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The curse of dimensionality represents a relevant issue in simulation-based shape optimiza-
tion, especially when complex physics and high-fidelity computationally-expensive solvers are
involved in the process and a global optimum is sought after. In order to have a deeper insight
into this problem and indicate possible remedies, the present paper studies the effects of both
design-space dimensionality reduction (DR) and optimization methods on the shape optimiza-
tion efficiency. Linear and non-linear DR methods are used for the design-space DR, based
on principal component analysis and deep autoencoders. Global and hybrid global/local deter-
ministic derivative-free optimization algorithms (Deterministic Particle Swarm Optimization,
DIviding RECTangles, Dolphin Pod Optimization, LSDFPSO, and DIRMIN-2) are applied to
the original and the reduced-dimensionality design-spaces, investigating their efficiency and
effectiveness. Example application is shown for the shape optimization of a destroyer-type
vessel sailing in calm water at fixed speed.

I. Introduction

The simulation-based design (SBD) paradigm has demonstrated its capability of supporting the design decision
process, providing large sets of design options and reducing time and costs of the design process. The recent

development of high performance computing (HPC) systems has driven the SBD towards its integration with optimization
algorithms, moving the SBD paradigm further, to automatic SBD optimization (SBDO). In shape optimization, SBDO
consists of three main elements: (i) a simulation tool, (ii) an optimization algorithm, and (iii) a shape modification tool,
which need to be integrated efficiently and robustly (see Fig. 1, right box).

Objectives and constraint functions, in SBDO for engineering applications, are usually provided by systems of
partial differential equations, often solved by black-box tools. These functions are likely affected by residuals, therefore
noisy, and their derivatives are usually not directly provided. Often, the existence in the design space of local minima
cannot be excluded a priori. This motivates the use of derivative-free optimization algorithm in SBDO.

Derivative-free global optimization algorithms have been developed, providing a global approximate solution to
the design problem. Derivative-free global algorithms, such as DIviding RECTangle (DIRECT) [1], Particle Swarm
Optimization (PSO) [2], and Dolphin Pod Optimization (DPO) [3, 4] have emerged as powerful methods to tackle
complex optimization problems in several engineering fields. The robustness and versatility of these methods have
allowed for their successful application to design optimization [5, 6]. The use of global techniques with CPU-time
expensive solvers (for fluid dynamics, structures, etc.) implies an expensive optimization process (considering CPU-time
requirement) and its efficiency remain an algorithmic and technological challenge. Although global optimization
methods are a good compromise between design space exploration and exploitation, they could be trapped in local
minima and the convergence to a global minimum is generally difficult to be proved. If the research region to explore is
known a priori, derivative-free local optimization approaches, can give an accurate approximation of the local minimum.
Nevertheless, their convergence may be computationally expensive, and the information about the research region is
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Fig. 1 SBDO scheme, including pre-optimization (offline) design-space dimensionality reduction.

usually not available a priori. For these reasons, hybrid global/local methods have been successfully applied in this
context [7], especially if CPU-time expensive black-box functions are involved, coupling efficiently and robustly the
qualities of both methods. It is worth noting that a large variety of derivative-free global and local methods available in
the literature are probabilistic, making use of some random coefficients. This implies that statistically significant results
can be obtained only through extensive numerical campaigns, that could be too expensive (often almost unaffordable) in
SBDO for industrial applications, when CPU-time expensive computer simulations are used directly as analysis tools.
For this reason, the use of deterministic methods, successfully developed and applied to SBDO [7, 8], is advisable.

In this context, the ability of the optimizer to fully interrogate the design space depends, among other factors, by
the number of degrees of freedom (design variables) used by the shape parametrization scheme to represent a desired
design within the design space. This is a critical aspect of any optimization scheme. Moreover, the use of a low number
of design variables in theory is highly advantageous, particularly if a global optimization algorithm is used where the
“curse of dimensionality” is particularly significant, meaning that performance of a global search algorithm deteriorates
with increasing dimensions. It is reasonable that the assessment and breakdown of the design-space dimensionality and
variability (see Fig. 1, left box) are therefore a key element for the success of the SBDO [9].

Online linear dimensionality reduction (DR) techniques have been developed, requiring the evaluation of the
objective function or its gradient [10, 11]. As an example, principal component analysis (PCA) methods have been
applied for reduced-dimensionality local representations of feasible design regions [12]. A PCA-based approach is
used in the active subspace method [13] to discover and exploit low-dimensional and monotonic trends in the objective
function, based on the evaluation of its gradient. Online methods improve the shape optimization efficiency by basis
rotation and/or dimensionality reduction. Nevertheless, they do not provide an assessment of the design space and the
associated shape parametrization before optimization is performed or objective function and/or gradient are evaluated.
Offline linear DR methodologies have been developed for design optimization, with a focus on design-space variability
and DR for efficient analysis and optimization procedures [14, 15] in order to deal with the course of dimensionality. A
method based on the generalized Karhunen-Loève expansion (KLE) has been formulated for the assessment of the shape
modification variability and the definition of a reduced-dimensionality global model of the design space by Diez et al.
[9]. No objective function evaluation nor gradient is required by the method. The method has been successfully applied
for deterministic [7, 16, 17] and stochastic [18, 19] hull form optimization of mono-hulls and catamarans in calm water
and waves, respectively. Similarly, Poole et al. [20] have applied proper orthogonal decomposition (POD, equivalent to
generalized KLE), via singular value decomposition of an airfoils library, for airfoil shape optimization. Although linear
methods have been successfully applied for a wide range of problems, they may not be efficient when complex nonlinear
relationship between design variables are involved. Nonlinear DR methods generalize linear methods to address data
with non-linear structures. Autoencoders are effective method for data compression; it is a particular architecture of
artificial neural networks, capable to compress (encode) and reconstruct (decode) the original data. This method, in the
form of deep architecture (called deep autoencoder) [21], is capable to learn complex hidden relashionships about the
data and to be particularly effective in presence of high nonlinearities. A deep autoencoder (DAE) has been successfully
applied for pre-optimization design space breakdown of mono-hull vessel [22]. D’Agostino et al. [23] have shown the
effectiveness of linear and nonlinear DR methods for the shape optimization of the destroyer type hull, with comparison
of objective function improvement and convergence to the optimum.

The objective of the present paper is to study the combined effect of design-space DR and optimization methods on
the efficiency of global SBDO procedures, extending the authors previous work [22, 23] where only DR methods effects
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were studied.
PCA and DAE are used for the design-space assessment and breakdown of the hull-form optimization of a

USS Arleigh Burke-class destroyer, namely the DTMB 5415 model, an early and open to public version of the
DDG-51. The optimization pertains to the total resistance minimization in calm water at single speed performed with
global (Deterministic PSO [6], DIRECT, and DPO), and global/local hybrid deterministic derivative-free methods
(LSDFPSO [24] and DIRMIN-2 [5]). PCA and DAE compression capabilities are assessed in terms of original data
reconstruction error by the normalized mean squared error. Their effects on the global optimization performance
(using the reduced-dimensionality spaces), conditional to optimization method, is finally discussed and compared to the
original full-dimensionality design space.

II. Design-space Dimensionality Reduction Methods
General definitions and assumptions for design-space DR in shape optimization are presented in the following, along

with linear (PCA) and non-linear (DAE) DR methods.

A. General Definitions and Assumptions
Consider a geometric domain G (which identifies the initial or parent shape) and a set of coordinates ξ ∈ G ⊂ Rn

with n = 1, 2, 3. Assume that u ∈ U ⊂ RM is the design-variable vector, which defines a continuous shape modification
vector δ(ξ, u) ∈ Rm with m = 1, 2, 3 (with m not necessarily equal to n). Consider u as a random variable, with
associated probability density function p(u).

In this application the aim of the dimensionality reduction is to identify an approximated representation of the shape
modification vector namely δ̂(ξ, x), for which its shape modification depends on a new reduced order design variable
x ∈ X ⊂ RN with N < M . The reconstruction vector δ̂(ξ, x) is estimated during a process of encoding/decoding by the
DR methods: the original shape modification vector δ(ξ, u) is encoded in a low dimensional latent space defining the
new design variable x. The decoding process reconstruct the original shape modification vector as δ̂(ξ, x) for which its
modification on the original domain depends on the vector x learned by the DR methods. Figure 2 shows an example
with n = 1 and m = 2.

Fig. 2 Scheme and notation for the current formulation.

A convenient metric to evaluate the goodness of fit of δ̂(ξ, x) respect to δ(ξ, u) is the mean squared error (MSE)
normalized to the total original geometric variance (σ2) as

NMSE =
MSE
σ2 =

∬
U×X,G

‖δ(ξ, u) − δ̂(ξ, x)‖2p(u, x)dξdudx∬
U,G
‖δ(ξ, u)‖2p(u)dξdu

(1)

where p(u, x) is an unknown joint probability distribution over the product space U × X .
Discretizing G by a number of Q elements of equal measure ∆G, assuming for the sake of simplicity and without

loss of generality ∆G = 1, and sampling U by a statistically convergent number of Monte Carlo realizations S, so that
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{uk}
S
k=1 ∼ p(u). The spatial discretization d(u)k of δ(ξ, uk) are organized in a [S × L] data matrix as:

D =


d(u)Tk=1

...

d(u)Tk=S

 (2)

where L = mQ and assuming a centered data set (i.e., with zero mean value). The expectation in Eq. 1 can be
approximated by evaluating the MSE as

MSE =
1
S

S∑
k=1
‖d(u)k − d̂(x)k ‖2 (3)

and the total geometric variance σ2 as

σ2 =
1
S

S∑
k=1
‖d(u)k ‖2 (4)

Combining Eqs. 3 and 4, the discretized form of Eq. 1 can be expressed as

NMSE =
MSE
σ2 =

∑S
k=1 ‖d(u)k − d̂(x)k ‖2∑S

k=1 ‖d(u)k ‖2
(5)

Details of formulation, equations, and numerical discretization can be found in [9]. In the next sections DR methods
as PCA and DAE are presented; in order to simplify notations d(u) and d̂(x) are recast into d and d̂, respectively.

B. Principal Component Analysis
PCA allows to reduce the input dimensionality of the data, performing a projection of the points in a new linear

subspace, defined by the eigenvectors (called the principal components) of the [L × L] covariance matrix C = 1
SDTD.

These eigenvectors have the properties to maximize the variance of points projected on them and to minimize the mean
squared distance between the original points and the relative projections [25]. The principal components are defined by
the solution of the eigenproblem

Czi = λizi ∀i = 1, . . . , L (6)

Moreover, the eigenvalues {λi}Li=1 (with λi ≥ λi+1) represent the variance resolved along the relative eigenvectors
{zi}Li=1 (with zT

i zi = 1). From this property, a subset of N eigenvectors is used to compute a reduced dimensionality
representation of the original vector d as

xk = ZTdk (7)

the matrix Z has dimension [L × N] and is composed by the first N largest-variance principal components. The
projection d̂k on the orthonormal basis given by the columns of Z is:

d̂k = Zxk (8)

where d̂k represents the minimum squared error approximation of the relative dk :

MSE =
1
S

S∑
k=1
| |dk − d̂k | |

2 =
1
S

S∑
k=1
| |dk | |

2 −

N∑
i=1

zTi Czi =
1
S

S∑
k=1
| |dk | |

2 −

N∑
i=1

λi (9)

where in Eq. 9 it follows that in order to minimize the MSE, the principal components given by the solution of Eq. 6
also maximize the projected variance

∑N
i=1 zTi Czi .
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C. Deep Autoencoder
An autoencoder is an artificial neural network that performs two main tasks: (i) an encoder function E maps the data

dk to compress data xk ; (ii) a decoder function D maps from the compressed data xk back to d̂k . This operation is
performed setting the same number of neurons L in the input and output layer and constraining the hidden layer to have
N < M neurons.

...

... ...

dk,1

dk,2

dk,3

dk,L

xk,1

xk,N

d̂k,1

d̂k,2

d̂k,3

d̂k,L

Input
layer

Hidden
layer

Ouput
layer

Fig. 3 A single hidden layer autoencoder.

Consider a single hidden layer autoencoder (see Fig. 3), if the new design variable xk can be written as

xk = E(H(1)dk + b(1)) (10)

where H is a relative weight matrix, b the bias vector, and the apex “(1)” represents the weights from the input to the
hidden layer, then the reconstruction vector d̂k from xk can be expressed as

d̂k = D(H(2)xk + b(2)) (11)

where the apex “(2)” represents the weights from the hidden to the output layer. The network parameters H and b,
usually are evaluated minimizing the mean squared error as

MSE =
1
S

S∑
k=1
‖dk − d̂k ‖

2 =
1
S

S∑
k=1
‖dk −D(H(2)E(H(1)dk + b(1)) + b(2))‖2 (12)

If a linear activation function is used for the encoder function E and the decoder function D, the weights of the
matrix H(1) span the same subspace as the first N principal components of the data at the global minimum of Eq. 12
[26, 27]. Even if E is sigmoidal activation function, the points in the hidden layer are still embedded in a hyperplane
spanned by the principal components of the data [27]. Using nonlinear activation functions and multiple hidden layers,
DAE provides a nonlinear generalization of the PCA. The DAE compression capability is represented by the number of
neurons N in the central hidden layer and defined based on parametric minimization of the MSE, varying N .

III. Optimization Algorithms
Global and hybrid global/local deterministic derivative-free optimization algorithms are used. Their main features

are described in the following subsections.

A. Deterministic Particle Swarm Optimization
PSO was originally introduced in [2], based on the social-behavior metaphor of a flock of birds or a swarm of bees

searching for food. PSO belongs to the class of heuristic algorithms for single-objective evolutionary derivative-free
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global optimization. In order to make PSO more efficient for use within SBD, a deterministic version of the algorithm
(DPSO) was formulated in [28] as follows{

vk+1
j = χ

[
vkj + c1(pj − xkj ) + c2(g − xkj )

]
xk+1
j = xkj + vk+1

j

(13)

The above equations update velocity (vkj ) and position (xkj ) of the j-th particle at the k-th iteration, where: χ is the
constriction factor; c1 and c2 are respectively the social and cognitive learning rate; pj is the personal best position ever
found by the j-th particle in the previous iterations and g is the global best position ever found in the previous iterations
by all the particles.

A discussion for an effective and efficient use of DPSO for SBDO in ship hydrodynamics has been presented by
Serani and Diez [8]. The parameter setup used for DPSO is selected as suggested by Serani et al. [6]: number of
particles Np = 4N; particle initialization with Hammersley sequence sampling (HSS) [29] distribution on domain only
with non-null velocity [16]; set of coefficients proposed by Clerc [30], i.e., χ = 0.721, c1 = c2 = 1.655; semi-elastic
wall-type approach [6] for box constraints.

B. Hybrid Global/Local DPSO
Global convergence properties of a modified DPSO scheme may be obtained by properly combining DPSO with a

line search-based derivative-free method, so that convergence to stationary points can be forced at a reasonable cost.
Serani et al. [24] provides a robust method to force the convergence of a subsequence of points toward a stationary
point, which satisfies first order optimality conditions for the objective function. The method, namely LSDFPSO, starts
by coupling the DPSO scheme with a line search-based method. Specifically, a Positively Spanning Set (PSS) is used,
where the set of search directions (D⊕) is defined by the unit vectors ±ei , i = 1, . . . , N , as shown in the Eq. 14 (i.e.,
N = 2).

D⊕ =
{(

0
1

)
,

(
−1
0

)
,

(
0
−1

)
,

(
1
0

)}
(14)

After each DPSO iteration, the local search from the best particle is performed if the swarm has not find a new global
minimum. The initial step size for the local search is set equal to 0.25 times the variable domain range, and it is reduced
by 0.5 at each local search iteration. Local searches continue in each direction until the step size is greater than 10−3. If
the local search stops without providing a new global minimum, the actual global minimum is declared as a stationary
point. The line search method is not allowed to violate the box constraints.

C. DIviding RECTangles
DIRECT is a sampling deterministic global derivative-free optimization algorithm and a modification of the

Lipschitizian optimization method [1]. It starts the optimization by transforming the search domain X or U of the
problem into the unit hyper-cube D. At the first step of DIRECT, the objective f (x) is evaluated at the center (c) of D;
the hyper-cube is then partitioned into a set of smaller hyper-rectangles and f (x) is evaluated at their centers. Let the
partition of D at iteration k be defined as

Hk = {D j : j ∈ J k}, with
D j = {x ∈ RN : xj

l
≤ x ≤ xj

u ∀ j ∈ J k}
(15)

where xj
l
and xj

u ∈ [0, 1], with j ∈ J k , are the lower and upper bounds defining the hyper-rectangle D j , and J k is the
set of index identifying the subsets defining the current partition. At a generic k-th iteration of the algorithm, starting
from the current partitionHk of D, a new partition,Hk+1, is built by subdividing a set of promising hyper-rectangles of
the previous one. The identification of “potentially optimal” hyper-rectangles is based on a trade-off between large and
unexplored hyper-rectangles and the value of f (x) at their center c j . The refinement of the partition continues until a
prescribed number of function evaluations have been performed, or another stopping criterion is satisfied. The minimum
of f (x) over all the centers of the final partition, and the corresponding center, provide an approximate solution to the
problem. It may be noted that the box constraints are automatically satisfied.
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D. Hybrid Global/Local DIRECT
DIRMIN-2 is a global/local hybridization of the DIRECT algorithm [5]. DIRMIN-2 performs a single derivative-free

local minimization per iteration, starting from the best point produced by dividing the potentially-optimized hyper-
rectangles. DIRMIN-2’s local minimization is used when the number of function evaluations reaches the activation
trigger γ ∈ (0, 1), a ratio of the maximum number of function evaluations (Nfmax ). The local minimization proceeds until
either the number of function evaluations exceeds Nfmax or the step size falls below a given tolerance β. The local search
is not allowed to violate the box constraints. The following set up is used [5] γ = 0 and β = 10−2.

E. Dolphin Pod Optimization
DPO is a deterministic swarm-intelligence method based on a simplified social model of a dolphin pod in search for

food, originally introduced by Serani and Diez [3, 4]. DPO is formulated defining the pod dynamics as a spring-mass
system subject to internal and external forces. DPO formulation starts normalizing the variables vector x into a unit
hypercube and reads {

vk+1
j = (1 − ζ ∆tp )v

k
j −

∆t
pNd
(α1ψ j − α2ϕ j)

xk+1
j = xkj + vk+1

j
∆t
p

(16)

where xkj and vkj represent the j-th dolphin position and velocity at the k-th iteration, respectively. The dynamics of the
j-th individual depends on a pod attraction force ψ j and a food attraction force ϕ j , where

ψ j =

Nd∑
i=1

(
xj − xi

)
and ϕ j =

Nd∑
i=1

2 f̂ (xj, bi)

1 + ‖xj − bi ‖
α3

e(bi, xj) (17)

with
f̂ (xj, bi) =

f (xj) − f (bi)

ρ
and e =

bi − xj

‖bi − xj ‖
(18)

In the above equations, ζ , α1, and α2 ∈ R
+ define the pod dynamics; Nd ∈ N

+ is the pod size; α3 ∈ R
+ tunes

the food attraction force; xj ∈ R
N is the vector-valued position of the j-th individual; f (x) ∈ R is the objective

function (representing the food distribution); bi is the best position ever visited by the i-th individual; ρ = f (w) − f (b)
is a dynamic normalization term for f , where b = argmin{ f (bj)} is the best position ever visited by the pod and
w = argmax{ f (xj)} the worst position occupied by the pod individuals at the current time instance; bi , b, and w are
defined in the variable space. The integration step ∆t must guarantee the stability of the pod free dynamics as per

∆t =
2γ

γ2 + ω2

����
min

(19)

where γ and ω are real and imaginary part, respectively, of the matrix A eigenvalue λ = −γ ± iω, describing the system
free-dynamics, with

A =

[
0 I
−K −G

]
, K = α1


1 − Nd 1 · · · 1

1 1 − Nd · · · 1
...

...
. . .

...

1 · · · 1 1 − Nd


, and G = ζI (20)

where I the [Nd × Nd] identity matrix.
The setup suggested by Serani and Diez [4] is used herein: number of dolphins Nd = 4N; pod initialization with

HSS distribution on the domain boundary only; set of coefficients corresponding to ζ = 0.1, α1 = α2 = 0.1, α3 = 0.5,
and p = 8; elastic wall-type approach for box constraints.

IV. Shape Optimization of a Destroyer Hull

A. Model Geometry and Optimization Problem Statement
The DTMB 5415 model is an open-to-public early concept of the DDG-51, a USS Arleigh Burke-class destroyer,

widely used for both towing tank experiments [31] and hull-form SBDO [7]. The original (full dimensionality) design
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space formulation for the shape optimization of the DTMB 5415 reads

minimize RT(u) with u ∈ RM

subject to Lpp(u) = Lpp0

and to ∇(u) = ∇0,

|∆B(u)| ≤ 0.05B0,

|∆T(u)| ≤ 0.05T0,

V(u) ≥ V0,

uli ≤ ui ≤ uui ∀i = 1, . . . , M

(21)

where RT is the calm-water total resistance at Fr = 0.28 (equivalent to 20 kn for the full-scale ship). Equality constraints
are defined for the length between perpendiculars (Lpp) and for the displacement (∇). Inequality constraints include
5% of maximum variation of beam (B) and the drought (T) and preserved volume for the sonar in the bow dome V .
Subscript ‘0’ indicates original-geometry values.

Using the reduced-dimensionality space dimension N , the optimization problem in Eq. 21 is recast as

minimize RT(x) with x ∈ RN

subject to Lpp(x) = Lpp0

and to ∇(x) = ∇0,

|∆B(x)| ≤ 0.05B0,

|∆T(x)| ≤ 0.05T0,

V(x) ≥ V0,

xli ≤ xi ≤ xui ∀i = 1, . . . , N

(22)

where the objective function and constraints depend on the new N-dimensional design variable vector x estimated by
the off-line design space dimensionality reduction (Fig. 1); xli and xui are the lower and the upper bounds respectively
computed from the minimum and the maximum of each column of the [S × N] matrix, composed by all the encoded
representation of {dk}

S
k=1 (see Eq. 7 and Eq. 10).

B. Shape Modification Method
The original shape modification δ(ξ, u) is defined using a linear combination of M = 27 vector-valued functions of

the Cartesian coordinates ξ ∈ R3 over a hyper-rectangle embedding the demihull [7]

φi(ξ) : V = [0, Lξ1 ] × [0, Lξ2 ] × [0, Lξ3 ] ∈ R
3 −→ R3 (23)

with i = 1, ..., M , as

δ(ξ, u) =
M∑
i=1

ui φi(ξ) (24)

where the coefficients ui ∈ R (i = 1, . . . , M) are the (original) design variables and

φi(ξ) :=
3∏
j=1

sin
(

ai jπξj
Lξj

+ ri j

)
eq(i) (25)

imposing the following orthogonality property:∫
V
φi(ξ) · φk(ξ)dξ = δik (26)

In Eq. 25, {ai j}3j=1 ∈ R define the order of the function along j-th axis; {ri j}3j=1 ∈ R are the corresponding spatial
phases; {Lξj }3j=1 are the hyper-rectangle edge lengths; eq(i) is a unit vector. Modifications are applied along ξ1, ξ2, or ξ3,
with q(i) = 1, 2, or 3 respectively. The parameter values used here are taken from [7].
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In the discrete form, the original shape modification reads

g(u) = g0 + d(u) (27)

where g is the computational body grid (used for the hydrodynamics analysis, see Fig. 4), and g0 is the original grid.
During the data matrix D construction, the equality and inequality constraints of problem in Eqs. 21 and 22 are

taken in consideration: fixed Lpp and ∇ are satisfied by automatic geometric scaling, whereas geometries exceeding
the inequality constraints are not considered. Once the design-space dimensionality reduction is performed, the shape
modification (Eq. 27) in the reduced-dimensionality space is given by

g(x) = g0 + d̂(x) (28)

with d̂(x) equal to Eqs. 8 and 11 for PCA and DAE, respectively.

X Y

Z
I

J

Fig. 4 DTMB 5415 geometry and body surface discretization used for both design-space dimensionality reduc-
tion and optimization.

C. Hydrodynamic Solver
Calm-water performance are evaluated using the linear potential-flow code WARP (Wave Resistance Program),

developed at CNR-INSEAN. Wave resistance computations are based on the on Dawson (double-model) linearization
[32]. The wave resistance is evaluated with the pressure integral over the body surface, whereas the frictional resistance
is estimated using a flat-plate approximation, based on the local Reynolds number [33]. The ship balance (sinkage and
trim) is fixed. Details of equations, numerical implementations, and validation of the numerical solver are given in
Bassanini et al. [34].

Simulations are performed for the right demihull, taking advantage of symmetry about the xz-plane. The
computational domain for the free-surface is defined within 1Lpp upstream, 3Lpp downstream, and 1.5Lpp sideways, for
a total of 75 × 20 grid nodes. The associated hull grid (90 × 25 nodes) is shown in Fig. 4.

V. Results
Design-space dimensionality reduction by PCA and DAE and the optimization results using both full and reduced-

dimensionality design spaces are presented in the following subsections.

A. Design-space Dimensionality Reduction
The original design space (defined by M = 27 design variables) is sampled using a uniform random distribution

of S = 9, 000 hull-form designs. In assessing the methods’ performance and to address the overfitting problem the
DR methods are trained on the 80% of the original dataset D (training set). The remaining 20% is used as test set to
evaluate DR effectiveness in terms of reconstruction error. In the present work, DAE is built with five hidden layer
composed by 160-50-N-50-160 neurons. Exponential linear units (ELUs) [35] activation function is choosen for each
hidden layers, except for the output layer where there is a linear activation function. The DAE is trained with Adam
optimization algorithm [36] using a minibatch size of 64 data point when compute the gradient by the backpropagation
algorithm [37]. To overcome the DAE overfitting the early stopping strategy is adopted during the training: a subset of
the training set, namely the validation set, is used to evaluate the NMSE during the learning process, which stops if no
NMSE improvement is found. A maximum threshold of the NMSE equal to 0.05 is set to identify the dimension N of
the reduced-dimensionality spaces. This value describes data variability that DR methods are not capable to explain.
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Figure 5 compares PCA and DAE normalized reconstruction error convergence (on the test set) towards the NMSE
threshold. PCA needs N = 21 principal components to reach the threshold, reducing the design-space dimensionality up
to 22%, whereas DAE outperform the PCA reaching about 56% with N = 12. This is an indicator of high nonlinearity
in the data, since the PCA overestimates the intrinsic dimensionality of the data.
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N [−]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
M

S
E

[−
]

PCA

DAE

NMSE = 0.05

Fig. 5 PCA and DAE normalized reconstruction error convergence on the test set.

B. Optimization
A limit to the number of objective function evaluations is set equal to 9, 000. A linear penalty function is used for

the designs exceeding the inequality constraints.
Figure 6 shows the optimization algorithms convergence towards the optimum using original (OBF, see Fig. 6a),

PCA (see Fig. 6b), and DAE (see Fig. 6c) spaces. A maximum total resistance improvement of about 13%, 16%, and
25% is achieved by DPSO, DIRECT, and DIRMIN-2, respectively on OBF, PCA, and DAE spaces. This first result
shows how the DR methods generally improve the global optimization procedure.
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Fig. 6 Optimization algorithms convergence conditional to the design space.

To further assess the effects of the DR methods on the optimization procedure, Fig. 7 shows for each optimization
algorithms the objective function converge, conditional to the design space. DPSO (see Fig. 7a) and its hybrid counterpart
LSDFPSO (see Fig. 7c) don’t seems to take any benefit from using PCA and DAE design spaces. Nevertheless about
3% of maximum difference between the optima for both DPSO and LSDFPSO has been found. On the contrary,
DIRECT (see Fig. 7b) and its hybrid DIRMIN-2 (see Fig. 7d), as well as DPO (see Fig. 7c), significantly increase
their performance in terms of convergence speed and objective function improvement as the problem dimensionality
decrease.

Finally, Fig. 8 and Tab. 1 summarize the optimization results in terms of total resistance improvement conditional
to the optimization algorithm and the design space. Average objective improvement conditional to the design space
is also provided, showing how the dimensionality reduction and in particular a nonlinear methods, such as the DAE,
generally improves the optimization effectiveness and efficiency.
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Fig. 7 Design space effectiveness conditional to the optimization algorithm.
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Fig. 8 Optimization improvement using 9,000 function evaluations conditional to design spaces and algorithm.
Algorithms average is also provided.

Table 1 Optimization results summary: objective function improvement (∆RT%).

Design space Dimension DPSO LSDFPSO DIRECT DIRMIN-2 DPO Average

OBF M = 27 -12.51 -11.96 -10.22 -10.75 -3.55 -9.80
PCA N = 21 -9.75 -14.06 -16.19 -12.83 -10.37 -12.64
DAE N = 12 -10.85 -10.89 -16.45 -24.52 -11.32 -14.81

VI. Conclusions and Future Work
The combined effect of linear and nonlinear design-space DR and optimization methods on global shape optimization

efficiency has been investigated, providing a deeper insight into the curse of dimensionality for complex simulation-based
problems. Linear PCA and nonlinear DAE are used as DR methods. Deterministic Particle Swarm Optimization,
DIviding Rectangles, and hybrid global/local counterpart (LSDFPSO and DIRMIN-2), as well as Dolphin Pod
Optimization, are used as optimization algorithms. Example application is shown for the shape optimization of the
DTMB 5415 model, a destroyer type vessel, addressing the calm water total resistance minimization at fixed speed.

DR methods have shown their capability of reducing the original design-space dimensionality (M = 27) by up to
22% (PCA) and 56% (DAE), achieving a reconstruction error based on the NMSE smaller than 5%. As far as the DR
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effectiveness is concerned, DAE clearly outperforms PCA.
From the optimization efficiency point of view, Lipschitzian optimization algorithms (DIRECT and its hybrid

modification DIRMIN-2) and DPO, a nature inspired algorithm, benefited the most from using reduced-dimensionality
spaces both in terms of convergence speed to the minimum and final objective function improvement. No significant
benefits of using reduced-dimensionality spaces have been observed for DPSO and its hybrid version, LSDFPSO. On
average, a total resistance improvement of 9.8%, 12.6%, and 14.8% has been achieved using original (OBF), PCA, and
DAE design spaces, respectively, providing a clear indication of the general benefit of using reduced-dimensionality
spaces.

Future work will extend the current study to additional nonlinear DR methods such as kernel and local PCA [22].
Application of nonlinear methods will be also extended and assessed for combined geometry- and physics-based
formulation for design-space DR [38–40].
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