1 o(x) as to the mother wavelet,
that is not rescaled nor translated. An example of wavelet function with some sets
of u and b parameters is illustrated in Figure 3.3.

Unlike Fourier basis functions, wavelets are not unique and several families of such
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Figure 3.3. Example of wavelet function in the time-frequency domain. (a) Mexican hat
wavelet. (b) Fourier transform of the Mexican hat wavelet. (c) A couple of examples
showing scaling and translation [taken from 250].

functions exist and can be built in many ways. For instance, Morlet’s wavalets are

obtained similarly to the kernels of the Gédbor transform, i.e. by multiplying Fourier

basis functions by suitable filters. Another possibility is to compute subsequent

convolutions of step functions with themselves, as in the case of spline wavelets [420].

A gallery of different wavelet families with their definition is shown in Figure 3.4.
However defined, wavelets have to satisfy three main properties:

i. normalization: [°7 ¢y p(2)) () dz = 1;
#. zero average: [0 by () dz = 0;

741. compact support: this is equivalent to require localization in both space and
spatial frequency domains, according to Heisenberg’s uncertainty principle.

A common choice of the wavelet parameters which ensures the properties listed above,

is the dyadic scheme, in which the scale and position parameters are respectively set
to:

uw=2; (3.23)
b=2n, (3.24)

with j,n € Z. In this scheme the wavelet function can be rewritten as

Yin(x) =272 Y2z —n), (3.25)
where 277 is called resolution (that is the inverse of the scale), and the index j is
referred as to the resolution level.

The localization of a wavelet in space and frequency can be quantified by computing
the second-order moments of the wavelet ¢, ;(x), and of its Fourier transform,
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Figure 3.4. Examples of different families of continuous (top panels) and discrete wavelets
(bottom panels) obtained using the pywavelets python package, available at https:
//pypi.org/project/PyWavelets/.

T/A)%b(f), respectively [250]:
oo = [ (@ () sl o (3.26)
ve= [ (€= ) Duale) e 3.27)

being;:

u

~ 1 o0 x—b ;
— —i€x
» = e dr . 3.28
Equation (3.28) can be rewritten as

Dup(€) = Vu Pug) e (3.29)

which implies that any rescaling of ¢ by a factor of v~! in the spatial domain
corresponds to a scaling by a factor of u in the frequency domain. In dyadic terms,
if the wavelet gets spatially dilated by 27, then the frequency will be shrank by
277, From equation (3.27) it is clear that, to ensure frequency localization, the
Fourier transform of the wavelet function must remain finite. This is encoded in the
fulfilment of the following admissibility condition:

00 |[2h 2
I 'wuf’gf” dé < o0 | (3.30)

The localization properties of wavelet bases can be visually represented by means of
Heisenberg’s diagrams, as shown in Figure 3.5. Each series of rectangles represents
a resolution level. The analysis of the signal is performed starting from low spatial
resolution, i.e. accounting for all the spatial domain. This corresponds to computing
a Fourier transform, therefore the frequency resolution is high. Subsequently, the
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Figure 3.5. Localization properties of Fourier (left panel) and wavelet bases (right panel)
in terms of time and frequency resolutions (the same reasoning holds for the spatial
coordinate z and the spatial frequency &). The area of all boxes is constant, to ensure
the validity of Heisenbergs’ uncertainty principle [adapted from 250].

spatial domain is divided into two sub-domains, which is equivalent to increasing the
spatial resolution by a factor of two. The corresponding frequency resolution, which
is the height of the box one has just constructed, gets reduced by the same factor, to
fulfil he uncertainty principle. The same reasoning applies to all subsequent detail
levels, with increasing powers of 2. Here the substantial difference between wavelet
and Fourier transforms becomes evident: indeed, in Fourier transforms one always
picks up all the spatial domain, as only the frequency domain gets binned with fixed
resolution, and all resolution boxes are equal.

3.2.2 The wavelet transform and multi-resolution analysis

Similarly to performing a Fourier decomposition, any signal f(z) can be represented
by means of its wavelet transform, provided the orthogonality of the basis functions.
The projection of f(x) onto a wavelet basis 1, ;(x) defines its wavelet coefficients:

e}

s = (@) busl@)) = [ f(a) viyp(a) do (3.31)

— 00

where brackets represent the inner product. The wavelet coefficients recombined
together provide, for discretized values of u and b:

fo@) =33 aup Yup() (3.32)
u=0 b=—00

that is the discrete wavelet transform of f(z).
The inverse wavelet transform allows the reconstruction of the function f(x) knowing
its wavelet coefficients, as [182]:

1 oo oo db du
f@ =g /0 /_ " au vusle) S (3.33)

being:
Cy = /00o ‘“2% dc . (3.34)
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By adopting a dyadic sampling, and plugging equation (3.25) into equations (3.31)
and (3.32), one has, respectively:

ajn = 2_j/2/ f(x) v*(279z —n) dx | (3.35)
for the wavelet coefficients, and:
fox)=27923" N a;, v(2792 —n) (3.36)

jzfoo n=—oo

for the wavelet transform of f(z).

The decomposition in equation (3.36) is equivalent to perform a multi-resolution
analysis of the signal. Indeed, starting from an arbitrary low resolution, 2770,
corresponding to the largest scale accessible from the data, the wavelet transform
can be separated into an approximation term, encoding the information of the signal
at the scale 27°, plus a term giving the decomposition over the remaining smaller
scales. The latter term is provided by the dyadic sampling of spatial scales, and it
contains all the information on the details of the signal.

In mathematical terms, multi-resolution analysis involves a set of embedded sub-
spaces {V;} in L?(R) such that the following properties are satisfied [270, 290]:

e sub-spaces at each level of resolution are included in the successive higher-
resolution levels:

VigznC---CVippCcV,CVoiC---CVjon VieZ, (3.37)
going from low to high resolution;
« the union of all sub-spaces is the whole L?(R):
U v =L*[R) (3.38)
Jj=—00

e the intersection of all sub-spaces is the null set:
N Vi={0}; (3.39)
Jj=—00

o functions defined in each subspace pick a specific spatial resolution according
to the following rule:

flx)eVje f(272) € Vi, (3.40)

i.e. the spatial frequency is higher by a factor of 2 when increasing the
resolution (or lowering the scale) between two subsequent levels;

« all sub-spaces are invariant by any translation proportional to the scale 27:

flx) € Vj & f(z—2n) €V, (3.41)
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o existence of the scaling function ¢ which is an orthonormal basis of the subset
Vj, at the approximation scale 27°.

Given the dual (orthogonal) sub-space W; for Vj}, the wavelet function v; is a basis
function for Wj. In particular, since the subspace V1 is contained in V; by means
of the causality property of equation (3.37), it is possible to write:

Vi = Vi @ Wiy - (3.42)

This yields a scaling equation connecting the basis functions of V' (i.e. the scaling
functions, ¢), with the basis functions of W (i.e. the wavelet functions, ).
Referring to the cases of j = 0 and 7 = 1 as the highest and lowest resolutions,
respectively, one has Vi C Vj, therefore Vy = V4 + Wy. Thus, it is possible to write
the scaling function 2-1/2¢(21x) in V; (with n = 0) as a linear combination of the
bases for Vj, ¢(z — n), across all translations, as

2712427 ) Z hn] ¢(x —n) , (3.43)

where the coefficients, h[n], are given by:
hln] = (2712¢(27'2), (x — n)) , (3:44)

which are basically orthogonal projectors corresponding to a low-pass filtering.
By virtue of equation (3.42), a similar decomposition holds for the wavelet basis
function 271/2(271x) of Wy, in terms of the basis functions of Vj, so that:

2= 1/2y(27 1) Z gln] ¢(z —n) (3.45)
where now:
gln] = 271227 ), ¢ — n)) (3.46)

which is interpreted as a high-pass filter.
Equations (3.43) and (3.45) relate bases across different resolutions. The correspond-
ing Fourier transforms are:

$(26) = 2712 1(€) () (3.47)

for the scaling function, and:

$(26) =271 §(9)e(€) (3.48)

for the wavelet function, respectively.

By virtue of the above scaling relations, the decomposition of any function f(x)
at the given resolution level j — 1 can be expressed as the sum of its approximation
and detail coefficients at the successive lower-resolution level j. Specifically, the
approximation coefficients are given by the projection of f(x) onto the bases of V},
while detail coefficients are given by its projection onto the bases of W;. Therefore,
the wavelet transform of equation (3.36) in terms of multi-resolution analysis reads:

fw(x) = fw,approx(x) =+ fw,detail(ZE) . (349)
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Since the number of scales that can be accessed in the decomposition is limited by
the largest (smallest) spatial scale (resolution) imposed by the signal itself, one has:

Fuoapprox(®) = D Gjon Bjon(®) ; (3.50)

n=—oo

Nscales

fw detall Z Z Ajn ¢jn y (351)

J=jo m=—00

where the approximation and detail coefficients are respectively given by:
_ o0
ion = [ $(@) 65, nla) da (3.52)
—o
[e.e]
ain= | F(@) 0],(@) da . (35
—00

All the above considerations are valid also when applied to multi-dimensional
signals, e.g. images. In this case the decomposition is performed via a projection of
the signal onto the four-dimensional space L?(R?) [65]. This corresponds to comput-
ing the approximation and detail coefficients along rows first, then on columns. The
formalism of multi-resolution analysis can be extended by defining two-dimensional
and separable sub-spaces ij in two dimensions, at each resolution level, j. Such
sub-spaces are constructed from the tensor product of one-dimensional sub-spaces,
as

Vi=V,eV;. (3.54)

Therefore, the detail subs-spaces sz are the orthogonal complements of Vj2 so that
one has:
Vi, =View?. (3.55)

Recalling the complementarity between one-dimensional sub-spaces given in equa-
tion (3.42), it is possible to rewrite equation (3.55) as

ij e Wj2 =V;1 @V
— (W) @ (V; @ W) (3.56)
=V7e(V;oW;) e (W;V;) e (W; W)
which yields:
W7 = (V;oW;) e (W;oV;) e (W;eW,). (3.57)

Therefore, the two-dimensional wavelet sub-space I/Vj2 is defined by the direct sum-
mation of three sub-spaces, whose bases are generated by the three wavelet functions
wfk,l, ]Vkl and T/’fk,l with translation indices k,! € Z?, constructed from the corre-
sponding one-dimensional bases ¢;, and v, with n € Z of V; and Wj, respectively.
Specifically, one has:

Piha(k,1) = ¢ (k) ¥50(0) (3.58)
Y (k1) = j5(k) ju(1) (3.59)
Pk, 1) = (k) (1) - (3.60)
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Figure 3.6. Example of wavelet transform computed over three scales on an image of size
N1 X N3 using an orthonormal basis. Left panel. Schematic decomposition of the image
into its detail levels at all the three scales along the horizontal, vertical and diagonal
directions, Wy, Wy and W4, respectively. The approximation level is denoted as F,
and it is obtained from the low-pass filtering. Middle panel. Original image. Right
panel. Maps of the wavelet coefficients according to the same scheme as in the left
panel [taken from 65].

The wavelets T/Jfk,l and ¢Xk,l associated with the sub-spaces (V; ® W;) and (W; ®V}),
behave as high-pass filters oriented along the horizontal and vertical axes of the
image, respectively (hence the superscripts). The wavelet zpfk’l associated with the
(W; ® Wj) sub-space, instead, encodes the details of the image from a high-pass
filtering along the diagonal direction, according to the behaviour of the corresponding
one-dimensional wavelet 1); , under parity. By adding the fourth basis of the 1/;-2 sub-
space, given by ¢£k’l(k, ) = ¢ k(k) ¢;,(1), which corresponds to the approximation
details, one can define a complete wavelet transform of an image in two dimensions.
The scaling function qﬁj}k’l(k:, [) corresponds to a low-pass filtering of the image, which
is a smoothing at the lowest resolution 27°. An example of successive decompositions
at all resolution levels obtained from a wavelet transform in two dimensions applied
to an image is shown in Figure 3.6. As a consequence of the orthogonality of wavelet
bases, the coefficients computed at different scales are complementary, that is to say
that the loss of information encoded in the detail coefficients at lower resolutions, is
compensated by a reduction of the size of the image by a factor of 2 at each level of
increasing resolution. Therefore, if the processed image has size N7 X Na, the detail
coefficients at the scale 277 are contained in an image having size Ny /27 x Ny/27.
If non-orthogonal bases are used, the coefficients are no longer complementary,
so they can be represented on maps having the same size of the original image.
In this case, the wavelet basis is classified as redundant. An example of such a
decomposition is shown in Figure 3.7, where the three detail spaces of the multi-
resolution algorithm are expanded into bi-orthogonal bases, following the procedure
by Coifman & Donoho [108]. On the other hand, the use of isotropic wavelets such
as the cubic spline (see Figure 3.16a), allow the construction of redundant bases with
only one detail space. In other words, only one detail component is computed at each
scale, instead of the three sets of details along the horizontal, vertical and diagonal
directions. Such bases are employed in the so-called d trous (i.e. “with holes”)
algorithms [see e.g. 420]. By applying these algorithms, one has a N7 x Nj-sized
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Figure 3.7. Example of wavelet transform computed over three scales on an image of size
N x Ny using a redundant, non-orthogonal basis. The input image is the same as in
the middle panel of Figure 3.6. In this case, the top left, top right and bottom right
panels represent the isotropic detail coefficients at the three resolution scales, while the
bottom left panel shows the approximation coefficients. All the maps have the same size
of the transformed image, N; X Ny [adapted from 65].

map of detail coefficients at each decomposition scale, plus a so-called last smooth
image given by the approximation level, which consists in a low-pass filtering of the
original input image.

Contrarily to classical wavelet bases, redundant wavelets are shift-invariant. This
feature is very important for the application of wavelet transforms to astronomical
images; thus it motivates us to use a Bs spline a trous algorithm for the imaging
purposes of this work. In this respect, Figures 3.22a and 3.22b show the last smooth
image and the wavelet coefficients, respectively, for the tSZ map of a cluster of
galaxies that we obtained with the aforementioned algorithm.

3.2.3 Signal denoising via wavelet transforms

The most important purposes of wavelet transforms in signal processing are compres-
sion and denoising. Indeed, given the localization properties of such a transform, the
relevant information from the signal is contained in a few, large coefficients which
occur where the signal shows significant spatial variations. In this sense, wavelet
coefficients are sparse, i.e. they are mostly zeros, except where the correlation
with the given wavelet is significant. This property can be used to compress the
signal, or to clean it from noise, upon the choice of a suitable wavelet basis for the
decomposition. In particular, wavelet denoising is a technique which is widely used
in astronomy.

Noise is expected to provide contribution only at the highest frequencies, and to be
characterized by slower variations compared to the signal across different spatial
scales. Consequently, it is poorly correlated with the wavelet basis, so that its
wavelet coefficients are not localized and they have a small amplitude. Hence, by
discarding the coefficient values below a chosen significance threshold, it is possible
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Figure 3.8. Schematic representation of hard (left panel) and soft (right panel) thresholding
of detail wavelet coefficients. The quantity 5f’s on the y axis represents the thresholded
coefficient. The threshold value is set to A = 3 in this example [adapted from 107].

to remove the contribution from noise at each resolution level. The denoised signal
can then be reconstructed via its wavelet transform, by keeping only the thresholded
(i.e. significant) coefficients in the reconstruction. The level of the threshold is
typically determined from the statistics of the coefficients themselves, and it may be
e.g. a multiple of their variance. In the case of signals characterized by spatially
correlated noise, thresholds are tabulated at each specific position accounting for
the data covariance matrix. More generally, the threshold value A depends on the
resolution level j.

The thresholding of wavelet coefficients can be made according to two criteria,
named soft and hard thresholding. In the case of hard thresholding, the coefficients
are set to zero if their absolute value is lower than the threshold, A;, i.e.:

(3.61)

]7”

CLH _ {O if |aj7n\ S /\j
Wjn A ajn| > Aj

If a soft thresholding is applied, instead, the condition for discarding the coefficients
becomes:
0 if |aj7n| S )\j
ain =9 %n— /\j if Qjn > )\j (3.62)
Qjn + )\j if Ajn < —/\j .

A representation of the two different thresholding schemes is illustrated in Figure 3.8.
The choice of the most suitable scheme depends on the specific application. Hard
thresholding has the advantage of preserving the flux, but it is more prone to
introduce discontinuties and abrupt changes in the final reconstruction. On the
contrary, soft thresholding allows the removal of artefacts and discontinuities in a
smoother way, provided they are consistent with zero.

3.2.4 Ridgelet and curvelet transforms

Candés & Donoho argued in the early 2000s that elongated and anisotropic structures
in two-dimensional images are not efficiently detected by wavelets, since they are
not sensitive to any particular direction. Indeed, wavelet transforms are computed
from nearly isotropic means of neighbouring pixel values, therefore they do not
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Figure 3.9. Example illustrating the comparison between wavelet and curvelet reconstruc-
tion of an image featuring a stripe embedded in noise. Top left panel. Input image,
where the stripe is completely hidden by the noise. Top right panel. Average of the
same image computed along columns. Bottom left panel. Reconstruction from the
thresholding of wavelet coefficients. Bottom right panel. Reconstruction of the signal
from the thresholding of ridgelet coefficients [taken from 419].

correlate well with e.g. linearly-shaped patterns. On the other hand, if directional
generalization of wavelet bases are used, like ridgelets and curvelets, signals with
anisotropic features are characterized by a higher number of sparse coefficients with
respect to wavelet decomposition [83].

Figure 3.9 shows an example which testifies the inadequacy of wavelets in
detecting linear structures. Although it cannot be seen by eye, the signal in the
input image in the upper left panel contains a vertical stripe, here completely
dominated by noise. The images in bottom panels highlight that the reconstruction
from wavelet transform (left panel) is not able to detect the stripe in the signal which,
on the contrary, is efficiently recovered with ridgelets (right panel). On the other
hand, the one-dimensional profile of the signal in the image taken from averages
along columns, provides a hint for the presence of such a structure (upper right
panel). In fact, the underlying idea in ridgelet transforms is to compute the average
of the signal along lines, by exploring all possible directions and positions.

Ridgelets are bivariate functions defined in L(R?) which represent a higher-
dimensional generalization of wavelets. Indeed, they are described by a third
parameter, which is the angle giving the direction of the function. Taking a sufficiently
decaying, normalized, zero-averaged wavelet, 1, which satisfies the admissibility
condition of equation (3.30), then for each set of parameters u > 0 (scale), b € R
(translation) and 6 € [0, 27) (direction), one can define a ridgelet as [80, 81]:

wu,b,a (l’) - ﬁ

where x is the modulus of the two-dimensional vector = (z1, z2). Equation (3.63)

1 w(m10089+x2sin0—b>, (3.63)

u
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Figure 3.10. Examples of ridgelets. Functions represented in the top right, bottom left
and bottom right panels are obtained from rotation, rescaling and shifting of the top
left ridgelet, respectively [taken from 419].

in the dyadic scheme (see equations (3.23) and (3.24)) becomes:
Yjino(T) = 2792 ) (273’ (x1cosf + xosinf) — n) . (3.64)

Such a function is constant along ridge lines, x1 cos 8 + x5 sin 6, while it is a wavelet
transversely to the ridges, hence the name. This property can be seen in Figure 3.10,
showing a few examples of ridgelets.

The ridgelet coefficients of a function f(x) are given by:

tuno = | 1(a) Vipala) & (3.65)

and the continuous ridgelet transform is given by the exact reconstruction formula:

D= [T eusa vusate) G o 2 (3.66)

Ridgelet transforms are the equivalent of wavelet transforms in the Radon domain [see
e.g. 124, for a discussion on Radon transforms]. Indeed, the Radon transform, fR,
of a function f is a collection of line integrals labelled via the angle and translation
parameters, (0,t) € [0,27) x R, such that:

oo (e}
= / / f(z1,22) 0(x1 cosO + xosinf —t) dridas (3.67)
—o00 J—o0
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Figure 3.11. Flowgraph of a ridgelet transform [taken from 418].

where 0p is the Dirac delta function. From equations (3.63), (3.65) and (3.67), the
ridgelet coefficients can be thus written as

Oupg = /_ : Fa(z) u=Y/2yp (7) it . (3.68)

In other words, the ridgelet transform is equivalent to a one-dimensional wavelet
transform applied to the slices of a Radon transform at a fixed angle 6 and varying
translation. This property allows one to exploit the fact that the Radon transform
is equivalent to computing the inverse one-dimensional Fourier transform to the
coefficients of a two-dimensional Fourier transform restricted along radial lines
passing through the origin of the frequency plane. Mathematically this can be
expressed as the projection-slice formula:

f(acosf,asinh) = / fr(z) e dt ; (3.69)

for any projection angle a. Therefore, discrete ridgelet transforms can be imple-
mented via Radon transforms in the Fourier domain. The steps are illustrated by
the scheme in Figure 3.11, and they are synthetically described in the following [418].

7. The image is first processed via a two-dimensional Fourier transform, whose
coefficients are interpolated along radial straight lines passing through the
centre of the frequency plane, in number equal to the selected projections. The
slope of each line equals the projection angle «;

1. by virtue of the aforementioned projection-slice property, the Radon transform
can then be computed as the inverse one-dimensional Fourier transform along
each radial line;
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Figure 3.12. Images showing a few curvelets having different orientations at scales u = 2
(left panel) and u = 3 (right panel) [taken from 83].

174. finally, the ridgelet transform is obtained as the one-dimensional wavelet trans-
form computed at fixed angle 6 towards the ridgelet bands.

Curvelets

Ridgelets constitute an anisotropic class of basis functions which, by definition, are
particularly efficient in detecting straight lines. Nevertheless, such features do not
frequently occur in images, especially in astronomy. Therefore, to describe localized
curved patterns, Candes and Donoho introduced curvelets as a generalized version
of ridgelets [82]. Similarly to ridgelets, curvelets are described by a scale quantifying
dilation, a position to quantify translation and an orientation given by the angle
of rotation. Some examples of curvelets are provided in Figure 3.12. The main
difference with respect to wavelets is that the dilation obeys a parabolic law of the
kind [269]:

ou() = u™?* o(u V2 +ula,) (3.70)

being ¢ the main basis curvelet function. A more compact way of writing equa-
tion (3.70) is by means of the parabolic scaling matrix:

~1/2
D, = (u . 91) , (3.71)

u

so that:
ou(z) ~ u™3* p(Dyz) . (3.72)

Such a scaling is a peculiar characteristic of curvelets, and it is fundamental to allow
their use in sparse representations [see 85, for a discussion]. As a consequence, the
length of a curvelet, ¢ is related to a fourth parameter called width, YW, according to
the power law:

(=W’  with 9=2; (3.73)

note that in the limit ¥ — oo one gets a ridgelet. Rotation is defined — similarly to
the case of ridgelets — via the rotation matrix:

cosf sinf
Ry = (— sin 6 cosH) ’ (3.74)
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Figure 3.13. Schematic illustration of the support of curvelets and their Fourier trans-
forms, in the spatial domain and in the frequency domain, respectively (see text for
details) [adapted from 85].

so that the rotated, translated and dilated curvelet takes the form [84]:
upo(@) = u* o(DyRoz —b) . (3.75)

When imposing a dyadic sampling, the spatial curvelet support is represented by
oriented ellipses with axes approximately equal to 27/2 and 27, as illustrated in
Figure 3.13. Another relevant difference between curvelets and wavelets is their
frequency support upon Fourier transform. Indeed, as discussed in section 3.2.1, the
support of wavelets is represented by rectangular Heisenberg boxes of constant area
and varying linear sizes across different scales, according to the dyadic sampling.
Curvelet support, instead, is represented by wedges, as a consequence of their
parabolic scaling. Indeed, defining the two-dimensional spatial frequency vector in
polar coordinates, £ = |£|(cos a, sin «v), the Fourier transform of a curvelet at the
scale 27 can be written as
37 A . A
5O =2 SN V () (3.76)
that is the product of two smooth window functions, ¢ and V. The first one,
1&, is the Fourier transform of a one-dimensional wavelet chosen to have compact
support in the range [—1/2, 2] and satisfying the dyadic frequency covering, so that
J‘?ifoo|1ﬁ(2j I€))|? = 1 for all values of |£]. This function plays the role of a radial
window which selects a radial segment having length equal to 277. The second
one, V, is a one-dimensional angular window function that selects an arc having
length 279/2. The joint effect of such functions is that of localizing the compact
support of the Fourier transform of the curvelet, ¢;(§), in a polar parabolic wedge,
as illustrated in Figures 3.13 and 3.14.

Curvelets possess the important property of satisfying the principle of harmonic
analysis, i.e. any arbitrary function f(z) can be represented as a series of curvelets as
one does with orthonormal bases. Indexing with p the set of discretized parameters
(u,b,0), the curvelet transform of a function f(z) can therefore be written as

fla) =Y {f(@), 0u@)) pulz) (3.77)

I
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Figure 3.14. A curvelet and its frequency support. (a) Example of curvelet in spatial
coordinates translated by b; and by along the 21 and x5 axes, respectively. (b) Wedge-
shaped frequency support of the Fourier transform, ¢;(£), as obtained from the product

of the angular window function V with the radial window function 121, as in equa-
tion (3.76) [adapted from 269].

where (f(x),¢,(x)) are the curvelet coefficients. The above mathematical formalism
defines the so-called “second-generation curvelet transform”, introduced in [84, 85]
for the first time.

Originally, curvelet bases were constructed from ridgelets, multi-scale ridgelet
transforms and bandpass filtering [see 82, 83, for details]. With this approach, the
curvelet transform is computed according to the so-called “first-generation” scheme
described also in e.g. [418, 419] with a stress on the application to astronomical
images. The underlying idea is that of approximating curved patterns with linear
patterns over sufficiently localized portions (or blocks) of the image, and to apply
a ridgelet transform to each block. A schematic representation of this technique
is given in Figure 3.15; the corresponding steps are synthetically described in the
following.

1. The input image is processed via a two-dimensional wavelet transform over all
scales;

ii. each wavelet band (i.e. each set of wavelet coefficients) undergoes a discrete
ridgelet transform, according to the procedure described in page 79. Such a
transform over each block, gives a localized curvelet transform. Indeed, the
cells defined by the radial grid in the two-dimensional Fourier space, represent
an approximation of the wedges over which curvelets are localized in the
frequency domain.

While second-generation curvelets provide us with compact bases in the spatial
frequency domain, the simpler, first-generation curvelets are highly redundant.
Therefore, they allow a straightforward link with kernel smoothing in the direct
space, which we exploited, in particular, to implement a spectral imaging algorithm
from a wavelet-weighted likelihood. Hereafter, we will refer to the first-generation
scheme whenever a curvelet transform is invoked.
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Figure 3.15. Flowgraph of the first-generation curvelet transform (see text for de-
tails) [taken from 160].

In the following sections, we apply sparse representations based on both wavelet
and curvelet to a specific astrophysical case: mapping the signal from the gas in
galaxy clusters at millimetre wavelengths, observed via the thermal SZ effect.

3.3 The spectral imaging algorithm

In Bourdin et al. (2015) [67] (B15 hereafter) the authors propose for the first time to
combine sparse representations with the maximum likelihood approach of parametric
component separation, into a spectral imaging algorithm. Their method has been
validated using synthetic galaxy clusters from the hydrodynamical simulations pre-
sented in [350, 364], featuring cooling, star formation and AGN feedback mechanisms.
Specifically, they extract three example cases of interacting galaxy clusters from
the simulations and they produce mock frequency maps accounting for Planck’s
response and noise properties. The three dynamical configurations are those of an
accreting cluster at redshift z = 0.25, a connected cluster pair at z = 0 (that is
the evolution of the same Lagrangian region hosting the aforementioned accreting
cluster), and a colliding system at z = 0.

3.3.1 Basic features

The algorithm solves the component separation problem of equation (3.5) adopting a
parametric scheme. Therefore, the model map at the k-th pixel and at the frequency
v is defined as

M(v, k; s) Zf, ) si+nv), (3.78)

where s is the usual vector of the source components, having size Ny, and 7(v) gives
the instrumental noise.
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For the purpose of mapping the Compton y-parameter, the application of the
algorithm is limited to the bands covered by Planck/HFI, for a total of N, = 6
frequency maps, namely at 100, 143, 217, 353, 545 and 857 GHz. Indeed, the data
at these frequencies provide the highest signal-to-noise ratio (SNR hereafter) for
the SZ-based detection of galaxy clusters, as discussed extensively by the Planck
Collaboration in [338]. The three dominating physical components in this frequency
range are: (7) the CMB, (7) the emission from Galactic thermal dust and (%)
the tSZ effect (see also Figures 3.1a and 2.6). Therefore, equation (3.78) can be
explicitly written in terms of the source components as

M(v,k; s) = foms(V) semB + fid(V) sta + fisz (V) sisz +n(v)

3.79
= ATy + ATy + ATisz +1(v) | )

and such a model map will be compared to the data map from HFI at the corre-
sponding frequency, Dypr(v).

At frequencies in the range [100, 353] GHz, Dypi(v) gives the temperature fluctuation
AT measured by the bolometers in units of Kcyg, i.e. in K - Tomp(K). At 545 and
857 GHz, instead, where the dominating emission comes from thermal dust, data are
given in MJy sr~! so that they measure the change in specific brightness, AB, assum-
ing a constant By, = vB(v;T). The conversion factors used to homogenize unities
across frequencies are 58.0623 and 2.27053, at 545 and 857 GHz, respectively [336].
Apart from the case of the CMB, the amplitude of the component signals are given
by dimensionless quantities; therefore the spectral functions of equation (3.79) must
have the proper physical units. Each of the three terms — ATcomp, ATvg, ATisz — is
described in detail in the following.

i. CMB term. The spectrum of CMB radiation is that of a black body (see
section 1.2). Thus, the spectral dependence of the fluctuations of its thermo-
dynamic temperature, in units of Kcuvp, is equal to unity at all frequencies:

foms(v) =1, (3.80)

and the component scyp of the source vector gives the amplitude of tempera-
ture anisotropies AToyp in physical units.

1. Thermal dust term. The original version of the algorithm by B15 takes the
spectral model of thermal dust of [337]. Therefore, it is represented by a single
grey body with the emission law of equation (3.1). To homogenize units in
the maps, any fluctuation in the specific brightness has to be converted into a
temperature fluctuation. This is easily achieved in the Rayleigh—Jeans limit
using the definition of the brightness temperature, that is [71]:

62

)= 2

Bep(v;T) (3.81)
with the usual meaning of the involved quantities.

Rigorously, the conversion is carried out by taking the derivative of the bright-
ness function with respect to the temperature. Nevertheless, for a population
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of dust grains at Tiq =~ 20K, the thermodynamic temperature can be approx-
imated with the antenna temperature up to ~ 400 GHz. Then, the spectral
variation of the temperature of thermal dust is given by the function:

1 v\ P hpv
fualv) = - <V> LR (3.82)
()

The spectral index is set to be spatially constant and equal to Siq = 1.8, and
the scaling frequency vy is set to 353 GHz. As pointed out in section 3.1.1, the
physical signal siq carried by dust is the optical depth at the scaling frequency
(see equation (3.2)). It follows that the thermal dust term is:

1 [ v\Pu hpv
AT = () — Tia(vo) - (3.83)
B 140 exp (kBI}td) — 1

1ii. TSZ term. As pointed out in section 2.2.1, the temperature change induced by
the tSZ has the spectral dependence given by the function figz of equation (2.30)
in the non-relativistic limit, which we rewrite here for convenience in the
following form:

hpv ) ( hpv )
V)=|———)coth| —— | — 4. 3.84
Jisz(v) <kBTCMB kgTcmB (8:84)

Consistently with equation (2.29), the physical signal stgz in this case is given
by the Compton y-parameter:

v= 0 [ ar, (3.85)
los

which is given here in terms of the electron thermal pressure of the ICM along
the line of sight, p(l) (see also equation (2.26)). Thus, the tSZ term is:

. hpl/ hpl/
Bisz = Tows [(k‘BTCMB) coth <k‘BTCMB) 4] v (3.86)

The terms described above can be plugged into equation (3.79) to construct the
model map. The squared residuals between the model map and the data map
normalized to the variance of the data, are given at each frequency by:

[DHF[(I/, k) — M(I/, k‘; S)]2

UI%IFI(V7 k)

res®(v, k; 8) = , (3.87)

being O‘I%IFI(Z/, k) the HFI variance map, so that the estimate of the parameters,
s = (SoMB, Std, Stsz) is obtained from the minimization of the chi-square constructed
by summing those residuals.

It is important to note that HFI data are pre-processed by means of the subtraction
of an offset value encoding astrophysical contamination on large scale, which accounts
for the CIB and the tSZ background. The values of the offsets at each frequency
are listed in Table 3.2. We derived them following the same procedure described
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Table 3.2. Frequencies, full width at half maximum of the beams [adapted from 341],
and astrophysical offset corrections of Planck HFI data (see text for the origin of these
numerical values).

Frequency (GHz) Fp, (arcmin) Offset
100 9.69 1.47 x 107° Kcump
143 7.30 2.32 x 107° Koms
217 5.02 7.02 x 107° Kcmp
353 4.94 4.12 x 107* Kowmp
545 4.83 3.41 x 107t MJy sr—!
857 4.64 5.84 x 107t MJy sr—!

in [337]. In particular, we exploit the spatial correlation between dust and neutral
hydrogen [64], which are traced by HFI data at 857 GHz, and by the data delivered
by the Leiden/Argentine/Bonn (LAB) radio survey of Galactic HI [227], respectively.
The pixels in the sky that are used to compute this correlation are selected according
to the values of both the column density and the velocity of HI clouds. To remove
the contamination from galaxy clusters, and to account for the calibration at high
frequencies, we also added two more selection criteria. One of them is based on
masking pixels where the Comptonization parameter, estimated from the maps
obtained with the MILCA algorithm [215], exceeds the threshold value of 1075.
The second one accounts for a correction of the CMB using SMICA maps [88] at
frequencies between 100 GHz and 353 GHz as templates.

In B15’s algorithm, the calculation of the chi-square is where sparsity enters the
picture. Indeed, instead of computing the “usual” chi-square:

N, Npix

X2 = Z Z res®(v, k; s) , (3.88)
vk

one computes a weighted chi-square, which follows from taking a wavelet transform
of the squared residuals normalized to the variance.

Local likelihood (or chi-square) estimates of a spatially-variant parameter may be
connected to a kernel smoothing [as shown e.g. in 127]. The work by B15 proposes a
generalisation of this fact to multivariate distributions (e.g. the presence of multiple
parameters). In the latter case, the multivariate nature of the distribution introduces
a source separation problem that gets solved through the explicit minimization of the
chi-square. In this context, wavelet bases represent a natural choice for performing
a kernel-weighting.

Following this approach, the squared residuals of equation (3.87) are written in
terms of a multi-resolution decomposition as the sum of an approximation term, plus
a term giving the information on the details of the signal [270]. The new, weighted
residuals are thus (see also equation (3.49)):

Npix Nscales Npix
resi(l/,k; s) = Z ajon (V3 8) Gjon(k) + Z Z ajn(v;s) Yin(k) , (3.89)
n j=jo ™

where j and n give the dilation and the translation of the wavelet basis function 1,
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respectively, being 2/ the wavelet scale. The wavelet basis function is a cubic (B3)
spline, and ¢ is the dual scaling function of 1 at the scale jg. This scale corresponds to
the approximation level — also called last smooth — which encodes signal information
at the lowest resolution. Both functions are represented in Figure 3.16a.

The wavelet coefficients in equation (3.89) are given by:

Npix
ajon(v;s) = Y res’(v,k; 8) ¢, (k) ; (3.90)
k
Npix
ajn(v;s) = Z res2(1/,k:; s) wj*n(k:) , (3.91)
k

for the approximation and the detail levels, respectively.

To ensure normalization and positivity when weighting the residuals, the wavelet
kernel v is split in its positive and negative parts, 1, and ¥_, as illustrated in
Figure 3.16b. This yields the minimization of two separate chi-squares, which can be
expressed as the sum across all the frequencies and pixels (N, and Npix, respectively)
of such weighted squared residuals:

Nl, Npix
bei = Z Z resfpi(y,k;s) . (3.92)
vk

The allowed number of scales for the calculation of the wavelet transform of equa-
tion (3.89) is linked to the number of pixels on each side of the image through the
following relation:

Nicales = floor[log(Npix)/log 2] — 4 . (3.93)

The maps in B15 have Npix = 256, implying that the maximum number of wavelet
scales that can be analysed is four. The resolution per pixel is equal to 1 arcmin, so
they span 4.3° on each side. Generally speaking, images decomposed at the maximum
number of scales are smoother with respect to the results from the decomposition
over less scales (e.g. when comparing four vs three scales in 256-pixel maps). This
is because when less scales are used, the information encoded in the “missing” detail
level is contained in the last smooth, and it does not get thresholded, so it can
retain more contributions to the signal from noisy small scales. The choice of the
number of wavelet scales in the analysis is particularly crucial when dealing with
clusters detected with low SNR. Clearly, the optimal value should be determined as
a trade-off between discarding the noise and keeping the relevant signal.

The minimisation of the weighted chi-square yields the final estimate of the component

source maps:
1

§= 5 arggnin(xi) - arg;nin(xii) , (3.94)

as prescribed by the parametric approach.

A noticeable feature of B15’s algorithm which makes it particularly suitable for
mapping the ICM structure in the outskirts (see section 3.4), is the tuning of
the sparse bases to perform the multi-resolution decomposition. As discussed in
section 3.2.4, wavelets are suitable to represent isotropic signals, such as the CMB.
On the contrary, they do not correlate well with sources like thermal dust or the
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Figure 3.16. Wavelet basis used in the spectral imaging algorithm. (a) Cubic spline
wavelet, 11 o(z), and its associated scaling function, ¢1 o(x), in one dimension [taken
from 275]. (b) Decomposition of a two-dimensional cubic spline wavelet into its positive
and negative parts [adapted from B15].

tSZ effect, which are localized and anisotropic across the sky. For instance, a
possible shock occurring at the periphery of a cluster should be seen as an abrupt
pressure discontinuity in the tSZ signal. Also, inhomogeneities due to clumps or
accreting substructures would affect the projected pressure in a similar manner,
and an optimal basis for the detection of such features is provided by curvelets.
Therefore, the signals from dust and tSZ are processed via a curvelet transform,
which is implemented according to the “first-generation” scheme, both in B15 and
in the rest of this work. For convenience, we recall here that it requires the two
following steps: (i) calculation of the wavelet coefficients of each component at all
scales; (7i) calculation of a discrete ridgelet transform for the all wavelet bands. The
ridgelet transform is practically computed as a one-dimensional wavelet transform
applied to the coefficients of a two-dimensional Fourier transform along radial lines
passing through the centre of the frequency plane.

To denoise the signal, both wavelet and curvelet coefficients get denoised via a soft
thresholding at 1o level (see section 3.2.3). In other words, all coefficients whose
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values do not exceed the square root of their variance are discarded. The residuals
that effectively enter the chi-square are therefore:

res?ﬁi (V’ k’ 8) = R(a’jo,nﬂ ain) ’ (395)

being ai ,, the soft-thresholded detail coefficients; R is the restoration operator which

allows the reconstruction of the signal from its wavelet and curvelet coefficients.

Each calculation of the chi-square mixes all the angular resolutions available
from the input frequency maps (see equation (3.92)). Therefore, it is necessary to
introduce the effect of the instrumental beam into the reconstructed residuals by
means of a deconvolution. The procedure adopted in B15 is based on the sparse
regularization of the Van Cittert deconvolution [446]. Specifically, the thresholded
curvelet coefficients of thermal dust and tSZ are iteratively corrected, to match the
angular resolution between the model map, M(v; s), and the data map, Dypi(v; s),
involved in the residuals [302]. At the (¢+1)-th iteration, the thresholded coefficients
are therefore given by:

ain,t—s—l(y; S) = ain,t(y; S) +a Qt(y; 8) ) (396)

where « is a constant parameter which tunes the regularization, while the correction
calculated at the previous iteration, with index t, is given by:

ot(v;s) = ain(y; s)—B(v)® ain’t(y; s), (3.97)

where ain(l/; s) is the initial values of the thresholded coefficients, and B(v) is the
instrumental beam. In B15, the a parameter is set to 0.25, and the number of
iterations is equal to three. The final results for the tSZ maps of the mock systems

considered in this work are illustrated in Figure 3.17.

3.3.2 Procedure for error assessment

To associate a statistical error to the estimate of the component maps, we used
a bootstrap procedure that allowed us to simulate Ny sets of HFI maps. More
specifically, we followed the three steps below [22].

1. We generated Niot = 100 Monte Carlo realisations of the noise at each HFI
frequency, n,(v), with u = 1,..., Nio referring to the u-th extraction. We
chose the value of Ny as a trade-off between the computational time needed
to perform wavelet and curvelet transforms and the statistical significance.
We assumed the instrumental noise to be Gaussian and spatially correlated
with no correlation among the different frequencies, and we imposed the noise
maps to have the same power spectrum as the jackknife maps (which deviates
significantly from the spectrum of white noise). The extracted noise maps are
therefore constrained to have the same power spectrum as the jackknife maps
themselves. The latter are produced as the half-difference of the so-called
half-ring HFI maps. A “ring” identifies a stable pointing period, during which
the pixels of the focal plane have been visited. The half-difference of such maps
eliminates almost completely the signal from the sky, as well as the majority
of HFI systematics [see 342, for details].
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Figure 3.17. Maps of the tSZ effect showing the accreting, connected and colliding systems
considered in B15, extracted from hydrodynamical simulations [350]. Contours are
logarithmically spaced by a factor of v/2. Top panels. True maps of the Compton
y-parameter from the simulation. Middle panels. Reconstructed maps obtained with
the spectral imaging algorithm when positioning the clusters in a sky region characterized
by a low variance of the instrumental noise (and a higher SNR). Bottom panels. The
same as the middle panels, but positioning the clusters in a sky region with lower

SNR [taken from B15].
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Figure 3.18. Comparison between the raw map at 100 GHz (left panel) and a synthetic
HFI map constructed as prescribed in equation (3.98) (right panel), centred on cluster
A2142.

The HFI raw data at each frequency, Dyrpi(v), have been denoised through
a simple wavelet-based procedure, by calculating the wavelet transform on
three scales, and soft-thresholding the coefficients at 1.50. This procedure
relies on spatially-variant thresholds for each wavelet band, which have been
preliminarily inferred by computing the variance of the coefficients across
wavelet transforms of the noise maps, 7,(v). The amplitude of the noise
residuals in the Dypr den(v) maps is, in any case, negligible with respect to the
amplitude of the noise in the maps extracted as in step 4., which confirms the
efficiency of the denoising.

The mock data have been obtained as the summation of the denoised maps as
derived from step (77), Dypr,den(v), and the u-th noise realization, i.e.:

DHFIu(V) = DHFI,den(V) + nu(lj) . (3.98)

An example of mock HFI map obtained with this procedure is shown in
Figure 3.18 for cluster A2142 at 100 GHz. We used this set of Nyo synthetic
data as input to the imaging algorithm to obtain vectors of maps of each

source component of the kind: sigz = (Stlsza ... ,st]\ggt), Std = (8iy, ... ,si\([f‘”),
— ( 1 Niot )
SCMB = (SCMBy -+ +» SCMB .

The standard deviation of all the bootstrap-based sets — i.e. std(sisz), std(syq) and
std(scmp) — represents our error estimate for each component. In the following, we
label as o, = std(stsz) the error for the tSZ signal only. The level of significance
of the signal, particularly of blobs and filaments occurring in the tSZ images of a
cluster, can be assessed through the ratio y/oy, for a given maximum value of o.
We adopt a conventional threshold of y/oy, = 3 to identify a detection as significant.

3.3.3 Improvements and new features

The spectral imaging technique described above has been applied on real cluster
data collected by HFI and publicly released by the Planck Collaboration in 2015'.

! Available in the Planck Legacy Archive (PLA) at: https://pla.esac.esa.int.
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The test targets we used to assess the performances of the algorithm are the
twelve highest-SNR SZ detections of clusters whose angular sizes exceed 10 arcmin,
constituting the X-COP sample (see section 3.4.1). These systems highlighted some
critical aspects due to:

e the application of the algorithm to real astrophysical data;
e the use of Van Cittert algorithm to perform the deconvolution.

It is worth highlighting that the single grey body model of the original implementation
presented in B15 has been replaced with the double grey body model, as prescribed
in section 3.1.1, before the start of this thesis work. Therefore, all the tests that are
explicitly reported here already account for such a modelling, even if the adoption
of a double grey body is sometimes referred as to a new feature, to be consistent
with what is reported in B15.

Astrophysical contaminants Despite the double grey body model is more suit-
able to describe the signal from Galactic thermal dust, the tSZ maps of a few clusters
revealed that the algorithm still suffered from residual contaminations on large
scales. This can be seen for instance in the left panels of Figure 3.19, showing the
Compton-y parameter reconstructed for clusters A2319, A644 and A1644, which are
affected by large-scale gradients due to diffuse dust.

To solve this problem, we excluded the 857 GHz channel from the reconstruction
of the last smooth image, i.e. at the approximation level. Practically, we do not
account for the term a;, ,,(v = 857 GHz; s) of equation (3.90) in the reconstruction
of resy . Indeed, such a signal contains only the features at the lowest resolution,
therefore it is poorly sensitive to the contribution from data at the highest frequency,
which are the most resolved, yet also more prone to be contaminated from dust.
The middle panels in Figure 3.19 show indeed that this procedure helps in removing
such an unwanted signal, which can influence the detection of interesting features in
cluster outskirts (see also sections 3.4 and 3.4.1).

The diffuse residual dust signal, is not the only residual contamination we found
in the maps after removing the highest frequency from the approximation level.
The most relevant example in this case is cluster A3266, for which we detected
a significant contribution to the signal due to un-modelled infrared point sources,
“mistaken” as tSZ sources by the algorithm. At frequencies smaller than 353 GHz
they are mostly radio sources, while emission at higher frequencies is likely due to
infrared galaxies. Figure 3.20 shows the mask of these point sources at 857 GHz
and their impact on the tSZ map of cluster A3266.

To prevent this kind of contamination, we produced gnomonic projections of the sky
region centred in the clusters of interest from the all-sky masks based on the objects
identified by the Planck Collaboration and listed in the second Planck Catalogue of
Compact Sources®* (PCCS) [339, 345]. The masks have been extracted at the single
HFTI bands (see the example case of cluster A3266 in Figure 3.21a), and they have
been subsequently merged into a single map, which we used to mask the residuals.

2Also available in the PLA.
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Figure 3.19. Comptonization parameter from the spectral imaging algorithm using three
wavelet scales, and maps at 857 GHz of the regions centred on clusters A2319, A644 and
A1644. Left and middle panels show the signal obtained with and without accounting for
the 857 GHz channel in the approximation level of wavelet decomposition, respectively.

Right panels show the raw data at 857 GHz from Planck 2015 release.
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Figure 3.20. Identification and removal of contaminating point sources in the field of
cluster A3266. Left panel. Mask of the point sources identified in the second PCCS
(see text) at 857 GHz. Middle panel. Map of the Comptonization parameter of A3266
from the spectral imaging algorithm, as obtained without accounting for the 857 GHz
channel in the last smooth. It is possible to recognize three point sources, marked with
red circles in both images. Right panel. Reconstructed tSZ map from cluster A3266
after applying the mask of point sources constructed as prescribed in the text, and
shown in Figure 3.21c.

Specifically, we first smoothed each mask with a top hat kernel having radius:

1
7’rnask(V) =35 Fr2€f - Fé’

5 (3.99)

v
being Fict a reference full width at half maximum, here set to 18 arcmin; Fp, is the
full width at half maximum of each beam, with the values listed in Table 3.2. The
value of F.t has been chosen to be larger than the maximum beam width, to avoid
ring-shaped patterns that could introduce spurious artefacts which might correlate
with the curvelet coefficients; the smoothed maps are shown in Figure 3.21b. The
final mask has been then constructed as the product of the single smoothed ones,
as shown in Figure 3.21c. The resulting tSZ map of cluster A3266 we obtained
after masking the point sources is illustrated in the right panel of Figure 3.20.
From the comparison with the map in the middle panel of the same Figure, it is
evident that the masking performed well in removing the residual contamination
from the identified point sources. To avoid possible divergences that could originate
because of the sharp edges of the masked regions, we masked only a few particularly
contaminated clusters. In the case of the X-COP sample, they are clusters A3266,
A85 and ZW1215.

Besides the aforementioned explicit masking of astrophysical sources, we also
added constraints on the values of the thresholded wavelet coefficients of the tSZ
component, prior to the computation of the curvelet transform. To be specific, we
discarded pixels where the value of the chi-square exceeded the following empirical
threshold:

X2k () = 4000 x 277 | (3.100)

which increases (decreases) with the wavelet resolution (scale). At the same time,
we imposed a condition of regularity on the amplitude of the error (i.e. the square
root of the variance) of the wavelet coefficients, to select regions characterized by a
high SNR of the tSZ component. The threshold value in this case has been set to:

Camax(j) = 0.25 x 27| (3.101)
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Figure 3.21. Masks of compact point sources in the region centred in cluster A3266 (see

text for details).
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Figure 3.22. Zoomed maps showing the multi-resolution decomposition of the tSZ signal
from cluster A2142 from the wavelet transform over four scales. (a) Last smooth image.
(b) Thresholded coefficients at the four scales. (c) Error on the coefficients at the four
scales. (d) Thresholded coefficients at the four scales after applying the masks retaining
only the pixels where both the chi-square and the coefficient error are smaller than the
corresponding thresholds given in equations (3.100) and (3.101), respectively.

increasing with the wavelet scale. The example case of cluster A2142 is shown in
Figure 3.22, where we report the coefficient maps at four scales before and after
the masking from the two joint conditions. It can be seen that the masks are
mostly dominated by the constraint of regularity of the error of wavelet coefficients,
given the decreasing size of the unmasked region with increasing resolution. The
application of the restoration operator to the masked coefficients leads to the final
estimate of the best-fit Compton y-parameter, according to the procedure described
in section 3.3.1.

New deconvolution procedure In B15, a regularized Van Cittert deconvolution
is applied to the significant curvelet coeflicients to correct the residuals, to match
the angular resolution of the model and the data maps. This method is iterative,
and there is not a theoretical prescription to fix the optimal number of iterations
to use. For the purposes of validating the algorithm using mock galaxy clusters, a
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Figure 3.23. Results from the tests on cluster A2142 with different number of itera-
tions used in the Van Cittert deconvolution implemented in the tSZ imaging algorithm.
(a) Behaviour of the peak value of the Comptonization parameter across 25 iterations.
(b) One-dimensional cuts through the maps of the Comptonization parameter as recon-
structed with 25 iterations. (c) The same as panel (b) up to 20 iterations and with a
zoom on the cluster centre.

0.00002

number of iterations equal to three provides reliable results down to values of the
Comptonizaton parameter y ~ 5 x 1075, Nevertheless, when the expected signal
level is not known a priori, as in the case of real targets, this does not necessarily
hold.

Referring to cluster A2142 as to a test case, we run the algorithm using up to 25
Van Cittert iterations. The effect of increasing this number has been, as expected,
enhancing the features at the peak, and raising its value. Nevertheless we noticed
that the algorithm was stable only up to 20 iterations, where the peak reached its
maximum value; with further iterations, the algorithm failed to converge. Figure 3.23
shows the one-dimensional horizontal profile passing through the centre of the tSZ
maps reconstructed using 25 and 20 iterations, where the sharpening of the peak is
clearly visible. Figure 3.23b highlights another drawback of using this deconvolution
procedure, which can be seen also from the maps for three iterations shown in
Figure 3.24. Specifically, at radial distances = 30 arcmin from the cluster centre,
where the signal is significantly lower, the signal was characterized by pixel-sized
artefacts. They correspond to local divergences of the algorithm which manifested
at low signal regimes especially when increasing the number of iterations, which
produced the amplification of curvelet coefficients. Such a behaviour could thus
invalidate the reliability of the reconstructed map in cluster outskirts. On the other
hand, a lower number of iterations might lead to an underestimate of the true signal
in the central regions.

These aspects led us to introduce a different deconvolution technique, not based on
iterative corrections. The stability and reliability of the algorithm have been improved
by means of a new wavelet coefficient-wise deconvolution [22]. As the name suggests,
this method is now applied to the wavelet coefficients, instead of to the curvelet-
denoised images. As a consequence, the detection of peaks is more efficient. The
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Figure 3.24. Maps of the Comptonization parameter from cluster A2142, as reconstructed
using six Van Cittert iterations. It can be seen that in regions corresponding to cluster
outskirts the tSZ signal is plagued by diverging artefacts, increasing with number of
iterations.

major change to the algorithm introduced by this deconvolution involves the wavelet
transform of the residuals entering the chi-square to be minimized. Specifically,
the wavelet coefficients of the residuals given in equations (3.90) (approximation
level) and (3.91) (detail levels) have been modified, to account for the Planck beams,
B(v), in the model map. Recalling the full expression of the residuals given in
equation (3.87), the new wavelet coefficients become:

Npix
ajon(V;8) = Z resQ(y, k; s) ¢;f07n(k)
k

Npix (3.102)
=Y oum (v, k){Duri(v, k) — B(v) @ [H M(v, k; s + As) +
k

+ (1= H) M(v, ks — As)]}? ¢, 0(k)

and
Npix
aj,'rL(V; S) = Z 1“682(1/, k;a S) w;k,n(k)
k
Npix (3103)

=Y oup (v, k){Duri(v, k) — B(v) @ [H M(v, k; s + As) +
k

+ (1= H) M(v, ks — As)]}? 45, (k)

for the last smooth and the detail levels, respectively, where H is Heaviside step
function, needed to preserve positivity. The convolution of the model map with the
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Figure 3.25. Illustration of the new wavelet coefficient-wise deconvolution. Left pan-
els. Step-like spatial variation of the parameter, As (solid black line), and instrumental
Gaussian beam (dashed red line). Right panels. Effective spatial variation of the
parameter encoded in the Bs spline kernel. Blue and red lines represent the absolute
value of the positive and negative parts of the wavelet, respectively. The envelopes of
the shaded areas in the bottom panels coincide with the convolution of the instrumental
beam with As (a), and with the support of the positive and negative parts of the
kernel (b). It can be seen that the latter are now correlated, thus the decomposition
cannot be separated as in B15.

beam does not allow the splitting of the wavelet into a positive and a negative part,
differently from the case in which the deconvolution was performed a posteriori. This
is because now the positive and negative spatial variations of the best-fit parameters
(noted here as s + As and s — As) are not mutually independent. Figure 3.25 better
illustrates this concept. Solid lines refer to the case without beam smoothing, while
shaded areas show the effect of the beam. Here the spatial variation As of the
searched parameters is assumed to be positive. The blue and red curves represent
and —t_, which correlate with As and —As, respectively. When the convolution
is introduced, the blue and red shaded areas overlap, therefore it is not possible to
separate the chi-square minimization in two steps, one for each sign of the wavelet.
Coeflicients are soft-thresholded, and the chi-square to be minimized is now:

v

N, NV,
Xo =, resyp(v.kis) (3.104)
k
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Figure 3.26. Maps of the tSZ effect from A2319 as reconstructed from B15’s original
algorithm featuring Van Cittert deconvolution (left panel), and from the new version with
the wavelet coefficient-wise deconvolution (right panel). The color scale is logarithmic
and contours are logarithmically spaced by a factor of v/2.
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Figure 3.27. Absolute value of the pixel-to-pixel difference between the tSZ maps of cluster
A2319 shown in Figure 3.26.

with best-fit parameters estimated as

§= argmin(Xi) . (3.105)
S

The effects of the new wavelet coefficient-wise deconvolution on the reconstructed
tSZ maps can be seen from Figure 3.26, in the example case of cluster A2319. The
absolute value of the pixel-to-pixel difference between the two maps is shown in
Figure 3.27 instead. The result in Figure 3.26a is obtained with three iterations, and
with the convergence parameter « set to 0.25 (see equation (3.96)). It can be seen
that this map, similarly to the case of cluster A2142 shown in Figure 3.24, is affected
by a number of pixel-sized outliers, which plague regions where the level of the signal
is 4y < 7.5 x 1076, The map in Figure 3.26b shows instead that the result from the
new wavelet coefficient-wise deconvolution is cleaner, while the mildly ellipsoidal
shape of the signal in the centre is still well recovered. It is worth stressing again
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Figure 3.28. Profiles of the Compton y-parameter extracted from a 10 arcmin-wide vertical
cut passing through the centre of the tSZ maps of cluster A2319, produced with the
two versions of the imaging algorithm. Solid black lines in each plot represent the
signal estimated from the original HFI maps, while light grey lines are the cuts across
each of the N, = 100 tSZ mock maps from the bootstrap-based procedure detailed in
section. 3.3.2. The solid black curve of panel (a) is superimposed as a dashed red line to
the cuts in panel (b) for comparison purposes.

here that both techniques are sensitive to the basis functions used to project the
deconvolved signal. To be specific, Van Cittert method is particularly suitable in
highlighting ellipsoidal and elongated features, since it is a regularization of curvelet
coefficients. The wavelet coefficient-wise deconvolution, on the contrary, is applied
to wavelet coefficients, thus it provides a better localization and detection of peaks.
This is evident from Figure 3.26b, where the signal in the cluster centre is recovered
more efficiently, with respect to Figure 3.26a. Another important element that
improves peak localization is the larger wavelet support which enters the chi-square
minimization in the new deconvolution (see Figure 3.25), as a consequence of taking
the modulus of the wavelet function to decompose the residuals. Practically, this
corresponds to computing wavelet coefficients over a larger sky region, thus enhancing
the SNR of the detection.

To better illustrate the improvement of the stability in cluster outskirts, we show as
solid black lines in Figure 3.28, the profiles of the Compton y-parameter extracted
from a 10 arcmin-wide vertical cut passing through the centres of the images in
Figure 3.26. Superimposed light grey lines are the same cuts from Niot = 100
different maps of the Comptonization parameter obtained with the bootstrap-based
procedure (see section 3.3.2). It can be seen from Figure 3.28b that the non-iterative
nature of the new deconvolution improves significantly the stability in low-signal
regimes, allowing us to reach a minimum level of y of the order of 10~°, which is
consistent with the sensitivity of HFI. On the other hand, the diverging artefacts
which hampered the reliability of the detection of substructures in the outskirts with
Van Cittert deconvolution, are clearly visible in several realizations of the signal in
Figure 3.28a. Moreover, the dispersion of the bootstrap profiles at radii r = 2Rs50
is on average 50 per cent lower with the new procedure, corresponding to a lower
error in the reconstructed signal in these regions. The different characterization of
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Figure 3.29. Distribution of the gas in a galaxy cluster extracted from the MUSIC
CSF data set. The box is 12h~'Mpc on each side, covering ~ 6R5oo from the centre
of the cluster. Multiples of the Rjgo radius are marked in the figure [taken from
http://music.ft.uam.es].

the central peak discussed above is also clear from Figure 3.28b, where the value
recovered with Van Cittert deconvolution is & 23 per cent lower with respect to the
value obtained with the new one based on wavelet coefficients. Such a difference
is due to the joint effect of both the larger SNR provided by the absolute value
of the wavelet kernel, and the number of iterations (three) used in Van Cittert
deconvolution, as shown e.g. in Figure 3.23.

The following section is dedicated to an interesting science case which can be
investigated with our new procedure: the structure of thermal pressure as derived
from the tSZ maps in the outermost regions of galaxy clusters.

3.4 Unveiling the outskirts of galaxy clusters

The outskirts of galaxy clusters are of particular interest for astrophysics and
cosmology. Indeed, they “mark the transition from the cosmic web to the ICM” [16],
and they host several complex physical phenomena driven by the continuous accretion
of matter onto the cluster centre. Figure 3.29 shows the gas distribution at z = 0 in
a region enclosing a sphere of 62~ Mpc radius centred on a galaxy cluster extracted
from MUSIC hydrodynamical simulations [403] (see also section 4.2). It can be
clearly seen how the ongoing process of cluster formation shapes the gas distribution,
which highlights accretion along filaments from the outer regions, at radii » 2 3R5q0-
Cluster outskirts correspond to the radial range [367]:

R500 < 7 < 3Raq0 ,

where the lower end corresponds to the maximum radius accessible to current X-ray
observations of moderate exposure time, while the higher end is the radius which
marks the transition to the warm-hot intergalactic medium.

The outskirts region encompasses a number of characteristic radii related to inter-
esting physical processes. They are:
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i. the turn around radius from the spherical collapse: r ~ 2Ry (see also
section 1.4.2);

ii. the infall region (with radii of the order of several Mpc) where caustics in
galaxy redshift space are observed;

i1i. the region which is expected to host most of the accretion shocks (between
Rvir and 3Rvir) [292];

1. the few-Mpc region where the two-halo term starts dominating over the one-
halo term [113].

The understanding of such a variety of phenomena is extremely important, as
they can significantly affect the thermodynamic structure of the ICM, possibly
leading to observational results which are in disagreement with the theoretical
predictions based on self-similarity. In this respect, cosmological simulations are
undoubtedly a useful tool to investigate the physics of cluster outskirts. Indeed,
numerical studies revealed that hydrostatic equilibrium does not hold in these regions.
Moreover, the gas distribution is characterized by clumps and inhomogeneities, with
filamentary structures or diffuse “bridges” possibly connecting the virial regions
of neighbouring clusters. Also, a significant injection of turbulence from accretion
shocks is present [e.g. 450]. All these features introduce biases in the estimate
of cluster masses relying on thermodynamic quantities under the assumption of
hydrostatic equilibrium, and this can potentially affect the derivation of the related
cosmological parameters [381, 17, 256, 16].

From an observational point of view, the combination of complementary data
in the X-ray and microwave bands is an optimal strategy to reconstruct the radial
profiles of thermodynamic quantities from the cluster centre to the outskirts. As
discussed in section 2.1.3, the X-ray signal suffers from low statistics at large cluster-
centric distances, mainly due to the contamination from the particle background,
while providing a detailed mapping of the ICM in cluster cores. Spectroscopic
measurements in this band are often limited to radii r ~ R5g9. Nevertheless, it is
worth mentioning that the low-background Suzaku X-ray satellite [249] recently
allowed measurements up to r >~ Rsgyp = Ryir on a sample of four nearby relaxed
clusters [318].

Despite such a promising achievement, the tSZ effect remains the best observable to
probe cluster outskirts. This is testified e.g. by hydrodynamical simulations, which
showed that the fluctuations of the tSZ signal at r = Ragg are about three times
smaller than those of the X-ray signal detected at the same radius [381].

In this perspective, the recent X-COP (XMM Cluster Qutskirts Project®) represents
a reference study [144]. The project focusses on a sample of twelve massive objects
(Msoo > 3 x 10*My) located at low to intermediate redshifts, 0.04 < z < 0.10,
observed in X-ray by XMM-Newton [441, 422] and at millimetre wavelengths by
Planck. The sample objects have been selected imposing that the SNR of the Planck
detection is larger than 12. Furthermore, the characteristic angular size 05qq, i.e.
the angle subtended by the Rsgp radius of each cluster, is larger than 10 arcmin, so
that they are well-resolved by Planck (see Table 3.2).

3https://dominiqueeckert.wixsite.com/xcop
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Table 3.3. Identifiers, SNR of the Planck detection, redshifts, physical properties and
galactic coordinates of the twelve galaxy clusters in the X-COP sample [taken from
173]. Galactic coordinates are taken from the NASA/IPAC Extragalactic Database
(https://ned.ipac.caltech.edu).

Cluster name Planck SNR z Msoo (x10"Mg)  Rsoo (kpe) 0500 (arcmin) 1 (deg) b (deg)

A2319 30.8 0.0557 7.31 1346 20.8 75.70 13.51
A3266 27.0 0.0589 8.80 1430 21.0 272.13  -40.13
A2142 21.3 0.0909 8.95 1424 14.1 44.22 48.68
A2255 19.4 0.0809 5.26 1196 13.1 93.97  34.95
A2029 19.3 0.0766 8.65 1414 16.3 6.44 50.53
A85 16.9 0.0555 5.65 1235 19.2 115.23  -72.03
A3158 17.2 0.0597 4.26 1123 16.3 265.05 -48.93
A1795 15.0 0.0622 4.63 1153 16.1 33.82 77.18
A644 13.9 0.0704 5.66 1230 15.3 229.93  15.29
A1644 13.2 0.0473 3.48 1054 19.0 304.88  45.45
RXCJ1825% 13.4 0.0650 4.08 1105 14.8 58.31 18.54
ZW1215¢ 12.8 0.0766 7.66 1358 15.7 282.50  65.19

¥ The full identifiers for these two clusters are RXC J1825.34+3026 and ZwCl 1215.14+0400,
respectively.

The main physical properties of the X-COP clusters are summarized in Table 3.3.
The details on the joint analysis of these data can be found in [173], while Figure 3.30
provides an overview of some thermodynamic profiles in the radial range 0.01 <
r/Rs00 < 2. Results indicate that the density and pressure profiles are in agreement
with previous findings. Specifically, their behaviour is consistent with that of an
ideal gas in hydrostatic equilibrium within the potential well of a NFW dark matter
density profile. Self-similarity is fulfilled at radii beyond 0.3 R500, with no significant
differences between the cool core and the non-cool core clusters. Also, the entropy
profiles beyond 0.5R509 are consistent with a purely gravitational generation of
entropy, as predicted theoretically. From a comparison of the measured values of
the gas fraction with the cosmic baryon fraction, the median amount of non-thermal
pressure relative to the total pressure is found to be of the order of 6 per cent at Rsog
and of 10 per cent at Rapg. The only exception is represented by cluster A2319 [145],
which is a noticeable outlier in the sample [see the dedicated work 172].

3.4.1 TSZ imaging of X-COP galaxy clusters

Our aim is to complement the exquisite analysis of the X-COP clusters with an
improved mapping of the Compton y-parameter. To this end, we applied the
algorithm detailed in section 3.3 to the latest frequency maps by Planck 2018
release. Figure 3.31 shows our maps of the tSZ effect for the twelve clusters in the
sample. In the majority of cases, the algorithm highlights the presence of blobs
or extended filamentary structures at radial distances r 2 Rsgp from the cluster
centre. The average minimum values of the Compton y-parameter we can recover
from the faintest resolved structures are 2.0 x 107% and 4.2 x 1079, with a minimum
significance of 30, and 50y, respectively. This represents an improvement of a factor
of 2.5 in sensitivity with respect to the version of the algorithm presented in B15,
where the minimum signal for a 30 detection is y = 5 x 1075, It is important to
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Figure 3.30. Radial profiles of the ICM density, temperature and pressure (from the top
to the bottom panel, respectively) of the clusters in the X-COP sample, as derived from
the joint analysis of XMM and Planck data [taken from 154].

stress that, thanks to the deconvolution, the algorithm is capable to recovering the
elongated structure of the signal in the cluster central regions (see e.g. the cases of
A2142 and A1644).

A particular cluster case which is worth mentioning is that of A2319, which is
known to be a complex merging system that behaves as an outlier with respect to
the other clusters in the sample [see 172, 145, 173]. The tSZ map of this object
shows a number of blobs located in the virial region, which may be due to either
substructures or clumpy ICM patches. The detailed study of these features and of
their impact on the thermodynamic properties of this system is still in progress.

3.4.2 The cases of A2029 and RXCJ1825

Clusters A2029 and RXCJ1825 are two interesting targets for testing the algorithm.
Among the X-COP clusters, they have been detected by Planck with intermediate
(19.3) and low (13.4) SNR, respectively. A2029 has been widely studied in X-rays [see
e.g. 260, 105, 66, 460]; on the contrary, RXCJ1825 has been poorly investigated
in this band since its discovery [141]. Both clusters may be interacting with two
known neighbouring systems, as suggested by the Planck Collaboration in [335].
Nevertheless, given the low significance of the data, no further analysis on the tSZ
signal from possible connecting filaments has been explored in their work.

A2029

We show in Fig. 3.32a the contours from our map of the tSZ effect, superimposed to
the X-ray surface brightness of A2029. We report the data from the ROSAT satellite,
which allows the detection of the X-ray emission at larger radii than those probed
by Chandra or XMM-Newton, thanks to its low particle background [440, 452]. The
raw data have been denoised via the adaptive smoothing technique [142]. It can
be seen that the tSZ signal in the central region matches fairly well with the X-ray
surface brightness. Thanks to the deconvolution, we are able to detect the tSZ
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Figure 3.31. Zoomed maps of the Comptonization parameter of all the X-COP clusters,
as obtained with our spectral imaging algorithm. Solid and dashed cyan circles on top
of the images mark the R509 and Rsgo radii, respectively. The color scale is logarithmic
and contours are logarithmically spaced by a factor of v/2, starting from 2 x 1076, The
J2000 Equatorial coordinates of the cluster centres are reported in the bottom right
corner of each map.

emission corresponding to the neighbouring cluster A2033 with a significance of
80y, which together with A2029 belongs to a small supercluster [147]. The X-ray
and the tSZ peaks of A2033 show an offset which is, in any case, smaller than the
best resolution of 5 arcmin provided by Planck. Our tSZ map clearly highlights
an elongated projected structure that connects the two clusters. As testified by
the image showing y/o, in Fig. 3.33a, this elongated excess of signal is significant
to better than 50y. X-ray images do also show such an elongated morphology
in the peripheral regions to the north-east, pointing to A2033. This suggested a
possible ongoing merger between the two objects [see e.g. 142, 460]. However, recent
analyses of the reconstructed density field through gravitational lensing, indicate
that this signal is likely due to the gas in the overlapping outskirts of the two clusters
at Ropo, rather than to a filament connecting them [179]. Our tSZ imaging does
represent an improvement with respect to the map shown in fig. 1 of [335], where
the emission from A2033 is barely detected, as well as the signal between the two
clusters. However, we cannot favour any of the two hypothesised processes. On the
other hand, our maps may help in discriminating among possible scenarios proposed
to explain the observed excess, for instance in future works combining microwave
and X-ray data to model the three-dimensional thermodynamic properties of the
ICM in each component of the system.
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Figure 3.32. X-ray and tSZ signals of clusters A2029 and RXCJ2815. The maps show the
vignetting-corrected and background-subtracted surface brightness in the X-ray energy
band 0.5-2.5 keV. The superimposed contours represent the Compton y-parameter from
our algorithm. The solid and dashed cyan circles on top of the images are drawn at R5g
and Ragg, respectively. The shaded circles in the bottom left corner of the maps represent
the 5 arcmin beam of the tSZ maps. (a) Cluster A2029 mapped by ROSAT /PSPC. The
cyan cross indicates the position of the neighbour cluster A2033. (b) Cluster RXCJ1825
mapped by XMM-Newton. The cyan cross marks the position of cluster CIZAJ1824,
while the green arrow identifies a significant elongation which may be associated with
stripped gas from a nearby group of galaxies.
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Figure 3.33. Maps of y/o, from a bootstrap run on clusters A2029 and RXCJ1825. The
overlapped contours represent the tSZ signal.

RXCJ1825

In Fig. 3.32b, we show the X-ray surface brightness of RXCJ1825 from XMM-Newton,
featuring wavelet denoising. The tSZ contours from our algorithm are superimposed
to the image. As in the case of A2029, the tSZ emission follows pretty well the
X-ray surface brightness. In particular, we notice that the peaks of the signal in the
two bands coincide within 1 arcmin. The tSZ signal shows a significant elongation
towards the neighbouring cluster CIZA J1824.143029 (CIZAJ1824 hereafter), even
if the peak corresponding to this object is not clearly visible. A recent analysis
based on the kinematics of their member galaxies, suggests that RXCJ1825 and
CIZAJ1824 are in a pre-merger state [177]. Thus, also in this case, our maps may
shed a new light on the hypothesis of a possible interaction in future analyses.
Interestingly, our tSZ map shows a 140,-significant elongation to the south-west of
the cluster, highlighted with a green arrow in Fig. 3.32b, which agrees with the excess
in the X-ray surface brightness detected with XMM-Newton. Such an emission
may be due to gas stripped from the past interaction between RXCJ1825 and a
small, disrupted group of galaxies, which have been detected at the same redshift in
the optical band [106]. This scenario is also supported by the recent finding of a
radio halo extending in the same direction of the X-ray elongation [63]. Another
feature we notice in the signal is the presence of a third structure located within
Rs00, that contributes at a level of y ~ 5 x 10~°, and which is not detected in X-rays.
Nevertheless, the significance of this detection is 35 per cent lower with respect to
the signal in the centre, as demonstrated by the map in Fig. 3.33b, constructed from
a bootstrap run. Therefore, its detection is likely due to some localised irregularity
in the instrumental noise in the raw HFI data.

To further quantify the significance of the signal reconstructed with our algorithm
as a function of the radius, we computed the profiles of the ratio o, /y that is the
inverse of the effective SNR. Specifically, we show in Fig. 3.34 the average of the
vertical cuts passing through the centre of the maps of o, /y within a 10 arcmin-wide
band, for the clusters A2029 and RXCJ1825. It can be seen that our algorithm
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Figure 3.34. Profiles of g, /y of clusters A2029 and RXCJ1825. The purple dashed lines
correspond to an effective SNR of 3 (0, /y = 1/3, see text for details).

provides a reconstruction of the signal with an effective SNR > 3 (marked with a
dashed purple line in the plots), up to radii r ~ 2R50o for both clusters.

3.4.3 Impact of tSZ substructures on pressure profiles

As anticipated in section 2.2, accurate maps of the SZ signal are extremely valuable
to derive the pressure of the gas and — when combined with spectroscopic and
photometric data in X-ray — its temperature and density. As for the pressure, X-ray
data are extremely useful to constrain the innermost regions of the profiles, whose
reconstruction from tSZ measurements is often less reliable, since it is limited by a
lower angular resolution. Thus, a number of joint analyses of SZ and X-ray data
have been proposed to explore pressure profiles across a wide radial range [see e.g.
297, 54, 334, 143, 68, 173]. In any case, pressure profiles along the cluster radius
from the deprojection of SZ data alone have also been extensively investigated in
the literature [see e.g. 332, 393, 3, 379, 394, 380, 385].

In the majority of cases, there is an agreement in describing pressure profiles as self-
similar, referring to the gNFW analytical model [303] introduced in equation (2.11).
Also, following [303], the ICM pressure along the cluster radius has been charac-
terized in many numerical works, e.g. with the aim of assessing the impact of
different prescriptions for the gas physics, sometimes with the proposal of alternative
models [see.g. 233, 30, 351, 185].

We mention here two reference parametrizations proposed in the literature.

The first one has been introduced by Arnaud and collaborators for a representative
sample of galaxy clusters [14]. This parametrization, which defines the so-called
universal pressure profile, has been determined using X-ray data up to Rsgg, and
data from three different sets of hydrodynamical simulations at larger radii.

The second parametrization refers to the pressure profiles derived from the stacked
tSZ maps of a sample of 62 galaxy clusters observed with Planck, which use pressure
data derived from XMM-Newton observations in the innermost regions [334].
Figure 3.35 shows the fit to the gNFW model of pressure profiles from two samples
of clusters detected by the Planck satellite in two redshift ranges, namely z < 0.5
and z > 0.5. It can be seen that self-similarity holds at intermediate radii, while
the core and the outskirts are characterized by larger scatters. This feature has also
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Figure 3.35. Fit to the gNFW model of pressure profiles for single clusters (solid cyan
lines). The left panel refers to nearby objects (z < 0.5), while the right panel shows
the profiles of distant clusters (z > 0.5). The dashed red lines represent the profile
parametrized by the best-fit values found by the Planck Collaboration [334]. The lower
panels in each plot show the dispersion of the single pressure profiles relative to the fit
to the stacked profiles, given by the solid black lines with purple envelopes at the 68 per
cent confidence level [taken from 68].

been found in the X-COP sample, where the intrinsic scatter of the thermodynamic
profiles is minimum at radii 0.2Rg00 < 7 < 0.8 R509 [173].

Generally speaking, the large scatter in the core regions is mostly due to the impact
of radiative processes. On the other hand, the behaviour of the profiles at radii
r > Rsqo is affected by the complex dynamics and morphology of the outskirts.
Specifically, clumps and inhomogeneities in the gas distribution, as well as substruc-
tures (see also section 2.1.2) or turbulence injection which are characteristics of
these regions, may induce a breaking of the fulfilment of hydrostatic equilibrium,
which is one of the underlying assumptions of cluster self-similarity. In this context,
high-resolution imaging of clusters with the tSZ effect has an outstanding role to
investigate the presence of filamentary structures, anisotropies or the occurrence of
shocks in the outskirts, which are hardly detectable through X-ray measurements [see
e.g. 5]. For instance, the recent work by [385] shows that overpressure detected
with measurements of the tSZ effect at high angular resolution with the NIKA2
camera, produces a non-negligible bias towards higher values in the pressure profile
at radii » < Rpoo- This is also expected to have a cosmological impact by means of
the estimate of cluster masses based on the self-similar scaling relation linking the
mass with the integrated Compton y-parameter. Using our improved tSZ imaging
of well-resolved, large systems, we aim at characterizing the impact from pressure
substructures beyond Rs5gg for the first time.
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Recipe for unbiased pressure profiles

In this preliminary analysis, we use Planck 2018 data for the X-COP clusters to
derive unbiased pressure profiles from the masking of signal features at small scales
located beyond Rsg9. To constrain the pressure profiles from our data set, we follow
the forward approach based on template fitting, proposed in [68].
Pressure profiles from tSZ data are generally inferred from the radial profile of
the Comptonization parameter, obtained by averaging the signal in the maps over
concentric radial bins as proposed e.g. in [334]. This implies first of all to rely on a
specific technique for an efficient extraction of the tSZ signal, but most importantly,
it requires to subtract a zero-level offset with the aim of removing the astrophysical
and instrumental background in the vicinity of the cluster. Such an offset is generally
estimated by averaging the tSZ signal at sufficiently large radial distances from the
centre. A major drawback of this procedure is that, depending on the offset value
that is subtracted, the resulting profile may appear to be characterized by steep
drops, which can mimic the effect of pressure shocks [see for instance the recent
work by 213].
The forward approach is based, instead, on fitting the radial profiles of the available
data, i.e. the HFI frequency maps. The removal of the astrophysical and instrumental
contribution in the selected region is made by means of a wavelet high-pass filter, so
that all spatial scales larger than the cluster size are suppressed® [see 68, for further
details on this procedure]. The model profiles which we compare to the profiles
obtained from the data, are constructed assuming the general prescription given in
equation (3.78), i.e. properly combining the spectral and physical modelling of the
sources of interest (CMB, thermal dust and tSZ effect). The frequency modelling is
the same as the one described in section 3.3.1. The spatial modelling for CMB and
thermal dust is obtained from the wavelet-denoised frequency maps at 217 and 857
GHz, respectively. The physical component of the tSZ signal is given, as usual, by
the Comptonization parameter of equation (3.85).

We rewrite here, for convenience, equation (2.11) giving the gNFW profile,
evaluated at the overdensity A = 500:

bo

p(r) 500 (e500m)Y[1 + (c5007)](B=7)/

(3.106)

We recall here that, py is a dimensionless normalization factor and csgg is the
concentration, defined as c500 = Rs00/7s, being r¢ the scale radius of the dark matter
density profile by [307], as in equation (2.3). The Pso scaling factor, which is a
function of mass and redshift, is determined from self-similar arguments assuming a
perfect gas law, as detailed in [303] and in [14]. It can be written as

Ms00 2/3
3 x 10145 1M,

Psoo = 1.65 x 1073 E¥/3(2) h? keV em ™3 | (3.107)

being E(z) the Hubble parameter normalized to its present-day value (see equa-
tion (1.13)). In the following we will refer to a ACDM cosmology, so that E(z) =

4This relies on the use of HFI maps not corrected by any offset, differently from the imaging
case.
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Figure 3.36. Re-normalization of the Compton y-parameter for cluster A2319 (see text for
explanation).

(14 2)3Qumo + Qa]Y2, with parameter values Q0 = 0.3, Q4 = 0.7 and h = 0.7, as
in [68].

To get the best-fit parameters for the pressure profiles corrected for biases due
to substructures, we proceeded as described in the following. We considered three
X-COP clusters whose tSZ maps feature interesting substructures, namely: A2319,
A2029 and A85. We applied the method by [68] described above to extract the
pressure profiles of the clusters from the corresponding unmasked HFT data. We then
used the set of parameters of the gNF'W profile derived from the above fit, which
we list in the top rows of Table 3.4, to evaluate the best-fit maps of the Compton
y-parameter. The signal from substructures located in the peripheries of each cluster
has been then obtained by evaluating the residuals between the tSZ maps from our
spectral imaging algorithm (shown in Fig. 3.31), and the corresponding model maps
mentioned above. To avoid zero-level biases, we re-normalized the signal in our tSZ
maps, y, to the best-fit signal, yp¢, as illustrated in Figure 3.36 in the example case
of cluster A2319. To this end, we computed the radial profiles across the data and
the model maps, represented as the purple and the black lines in Figure 3.36. Then,
we calculated a robust linear fit within 3R5qg, to retrieve the normalization factor, m
and the intercept g, such that the relation between the model map, yp¢, and the data
map vy, is: ypr = my + ¢, being m and ¢ constants, as shown in the panel inserted to
the left-hand side of the same figure. The re-normalized signal is then calculated as
Yrenorm = M Y + ¢, as represented by the orange curve. The shaded bands around
the profiles of ¥ and of ¥enorm have been obtained from the radial profiles of the
1oy, bootstrap-derived error maps on y, described in section 3.3.2.

After re-normalizing the signal, we computed the residuals yrenorm — Ynt- In particular,
we selected only the residual signal located outside the Rs5pg radius, and we imposed
it to have an amplitude higher than 1lo,, which is the error on the tSZ maps
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Table 3.4. Best-fit parameters to the gNFW model obtained from the procedure described
in [68]. The v parameter has been kept fixed to 0.3081, which is the value by [14]. We
distinguish the two cases without and with the masking of tSZ-detected substructures.

Configuration  cluster name Do €500 «@ 1]

A2319 9.8+0.5 0.65+0.09 0.88+0.04 5.8+0.2
Without masks A2029 5.7+2.1 23+04 1.5+£14 3.6+0.3

A85 3509 3.0x+03 70+14 2.7+0.1
A2319 5.6+0.3 039+£0.02 1.044+0.02 9.6£04

With masks A2029 2606 02+0.2 1.0+0.1 25+6
A85 33£09 25£04 48+16 3.2£05

we estimated from the bootstrap technique. The resulting masks that we use to
exclude the pixels in the calculation of the profiles are shown in the middle panels
of Figure 3.37, together with the un-masked and the masked tSZ signal. Despite
the large radial range covered by our maps, we limited the calculation of all radial
profiles and of the corresponding best fit to the maximum radius r = 3R5q0, which
is a limit imposed by the SNR of the available data. It is important to stress that
the mask has been applied to the single frequency maps by Planck in the template
fitting procedure. Figure 3.38 shows the preliminary results on the gNFW pressure
profiles from our method after removing overpressure in the outskirts, in the cases
of cluster A2319, A2029 and A85. The corresponding best-fit parameters are listed
in the bottom rows of Table 3.4. It can be seen that, as expected, the pressure
profiles become steeper in the outskirts in the masked case, because of the removal of
pressure from substructures. In the case of cluster A2319, which has been detected
by Planck with the highest SNR, we find smaller envelopes, and the two profiles are
distinguishable at the 68% confidence level beyond Rjq.

The remarkable aspect that we want to stress here is that the effect of substructures
on pressure in the outskirts can be clearly seen in single cluster profiles. Clearly, this
method can be applied only to well-resolved objects, as in the case of the X-COP
sample detections with Planck.

Future developments

The robustness of the above procedure for substructure masking is currently under
test, with a possible comparison with X-ray photometric data. In particular, we plan
to extend this analysis to all the clusters in the X-COP sample and, subsequently,
to the stacked data to compare our results with known universal profiles from the
literature. A proper treatment of possible cluster asphericities will be also addressed,
by means of a refinement of both the adopted theoretical model and the masks.

Also, this assessment could have a significant impact on the general thermodynamic
properties of the unique case of cluster A2319, which we are addressing in a work
in preparation. In the dedicated study by the X-COP collaboration [see 172], the
diverse behaviour of this system with respect to the other clusters in the sample has
been interpreted as a consequence of its complex dynamics. Indeed, the support from
non-thermal pressure in this cluster has been found to be at the level of 50 per cent
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Figure 3.37. Removal of significant substructures from the maps of the Compton y-
parameter of clusters A2319, A2029 and A85. Left panel. Original signal from the
clusters as obtained from the imaging algorithm applied to the six HFI raw data
maps. Middle panel. Mask applied to the signal to remove substructures (see text
for the procedure). Right panel. Signal which is actually kept after the masking of
substructures. Circles are drawn at 1, 2 and 3Rs5qq.
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Figure 3.38. Fit to the gNFW pressure profiles using the unmasked and the masked data
(i.e. without substructures), for clusters A2319, A2029 and A85. The shaded bands give
the 68% confidence limit. The sub-panels to the bottom of each plot show the relative
difference between the two profiles.

of the thermal one at the virial radius. Nevertheless, the outlying pressure profile of
A2319 may be also explained by accounting for the pressure contribution from small
structures, which are clearly detected in our maps of the Compton y-parameter of
this object. Such additional pressure may ultimately bias the cluster mass towards
higher values, which can have an impact on the rescaling of the pressure profile itself
within Rs09. More generally, a correction of the effect of pressure substructures on
the mass of single clusters would have an impact on cluster-based cosmology. Indeed,
as discussed in section 1.4.2, it is a central quantity in the cluster mass function,
and it can affect the estimate of the related cosmological parameters.
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Chapter 4

Clusters rotation and kinetic
Sunyaev—Zel’dovich effect

In this Chapter, we introduce the problem of the underestimate of cluster masses
descending from the assumption of hydrostatic equilibrium. In this context, we
focus on the contribution from non-thermal motions as a possible solution and, in
particular, we investigate the rotation of the diffuse medium in clusters. To this
end, we provide a summary on the techniques which can be used to detect cluster
rotation, focussing on the kSZ effect. Then, we introduce the set of hydrodynamical
simulations of clusters that we considered in our analysis, namely the MUSIC
catalogue. It follows a study on the properties of the angular momentum vector
of the gas and the dark matter components in a selected sample of clusters, which
allowed us to introduce a new law for gas rotation along the cluster radius. We
then present our study on the recovery of the rotational signal from mock maps of
the kSZ effect, assuming the best observational configuration. We conclude with a
preliminary investigation of cluster rotation inferred from the velocities of the galaxy
members, in the light of possible multi-probe observations of rotation in clusters
with future instruments.

4.1 Rotational motions in galaxy clusters

The ICM in galaxy clusters is characterized by ubiquitous non-thermal motions at
different scales, as testified by a number of numerical studies [see e.g. the recent
review by 413]. On large scales, the continuous process of structure formation induces
accretion-driven flows of gas towards the cluster centre, which can be associated with
both coherent radial infall and turbulence [e.g. 449]. More complex events, such as
merging of smaller clusters, can trigger sloshing motions and they can originate cold
fronts, with abrupt gradients of the thermodynamic properties. On the other hand,
the small-scale dynamics in the innermost cluster regions are largely influenced by
the energy feedback provided by the central AGN.

A possible interesting scenario is that the diffuse matter components in clusters
(i.e. the dark matter and the ICM), and possibly also the galaxies, may have coherent
rotational motions. Large-scale global rotations supposedly originated from tidal
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torques have been firstly investigated by Peebles in 1969 [322]. Such rotations can
account for the non-zero angular momentum of large structures, given that the
contribution to this quantity from non-ordered motions is averagely null. More
specifically, the amount of rotational energy can be quantified by the total spin
parameter:

ol
e
being Lio, £ and M, the modulus of total angular momentum vector, the total
energy and the total mass of the cluster, respectively.

As suggested by numerical simulations, off-axis mergers of clusters can also originate
a rotation, with velocities of the order of thousands kms™! [373, 378, 374]. As a
consequence, a gradient in the velocity structure of the ICM should be observed, as
reported in the analysis by [140] based on X-ray data.

Besides affecting the global evolution of the formed structures, rotational motions
of the ICM can impact cluster astrophysics and cosmology. For instance, rotation is
expected to induce magneto-rotational instability in cool core clusters [313], and it
may decelerate the accretion of matter to the BCG [442].

From a cosmological point of view, rotation can play a significant role in obtaining
reliable estimates of cluster masses. The latter are key observables to constrain the
parameters concerning with structure formation [see the recent review by 355]. As
discussed in section 2.1.3, cluster masses can be derived from different observables.
The most widely used method, though, is based on evaluating the radial gradients
of the profiles of the thermodynamic properties of the gas, under the assumption
of hydrostatic equilibrium within the potential well of dark matter. In a SZ-based
approach, the hydrostatic mass within the radius r can be derived from the gradient
of the pressure profile, combined with the density profile from ancillary X-ray data.
We report here for convenience the corresponding expression as in equation (2.19):

(4.1)

~rp(r) dlnp(r)
Mo <) = =G0y dinr

While being based on more and more precise reconstructions of the thermodynamic
profiles of the ICM, the above approximation systematically underestimates the true
cluster mass. Indeed, several numerical works indicate that the relative difference
between the true and the hydrostatic mass ranges between 10 and 25 per cent [e.g.
363, 304, 232, 221, 330, 10, 283, 403, 42]. Such a discrepancy is then quantified
through the hydrostatic mass bias:

_M_Mhe

bhe = ————= | (4.2)

where the true mass, M, can be easily obtained from simulations as the sum of the
masses of all the particles.

Besides the biases which may be introduced by asphericity, a possible cause of
this difference could be a non-negligible contribution from additional non-thermal
pressure terms supporting the gas against gravity. These terms can originate from
ICM flows associated with turbulence, or to coherent motions such as rotation or
radial infall [161, 162, 449, 254, 40, 308, 255, 309, 410]. In this respect, the mass of
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a cluster can be written by virtue of Euler’s equation and Poisson’s equation as [162]

_ 1 (v 2
M_477G/s[ pV(p—i—pturb) (v-V)v|- d°S, (4.3)

where S is the surface enclosing the gas, p is the pressure of the gas, p is its density,
and v is its velocity. The term proportional to the pressure gradient takes into
account the contribution from random motions, both thermal and turbulent, which
are associated with the corresponding pressure terms p and piyp. On the other
hand, the velocity term includes the support from ordered motions, i.e. rotation
and streaming. Thus, from equation (4.3), the full expression for the mass can be
written as

M = Mhe + Mturb + Mstream + Mot ) (44)

which reduces to the hydrostatic one when neglecting the dynamical masses associated
with turbulence and ordedred motions.

The explicit expressions of the streaming mass and of the rotational mass follow
from the evaluation of (v - V)wv in spherical coordinates [43]. Denoting the polar
and the azimuthal angles as 6 and ¢, respectively, one has:

1 vg + vi 9
Ms ream — - d°S 4.5
t e /3 ( r (4.5)

B 1 ov,.  vg Ovy vy Ovp 9
Mror = rﬂa/s (a Tt rsmew 4S5

(4.6)

Figure 4.1 shows the radial profiles of the mass terms of equation (4.4), evaluated
separately for a relaxed and a disturbed cluster taken from the simulations analysed
in [162]. The top panels illustrate that the hydrostatic mass alone (solid red lines)
clearly underestimates the true mass (solid black lines). On the contrary, the true
mass is better recovered when the dynamical terms (dashed red lines) are taken into
account, as illustrated by the solid green line. Specifically, the correction is more
relevant in the innermost regions (below r < 0.3Rs50p), where a larger rotational
support is expected. As highlighted in the bottom panels of Figure 4.1, the streaming
mass term, Mgiream, is generally found to be less important in the total mass budget
with respect to the rotation term, especially in a relaxed cluster. In any case, its
contribution increases in the cluster outskirts, which are dominated by radial infall.
Such findings suggest that accounting for the mass terms arising from non-thermal
pressure could be a promising solution to the problem of mass bias.

In the recent work by [145], a quantitative estimate of the non-thermal pressure
support in the ICM based on observations is addressed for the first time, in the case
of the X-COP cluster sample (see section 3.4 for a description). In particular, the
amount of non-thermal pressure support is evaluated by measuring the deviations of
the universal gas fraction from the predictions based only on gravitational collapse.
The median value of the non-thermal vs thermal pressure ratio is found to be of the
order of 6 per cent at Rsog, and of 10 per cent at the virial radius. These values are
smaller than the predictions from numerical simulations, which may be explained
in terms of a faster and more efficient thermalisation of the kinetic energy in real
clusters. However, in the case of cluster A2319 the above ratios take the values of 42
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Figure 4.1. Radial profiles of the mass terms appearing in equation (4.4). Left (right)
panels illustrate the case of a simulated relaxed (disturbed) cluster. Top panels. Profiles
of the mass from the sum of the rotational and the streaming terms, the thermal mass
(Miherm, corresponding to My,.), the sum of the above three terms (M), and true mass
from the simulation data (Miy.). Bottom panels. Profiles of the contribution to the
total mass profile from the rotational and streaming masses, in units of 10'3*Mg, [taken
from 162].

and ~ 50 per cent at the same radii. This may be due to the very complex structure
and not yet fully unveiled dynamics of this system. In any case, observations tailored
to unveiling the dynamics within clusters are fundamental to address this problem.

4.1.1 Observational probes

Observationally speaking, the presence of rotational motions in clusters of galaxies
is very challenging to be assessed. However, several methods can be applied to
multi-wavelength cluster data to reach this goal, as reviewed in [189]. Indeed, global
rotation can be investigated from spectroscopic measurements towards the galaxy
members at optical wavelengths [216, 437, 271], or from observations of the diffuse
ICM in the X-ray band [39, 266] and in the millimetre band through the kSZ
effect [112, 101]. We provide below a short overview of the approaches exploiting
optical and X-ray observations, and we will discuss the case of the kSZ effect in
more detail in the dedicated section 4.1.2.
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Figure 4.2. Schematic view illustrating the construction of the rotation curve proposed
by MP17. Blue (green) points represent the projected positions of the galaxies within
a cluster, having a positive (negative) projected velocity along the line of sight. The
dashed line corresponds to the projected axis of rotation of the galaxies. The three
panels show the example configurations with 0 = 0°, 45°, 90°, respectively, where 0 is
the angle between the rotation axis and the axis pointing to the North (orange line).
Subscripts 1 and 2 in the definition of the velocity difference given in equation (4.7)
refer to the corresponding half-planes shown here.

Optical band

Spectroscopy-based measurements of the velocity of the member galaxies can be used
to establish the presence of a global rotation in clusters, under the assumption of a
co-rotation of the baryonic components. A possible method consists in evaluating
the spatial correlation between the velocities of the galaxy members [317]. However,
the most used technique is based on measuring velocity gradients of galaxy velocities
across the cluster [277, 216]. For instance, in [437] the rotational state is inferred
from the spatial distribution of member galaxies having higher or lower velocities
with respect to the mean global velocity. With this method, 26 per cent of the
analysed clusters are found to be rotating.

The recent work by Manolopoulou & Plionis (2017) [271] (MP17 hereafter),
proposes an improved variant of the velocity gradients technique. It is based on
identifying rotating clusters from the inspection of a rotation diagram, which is
constructed considering the projection of the velocity of the single galaxies along the
line of sight. More specifically, referring to Figure 4.2 for a schematic visualization,
the observed plane of the sky is divided in two half-planes, labelled here as 1 and
2, by means of a horizontal axis, which is kept fixed. From the projected velocities
of the galaxies located in the two half-planes, it is possible to compute the average
values, (vjos)1 and (vjes)2. The curve in the rotation diagram is a plot of the velocity
Vdiff*

Udiﬁ(e) = (Ulos>1 - <Ulos>2 , (47)

for varying orientations of the rotation axis of the galaxies projected on the plane of
the sky, relatively to the vertical axis pointing to the North (0, see Figure 4.2). If the
projected rotation axis coincides with the vertical axis, as in the initial configuration
shown in the left panel of Figure 4.2, the average velocities in the two half-planes
should both cancel to zero. To construct the rotation diagram, all the projected
galaxy positions are rotated by an angle @ in the clockwise direction. In this way,
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Figure 4.3. Example of rotation diagram for the member galaxies of a simulated cluster

rotating at 450kms~!. The ¢ angle in the legend gives the complementary angle

to the orientation between the line of sight and the rotation axis. In this case, the
maximum rotational signal, corresponding to the two axes being orthogonal, occurs
when ¢ = 0° [adapted from MP17].

also the rotation axis is rotated by 6 with respect to the vertical axis of the figure.
If & = 90°, the two half-planes will contain only positive or negative projected
velocities, respectively. Therefore, the velocity difference vg;r(90°) will be about
twice the average velocity, which is ideally the same in both half-planes. The final
curve of vgif is expected to be a sinusoid as a function of the rotation angle 0, as
illustrated in Figure 4.3 for different orientations of the line of sight. The projected
rotation axis is inferred as the one corresponding to the value of 8 which provides
the highest amplitude in the rotation diagram. If the rotation axis is not oriented
perpendicularly to the line of sight, the rotational signal gets dimmed, becoming
almost undetectable for mutual orientations smaller than ~ 30° (corresponding to
¢ 2 60° in Figure 4.3). Thus, the expected random orientation of the possible
rotation axes of clusters with respect to the line of sight, clearly puts an intrinsic
limit on the fraction of observable rotating clusters.

In MP17, two criteria are used to establish whether a cluster is rotating or not. They
are based on (7) the value of the chi-square relative to the expected ideal rotation
diagram, and (77) the value of the Kolmogorov—Smirnov probability calculated from
the distributions of v)s in the two half-planes. By applying this procedure to a
total sample of ~50 clusters, the authors find a fraction of 23 per cent rotating
candidates, with galaxy rotational velocities of the order of a few thousand kms—!.
Nevertheless, it should be stressed that the above method is largely prone to suffer
from projection effects. Furthermore, since the dynamical evolution of the galaxies
and of the ICM are significantly different, the assessment of a global rotation of
the baryonic components of clusters is not straightforward. Indeed, as discussed in
the upcoming sections, the results obtained from the study of the velocities of the
member galaxies and those derived from the X-ray signal of the same cluster can be
controversial.

X-ray band

One of the most direct ways to measure the rotation of the gas in clusters is based
on X-ray spectroscopy, since any gas motion induces the shift and the broadening of
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spectral lines [217]. In particular, the spatial distribution of the radial velocity is an
important indicator, which can be inferred from a fit to the position of the spectral
lines. Also, the line width resulting from the impact of gas motions is expected to
be dominant with respect to the width due to thermal broadening.

As discussed also in section 2.1.3, the iron K, line at 6.7-6.9 keV is the most
prominent emission line in X-ray spectra of clusters; therefore, the corresponding
energy band would be the optimal one to investigate the presence of a rotation.
However, at present these measurements are not feasible because of the insufficient
spectral and angular resolutions of currently available instruments. Indeed, the high
angular resolution needed to map the velocity structure requires the use of CCD
cameras, with a consequent loss in spectral resolution [266]. The latter, on the other
hand, should be as high as the one needed to detect temperature variations < 20eV,
for rotational velocities of the order of 1000 kms™'. In this respect, upcoming X-ray
missions, e.g. Athena [23, 382] and XRISM [433], can potentially shed new light
on the kinematic properties of the ICM, thanks to their improved sensitivity and
unprecedented spectral resolutions.

Despite the difficulties mentioned above, the measurement of the velocity gra-
dients in Perseus cluster reported by [140] provides one of the first attempts to
constrain rotation in clusters with X-ray data. More recent observations of the same
cluster with the Hitomi satellite, indicate that the velocity dispersion in the core
regions are compatible with a relatively low amount of turbulent motions, suggesting
a quiescent dynamics [199].

Another interesting study tailored to the investigation of the ICM rotation by means
of X-ray data has been recently proposed by [265]. They focus on cluster A2107,
which has been found to be possibly rotating based on the results from recent studies
of the velocities of the member galaxies in the optical band. To assess a possible
rotation of the ICM, the authors produce a velocity map from the emission-weighted
shift of the iron K, line, as measured from Chandra CCD spectra. The maps are
then fitted to a model which has been constructed following the prescriptions by [39],
which follow from simulations. While being based on a promising approach, the
results show that it is not possible to establish whether the ICM in A2107 is rotating
or not. Moreover, the direction of the projected axis of rotation inferred from X-ray
spectroscopy is significantly different from the one derived with the method by MP17
applied to galactic velocities. The angle between the two axes is indeed ~ 144°, with
momentum vectors pointing in opposite directions. This fact suggests that, even in
the presence of a global rotation within the same cluster, the baryonic components
do not necessarily co-rotate. In this respect, the comparison with the results from
data at millimetre wavelengths, namely via the kSZ effect, represent the ideal probe
to confirm the rotational state of the diffuse gas in clusters.

A further X-ray observable which has been argued as a possible signature of gas rota-
tion is the flatness of the isophotes tracing the surface brightness maps, as suggested
by [162, 39]. Nevertheless, this indicator is likely less reliable than spectroscopy-
based tracers. For instance, mock maps from hydrodynamical simulations of clusters
showing a significant amount of rotational support do not feature evident flattening
of X-ray isophotes [see 40].
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Figure 4.4. Temperature anisotropy in nK produced by the rotational kSZ effect from a
massive cluster, according to equation (4.9). Axes labels are in units of the NFW scale
radius of the cluster [taken from CCO02].

4.1.2 Rotational kSZ effect

The kSZ effect is, in principle, another direct probe of the gas velocity projected

on the line of sight (see equation (2.34)). Therefore, it may potentially be used to

investigate ICM rotation.

Such a possibility was explored for the first time in the pioneering works by Cooray

& Chen (2002) [112] (CCO2 hereafter), and by Chluba & Mannheim (2002) [101].

For the sake of completeness, we rewrite here equation (2.34) in the following form:
ATisz () S nevp dl (4.8)

TovB ¢,
oS

which gives the temperature shift produced by the kSZ in the non-relativistic regime,

observed along the direction identified by the vector #i. Here v, is the projection of

the gas velocity on the line of sight (los) which, in the simplest case, has a constant

value.

If the gas rotates according to a law described by a generic angular velocity w(r)

along the cluster radius, equation (4.8) for such a rotational component becomes:
ATz (R, ) v 2r d

kSZ,r {41, ar . rdr
—— = = ——Rcos¢s —_—
- ¢sini [ ne(r) w(r) gy

R

4.9
TovB (4.9)

as prescribed in CC02. R and ¢ in equation (4.9) are the polar coordinates of the
map in the plane of the sky, while r is the three-dimensional radial distance from
the cluster centre of mass. The sin ¢ factor accounts for the orientation, given by the
angle ¢, of the line of sight with respect to the rotation axis of the gas. If the line of
sight is orthogonal or parallel to the rotation axis, the amplitude of the signal will
be therefore maximum or null, respectively.

Figure 4.4 illustrates the temperature signal of equation (4.9) in the case of the
best observational configuration, corresponding to i = 90°, for a cluster having
My =5 x 10MMg at z = 0.5. It can be seen that the map features a dipole-shaped
pattern, with two symmetric peaks having opposite sign. The rotation is here
assumed to follow a solid body law, with a constant w(r) = wg,. The positive peak is
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Figure 4.5. Schematic view illustrating the expected kSZ map from a rotating cluster,
assuming the best observational configuration (i.e. with the line of sight orthogonal to
the axis of rotation). The gas distribution in the cluster is assumed to be spherically
symmetric, with the rotation axis aligned with the angular momentum vector of the
gas as measured at the virial radius (Lgas). The velocity vectors, v, and v,, indicate
respectively the approaching and receding velocity components along the line of sight
for two generic gas particles, located at the same radial distance from the cluster centre
of mass.

produced by the projected velocity of the gas approaching to the observer; vice-versa,
the negative one is due to the receding gas. A simple view of the same observational
configuration is shown in Figure 4.5. In particular, this scheme clearly highlights
that in this case the dipole is aligned horizontally with respect to the projected
axis of rotation, supposedly coincident with the direction of the angular momentum
vector of the gas at the virial radius.

In a more realistic case, the kSZ signal from a cluster is not only due to a pure
rotational motion. Indeed, the contribution from the cluster bulk velocity is also
present, and it may be dominant with respect to the rotation, depending on the
projection of the bulk velocity itself on the line of sight.

The full signal describing the theoretical kSZ due to a possible rotation plus the
bulk motion is therefore:

Rvir
ATksz(R, ¢) ATkSZ r(R, qb) or / 2r dr
= J — —— Upy Nel(T) — ) 4.10
Tevms TevmB ¢ A (r) Vr2 — R? (4.10)

where the ATigz (R, ¢)/Tcmp term for the rotational component is given in equa-
tion (4.9), while vy denotes the projection of the cluster bulk velocity of the gas on
the line of sight. In this case, the expected signal is characterized by an asymmetric
dipolar pattern, depending on the dominating approaching or receding vy, for a
given line of sight. If the projected bulk motion is significantly dominant with respect
to the projected rotational motion, then the signal will reduce to the “classical” kSZ
effect, with a single peak at the cluster centre, which is illustrated in the left panel
of Figure 4.6.
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Figure 4.6. Possible contaminations of a purely-rotational dipole in CMB temperature
anisotropies. (a) KSZ signal from the cluster bulk motion. (b) Dipole induced by
gravitational lensing on the CMB. (c¢) Total signal, from the sum of the kSZ component
from the bulk, the kSZ due to ICM rotation, and CMB lensing, supposedly aligned to
the axis of rotation.

In [101], assuming the results of CC02 as a starting basis, they report a detailed
analytical development of the characteristics of the rotational signal (e.g. the posi-
tion of the peaks and the spatial extension of the dipole) as a function of cluster
physical parameters, still referring to the case of a solid body rotation. By assuming
a f-model for the electron number density (see equation (2.8)), some estimates of
the expected amplitude are provided, in the perspective of a future detection with
interferometric methods towards a set of nearby candidate clusters. In both CC02
and [101], the amplitude of the signal at the dipole peak is estimated to range
between a few pK and tens of pK. Such estimates mainly depend on the mutual
orientation between the line of sight and the ICM rotation axis, and on the dynamical
state of the observed cluster. Specifically, since rotation may originate from merger
events, it is reasonable to expect larger angular velocities in clusters involved in
recent mergers.

The rotation of the ICM is not the only physical process which originates a dipole
pattern in CMB anisotropies as photons propagate through galaxy clusters. Indeed,
the gravitational lensing from the gradient of the dark matter potential in clusters
can produce a dipole, which is aligned with the CMB large-scale gradient [402]. In
addition to this, the transverse component of the bulk velocity of the cluster with
respect to the line of sight produces a further lensing term, that is the moving-lens
effect [291] originating from the non-linear Rees—Sciama effect. Both these lensing
contributions have different orientations and amplitudes, which are expected to be
of the order of ~ 10 and a few 1K, respectively. The imprint from lensing on CMB
temperature anisotropies is illustrated in the middle panel of Figure 4.6, for the
same cluster used to produce Figure 4.4. The right panel of Figure 4.6 shows instead
the total signal coming from ICM rotation, plus the cluster bulk motion, plus the
CMB lensing effect. In principle, the different dipole patterns can be separated
by means of their different orientations and spatial extensions. Indeed, the CMB
large-scale gradient is unlikely to be aligned with the rotation axis of gas in clusters.
On the other hand, the rotational kSZ effect occurs mostly in the cluster innermost
regions, (as testified by Fig 4.4), while the spatial extension of lensing dipoles covers
larger scales. A classical approach to the problem of disentangling the lensing signal
from the SZ effect has been discussed in [402], through suitable matching filters. On
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the other hand, the more recent work by [360] proposes a novel procedure based on
inpainting.

At present, a significant detection of the rotational kSZ with the available
instrumentation has not yet been achieved. Besides lensing, also the contamination
from the CMB itself, as well as from either foregrounds or instrumental effects,
must be properly addressed (see also the paragraph dedicated to kSZ observations
in section 2.2.4). Another important aspect is to reduce as much as possible the
uncertainties affecting the reconstruction of complementary ICM properties (e.g.
the temperature) based on X-ray observables, which are needed to disentangle
the velocity. In this respect, the X-COP study (see section 3.4.1) provides an
efficient approach for unveiling cluster properties, which points to interesting future
perspectives. Furthermore, it is fundamental to have an exquisite angular resolution
to observe the kSZ. The recent significant detection of the kSZ signal from the
NIKA camera at 260 GHz with an effective angular resolution of 22 arcseconds [4],
undoubtedly represents a promising result.

Towards a possible multi-wavelength detection of rotational motions in real

clusters with future instruments, modern high-resolution gas-dynamical simulations
are extremely valuable tools for preliminary analyses. A very first assessment of the
detectability of turbulent and ordered motions through the kSZ is reported in [423].
The authors consider a large, isolated galaxy cluster from a cosmological simulation
populated with dark matter and non-radiative gas physics. The kSZ map of this
object shows the presence of a possible coherent rotation, that can be deduced from
two clearly distinguishable spots of opposite sign in the innermost regions of the
cluster.
In the following, we take a step forward, making use of more realistic high-resolution
cluster simulations to improve the estimate of the rotational kSZ signal, and to
possibly describe the ICM rotation with a more suitable model for the rotational
velocity, different from the simple solid body.

4.2 The MUSIC data set

MUSIC (Marenostrum-mUltidark SImulations of galaxy Clusters') is among the
largest data set of high-resolution hydrodynamical simulations of clusters of galax-
ies [403]. It consists of more than 700 clusters and more than 2000 groups of galaxies,
populating the MUSIC-1 and MUSIC-2 sub-sets. The latter have been built from
the re-simulation of two parent N-body simulations: MareNostrum Universe [180]
and MultiDark [354], respectively. Gas physics is treated according to both a purely
gravitational prescription (NR run, see also section 2.1.1) and two modellings in-
cluding radiative feedback from cooling and star formation mechanisms (CSF run),
plus feedback from AGN (AGN run).

MareNostrum Universe is a non-radiative SPH simulation with two billion gas
and dark matter particles (2 x 1024%), in a cubic box of 500h~! Mpc on a side.
The adopted cosmological model in this simulation takes the parameter values
from WMAPI results, i.e. Qo = 0.3, Qpg = 0.045, Qp = 0.7, 0g = 0.9, ns = 1.0,
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h = 0.7 [245]. The MUSIC-1 sub-set consists in the re-simulation of 164 clusters from
the MareNostrum Universe data set. They are selected according to their dynamical
state, to re-simulate 82 relaxed objects, and 82 bullet-like clusters (referring to the
case of cluster 1E0657-556 in Carena constellation, known as bullet cluster).
MultiDark is a dark matter-only simulation run in a cubic box of 1h~! Gpc on each
side, containing 20483 particles. The cosmological model used in this simulation takes
the values from the joint fit of WMAP74+BAO+SNI data: ,,0 = 0.27, Qp = 0.0469,
Qp = 0.73, 0g = 0.82, ng = 0.95, h = 0.7 [245]. The clusters chosen for MUSIC-2
re-simulations are those having virial masses My > 1015h_1M@ at redshift z = 0,
for a total of 282 objects.

4.2.1 Code and re-simulation technique

MUSIC re-simulations have been generated using the GADGET-3 code [415]. Tt
is a massively parallel, hybrid TreePM+SPH entropy-conserving code, where the
gravitational force is computed using a hierarchical multipole expansion (see also
section 2.1.1). Specifically, Poisson’s equation is solved by splitting the gravitational
potential in two terms: a long-range term whose solution is computed as prescribed
by the PM procedure, and a short-range term solved by the Tree algorithm, which
divides the space into smaller cells. The main physical quantities are derived from
the interpolation of discrete values with the following spline kernel:

1—6(r/hs)®> +6(r/hs)® for 0<r/hs <05
21— (r/hs)]? for 05<r/hs<T1, (4.11)
0 for r/hs>1

W(r, hs) = m

s

proposed by [293], where r is the comoving distance between two fluid particles. The
comoving smoothing length, hg, varies according to the resolution, being equal to
6h~! kpc in the high-resolution areas.

To re-simulate the clusters from the parent simulations with higher resolution,
especially in the view of including radiative processes, MUSIC simulations employ
the zooming technique of [239], implemented in a number of numerical works [e.g.
468, 365, 25, 116]. This procedure consists in filling the simulation box with particles
of decreasing mass resolution (increasing mass value) with increasing distance from
the centre of the box.

More specifically, each cluster selected from the two parent simulations at z = 0
is enclosed in a cubic box of 1h~! Gpc-side, centred on the cluster centre of mass.
The high-resolution region is chosen to coincide with the spherical volume of radius
6h~! Mpc, Sy, centred on the cluster, which encloses the outskirts region of massive
objects (~ 3Ry for My ~ 10'°h~IMg). To create new initial conditions, all
the particles within Sy, extracted from a low-resolution version of the two parent
simulations (filled with 2563 particles), are mapped back to the highest considered
redshift (z = 9 in MUSIC), to identify the corresponding Lagrangian region which
will evolve into the Sy, region around the cluster at z = 0. Once the new initial
conditions are provided, the high-resolution sphere is filled with 20483 and 40963
particles for MareNostrum Universe and MultiDark clusters, respectively. In MUSIC-
1 re-simulations the mass is fixed to mpy = 1.03 x 109h_1M@ for dark matter
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particles, and to mg,s = 1.82 x 108h~ M, for gas particles. On the other hand,
the corresponding values in the case of MUSIC-2 are mpy = 9 x 108h~'My, and
Mgas = 1.9 X 108h~ M), respectively. The value of gas particle masses varies in
radiative runs, always being of the order of a few 10%h~!Mg. In any case, the
values of the masses mpy and mg,s are chosen to be consistent with the assumed
baryon fraction in the corresponding sub-set. The remaining volume of the box is
filled with shells of dark matter particles with decreasing resolution down to 2563,
with a total of 4 shells for MUSIC-1 clusters and 5 shells for MUSIC-2 clusters,
corresponding to as many mass refinements. It is worth to stress that SPH gas
particles are included only at the highest refinement level. This procedure allows to
save considerable computational time, while following the evolution of small-scale
processes with appropriate resolution, over a large cosmological box.

The identification of virialized structures formed in each simulation box is made
through the parallel Amiga Halo Finder (AHF) algorithm [242]. It automatically
finds haloes, sub-haloes, and minor structures formed in the simulations which
enclose a minimum of 20 particles [241]. The strategy adopted by the AHF is to
find density peaks in a hierarchy of grids having a higher refinement in over-dense
regions. It also provides the removal of unbound high-velocity particles causing
perturbations in cluster dynamics.

Prescriptions for baryon physics

The modelling of the sub-grid physics of the CSF and AGN subsets in MUSIC
accounts for the effects of radiative cooling, ultraviolet photoionization, star formation
and supernova feedback, including the effects of strong winds from supernovae, as
described in [417]. Stars are assumed to form from cold gas clouds on a characteristic
timescale t,, and a stellar mass fraction 5, = 0.1 is instantaneously released due to
supernovae from massive stars (M > 8Mg). This is consistent with assuming an
universal Salpeter initial mass function with a slope of —1.35. In addition to this
mass injection of hot gas, thermal energy is also released to the interstellar medium
by the supernovae. The number of collisionless star particles spawned from each
SPH parent gas particle is fixed to 2. Kinetic feedback is also included: gas mass
losses due to galactic winds, My, is assumed to be proportional to the star formation
rate Mgpg, i.e. My = N« Mspr with 1, = 2. Additionally, the wind contains a
fixed fraction €, = 0.5 of the total supernova energy. SPH particles near the star
formation region are subject to enter in the wind in an stochastic way, given an
isotropic velocity kick of v = 400kms~!. Figure 4.7 shows pictures from 6 out of
the total 14 snapshots, illustrating the gas density across the evolution of a massive
cluster from the CSF run.

The simulations including AGN feedback have been carried with the same version
of the GADGET-3 code that has been used for the simulations presented in [350].
This model is based on the original implementation by [416] (SMH model), with
feedback energy released as a result of gas accretion onto supermassive black holes
(BH). In this AGN model, BHs are described as sink particles, which grow their
mass by gas accretion and merging with other BHs. The seeding of BH particles has
been modified with respect to the original SMH model, and occurs only in haloes
where star formation took place. A minimum mass of 5 x 10h~ M, is assumed for
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Figure 4.7. Snapshots of cluster 205 from MUSIC radiative run (CSF), within a box of
6h~! Mpc on each side. Each image shows the gas density, and yellow dots represent
stars [taken from http://music.ft.uam.es].

a friends-of-friends (FoF) group of star particles to be seeded with a BH particle.
Seeded BHs are located at the potential minimum of the FoF group, instead of at
the density maximum, as originally implemented by SMH. The pinning of the BH is
regulated at each time-step to avoid advection. In this way a BH particle remains
within the host galaxy, when this becomes a satellite of a larger halo. A more strict
momentum conservation during gas accretion and BH merger is also set. Two BHs
now merge when they are located at a distance from each other that is less than the
gravitational softening and when their relative velocity is less than half of the sound
speed. Finally, the AGN feedback is provided via thermal energy to the surrounding
gas particles. Eddington-limited Bondi accretion produces a radiated energy which
corresponds to a fraction €, = 0.1 of the rest-mass energy of the accreted gas. A
fraction of this radiated energy is thermally coupled to the surrounding gas with
feedback efficiency ey = 0.1. This parameter is regulated to reproduce the observed
relation between the BH mass and stellar mass of the hosting halo [361]. Special care
is devoted to the treatment of multi-phase and star forming particles to avoid loosing
the AGN energy [see 350, for details]. No mechanical feedback is implemented in
these runs, therefore jets and raising bubbles are not described. The transition from
a ‘quasar’ phase to a ‘radio’ mode of the BH feedback happens when the accretion
rate onto the BH becomes smaller than 1 per cent of the Eddington accretion [see
also 411, 159]. At that instant, the efficiency of the AGN feedback is 4 times larger.
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4.2.2 The Three Hundred project

The MUSIC code and data set constitute the benchmark used to assess the properties
of the simulated clusters constituting the recent data set of The Three Hundred?
project [116]. It consists in state-of-the-art hydrodynamical simulations of galaxy
clusters with high mass resolution, run as a zooming-based re-simulation of objects
extracted from MultiDark PLanck2 (MDPL2) [240]. The latter is a dark matter-only
simulation run in a cubic box of 1h~! Gpc side, containing 3840° particles with
mass MpM,MDPL2 = 1.5 X 10°h~ M, whose initial conditions are based on the
cosmological parameters reported by the Planck Collaboration in 2015 [344].

More specifically, The Three Hundred data set consists of 324 spherical regions
with a radius of 15A~! Mpc having M > 8 x 1014A~1M at z = 0, which have
been extracted from the parent MDPL2 simulation. The mass resolution for the
dark matter and gas particles is the same as in MUSIC, namely mpn + mgas =
1.5 x 10°27'My. On the other hand, the major difference with MUSIC resides in
the improved treatment of gas physics. Specifically, The Three Hundred simulations
are produced using the GADGET-X code, which features the implementation of a
modern SPH scheme, which optimally treats discontinuities between different gas
phases, thus overcoming the mixing problem affecting “classical” SPH codes [see e.g.
405]. Moreover, a more realistic modelling of sub-grid physics is also implemented,
including feedback from AGN.

The main properties of the re-simulated clusters at z = 0 in The Three Hundred
catalogue have been compared to the most recent compilations of observational
data concerning with the concentration-mass relation, several indicators related to
the stellar mass (e.g. the stellar fraction), and the main scaling relations in the
optical, X-ray and microwave (SZ) bands. A comparison with the results from the
GADGET-MUSIC code run towards the same initial conditions is also performed,
as well as with the results from three different semi-analytical models of galaxy
formation. The comparisons above show a good overall agreement between The
Three Hundred outcomes and observational data. In particular, quantities related
to star formation are better recovered with respect to MUSIC-based runs, which
are characterized by an unrealistically efficient star formation because of the lack of
AGN feedback. Noticeably, the properties of the ICM are consistent between the
two numerical schemes and with the reference data. These results represent a very
promising basis for future investigations on the dynamical properties of clusters,
taking advantage of such improved, more realistic simulations.

In the following, we illustrate our analysis of MUSIC data tailored to unveiling
rotational motions of the ICM, which will be possibly extended to the more recent
The Three Hundred data set.

4.3 Rotation in MUSIC clusters

The assessment of rotational motions in the diffuse components in galaxy clusters
can be addressed in two steps. The first one consists in characterizing the behaviour
of the angular momentum vector along the cluster radius. Such an investigation is
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possible only by using simulated data, since they allow the reconstruction of the
three-dimensional dynamical vectors of all the particles within the clusters. From
the characterisation of the specific angular momentum, it is then possible to infer the
rotational law describing the tangential velocity as a function of the cluster-centric
distance. The second step is to test a possible observational probe to unveil the
expected motions. In this respect, the kSZ effect is one of the most promising probes,
since rotational motions should imprint a characteristic signature on the temperature
anisotropies induced by this effect, namely a dipole pattern.

In the following we apply such a two-step approach to a selected sample of MUSIC
clusters.

4.3.1 Selected cluster sample

One of the main advantages of working with simulated data is the absence of possible
selection biases which, on the contrary, affect data collected from observations. For
instance, X-ray measurements are flux-limited, meaning that objects that are too
faint cannot be detected. On the other hand, measurements of the SZ effect are
mass-limited, since they are not (ideally) affected by cluster redshift.

To avoid any selection effect, we limited the investigation of rotation in clusters
to a mass-selected sample of clusters extracted from the whole MUSIC-2 sub-set.
Specifically, we picked all the objects with masses My > 5 x 10h~ Mg at z = 0,
since they constitute a complete volume-limited sample. In other words, this means
that more than 80 per cent of the clusters found in the original MultiDark volume
of (1h~! Gpc)? above this mass limit at the same redshift have been re-simulated in
MUSIC-2.

This sample has been considered for a number of ancillary works, e.g. the study of
SZ and X-ray scaling relations [403, 41], and the characterisation of the dynamical
state by means of X-ray indicators applied to the maps of the tSZ effect [104].

Relaxed clusters

With the aim of unveiling a possible rotation of the ICM, we identified the most
relaxed objects in the above selected sample. This choice prevents possible contami-
nations from the motion of the gas in substructures located within the virial radius
of the clusters. Indeed, in the specific case of the kSZ signal, the projected velocity
of substructures along the line of sight may mimic the pattern of the expected
signal from the rotation of the ICM. Whenever the distinction among relaxed and
unrelaxed clusters is quoted in the forthcoming analysis, we refer to the criteria
described in the following [20].
To assess the dynamical state of a cluster, we evaluated two dynamical indicators
derived from the simulation data, which are largely employed in the literature [see
e.g. 310, 353, 235, 284, 404, 240, 42].

Specifically, the first indicator is the normalized offset between the position of
the maximum density peak, r,, and the position of the centre of mass, rcy, that is

_ |rﬂp — "'CM|

A
" Rvir

(4.12)
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The second indicator we consider is the ratio between the mass of the largest
substructure within the virial radius and the virial mass of the halo, Mg,,/Myir [see
also 404]. A cluster is classified as relaxed if it simultaneously satisfies both the
conditions Ar < 0.10 [139] and Mgyp/Myir < 0.10 [15, 404, 284]. Using these joint
criteria, 57 per cent of the clusters in the total sample have been classified as relaxed.
This fraction is consistent with results from observational data [see e.g. 383], from
the analysis on the morphology of MultiDark simulated clusters [451], and from
estimates for the re-simulated clusters in The Three Hundred catalogue [116].

4.3.2 Analysis of the angular momentum

Spin parameter

As discussed in section 4.1, the rotational state of a halo can be quantified by
calculating the spin parameter A, evaluated at the cluster virial radius. It can be
interpreted as the ratio between the angular velocity of the system, and the angular
velocity needed to provide rotational support to it [319], which is strictly connected
with the circular velocity at the virial radius, veire = /G Myir/ Ryir-

Besides its classical theoretical definition (see equation (4.1)), several simplified
definitions have been introduced in the literature to calculate the spin parameter
in simulations [see also 77, 180, 75]. In the following, we adopt the expression
introduced by [77]:

Ltot
\/ivCiI'CMViI'RViI‘ .
The main reason for this choice is that the above equation allows us to write the
spin parameter of each single matter component (gas or dark matter, DM hereafter),
thus allowing for a comparison between their rotational properties. Indexing each
component with p, one has:

(4.13)
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We found that the values of the DM spin parameter are very close to those derived
from the total angular momentum. This is not surprising since the mass of the
DM component dominates over the baryonic one. The relation between Aot and
Apm is linear, with a slope close to unity for all the three analysed subsets (NR,
CSF and AGN). We show in Figure 4.8 the explicit comparison between the spin
parameters of gas and DM, indicating a clear linear relation between the two. The
corresponding best-fit parameters, obtained from a robust fit to the data using the
bisector method [218], are listed in Table 4.1.

A (4.14)

If rotation in clusters arises from tidal torques on large scales, then the spin
parameter of the DM component is expected to follow a log-normal distribution [97].
Figure 4.9 shows the distributions of the spin parameters for the gas, the DM and
the total matter content of the clusters in our sample, for the three different flavours.
It can be seen that they are well-described by a log-normal distribution of the kind:

PO dr = ——exp <—M> dx | (4.15)
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Figure 4.8. Relation between the spin parameters of the DM and ICM components for all
the clusters in the sample from the three runs. The solid magenta lines represent the
robust linear fits.

Specifically, the scale parameter Ay and the shape parameter ¢ derived from our
sample of clusters are reported in Table 4.2. As expected, the similarity between
total and DM values is also evident from these results. When comparing our values
of the parameters with other works, we find a general agreement [26, 77, 447, 407,
180, 268, 75]. It is worth to stress that these studies refer to galactic or proto-galactic
haloes, with the exception of [268], where objects on different scales are considered
(from galaxies to clusters), and of [180], which include clusters of galaxies of the
MareNostrum gas-dynamical simulation. Therefore, this result suggests that the
shape of the distribution does not vary significantly from galaxies to clusters. The
values of g gas are typically larger than those of the DM (by 13 per cent in our
case), suggesting more rotational support. This may be because tidal interactions
with surrounding large-scale structures have had more time to apply torques to the
gas accreted at a later time.

Angular momentum profiles

After characterizing the spin computed up to the virial radius, we studied the
amplitude and the direction of the specific angular momentum vector along the
cluster radius, considering only the relaxed clusters. We produced radial profiles

Table 4.1. Values of the correlation coefficient (ceorr) and of the parameters for the linear
fits shown in Figure 4.8, performed with the bisector method.

Data set  ceorr Slope Intercept

NR 0.84 0.90+0.04 —0.001=£0.002
CSF 0.83 0.91+0.056 —0.001=+0.001
AGN 0.83 0.91+0.04 —0.001+0.001
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Figure 4.9. Distributions of the spin parameters of each matter component (along columns)
for the three analysed subsets (along rows). The solid lines represent the fits to the
log-normal distribution.

describing its modulus and orientation with respect to the angular momentum
computed at the virial radius. We considered 15 concentric spheres with radius
increasing logarithmically, from r = 0.05 Ry to 7 = Ry, to have a suitable radial
sampling. We did not impose any condition on the number of particles in each sphere,
but we would like to remark that the minimum amount of particles in each sphere
is always above 10%, i.e. enough to lead to robust results. For the i-th sphere, the
modulus of the specific angular momentum j(< r;) = [§(< ;)| has been estimated
as

N;

) |Z T X mkvk|

jl<ri) = T = : (4.16)
> my,

k

where N; is the number of particles inside the i-th sphere, r; is the position of the
k-th particle relative to the centre of mass, my is its mass, and vy is its velocity
vector subtracted by the velocity of the centre of mass.

The angle a(< ;) quantifies the orientation between the angular momentum vector
within the radius r;, relative to the direction of the angular momentum vector at

Table 4.2. Values of the parameters \g and ¢ from the log-normal fits to the spin parameter
distributions for DM, gas and the total matter components of the analysed sample.

Data set /\O,tot Otot )\O,DM ODM )\O,gas Ogas

NR 0.0292 0.5655 0.0289 0.5674 0.0333 0.5470
CSF 0.0287 0.5641 0.0288 0.5638 0.0330 0.5489
AGN 0.0289 0.5810 0.0289 0.5755 0.0330 0.5416
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Figure 4.10. Radial profiles of the orientation (left panel) and the modulus (right panel)
of the specific angular momentum of the gas in the three runs. The two populations of
relaxed rotating and relaxed non-rotating clusters have been distinguished. The points in
the plots represent the mean values for each population, and the shaded bands indicate
the 1o scatter with respect to the mean.

the virial radius. Thus, it is defined as

A

a(< r;) = arccos [](< ) - j(< Rvir):| ; (4.17)

being j(< r) = j(< 7)/j(< r). In the case of a simple solid body rotation, a(< r;)
is expected to be always null along the cluster radius.

To define the rotational state of a relaxed cluster, we considered the value of
the spin parameter of the gas as the discriminant indicator, since it quantifies the
contribution of the gas rotational energy to the total energy of the cluster, by
definition. We classify a cluster as rotating if it satisfies the condition Agas > Agas crit,
where Agas crit i the threshold that separates the total sample in two sub-samples
showing distinguishable profiles of the tangential velocity (see next paragraph for
details). In our case, Agascrit = 0.07, according to which about 4 per cent of the
relaxed clusters can be classified as rotating. In separating the population of the
relaxed and rotating clusters, the corresponding conditions have been imposed to
be valid for all the three subsets (NR, CSF and AGN). To verify whether the most
massive clusters have the largest rotational support, we investigated the correlation
between My, and Agas, finding that the clusters classified as rotating are not the
most massive objects in the sample. It is worth to stress, however, that the statistics
of objects having large masses is intrinsically limited, given that the sample is
volume-limited. This may explain the relatively small number of massive rotating
clusters we found.

The ICM mean profiles of j(< r) and «(< r) for the two classes of rotating and
non-rotating clusters, are shown in Figure 4.10a and Figure 4.10b respectively; the
profiles for DM are characterized by similar features.

Some general trends are evident, as described in the following. On average, the
direction of j(< r) reaches more than 60° in the core of non-rotating clusters and it
is still above 30° at half of the virial radius. It is also noticeable that several objects
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register a variation equal or larger than 90° from the core to the outskirts. The
rotating clusters show a much smaller variation: for r» 2 0.3 Ry, we find that a(< r) is
less than ~ 20°, pointing out that the orientation is almost fixed. The profiles of the
modulus increase from the centre up to the virial radius and flatten in the outskirts,
reaching larger values in the rotating clusters, as expected. A similar behaviour
has also been found in [77], who analysed only the DM component of galaxy-sized
haloes. They find a power-law relation of the type j(< r) oc 7% with 8; = 1.1+0.3.
In our sample we perform a similar fit to a power-law j(< 7)/j(< Ryir) o« % to
the profiles over spherical shells, normalized at virial radius for the gas and DM
components in the rotating clusters. The mean values of 3; with the corresponding
standard deviations are listed in Table 4.3. The power-law profiles of the DM are in
agreement with [77], while the values of the gas are 20 per cent lower.

Our results lead to the conclusion that the coherent rotational motions of ICM
and DM in our cluster sample are not properly described by a simple solid body
model. A further confirmation of this fact is given by the angles between the angular
momentum vector and the three semi-axes describing the ellipsoids that approximate
the shape of the matter distribution of gas and DM. Indeed, considering only the
case of rotating clusters, these angles range from tens, up to 180 degrees, suggesting
a misalignment that is not compatible with a rigid rotation.

Finally, we computed (< r) and j(< r) for the total angular momentum, and
through a comparison of the profiles with those obtained for the gas and the DM
we found a very close similarity with the latter, reflecting the predominance of this
component on the ICM. The dominating role of DM in the cluster dynamics can
also be inferred from the lack of significant differences between the results obtained
for the three physical flavours of the simulations used to describe the ICM. The
only marked difference is the higher average value of gas a(< r), associated with a
significant dispersion in the core of the AGN runs (r < 0.1Ry;;). In this case the
AGN feedback likely influences the motion of the gas that, receiving extra energy
from the central source, buoyantly raises without any pre-selected orientation. The
effect in real clusters might be even more intense for the presence of the AGN jets
which are not included in our model.

Co-rotation of ICM and DM

The correlation we found between the spin parameters of gas and DM, as well as their
similar log-normal distributions, suggest that these two components are possibly
co-rotating. To investigate this point in more detail, we compared the specific angular

Table 4.3. Mean values and standard deviations of the power-law exponent j; as derived
from the fits of j(< 7)/j(< Ryir) for the rotating clusters.

Data set B;

gas DM
NR 0.78£0.13 0.96 £0.13
CSF 0.69£0.10 0.924+0.15
AGN 0.75£0.13 0.90£0.14
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Figure 4.11. Angles 8,5 pm between the specific angular momentum vectors of gas and
DM at virial radius. (a) Distribution of the angle values across the cluster sample. For
Ogas,pM > 90° there are only few isolated clusters. (b) Relation between 6gas pm and
the spin parameter of the gas, with the distinction of relaxed and unrelaxed clusters.
The dashed orange line indicates the threshold value for the separation of the rotating
clusters from the non-rotating ones (at 0.07).

momentum vectors of these two components, evaluated at the virial radius. We
drop here the distinction between relaxed and unrelaxed objects, unless differently
specified. Using the direction vectors, j'gas = Jgas/Jeas and IDM = FDM /ipm (being
Jeas = |Jgas| and jpm = |jpm|), the angle between the two angular momenta at virial
radius is computed as

egas,DM = arccos [5gas(Rvir) '5DM(Rvir)} . (4.18)

For our goal, we consider that two vectors could be assumed aligned if 0.5 py < 10°.
Under this condition the gas and DM particles are co-rotating, and the motions of
DM could be inferred by measuring the gas.

The distribution of 8,5 pm for all the clusters in the sample is reported in
Figure 4.11a. Around 40 per cent of the sample (corresponding to ~ 100 objects)
shows Ogas pm < 10°. In Figure 4.11b we plot the angle 04,5 py as a function of Agas.
We highlight the relaxation state of the clusters with different colours, finding that
it does not seem to have an impact on the alignment between gas and DM. The
values of 0gas v are below 20° for relatively high values of Agas. In the clusters
classified as rotating (having Agss > 0.07) the angle values are about 10°. This leads
to the conclusion that a larger cluster rotation is linked to a larger alignment of the
angular momenta of gas and DM. Such alignment can be seen as the evidence for a
co-rotation of these two components, considering that the orientation of the angular
momentum for radial values r 2 0.3Ryi; (see Figure 4.10a) is almost constant.

As in the case of the orientation, we also expect a correlation in the absolute
values of the angular momentum of the two components. The absolute values show
indeed a linear relation, and the parameters of the fits to the data performed with
the bisector method are listed in Table 4.4. It is worth noting that the slope value
of ~ 0.94 is consistent within the error with the value obtained from the correlation
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between the spin parameters of the DM and gas component (see Table 4.1). From
this result we find that the ICM specific angular momentum is a factor of ~ 1.06
larger than that of DM. However, we also find that the gas angular momentum
fraction lgas = Lgas/Lpm ~ 0.17 at virial radius, meaning that when masses are
taken into account, the DM contribution to the angular momentum is dominant.

Velocity profiles

We studied the radial profiles of the tangential (or rotational) velocity of gas and
DM particles, expressed as follows:

Ni T XMEvU
k kVEk
|Zk: 7k

Vtan(Ti) = : (4.19)

Ni
> My
k
where the sums are extended to the N; particles located within the 15 spherical
shells enclosed between the radii r;_1 and r;, and not to the spheres used above. In
this way we get the local values of the tangential velocity, that we use to test possible
rotational behaviours. We can derive the tangential velocity from the specific angular
momentum, by approximating equation (4.19) using vian(r;) ~ (|7(r:)[)/7ri. In the
second term, the contribution from random turbulence motions is averagely null by
definition, thus the average angular momentum computed in a given shell accounts
only for the contribution from rotational coherent motions [15].

The velocity component associated with macroscopic random motions will be
referred hereafter as turbulence, denoted with vyyn. We quantified it from the
dispersion with respect to the average tangential velocity as in equation (4.19):

1
2

N; r " 2 N;
Vturb (i) = [Z my, <M - vtan(m)) /ka] , (4.20)
k

. 7|

where the sums are extended to spherical shells for gas and DM particles.

Both velocity profiles (equations (4.19) and (4.20)) are normalized to the circular
velocity wveire Of each cluster at Ryi;. In our sample we have an average value of
(Veire) = (1365 £ 145) kms~!, and the distributions are shown in Figure 4.12. Due
to the tight correlation between the total mass and the circular velocity [157], these
distributions emphasize that there is no mass segregation for relaxed clusters.

The mean profiles of the tangential and turbulent velocity have been calculated for
both classes of rotating and non-rotating clusters, for all the radiative prescriptions.

Table 4.4. Parameters of the robust linear fits to the jpm(Ryir) VS jgas(Ryvir) data. The
value of ¢y gives the correlation coefficient.

Data set  ceorr Slope Intercept (kpc2h=2s71)
NR 0.85 0.94+0.04 (—4+2) x 10713
CSF 0.84 0.94+0.04 (-34+£2) x 10713

AGN 0.83 0.93+0.04 (—=3+2) x 10713
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Figure 4.12. Distribution of the circular velocity as calculated at the virial radius for all
the clusters in the analysed sample, and with the discrimination of the relaxed ones.

Since the tangential velocity is derived from the specific angular momentum, whose
direction changes significantly along the radius (Figure 4.10a), we multiply its value
by the cosine of the mean angle a(r), in the central region (r < 0.3Ryi;). In this
way we fix the orientation, and we assume the same rotational plane.

By comparing the radial profiles of the mean tangential and turbulent velocity for
the rotating clusters, as shown in Figure 4.13a for the ICM and in Figure 4.13b for
the DM, we find a significant difference between these two matter components. For
the DM there is a net distinction between the two velocities: the turbulent velocity
dominates over the tangential one, with a decrease of ~ 30 per cent from the centre
to the outskirts. In the profiles of ICM velocities instead, there is a comparable
contribution from turbulence and coherent rotation in the region between ~ 0.15
and ~ 0.65Ryi;. Turbulence is still dominant in the innermost and in the outer
regions, with a tendency to increase for radial values between 0.1 and 0.4R.;;, and a
flattening for higher radii. Along the whole radial range, values vary between 0.2
and 0.3v¢irc, corresponding to ~ 273 and ~ 410kms—!. The larger values of the DM
velocity dispersion with respect to the gas can be explained in terms of the absence
of radiative mechanisms that remove kinetic energy of particles transforming it into
thermal energy, as in the case of gas particles.

From the comparison of our profiles of the velocity dispersion with other works,
we find a general consistency. In particular there is a fairly good agreement for
the DM profiles, that typically show a decreasing trend and have larger values
with respect to the gas [see 423, 362, 161]. A remarkable agreement can be found
with [15], as the values are compatible within the errors over all the considered radial
range. Values are generally around a thousand of kms™! in the central regions, and
differ more significantly in the outskirts.

The profiles of ICM turbulence show less regular behaviours. A recurring trend
is the flattening for radii » 2 0.75 Ry, and values typically span a relatively narrow
range. In particular our values are compatible with [161] in the innermost regions
(r ~ 0.10Ryi;), and with [362] and [254] at intermediate radii. The agreement with
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Figure 4.13. Radial profiles of the mean tangential and turbulent velocity of ICM (upper
panel) and DM (lower panel) for the rotating clusters only. The error bars indicate the
standard deviation.
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the latter is of particular interest, since they take into account the dynamical state of
the clusters, thus only the profiles of the relaxed ones have been compared here. We
find more marked differences with [423], possibly because only a cluster is considered
in their analysis, thus they are more sensitive to single-cluster properties.

The radial profiles of the tangential velocity for the rotating and the non-rotating
clusters are shown in Figure 4.14a and in Figure 4.14b, for the ICM and the DM
respectively. Differently from the case of the turbulent velocity profiles, there is a
common trend for both the gas and the DM, that is the increase of the values in the
innermost regions up to 0.3 — 0.4R,;;, where they reach ~ 400kms~! for the ICM
and ~ 250kms~! for the DM, and a smooth decrease in the outskirts. Values at
virial radius are around 16 per cent of the circular velocity in the rotating clusters,
and 8 per cent in the non-rotating clusters (with no substantial differences between
ICM and DM). These results are in fairly good agreement with the values reported
n [15] for the DM and in [254] for the gas. The plots in Figure 4.14 clearly show
that single profiles are affected by relatively large scatters, because of the different
intrinsic behaviours of individual clusters.

To check whether our mean profiles of the tangential velocity can be described by
an analytical rotational model, we fit them to the two models introduced by Bianconi
et al. (2013) [39]. We neglected the simple solid body model, since we can see from
the angular momentum profiles shown at page 136. that it is not appropriate to
describe the rotational motions in our cluster sample. The two models that we
consider refer to the case of a non-rigid rotating ICM, whose contribution to the
gravitational potential of the cluster is negligible. The first proposed model, referred
hereafter as vpl, is the circular velocity of the gas in a NFW distribution of the DM
density [307], as a function of the radial distance from the centre:

In(1+r/ro) 1 2
r/T0 L+7/ro

Ucirc(r) = Uco (421)
where the radius r¢ corresponds to the peak value of the velocity. Since it represents
the circular velocity along the cluster radius, this profile is not fully appropriate to
fit our tangential velocity. The second model proposed by [39] is an alternative to
the circular velocity profile, characterized by a steeper increase in the core regions
and a deeper decrease in the outskirts:

Vtan (1) = Vg0 ( r/To (4.22)

1+7/rg)?
that will be referred hereafter as vp2 model. We also introduce a modified version
of vp2, the vp2b model, of equation:

_ r/ro
vtan(r) = V0 1+ (1"/7“0)2 .

The fits of the mean tangential velocity profiles to the vp2 and vp2b models can
be seen in Figure 4.14a for the gas and in Figure 4.14b for the DM. The vy and rq
parameters which best fit equations (4.22) and (4.23) are listed in Table 4.5. Both
models are in agreement with the data within one standard deviation. Nevertheless,
the residuals are lower for the vp2b, that better fits the ICM data, especially around
the bump observed at r ~ 0.3Ryi; and in the external regions.

(4.23)
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Figure 4.14. Radial profiles of the mean rotational velocity of ICM (upper panel) and DM
(lower panel) for the rotating and the non-rotating clusters. The error bars indicate the
standard deviation of the single profiles with respect to the mean profiles. The dashed
green line is the fit with the vp2 model, while the red solid line is the fit to the model of
equation (4.23) (see text).
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Table 4.5. Parameters of the fit to the vp2 and vp2b models of equations (4.22) and (4.23),

for the mean tangential velocity of gas and DM in rotating clusters.

vp2 model vp2b model
Component Data set
P V0 (Ucirc) To (Rvir) Vo (Ucirc) To (Rvir)

NR 1.00+0.04 0.38+£0.05 0.58 £0.03 0.35+£0.03

gas CSF 1.21 +0.07 0.24+0.04 0.65+0.04 0.29+0.03
AGN 1.07+£0.07 0.33+0.05 0.60+£0.04 0.33+£0.04

NR 0.804+£0.06 0.55+£0.12 0.42+0.03 0.444+0.06

DM CSF 0.82+0.07 0.44+0.09 0.454+0.03 0.37+0.05
AGN 0.81 £0.07 0.45+£0.10 0.44+0.04 0.384+0.06

Table 4.6. Threshold values for the gas spin parameter and corresponding percentage of
rotating clusters with respect to the number of relaxed clusters, Nyot/Nyel. The dym,
value is also shown (see text).

)\gas,crit Nrot /Nrel dvm
0.03 49% 0.49
0.05 10% 0.85
0.07 4% 1.11

Critical value of the spin parameter for rotating clusters

Since there is not a universal critical value for Agas that can be adopted to discriminate
rotating objects, we choose the threshold by inspecting the radial average profiles of
the tangential velocity of the two populations of rotating and non-rotating clusters,
(vr% (r) and vf20not(r), respectively). We take the value for which these profiles are
separated more than the corresponding standard deviations over r 2 0.3 Ry, that
is the radial range where the angular momentum orientation is almost fixed. To
quantify the separation of the profiles at a radius r, indicating with o{%(r) and
oonrot(r) the corresponding standard deviations (represented by the error bars in
the profile plots), we introduce the following estimator

_ v (r) — v ()]

dU(T) O'{Ot(T)—‘—O';;lnTOt(T) )
an an

(4.24)

so that they can be considered as separated when d,(r) > 1. The best Agag crit is
the one for which the minimum value of d,(r), dypm, is larger than one in the range
r 2 0.3Ryir. The fraction of relaxed clusters which, according to our criterion, can
be defined as rotating is listed in Table 4.6 for some values of Agas crit, together with
dym- It turns out that the Agascrit having dy, > 1 in the chosen radial range is
0.07, therefore we adopt this value as the discriminating one. Fig. 4.15 shows the
profiles for Agas crit = 0.03, where the overlapping of the two classes for r < 0.5Ry;;
is evident. Values of Agas criv larger than 0.07 cannot be tested, since the maximum
spin parameter of the gas in the sub-sample of relaxed clusters is ~ 0.078. It can be
seen from Fig. 4.9 that these values correspond to the tails of the spin parameter
distributions.
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Figure 4.15. Radial profiles of the tangential velocity of the gas for the rotating and
the non-rotating clusters, assuming Agas crit = 0.03. See the caption of Fig. 4.14 for a
detailed description of the plots.

Table 4.7. Identifier, virial mass, virial radius, and spin parameter of the gas of the six
relaxed and rotating clusters in the volume-limited MUSIC-2 sample from the NR run
at z =0.

Cluster ID My (x10™ Mg)  Ryir (kpe) — Agas

46 1.17 2756 0.0785
93 1.90 3241 0.0769
98 1.61 3071 0.0735
103 1.02 2633 0.0746
205 1.24 2813 0.0763
256 1.31 2867 0.0714

4.3.3 KSZ effect in MUSIC rotating clusters

To check whether we can probe observationally the above results based on the
analysis of the angular momentum, we produced the mock temperature anisotropy
maps of the kSZ effect [21]. We focussed only on the relaxed and rotating clusters
selected from the NR data, whose properties are summarised in Table 4.7.

Simulated kSZ maps

The kSZ maps of the synthetic clusters in our data set have been produced using the
publicly available pymsz® package, which provides mock observations of both the
thermal and kinetic SZ effects. The kSZ temperature signal has been computed as

ATksz('ﬁ) _ or
Tevms cD?

Np
ZNe,i 'Upﬂ; WP(TZ') hs) ) (425)

3https://github.com/weiguangcui/pymsz
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where D, is the angular diameter distance of the cluster. The sum extends over
the total number of particles along the line of sight, Np, each being located at a
distance 7; from the centre of mass, having projected velocity v, ; and containing
Ne,; electrons. The W), function is the SPH smoothing kernel of the simulation (see
equation (4.11)). Here it is used to smear the kSZ from each gas particle to the
projected image pixels, being hs the smoothing length of the gas particles.

We computed the maps as in equation (4.25) in two different versions, to match
the only rotational and the rotational+bulk cases (corresponding to the theoretical
prescriptions of equations (4.9) and (4.10), respectively). To separate the rotational
component, we simply subtracted the cluster bulk velocity, estimated as the average
gas particle velocity, from the velocity of all single gas particles. In this way we
could fit separately the kSZ maps computed from the data to the corresponding
model in the two configurations. This would allow us in the first place to establish
whether it is possible to recover the expected rotational properties and, secondly, to
assess the maximum contribution to the total kSZ coming from rotation. Clearly,
this is a simplification that cannot be used when dealing with real data, since it
is not possible to separate the bulk component from the total signal, though some
complementary methods to estimate the peculiar velocity could be used, e.g. the
Tully—Fisher relation in the case of nearby clusters [see 229].

With the aim of maximising the rotational signal, we set the best observational
configuration to detect the dipole, that corresponds to keeping the angle between
the line of sight and the rotation axis fixed to i = 90° (edge-on with respect to
the rotation axis). To get the corresponding projection, we performed a change of
coordinate system, by transforming all the particle positions and velocities according
to a suitable rotation matrix. As zero-th order approximation, we assumed the
rotation axis to be coincident with the direction of the angular momentum vector
of the gas computed at the virial radius. Therefore, we constructed the rotation
matrix in such a way that the z axis of the rotated reference frame coincided with
this vector. With this choice the x axis of the map is aligned with the dipole spots,
while the y axis corresponds to the projection of the rotation axis on the plane of
the sky, as also illustrated in Figure 4.5 on page 125. We want to stress here that
we adopted these simplifications only to investigate the detectability of the rotation
in suitable candidate clusters (relaxed with large spin parameter) using the kSZ at
the best observational configuration.

To validate the effective rotational origin of the dipole pattern, we produced
different projections for each cluster. Specifically, we selected different lines of
sight, all lying on the orthogonal plane to the rotation axis, always fulfilling the
edge-on condition. Each line of sight is identified by the angle )., that indicates
the separation with respect to the reference line of sight, having 6, = 0°. We
took a total of six lines of sight, separated by uniform steps of Af,s = 30°, so that
0° < O1p5 < 150°. If a dipole originated by ICM rotation is present, its approaching
and receding spots should show the same sign and orientation across the maps,
regardless of the particular line of sight chosen for the projection. As in the case of the
subtraction of the cluster bulk velocity, this simplification in the interpretation of the
results is possible only when dealing with data from simulations, since observations
can be made along only one line of sight.

The maps of each cluster extend over 2.5R;, on a side, with a pixel size dpix =
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5 x 1073 Ryir that is of the order of ~ 10 kpc. For practical reasons, we assume
the analysed clusters to be located at z = 0.05, instead of z = 0. With this choice,
according to the cosmological model adopted in the simulation, the angular diameter
distance is 200.7 Mpc. The angular size of each pixel is therefore of the order of 10
arcsec, and the maps span a few degrees on each side. To get results that can be
useful for possible future applications to data from real experiments, we reduced
the angular resolution of our simulated maps. To this end, we applied a smoothing
with a Gaussian filter having full width at half maximum equal to 20 arcsec, which
is compatible with the resolution of currently operating microwave instruments (e.g.
NIKA2 at 260 GHz).

Figure 4.16 shows the kSZ maps for cluster 93 — which is the most massive cluster
in the sample — smoothed at 20 arcsec, for different lines of sight, as described above.
The left panels show the maps generated after the subtraction of the cluster bulk
velocity which, on the contrary, is included in the maps shown in the right panels.
It can be seen that, in general, all maps for cluster 93 reported in Figure 4.16 show
a dipole-like feature with horizontal alignment, and with spots having the same
sign at all different projections. These characteristics confirm that cluster 93 is a
good candidate for the inspection of a possible rotation of the ICM through the
kSZ maps. In the maps in the right panels in Figure 4.16 it is possible to see how
the dipole gets distorted because of the dominating approaching component of the
bulk velocity with respect to the observer for lines of sight having 61,5 < 90°. The
cluster bulk velocity projection is almost null for 6,4 > 120° instead, so that the
rotational signal remains practically unaffected in this projection. A number of
small-scale features can be identified in all the maps in Figure 4.16, because of the
presence of sub-structures. In any case, according to the relaxation criteria that we
imposed to select the clusters in our sample (see subsection 4.3.1 for details), the
masses of these sub-structures are smaller than ten per cent of the mass of the main
halo. They may produce, in some cases, significant outliers in the kSZ temperature
maps due to their high velocity projected on the line of sight. Despite that, since
they extend over scales much smaller than the dipole scale, their presence does not
affect dramatically the results from the fit to the theoretical maps of the rotational
component of the kSZ. For this reason, the ATjgy range in the figures is set to
+30 1K, to accommodate the dynamic range of the dipole without being affected by
substructure outliers. The other five clusters in the sample show maps with very
similar features, as illustrated in Figures 4.17 and 4.18.

To highlight the impact of different orientations of the line of sight with respect
to the rotation axis, we show in Figure 4.19 the maps of cluster 93 at 6,5 = 0°, for
different values of the angle . We verify that the dipole is clearly visible in the case of
orthogonal line of sight with respect to the rotation axis, with decreasing amplitude
for decreasing values of ¢, consistently with the expectations. Unfortunately, the
contribution from the sini term and the velocity cannot be discriminated in the
observed signal. For this reason we set ¢ = 90° in the rest of the analysis.

Theoretical kSZ maps

The synthetic maps described above have been compared to suitable model maps,
to recover the parameters describing the ICM rotation. As can be seen from



148 4. Clusters rotation and kinetic Sunyaev—Zel’dovich effect

without bulk with bulk

R T T
]. N 01052 OO'_' N 9105: OO'_'
gl S | :
N . A, 41 e ]
® e L © T ]

930 o 1F W =,
> [ ] ]
_1_1....1....1—_1..1 w
T T e AR
1F O10s: 30°] [ O10s: 307

| y(Rvu)
o
T
h
i \\ (J
[ ‘gl
| R AR
T
gi\"‘l,
1

| y (Rv1r)
o
T
3 3
: §
B et
[ e 7
| EFEEEE A BT
T
&
’i/
1

1 1 1 1 1 1
Frorn e ULLELEL UL |
1 N Oros: 90%] | O10s: 90°7]
el i ‘
> 2 ¢ T Y P
=0F =% 1F @z’:&‘.t
> 1r ]
_1._1....1....1:_1....1....1-.
e B I T
1F Olos: 1201 [ O10s: 120°7
. ] ]
B=I - 1 b 1
> b e o e ]
EO0F .%1":: r -%1?,’3' S
= i -
_1._1 Ll 14 s Ll w
T T
1F Olos: 150°] [ O1os: 150°7]
—~ I 1t ]
a2 b e, .
s b o g - g sed
xO0f C%'f'm . % %
~— [ » 1[ Y Y
> F 4
_1._1... R P | W L1
-1 0 1 -1 0 1
x(Rvir) x(RVir)
____ |
-30 -20—-10 0 10 20 30

ATksz (pK)

Figure 4.16. Maps of the temperature shift produced by the kSZ effect for cluster 93,
obtained from different projections as described in the text, and smoothed at 20 arcsec.
Left and right panels show the maps obtained without and with the addition of the
cluster bulk velocity, respectively. The angles 6,5 of the corresponding lines of sight are
specified on top of each map. The contours are plotted from -50 to 50, with dashed
(solid) lines for negative (positive) values. The maximum and minimum values in the
maps have been set to £30 uK for displaying purposes.
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Figure 4.17. Maps of the kSZ effect for the clusters in the sample at the different projections.
The contours are plotted from -50 to 50, with dashed (solid) lines for negative (positive)
values.
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Figure 4.18. Same maps as in Figure 4.17, with the contribution from bulk motion.
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Figure 4.19. Maps of the kSZ effect of cluster 93, for different values of the angle ¢, without
accounting for the contribution of the bulk motion. The dipole pattern weakens from
edge-on to face-on with respect to the rotation axis.

equations (4.9) and (4.10), the calculation of the theoretical kSZ maps corresponds
to the integration along the line of sight of the radial profiles of the electron number
density, ne(r), and of the angular velocity, w(r).

In real-life observations of clusters, the SZ effect alone cannot be used to constrain
all the thermodynamic and dynamical properties of the ICM. Thus, to derive
the parameters characterizing the rotational velocity it is necessary to have an
independent measurement of the electron number density, and a possible estimate
of the analytical model describing its radial profile, ne(r). This information has to
be provided by ancillary X-ray observations, which may allow the reconstruction of
cluster densities at radii up to the virial radius. In our case, instead of using mock
X-ray data, we used the numerical profiles derived from the cluster data provided
by the simulation, and we fit them to a suitable theoretical model. The numerical
profiles have been computed as described in [403], following:

Y

Ne(r) = Ne(r) pgas(T) m (4.26)

where N¢(r) and pgas(r) are the number of electrons and the gas density at the
cluster radius r, Yz = 0.76 is the hydrogen abundance referred to the gas particle,
and my, is the proton mass. The model we use to describe n.(r) is a six-parameter,
simplified Vikhlinin model [453] (see also equation (2.10)), that is

(r/re)=/? 1
[+ (r/rc)2]38/2=0/4 [L 4 (r/r)]e/C@D

ne(r) = ng (4.27)

where ng is the central density, r. and r, are scale radii, and «, 8 and ¢ control the
slopes of the profile at different radii. To determine the best-fit values of the free
parameters (ng, 7¢, @, 3, s and €), we used a Monte Carlo Markov chain procedure.
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Figure 4.20. Radial profiles of the electron number density of the clusters in our sample.
Purple dots are the median values computed according to equation (4.26); solid black lines
represent the best-fit curves described by the simplified Vikhlinin model of equation (4.27)
with the parameters listed in Table 4.8.

The slopes «, 8 and €, have been all constrained to be positive, with the additional
condition ¢ < 5; the v parameter, instead, has been kept fixed to 3.0 [453]. We
summarize the results in Table 4.8, where we list the parameter values with the
corresponding 68% errors, and in Figure 4.20, showing the data and the best-fit
curves.

As for the angular velocity, we showed in section 4.3.2 that the possible rotation
of the gas in our cluster sample can be described by a generalized radial profile of
the tangential velocity, rather than by a solid body model (differently from CC02).
We called this law vp2b model [20]; the corresponding radial profile of the angular
velocity is then

w(r) = vp2b(r) _ v /0 7
r 1+ (r/ro)?

being rg and vy the parameters of the vp2b model, i.e. the scale radius and half of

(4.28)

Table 4.8. Parameter values from the fit of radial profiles of the electron number density
derived from the simulation to the simplified Vikhlinin model of equation (4.27). The ~y
parameter has been kept fixed to 3.0 for all the clusters.

Cluster ID  ng (cm™3) 7e (Ryir) e Ié; rs (Ryir) €
46 0.019 £0.004 0.056 £0.004 0.6£0.3 0.63£0.08 0.59+0.08 2.3+1.2
93 0.019 £0.005 0.070 £0.005 2.1+£0.2 0.69+£0.07 0.61+0.07 2.5+1.3
98 0.018 £0.004 0.064 £0.004 0.5+0.3 0.7+£0.1 0.6 +0.1 26+ 1.5
103 0.021 £0.004 0.078 £0.004 1.44+0.2 0.79+0.09 0.63+0.09 23+1.4
205 0.014 £0.002 0.088 £0.002 0.24+0.2 0.74+0.1 0.6 £0.1 25+14
256 0.020 £0.005 0.0824+0.005 1.9+£0.2 0.79+0.08 0.64+0.08 2.6+14
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the velocity at this radius, vyo = vp2b(rg)/2 (see also equation (4.23)).

Figure 4.21 shows the central cuts along an example of theoretical kSZ map
computed according to equation (4.9), using the solid body model — with constant
angular velocity w — and the vp2b model, for a fixed profile of the electron number
density. These cuts show that the dipole spots, which have here the same amplitude
for comparison purposes, are more broadened in the case of a constant angular
velocity. The spatial scale of the dipole, that can be estimated as the distance
between the maximum and the minimum peaks, is of the order of &~ 0.2Ry;, for both
models. This is because this separation has a stronger dependence on the parameters
setting the slopes of the electron number density profile (which has been kept fixed
here) rather than on the velocity profile, in agreement with the results from [101].

Results from the fit

To recover the rotational properties of our test clusters, we used the Levenberg—
Marquardt least-square algorithm [296] to compare the simulated maps with the
theoretical ones. We treated separately the purely rotational case, referring to the
theoretical model given by equation (4.9), and the full case accounting also for the
cluster bulk motion, referring to the model of equation (4.10). The six parameters
of the radial profile of the electron number density are kept fixed, with the values
listed in Table 4.8. The free parameters we recovered from the fit to the kSZ maps
are the scale radius, rg, and the scale velocity, vy, introduced in equations (4.23)
and (4.28). In the full case including the bulk motion, we treated the cluster bulk
velocity projected on the line of sight (vpu) as an additional free parameter.
Figure 4.22 shows our simulated kSZ maps with the corresponding best-fit
theoretical maps, all smoothed at 20 arcsec, without (left panel) and with (right
panel) the bulk motion, in the case of cluster 93. Similar maps for the other clusters
in the sample showing the results only for the best lines of sight are reported in
Figure 4.23. We also show in Figure 4.24, again for cluster 93, the central cuts
through the same maps of Figure 4.22, to better highlight how our procedure recovers
the features of the signal. It can be seen that, in general, the theoretical model
is appropriate to describe the data in both cases of subtraction and adding of the
cluster bulk velocity. The signal in the data maps may be larger of a factor of ~ 3 at

1 solid body model vp2b model
. 05
—05
—1
—1 0 1 -1 0 1 ~1.0 . ]
z (Rur)  (Ryi) T e
(a) map (b) central cut

Figure 4.21. Normalized theoretical maps (left panel) and corresponding central cuts
(right panel). The signal has been computed using equation (4.9), with the vp2b and
the solid body models.
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Figure 4.22. Comparison between the kSZ temperature maps of cluster 93 and the
corresponding best-fit maps, without and with accounting for the cluster bulk velocity
(left and right panels, respectively). The contours are plotted from -50 to 50, with
dashed (solid) lines for negative (positive) values. The colorbar is set to 30 uK for
displaying purposes.
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Figure 4.23. Maps of the kSZ effect and corresponding best fits for the full cluster sample.
The cases accounting only for rotation and for rotation plus bulk motion are reported in
the top and bottom panels, respectively. The contours are plotted from -50 to 50, with
dashed (solid) lines for negative (positive) values.
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Figure 4.24. Central cuts along the kSZ maps of cluster 93, without (left panel) and
with (right panel) the cluster bulk velocity, for different lines of sight. The purple
curves represent the cut through the data maps, while the black curves represent the
cut through the best-fit maps. The presence of high-velocity particles can be seen as
outliers at small scales.

most with respect to the best-fit maps in some regions, because of small-scale outliers
due to sub-structures (that can be clearly seen in the plots of Figure 4.24), whose
contribution generally changes from one line of sight to another (see also Figure 4.16).
Similar plots for the other clusters in the sample are shown in Figures 4.25 and 4.26,
without and with the bulk velocity, respectively.

Table 4.9 lists the rp and vy parameters estimated from the fit. Since they
should have consistent values independently on the observed projection, we report
the average and standard deviation over the different lines of sight we considered.
We find that the values of both parameters are in agreement within one standard
deviation when comparing the two cases without and with the bulk term, which are
listed in the left and centre columns of Table 4.9, respectively. This indicates that, in
principle, our procedure is able to disentangle the signal produced by rotation from
the signal produced by the bulk motion. To further assess the impact of the cluster
bulk velocity on the determination of the parameters describing the rotational law,
we inspected the parameter covariance matrix, finding no significant correlation
between v, and both rg and vyg.

The right columns of Table 4.9 report the values of the rg and vy parameters as
derived from the fit to the rotational velocity inferred directly from the simulation
data, namely from the v,y velocity of equation (4.19). It can be seen that the values
of the scale radius rg estimated from the fit to the kSZ maps are consistent with
the expected ones within one standard deviation. The values of the vy parameter,
instead, are overestimated by a factor of ~ 1.5 (1.6) on average, when performing
the fit without (with) the bulk motion. Indeed, they reach values larger than 80 per
cent of the circular velocity at the virial radius (which is > 1200 kms~" for all the
clusters, see also Figure 4.12). Nevertheless, there is agreement within one standard
deviation for almost all the clusters. A noticeable exception is given by cluster 98,
for which we get a larger overestimate (of factors of 3.1 and 2.8 without and with the
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Figure 4.25. Same plots as in Figure 4.24a for the other clusters in the sample.
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Figure 4.26. Same plots as in Figure 4.24b for the other clusters in the sample.




4.3 Rotation in MUSIC clusters 159

Table 4.9. Best-fit values of the free parameters ryp and v of equation (4.28). The left
and middle columns report the average values with their standard deviation computed
over all the lines of sight The right columns lists the expected values for the parameters,
derived from the fit to the tangential velocity data, van, extracted from the simulation.

fit to kSZ without bulk fit to kSZ with bulk fit to van data
Cluster ID

ro (Ryir) w0 (Veire) 7o (Rvir) w0 (Veire) 7o (Bvir)  wi0 (Veirc)
46 0.34+0.09 0.84+0.04 0.37+£0.05 0.95+0.17 0.36+0.22 0.56+0.17
93 0.34+0.08 0.87+0.27 0.34+0.07 0.88+0.28 0.49+0.27 0.58 £0.20
98 0.38+0.30 1.53+0.67 0.334+0.25 1.39+0.65 0.57+0.62 0.494+0.29
103 0.29+0.13 0.82+0.09 0.28+0.11 0.83+0.09 0.47+0.35 0.52+0.19
205 0.20+0.08 0.96+0.08 0.24+0.09 0.86+0.19 0.27+0.14 0.65=+0.17

256 0.32+0.12 1.00£0.23 033£0.11 1.02+0.24 0.37+£0.20 0.61=£0.22

cluster bulk, respectively), and significantly larger errors. Such discrepancies may
be due, in general, to a less efficient reconstruction of the dipole because of a higher
impact from irregularities in the gas density distribution, and from high-velocity
sub-structures, especially in the outer regions (see e.g. Figure 4.17b).

To give a quantitative indication of the kSZ signal produced only by the rotation,
we measure the amplitude of the dipole from the best-fit theoretical maps in the
rotation-only case. The values are listed in Table 4.10, as derived from the average
over all the explored projections. It can be seen that the dispersion across different
lines of sight is of the order of 38 per cent at most, while average values are of the
order of a few tens of pK. This result is in agreement with the predictions by [101],
that indicate dipole amplitudes ranging between ~ 4 and ~ 30 pK (assuming a solid
body rotation). Table 4.10 reports also the maximum amplitude, Ay, measured
in the best-fit maps accounting for the cluster bulk motion. We verify that, as
expected, this quantity is linearly proportional to the projected bulk velocity, vpu.
Using these values it is possible to compute the ratio Agip/Apuik, to estimate how
much does the rotation contribute to the total kSZ signal, when the projection
of the cluster bulk velocity takes its maximum value. The average value of this
ratio is ~ 0.23, confirming that very high sensitivities are needed to measure the
effect of a rotation, provided the best observational conditions. The recovered

Table 4.10. Amplitude of the kSZ temperature signal measured from the best-fit maps.
The Agip column refers to the amplitude of the dipole averaged over all the lines of sight,
as derived from the fit to the maps without the bulk motion. Ay, refers instead to the
maximum amplitude of the best fit to the maps accounting for the cluster bulk motion.

cluster ID Adip (pK) Abulk (pK)

46 10.8 £2.5 -57.5
93 21.1+£5.2 82.1
98 24.44+9.2 -77.9
103 16.5£2.9 -99.4

205 209£5.1 68.8
256 244+43 -143.1
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Figure 4.27. Values of the projected cluster bulk velocity, vpuk, as a function of the angle
005 identifying the different lines of sight. The purple dots with the dashed line represent
the estimate from the fit to the maps with the bulk term. The black dots with the solid
line are the true values extracted from the simulation.

values of vpyli are of the order of hundreds of kms™!, and they are fairly compatible
with the true values from the simulation. We show the comparison between these
values in Figure 4.27, where the sinusoidal behaviour of the different projections
with varying 60,5 can also be seen. In Table 4.11 we report the differences between
VUpulk recovered from the fit to the kSZ maps and the true value from the simulation,
Ubulk,sim, Dormalized to vpyuik sim itself. Values are generally underestimated by a few
tens of per cent for most of the projections. The differences are more significant for
lines of sight for which the projected bulk velocity takes absolute values smaller than
100 kms~!. The possibility of recovering the bulk velocity term with this procedure
is an important result of this work. Indeed, the use of the rotational kSZ effect with

Table 4.11. Normalized difference between the recovered vy, and the true one extracted
from the simulation, vhyiksim- The values along the columns refer to the six different
lines of sight.

’Ubulk/Ubullgsim -1

cluster ID 9
los
0° 30° 60° 90° 120°  150°
46 -0.04 -0.14 -0.22 -0.32 -0.68 -0.11
93 -0.01 0.28 0.24 0.04 -3.39 -0.68

98 0.77 -0.21 070 -496 -0.20 -0.84
103 -0.04 -0.17 -043 -0.38 -0.04 0.01
205 0.13 -0.92 -0.09 -0.01 -0.03 -0.11
256 -0.10 -0.17 -0.28 -0.30 -0.61 0.14
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complementary observables, e.g. higher order corrections terms to the Kompaneets’

approximation, or the degree of CMB polarization induced by the kSZ, could give
an estimate of the three-dimensional cluster velocity [45].

The simplifying assumptions we have made, e.g. the orthogonal orientation of

the los with respect to the rotation axis, and the poor error constraints we get
in the final estimates of the parameters could be limiting factors for this analysis.
Nevertheless, this study is intended to quantify the amount of kSZ signal that would
be produced by ICM rotation at the best observational conditions, also to get a
possible validation of the vp2b model. Some enhancements to get more robust
results can include e.g. a proper modelling of the sub-structures to be included in
the theoretical map for a more accurate fit.
An interesting recent study on cluster rotation from the kSZ effect has been performed
by [34]. They use the Planck CMB data cleaned for the thermal SZ effect to look
for the signature from the rotational dipole in a set of stacked maps, centred on
thirteen low-redshift massive clusters. The rotational signal is assessed using the
galaxy members as proxies, and via a geometric indicator based on the asymmetry
of the negative and positive spots occurring in the maps, and it is also determined
via a model fitting. The results indicate a possible rotation from the stacked kSZ
signal with a significance of 20, which is consistent with our findings presented
in this section. Nevertheless, there is no evidence for rotation from the analysis
of the maps of the single clusters, at least with the sensitivity and the resolution
provided by Planck. This first experimental assessment of the rotational kSZ signal
is undoubtedly promising. Future experiments (e.g. MILLIMETRON [414]) will
certainly deliver more reliable and precise data which will allow deeper investigations
on this fascinating topic.

4.3.4 Co-rotation of ICM and galaxies in the selected sample

The study of the rotational kSZ effect presented in the above sections is part of a
larger project on the feasibility of the detection of ICM rotation, that will include
the complementary analysis of multi-frequency mock signals generated from MUSIC
cluster data.

In this respect, we addressed the study of the dynamics of the galaxy members,
focussing on our sample of relaxed and rotating clusters (see Table 4.7), to investigate
the possible co-rotation between the baryonic components. To check for the rotation
of the galaxies, we used the same method introduced by MP17. We refer the reader
to the paragraph dedicated to optical probes of rotation in section 4.1.1, for a
synthetic description of the method.

When applying this procedure to MUSIC clusters, we did not emulate spectroscopic
measurements of the galaxy velocities based on mock optical data. Taking advantage
of the simulations, instead, we used directly the three-dimensional vectors giving the
positions and the velocities of all the “galaxy particles”. This leads to more general
results, since they do not refer to any particular instrument. As in the case of the
rotational kSZ effect, the aim of this analysis is to check whether we could recover
the global cluster rotation setting the best, noiseless observational configuration.

The galaxy particles that we considered for the analysis have been selected as those
sub-haloes having masses My, < 5 X 1012h_1M@ from the CSF run, located within



162 4. Clusters rotation and kinetic Sunyaev—Zel’dovich effect

the virial radius of each cluster. Moreover, we checked whether this technique gives
consistent results relative to the analysis of the angular momentum, concerning
with the rotational state of gas and DM particles. To this end, we also randomly
extracted as many particles of gas and DM as the galaxies, to use them to run the
algorithm.

Since MP17’s method applies to the projected velocities along the line of sight,
we explored different possible configurations by suitably rotating all the particle
positions and velocity vectors. Under the assumption that the galaxies co-rotate
with the gas (and with the DM), we identified the axis of rotation with the direction
of the angular momentum vector of the gas at the virial radius, Lgas(Ryir), as in our
previous analyses. By construction, we imposed this vector to coincide with the 2
axis of the rotated three-dimensional reference frame. The rotation of the particles
has been checked on five different observational planes of the sky (see Figure 4.2
for a representation of the observational plane). This corresponds to choosing five
different lines of sight orthogonal to these planes. More specifically, such planes are
denoted in the new (rotated) reference frame as: &g, &2, 2, £245, and §Z45; the
latter are oriented 45° with respect to the £Z and the 2 planes, respectively. The
corresponding lines of sight coincide with the 2, g, &, 945 and 245 axes, respectively.
Given the alignment of Z with LgaS(Rvir), we expect that there is no rotation when
considering the 2y observational plane, if all the particle species (galaxies, gas and
DM) co-rotate. On the contrary, the signal should be maximised when observed
along the Z or the ¢ lines of sight (corresponding to the 22 and g2 planes).

The results from the run of the algorithm towards our most rotating clusters
indicate that, for the majority of the objects, the galaxy particles seem to show a
rotation in the observational planes containing the Z axis. This fact is expected
in the case of a co-rotation with the gas; nevertheless, we found hints for a strong
rotation also in the Z¢ plane, in some cases, which is difficult to be interpreted.
Interestingly, the largest contribution to the rotation comes from the most massive
galaxies (with stellar masses Moy > 10'°°A~1My), located at radii 7 > 0.75Ryir,
which is in disagreement with our findings on the tangential velocity profiles (peaked
at about 0.3Ryi;).

For the sake of completeness, we also tested the same procedure using the five
least rotating clusters in the MUSIC-2 selected sub-sample, namely those having
Agas < 0.01. The results are puzzling, since a strong rotational signal is found in
at least one projection for all these clusters, despite they should not be rotating at
all. Figure 4.28 provides the rotation diagrams for the example cases of an expected
rotating (left panel) and a non-rotating cluster (right panel). The data points
represent the vgig velocity defined in equation (4.7) on page 121, as a function of 6.
The latter is defined as the angle between the line of sight — which is orthogonal
to the observational plane indicated at the top of the figures — and the projected
rotation axis (see also Figure 4.2). The red curves give the best fit to the data, which
should ideally follow a sinusoidal behaviour if the galaxies rotate, as illustrated also
in Figure 4.3. The blue lines highlight the limit on vgig set by random motions. It can
be seen that in the case of cluster 98 (which rotates according to the spin parameter
of the ICM), we find that also galaxies rotate, when considering an observational
plane containing the rotation axis. Cluster 174, instead, which is expected to be non-
rotating, shows contradictory results. Indeed, data seem to indicate a rotation when
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Figure 4.28. Rotation diagrams from the galaxy velocities of a supposedly rotating
cluster (Agas > 0.07) and a non-rotating one (Agas < 0.01), extracted from the MUSIC-2
sub-sample of massive relaxed objects. See text for the explanation.

observing the cluster along a line of sight which is parallel to the expected rotation
axis, although with large errors. This may indicate that neither the orientation of
the rotation axis, nor the rotational state itself are necessarily consistent between
the gas and the galaxies in the same cluster.

The results on the rotational state of gas and DM particles recovered with MP17
show, on the other hand, an overall agreement with the values of the spin parameters.
For instance, in the test case of cluster 93 (which is expected to be rotating), no
rotation is found, as expected, when considering the £ observational plane. Instead,
there are indications for a rotation in the remaining projections, in agreement with
the orientation of the expected rotation axis of the gas.

With the aim of getting a statistics on the detection of rotating clusters, and to avoid
single-cluster effects, we also extended the above study to all the relaxed clusters
in the MUSIC-2 CSF sub-sample, dropping the prior distinction between rotating
vs non-rotating clusters. We find that, with MP17’s method, the rotation of the
galaxies poorly correlates, in general, with the rotation of the gas and of the DM
as inferred with the same method. Indeed, the values of the Spearman correlation
coefficients are -0.05 and 0.03, respectively. Gas and DM themselves are correlated,
instead, in agreement with the results presented in section 4.3.2. When comparing
the outcomes of this method for the galaxies with the values of the spin parameters
of gas and DM, there is only a weak correlation, with coefficients of 0.15 and 0.26,
respectively. The larger correlation with the DM suggests that this component likely
dominates the dynamics in clusters, as already pointed out in section 4.3.2.

To conclude, the tests we made using MP17’s algorithm indicate that the galaxies
are not good tracers of a possible global rotation in clusters. The results are, indeed,
controversial and sometimes difficult to interpret. This has been also confirmed
experimentally, from the recent findings reported in [265] for cluster A2107. A
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possible reason for these discrepancies may reside in the very different dynamical
evolution and nature of galaxies, compared to the ICM and to the DM.

The global statistics on the 154 relaxed clusters from the CSF run reports =~ 11
per cent of rotating clusters according to the galaxies, which raises to ~ 73 per
cent if considering gas and DM. These values are significantly larger than the
fraction of rotating clusters we found in the same relaxed sample, according to
the value of the spin parameter of the gas (which is about 4 per cent). This fact
may suggest that MP17’s method may largely overestimate the fraction of rotating
clusters because of projection effects, which lead to a non-negligible number of false
detections (as in the case of the supposedly non-rotating clusters).

Future developments

The mild agreement we got with the two different approaches on the sample of
rotating objects under study, is not enough to undoubtedly establish the co-rotation
of baryonic components in clusters. Nevertheless, this challenging problem, which
we are addressing in a paper in preparation, deserves further investigations, possibly
with more rigorous methods, or with a different cluster sample. In this respect, in
particular, we plan to apply our ongoing analysis to the new data set of The Three
Hundred project, especially to study the possible impacts of the state-of-the-art gas
physics which has been implemented.

Another interesting study based on multi-wavelength data which would be feasible
with The Three Hundred data set, would consist in analysing the correlation between
the gas kinematics inferred from the kSZ, and the rotational motion of stars in the
BCG. Such an information would be extremely useful to identify good real candidate
clusters to search for the kSZ rotational signal in future observational campaigns.
Furthermore, a deeper approach focused on a more quantitative assessment of the
feasibility of such challenging detection at millimetre wavelengths is ongoing, with the
aim of applying this study to observations of real clusters. Specifically, we will refer
to the full pipeline of the NIKA2 camera at the IRAM telescope, to properly account
for the full instrumental effects and for the contamination from both astrophysical
sources and the SZ background.
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Conclusions and future
perspectives

In this Thesis, we presented our work dedicated to the study of cluster astrophysics
with the Sunyaev—Zel’dovich (SZ) effect. In particular, we exploited both the thermal
and the kinetic components of the above effect in two works. The first one aims at
an improved mapping of the thermal pressure in cluster outskirts via the thermal
Sunyaev—Zel’dovich (tSZ) effect. The second one is dedicated to the investigation
of a possible rotation of the gas, by means of the analysis of the properties of the
angular momentum and of the maps of the kinetic Sunyaev—Zel’dovich (kSZ) signal.
The underlying motivation of these two works is to consider a possible way of
estimating cluster masses more accurately. Indeed, overpressure in the outskirts
can lead to biases in the mass as derived from the thermodynamic properties of the
intra-cluster medium, or from the scaling relation involving the integrated signal
from the tSZ effect. On the other hand, the support from non-thermal motions (e.g.
rotation) can be associated to an additional, dynamical mass term which is usually
neglected, under the hypothesis of hydrostatic equilibrium.

We summarise our methods and our main findings in the following.

In the first part of the Thesis, we presented an improved version of an existing
spectral imaging algorithm for parametric component separation, which is based on
wavelet and curvelet decompositions. The enhancements we discussed are, specifically:
(7) a double grey body spectral energy density to model the emission from Galactic
thermal dust; () the cleaning of residual contamination from dust on large scales,
and from bright point sources; (iii) a new, non-iterative wavelet coefficient-wise
deconvolution of the Planck beams within the calculation of the wavelet transform.
Moreover, we introduced a new method to estimate the error on the reconstructed
signal based on bootstrap extractions of Planck noise maps. Using these error maps,
we assessed an equivalent signal-to-noise ratio to establish the significance of the
detected features. The procedure has been applied to the latest Planck frequency
maps centred on twelve nearby, massive galaxy clusters constituting the X-COP
sample. The comparison between the new version of the imaging procedure and the
original one highlights a significant improvement. This concerns primarily with the
stability of the algorithm, which was hampered by local divergences in low-signal
regimes. Furthermore, the reconstruction of the signal in the outskirts is more precise,
down to values of the Compton y-parameter of a few 1076, and the recovery of the
peak value is more reliable. Our maps of the Compton y-parameter for the whole
cluster sample show that we are able to reconstruct the signal from anisotropies
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— such as elongations, diffuse filaments and small substructures — located beyond
Rs00. Indeed, we detected interesting features in the outskirts of the majority of the
clusters under study. In particular, we highlighted significant diffuse elongations
in the cluster systems A2029 and RXCJ1825. These findings are consistent with
ancillary surface brightness maps in the X-ray band.

As for the future perspectives, one of the most direct application of our maps of
the Compton y-parameter is the assessment of the impact of thermal pressure from
the aforementioned anisotropic signal structures in cluster peripheral regions. We
started indeed to explore this possibility, by applying a preliminary technique based
on a simple masking of the pixels corresponding to significant signal anisotropies,
according to our bootstrap-derived error maps. We found encouraging results from
the fit to the pressure profiles of a few single clusters, where we clearly see that
the pressure contribution in the outskirts is smaller when the masks are applied.
The final step would be that of combining all the maps together to get the stacked
profile, which could be compared to similar profiles in the literature, and possibly
provide a more consistent, less scattered behaviour beyond the Rsq9 radius. Such a
study could be very promising in correcting the mass estimate of clusters, which is
connected with their thermal pressure budget. An improved mapping of the pressure,
combined with X-ray information, may point to the need for a correction of the
estimated mass, accounting for the contribution from poorly resolved structures
within the virial region. In this context, a further development of this work, will be
the detailed study of a particularly interesting system in the X-COP sample, namely
cluster A2319, which we will develop in a forthcoming paper.

In the second part of the Thesis, we investigated rotational motions, which
are expected to contribute to the hydrostatic support in clusters. We focussed
on a sub-sample of massive clusters extracted from the MUSIC hydrodynamical
simulations. First, we studied the properties of the specific angular momentum and
of the tangential and random velocity components of gas and dark matter (DM). We
produced the profiles of these quantities along the cluster radius, considering data
from all the three available gas modellings adopted in the simulations: non-radiative,
with cooling and star formation and with AGN feedback. To avoid the impact of
possible merging processes and of the motions of large substructures, we focussed on
the most relaxed objects. Then, we classified them as rotating or not according to
the value of the spin parameter of the gas at the virial radius, with the threshold
value of 0.07. We found that the overall dynamics of the clusters is dominated by the
DM component, since there are no significant differences among the three flavours
of the gas physics. The sample of rotating clusters consists in a relatively small
number of objects, which is 4 per cent of the relaxed sample. The average profiles
for these clusters show that the rotation is not well described by a solid body, which
motivated us to introduce a new model for the radial profile of the tangential velocity
(which we call vp2b model), based on previous works. The rotational support to
the circular velocity is found to be of the order of 16 per cent at the virial radius,
but yet non null. Interestingly, we found that in a non-negligible fraction of the
total sample (about 40 per cent) the angular momentum vectors of gas and DM are
aligned, suggesting a co-rotation of the two components. This holds true especially
for increasing values of the spin parameter of the gas, i.e. for the most rotating
objects.
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Subsequently, referring only to the case of non-radiative simulations, we tried to
reconstruct the rotation described by the tangential velocity profile of the six relaxed
and rotating clusters by means of the kSZ effect. We treated both a simplified
case not accounting for the cluster bulk motion, and the complete case including
the additional term depending on the cluster bulk velocity projected on the line of
sight. We also explored six different lines of sight for both cases, picking them all
orthogonal to the expected rotation axis, to maximize the amplitude of the rotational
signal. The mock maps from our rotating clusters have been fit to the theoretical
ones, which we modelled using the vp2b rotational law descending from the analysis
of the angular momentum. The results from the fit indicate that, provided the best
observational conditions, it is possible to recover the parameters of the radial profile
of the rotational velocity within one standard deviation in the case of the scale
radius, and within two standard deviations at most in the case of the scale velocity,
by averaging across the considered lines of sight. These results are poorly affected
by the small-scale outliers produced by high-velocity substructures located within
the cluster virial radius, at most projections. The amplitude of the best-fit dipole is
consistent with the estimates found in the literature for relaxed systems. From a
comparison between the amplitude derived without and with the bulk motion, we
estimate that the rotational contribution to the total kSZ signal is, on average, at
most of the order of 23 per cent.

We can conclude that, when present, rotational support is undoubtedly small,
thus it is challenging to detect it with the currently available instruments. In
any case, ancillary data from measurements in the X-ray and optical bands are
mandatory to validate possible future observations. Future experiments with high
resolution and sensitivity will surely provide a significant improvement over the
current capabilities of addressing such a challenging measurement. In this future
perspective, high-resolution hydrodynamical simulations are still indispensable for
feasibility analyses. For instance, an interesting study would consist in taking into
account the instrumental effects of an optimal candidate observatory (e.g. the
NIKA2 camera at the IRAM telescope), to provide a more realistic assessment of
the detectability of the signal. Another useful way to exploit simulations is to use
mock data at ancillary wavelengths, to see whether we get a consistent picture from
all observables in the same cluster sample. In this respect, we started a study on the
velocities of the member galaxies, based on the method proposed in the recent work
by MP17. Despite we found a mild agreement on the rotational state inferred from
both the gas and the galaxies in some of the most rotating clusters, it seems that
the motion of galaxies is not an adequate indicator. Most notably, all the proposed
methods so far are particularly sensitive to projection effects which bias-high the
statistics of rotating clusters. While being still very challenging in the context of
observational perspectives, cluster rotation is definitely a topic of interest, as testified
by recent works. This encourages further developments, possibly with novel methods
or new, high-quality synthetic data sets.

As a general conclusion, the noticeable progresses in the study of galaxy clusters
are extremely valuable for astrophysics and cosmology. The upcoming large surveys
and the refined theoretical picture provided by cosmological simulations will offer
promising possibilities to improve our understanding of the universe. In this respect,
the SZ effect is undoubtedly an indispensable probe to pursuit this knowledge.
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