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ABSTRACT

The historical role of nonlinear waves in developing the science of com-
plexity, and also their physical feature of being a widespread paradigm in
optics, establishes a bridge between two diverse and fundamental fields
that can open an immeasurable number of new routes.

In what follows, we present our most important results on nonlinear
waves in classical and quantum nonlinear optics. About classical phe-
nomenology, we lay the groundwork for establishing one uniform theory
of dispersive shock waves, and for controlling complex nonlinear regimes
through simple integer topological invariants. The second quantized field
theory of optical propagation in nonlinear dispersive media allows us to
perform numerical simulations of quantum solitons and the quantum
nonlinear box problem.

The complexity of light propagation in nonlinear media is here exam-
ined from all the main points of view: extreme phenomena, recurrence,
control, modulation instability, and so forth. Such an analysis has a
major, significant goal: answering the question can nonlinear waves do
computation? For this purpose, our study towards the realization of an
all-optical computer, able to do computation by implementing machine
learning algorithms, is illustrated. The first all-optical realization of the
Ising machine and the theoretical foundations of the random optical
machine are here reported.

We believe that this treatise is a fundamental study for the application
of nonlinear waves to new computational techniques, disclosing new
procedures to the control of extreme waves, and to the design of new
quantum sources and non-classical state generators for future quantum
technologies, also giving incredible insights about all-optical reservoir
computing. Can nonlinear waves do computation? Our random optical
machine draws the route for a positive answer to this question, substitut-
ing the randomness either with the uncertainty of quantum noise effects
on light propagation or with the arbitrariness of classical, extremely
nonlinear regimes, as similarly done by random projection methods and
extreme learning machines.
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Part I

INTRODUCTION

Thesis Outline

This thesis aims at introducing new methods for study-
ing complex nonlinear dynamics in optical systems, for
classical and quantum evolution. It also aims at using
these methods for novel computational models (cur-
rently involving only linear optical propagation), as an
in-depth, preliminary study to the future goal of do-
ing computation through nonlinear waves. Although
this work is theoretical and numerical, we include many
experimental results, in which the new methods have
been applied, and the computational devices have been
realized.

After a general introduction to the topic here in Part i,
the work is organized as follows.

Part ii is about classical nonlinear dynamics. We deal
with new theoretical models for shock waves, rogue
waves, Fermi-Pasta-Ulam-Tsingou recurrence, and
soliton gas generation. Experimental results in ther-
mal media and photorefractive crystals confirm the
theory.

Part iii is about quantum nonlinear regimes described
in a nonperturbative framework. We introduce the
positive Prepresentation and apply the resulting
numerical methods for studying quantum effects in
solitons and rogue wave generation.

Part iv is about the use of waves for novel computa-
tional devices, which solve complex optimization
problems, like Ising machines and random optical
neural networks.

Conclusions are drawn in Part v. Different sections are
described in detail at the beginning of each Part.






WAVES & COMPLEXITY

INTRODUCTION

The complexity science is based on a new way of thinking, which stands
in sharp contrast to the philosophy underlying the Newtonian science,
based on reductionism, determinism, and objective knowledge. Sys-
tems theory replaced reductionism by a scientific holism, namely, by
the idea that systems (physical, biological, chemical, social, economic,
mental, linguistic) and their properties should be viewed as wholes, not
just as a collection of parts. Determinism was challenged by Quantum
Mechanics (QM) and chaos theory. Cybernetics and postmodern social
science showed that knowledge is intrinsically subjective, by focusing the
attention on how anything processes information, reacts to information,
and changes or can be changed to accomplish these tasks better.

Nowadays, complexity is perhaps the most essential characteristic of
our society. As technology and global economy advance, transport and
communication are every day more efficient, we interact with ever more
people, organizations, systems, and objects. This network of interactions
continuously grows and spreads around the globe. We take an active
part in different economic, social, technological, and ecological systems
that ceaselessly become more interdependent. The result is an ever more
complex “system of systems", where a change in any component may
affect virtually any other component unpredictably [19].

The traditional scientific method, which is based on analysis, isolation,
and the gathering of complete information about a phenomenon, is
incapable of dealing with such complex interdependencies. For centuries,
the world view underlying science has been deterministic. Over the past
century, several scientific developments have challenged the Newtonian
promise of a complete, objective, and absolute knowledge of the past and
future. This simplistic - although fundamental in various fields of science
- the picture was gradually replaced by another, profoundly different view
of reality, complex at its core. First, Heisenberg’s uncertainty principle in
QM followed by the notion of chaos in nonlinear dynamics, showed that
the world is intrinsically unpredictable. Then, systems theory, cybernetics,
postmodern social science, together with the theories of self-organization
and biological evolution, made us aware that regularity or organization
is not something taken for granted, but emerges dynamically out of a
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tangle of conflicting forces and random fluctuations, that is, a process
called “order out of chaos” [20]. All the previously listed different
approaches are now starting to become integrated under the heading
complexity science. Its central paradigm is the multi-agent system: a
collection of autonomous components whose local interactions give rise
to global order. Agents are intrinsically subjective and uncertain about
the consequences of their actions, but they generally manage to self-
organize into an emergent, adaptive system. For this reason, uncertainty
and subjectivity should no longer be viewed negatively, as the loss of
the absolute order of mechanicism, but positively, as factors of creativity,
adaptation, and evolution.

Complexity science emerged as a new approach to the study of reality
as an assembly of multi-agent systems in the 1980’s [21—24]. Although
its origins are largely independent of systems science and cybernetics,
complexity science offers the promise to extend and integrate their ideas,
and thus to develop a radical, yet workable alternative to the Newtonian
paradigm. The roots of the complexity movement are diverse, including:

NONLINEAR DYNAMICS AND STATISTICAL MECHANICS, which noted
that the modeling of more complex systems required new mathe-
matical tools that can deal with randomness and chaos;

COMPUTER SCIENCE, which allowed the simulation of systems too
large or too complex to be modeled mathematically;

BIOLOGICAL EVOLUTION, which explains the appearances of complex
forms through the intrinsically unpredictable mechanism of blind
variation and natural selection;

SOCIAL SCIENCES, such as stock markets, the internet, or insect so-
cieties, where there is no predefined order, although there are
emergent structures.

In fact, the signature of complexity science is its focus on phenomena
that are characterized neither by order (like those studied in Newtonian
mechanics and systems science), nor by disorder (like those investigated
by statistical mechanics and postmodern social science), but that are
situated somewhere in between, in the zone that is commonly called the
“edge of chaos" [25]. We already know how to model order, since we can
predict everything once we know the initial conditions and the constraints.
We already know how to model disorder as well, to some extent: while
we cannot predict the behavior of individual components, statistical
independence allows us to predict their average behavior accurately. In
a genuinely complex system, on the other hand, components are, to a
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certain degree, independent, and thus autonomous in their behavior,
while undergoing various direct and indirect interactions. This makes
the global behavior of the system very difficult to predict, although it is
not truly random.

However, a conceptual framework, able to examine whatever complex
phenomenon, belonging to whichever field of knowledge, in its entirety
and to establish the methodological structure to analyze the system as a
whole, is still lacking. Currently, complexity science is little more than an
amalgam of methods, models, and metaphors from a variety of disciplines
rather than an integrated science. Applications of complexity science use
either very specialized, technical formalisms - such as network clustering
algorithms, computer simulations, and nonlinear Partial Differential
Equations (PDEs) - or rather vaguely defined ideas and metaphors.

A possible - and promising - first step towards the construction of
complexity science foundation may be an exhaustive physical model,
supported by experimental proofs, of a self-analyzing multi-agent system:
finding a field that can be represented as an ensemble of nonlinear
complex phenomena, that is, a complex “system of systems", whose self-
organization and adaptation to the environment can be used to describe
and predict the behavior of the ensemble itself, could open the way to a
new scientific paradigm and allow to reach new unthought-of frontiers,
where complexity explains complexity.

Physically, what does “complex” mean? A complex physical system is
a system with a high number of degrees of freedom, which are governed
by a nonlinear evolution. It is not a particle in gas, because particles
belonging to gas do not have long-term interactions. We need nonlinearity
to make the system’s components to be highly interacting. For all these
reasons, complexity in physics finds its true expression in the inevitable
need of a high amount of information for any mathematical description
of the system, and its numerical simulation [26].

If we turn the gaze to Nonlinear Optics (NLO), namely, to the multiple
possible undulatory phenomena that a laser beam can experience or
realize in a nonlinear medium, we can ask if it is the feasible complex
“system of systems" we are looking for. Optical nonlinear waves have
many interesting features:

NLWS ARE COMPLEX, indeed, recent experiments showed that a non
trivial regime of nonlinear waves is now completely accessible; just
until a few decades ago, scientists could not go beyond the study of
few solitons, while today we are able to access extremely nonlinear
and multi-modal regimes, from hydrodynamics to Bose-Einstein
Condensation (BEC), to classical and quantum NLO [4, 7, 8, 10];
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NLWS ARE CONTROLLABLE, we show that we can control transitions
from Dispersive Shock Waves (DSWs) to Rogue Waves (RWs) in
classical NLO, and the propagation of quantum solitons in quantum
NLO;

CAN NLWS DO COMPUTATION? At a linear regime, many efforts have
been made in quantum technology - without a decisive success -
but new computational models, such as the Ising machine, have
been solved classically through optical free propagation [9].

Can nonlinear waves do computation? This question is still open, but the
scientific community is making a great effort to answer it, and several
signs of progress have already been reached [1, 27]. Whenever we will be
able to answer that question positively, that is, whenever we will prove
that nonlinear waves can do computation and we will build an all-optical
nonlinear computer, we will not only have found the first self-analyzing
multi-agent system, demonstrating that complexity does explain complexity,
but we will have proven that complexity does explain complexity at the speed

of light.
OPTICAL NONLINEAR WAVES

When we deal with waves in dispersive media, we are facing specific
mathematical objects, that is, dispersive PDEs. A linear PDE is dispersive
when it has a solution ¢(x, t) = Aeilkxtw(®)] 4 c.c., i.e., a monochromatic
wave, for which k € R = w(k) € Rand 3k € R : «'(k) # 0.
For a linear dispersive PDE, we can define a leading wave number as
ko € R : 0¢¢li, = 0, a group velocity v, = w’(ko), and a phase velocity

vp = w}((k‘)). The same definitions remain valid also for nonlinear PDE, by

looking at their linearized versions (neglecting the nonlinear terms), or by
looking at which model equation they correspond through the multiscale
method [28]. The multiscale method consists in a weakly pertubative
approach, where a general class of solutions of a specific PDE is modified
by introducing new spatiotemporal coordinates (or scales) in order to get
rid of secular terms - oscillating solutions whose amplitude grows with
time - and hold the asymptotic expansion true. The result is a chain of
PDEs, each one at an increasing perturbative order. In one-dimensional
problems, for example, a model equation for the continuity laws is the
Hopf equation:

0P + Yoy = 0. (1.1)
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If we consider modifications of continuity laws, by adding a dissipative
or a dispersive term, we attain two other model equations, respectively,
the Burgers equation

At + v2Y + Pdyp = 0, withv € R, (1.2)
and the Korteweg-de Vries Equation (KdVE)

Ot + 32 + 6Py = 0. (1.3)

The model equation that rules third-order nonlinear phenomena in
optics is the Nonlinear Schrodinger Equation (NLSE)

Dep -+ 5989+ 9l = 0. (1.4

It belongs to the same class of the KdVE, that is, it is a dispersive PDE.
Its three-dimensional version is equivalent to the Gross-Pitaevskii in
condensed-matter problems, or to a Klein-Gordon equation for a complex
field in high-energy models. The NLSE set of solutions is ample and
varied, with features covering a large spectrum of cases: NLSE solutions
can be very simple, as one soliton propagating shape-invariantly, or can
be extremely complex, as DSWs generating RWs, or a Soliton Gas (SG).

To go into much deeper details about what complexity means in NLO,
let us recall the definition of physical complexity: a complex physical
system is a system with a high number of degrees of freedom, which are
governed by a nonlinear evolution, and it finds its true expression in a
high amount of information for any mathematical (or numerical) descrip-
tion. Optically, it is the number of modes that determines the complexity
of any scenario. As the number of modes grows, the complexity arises.
This appears very clear when one considers the propagation of a Nth-
order soliton under Eq. (1.4). In the Inverse Scattering Transform (IST)
method, the scattering problem associated with Eq. (1.4) is [29]

10xv] + vy = Quy,

(1.5)
10, +9P*v1 = —Quy,

where v1 5 are the amplitudes of the two waves scattered by the potential
P(x,t), and { is the IST eingevalue, similar to the frequency for the
Fourier Transform (FT). Following the IST method, in order to obtain the
initial scattering data for a given initial condition ¥ (x,0), namely, the
reflection coefficient r({), its N complex poles ; and their residues c;
(j=1...N), Egs. (1.5) are solved. The solution §(x, t) is reconstructed
from the evolved scattering data using the IST as sketched in Fig. 1.1. The
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Nonlinear Schrédinger Equation
10 + %831»’ + [¥)2h =0 Lax Pair Scattering Matrix
[ LU =20 5(¢,0)

¥(z,0) = y(x) | 0,9 = MV
l t-evolution

Inverse Scattering

(x,t) S(¢,1)

Figure 1.1: Pictorial representation of the IST method.
general solution can be written as [30]
N
%%
P(x,t) = -2 Z% ATp3;, (1.6)
j:

with {; = 2 d; + 51; (6,17 € R), and

1§]x+1§ t

/\ —\/Cje = 0,
AL
i+ X g, gk ¥y = 0, (1.7)
¥y — A g* ‘/’1k = AL

The first-order soliton corresponds to the case of a single eigenvalue,
that is, N = 1. It propagates without changing its shape and its mathe-
matical expression is [31]

P(x, t) = ysech [ (x — x; + ot)] 3 ~O)—w0t1g), (1.8)

with 7 the soliton amplitude, J the frequency, x; the position and ¢
the phase. Without loss of generality [for Eq. (1.4), 71 (17x, 7°t) is also a
solution], we treat the simpler form withy =1,x; =6 = ¢s = 0:

¥(x,t) = sech (x) ez (1.9)

The higher-order solitons can be found by imposing initial data ¢(x,0) =
Nsech(x), N € N, and they correspond to N pure imaginary eigenvalues
{j = 31;- The explicit solution at the second order is

A1t
P, b) = cosh (3x) + 3cosh (x) e et
cosh (4x) + 4cosh (2x) + 3cos (4t)

(1.10)

it is t-periodic, with period ty = 71/2, property true for all solitons with
N > 2. Calculations become more and more complicated for increasing
values of N. Whereas fundamental solitons are usually rather stable,
higher-order solitons can break up into fundamental solitons under the
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influence of various effects, such as higher-order dispersion, Raman
scattering, or two-photon absorption [32]. In a few words, the higher the
soliton order is, the more complex its propagation can be.

Solitons are not the only kind of nonlinear waves that can be solution
of NLSE, namely, that can be generated by a laser beam propagating
into a Kerr medium. Another important effect conveyed by NLSE is the
Modulation Instability (MI). The MI is a phenomenon whereby deviations
from a Continuous Wave (CW) are strengthen by nonlinearity, leading
to a linear single-mode amplification and multi-solitons generation [31,
33]. When we consider a strongly nonlinear regime, light can experi-
ence a damping after the amplification, which means that the MI has
reached a nonlinear stage [34]. The nonlinear MI induces RWs emergence,
like Akhmediev breathers or Peregrine solitons, and if the damping
is followed again by linear amplification, the RWs occurrence becomes
recurrent [10, 35-37].

Equation (1.4) is called focusing NLSE, because it is derived by the
focusing Kerr effect, but studying its defocusing version is worthwhile as
well. It reads

101 + %aill’ —ly[Pp =0, (1.11)

and the main important types of nonlinear waves generated by Eq. (1.11)
are dark solitons [31] and DSWs [13, 38]. DSWs, RWs, SGs and other NLSE so-
lutions are very complex, nonlinear phenomena, and their description has
already required a great effort, albeit there is still much to be done. The
non-trivial nature of these undulatory events, their complicated modal
distribution and their heterogeneous intensity landscape, composed by
high peaks, flat plateau, fast oscillations, phase discontinuities, and so on
and so forth, lead us to define these nonlinear waves as extreme.

A NOVEL PERSPECTIVE

We have just argued that extreme nonlinear waves are complex phe-
nomena. Can they be a new tool to analyze/interpret other fields of
complexity science? In a nutshell, again the same question: can nonlinear
waves do computation? This thesis does not answer this question defini-
tively but makes a special effort to draw the route to follow in order to
attain a positive response.

At first, almost every main class of optical nonlinear waves is analyzed,
and, in particular, the ones generated by propagation in Kerr or Kerr-like
media. DSWs are presented in Chapter 2, with specific reference to their
demonstrated intrinsically irreversible evolution in thermal media. In
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Chapter 3, we experimentally demonstrate a recent theory on nonlin-
ear MI and RW recurrent emergence made by P. G. Grinevich and P. M.
Santini [35, 36]. Chapter 4 is about the control, by topological tools, of
light propagation in the multimodal regime, that is, the box problem - an
initial waveform with an infinite number of modes- in a photorefractive
crystal.

Major complexity arises when one considers the quantum version of
the previously treated NLSE solutions. Quantization of NLSE is conveyed
in Chapter 5. In the process that leads to an exact - neither approximated,
nor given by perturbation theory - description of nonlinear waves at a
quantum regime, that is, at low photon number, the uncertainties due
to the Heisenberg principle are mapped into a stochastic white noise
through phase-space methods. The result is an equivalence between
the Quantum Nonlinear Schrédinger Equation (QNLSE) and a system
of two coupled Stochastic Nonlinear Schrodinger Equations (SNLSEs).
The numerical simulations of the solution of such a stochastic PDEs
system let us study the quantum realization of the aforementioned optical
nonlinear waves. Chapter 6 reports the study of quantum solitons and
their quantum control along propagation. The quantum nonlinear box
problem is treated in Chapter 7.

Once we analyzed both classical and quantum nonlinear waves, we can
move to computation. Our attempt to draw the mentioned route is to de-
velop linear all-optical devices, able to solve paradigmatic computational
problems and to mimic Machine Learning (ML) algorithms. After a brief
introduction to computational complexity and the related classification
of decision problems, followed by an overview of the Ising Hamiltonian
models and the quantum annealing, in Chapter 8, the first all-optical
realization of an Ising machine is illustrated in its details in Chapter 9.
In Chapter 10, the class of ML algorithms are reviewed, and a specific
application of a supervised ML regression technique - implemented by
the use of TensorFlow™ (TF) routines - to the inverse problem for a
topological laser design is reported. Last but not least, in Chapter 11, we
establish the theoretical foundation of the random optical machine. We
prove that light transmission in a random medium generates an Artificial
Neural Network (ANN) - as deep as the amount of system perturbations
- that performs reservoir computing. This represents one of the first
conceptual fulfilments of an all-optical computer, of which experimental
realization is designed in what follows, treating the application of the
random optical machine to the implementation of quantum gates.

Finally, Chapter 12 concludes the thesis, unveiling the way to a possible
all-optical nonlinear computer.






Part 11

COMPLEXITY IN CLASSICAL NONLINEAR
WAVES

Outline of Part ii
This Part deals with complex classical nonlinear optical
waves.

e Chapter 2 is a general introduction to theory and
experiments on optical shock waves, with emphasis
on nonlocal media.

e Chapter 3 describes the onset of complex regimes
by nonlinear modulation instability. Fermi-Pasta-
Ulam-Tsingou recurrence is described as the leading
mechanism towards non-trivial nonlinear dynamics,
starting from a simple periodical wave. Theory and
experiments in photorefractive media are reported.

e Chapter 4 describes the fully developed complex
nonlinear regime starting from a box-shaped wave.
The roles of shock waves, rogue waves, and soliton
gases are outlined in a phase-diagram, which en-
ables the interpretation of new experiments about
the control of this highly nonlinear regime.
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Synopsis
Chapter 1 presents the role of nonlinear waves in de-
veloping the science of complexity, and also illustrates
what nonlinear waves are, their paradigmatic model in
optics, i.e., the nonlinear Schrodinger equation, and why
we are interested in them, from both fundamental and
applied perspectives.

In what follows, we present our most important results
on classical nonlinear waves in nonlinear optics: the
model of dispersive shock wave intrinsic irreversibility
by time asymmetric quantum mechanics, in the context
of the nonlocal Kerr nonlinearity, the optical realiza-
tion of Fermi-Pasta-Ulam-Tsingou recurrence, and the
topological control of extreme waves, included the super-
vised transition from dispersive shock waves to rogue
waves, ending in a soliton gas.

We believe that this treatise is not only a fundamental
study for application of nonlinear waves to new com-
putational techniques, but can also be a further step
towards a complete description of dispersive nonlin-
ear phenomena, where inverse scattering transform,
Whitham modulation, hydrodynamic approximation
and time asymmetric quantum mechanics cooperate
in establishing one uniform theory of dispersive shock
waves, and towards the control of complex nonlinear
regimes through simple integer topological invariants.
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INTRODUCTION

The intent of Part ii is to show our study on nonlinear waves in classical
coherent light propagation by the alternation of general introductions to
topics of broad interest in NLO, and of analysis in details of our original
results in the related area. We start illustrating DSWs in defocusing
nonlocal nonlinearity, which allows a simpler description than its local
counterpart.

DSWs are rapidly oscillating solutions of hyperbolic partial differential
equations that contrast the generation of multivalued regions through
the formation of undular bores [13, 39—49]. This class of phenomena
was investigated in several physical fields, initially in shallow water
waves [50] and ion-acoustic waves [51], then in oceanography [52], pulses
propagation in photonic fibers [53, 54], BEC [55-60], quantum liquids [61],
photorefractive media [62], plasma physics [63], viscous fluids [64], and
diffracting optical beams [16, 17, 43, 65—78].

In 1967 Gardner, Greene, Kruskal and Miura developed a method to
solve the KdVE equation, called IST [79]. Among all the equations solvable
by 1ST, which allowed to find the mathematical formulation of exact
solutions of such nonlinear models, KdVE and the NLSE belong to the
case with dispersive regularization of the aforementioned multivalued
singularity. NLSE is a universal model that describes many phenomena,
in particular a third-order nonlinear phenomenon in optics: the Kerr
effect [80], a refractive index perturbation linearly scaling with the light
intensity. Kerr effect can be generalized to the nonlocal case when the
nonlinear response in a specific point depends on entire beam transverse
profile. This occurs, e.g., in thermal media [42, 49, 66, 71, 81-95]. In
these materials, light propagation is affected by a highly nonlocal Kerr
nonlinearity, ruled by nonlocal NLSE.

Unfortunately, IST is still of little use for the nonlocal NLSE and other
theoretical approaches must be conceived, despite some recent progress
in 2D media [96, 97]. For many years, Whitham modulation and hy-
drodynamic approximation have predominated in solving the nonlocal
NLSE [40, 66]. However, hydrodynamic approximation cannot describe
light propagating beyond the shock point, and two new techniques have
been developed, one coming from nuclear physics, the Time Asymmetric
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Quantum Mechanics (TAQM) [2, 13, 14, 98—107], which models the non-
linear wave intrinsically irreversible propagation as a superposition of
decaying resonances, and the wave turbulence theory [70, 74, 76, 108-111],
which uses a statistical interpretation of NLO.

This Chapter aims to summarize all the current theoretical models to
describe wave breaking of nonlocal NLSE solutions in diffracting optical
beam propagation, and to highlight some of the most recent experimental
observations of DSWs in spatial nonlinear photonics.

After an introductory section about the derivation of nonlocal NLSE in
Sec. 2.2, we report the main theoretical approaches and results related
to DSWs. Section 2.2.1 explains in details the difference between the
wave breaking due to local Kerr effect, which causes shock both in phase
and in intensity, and the one in nonlocal Kerr media, where the beam
intensity follows the phase singularity adiabatically [66]. The most recent
theoretical models of nonlinear wave propagation in highly nonlocal
nonlinear media are treated in Secs. 2.2.2, 2.2.3. Section 2.2.2 treats DSWs
generated by laser beams and gives an analytical description of their
intrinsic irreversibility, due to the complexity of the dynamics rather than
losses [13]. Section 2.2.3 applies this model to a novel kind of DSWs, which
simultaneously presents two diverse singularities: the annular collapse
singularity and the zero-singularity. Nonlocality has strong impact also
in random dispersive waves nonlinear interaction, where it produces
giant collective incoherent shock waves [74, 76, 110]. However, this thesis
is limited to the analysis of initially coherent beams propagation, but one
can refer to [8, 110] for further details.

The second part of the Chapter is a collection of experiments on DSW
generation in thermal media. Sec. 2.3 reports observations in Rhodamine
solutions [66]. Output beam intensity profiles in Sec. 2.3.1 are modeled
by TAQOM both in two dimensional experiments, where decaying states
describe the longitudinal propagation [16, 17], and in the one dimensional
approximation, having the proof that TAQM is an excellent approach also
to analyze transverse intensity profiles beyond the shock point [75].
The interplay of nonlinearity and disorder is illustrated in Sec. 2.3.2.
There, observations in Rhodamine with silica spheres [69] and in silica
aerogel [72] exhibit the competition between randomness and nonlocal
Kerr effect. DSW generation processes in chemical [73] and biological
solutions [78] are illustrated in Sec. 2.3.3, while observations of anisotropic
DSWs in M-Cresol/Nylon are in Sec. 2.3.4.
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THE NONLOCAL NONLINEAR SCHRODINGER EQUATION

From Maxwell’s equations, considering a region with zero charge, current
and magnetization, we obtain the following electric field wave equation

1 1
2 2 2
~VIE+ GHE= - 0P, (2.1)

with E the electric field and P the medium polarization [38].
The relation between P and E depends on the material properties.
Including all the nonlinear terms, we have

P=¢ ) x" . E®" = pb) 4 p(NL), (2.2)
n>1

where E®" is the vector Kronecker product, which maps a vector into an n-

order tensor: [E®"] i,..1, = Eir --- Ei,. In other terms, P].(L) -y X;;?Ek

is the linear polarization j-th component, and the same for the nonlin-
ear polarization is P;NL) =€ {Zk,, )(]%) ExEr+Ykim X]('lil)m ExEjEm + ... |,
with 1+ X<1) = n% when x(l) = 7((1>]1 (in case of isotropic medium -
our assumption hereafter - 1 is the identity matrix), ny the medium re-
fractive index, x(® and x(® tensors denoted as second and third order
susceptibility, respectively.

One must take into account the temporal delay between the instant
when the electric field reaches the medium and the medium response. For
this reason, this radiation-matter interaction is more properly represented
by the following non instantaneous superposition of linear and nonlinear
polarization [38]:

P(t) = €0< [72(” * E] (t) + [;z“) « E®2} () + [x@ * E®3] (H) +... )
(2.3)

where * is the convolution product
[X(”) * EmL (t) = [* dty--- [1 dty o
2.4

i x](;i)z (b=t t—t)E; (R H) .. E; (R t),

and

1 +00 ‘+OQ n F.
X<")(t1,~-~,tn) = ) /_ dwlu./_ dwnx(”)(wl,...,wn)elzlew’t‘

(2.5)
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is the n-order susceptibility FT. If we have a third-order isotropic and
centrosymmetric material, the nonlinear polarization is

P(NL)(R,f) = € fioo dfy fioo dt, fioo df; (2.6)
ROt —t1,t = b, t = B)EP (R, 1y, 1o, 1)
and the related dielectric tensor changes as
€new = €+ €2(E- E), (2.7)

where (E-E) = J|E[? is the square of the electric field time average.
The final refractive index causes the Kerr effect [38], a phenomenon that
consists in a perturbation of the medium refractive index, proportional
to the field intensity:

E-E
ne [Erew _ JetelBE) 28)
€0 €0

with I = |E|? the field intensity and 7, the Kerr coefficient.

The nonlocal Kerr effect is a third-order phenomenon, but the radiation-
matter interaction depends on the whole intensity profile, as occurs in
thermal media. In these materials, when an optical beam propagates,
it locally heats the medium, and the resulting temperature gradient
generates a variation of the density distribution and a refractive index
perturbation [66, 88, 94]:

on
An = <ﬁ)OAT, (2.9)

with <g—§’-) the thermo-optic coefficient of the sample at the steady-state.

It turns out that the nonlinear response induced at a specific spatial point
is carried away to the surrounding region, and the size of this extended
region determines the range of nonlocality. The heat conduction in
optical thermal materials was termed “response with an infinite range of
nonlocality" [86] until 2007, when A. Minovich et al. [88] demonstrated
experimentally and proved theoretically that the nonlocal response of
thermal optical media can be accurately described by a localized well
function dependent only on the sample geometry, and not on the nature
of the material. This property allows us to express the temperature
variation, in a stationary limit, as governed by the following 3D heat
equation [66, 81, 86-88, 94, 112, 113] with constant boundary conditions
(at room temperature):

(9% + 9} +92) AT(R) = —9|E(R), (2.10)
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where v = (LlosspOCPDT)*l, Ljyss is the loss characteristic length, pg is
the material density, cp is the specific heat at constant pressure, Dr is
the thermal diffusivity and R = (X,Y,Z) = (R, Z). The solution can
be written as

AT(R) = / / (/dZ’dRL’G(RL R, Z-Z)ER,, 7"}, (211)

with G(R ) a Green function that depends only on the sample geometry
and the boundary conditions, and expresses the nonlocality of the nonlin-
ear effect. In principle, one can remove the Z-dependence by integrating
along the longitudinal medium length Z; [88], but we are interested in
the Green function itself, and the longitudinal behavior of G becomes
as complicated as Zy becomes comparable to L;,g, getting smaller and
strongly asymmetric near the boundaries [94]. Physically, the reason
why this happens is due to the choice of heat equation to describe the
nonlinear radiation-matter interaction: it works only in a neighborhood
of the sample midpoint 7 = Zy/2, not in proximity of the borders. Math-
ematically, this is deciphered in a longitudinal parabolic approximation

Y Lloss

with characteristic width L,;,. =

|0

(z-2)?

AT(R) - |:1 - 2Lnloc

} AT (R)). (2.12)

From Egs. (2.10,2.12) we obtain the 2D heat equation

(9% + %) ATL(RL) — L2 AT, (Ry) = =711 (R.), (213)
with | (R)) = de\E R,,Z)|% Eq. (2.11) now reads
AT (Ry) = //dRL GL(Ry —R.")IL(RL). (2.14)

In low absorption regime (Zg << Ljyss) AT(R) ~ AT, (R} ) and 07I(R) ~

0 (intensity longitudinal changes are negligible as for solitary wave pack-
ets), therefore we attain n[I](R) = no + An[I](R_ ), with the refractive
index nonlocal perturbation

An[I}(R.) = WZ//dRL/K(RL —R,)I(R,"), (2.15)

and T’ZQK(RJ_) = (an) GJ_(RJ_)

By a comparison between the nonlocality length L, and the beam
waist diameter Wy, we can analyze two different limits: the standard
Kerr effect in Eq. (2.8) when L,;,. < Wy (local approximation), i.e.,
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K(R; —R,’) ~8(R, — R,'), and the opposite case L, . > Wy, that is,
the highly nonlocal approximation, where K « I(R) ~ K(R)P(Z), with
P(Z) = [dR, I(R) the power.

For a monocromatic field E(R, ) = EgR [A(R)e™"“7] in a third-order
thermal medium, in paraxial and slowly varying envelope approxima-
tions, introducing the delayed time 7 =t — %Z and adding a linear loss
of characteristic length L;,s, from Eq. (2.1) we find that the propagation
along Z is ruled by the nonlocal NLSE [66]:

2
JBnllAP),
no Llass

2kdy A+ (a§( + a@) A+2k A, (2.16)

with k = 2”"0 = YN the wavenumber.

Spatial Dispersive Shock Waves in Nonlocal Kerr Nonlinearity

Spatial DSWs are rapidly oscillating waves which regularize an abrupt dis-
continuity in phase through diffraction, that is, through the formation of
intensity undular bores on the beam borders. Scientific community paid
close attention to the theoretical description [39, 40, 59] and experimental
demonstration [51, 53, 55-58, 63, 64, 66, 67, 70] of optical DSWs. Here we
summarize results on the defocusing DSWs in nonlocal media [66]. In
such materials, the IST cannot describe the solutions, and we need other
methods.

In next sections, we detail a specific methodology for DSWs in nonlocal
media: the TAQM [13, 14, 98-107]. Such a theory also proves that DSWs
are intrinsically irreversible.

Starting from Eq. (2.16), through the scaling x = WLO y= %0 z= %,

P(x,y,z) = % with [j the intensity peak, L = \/L,;;Ly, L,y = k|:20‘10

the nonlinear length scale associated to a local Kerr effect, L; = sz the
diffraction length, one obtains the normalized nonlocal NLSE

1€0 +é(82+82> + x6 ——zge (2.17)

le 2 x y 1/J X 1/J - 2 1/)/ 17

with € = % = LL—’;’ a small quantity in strongly nonlinear (or weakly
diffracting) regime, as the one we are considering, x = \nzl L0 = ‘ kAnL,, ,

o= Lz . From Eq. (2.13)

—o? (ai + a;) 0+0 =y (2.18)
where ¢ = L‘;'T’gf is the nonlocality degree, which expresses the nature

of the Kerr effect through the limits we have previously discussed: if
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o < 1 we are considering the local limit 6 ~ |1/J|2, instead, if o >
1, by highly nonlocal approximation 6 ~ #(x,y)p(z), with p(z) =
P(Z
J dxdy [p(x,v,2)* = Rl
The fundamental laser mode (Gaussian TEMyy) is described by an ax-
isymmetric Gaussian input ¢ (r) = exp(—12), with r = /x2 + y2, which

evolves in the WKB approximation [114] as ¢(r,z) = \/p(r, z) exp [1—] .

€
For D = 2 the transverse dimensionality and u = 9,¢ the phase chirp,
from Egs. (2.17, 2.18) one obtains

0:p+ |2l pu+d,(ow)] = —ap,
ozu+udu—xo,0 = 0, (2.19)
—g? [839 + D;laye)] +6 = p.

Figure 2.1 reports phase chirp and field amplitude for D = 1, so for
dy ~ 0 and r — x, in a defocusing medium (x = —1) without losses
(a« = 0). The local case (¢ = 0) is illustrated in Figs. 2.1a,c and follows
from system (2.19):

020 + 0x(pu) =0, 9zu + udyu = —9xp. (2.20)

Egs. (2.20) are equivalent to Euler and continuity equations, respectively,
for a fluid of speed u, mass density p and pressure proportional to p2. In
the reported dynamics, the diffraction, initially of order €2, starts to play
a relevant role in proximity of the wave breaking. In fact, it regularizes
such a discontinuity by rapid oscillations of wavelength ~ €, which
appear simultaneously in phase chirp u and intensity p. For large values
of o, the normalized refractive index variation, here expressed by 6(x),
is wider than the Gaussian input. As shown in Figs. 2.1b,d the shock
oscillations are essentially driven by the phase chirp u, while the intensity
p adiabatically follows. Major details are given in [66].

An in-depth description of the difference between DSWs in local and
nonlocal Kerr media is also provided by turbulence theory, in particular
by the Vlasov formalism [8, 110]. Indeed, the analysis made for random
optical waves is also relevant to the coherent problem considered here,
since the reduced hydrodynamic equations derived from the Vlasov
model [[74], Egs. (3,4)] coincide with Eq. (2.19). Following this approach,
DSWs in thermal nonlinearity were interpreted for the first time as an
annular collapse singularity in [74]. By looking at the M-shaped field
amplitude in Fig. 2.1d (and, in the following, at the intensity profiles
in Fig. 2.4a, Fig. 2.8, Figs. 2.9D,E, and Figs. 2.11a,b), and comparing
this to the fast oscillations in Fig. 2.1c [or Fig. 2 in [67]], the feature
of the collapse singularity in nonlocality appears evident. Indeed, the

21



22

DISPERSIVE SHOCK WAVES

corresponding hydrodynamic model in the limit of a local nonlinearity
[Eq. (2.20)] recalls the shallow water equations, which exhibit a pure
shock without collapse.
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Figure 2.1: Phase chirp u(x) (a,b), and amplitude /p(x,z) (c,d) for transverse
dimensionality D = 1 and different values of z, as indicated. (a,c)
are obtained by Egs. (2.20) with € = 1073. (b,d) are simulations of
the result of the system (2.19) with D =1, a =0, x = —1, 02 = 5.
Reprinted from [66].

High Nonlocality and Time Asymmetric Quantum Mechanics

Let us consider the nonlocal NLSE in Eq. (2.16) with a medium response
function K(X,Y) = exp [~ (|X| + |Y|)/ Lyioc] / (2Ly10c )2 Being K separa-
ble, ie., K(X,Y) = K(X)K(Y), through the approximation dy ~ 0 (as in
the previous section) we can consider only one transverse dimension,
since analyzing propagation along Y is no more interesting for our pur-
poses. We rewrite Eq. (2.16) in terms of 1 + 1 dimensionless variables by

using the same scaling of Eq. (2.17) and choosing Iy such that L,; = L:

Do+ 39— Py = —iap. (221)

with x(x) = WoK(xWp) = exp (—|x|/o) /(20).
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We take into account a medium where the nonlocality length is much
larger than the beam waist diameter. By highly nonlocal approximation
we have [90, 115]

1o []* ~ x(x)p(2), (2.22)

where « is a function no more depending on [¢|2. In a system without
loss, that is, & = 0, the normalized power p is conserved and the NLSE
is mapped into a linear Schrodinger equation 19,y = Hip, with the
Hamiltonian H = p2 + px(x) (p = —19x). When we express the even

2
function « as its second order expansion, that is, x(x) = &3 — K2—2x2,
where K% = % and K% = ﬁ, we obtain the Reversed Harmonic
Oscillator (RHO) Hamiltonian [14, 103, 105]:

52 242
a 2 2 p rx 2 2
H = pxy + Hruo, Hruo = 5Ty V=R (2.23)

If = exp (—1k3pz) ¢, then 10:¢ = Hrpoo-

Figure 2.2 sketches the relation between the harmonic and the reversed
oscillators. For a Harmonic Oscillator (HO), the spectrum is discrete
and the corresponding eingenstates form a orthonormal basis (both a
orthogonality and a completeness relations hold):

HHO = %2 + > X2
Huoy(x) = Ep(x), En=w (Yl + %) , (2.24)
¥n(x) =\ %\/21,,7Hn (Vwx),

with Hy(x) = (—1)"x2 dd"n e~ the Hermite polynomials. On the other
hand, RHOs has complete continuous spectrum, but one derives a gen-
eralized discrete spectrum from HO spectrum by a complex analytic
prolongation in the Rigged Hilbert Space (RHS) [14, 102, 116] through
the transformation w — 1y, £ — ¢ iR, p—é f p [14, 105]. The new

stationary Schrodmger equation is Hrpof*(x) =15 L% (x), solved by the

spectrum = (n + %) and the non normalizable eigenfunctions

v Eiy
V2l
namely, the RHOs Gamow Vectors (GVs) [117, 118].

We can express every wavefunction as a truncated superposition of GVs

added to a background function, which dispersively oscillates at infinite
as a polynomials [14]:

p(x) = ¢ (x) + PrC (x) (2.26)

F(x) = Hy(v/Eiyx) exp(Figx?), (2:25)
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- 2
X = —wx

A o2 %5
Huo = £ + 282

En=(n+4) hw

£ =%
2

~ a2 -
= P _ My a2
Hro = 35 - 5%

| ¥ 1
3 =(n+3)hy

Figure 2.2: Pictorial representation of an energy landscape. When the system is in
proximity of a local maximum it obeys the RHOs Hamiltonian, in figure
HAgo. In proximity of the minimum the system obeys the Hamiltonian
of a HO, in figure H Ho- The two Hamiltonians are explicitly written
in the two the corresponding text boxes, with the related dynamical
systems and the discrete eingenvalues. Insets show the transverse
profiles of the respective eigenfunctions, bounded on right hand side
for the HO, unbounded on the left hand side for the RHOs.

with
N
PR (x) = ;)fﬁ (%) (s |¢(x, 0)). (2.27)

Figure 2.3 shows the GV square norms (Fig. 2.3a) and phase chirps
(Fig. 2.3b). The evolution of the normalized field ¢ presents a Gamow
part resulting as a superposition of exponential decays with quantized
decay rates [14]:

N
Y7 (12) = L (R 19 0)fy (x)ePe 2%, (228)
n=0
Eq. (2.28) proves an intrinsical irreversibility of DSWs, where a backward
propagation beyond the shock point is no physically possible because of
the exponentially decaying evolution. This explains why the quantum
representation of wave propagation theory in a RHS is called TAQM (here
time is replaced by z). More details can be found in A.1 and in [14].
In the probabilistic interpretation of TAQM [17], the projection of
Eq. (2.28) over \/T,,f, gives the probability p,(z) of finding the system
in a decaying GV

pu(z) = Tul (Ff [9(x,0)) 2 T2, (2.29)
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Figure 2.3: (a) ||f;; (x)||? in Eq. (2.25) for increasing even order 7; (b) corresponding
phase chirps 0xArg [f,, (x)]; (c) weights p,(0) [Eq. (2.29)] of the GV
expansion of a Gaussian wave packet.

which gives the z—dependent weight of the n-order GV. Initial weights
pn(0) are reported in Fig. 2.3c as functions of 2. Since a Gaussian
beam ¢(x,0) = ¢(x) = exp(—x?/2)//7 is an even input, all the odd
terms in Eq. (2.28) vanish due the x—parity. Figure 2.4a shows the
numerical solution of Eq. (2.21). Yellow lines give the transverse intensity
profile. We see that these are modeled by a superposition of exponential
decays, where the plateau is given by the groundstate GV, and the peaks
are given by higher order Gvs. Simulations of weights p,(z) are in
Figs. 2.4b,c. While dotted profiles are numerical results from Eq. (2.29),
continuous lines result from the general projection definition py,(z) =
T | (7 [$(x,2))|?, with ¢(x, z) numerical solution of Eq. (2.21).

Anisotropic Dispersive Shock Waves in The Rigged Hilbert Space

Fixing z as the longitudinal and x,y as the transverse directions, we
consider an initial beam which is even in the y direction, and odd along x.
This initial condition causes a new phenomenon: the shock does develop
an annular collapse, but around the zero-singularity it presents an abrupt
intensity discontinuity. We theoretically analyze this anisotropic wave
breaking. We model the beam propagation beyond the shock point
by TAOM and uncover the mechanism of how such an abrupt intensity
discontinuity is generated. We numerically simulate these results and find
remarkable agreement with experiments and theoretical predictions [2].

By defining I = |A|? the intensity, Pys(Z) = [ [ dR | I(R) the power
(MKS refers to the international system of units SI), L; = kW3 the
diffraction length, and & = #:’% ~ 0 (then dzPyxs ~ 0) [119], and the
response function

_ X
e Lytoc

- 2Lnloc ’

K(X,Y) = R(XR(Y), R(X) (2.30)
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107 intensity

pn(Z”pn(O)

Pn(z)/pn(0)

10?7z

Figure 2.4: (a) Numerical solution of Eq. (2.21) with p = 10* and ¢? = 10; (b) pro-
jection on GVs for increasing order n for « = 0.3 and y = 8; continuous
lines are from Eq. (2.21), dots are from Eq. (2.29); (c) as in panel (b) for
v =24

we rescale Eq. (2.16) through the dimensionless variables x = X/W,
y=Y/Wyand z = Z/L;, and obtain

1
029 + 5 V7 + xPKo x 9Py = 0, (231)
_ _ 2 _ 722 2 _ W _ ny
where r = (TL,Z) = (x, Y, Z)/ VTL 2— o% +ayr lP(T) - \/p/\g?A(R)’ X= \n§|
and P = Iljflfgf with Prpr = m (REF stands for reference power).

The asterisk * in Eq. (2.31) stands for the convolution product, while
Ko(x,y) = Ko(x)Ko(y) with Ko(x) = W()K(X) = 872(‘77‘ and 0 = Lﬁlgc the
nonlocality degree.

In highly nonlocal approximation (¢ >> 1), once fixed the initial
conditions, |¢|*> mimics a delta function (or a narrow superposition
of delta functions), and the nonlocal potential looses its I-dependence,
becoming a simple function of the transverse coordinates [9o, 115]:

Ko * [|* = x(r1) = x(0) + (0xK|r, ~0) X + (dyk|r, —0) y+

(2:32)
+3 (92kr, —0) 2 + (3x0yk|r, —0) xy + % <E)§1c|,J :0) v2,
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after a Taylor second-order expansion. This approximation maps the
NLSE (2.31) into a linear Schrodinger equation 19,y(r) = H(p ,r  )(r),
with H(p,,r,) = 1p1 2+ V(r)) the Hamiltonian, p; = (px, py) =
(—10x, —19y) the transverse momentum and V(r,) = —xPx(r )1 the
multiplicative potential (I is the identity operator). Let us consider the
initial condition
x2

Uso(rL) = Y2(09a), 42() = =e . 3)
The shape of x(r, ) depends on 50(r ). Indeed, since Y5 is an even,
separable function, all the first derivatives in Eq. (2.33) vanish and it
results to be x(r ) = k3 — 313 |r | |2, where K3 = ﬁ and x5 = 2\/1»?

In the defocusing case (1, < 0), the transversal profile of the solu-
tion of Eq. (2.31) with initial condition (2.33) is shown in Fig. 2.5(a).
Fig. 2.5(b) exhibits the central part of the symmetric response func-
tion Ko(x,y), while the longitudinal profile on x,z (same of y,z) is
reported in Fig. 2.5(c). The corresponding Hamiltonian reads H =
PK% + Hgro (px, x) + HRHO(Py/y)r where

N 1
Hruo(px, X) = Fh - 5% (2.34)

is the one-dimensional RHOs Hamiltonian of frequency ¢ = ﬁkz. Once
moved to ¢(r) = e’ K%I,IJ(T), our Schrodinger equation becomes 19,¢(r) =

[Aruo (px, x) + Hruo(py, v)] ¢(r), which is completely separable. In
bra-ket notation

13 |¢(2)) = Hiso(p,r1)¢(2)),
Hiso(pi,r1) = Hruol(pxx) ® 1y +1x ® Hruo(py, v),  (2:35)
lp(z)) = [$2(2))x @ |$2(2))y,

with ® the tensorial product, no more explicitly written hereafter. The
solution of Eq. (2.35) lives in a tensorial product between two one-
dimensional RHSs. Indeed, if we consider the evolution operator U(z) =

¢~'H2 such that lp(z)) = U(z)|¢(0)), for Eq. (2-35)

lp(z)) = e*’HRﬁozhpz)xe*lHRﬁoz|l[)2)y. The representation of |¢p(z))xy =
¢~ Hritoz |(p2) x,y in terms of GVs was already given in Egs. (2.26-2.28). It is
[¢2(2))xy = |65 (2)) + [9R° (2)), with

N X
p8(2)) = 3 e 2B (5 [a) (2.36)

n=0
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(c)

X (a.u.)

0 0.2 0.4 0.6 0.8 1
z (a.u.)

Figure 2.5: Solution of the defocusing NLSE (2.31) with initial condition (2.33), for
P =4 x10° and ¢ = 120, in arbitrary units: (a) shows the intensity
transverse profile at z = 0, (b) exhibits the symmetric response function
derived from Eq. (2.33), and (c) reports the intensity longitudinal
outline, here on the plane (x, z), equal to one on the plane (y, z).

the decaying superposition of Gamow states |f;, ), corresponding to the
energy levels ERHO =13 (2n + 1), and |¢5C(z)) the background function,
both belonging to the same one-dimensional RHS.

We model the initial asymmetric beam-shape as follows:

%xe , (2.37)

N[Se

as in Eq. (2.33). In this case, Eq. (2.32) is reduced to

1.2 1 i a2 1 1
xk(ry) =3 + 3i3x? — 1xdy?, with k3 = 17 K2 = 57 and x5 =

_1
2y/mod”
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Figure 2.6: Solution of the defocusing NLSE (2.31) with initial condition (2.37), for
P = 4 x 10° and ¢ = 120, in arbitrary units: (a) shows the intensity
transverse profile at z = 0, (b) exhibits the asymmetric response func-
tion derived from Eq. (2.33), and (c) reports the intensity longitudinal
outline on the plane (x, z), with the zero-singularity.

The anisotropy appears evident: not only the initial condition presents
a zero-singularity, but also the response function has two different behav-
iors along x, y directions. Numerical simulations are illustrated in Fig. 2.6.
Fig. 2.6(a) shows the anisotropic DSWs [2], solution of the NLSE (2.31)
with initial condition (2.33). Fig. 2.6(b) gives numerical proof of the
response function anisotropy: the (x,y)-plane origin corresponds to a
saddle point, with a locally increasing profile along x > 0, y < 0 and
a locally decreasing outline along x < 0, y > 0. Fig. 2.6(c) reports the
intensity zero-singularity in a neighborhood of x = 0 in propagation.
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The presence of the saddle point in the response function has direct con-
sequences through highly nonlocal approximation in mapping the NLSE
in the quantum-like linear Schrodinger equation. From the expression of
«(r, ) above, for ¢(r) = elp"ﬁlp(r) we obtain

ldz|4>( z)) = Hani(pi.7r1)|¢(2)),
Hani(pi,ri) = Huol(px, x)1y +1:Hruo(py, y), (238)
9(2)) = |91(2))x|92(2))y,

where Hpo(px, x) = 372 + 22 %2 is the one-dimensional HO Hamil-

tonian with w = +/Px;, and Hgyo is the 1D-RHOs Hamiltonian in
Eq. (2. 34) The solution of Eq. (2.38) is the tensorial product of |p1(z))x =
Yo et 7 (2n4+1)z| g HO\ (¢HO |y} where [¥4O) are Hyyo-eigenstates cor-
responding to the energy levels EJ© = ¢ (2n + 1) [14], and |¢2(2)), =
|95 (2)) + [$RC (2)), explicitly written in Eq. (2.36).

Evidence of the presence of GVs is given in Fig. 2.7. By defining
I'y = v(2n+ 1), we look for the first two quantized decay rates I'g (the
even Gaussian initial function lets achieve only even energy levels) in

the longitudinal propagation in y-direction. Indeed, if one computes the
intensity of the y-part, one finds (¢, (z)|¢2(z))y NZo (9$(2) |95 (2)) =

Y e E |G |q>2>‘2. Fig. 2.7(a) shows the theoretical section of the
nonlinear sample where we seek decaying states. We fix x = 2.29, a little
distant from the shock-gap, and report the corresponding intensity in y, z
plane. The pink line is equivalent to x = y = 2.29. Fig. 2.7(b) exhibits
|p(x = 2.29,y = 2.29,z)|?, exponentially decaying. Two exponential fits
demonstrate the GV occurrence: the fundamental Gamow state represents
the plateau with decay rate Iy = 1.51, whereas the first excited one
interpolates the peak, with decay rate I'y = 1.51. We stress that the rule
rg = 5 is respected.

This treatise demonstrates that the interplay of a trapping (HO) and
an antitrapping (RHO) potential generates a novel kind of DSWs, with the
contemporary presence of annular collapse singularities and a shock-
gap enclosed by very intense light barriers. The outcoming dynamics is
modeled through an advanced theoretical description in RHSs, by means
of TAQM, proving its intrinsic irreversibility.

EXPERIMENTAL OBSERVATIONS IN THERMAL MEDIA

Shock waves described by Eq. (2.16) have been originally shown in an
experiment from [66]. The sample is a cell of length 1mm filled with an
aqueous solution of Rhodamine B (RhB), with a concentration of 0.6mM.
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(a) %108
l4(x=2.29,y,2)|°

Figure 2.7: GVs signature. From Fig. 2.6, in the same conditions, (a) is the y,z
profile at fixed x = 2.29. Intensity along the pink line, ie., |[¢(x =
229,y = 2.29,2), is in (b), with the decaying part fitted with two
exponential function: the fundamental GV, with decay rate Ty, and the
first excited GV, with decay rate I';.

Measurements of beam intensity profiles at different initial powers - the
characteristic shock internal collapse is evident for the three highest
power values - are in Fig. 2.8. A Gaussian CW-laser beam of intensity
waist diameter Wy = 20um, at wavelength A = 532nm, propagates
in a material with linear refractive index ny = 1.3, defocusing Kerr
coefficient 1, = —7 x 10~7ecm?W~1, loss length Ll;gs = 62cm L. For
water Dy = 1.5 x 107"m?s™ !, pg = 10°%kg m 3, ¢, = 4 x 10%] kg 'K,

n
aT

0= 10~*K~!L. The degree of nonlocality is estimated as ¢ = 0.3.

31



32

DISPERSIVE SHOCK WAVES

200 mW

b
W

B

o
w

100 mw

W

70 mW

L)

Intensity (arb. units)
]
w

-
o

40 mW

1
0.5 J\ 10 mW

20 300 400 500 600 700 800 900
X (e m)

Figure 2.8: Experimental transverse intensity profiles of an initial Gaussian beam
propagating in a thermal medium. Measurements are performed for
varying input power P = 7W2Iy. Insets show the 2D output patterns.
Reprinted from [66].

The beam exhibits, beyond the shock point, the formation of undular
bores moving outward with increasing power. The next subsections
report different experiments exhibiting DSWs in nonlocal samples.

Rhodamine and Time Asymmetric Quantum Mechanics Interpretation

In this section we report two experiments in order to validate the presence
of GVs in DSWs: a 2D propagation pattern to observe GVs decay rates
I’y [16], and a 1D experiment to show that GVs describe also the M-shaped
profile in the far field of a DSW in highly nonlocal approximation [75],
in [74] identified for the first time as collapse singularity. These are
validations of TAQM in describing DSW propagation.

The experimental setup is illustrated in Fig. 2.9A. Samples are prepared
by dispersing 0.ImM of RhB in water. The solution is placed in a cuvette
1mm thick in the propagation direction. The measured defocusing Kerr
coefficient is [15| = 2 x 107 12m?W~1! and the absorption length is L;yss =
1.6mm at the laser beam wavelength 532nm [69]. The CW-laser beam is
focused through a lens into a sample. Light is collected by a spherical
lens and a Charged Coupled Device (CCD) camera. A microscope is
placed above the sample in order to capture top-view images of the laser
beam along the propagation direction Z. The difference between the
two experimental apparatus is the choice of the first lens (L1). In the
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2D experiment [16], L1 is spherical with focal length 10cm, and a focus
spot size of 10um. The setup was placed having the beam propagating
vertically through the sample, reducing thermal convection in the water.
In the 1D experiment [75], it was used a cylindrical lens as L1, with focal
length f = 20cm in order to mimic a nearly one-dimensional propagation.
Being Z the propagation direction, the lens focuses the beam in the X
direction. The input spot dimension is 1.0mm in the Y direction and 35ym
in the X direction. These geometrical features make the one-dimensional
approximation valid and allow us to compare experimental results with
the theoretical one-dimensional model. The diffraction length in the X
direction is L; = 3.0mm. This time, the setup was placed horizontally.

Figures 2.9B,C report the observed laser beam propagation top-view,
detected by a microscope through RhB fluorescence, and the numerical
calculation from the NLSE, respectively. The beam displays the character-
istic strongly defocusing and the M-shaped behavior, also evident in the
transverse sections of the intensity in Figs. 2.9D,E. These are signatures
of DSWs in nonlinear media at high power.

Decay rates in Fig. 2.10 are detected by slicing the intensity profile
I(X,Z) at X ~ 0.1mm (yellow line in Fig. 2.9B) and fitting the intensity
versus Z with two exponential functions. Different power levels exhibit
very different dynamics. The presence of double exponential decays, that
is, the superposition of the first two GVs, is more evident at high power.
It was observed and calculated that double-exponential decay dynamics
obey the quantized spectrum scaling I'; /T’y = 5 at all investigated power
levels, as shown in Fig. 2.10D. This demonstrates that we excited the
fundamental state f, and the first excited state f, [16]. Odd states are
not excited, as expected from Gaussian TEMyy x—parity. Each of the two
rates has a square root dependence on P, signature of the underlying
nonlinearity. This power dependence distinguishes RHOs dynamics from
linear loss, due to absorption and scattering.

The RHOs eigenstates are quasi-eigenstates of the FT operator, which in
optics represents the far field. Let us consider the RHOs Hamiltonian in
the momentum basis (7 — p and £ — 19y)

. P 1 5, .

Hrro(p,19p) = 5 + 5979 = —Hrpo(—10x, ). (2:39)
Pure GVs are infeasible to describe a physical experiment, because one
cannot neglect that GVs have an infinite support, i.e., the x-region where
the eigenfunction is not null, is not finite. In order to account for the
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Figure 2.9: A Experimental setup. We collected the transmitted and fluorescence
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images of the laser beam propagating in RhB samples [16, 75]. Two
types of launching lenses L1 were used: a cylindrical and a spherical,
for the 1D and 2D experiments, respectively. The top fluorescence
image of the propagating beam was collected by a microscope placed
above the RhB samples. The second lens is spherical and was used to
collect the transverse output profile. B,C Top-view intensity distribu-
tion as obtained from 2D experiment B and numerical simulations C.
Respectively experimental D and numerical E sections of the images B
and C taken at z = 0.2 (red), 0.6 (green) and 0.9mm (blue).
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Figure 2.10: A Observed intensity decay at different laser powers, obtained by

slicing along X ~ 0.Imm the top-view intensity distribution the
propagation direction (see the yellow line in Fig. 2.9B). B Numerically
calculated decays in the conditions of panel A. C Peak region of the
experimental curve at P = 450mW. The superposition of the first two
exponential decays unveils the presence of two GVs, the fundamental
state, n = 0 (slowly decaying) and the first excited state, n = 2 (fastly
decaying). D Decay rates vs P for the fundamental state, I'y (filled
circles) and the excited state, I';, (triangles).
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spatial confinement of the experiment, the windowed GVs were intro-
duced [75]:

N
9¢ (1) = Y VTulu (5 [9(x, 0))rectyy (x), (2.40)
n=0
where
recty (x) = { 0 forlx| =W (2.41)
1 forlx| <W

with W is the finite size of the physical system. During the evolution, the
Gamow ground state has the lowest decay rate, i.e., /2. This allows us
to consider, in the long term evolution, only the fundamental GV, and so
only the FT F of the fundamental state of Eq. (2.40):

(kx)

=F [ w] =
+ i)e*% Capl” {—Erf{(

o1

ST

Nai
(2.42)

Vv

Eq. (2.42) provides an analytical expression of the far field, which is
compared below with the experiments. Indeed, Eq. (2.42) allows us to
predict in closed form the typical M-shaped shock profile: it describes the
internal undular bores and the correct scaling of the undulation period
with respect to the power, i.e. the period T is predicted to scale with the
square root of v, and hence with the forth square root of the beam input
power.

Figure 2.11 reports experimental results in RhB, through the previously
described setup, and the comparison with the numerical results. Images
of the beam in the far field (corresponding to the square modulus of
the spatial intensity FT) for different input powers were collected and
shown in Figs. 2.11a,b. For low power (not reported) the elliptical beam
profile remains Gaussian along propagation. A different phenomenon
occurs while increasing the power: the beam transverse section along X
broadens and develops intensity peaks on its lateral edges. Essentially,
it becomes M-shaped. These results are in remarkable agreement with
Eq. (2.42), as shown in Figs. 2.11¢,d.

Different positions in the Y direction correspond to different power
levels. Any power level furnishes a different value of v, being v =

p
Vo
exp(—y?), provides the link between Y, P and 7. This implies that,

The Gaussian beam profile in the Y direction, that is, p o

fé><k.{—ww} +Erf{<%ﬁ><k,«+ww
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observing a CCD image, intensity profiles at different Y correspond to
different powers. Therefore, the expected exponential trend with respect
to the power can be extracted from a single picture by looking at different
Y positions. Figure 2.11e exhibits a fitting with two exponential decays
in an intensity profile versus power. The extracted ratio of the related
two decay rates is 5 and hence in agreement with the expected quantized
theoretical values described in Sec. 2.2.2.

Undular bores of DSWs were analyzed and exhibited in Fig. 2.11f, while
the field intensity undulation period T versus P is shown in Fig. 2.11g. In
order to demonstrate univocally that T o /P, inset in Fig. 2.11g reports
the period T as function of v/P. The resulting linear behavior confirms
the theoretical results.

Nonlinearity and Disorder in Thermal Media

Thermal media have been investigated also in their interplay with dis-
order. Theoretical studies demonstrated that, even if solitons are stable
under a certain amount of randomness, the latter competes with nonlin-
earity, while nonlocality filters disorder-induced scattering effects and
soliton random walk can be efficiently suppressed in highly nonlocal
media [89, 91, 120]. DSWs are nonlinear coherent oscillations, and the
phenomenon of light scattering affects their formation in significant
way [69].

In this section we report experiments in two different optical systems
that combines third-order nonlinearity (high-power laser beams) with
nonlocality (thermal material response) and disorder (scattering par-
ticles). The first thermal medium is a dispersion of silica spheres of
1pym diameter in 0.lmM aqueous solution of RhB. The second one is
a ImmxImmx8.5mm parallelepiped of silica aerogel. Despite obser-
vations of DSWs in disordered thermal media, a theoretical model that
comprehends both nonlinearity, nonlocality and disorder has been devel-
oped only for solitons [89]. The existing theoretical model for Dsws is
summarized below and neglects the nonlocality contribution. It approx-
imates thermal nonlinearity to a local Kerr effect, and adds a random
potential [69].

We start from Eq. (2.16) with An[|A|?] = ny|A|> + Ang(X,Y, Z) and
Ljyss ~ 00 (no loss). Through the same scaling of Sec. 2.2.1 and the one-
transverse-dimension approximation d, ~ 0 (experimentally generally
given by a cylindrical lens), we obtain

2
1609 + -0 — |92y + Ury =0, (2.43)
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Figure 2.11: (a,b) Laser beam output intensity, detected by the CCD-camera, at
laser powers P = 2W and 4W, respectively; the bottom panels show
the normalized intensity profile along Y = 0, i.e., at the maximum
width, resembling the M-shape. (c) Analytical solution obtained by
Eq. (2.42) changing Gaussianly the power P in the y direction. (d) As
in (c) but for higher powers; the bottom panels show the slice of panel
(c) and (d) at y = 0, i.e., Eq. (2.42) square modulus for W = 1.5 and
¥ ~ 12 and 7y ~~ 40, respectively. (e) Log-scale normalized intensity
as a function of power, as obtained by slicing along Y a region in
panel (b). The slopes of the straight lines give the GV decay rates
(y1 = —8=+0.4 and 7, = —1.6 £0.1). Their quantized ratio is 5.0 + 0.4
as expected from theory [17]. (f) Intensity oscillations for different
power values. (g) Measured oscillations period T as a function of
power; continuous line is the fit function T o VP, as expected by the
theory; the inset shows the same curve of (g) with PY/4 as abscissa
axis. Reprinted from [75].

with Ur(x,y,z) = w taken as a random dielectric noise mainly

acting on the phase [69] In the hydrodynamic limit € ~ 0, the phase
chirp behaves like a moving unitary mass particle [69]:

dx__du + (2.44)
a2 = ax v H

with U = exp (fx2 / 2) the deterministic potential for a Gaussiam TEMyy

given by the nonlinearity, and ng = ddli“ a Langevin force with Gaussian
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2
distribution, such that (7 (z)7r(z')) = #?6(z —2') and = <<%) >

((Ang)?)(|na|Ip) ! the disorder strength. Brackets (, ) denote the statis-
tical average, and the dependence of #r on x, y is neglected for stochastic
independence and cylindrical symmetry, respectively, thus g ~ ng(z).

Figure 2.12 shows trajectories x(z) (Figs. 2.12a,b) and phase space
(x,v) (Figs. 2.12¢,d), where v = %, respectively without (7 = 0) and
with (7 = 0.1) disorder, the latter obtained by a stochastic Runge-Kutta
algorithm [121, 122]. In absence of disorder (Figs. 2.12a,c) the shock
is signaled by the intersection of multiple trajectories x(z) and, in the
phase space, this corresponds to the induced wave breaking phenomenon,
that is, the folding of the velocity profile into a multivalued function
for increasing z. In presence of disorder, Figs. 2.12b,d, the particle-like
dynamics tends to diffuse, as is evident from the related trajectories
and phase space. Correspondingly, the propagation distance before the
intersections is greater for the disordered case and the shock is delayed
in the z direction.

(a) s

-4 =2 0 2 4
X
Figure 2.12: (a,b) Trajectories x(z) and (b,d) phase space (x,v), respectively with
disorder strength 7 = 0 and 7 = 0.1. z varies from z = 0 to z = 3.
Reprinted from [69].

We report here the experiments in RhB with silica spheres disper-
sions [69]. In order to vary the degree of disorder, several silica concen-
trations were prepared, ranging from 0.005w/w to 0.03w/w, in units
of weight of silica particles over suspension weight. The experimental
setup is similar to that illustrated in Fig. 2.9A. The first lens focuses the
beam on the input facet of the sample, reaching a beam waist diameter

~
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Wy =~ 10um. The aqueous solutions are put in Imm xlcmx3cm glass
cells with propagation along the Imm vertical direction (parallel to grav-
ity) to moderate the effect of heat convection. All measurements are
performed after the temperature gradient has reached the stationary state
and the particle suspensions are completely homogeneous. In [69], main
loss mechanisms are absorption and scattering. The measured loss length
(absorption plus scattering) varies in a range from 1.2mm to 1.6mm
(highest value is for for pure dye solution). These values are obtained by
fitting with exponential decay the beam intensity vs propagation distance
Z. The fact that the loss length is always greater than the position of the
shock point [69] allowed authors to neglect losses at a first approximation
in their theory. In addition, they found that the scattering mean free
path is of the order of millimeters for all the considered samples. In
Fig. 2.13 images of the transmitted beam on the transverse plane for
different input laser powers P and various concentrations ¢ are shown.
The number and the visibility of the DSW oscillations increase with P
and decrease with ¢, evidence of DSWs enhancement by nonlinearity and
inhibition by disorder.

Disorder >

(a)

«——— | aser Power

Figure 2.13: Transverse intensity patterns for different input power P and silica
spheres concentration c: (a) P = 5mW, c = Ow/w, (b)P = 400mW, c =
0w /w, (c) P =5mW, ¢ = 0.017w/w, (d) P = 400mW, ¢ = 0.017w /w,
(e) P =5mW, ¢ = 0.030w/w, (f) P = 400mW, c = 0.030w/w. White
1D curves show the measured section of the intensity profiles vs X.
Reprinted from [69].

Experimental observations have been also performed in silica aero-
gel [72]. The silica aerogel samples are prepared following a base-
catalyzed sol-gel procedure [123], and in-depth details are given in [72].
It turns out that the sample used in the experiment has mass density
p = 0.215g/ cm?® and refractive index no = 1.074. Experimental setup is
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very similar to the previous ones (Fig. 2.1a), except for the sample. In [72],
authors vary the input beam waist diameter W, the input laser power
P;,, and record the transmitted intensity distribution I(X, Y, Z = 8.5mm)
by the CCD camera. Observations are shown in Fig. 2.14. Images in the
second and third rows of Fig. 2.14 correspond to the same experimental
conditions in term of incident laser power and beam size, but the incident
laser beam impinges on different points. In correspondence of regions of
the silica aerogel sample displaying low enough disorder (second row),
a transition from scattering dominated regimes to nonlinear regimes is
present: at moderate powers DSWs are not observed because of scattering
losses, at high powers DSWs can be generated.

e P, =0.001W P, =0.3W

Figure 2.14: Far field intensity profiles at the output of the silica aerogel for P;,
ranging from ImW to 1W, and input beam waist diameter wy ranging
from 43um to 1.4mm. Images in the second and third rows correspond
to the same incident laser power and beam size, but different positions
of the incident laser beam. Reprinted from [72].

Dispersive Shock Waves in Biological Suspensions and Chemical Compounds

The study of optical effects in light propagation through chemical and
biological solutions is a field of growing interest [73, 78, 93, 124-127],
both from a linear and a nonlinear perspective. However, although
observations of nonlinear optical phenomena in chemical and soft-matter
systems can be found in a extensive literature [16, 66, 69, 71, 72, 75, 84, 93,
128-131], and new experiments in chemical media are useful only if the
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material owns very specific properties, little is known about nonlinearity
in biological fluids and the related literature is very recent [78, 126]. Bio-
materials can be very interesting, because both chemical and biological
compounds can be excellent tunable thermal media, and DSWs were
already observed [66, 73, 78].

For sake of completeness, in this section we report two experiments.
The first one (an a further one, reported in the next section) in M-
Cresol/Nylon, a chemical solution that exhibits an isotropic giant self-
defocusing nonlocal nonlinearity, tunable by varying the nylon concentra-
tion [73]. The second one in human red blood cell suspensions, where the
concentration of Hemoglobin (Hb) and the input laser beam power make
the nonlinearity change from self-focusing to nonlocal defocusing [78].

Figure 2.15 shows transverse profiles of output beam intensity after a
propagation of 2mm in M-Cresol/Nylon. M-Cresol/Nylon is made up
of an organic solvent (m-cresol) and a synthetic polymeric solute (nylon).
When it is enlightened by a CW-laser beam, light absorption induces
local temperature variations, which reduces the refractive index, that is,
the material experiences a nonlinear thermo-optical effect. In particular,
[93]’s authors measured the M-Cresol/Nylon nonlinear Kerr coefficient
ny and found that, if for pure m-cresol it is —9 x 10~8ecm?/W, for a
nylon mass concentration of 3.5% it is —1.6 x 10~2cm? /W, higher than
other thermal nonlinear materials where annular collapse singularities
have been observed [8, 73]. Authors generated the DSws in Fig. 2.15
by focusing the input beam (a CW-laser beam of wavelength 532nm) to
20 & 1um onto the surface of M-Cresol/Nylon solution of 3.5% nylon
concentration. The input laser power was varied ranging from 2uW to
20mW and, when it reached 5mW, the wave-breaking occured.

100pm

Figure 2.15: Output beam intensity transverse profiles, coming out from a 2mm
long M-Cresol/Nylon solution. Input power varies: (a) P, = 2uW, (b)
Py, = 5mW, (c) Py, = 10mW, (d) P;, = 20mW. Reprinted from [73].

Figure 2.16 reports a part of the results obtained in lysed human red
blood cells aged samples, where free RhB determines sign and nonlocality
of the optical nonlinearity from self-focusing (and self-trapping) to strong
thermal defocusing effects, regime in which DSWs occur [78]. Beyond the
biological issues related to human red blood cells, holding uncountable
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applications to life sciences and medicine, red blood cells refractive
index tunability makes this medium be incredibly interesting also from
a physical point of view [132-135]. In normal conditions, red blood
cells are disc-shaped malleable cells, averagely with 8um of diameter
and 2um of thickness, which have a spatially uniform refractive index
because of the lack of nuclei and most organelles [133, 135]. To enable
the passage through veins and narrow microcapillaries, red blood cells
exhibit distinctive deformability. Since their optical properties depend
on the shape and refractive index of cells, they can be used as tunable
optofluidic microlenses [134].

The red blood cell refractive index is mainly determined by RhB, which
is the largest part of the erythrocyte dry content by weight [132]. Fig. 2.16a
shows the output beam waist diameter as a function of input power
through the RhB solutions for four different concentrations, from 2.4 to
15.0 million cells per mL. Experiments in [78] are performed by using a
linearly polarized CW-laser beam with a wavelength of 532nm focused
through a lens of 125mm focal length into a 3cm long glass cuvette filled
with the red blood cell suspensions. In particular, the focused beam has
initial waist diameter Wy = 28um at the focal point, which was located
at lem away from the input facet of the cuvette to avoid heating and
surface effects [126]. Outputs from the sample were monitored with a
CCD camera and a power detector, and are reported in Figs. 2.16b-e, at
variance of RhB concentration and input power. DSWs occur at high power
(Figs. 2.16¢,e), more visible in high RhB concentration regime (Fig. 2.16c).

Anisotropic Shock Waves in M-Cresol/Nylon

Following experimental results in Fig. 2.15, we report evidences of two-
dimensional optical DsWs with an anisotropic zero-singularity in M-
Cresol/Nylon 3.5%-solution [2], theoretically treated in Sec. 2.2.3. Our
experiments are performed with an asymmetric initial condition, de-
signed through a phase mask, to attain an anisotropic light propagation.
The setup is illustrated in Fig. 2.17(a). A laser beam with wavelength
A = 532nm passes through two lenses (L1 and L2) to collimate the light,
and through a beam splitter (BS1), which divides the beam into two
arms, one used for the nonlinear experiment, and the other for getting
a reference beam for interference measurements. The beam outcoming
from the first arm is transformed in our asymmetric input by a phase
mask, and then is focused (via L3) onto the facet of a 2mm-long cuvette,
which contains a M-Cresol/Nylon 3.5%-solution. The output is imaged
(via L4 and BS2) onto a CCD camera.
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Figure 2.16: Output beam waist diameter for varying RhB concentration and input
power. a Detected beam diameter as function of input power through
the RhB solutions for four different concentrations (RhB1-RhB4): 2.4,
5.1, 8.6, and 15.0 million cells per mL. Nonlinear self-focusing of the
beam occurs around 100mW for high concentrations of RhB, but it
subsequently expands into thermal defocusing rings at high powers.
b-e Output beam transverse intensity profiles for b self-trapped beam
at high concentration and low power, ¢ DSW at high concentration and
high power, d self-trapped beam at low concentration and low power,
e DSW at low concentration and high power. Reprinted from [78].

Figure 2.17(b) reports the input (intensity and phase patterns at initial
power Pyxs = 2mW and waist diameter W = 15, 8ym) and the outputs
at different initial powers. The input beam presents a phase discontinuity
of 7 along x = 0. Here we observe the first realizations of what we
define anisotropic DSWs: annular collapse singularities with an initial
zero-singularity, which generates two barriers of light intensity around
a gap in the middle of the beam. The analysis of the barriers, due to
the HO component, and the corresponding shock-gap is also examinated.

Since Hyo has potential Viyo(x) = “’723?2, we expect a shock-gap with the
. . . 1 _ L,Z
same behavior of the potential width Ax « 7o = VB

Figure 2.18 reports experimental measurements of the shock-gap at
variance of initial power Pyxs. A theoretical fit with a function o \/P%\/Ts
is drawn in the red line. The agreement between observations and
numerical simulations confirms the theoretical statement.

The use of a thermal medium with a giant Kerr coefficient, the M-
Cresol/Nylon 3.5%-solution, let us access an extremely-nonlinear highly-
nonlocal regime and perform accurate experiments in absence of losses.
These results not only confirm previous studies on the giant nonlinear
response of M-Cresol/Nylon, but also disclose fundamental insights on
propagation of DSWs with a singular initial intensity profile.
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Figure 2.17: (a) Experimental setup. A A = 532nm CW-laser beam is collimated
through two lenses (L1 and L2). A beam splitter (BS1) divides the
beam into two arms. the first is made asymmetric by a phase mask
and propagates in a 2mm-long cuvette with M-Cresol/Nylon 3.5%-
solution. The second is a reference beam for interference measure-
ments. The output is imaged (via L4 and BS2) onto a CCD cam-
era. (b) Input and outputs observed. The phase mask in (a) gener-
ates a 71-discontinuity in the input phase, here reported with initial
power Pyxs = 2mW and waist diameter Wy = 15, 8um, together
with the intensity profile. Several output at different initial power
(from left-hand-side to right-hand-side: Ppxs = 2mW, Pyxs = 10mW,
Pps = 30mW, Pyxs = 50mW) are shown. If at low power we cannot
distinguish nonlinear effects from diffraction, the higher the power
is, the stronger the nonlinear effects are. We observe the formation of
anisotropic DSWs, with annular collapse singularity and the formation
of two intense barriers in the beam center.

CONCLUSIONS

We reviewed the most widespread current theoretical models that de-
scribe nonlocal NLSE DSWs in spatial optical beam propagation. Moreover,
we discussed their experimental observations.
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In Sec. 2.2 the derivation of nonlocal NLSE was detailed, and main
features of wave breaking in thermal Kerr media were reported [66]. In
order to exhibit the theoretical interpretations of these phenomena as
intrinsically irreversible, TAOM approach was summarized [13, 74, 76].

Section 2.3 is a collection of experiments on DSW generation in ther-
mal media, first about a quite rich literature on observations in Rho-
damine [66], and their TAQM explaination [16, 17, 75]. As second instance,
we analyzed the interaction between disorder and nonlinearity in Rho-
damine with silica spheres [69] and in silica aerogel [72], where the
randomness inhibits the DSWs occurrence. Moreover, we reviewed very
recent works on generation of photonic wave breaking in chemical [73]
and biological solutions [78], fields where DSWs are emerging as surpris-
ing tools, useful for sensing and control of extreme phenomena.

DSWs are complex nonlinear waves, and their complexity was here
detailed in the highly nonlocal regime, which allows a simplified descrip-
tion. However, non-negligible nonlocality is limited to thermal media
in spatial experiments, or non-instantaneous fibers, i.e., filled with spe-
cific gases, in temporal ones. In the much more widespread local case,
such as common fibers or photorefractive crystals, other methods are
necessary, like IST or finite-gap approximation. In what follows, we show
how these sophisticated mathematical techniques foster the description
of other extremely complex nonlinear waves, their related experimental
observations, and also their control.
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OPTICAL REALIZATION OF
FERMI-PASTA-ULAM-TSINGOU RECURRENCE

INTRODUCTION

Nonlinear interaction in a multimodal system introduces coupling be-
tween its linear modes. When a reduced set of modes is initially excited,
the energy exchange associated to this coupling provides the route to
reach thermodynamic equilibrium. However, as discovered by Fermi
in collaboration with Pasta, Ulam and Tsingou [136], the irreversible
process towards thermalization can present local reversibility. Studying
a chain of anharmonic oscillators with a single-mode initial condition,
they found that the system fails to thermalize on small time scales and
undergoes a dynamics characterized by the quasi-periodic appearance
of specific states, a behavior known as Fermi-Pasta-Ulam-Tsingou Recur-
rence (FPUTR) [137-139)].

An approach to understand the physical mechanism underlying the
phenomenon rests on the quasi-integrability of the system [140-143]. This
property implies the existence of a time scale for which the Fermi-Pasta-
Ulam-Tsingou dynamics is essentially integrable. In fact, for integrable
models, pure thermalization has never been reached since normal modes
are phase-locked and not free to resonantly interact and spread energy
over the entire spectrum [141]. Consistently, certain integrable systems
support breathers; their phase space presents homoclinic orbits connect-
ing unstable solutions, so that trajectories starting in proximity of these
unstable points can return close to the original state.

The key role of integrability explains why the FPUTR has eluded in-
depth experimental investigations. Specifically, while in numerical stud-
ies the thermalization time was too large to be initially identified, quite
the opposite issue arises in experiments: in open systems involving sev-
eral interacting modes recurrences to the initial state are not normally
reported. In fact, due to the effect of intrinsic dissipation or input noise
amplification [144], a natural process rarely is integrable and preserves
multiple returns. Observations in quasi-Hamiltonian systems have so
far been limited to one or two return cycles [145]. Evidences of the re-
currence of states have been reported in deep water waves [145], surface
gravity waves [146], magnetic rings [147], optical microresonators [148]
and optical fibers [37, 149, 150]. In spite of these efforts, how the spe-
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cific initial condition determines the properties of the recurrent behavior
remains a fundamental point that has never found experimental vali-
dation. An important attempt in this direction has been reported very
recently in loss-compensated optical fibers [37], where, however, the
tailored amplification allows the system just to mimic the return cycles
that would have its non-dissipative counterpart. In this setting, among
the many recurrent behaviors expected varying the input state, only the
two types with opposite symmetry has been observed and related to
separate families of orbits in phase space [37]. The observation of the
Fermi-Pasta-Ulam-Tsingou dynamics as predicted by exact solutions of
an underlying integrable model remains an open challenge.

Here we observe the FPUTR in spatial NLO and provide evidence that
the recurrent behavior is ruled by the exact solution of the Nonlinear
Schrodinger Equation integrable dynamics. Specifically, we exploit a
three-waves interferometric setup to finely tune amplitude and phase
of the single-mode input excitation propagating in a photorefractive
medium. The unstable mode manifests the Akhmediev breather profile
and undergoes several growth and decay cycles whose partial-period
and phase-shift are determined by the initial excitation in remarkable
agreement with the analytic nonlinear Schrodinger theory. This allows
us to retrieve the specific input state from the properties of the nonlinear
stage of instability, the signature of the predictability of the underlying
dynamics.

EXACT RECURRENCES IN THE NLSE

The integrable NLSE [Eq. (1.4)] is a universal model describing the prop-
agation of a quasi-monochromatic field ¥(x,z) in a weakly nonlinear
medium [151]. Exact solutions of Eq. (1.4) corresponding to perturbations
of the constant background wave have recently attracted considerable
attention in hydrodynamics and optics [33, 152-157], in particular as they
describe the dynamics of the MI and may be relevant in explaining the
formation of extreme amplitude waves [RWs] [158-163]. On the other
hand, the NLSE naturally arises as the continuous limit (infinite number
of modes) for the dynamics of a chain of anharmonic oscillators cou-
pled by a cubic nonlinearity, the so called B-Fermi-Pasta-Ulam-Tsingou
model [164, 165]. In this framework, the problem of finding the time
scale of the recurrence as a function of the specific input condition has
been elusive up to recently. The analytic description of the recurrence
for an initially-perturbed background field of finite length with a single
unstable mode has been reported by Grinevich and Santini using the finite-
gap approximation or matched asymptotic expansions [35, 36]. Theory
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points out a variety of phase-shifted recurrences closely determined by
the phase and amplitude of the input condition. In particular, considering
the single-mode perturbed input field

Po(x) =1+e (Cleikx + szikx> , (3-1)

with complex amplitudes c; and c; and e < 1, we expect the recurrent
growth of a coherent structure of the Akhmediev type (x-periodic) and its
recurrent decay to the initial state. The first-appearance time or recurrence
partial-period of this large-amplitude wave is predicted to as [35, 36]

2= Liog [ % (3.2)
L & 2ela| |’ 3

where 0 = kv/4 —k? is the growth rate of the input unstable mode
with wavevector k and « = ¢ — ¢y exp(2id) with ¢ = arccos(k/2). The
multiple recurrence of the field to the initial condition corresponds to
periodic orbits close to the homoclinic orbit described by the well-known
Akhmediev breather exact solution of the NLSE [166]. In fact, in the m-th
recurrent nonlinear stage of the dynamics (m > 1), the field is described
by the Akhmediev breather, which, at its maximum, reads as

_ it €0(29) -+ sin(9) cos[k(x — X )]

P Zm) = 1 — sin(®) coslk(x — Xum)] +0(), 3:3)

where G, Z;, and X, are parameters related to the input condition
through the elementary functions [35, 36]

2
Zn = Zl—&—(m—l)%klog <2€\7\0¢W>' m>1
X, = arg(a)7<19+7r/2 Y m—1) argl(g“ﬂ) ) (3-4)
En = 2Zn+202m—1)8,

with B = ¢j — exp(—2i¢)c;. Although solution of the Akhmediev type
have been observed and connected to recurrent behaviors in different
settings [37, 145], experimental demonstration of Eq. (3.2), which forms
the basis for the Fermi-Pasta-Ulam-Tsingou dynamics in a broad range
of systems, is lacking. In other words, the way in which these exact
recurrent solutions can have physical relevance is an open question.
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PROPAGATION IN PHOTOREFRACTIVE MEDIA

The propagation equation of the complex optical field envelope A(x, y, z)
in a photorefractive crystal is a saturable NLSE, with a nonlinear term
depending on intensity and time:
1_, k
10, A+ —=V*A+ —dn(l,t)A =0, (3.5)
2k no
with z the longitudinal coordinate, x, y the transverse coordinates, V2 =
02 + 85, and n = ng + 6n(1, t) the refractive index, weakly depending
on the intensity I = |A|?> (6n(I) << ng). Time dependence is due to
the nonlinear self-interaction, which increases, on average, with the
exposure time up to a saturation value, on a slow timescale, typically
seconds for peak intensities of a few kWem=2 [167]. Ina centrosymmetric
photorefractive crystal, at first approximation én = 1_ 'I’O 5 f(t), with f(¢)
15
the response function. én includes the electro-optic effeét coefficient [167—
169]. For weak intensities I << Ig, we obtain a Kerr-like regime with
on = 2(5110% f(t), apart from a constant term. We consider the case
dyA ~ 0 (strong beam anisotropy), thus we look for solutions of the
(1 + 1)-dimensional NLSE for the envelope A ~ A(x,z):

@A+ 3R A+2p(0]APA =0, (3.6)

with p(f) = % f(#). Introducing the change of variables Z = pz,
X = \/ZTpx, the equation can be transformed into the dimensionless
NLSE [Eq. (1.4)]. An analogous renormalization of the wave equation
is widely adopted in nonlinear fiber optics, where the optical power
of the input wave is exploited to mimic the spatial dynamics along the
fiber [170]. Rigorously, since the normalization makes dispersive terms
slowly varying along the propagation, the approach allows us to observe
only an effective field evolution.

In the present case, the evolution in Z is studied at a fixed value
of z (the crystal output) varying the exposure time t. In fact, experi-
mental results obtained in similar photorefractive KTN crystals have
verified that the average index change grows and saturates according
to f(t) = 1 —exp(—t/7) [171]. The time dependence is well defined
through the saturation time T once the input beam intensity, applied
voltage and temperature have been fixed. Using this relation with the
measured T ~ 100 s, observations at the crystal output are rescaled as
a function of the effective distance Z. The nonlinear response function
f(t) represents the main limitation of the technique in recostructing the
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spatial dynamics from time-resolved measurements. Specifically, f(f)
is independent of the local intensity only in a first approximation, a
fact that affects the accuracy of the obtained field evolution. When the
intensity distribution presents large intensity variations or strong spatial
inhomogeneities, intensity-dependent corrections to f(#) should be taken
into account to have a quantitative reconstruction along the evolution
coordinate. These high-order terms are nonlocal in space and time; their
main effect is that the time evolution of high-intensity regions slows
down [167]. Therefore, in the present case, the method is particularly
accurate up to a distance Z; (first-appearance time). Small longitudinal
deformations appear at longer evolution scales [Figs. 3.2(a,b)] and the
relative distance between the observed Akhmediev breather structures
cannot be accurately evaluated. This fact explains the discrepancy with
theory for the value of the recurrent period when measured through
the Z-distance between returning intensity maxima. In particular, the
recurrent Akhmediev breather seems to appear at an effective distance
that is always shorter than expected according to theoretical predictions.
Moreover, as the nonlinearity finally saturates in time, the field dynam-
ics at large Z departs from that of the integrable model and evolution
towards thermalization is observed.

SPATIAL OPTICAL SETTING

To investigate FPUTRs in optical dynamics, we consider the propagation
of optical nonlinear waves in a photorefractive crystal. The wavectors
of the optical field constitutes the linear modes which are coupled by
nonlinear propagation. The transverse crystal size fixes the finite length
of the input wave, a condition ensuring a countable set of Fourier modes
and a finite recurrence period. Under specific conditions, the system can
be described by the NLSE in the spatial domain, with the propagation
direction acting as evolution coordinate [172].

The experimental geometry of our setup is shown in Fig. 3.1(a). A
y-polarized optical beam at wavelength A = 532nm from a continuous
30mW Nd:YAG laser source is split and recombined in the xz-plane to
form a symmetric three-wave interferometer, with the two arms having
opposite wavevectors and forming an angle 6 with the 300uW central
beam. The interference pattern is focused by a cylindrical lens down to
a quasi-one-dimensional beam with waist diameter wy = 15um along
the y-direction and periodically-modulated along the x-direction [inset
in Fig. 3.1(a)]. The copropagating waves are launched into an optical
quality specimen of 2.1")x1.9()x2 5()mm Potassium-Lithium-Tantalate-
Niobate Kg.964Lip.036 Tap.60Nbg.40O3 (KLTN) with Cu and V impurities. The
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crystal exhibits a ferroelectric phase transition at the Curie temperature
Tc = 284K. Nonlinear light dynamics are studied in the paraelectric
phase at T = T¢ + 8K, a condition ensuring a large nonlinear response
and a negligible effect of small-scale disorder [173]. The time-dependent
photorefractive response sets in when an external bias field E is applied
along y (voltage V = 500V). To have the aforestated Kerr-like (cubic)
nonlinearity from the photorefractive effect, the crystal is continuously
pumped with an x-polarized 15mW laser beam at A = 633nm. The
pump does not interact with the principal beams propagating along the
z-axis and only constitutes a reference intensity larger than the single-
mode perturbed background wave. The spatial intensity distribution is
measured at the crystal output as a function of the exposure time by
means of an high-resolution imaging system composed by an objective
lens (NA = 0.5) and a CCD camera at 15Hz.

The three continuous, symmetrically interfering, laser sheets form a
quasi-one-dimensional background wave with a coherent single-mode
perturbation. Along the transverse x-direction, the relevant one for
the dynamics under study, the optical field resulting from the sym-
metric interference of three mutually-coherent, linearly-polarized op-
tical waves is E = Eq + Eje/?1et* 4 Epel®2e~k, with k = 27rtan()/A.
The optical intensity normalized to the background 1/1Iy (Iy = |Eo|?)
can be expressed as I/Iy = |¢o(x)|> = 1+ Acos(kx + B), which di-
rectly maps the initial condition in Eq. (3.1) with A = 2¢|]y|, B =
arg(y) and v = ¢ + c;. With respect to the experimentally accessi-
ble parameters, the amplitude and phase of the perturbation read as

A= 2\/[11 + I +2y/I1 /Iy cos(¢1 + ¢2)] /Iy and tan(B) = (/I sin¢; —
Vhsing,) /(v cos ¢ + /I cos ¢p). Therefore, the spatial frequency
of the perturbation k can be varied acting on the geometrical angle 6 in
between the arms of the interferometer, whereas their optical power and
phase delay ¢ = ¢ + ¢ = arg(cy) + arg(cy) set, respectively, the ampli-
tude and phase of the single-mode [Figs. 3.1(b,c)]. The fringe visibility
is thus maximum for ¢; + ¢, = 0 and minimum for ¢; + ¢ = 7. In the
symmetric case I} ~ I, we have B ~ (¢ — ¢) /2.

Since the propagation length cannot be varied in our setting and the
intensity profile inside the crystal cannot be directly measured [174],
nonlinear evolution of the input field is observed by the time the crys-
tal is exposed to the copropagating light beams. The method relies on
the nature of the photorefractive nonlinearity, that is noninstantaneous
and accumulates in time as a photogenerated space-charge field builds
up [167]. Since the process occurs on a slow time scale compared to wave
propagation through the medium, this implies a nonlinear coefficient that
depends parametrically on the exposure time. Due to the invariant prop-
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Figure 3.1: Experimental setup. (a) Sketch for the symmetric three-wave interfero-
metric scheme used to generate a quasi-one-dimensional background
wave with a single-mode perturbation that propagates in a pumped
photorefractive KLTN crystal. The inset shows an example of the de-
tected input intensity distribution (scale bar is 50um). (b) Input inten-
sity x-profiles normalized to the background for different amplitudes
of the harmonic perturbation (k = 0.019um™1). (c) Phase control of
the initial condition: intensity distribution varying the relative phase ¢
between the interfering waves.

erties of the wave equation, observations of the intensity distribution at
the crystal output at different times correspond to beam propagation for
increasing effective distances Z. This is equivalent to study the dynamics
varying the strength of the nonlinearity through an external parameter,
in close analogy with Fermi-Pasta-Ulam-Tsingou investigations in optical
fibers where changes of the input optical power are exploited [149].

EXPERIMENTAL RESULTS

The spatial intensity distribution I(x)/Iy detected as a function of the
evolution coordinate Z is reported in Fig. 3.2(a) for k = 0.019ym™!,
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A = 0.3. We observe the input perturbation grow on the modulationally
unstable background forming a train of large-amplitude localized waves,
which decays back to an almost constant background and recurrently
reappear from it. The set of linear modes undergoes several return cycles
in which energy flows back and forth, passing from the zero and first
mode (the initial perturbation) to a spectral distribution in which all
the modes are excited, the signature of the Fermi-Pasta-Ulam-Tsingou
dynamics [175]. At variance with classical and quantum beating, such as
Rabi cycles in two-level quantum systems [176], here energy oscillations
involve several modes and occur without any driving field. At each
cycle, the whole field distribution is spatially shifted by an amount
A, a phenomenon also referred to as broken symmetry of FPUTR [37,
145]. Although a similar phase-shift has been associated theoretically
to the specific gain of the seeded wavevector [177] and the effect of
dissipation [178], we show hereafter that it results from the sensitivity
of the dynamics to the specific initial phase. This phase-shift, as well as
the recurrence period detected through the first appearance distance Z;
of the high-intensity pattern, strongly changes as the input perturbation
is varied. For instance, in Fig. 3.2(b) we report the observed FPUTR for
k= 0.0SOym_l and A = 0.5, where no significant phase-shift occurs.

The recurrent behavior can be directly related to the excitation from
the single-mode input perturbation of an orbit close to the Akhmediev
breather [36]. As shown in Figs. 3.2(c,d), the periodic intensity profile
detected along x when the amplified modes reach their first maximum
is well fitted by the Akhmediev breather solution of the NLSE at its
maximum [Eq. (3.3)]. Precisely, in fitting the data in Figs. 3.2(c,d), the
coefficients ¢, k, ® and X, are considered as bounded parameters.
Consistently, we refer to these localized states as Akhmediev breathers.
The finding of exact solutions indicates that our system remains close
to the integrable regime on these effective distances, that is, it can be
properly described by the NLSE.

We study the FPUTR by varying the single-mode input condition. Fixing
the initial phase of the field through a careful maximization of fringe
visibility, we first analyze the recurrence partial-period varying the am-
plitude of the perturbation A. Results in Fig. 3.3(a) show that the first
appearance of the Akhmediev breather occurs at a distance that decrease
as the single-mode amplitude becomes larger. An analogous behavior is
observed for the recurrent breather (second appearance). In remarkable
agreement with the analytic solution of the NLSE, the observed scaling
follows Eq. (3.2), which predicts Z; o« log(1/A). For modes k falling
in proximity of the maximum gain, the recurrence period only weakly
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Figure 3.2: Observation of the FPUTR of Akhmediev breathers. (a-b) Evolution
of the detected spatial intensity distributions for (a) k = 0.019um™1,
A =03and (b) k = 0.030;4m_1, A = 0.5. Both observations show
the appearance of a high-intensity pattern at a distance Z; (red dotted
line), its return to the initial state and multiple recurrences with a
spatial phase-shift that depends on the experimentally assigned input
condition (A ~ 15um, 2um in (a) and (b), respectively). (c-d) Intensity x-
profile measured at the first appearance of the localized waves (circles)
fitted with the Akhmediev breather profile at its maximum [red line,
Eq. (3.3)] for (c) k = 0.021ym~! and (d) k = 0.014um~".

depends on the input wavevector [Fig. 3.3(b)], a feature well captured by
Eq. (3) through oy.

More importantly, the main effect on the recurrence is found to be
related to the phase of the initial condition. To investigate its role, we
balance the optical power in the interferometer arms (I; ~ I) and
introduce a slight tilt in one of them, to have a perturbation with a
phase that depends on the spatial point. The observed Fermi-Pasta-Ulam-
Tsingou dynamics is reported in Fig. 3.3(c); the Akhmediev breather
appears and recurs phase-shifted at a propagation distance that varies
along the transverse coordinate.

As a function of the input phase delay, Z; presents an oscillation
having a sharp maximum for ¢ ~ —0.377 and a broad minimum for
¢ ~ —0.97,0.357 [Fig. 3.3(d)]. This characteristic behavior, which reflects
phase-dynamics in each return cycle, is in remarkable agreement with the
NLSE theory and represents its main validation. In fact, in Eq. (3.2) the
recurrent semi-period critically depends on ||, a quantity that oscillates
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with the relative phase of the complex amplitudes c; and ¢, forming
the initial perturbation. Specifically, in the case of symmetric perturba-
tions (I; ~ Ip), theory predicts a sharp maximum in Z; for ¢ ~ —20;
from Fig. 3.3(d) we can thus obtain the theoretical parameter ¢ ~ 0.15,
consistent with the one extracted from the Akhmediev breather profile.
Moreover, a sharp transition is expected for the recurrent phase-shift
as a function of the input phases [37]. In Fig. 3.3(e) we report the mea-
sured shift, which sharply passes from A ~ 0 to A = 1/2k varying the
phase delay, a behavior that well agrees with the theoretical condition
cos(¢) = cos(29). These effects indicate that the coherence of the field
is maintained as energy is exchanged between different modes: phase-
locking dominates the nonlinear stage of the unstable dynamics and
thermalization slows down.

For an in-depth analysis, major information on theoretical fittings
follows. For the measurements in Fig. 3.3(a) we consider alog(b/¢) as
a fitting function, with a and b free parameters. In Fig. 3.3(b) we use
alog(b(kv/K2ax —k2)?) /ky/KZ: — k2, where a and b are free parame-
ters and Kz ~ 0.03ym_1 is the wavevector with maximum gain that we
independently measure from spontaneous MI of the background wave. In
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Fig. 3.3(d) the detected Z,, is compared to log(a/ \/C% + 5 — 20102 cos(¢p + b)),

being a, b, c; and ¢, bounded parameters. In this case, it is interesting to
note that the fitting procedure returns c; ~ cy, that is, a balanced condi-
tion for the interferometer arms as experimentally settled. In Fig. 3.3(e)
the fitting functions are a + b/ [cos(¢) — cos(c)], as predicted for the
symmetric case |c1] = |c3].

The deterministic properties of the return cycle imply its predictability
once the input condition is completely known, and viceversa. To inves-
tigate this integrable character in experimental conditions we retrieve
the actual initial state from the features exhibited by the recurrent stage
(inverse problem). We consider the Fermi-Pasta-Ulam-Tsingou dynamics
reported in Fig. 3.4(a). The phase B of the input perturbation is obtained
taking into account that the periodic transverse position X; at which the
first Akhmediev breather has its maximum intensity strictly depends on
¢, as well as the specific shift A characterizing the return cycle. In fact,
according to Eq. (3.4), we have X; = (arg(a) — 9+ 7t/2)/k. At each recur-
rent cycle the breather solution is transversely shifted by A = arg(ap)/k.
Therefore, when ¢ ~ 0, arg B ~ k(A — X;) + 71/2 and the phase of the
input excitation can be evaluated as

B = arg(y) ~ k(A — X1) — 8, (3-7)

where k and ¢ are extracted from the first Akhmediev breather profile.
The amplitude of the single-mode follows from the observed Z; through
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Figure 3.3: Properties of the recurrent behavior. Recurrence partial-period mea-
sured (dots) varying (a) the amplitude of the input excitation (k =
0.023ym™1) and (b) the frequency of the input mode (A = 0.3). (c)
Evolving intensity distribution detected for an input phase that varies
along x (k = 0.030um™!). White lines interpolates local maxima and
serve as guides. (d) Z,, as a function of the initial dephasing. Blue
and magenta lines in (a-d) are fitting functions according with Eq. (3.2).
(e) Recurrence phase-shift varying the input phase: measured sharp
transitions (dots) and predicted behavior (line).

the scaling in Fig. 3.3(a). As shown in Figs. 3.4(b-d) for different initial
dephasing, the field retrieved using this procedure agrees well with
the experimental input condition that generates the recurrence: the
non-equilibrium dynamics can be accurately traced on the basis of the
underlying integrable model.

As for the following retrieval of the input perturbation, from the
observed recurrences in Fig. 3.4(a,b) we measure, for example, k =
0.021ym_1, A =1+£1um, Z{ = 26=+0.1, ¢ = 0.1 which, for X; =
208um, gives B = —40.1 £0.3 and A = 0.33 £0.02. For comparison,
B = —40.940.2 and A = 0.34 £ 0.01 are the values obtained fitting the
experimental initial intensity.

The predictability of the Fermi-Pasta-Ulam-Tsingou dynamics is a
general property of the system and does not depend on the specific input
state. However, nonlinear evolution becomes more complex when several
harmonics are initially excited. We observe that for two excited input
modes recurrent high-intensity patterns still occur but their periodicity
is lost and different states are experienced during propagation. Starting
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Figure 3.4: Inverse problem. (a) Experimental observation used to test the
predictability of the input state from the recurrent dynamics (k =
0.021um™1). Measured (dots) and retrieved (line) input field for differ-
ent initial phases: (b) ¢ ~ 7, (c) ¢ ~ 0 and (d) ¢ ~ 0.371. Dashed lines
indicates the uncertainty of the retrieved condition.

with a superposition of a large number of modes, random noise or
localized perturbations, wave turbulence sets in [110, 179]. In these
complex regimes, disordered nonlinear interactions may play a crucial
role with respect to exact solutions of the underlying model [180]. Finally,
we note that the observed recurrence gradually disappears as the external
pump is weakened, a finding that further corroborates integrability as
the basis of the phenomenon. The continuous transition towards the
non-integrable regime is reported in Fig. 3.5. Pseudo-recurrent breather
structures persist as the nonlinearity approaches the saturable regime and
the model departs from the canonical NLSE [181] [Figs. 3.5(a,b)], whereas
no return to the initial state occurs in highly-saturated, non-integrable
conditions [Fig. 3.5(c)]. Here, interacting spatial solitons form and evolve
towards equilibrium compatibly with a soliton turbulence scenario [182].
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Figure 3.5: From the integrable to the non-integrable regime. Nonlinear evolution
detected for k = 0.021ym~! and A = 0.5 varying the external pump
power: (a) P = 6mW, (b)P = 2mW and (c) P = 0.5mW. The recurrent
behavior in (a) is superseded by the appearance of spatial solitons (c)
as the dynamics is far from integrability (highly-saturated conditions).

CONCLUSIONS

We have observed the FPUTR in nonlinear spatial optics providing an
unprecedented experimental evidence of its underlying integrable dy-
namics. We reveal that the single-mode input field deterministically sets
the properties of the recurrent behavior for several breathing cycles and
in close agreement with the analytic NLSE theory. The dynamics is thus
accurately predicted, a result that extends predictive approaches to unsta-
ble wave regimes and maps a strategy to achieve the control of localized
large-amplitude waves in environmental conditions. The optical setting



3.6 CONCLUSIONS

we have introduced, in which the input condition can be in principle
arbitrarily shaped, provides a general test-bed for investigating universal
nonlinear phenomena. Our findings shed light on the foundations of
the Fermi-Pasta-Ulam-Tsingou problem and represent a unique test for
nonlinear wave theory.
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INTRODUCTION

As aforementioned, the NLSE [166] is a cornerstone of IST for detailing
dispersive phenomena, as DSWs [48, 59, 67], RWs [159, 160, 183, 184] and
shape invariant solitons [185-187]. DSWs regularize catastrophic disconti-
nuities by mean of rapidly oscillations [13, 62, 66, 69, 188]. RWs are giant
disturbances appearing and disappearing abruptly in a nearly constant
background [154, 156, 157, 161, 163, 189-195]. Solitons are particle-like
dispersion-free wave packets that can form complex interacting assem-
blies, ranging from crystals to gases [185, 186, 194, 196-198].

DSWs, RWs, and SG generation are related phenomena, and all appear
in paradigmatic nonlinear evolutions, as the box problem for the focusing
NLSE [110, 199—203]. However, for the box problem in the small-dispersion
NLSE, IST becomes unfeasible. In this extreme regime, the problem can
be tackled by the finite-gap approximation [200, 204]. It turns out that
extreme waves are described in terms of one single mathematical entity,
the Riemann theta function, and classified by a topological index, the
genus g (see Fig. 4.1). In nonlinear wave theory, ¢ represents the number
of oscillating phases, and evolves during light propagation: “single phase”
DSWs have ¢ = 1, RWs have g ~ 2 and SGs have g >> 2. This creates a
fascinating connection between extreme waves and topology. Indeed, the
same genus g allows a topological classification of surfaces, to distinguish,
for examples, a torus and sphere (Fig. 4.1). The question lies open if
this elegant mathematical classification of extreme waves can inspire new
applications. Can it modify the basic paradigm by which the asymptotic
evolution of a wave is encoded in its initial shape, opening the way to
controlling extreme waves, from lasers to earthquakes?

Here, inspired by the topological classification, we propose and demon-
strate the use of topological indices to control the generation of extreme
waves with varying genera g [201]. We consider the NLSE box problem
where, according to recent theoretical results [200], light experiences
various dynamic phases during propagation, distinguished by diverse
genera. In particular, for high values of a nonlinearly-scaled propagation
distance ¢, one has g ~ {. By continuously varying ¢, we can change g
and explore all the possible dynamic phases (see Fig. 4.1, where { is given
in terms of the observation time t, detailed below). We experimentally
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test this approach in photorefractive materials, giving evidence of an un-
precedent control of nonlinear waves, which allows the first observation
of the transition from focusing DSWs to RWs.

GENUS CHARACTERIZATION IN THE NLSE BOX PROBLEM

We consider the NLSE

2
gy + 2y + |ylPy =0, (4.1)

where ¢ = (¢, () is the normalized complex field envelope, { is the
propagation coordinate, ¢ is the transverse coordinate and € > 0 is the
dispersion parameter. We take a rectangular barrier as initial condition

¥(¢,0) = { g forlgl <1 (4-2)

0 elsewhere

that is, a box of finite height g > 0, length 2/ > 0 and genus ¢ = 0. In
our work, we fix ¢ = I = 1. Eq. (4.1) with (4.2) is known as the NLSE
box problem, or the dam break problem, which exhibits some of the
most interesting dynamic phases in nonlinear wave propagation [200,
205]. The initial evolution presents the formation of two wave trains
counterpropagating that regularize the box discontinuities. These wave
trains are single-phase DSWs (g = 1). Their two wavefronts superimpose
in the central part of the box (see Fig. 4.1a) - occurring at { = (o := 2%/25, -

and generate a breather lattice of genus ¢ = 2, a two-phase quasi-periodic
wave resembling an ensemble of Akhmediev breathers [157, 159]. Since
both {— and {—period increase with g, the oscillations at ¢ ~ 0 become
locally approximated by Peregrine solitons [152, 159, 206, 207]. At long
propagation distance { >> (j, the wave train becomes multi-phase and
generates a SG with g ~ C.

In Figure 4.1a, we report the wave dynamics in physical units, as we
make specific reference to our experimental realization of the NLSE box
problem for spatial optical propagation in photorefractive media. In
these materials, the optical nonlinearity is due to the time-dependent
accumulation of free carriers that induces a time-varying low-frequency
electric field. Through the electro-optical effect, the charge accumulation
results into a time-varying nonlinearity, as shown in Sec. 3.3. The corre-
sponding time-profile can be controlled by an external applied voltage
and the intensity level [167-169]. These features enable to experimentally
implement our topological control technique.
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Dispersive
Shock Waves

Figure 4.1: Topological classification of extreme waves. a Final states of the wave
for a fixed initial waist diameter Wy = 100um showing the generation
of focusing dispersive shock waves (§ = 1), RWs (g ~ 2) and a SG
(g >> 2) after different time intervals in a photorefractive material.
b Phase diagram reporting the final states in terms of the parameter
€ and the initial beam waist diameter. Transitions occur by fixing
waist diameter and varying € or, equivalently, the observation time ¢.
Different surfaces displayed in proximity of the various wave profiles,
corresponding to the different regions in the phase diagram, outline the
link between the topological classification of extreme waves in terms
of the genus g and the topological classification of toroidal Riemann
surfaces (for a sphere, ¢ = 0, for a torus, g = 1, etc.).

In photorefractive media, Eq. (4.1) describes an optical beam with
complex amplitude A(z, x, t), intensity I = |A|?, and initial condition

Aoy [ VI forlx] < 1o
’ 0 elsewhere

(4-3)
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through the transformation

— _z _ 2x _ A
g_ezD/ g_WO/ lp_ IU, (44)
2
with Wy the initial beam waist diameter along x-direction, zp = mzo/{/v 2

the diffraction length, n = ng + %’ZOI f () the refractive index, dng > 0

the nonlinear coefficient, Is the saturation intensity, Iy the initial intensity.
For photorefractive media

A I
e= S (45)
Wy Zno(STlolof(t)

namely, the dispersion is modulated by the time-dependent crystal re-
sponse function f(t) =1 — exp (—t/7), with the saturation time 7 fixed
by the input power and the applied voltage [10].

For a given propagation distance L (the length of the photorefractive
crystal), the genus of the final state is determined by the detection time ¢,
which determines €, { = %, and g, correspondingly. The genus time-
dependence is sketched in Fig. 4.1a. The output wave profile depends on
its genus content, which varies with .

Following the theoretical approach in [200], the two separatrix equa-
tions divide the evolution diagram in Fig. 4.1a in three different areas:
the flat box plateau with genus g = 0, the lateral counterpropagating
DSWs with genus ¢ = 1, and the RWs after the DSw-collision point (cor-
responding to the separatrices intersection) with genus ¢ = 2. The two
separatrices (dashed lines in Fig. 4.1a) have equations

W
x=x0% 50 () = xo £ 0(t — to), (4.6)
0
2
with (#g, xo) the DSW-collision point, with #y ~ % and x( given by

the central position of the box. It turns out that the shock velocity is

_ Wy 326mgL?

U= = —F—P, .
2ty LngW3UyT 47)

proportional to the input power, as experimentally demonstrated below
(Fig. 4.3b, other parameters are detailed below).

Egs. (4.6) express the genus time-dependence for its first three values
g = 0,1,2. It allows designing the waveshape, before the experiment,
by associating a specific combination of the topological indices, and to
predict the detection time corresponding to the target topology. In other
words, by properly choosing the experimental conditions, we can manage
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to predict the occurrence of a given extreme wave by using the expected
genus g. According to Eq. (4.5), we use time t and initial waist diameter
Wy to vary €. The accessible states are outlined in the phase diagram in
Fig. 4.1b, in terms of € and Wy. Choosing Wy = 100um as in Fig. 4.1a, by
varying t one switches from DSWs to RWs, and then to SGs.

We solve numerically Eq. (4.1) by a one-parameter-depending Beam
Propagation Method (BPM) with a symmetrized split-step in the code
core [208]. We use a high-order super-Gaussian initial condition

24
(G, ¢=0) —leP{—; (%) } (4.8)

For each temporal value, Eq. (4.1) solutions have different dispersion
parameter € and final value of ¢, because from Eqs. (4.4) it reads {;;, =

G(f)i%’ where L is the crystal length. In Figs. 4.2,4.4, we show the
numerical results. The propagation in time considers ¢(¢, { fm), which

corresponds to detections at end of the crystal.

SUPERVISED TRANSITION FROM SHOCK TO ROGUE WAVES

The case Wy = 140um is illustrated in Fig. 4.2 by numerical simulations
(the corresponding experimental results are in Fig. 4.3). The two focusing
DSWs and the SG are visible at the beginning and at the end of temporal
evolution, respectively (see phase-diagram in Fig. 4.1b). As soon as an ini-
tial super-Gaussian wave (Fig. 4.2b) starts to propagate, two DSWs appear
on the beam borders (Fig. 4.2c) and propagate towards the beam central
part (Fig. 4.2d). When the DSWs superimpose, Akhmediev breathers are
generated (Fig. 4.2e). From the analytical NLSE solutions for the focus-
ing dam break problem [200], we see that Akhmediev breathers have
¢-period increasing with . Moreover, one finds that 0;J > 0, therefore
the period in the x-direction must increase with time, and central peaks
appear upon evolution. These peaks are well approximated by Peregrine
solitons, for large t, as confirmed by Figs. 4.2f,g.

Figure 4.3 shows the experimental observation of the controlled dy-
namics simulated in Fig. 4.2. Figure 4.3a sketches the experimental setup.
A y-polarized optical beam at wavelength A = 532nm from a continuous
80mW Nd:YAG laser source is focused by a cylindrical lens down to a
quasi-one-dimensional beam with waist diameter Uy = 15ym along the
y-direction. The initial box shape is obtained by a mask of tunable width,
placed in proximity of the input face of the photorefractive crystal. A
sketch of the optical system is shown in Fig. 4.3a. The beam is launched
into an optical quality specimen of 2.1(*) x 1.9%) x 2.5() mm KLIN with
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Figure 4.2: Controlling the extreme wave genus. a Numerical simulation of the
control of the final state after a propagation distance L = 2.5mm for
an initial beam waist diameter Wy = 140um (Ip = ﬁ = 0.38 x
10°W/ m2). Axis x represents the beam transverse direction, axis ¢ the
time of output detection. b Initial beam intensity: a super-Gaussian
wave centered at x = 150um of height Iy and width Wjy. c-d Focusing
dispersive shock waves occurrence: (c) represents the beam intensity at
t = 5s, when the wave breaking has just occurred, so two lateral intense
wave trains regularize the box discontinuity and start to travel towards
the beam central part; (d) the beam intensity at ¢ = 11s, which exhibits
the two counterpropagating DSWs reaching the center x = 150um.
e-g Akhmediev breathers and Peregrine solitons generation: beam
intensity at (e) t = 49s, (f) t = 98s, and (g) t = 120s, after the two
dispersive shock waves superposition and the formation of Akhmediev
breathers with period increasing with t. Since a Peregrine soliton is an
Akhmediev breather with an infinite period, increasing f is tantamount
to generating central intensity peaks, locally described by Peregrine
solitons.

Cu and V impurities (19 = 2.3). The crystal exhibits a ferroelectric phase
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transition at the Curie temperature Tc = 284K. Nonlinear light dynamics
are studied in the paraelectric phase at T = T¢ + 8K, a condition ensuring
a large nonlinear response and a negligible effect of small-scale disor-
der [173]. The time-dependent photorefractive response sets in when an
external bias field E is applied along y (voltage V = 500V). To have a
so-called Kerr-like (cubic) nonlinearity from the photorefractive effect, the
crystal is continuously pumped with an x-polarized 15mW laser beam
at A = 633nm. The pump does not interact with the principal beam
propagating along the z axis and only constitutes the saturation intensity
Is. The spatial intensity distribution is measured at the crystal output as
a function of the exposure time ¢ by means of a high-resolution imaging
system composed of an objective lens (NA = 0.5) and a CCD camera at
15Hz. In the present case, evolution is studied at a fixed value of z (the
crystal output) by varying the exposure time t. In fact, the average index
change grows and saturates according to a time dependence well defined
by the saturation time T ~ 100s once the input beam intensity, applied
voltage, and temperature have been fixed [see Secs. 3.3,3.5].

The observation for Wy = 140um is reported in Fig. 4.3c. We observe
an initial DSW phase that undergoes into a train of large amplitude waves.
In this regime, we identify breather-like structure (Akhmediev breathers,
inset in Fig. 4.3¢) that evolves into a SG at large propagation time. The
DSW phase is investigated varying the input power. We find a linear
increasing behavior of the shock velocity when increasing the power
(Fig. 4.3b), as predicted by Eq. (4.7). The shock velocity is proportional to
the distance between the two counterpropagating DSWs at a fixed time.
We measured the width Ax of the plateau at time f ~ 30s. Referring to
Eq. (4.7), we obtain the normalized velocity 7 = v/vg, with vy = L/F.

PEREGRINE SOLITON EMERGENCE

Figure 4.4 illustrates the numerically determined dynamics at smaller
values of the beam waist diameter (Wp = 10um), a regime in which the
generation of single Peregrine solitons is evident. The intensity profile is
reported in Fig. 4.4a. As shown in Fig. 4.1b, one needs to carefully choose
Wy for observing a RWs generation without the DSWs occurrence. For
Wy = 10um, the super-Gaussian wave (Fig. 4.4b) generates a Peregrine
soliton (Fig. 4.4c-e). The following dynamics shows the higher-order
Peregrine soliton emergence (Figs. 4.4f,g), each order with a higher genus.

Figures 4.5a-g report the experimental results for the case Wy = 30um.
Observations of the Peregrine-like soliton generation are shown, both
in intensity (Figs. 4.5a-d) and in phase (Figs. 4.5e-g). For a small initial
waist diameter, a localized wave, well described by the Peregrine soliton
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Figure 4.3: Experimental demonstration of the extreme wave genus control. a Ex-
perimental setup. A CW-laser beam is made a quasi-one-dimensional
wave by a cylindrical lens (CL), then a tunable mask shapes it as a
box. Light propagates in a pumped photorefractive KLTN crystal, it is
collected by a microscope objective and the optical intensity is detected
by a CCD camera. The inset shows an example of the detected input
intensity distribution (scale bar is 50um). b Normalized shock velocity
[vop =L/t L =25mm, f = (30 £ 2)s], measured through the width of
the oscillation tail at fixed time, versus input power. The blue squares
are the experimental data, while the dashed pink line is the linear fit.
¢ Experimental observation of optical intensity I/ Iy for an initial beam
waist diameter Wy = 140um. Axis x represents the beam profile, trans-
verse to propagation, collected by the CCD camera, while axis ¢ is time
of CCD detection. Output presents a first dispersive-shock-wave phase,
a transition to a phase presenting Akhmediev breather structures and,
at long times, a generation of a SG. The inset is an exemplary wave
intensity profile detected at t = 63s (dotted blue line), along with the
theoretical Akhmediev breather profile.

(Figs. 4.5b,d), forms and recurs without a visible wave breaking. This
dynamics is in close agreement with simulations in Figs. 4.4d-g, where
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Figure 4.4: Simulation of the topological control for a small waist. a Numerical

simulation of the control of the final state after a propagation distance
L = 2.5mm for an initial beam waist diameter Wy = 10um (Iy =
ﬁ =5.33 x 10°W/m?). Axis t expresses time of detection, while x
is the beam transverse coordinate. b Initial beam intensity: a super-
Gaussian wave centered at x = 150um. c-e Peregrine soliton generation:
beam intensity (c) at t = 12s, and (d) at t = 64s, during the formation of
the Peregrine soliton, while (e) exhibits the Peregrine soliton profile at
t = 70s. f-g Higher-order Peregrine soliton generation: beam intensity
at (f) t = 85s, and (g) ¢t = 100s, where the Peregrine soliton is alternately
destroyed and reformed.

the Peregrine soliton is repeatedly destroyed and generated, each time
at a higher order. Phase measurements are illustrated in Figs. 4.5e-

g. Each

Peregrine soliton has two phase signatures: a longitudinal

smooth phase shift of 27t and a transversal rectangular phase shift profile,
with height 7 and basis as wide as the Peregrine soliton width [206,
207]. Such signatures are here both experimentally demonstrated. From

Fig. 4.5e,

which shows interference pattern during the first Peregrine
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soliton occurrence, we obtain the longitudinal phase shift behavior in
Fig. 4.5g, by a cosinusoidal fitting along the central propagation outline.
Fig. 4.5f reports the experimental transversal phase shift profile along x.
A comparison with the measured interference fringes is also illustrated
in the inset, which directly shows the phase jump (topological defect).
Stressing the significance of these results is very important, because they
are a proof of the topological control: the genus is determined by the
input waist and time of detection. Indeed, the longitudinal phase shift
represents the transition from genus 0 to genus 2, whereas the transversal
Peregrine soliton phase shift outline unveils the value g = 2, equal to the
number of phase jumps (first from 0 to 77, then again from 7t to 0). This is
summarized in Fig. 4.5h, which sketches numerical simulations of phase
behavior at Wy = 10pum, normalized in [—7t, 7t]. Fig. 4.5h gives a picture
of genera changes, Peregrine soliton occurrence and phase discontinuities.
The genus is zero and the phase profile is flat until the first Peregrine
soliton occurrences. After that, the phase value changes and the phase
transverse profile presents two jumps of 7.

MODULATION INSTABILITY AND LOSSES

We perform experiments - and validate them by numerical simulations -
to prove that our results are genuinely caused by a NLSE box evolution,
and they are not due to MI arising from noise in the central part of the
box. Figure 4.6 reports the outcomes. MI generates transversal periodic
waves; DSWs occur in strongly nonlinear regimes and present fast non-
periodic oscillation. Figs. 4.6a-d show the different behaviors of such
phenomena, occurring on two distinct spatial scales in our experiments.
It turns out that MI from spontaneous noise affects light propagation
only for very large beam waists, much larger than the ones previously
analyzed, because the period of generated waves is comparable to the
waist diameter corresponding to Fig. 4.6d. Fig. 4.6e illustrates the experi-
mental gain related to Fig. 4.6a at f = (30 +2)s, computed through the
expression [187]

G(ky) = %log (4.9)

A(ky,z=1)
Aky,z=0) |’

with L = 2.5mm the propagation distance, A the FT of the field envelope
and ky the spatial momentum. A possible waist diameter threshold value,
which separates the nonlinear and the MI dynamics, is also established by
the the comparison of the spectral weights in Fig. 4.6f. Spectral weights
are computed as maximum absolute values of A field for the DsW and
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MI momenta, and they indicate a change of dominating effect around
Wp ~ 150um. This is also proved numerically in Figs. 4.7a-e: above
Wo ~ 150um [Figs. 4.6a-d] MI alters significantly light propagation, while
below, in Fig. 4.6e [corresponding to Fig. 4.2a, but with initial perturbative
noise], we cannot appreciate any modification of nonlinear dynamics.
Another effect that could modify the nonlinear dynamics is the pres-
ence of loss, as shown in [206], where the dissipation significantly affects
the local genus of the breather structure. Adding losses to Eq. (3.6), we
obtain
1

10, A + %

V2A + £(Sn(I)A = —2A. (4-10)
no 2

The KLTN photorefractive crystal is transparent above A = 380nm, and
the copper doping introduces a small absorption from A = 550nm to A =
800nm, where the value of the absorption coefficient « is approximately
a = 2cm~ L. It turns out that losses need a propagation length L;oss = al
to be effective for the pump laser beam (A = 633nm), that is, one order
of magnitude higher than the crystal length L, while the reference laser
beam, generating the box, propagates without losses (A = 532nm).

ROGUE WAVES AND SOLITON GASES STATISTICAL ANALYSIS

RWs are waves of unusually high intensity |¢gyy|?, whose Probability
Density Function (PDF) does not decay exponentially (linearly on the
semilogarithmic scale used in Figures 4.7f-i), but presents a tail at highest
intensity values [192].

The statistical properties of the intensities illustrated in Figs. 4.7f,g
confirm the occurrence of RWs in the small box regime, both with initial
noise [Fig. 4.7f] and without [Fig. 4.7g]. The latter case is widely treated
in this Chapter, where the emergence of Peregrine solitons is proved, and
the agreement with analytical Peregrine soliton profile is demonstrated
both in intensity and in phase outlines. The question regarding the
deterministic nature of models generating Peregrine solitons, as the
focusing NLSE with initial rectangular conditions, and so the fact that
the Peregrine soliton emergence is wholly predictable and does not
exhibit a statistical rarity, makes the debate on considering Peregrine
solitons RW prototype still open. Another conventional criterion for RWs
is [paprax|?> > 8|ypc|? with [Parax|? the intensity peak and |¢pg|* the
background intensity [200]. Figs. 4.4,4.5 prove that the Peregrine solitons
generated in simulations and experiments fulfill this requirement.

The same analysis can be done for the Akhmediev breathers generation,
shown in Figs. 4.2,4.3, whose intensity PDF are reported in Figs. 4.7h,i.
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Last point we want to discuss is about the formation of SGs in the long-
term propagation reported in Figs. 1a, 4.2a,4.3¢. Solitons are propagation-
invariant waves with particle-like interactions. This means that, when
many solitons form a disordered finite-density ensemble rather than
a well-ordered modulated soliton lattice, they resemble a gas of par-
ticles. The definition of SG has required a huge effort from scientific
community to be established. G. A. El et al. in 2005 derived the kinetic
equations for SGs in physical systems described by integrable nonlinear
wave equations [197].

About the box problem and its evolution in terms of genera, the
leading theoretical paper is [200], and an introductory part of the related
analysis is reported in the very first paragraphs. In [200], the authors
associate the long-time asymptotic solution ¢ with a "breather gas" and
numerically observe the presence of higher-order RWs with maximum
height 4 < |¢pax| < 5 in the regions with ¢ > 4. Their numerical
simulations suggest that the pattern of the ¢ — { plane (splitting into the
regions of different genera) persists as { increases, and therefore g ~ (
asymptotically.

In 2018, A. A. Gelash et al. studied a statistically homogeneous SG
with essential interaction between the solitons [194]. The model used
by the authors is a focusing NLSE, and they generated ensembles of
N —soliton solutions (N ~ 100) by using the Zakharov-Mikhailov variant
of the dressing method. Through such a mathematical description, it
was demonstrated that spontaneous noise-induced MI of a plane wave
generates SGs [195].

In the KdVE theory, the thermodynamic type infinite-genus limit of
finite-band potentials leads to the kinetic description of a SG [197]. Very
recently, I. Redor et al. showed that it is possible to produce in a lab-
oratory a SG described in statistical terms by integrable turbulence in
hydrodynamics [198]. In optics, the focusing NLSE counterpart of this
theory would include the breather gas description, yet to be developed,
providing insights on NLSE turbulence, which is subject of active re-
search [110].
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CONCLUSIONS

The topological classification by the genus of the Riemann theta function
opens a new route to experimentally control the generation of extreme
waves. We demonstrated the topological control for the focusing box
problem in optical propagation in photorefractive media. By using the
time-dependent photorefractive nonlinearity, we were able to change the
final state of the wave evolution in a predetermined way and explore all
the possible dynamic phases. This enables the first observation of the
transitions from shock to RWs. This also demonstrates that different ex-
treme wave phenomena are deeply linked and that proper tuning of their
topological content in the nonlinear evolution enables transformations
from one state to another.

These results are general, and not limited to the photorefractive media.
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Figure 4.5: Experimental topological control for a small waist. a Observation of
optical intensity I/ for an initial beam waist diameter Wy = 30um.
Axis t is time of output detection, x is the transverse direction. In
this regime, we observe Peregrine-soliton-like structures formation (see
Fig. 4.1b) [the colored scale goes from 0 (dark blue) to 5 (bright yellow)].
c-d Intensity outlines corresponding to numbered dashed lines in (a):
the blue lines are experimental waveforms, the pink continuous lines
are fitting functions according to the analytical Peregrine soliton profile.
e-h Phase measurements (e-g) and simulations (h) of the Peregrine
soliton. The detected interference pattern during the first Peregrine
soliton generation is reported in (e), corresponding to (b). The jump
from 0 to 27t along the white dashed line corresponds to the transition
from ¢ = 0 to ¢ = 2. The black dashed line highlights the jump,
shown in (g). The experimental transversal phase shift profile along x is
reported in (f), showing the expected 7 shift corresponding to (b). Error
bars represent standard deviation. The inset shows the corresponding
area of the measured interference fringes on the transverse plane. Phase
simulations at Wy = 10um are reported in the bottom panel in (h) [the
colored scale goes from —7r (bright yellow) to 7t (dark blue)(0 is green)].
Top panel sketches Fig. 4.4a, for at-a-glance correspondence between
genera changes, Peregrine soliton occurrence and phase discontinuities.
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Figure 4.6: Experiments at large beam waists and modulation instability. a Obser-

vation of normalized optical intensity for an initial box-shaped beam
propagation in KLTN photorefractive crystal, with a waist as large as
the transverse crystal length (2.1mm). Axis t is time of output detection,
x is the transverse direction. In this regime, MI dominates light prop-
agation. b-d Observations of normalized optical intensity for initial
box-shaped beams of waists (b) Wy = 450um, (c) Wy = 260um and
(d) Wy = 150um at fixed time f = (30 £ 2)s. If MI from intrinsic noise
generates periodic waves between the two DSWs in (b,c), with a period
larger than the DSWs oscillation length, (d) represents a waist diameter
threshold value, below which MI does not affect the dynamics. e Ex-
perimental gain [see Eq. (4.9)] for the initial infinite box-shaped beam
versus spatial momentum, at time f = (30 +2)s. f Logarithm of the
ratio between the two spectral weights, namely, the maximum absolute
values of the FT of the optical field for the DSW and MI momenta. It
highlights two beam waist intervals: the one below 150um, where MI
does not affect light propagation, and the one above 150um, where MI
dominates the dynamics.
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Figure 4.7: Modulation instability and rogue waves emergence. a-e Numerical

simulations of the final states after a propagation distance L = 2.5mm
for beam waists (a) Wy = 300um, (b) Wy = 260um, (c) Wy = 220um, (d)
Wy = 180um and (e) Wy = 140um. Axis t expresses time of detection,
while x is the beam transverse coordinate. The initial conditions are
box-shaped beams with small-amplitude pertubations, implemented as
Gaussian random noise. White lines represent the shock separatrices.
MI generates periodic waves between the two DSWs in (a-d), but does
not affect the dynamics in (e). f-i Probability density functions of
the optical intensity I/Iyax over a two-dimensional spatio-temporal
computational window, centered at x = 150um, for t € [0s, 60s], and
Iyvax the peak intensity (semilogarithmic scale). Initial conditions are:
(a,b) Wy = 20um (small-waist regime) with and without random noise,
respectively; (c,d) Wy = 100um (large-waist regime) with and without
random noise, respectively. All the configurations present a significant
deviation from the exponential distribution, signature of presence of
RWs.
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Part III

COMPLEXITY IN QUANTUM NONLINEAR
OPTICS

Outline of Part iii
This Part deals with the description of complex nonlinear
regimes at a quantum level.

o Chapter 5 introduces the positive Prepresentation
that maps the second quantized nonlinear Schrédinger
equation to a system of stochastic differential equa-
tions.

e Chapter 6 studies the quantum effects on single
solitons propagation. In particular, we study the
quantum diffusion and its control.

o Chapter 7 describes quantum rogue waves. Specifi-
cally, it illustrates the effects of quantum noise on
the quantum rogue wave generation.
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Synopsis

Part ii presents our most important results on classical
nonlinear waves in nonlinear optics, laying the ground-
work for establishing one uniform theory of dispersive
shock waves, and for controlling complex nonlinear
regimes.

Here, we move to the study of quantum solutions of the
nonlinear Schrodinger equation through a second quan-
tized field theory of optical propagation in nonlinear
dispersive media. The resulting equivalence between
the quantum nonlinear Schrédinger equation and a sys-
tem of two coupled stochastic nonlinear Schrodinger
equations, obtained through space-space methods, al-
lows numerical simulations of the quantum solitons and
the quantum nonlinear box problem, with the analysis
of quantum noise effect on recurrence.

We believe that this treatise can open the way to the
design of new quantum sources and non-classical state
generators for future quantum technologies, and also
that the analysis of the evolution of quantum noise in
nonlinear media can give incredible insights about all-
optical reservoir computing.






QUANTUM THEORY OF NONLINEAR WAVES IN
FIBERS

INTRODUCTION

Classical NLO studies the response of dielectric media to strong optical
fields, sufficiently strong that the response is, as its name implies, nonlin-
ear. This finds representation in the polarization, that is, the dipole mo-
ment per unit volume in the medium, which is not a linear function of the
applied electric field. In Sec. 2.2, Eq. 2.3 shows that P(R, t) = P(L)(R, t) +
PINL)(R, ), with PL)(R,t) = ey [* dty ) (t — H)E(R, 1) and, for a
third-order centrosymmetric medium, P(NL)(R, t) = ¢ IIf ioo dt;dtrdts
O (t—t,t — byt —t3) - EP3(R, b1, 10, t3). A possible consequence of
such a polarization nonlinear term, as previously deeply analyzed in non-
local case (Sec. 2.2), is a no more constant refractive index, but depending
on light intensity. Therefore, a beam with a non-uniform intensity profile
can experience self-focusing or self-defocusing. However, when this be-
havior, here described by classical electromagnetic fields, is described by
quantized fields, a number of new effects emerge [209—211].

Quantized fields are necessary, for example, if we want to model fields
that originate from spontaneous emission [212]. Nevertheless, the quanti-
zation of electrodynamics in nonlinear dielectrics is not straightforward,
and two approaches are possible: quantization from the macroscopic
theory, that is, quantization of Maxwell’s equations, and a microscopic
treatise, that is, quantizing the entire matter-field system. In the first case
the goal is to obtain a quantized theory where the Heisenberg equations
of motion are the Maxwell’s equations, so the medium properties are
described by its polarizabilities. In the second approach, an effective
Hamiltonian describes the behavior of the fields in the medium, i.e., the
matter degrees of freedom are explicitly included in the theory [213].
Quantum electromagnetic field theory is a huge subject, here the discus-
sion is limited to what is needed.

We report an exact quantum theory of pulses propagation in dispersive
nonlinear fibers by a canonical quantization approach from Maxwell’s
equations [214]. The arena where the action takes place is a many-particle
Hilbert space. Once obtained the Hamiltonian in the Schrédinger picture,
we consider the related Von Neumann (or Quantum Liouville) Equation

8o
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(NE) for the density matrix in interaction picture. The quantum theoretical
treatise is simplified by the choice of the positive-P representation to
describe the propagated field [215], which leads to a Fokker-Planck
Equation (FPE) with positive-semidefinite diffusion coefficients to be
constructed over a space with twice the dimensions of the many-particle
Hilbert space. Then an It6 stochastic differential equation system can be
formulated in a nonclassical phase space. Specifically, we obtain a system
of two coupled SNLSEs, with stochastic terms given by independent
multiplicative white noises [213, 216]. The further numerical analysis can
be performed by a stochastic Heun algorithm (equivalent to a Runge-
Kutta of order 1.5) [217].

A parallel approach, instead of starting from first principles (i.e., the
Maxwell’s equations), quantizes directly the NLSE from its version de-
scribing propagation in fibers in Paraxial and Slowly Varying Envelope
Approximation (P-SVEA). The result, that is, the ONLSE, is the Schrodinger
equation corresponding to the same Hamiltonian that rules the SNLSEs
system [218, 219].

Once given the theoretical foundations of light propagation in fibers at
a quantum regime (i.e., at low photon number), the next Chapters will
present three paradigmatic applications of such a treatise.

THE STOCHASTIC NONLINEAR SCHRODINGER EQUATION

Let us start again from the relation between the macroscopic interacting
electric field and the induced polarization, now considering only the
transverse components:

ZP —60[ )ET+X<2)~E?2+x<3)-ls§?3+...], (5.1)

with the frequency dependence omitted for the sake of simplicity. The
classical electrical-field energy density for a dielectric is

Hy = / E-dD,withD = eEr + Y P (5.2)
n>1

from which, by integrating, one obtains the total energy

H

Jv [%ET' (€ET) + Lu>1 <n+1> Er- P + ] dx

(5-3)

2
fV{Zl? {D27(2n>1p<n> ]*Zn>1 (%) Jrzlsz}d
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where € = ¢ (1 + X(1>) is the frequency-dependent dielectric tensor
(here reduced to a scalar for anisotropy), y is the magnetic permeability
and B is the magnetic induction field. The canonical quantization requires
the knowledge of the momenta, not specified by previous arguments.
Keeping in mind the free Maxwell’s equations for the vector potential A
(i.e., B =V x A), the Lagrangian density is [220]

1
B2

Lo (A, A) = SE* - T

(5-4)

where A = %A (the previous symbol d; represents the partial temporal
derivative, not the total one as this expressed by the dot). When we
consider a non-trivial radiation-matter interaction, the field equation for
A the Coulomb gauge transverse vector potential reads

1 .
(v2 - C—za%) A= —uPr, (5:5)

and it is equivalent to the system of Euler-Lagrange equations

oL (A, A oL (A, A
LAA _,, oL AL (5.6)
dA; dA;
when the Lagrangian density is
. . 1 2
L(AA) = U (A) = - (35.4) (5.7)
H
with (directly derived from last equations, once noted that ET = —A)
) D
U(A):/O D'dET:ET'D—HE. (58)
The resulting canonical momentum IT has components
oL (A, A)
I =——"+=-D,, (5.9)
] ]
aA]-
hence, IT = —D and after a Legendre transformation, the resulting

Hamiltonian corresponds to Eq. (5.3). We proceed in quantizing by
promoting to operators A and D with commutation relations

f)]'(x), Ac(xX)| = 1016 (x — x), (5.10)

where J; ; is the Kronecker delta, and J(x — x') is the Dirac delta function.
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Classically, propagation in a third-order-nonlinear fiber for a complex
envelope A(z, T), where ET = R {A(Z, T)e!l(wo)z=woT] } Ep and B(w) =

w, [ew) | nww
- [

Ve (in case of negligible losses) is ruled by the equation

wOnZ

1ﬁ2
BZA +ﬁ18TA + > a A Aeff

D2 AJA)P = (5.11)
where B, = 97 B|w=cw,, 12 is the nonlinear Kerr coefficient and A, s is
the effective mode area [31] (A,fr = 7TW02 for a Gaussian distribution).
Specifically, B1 = vgl, with v group velocity, and B; is the Group
Velocity Dispersion (GVD). By defining the coordinates s = z and 7 =
T — B1z, one obtains the NLSE

wono

195 A — ’8282A +
cAeff

AlA)? = (5.12)

The complex envelope A is such that |A(s, 7)|> = P, with P the power. It
turns out the following relation for total energy:

Nphhwo = / |A(Sr T)|2dT/ (513)

where N, is the number of photons.

From all the previous arguments, in the corresponding quantum case,
the suitable Hamiltonian can be chosen as the one ruling the usual model
of linearly polarized waves in the lowest-order propagating transverse
mode with a four-wave mixing (quartic nonlinearity) inside a volume V,
including dispersion and neglecting terms O (E$.) [214]:

()
oy N €0X A ®3 A~
H= En hewnfndy — 1 /V [D(x)] ™" - D(x)dx, (5.14)

where d,,, 4} are the annihilation and creation operators, respectively, and
the transverse electric displacement field expansion is

fioek
Z € Ug R (r)e™ + e, (5.15)

with k, = ko + nAk the wave number corresponding to the frequency wy,
ko = <) the leading wave number, Ak = 27 the mode spacing, L the

fiber length x = (r,z) with z the longltudmal coordmate, un( ) the nor-
malized transverse mode (fv g (r))*dx =1, L [, |un(r)]* dx = eff)

related to the longitudinal-mode operator 4. This periodic mode spacing
imposes periodic boundaries, later taken to infinity. We treat only a finite
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frequency range, with x® (w) ~ x (wp). Many more details can be
found in [213].

In summary, we are discretizing the longitudinal spatial dependence
of our problem, building a one-dimensional lattice: we divide the fiber
in 2N + 1 cells of length Az = ﬁ, arranged from I = —N tol = N.
In order to take into account the linear dispersion, we expand w, to the
second order

03 B2 (nAk)>
wy = w(ko +nAk) ~ wy + Aw + nvg Ak — —— (5.16)
and define the local discrete operators
n=N 2minl
f=@2N+1)7V2 Y entia,, (517)
n=—N
such that [&,&}] = &1, [&, 8] = [&],&}] = 0. Through an inverse FT

and the Rotating Wave Approximation (RWA) (terms in the Hamiltonian
which oscillate rapidly are neglected), we can move to the interaction
picture, because the Hamiltonian in Eq. (5.14) now reads [214]

H = I:IO + HI/

Hy = hwoYyafa, (5.18)
HI = h (Zl,l’ wu/ﬁc?&p — Xa Zl &?&?&]&1) ,

where
1o, Ak—1 (nAk)2v3 B, 2mn(i-1)
@ = Ln %ﬂ)éﬁze NI+ Awdyp,
3h(v.ko)?
Ko = 822151) €2/ (5.19)
o LAeff
AV = 2N+1"

Xa is the effective nonlinearity, and AV is the effective quantization vol-
ume per local operator. Similarly to Eq. (2.7), we define e, = egLA, ¢ ( x®)-

Iy 102 (£)]%® - u, (r)dx) with the transverse-mode functions u,(r) as-
sumed identical for all the relevant wavelengths.
In the interaction picture, the NE for the density operator g(t) reads

o) = [, p(t)] (5.20)

By using coherent-state representation, we can write g(f)in terms of a
non-diagonal projection operator on multimodal coherent states, namely,

2
o k
_ lan| +oo &y

|D‘ﬂ> = ¢ 7 Zk:O Vi |k> ’
) = Jan) @la_np1) @@ lay_1) @ay),  (521)
Alw,p) = o) (B7|

(B*|a)
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We use the Drummond-Gardiner positive-P representation [213-216]
and express the density operator as

6= [ ., dnle BIP(a, A, B), (5.22)

with dp(e, B) = d?a_y ... d%and?B_y ...d%By. It turns out that the NE
becomes

i /]R4(2N+1) d]/l(lk, ﬁ)%P(D‘r ﬂ)[\(ﬂé, ﬁ) = /]R

4(2N+1)
(5-23)
Through correspondence rules [216]
aiA(a,B) = wAw,p),
iAW) = (Bt ) Awp)
. 4 . (5-24)
Ae, B)af = BiA(a, B),
(0, )i = (”‘l + a%,) Ale, B),
we obtain the FPE
dP(a,8) 2
I = ZZ[ [aial (Z[/ wyplyr — Z)Caﬂtlzﬁl) + Xa ;TIZIXIZ‘F (525)

a5 (T wwbr = 2xat1B?) — Xa 2 B2 ] Pl B):

The coupled It6 Stochastic Partial Differential Equations (SPDEs) derived
from Eq. (5.25) are [214, 216]

atle = —1 (Z,/ wprp — Z)Caﬂtlzﬁl) + \/21)(“&161(1‘), (526)
otBr =1 (X Wi Br — 2xat1B}) + v/ =2ixaBrni(t),

with &;(t),n;(t) Gaussian white noises (&;(+)&/ (') = (g (H)np(¥)) =
S0t — 1), (Gi(H)m (t')) = 0.

The final step is to move towards a continuous phase space, to attain
a system of two coupled NLSEs. In the limit Az — 0, we define z := [Az,
and attain

ozt) = lima(t)/35,
Az=0 - (5.27)
Pz 1) = lim ()5

Az—0
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From Egs. (5.26), the main steps of the calculations are

. [vg v3 B2
Al;mo pas Zl’ wprky = ( 62 a% — 1vgaz + A(U) (P(Z, t),
XoUq
lim 3B = 2P 09 0), (5.28)

AI;E}O EV2xam&(t) = vg\/ixe(z, t)E(z1),

2
where xo = llm 2 ZXn = 43:](:7202% and &(z,t) = llmo\/(AJ We move

to the travelhng frame coordinates s = vgt, T = t — B1z, with noise
&(s,7) = &(z,t) and Aw ~ 0, and obtain the two coupled SNLSEs

D5 = B202¢ — xod? + 1/TX0 Pl
105 = —faiw + XoP¥* + 1/ =X V1,

with white noise correlations (¢(s, T)E(s', ")) = (n(s, T)n(s', 7)) =
5(s—s")o(t— 1), and (&(s,T)n(s’, ")) = 0. These equations are the
quantum counterpart of Eq. (5.12). The system can be numerically solved
through a stochastic Heun algorithm with initial condition ¢(0,7) =
$*(0, 7). The quantum nature of the computation is evident in the
stochastic terms of the SPDEs. Indeed, we need to average the simulations
results in order to obtain the propagated quantum nonlinear wave into
the fiber. None classical, deterministic numerical code needs such a
probabilistic analysis.

(5-29)

THE QUANTUM NONLINEAR SCHRODINGER EQUATION

Bt V2B

From Egq. (5.12) and the transformation f = —gls, x = 5=, u(x, t) =
%(’)T) with Ag = \/Eléljwo X = ‘gz‘ and ¢y = % the normalized
NLSE reads

101 = — 21 + 2xcou|u?. (5.30)

We can use the same coordinates to get normalized Egs. (5.29)

1041 = —0%u + xcouv — 1x\/iCoUa, (5.31)
1040 = 920 — xCouUv? — 1Y/ —ICoUV,
. : , 2
with u(x, t) = ‘P(;OT), v(x,t) = ‘p((;of), o = 7“//;2|1, co = ‘/gi(“’, X =
. V283
‘%l, o(x,t) = ‘:(Z)T), v(x,t) = ’7(507)’ & = = L lo(x, Do (2, 1)) =

(v(x,thv(x',t)) = 6(x —x")é(t — ') and (o(x, t)v(x',t')) = 0.



5.3 THE QUANTUM NONLINEAR SCHRODINGER EQUATION

The QNLSE [218, 219, 221, 222] can be obtained directly quantizing
Eq. (5.30), and it reads

101D = —02P + 2xcpd TP, (5.32)
where ®(x,t) and &*(x,t) are the Fourier trasform of the annihilation
and the creation operators at position x and time ¢, respectively, namely,
O(x,t)= [ %ﬁ(k, t)e'*, with commutation rules

[k, 1), 8" (K, 1) = s(k—K), [alk,1),a(K,1)] = [a*(k,t),a' (K, 1)] =0,
(5:33)

from which we derive

[é(x,t),@(x/,t)} =5(x—x), [D(x 1), (1) = [&*(x, t),é>+(x’,t)]

(5:34)
The ONLSE Hamiltonian is [219]
AH=h {/ dx (CTD;QA) +Xcoﬁ>+ﬁ>+<i>ﬁ>)} , (5.35)
corresponding, in the Fourier space, to
H = n[[dkat(k t)a(k, t)k>+
+xco [ dkdkydkoa® (k, t)at (ky, t)a(ky, t)a(k + kg — ko, £)] .
(5:36)

It is possible to prove that Eq. (5.32) can be derived from Egs. (5.26) by
defining ®(z, ) = \/%Zn an(t)e!kn=k0)z [514]. At the same time, from
Eq. (5.32) we can derive Egs. (5.31) following the scheme sketched in
Fig. 5.1. This definitively demonstrates the the two approaches, the first
one starting from the quantization of Maxwell’s equations and attaining
SNLSEs [214], and the second one quantizing directly the NLSE, getting
the QNLSE [218, 219], are equivalent.
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z<i>t = 7<f>” +2chtdd - — W = [H p}
H =] (B}, + cTOTPD) dx

(@) = Tr (D) = I Pla, )N 2aa2p
1 = e — CO2B 4 110 la = V(a)dt + B(a) - dW,
10 = Oy — ca?f + 13/1ic€a C 2 p, — [y oy 1 _o V)| P
{ 18y = —Buw + caff? +1/=1cnp D(a) = B(a)B"(a) allat)= [ Ziga V(@) 35, (.}MMU,,,(Q)] Plat)

Figure 5.1: Pictorial sketch of the positive-P representation method to obtain the
SNLSEs from the QNLSE.

CONCLUSIONS

Classical NLO can tell many things about complexity, much more than
what is commonly known, also about topics regarded as genuinely quan-
tum, such as entanglement, or photon teleportation [223-226]. Neverthe-
less, introducing quantized optical fields is not only necessary [212], but
it also is something that enriches complexity science. Here we saw just a
little part about what phase-space methods - as the positive-P represen-
tation - can describe. The starting point of our treatise is semiclassical,
through superpositions of coherent states. In a truly quantum regime,
choosing an initial condition as ¢(0, T) = ¢*(0, T) for Egs. (5.29) is not
enough, but we have to choose a certain statistical distribution of initial
data.

We clearly are many steps far away from this, but an all-optical nonlinear
computer, working at low-photon number with quantum nonlinear waves,
is more reachable than what we think. The next Chapters of this Part
present three paradigmatic models of quantum nonlinear waves. In the
next part, instead, finally the random optical machine is introduced. This
machine takes advantage of the disorder to perform reservoir computing.
What if the randomness is directly given by the quantum nature of the
source, and not by the medium? In what follows, a tentative answer is
given.



QUANTUM CONTROL OF QUANTUM SOLITONS

INTRODUCTION

Strategies for large-scale control are fundamental for the success of quan-
tum technologies. Controlling a quantum system means routing the
evolution towards a desired state without collapse or excitation to spu-
rious states. Effective control allows engineering molecular scale trans-
formations, or novel form of matter [227]. In addition, controllability is
unavoidable for universal quantum computing, quantum simulations and
quantum annealing [228]. For these reasons, various strategies for quan-
tum control have been developed, like shortcuts to adiabaticity [229-231],
quantum feedback control [232], and quantum optimal control [233-235].

Recent years have witnessed a fast development of new methodologies,
with applications spanning many quantum architectures and protocols,
from few- to many-body theories [236—245], from open to closed sys-
tems [233, 235, 246—248]. Moreover, these novel approaches may foster
the exploration of fundamental limits of manipulation of quantum matter
and of the complexity of optimization protocols [249—-252].

A potentially important and strategic field of application of quantum
control is quantum NLO, where broadband generation of entangled and
highly non-classical states was reported [253—-255]. Proper control of
a nonlinear field evolution with four-wave mixing nonlinearity allows
the generation of multi-photon entangled quantum states, suitable for
optical quantum information [256, 257]. Controlling quantized pulses
propagating in an optical fiber is a crucial challenge and needs to step
forward for large-scale quantum technologies [258].

Can the quantum control strategies contrast quantum effects on soli-
tons propagation at low-photons regime? In this Chapter, we study
the control of quantum dynamics of solitons, showing that the soliton
quantum diffusion can be compensated by a proper time-dependent
term in the Hamiltonian; this enables to moderate the soliton quan-
tum spreading and to preserve information. We adopt the phase-space
positive-P representation [259], and we combine SPDEs and Chopped
Random-Basis (CRAB) quantum optimal control [260]. Our control strat-
egy can be experimentally implemented by dispersion compensation
techniques [261].
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Quantum solitons are the quantum counterpart of the self-localized
propagation-invariant classical solutions of a specific class of integrable
equations, which includes the NLSE [218, 219]. We already saw that
classical solitons are very well studied. Moreover, the use of solitons and
the so-called nonlinear FT for optical transmission systems has recently
gained considerable attention [262—-265]. However, quantum solitons have
a much richer dynamics with respect to their classical counterpart [266—
271]. When the number of quanta goes to infinity, quantum solitons tend
to classical solitons; conversely the fully quantum regime may provide
many new solutions for quantum computing and cryptography in optics,
polaritonics and BEC [245, 272]. Experimentally, quantum solitons in
nonlinear optical fibers are known and studied as well. They are very
suitable for observation of squeezing and for quantum nondemolition
measurements [221, 273-275].

We believe that the control of quantum solitons opens new perspectives
for quantum processors and quantum simulations. Moreover, quantum
self-localization may be also employed to encode and transmit informa-
tion [276, 277], a key-point in the curvy route towards the all-optical
computation.

QUANTUM SOLITONS PROPAGATION

In order to model the propagation of an optical quantum soliton in a
fiber, we adopt Eq. (5.32). If we consider the Fock basis, then we can
express every state as follows

9= 2 81 0. Y 50, 62

with Y, [ax|> = 1 and [ dxy...dxp|fu(x1, ..., X0, )2 = 1.
Through Eq. (5.32), Eq. (6.1) gives

0
zaf,, =|-Y 52 +2xco Y, 6(xj—x;)| fus (6.2)
j=19%j 1<i<j<n

which is exactly solved by the Bethe-ansatz with Kerr interactions [218,
219]

Fu(X1, ooy X, £) = Bt Y At Eiken i, (6.3)
QI

where x1 < ... < x;, and E,; = 7:1- ka.. We are interested in the exact
solution that, in the many-particle limit, has expectation average of
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the field ¢s(x, t) = (&), with s (x, t) the fundamental classical soliton,
solution of the NLSE (5.30). We consider an attractive interaction y < 0
and ¢y > 0.

Under this hypothesis [219]

ki = p+it(n—2j+1),
fup(X1, o0 X, t) = elE(”’an,p(xl,..., Xn),
n KO o
fn,p(xlz . xn) — NneIPEH Xj+ 20 El§1<1§n |x/ xx‘, (64)

NCET n-1
Ny = %Ixiol z,
E(n,p) = np*— %n(n2 -1).
A quantum soliton is a superposition of eigenstates of the Hamiltonian
(5.35), whose eigenstates are |1, p) f J dxfup(x) (x)®F (x1)..®% (x,) [0) .
The states |1, p) are also eigenstates of the number operator N = [ dx®'(x)d(x)

and of the momentum P = —12 [ dx [ (x)9,d(x) — 9D (x) Dy (x)],
with eigenvalues n and hinp, respectively. The quantum soliton is de-

fined as the state that has a field expectation value corresponding to the
classical soliton and, at t = 0, it is given by

[¥s) =0 = / dpg(p) |, p), (6.5)

. lxg|?
with [, p) = 1, j%efL |n, p) the coherent state with total momentum

P

ZAp2

Rlao|?p, and g(p) = ===
By this definition of quantum soliton, the optical field expectation value
is [278]

9s(x) 1= (sl b(x, 0)]ps)| =~ % /Tcolsech (AG0uc) (327, (6.6)

€ a Gaussian distribution of the momenta.

§

where ny = |ag|?> = (N) is the photon number, and the many-particle

limit Ap M8 guarantees that 5 (x) tends towards the fundamental
classical soliton. It turns out that the QNLSE soliton solutions is |s) =
[dpg(p) |, p,t), with |a, p, t) = eE(WP)! |, p). By adopting the positive-
P representation [259, 279, 280], we can study the evolution of the
quantum soliton, as sketched in Fig. 5.1.

It is important to remark that the explicit expression in Eq. (6.6) is valid
only in the semiclassical regime Ap << npcg and 1y >> 1 [278]. Indeed,
in the many-body limit (and only in this case), the momenta distribution
g(p) approaches the Dirac delta function, and the soliton tends towards
a coherent state, i.e., a nearly classical state. Considering the opposite
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relations, which characterize the quantum regime, once fixed the photon
number, we can state that the larger the pulse is, the more quantum the
soliton is.

QUANTUM SOLITONS CONTROL

We analyze the different behaviors - at diverse regimes - of quantum
solitons by solving numerically the SPDEs (5.31), through a stochastic
Heun algorithm [217]. The photon number 7 affects the strength of the
quantum noise, which disappears in the classical limit 19 — co. To see
this, let us normalize s(x), now such that [ dx|¢s(x)|*> ~ ng at high
photon number, and define

o Ps(x) 1 1, 73—552
lle(x)—\/m—zsech(zx)e( ) 6.7)

with # = |cg|nox and Ap = 2E. The result is [ dx|¢s(%)> = 1, and, by

leol

. T 224 (e B — ut)  seom o o(nt)  seoomy
choosing also f = —xcgngt, (%, ) S 0(%,f) NI (%, 1)
g(x’t)3 and 7(%,f) = L’%, Egs (5.31) are transformed into
(Ieolno) 2 (Ieolno) 2
07l = —1x0%il + 1sgn(co) 20 + ’SgE(CO)ﬁFT,
—1s n((é ) ©8)
970 = 1X9%6 — 1sgn(co ) 152 + B 57,
with sgn(cy) = \%\ Egs. (6.8) show that quantum noise affects the
propagation as strongly as —— is high, no matter which initial condition

N

one chooses (these equations are generally derived by QNLSE).

On the other hand, the momentum spread Ap is a quantum soliton
feature. For a fixed ny, |¢s) is a superpositions of Hamiltonian eigenstates
with different photon number and, more important, different momen-
tum [218, 219, 278]. It has optical field mean value corresponding to a
propagation-invariant soliton if and only if Ap < ng|cg|. In Fig. 6.1 we
show simulations of soliton evolution for various 7y once fixed Ap = 100.
In Fig. 6.1a, ng = 10° and we observe an invariant propagation, namely,
the nearly classical regime; Fig. 6.1b shows the quantum spreading in the
low-photon number regime ny = 200.
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n=10° Ap =100 n = 200, Ap = 100

Figure 6.1: Classical Vs Quantum Solitons. (a) Nearly classical soliton evolution
for ny = 106, Ap = 100; (b) quantum regime for ny = 200, A = 100.

Quantum Control of Diffusion

The quantum diffusion of the soliton may be characterized by the mean
position operator

X = [/ x@*(x)@(x)dx} N1, (6.9)

. & Bl T\ 1 2 . .
with [X, P] = 1h, and (AX) =~ \/W + (2tAp)?, which gives the
dynamics of the spreading [278]. This causes also a time-dependent mod-
ification of the Heisenberg principle. As (AP) ~ fin,Ap, it turns out that

(AX) (AP) ~ B\ /1+ [4tng(Ap)2)* ~ B {1 +2 [2tn0(Ap)2]2}, similar to
other cases in which quantum effects on classical optical propagation
have been studied [6].

Our goal is to show that the soliton diffusion, which has a purely
quantum origin, may be compensated by the quantum control techniques.
We use a time-dependent kinetic energy, with a control function I'(t)

AT = / dx [D(1) 6",y + o' &S| (6.10)

to demonstrate that we can control the evolved state at a given instant
t = T. We define the infidelity at the final target state |¢(T)), given the
initial soliton state [s), as

Z(|p(T))) =1 — [ {@(T)|ws) [~ (6.11)
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We apply a square-wave periodic-modulation of the I'(#) function with
frequency f

I'(t) = sgn[cos(27tft)] (6.12)

in order to have I'(0) = I'(T) = 1, so the same Hamiltonian at the
initial and final instant. We solve the resulting SPDEs at varying f. In
Figure 6.2a, we show the calculated infidelity (averaged over Ng = 10
realizations of quantum noise): for different photon numbers, one can
identify different optimal frequencies corresponding to minimal infidelity.
Figure 6.2b shows an example of the resulting quantum dynamics at
optimal frequency for ny = 200. In this case, one can see that the infidelity
goes from 0.236 to 0.007, reaching its minimum at f = 1.421.

10°
a) S nG=200 ne = 200, Ap = 100, f = 1.421
6
.......... N no=10
1071
o
210
o
he]
=
=103
10
5
107, 0.5 1 1.5

Frequency Control f

Figure 6.2: Inibition of Quantum Diffusion by quantum control. (a) Infidelity
in Eq. (6.11) for ¢3n3T = 1 and Ap = 100, averaged over Ng = 10
realizations, and for various photon numbers; (b) controlled quantum
evolution for ng = 200, Ap = 100, at optimal frequency f = 1.421.

Our control results improve when adopting the CRAB approach. In this
case, the function T'(¢) is written as

Nc
T(t) =1+A7Y(t) Y [Ausin (wnt) + By cos (wnt)], (6.13)
n=1
where n = 1,2, ..., Nc and wy, = w, 7y € [0;1] is a random number

and T is the total time evolution. Furthermore, A~1(t) = (t/T)*> — (t/T)
is chosen in order to satisfy the constraint I'(0) = I'(T) = 0 [242]. With
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reference to Z, in Fig. 6.3a we see the two-dimensional surface of the cost
function versus the parameters A and B for the single frequency case
(Nc = 1). The minimum of the infidelity as a function of (A, B) is 0.130
(while its maximum is 0.219). Figs. 6.3b,c report the optimal I'(#) and the
optimized dynamics, respectively.

a) c)

n =200, Ap = 100, A = 0.93, B = —2.00, w = 27

0.25.

Infidelity

0.2,

12 0.05
1 0.
< 1
=08 0.8
0.6
0 0.5 1 t 0 @

d) LASER

DETECTOR

Figure 6.3: CRAB Control of a quantum soliton. (a) Infidelity versus A and B for
nyg = 200, Ap = 100, noT = 1 and w = 27, averaged over Ngr = 10
realizations; (b) optimal control function, obtained by setting A = 0.93
and B = —2.00, for w = 27; (c) dynamics of soliton with 7y = 200
and Ap = 100 at optimal control; (d) experimental setup for quantum
control of solitons by dispersion-management [261]. By tuning the
fiber dispersion through a series of dispersion-compensation modules
(DCMs), one obtains a prescribed I' function.
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Experimental Realization by Soliton-Dispersion Management

The time-dependent kinetic term in Eq. (6.10) is experimentally realizable
by a technique called “dispersion-management” [261]. Fig. 6.3d shows
a sketch of a chain of optical fibers with different dispersion properties,
tunable, e.g., by stress and temperature. This setup allows one to engi-
neer the I function to control the quantum solitons. Similarly, one can
modulate the nonlinear terms weighted by c [258]. For example, in a
common silica fiber with parameters

Aepr =10712m?, |By| = 10" Ps?m !,
B1=05x10"8sm™ 1, ny =2 x1070m2Ww—1
andA = 800nm,

we find that the spatial scale of the control is of the order of 100km for
the simulations reported above [258].



6.4 CONCLUSIONS

CONCLUSIONS

We have investigated the quantum control of optical solitons, and have
shown that a proper tailoring of the time-dependent Hamiltonian al-
lows us to counteract quantum spreading and to sustain a propagation-
invariant evolution even at low photon number. An ideal control function
hence optimizes quantum nonlinear effects, because the photons inter-
act over longer distances when the quantum diffusion is compensated.
Many-body quantum control, via CRAB, turns out to be effective also
for second-quantized nonlinear waves. Moreover, we have shown that
quantum optimal control of quantum solitons is experimentally realizable
by soliton-dispersion management [261].

In order to clarify the technique we used, we briefly compare our
optimal quantum control of quantum solitons with the well known
and developed quantum control of Bose Einstein condensates. Let us
consider [281]: in that work, each atom of the condensate is prepared
in the ground state of separate wells of an external optical double-well
potential. The symmetrized initial state is the superposition of two
wave functions, the first one localized in the left well and the second
one localized in the right well. To control this atomic system, authors
change the potential by lowering the right well with respect to the left
one. Atoms initially in the right well remains in the ground state, while
atoms initially in the left well evolves into the first excited state. The
operation of changing the shape of the optical potential, is performed
by rotating the polarization of the optical beam: experimentally, they
follow a classical procedure to realize a quantum prescription. The same
phenomenon occurs in our case: we have a purely quantum effect, that
is, the soliton spreading, and we control its action by optimal quantum
control, namely, through a genuinely quantum prescription, but using a
classical procedure, the dispersion management [261]. This means that
we can easily implement a quantum prescription experimentally.

We believe that our approach to quantum control may be extended to
many different nonlinear optical processes, opening the way to genuine
quantum design of optical soliton devices as quantum sources and non-
classical state generators for future quantum technologies.
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INTRODUCTION

Light propagation at low intensity can experience quantum noise effects;
the lower the photon number is, the stronger the modifications between
classical and quantum optical evolutions are. In nonlinear media, optical
beam profiles can reproduce water wave propagation, and several exam-
ples of such analogies are reported in literature [282, 283]. In particular, a
laser beam propagating in a third-order nonlinear crystal with an initial
rectangular shape mimics the focusing dam break flow and generates
Peregrine-like RWs [7, 200].

The mechanism hidden behind this argument is examined in Chapter 4,
and it is here summarized. Starting from the small-dispersion NLSE
in Eq. 4.1 with initial condition 4.2, we define the NLSE box problem,
or the dam break problem [200, 205]. The initial evolution presents
the formation of two single-phase, counterpropagating DSWs, which
regularize the box discontinuities. Their two wavefronts superimpose
in the central part of the box (see Fig. 4.1a) and generate a two-phase
quasi-periodic wave locally approximated by a Peregrine soliton [152,
159, 206, 207]. However, quantum noise contribution to this Peregrine
solitons generation has not been investigated yet.

We report relevant quantum effects on the emergence of optical RWs in
focusing third-order-nonlinear media for super-Gaussian beams and show
the way the quantum noise modifies both the intensity of the maximum
peak and the time of its occurrence. We also show that uncertainties have
increasing global behavior when decreasing the number of photons. Our
results cast light on the RW generation at quantum regimes.

QUANTUM EFFECTS ON ROGUE WAVES GENERATION

To analyze the modifications to the RWs emergence in the optical dam
break problem at low intensity, namely, to work on the quantum nonlinear
box problem, we use the same strategy of Chapter 6 for the study of the
quantum solitons evolution. We consider a quantum state |¢,) such that

. 1
Vieolng if x| < 2[eo 10

0 if x| >

(o ¥lpp) ~ Py (x) := (7.1)

—_
~

2|co[mo
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hence [ dx|y,(x)|?> = ny, as for Eq. (6.6) at high photon number.
Again, similarly to the previous Chapter, we normalize as follows:

o x 1 if [®] <3
Gl = ) _p i< (72
|colno 0 if [%]>5
with ¥ = |co|nox, F = —xc3n3t, il(%,F) = &%1)10' (%, 1) = \;%310,

g(x,f) = o) and (% ) = vt Therefore, [ dx|gs(%)2 =1
(Ieolno) 2 (Icolmo) 2
and the evolution is ruled by the SNLSEs (6.8).

n, =10 |2 172 n, =300 ¥ 112
a) o1 o [ellegl ™ ng) ) o1 o [¢1°/(1cgl ™ ng)
0.09 - =y . X 1.6
- . e ! by 1.6
0.08 k- . 1.4
. i o . 1.2
o 1.2
+~ ' . 5 9 -~ ' 1
"2 0.05 1 ] "=20.05
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N | 0.8
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Figure 7.1: Intensity profiles of a rectangular-shaped beam propagating in a third-
order nonlinear medium. (a) Quantum nonlinear box problem numeri-
cal solution at low photon number 79 = 10; (b) Quantum nonlinear box
problem numerical solution at high photon number ry = 300. Every
simulation is averaged on N = 16 realizations.

We numerically simulate the box propagation, using as initial condition
a normalized super-Gaussian function e’%(z")ﬂ, for the same reasons
explained in Chapter 4, namely, to avoid numerical errors due to the
box discontinuities. Figure 7.1 reports simulations at different photon
numbers. Figure 7.1(a) shows the box propagation at a quantum level
(ng = 10), while in Fig. 7.1(b) the box evolution resembles the Peregrine
soliton generation in Fig. 4.4, which confirms its classical behavior (1 =
300).

We study the quantum noise effects on the Peregrine soliton generation,
and outcomes are illustrated in Fig. 7.2. By analyzing the Peregrine soliton
peak intensity position, and its own value, varying 19, we can highlight
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Figure 7.2: Quantum noise effects on Peregrine soliton, varying ng. (a) Peak inten-
sity mean value; (b) averaged time of Peregrine soliton occurrence; (c)
Peak intensity standard deviation; (d) standard deviation of Peregrine
soliton temporal occurrence. Every simulation is averaged on Ng = 16
realizations.

the different behaviors at low and high photon numbers regimes. Fig-
ures 7.2(a,c) prove that the quantum regime enhances both the intensity
per photon number and its standard deviation. Figures 7.2(b,d) shows
the time of Peregrine soliton occurrence has not a monotonic behavior
that is as well-defined as peak intensity profile: its mean value is affected
by numerical fluctuation at every photon number regime. The peak
intensity standard deviation, instead, does not monotonically decrease,
but however owns a decreasing global behavior.



7.3 CONCLUSIONS

CONCLUSIONS

We showed that third-order nonlinear waves at the quantum level can
be numerically studied through SNLSEs, solved by a stochastic Heun
algorithm. Moreover, we proved that this analysis can also be applied to
the quantum nonlinear box problem, the quantum optical analog of the
hydrodynamical dam break problem.

Our results unveil a new direction in the realization of all-optical
nonlinear devices. Since in Chapter 4 we showed how a box-shaped
beam can access very complex nonlinear dynamics, and its propagation
can be supervised, or controlled, this study represents for an invaluable
starting point for our future intent, as we illustrate at the end of this
thesis, aiming at new routes for computation.
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Part IV

COMPLEXITY IN CLASSICAL AND QUANTUM
COMPUTATION

Outline of Part iv
This Part reports the first investigations on the use of
waves in computing.

e Chapter 8 is a general introduction to quantum
and classical computing, with emphasis on annealer
devices, as Ising machines and D-waves.

o Chapter 9 describes a simple, large-scale Ising ma-
chine, which has been developed during this thesis.

e Chapter 10 is a general introduction to machine
learning models and a demonstration of the use of
artificial neural networks for designing topological
devices.

e Chapter 11 describes random neural networks and
their implementation by disordered media. In par-
ticular, the design of quantum gates is outlined.
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Synopsis

Parts ii and iii present our results on optical nonlinear
waves, both at a classical and at a quantum regime.
The complexity of light propagation in nonlinear media
is there examined from all the main points of view:
extreme phenomena, recurrence, control, modulation
instability, etc.

Here, we introduce our study towards the realization
of an all-optical computer, able to do computation by
implementing machine learning algorithms. After an
overview of computational complexity and machine
learning techniques (with application to topological
lasers), the first all-optical realization of the Ising ma-
chine and the theoretical foundations of the random
optical machine are illustrated. Applications to quan-
tum gates are designed as well.

Can nonlinear waves do computation? We believe that
the random optical machine draws the route for an
affirmative answer to this question, and the reasons for
our claim are here reported.






COMPUTATIONAL COMPLEXITY AND QUANTUM
ANNEALING

INTRODUCTION

Many problems of interest are optimization problems, in which each
feasible solution has an associated value, and we wish to find a feasible
solution with the best value. However, complexity can arise one step
before, not when we are considering optimization problems, but when
we are dealing with decision problems, in which just the choice between
the two simple answers “yes” or “no” (or, more formally, 1 or 0) can be
harder than we think.

We usually can cast a given optimization problem as a related decision
problem by imposing a bound on the value to be optimized. For example,
for the optimization problem “shortest-path", where the algorithm has
to find the shortest way to connect all the nodes of a graph, the related
decision problem could be called “path", in which the algorithm has to
state only if a possible way to connect all the nodes in at most k edges
exists. If it does, “shortest-path” finds the minimal k. On the other hand,
if we are able to solve “shortest-path", we can design the minimal value
of k for which “path" returns “yes". From this example, we can see the
relation between optimization and decision problems works in our favor
when we try to show that the optimization problem is “hard”: if an
optimization problem is easy, its related decision problem is easy as well,
if a decision problem is hard, its related optimization problem is also
hard. In computational complexity science, the word “hard" has a very
specific meaning.

Generally, we think that most of the problems are solvable in a polyno-
mial time, but the truth is the opposite. Not only most of the problems
are not solvable in a polynomial time, being intractable, or hard, but they
are not solvable at all. There are lots of problems that cannot be solved
by any computer, such as Turing’s famous “Halting Problem”, no matter
how much time is provided. This can be demonstrating by thinking about
the cardinality of the set containing all the possible programs and the
set containing all the possible decision problems. A program is a finite
string of 0 or 1, that is, a binary number, isomorphic to a natural number.
Therefore, we represent the programs set as IN. A decision problem is a
function that to every program (i.e., to every natural number) associate
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Figure 8.1: Schematic of the decision problems computational complexity.

“yes" or “no” (i.e., 1 or 0), so it is a function f : N — {0,1}. How many
are these functions? They are as many as the numbers in R [284]. Hence,
we represent the decision programs set as R. It turns out that we have
R — IN unsolvable problems.

Speaking about solvable - or computable - decision problems, we can
classify them with respect to time we need to solve them. Figure 8.1
draws the list of the corresponding sets on an increasing computational
complexity:

P= { problems solvable at most in polynomial time O(n¢)},

NP= { problems solvable in polynomial time via a “lucky” (i.e., nonde-
terministic) algorithm }
= {problems with solutions that can be checked in polynomial
time },

EXP= { problems solvable at most in exponential time O (2")},

R= {problems solvable in finite time}, here R stands for “recur-
sive" [285].

About the set difference NP—P, the so-called P#NP question has been
one of the deepest, most perplexing open research problems in theoretical
computer science since it was first posed in 1971. The list above the line
in Fig. 8.1 illustrates

NP-Hard= { problems as hard at least as every problem in NP },
NP-Complete=NPNNP-Hard,
EXP-Hard= { problems as hard at least as every problem in NP },

EXP-Complete=EXPNEXP-Hard.
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The above classification becomes very useful after having defined the
algorithm reduction. Let us consider a decision problem A that we would
like to solve in polynomial time. We call the input to a particular problem
an instance of that problem. Now suppose that there is a different decision
problem B that we already know how to solve in polynomial time, and
suppose that we have a procedure that transforms any instance a of A
into some instance b of B with the following characteristics:

1. the transformation takes polynomial time,

2. the answer for a is “yes” if and only if the answer for b is also “yes”.

The final result is that we have converted A in B, and solving B solves A
as well. Therefore B €P=> A €P. Reduction can be used also for proving
NP-completeness. The proof methodology is similar: we reduce A to
B, we demonstrate that A €NP-Complete, and we have for granted that
B eNP-Complete.

The algorithm reduction is a powerful tool. As the multiscale method
allows us to derive model equations (see Chap. 1), the multicall reductions
(series of reductions) allows us to establish models of computation that,
once solved, give us the solutions of entire classes of problems. Some of
these models of computation are represented by the minimization of the
Ising Hamiltonian for different couplings [9], briefly illustrated in what
follows.

ISING MODELS

The Ising model, in its one-dimensional version, was proposed in 1925 by
Ernst Ising in his Ph. D. thesis. He wanted to describe the thermodynamic
properties of magnetic systems from a microscopic point of view, but in
the case he considered, Ising found that the system does not exhibit any
phase transition for positive temperature T > 0, thus he concluded that
the whole model was not useful. The history of physics showed that his
conclusion was incorrect. Indeed, his model has been later studied again
in many different configurations, and lots of important properties have
been discovered.

Ising model has been one of the most heavily studied in statistical
mechanics and it is often used as a testing ground when new theories
or methods are developed. The d-dimensional Ising model is defined
as follows: let us consider a d-dimensional lattice with N sites, each
labelled by an index j = 1, ..., N; in general the lattice is supposed to
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be hypercubic, but this is not necessary *; the degrees of freedom of the
model are discrete variables o € {—1,1}, defined on each site, thus the
number of the possible configurations of the system is 2V. In the original
intent of the Ising model, the lattice represents the atomic configuration
of a metal, and the variables 0} are the spin components along the vertical
axis. The study of this model should determine if and how all these spins
can align in a way that the system has a spontaneous net magnetization,
and it corresponds to minimazing the Hamiltonian

H= =) Jnojon, (8.1)
i

with Jjj, coupling constants.

An extremely important characteristic of the Ising model is that it
does not only apply to magnetic systems, but to many others. Beyond
fluids, binary alloys, and others [286, 287], it can be applied also to
ANNS [288, 289]. In this case, every site of the lattice represents a neuron
and the interaction bonds are synapses. When neurons are transmitting
an electric pulse ¢; = 1, when they are not 0; = —1.

Since when it was formulated for the first time, Ising model has been
analyzed, generalized, and computerized, but rarely solved. The sci-
entific community got exact solutions for two-dimensional systems,
but have never been able to make the leap out of the plane. There
is a good reason hidden behind this problem: the three-dimensional
Ising model is NP-Complete. The complexity result was definitively
announced in 2000 [290], but previous works showed that all versions
of the Ising model are computationally intractable when the setting is
three-dimensional [291].

The search for the ground state of the Hamiltonian (8.1) is feasible in
models with Jj;, a positive constant Vj, i, where the configuration with all
the spins aligned (either 0; = 1 or 0; = —1 Vj) decreases the total energy.
If the coupling constants are a mix of positive and negative numbers -
as they are for spin glasses - finding the ground state is a hard problem,
and computational complexity comes in. At this point, it is natural to
suspect intimate connections between the Ising model and all the other
NP-Complete problems. Indeed, there exists a polynomial time mapping
the Ising model to any other element of the NP-Complete set [292]: the
Ising Hamiltonian minimization is a model of computation, and solving
it means solving the entire class of NP-Complete problem. In [292] it is
described how “all of the famous NP problems” [293, 294] can be written

in two dimensions, for example, we can consider triangular or "honeycomb" lattices, while in
three dimensions we can have body-centered or face-centered cubic lattices; what distinguishes
one lattice from another is the number of the nearest neighbours of a site z.
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down as an Ising model with specific coupling constants, and with a
polynomial number of spins which scales no faster than N3.

Analogies between the statistical physics of Ising spin glasses and NP
problems have been also used to construct simulated annealing algo-
rithms [295, 296]. These connections have suggested a physical under-
standing of the emergence of hardness in these problems via a complex
energy landscape with many local minima [297]. As consequence, re-
cently an increasing interest in the possibility of using adiabatic quantum
optimization to solve NP-Complete and NP-Hard problems has been
spreading out. These and other topics are introduced in the next section.

QUANTUM ANNEALING AND D-WAVE SYSTEMS

As we have already showed in Chapter 6, many techniques of quantum
control work by changing a continuous parameter into the Hamilto-
nian: they force the evolution towards a target state, without exciting
new spurious states. Relevant examples of these methods are quan-
tum shortcuts to adiabaticity [229, 298], quantum feedback control [232]
and quantum optimal control [242, 299]. In shortcuts to adiabaticity, a
quantum adiabatic process ? is substituted by an alternative faster evo-
lution which reproduces the same final state in shorter time. In other
words, a slowly-varying time-dependent Hamiltonian Hy(t) is associ-
ated to another Hamiltonian H(#) that exactly carries the instantaneous
eigenstates of Hy(t), namely, without transitions between them. In this
context, [231]’s Authors establish an important bridge between the latter
technique and the IST [79], by associating the KdVE Lax pair L(t), M(t) to
the Lewis-Riesenfeld dynamical invariant and the Hamiltonian, respec-
tively. This suggests that the link between shortcuts to adiabaticity and
nonlinear waves is deep and well-defined.

In this Section, another deep link is going to be illustrated: the con-
nection between quantum annealing and computation of NP-Complete
problems. Let us suppose that we have a quantum Hamiltonian Hj,
whose ground state encodes the solution to a problem of interest. At the
same time, we have another Hamiltonian Hy, whose ground state is easy
to find /prepare, and that Fy and H; do not commute. If we prepare a
quantum system to be in the ground state of Hy, and then adiabatically
change the Hamiltonian for a time T, considering a new Hamiltonian

A(t) = (1 - %) Hy + %Hl, (8.2)

as defined in 1928 by Born and Fock in the adiabatic theorem: “a physical system remains in
its instantaneous eigenstate if a given perturbation is acting on it slowly enough and if there
is a gap between the eigenvalue and the rest of the Hamiltonian’s spectrum”.
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with T large enough, then the quantum system remains in the ground
state, by the adiabatic theorem of QM. At time T, measuring the quantum
state evolved by the Hamiltonian (8.2) has to return the ground state of
Hj [300, 301].

Summaring, quantum annealing can be seen as a generic algorithm
that uses QM fluctuations to search for the solution of an optimization
problem. However, scientists are still debating about whether or not
these algorithms can solve optimization problems faster than classical
algorithms [302—304]. In fact, if the problem has size N, one typically
finds

T=0 [exp (lXNﬁ>] , (8.3)

with «, B positive real numbers. This is a consequence of the requirement
that exponentially small energy gaps between the ground state of H(t)
and the first excited state, at some intermediate time, do not lead to
Landau-Zener transitions into excited states [304].

While it is unlikely that NP-Complete problems can be solved in poly-
nomial time by quantum annealing algorithms, the coefficients &, f may
be smaller than known classical algorithms, so there is still a possibility
that quantum annealing is more efficient on some classes of optimization
problems.

In 2011, D-Wave Inc. released their first quantum computer, working
through quantum annealing. The first commercially produced D-Wave
processor was a programmable, superconducting integrated circuit with
up to 128 pair-wise coupled superconducting flux qubits. The 128-qubit
processor was superseded by a 512-qubit processor in 2013. The processor
is designed to implement a special-purpose quantum annealing. There-
fore, it does not operate as a universal gate-model quantum computer.

Many researchers are highly sceptical about what D-Wave claims. The
remaining contention lies in how useful the D-Wave machine is, and
some researchers still question whether D-Wave’s approach will yield a
significant computation increase. A non-negligible group of researchers,
also, pointed out that the D-Wave machine might not be a quantum
computer, but instead operates in a complex but classical way.
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CONCLUSIONS

Solving NP-complete problems is a current scientific challenge, an the
engineering of a new type of computer, able to overcome such a challenge,
could be the starting point of a new computational era, which might
significantly change our every-day lives. Ising machine, as a model of
computation, remains a paradigm that, once solved, can open the way to
the design of new devices. D-wave, through quantum annealing, built a
quantum computer that, in its last version, handles 2048 qubits, without
the hypothesis of the universality.

In the next Chapter, we show how, with a simple (and cheap) Spatial
Light Modulator (SLM), we built a (classical) all-optical Ising machine,
able to find the ground state of the Ising Hamiltonian in the all-to-all
spin interaction and Mattis models.
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INTRODUCTION

A large number of internal states characterizes complex systems from
biology to social science. The fact that the number of these states grows
exponentially with the system size hampers large-scale computational
possibilities. Complex optimization problems involving these models are
in many cases classified as NP-hard (intractable) and cannot be tackled
efficiently by standard computing architectures. In Chapter 8, we show
how a broad class of such computationally intractable problems maps to
the search of the ground state of a classical system of interacting spins: the
minimization of an Ising Hamiltonian with specific spin couplings [291,
292, 305].

Growing research interest is emerging towards physical and artificial
systems that evolve according to an Ising Hamiltonian and enable to
find the optimal combinatorial solution by the ground state observed
in the experiment. Quantum and classical Ising systems have been real-
ized by trapped atoms [306, 307], single photons [308], superconducting
circuits [309], electromechanical modes [310], nanomagnets [311] and
polariton condensates [312]. In optics, spin-glass dynamics have been
observed in random lasers [313, 314], multimodal cavities [315, 316]
, coupled laser lattices [317], beam filamentation [318] and nonlinear
waves propagation in disordered media [319]. In these photonic systems,
one has easy access to thousands of optical spins, but controlling their
interaction is challenging.

Novel photonic platforms with numerous and easily accessible spin
variables are particularly relevant for computation. Optical computing
machines offer high-speed and scalability with respect to conventional
hardware. Various authors reported coherent Ising machines based on
time-multiplexed optical parametric oscillators finding approximate so-
lutions to optimization problems with several nodes [320-324]. Others
proposed nanophotonic circuits to implement any small-scale spin sys-
tems directly on a programmable chip [325-327]. Matrix operations
can also be performed by spatially shaped optical fields, without engi-
neered wave-mixing devices [328, 329], by exploiting randomly reflected
waves [330] or disordered biological samples [1]. However, using spatial

113



114

ALL-OPTICAL ISING MACHINE FIRST REALIZATION

optical modulation to solve Ising spin dynamics has remained unex-
plored.

In this Chapter, we propose and experimentally demonstrate the use
of spatial light modulation for calculating the ground state of an Ising
Hamiltonian. The phase matrix on a SLM acts as a lattice of spins whose
interaction is ruled by the constrained optical intensity in the far-field.
Feedback from the detection plane allows the spatial phase distribution
to evolve towards the minimum of the selected spin model. We find
ferromagnetic-like ground states in agreement with mean-field predic-
tions. Our spatial Ising machine hosts thousands of parallelly-processed
spins, and represents a scalable and efficient approach for photonic
computing.

THE SPATIAL PHOTONIC ISING MACHINE

We implement a spatial photonic Ising machine by using the phases
in separated spatial points of the optical wavefront. A binary phase
modulated beam encodes binary spins with configurable interactions
[Fig. 9.1(a)]. A spin variable ¢; = exp(i$;) = +1 corresponds to a
spatial point of the optical field with phase ¢; € {0, 7}. As illustrated in
Figs. 9.1(b,c), a SLM acting as a reprogrammable matrix of pixels imprints
binary phase values on the coherent wavefront.

Setting the SLM in the Fourier space of the electric field E(k) (“tilde”
denotes Fourier transform in this Chapter), we have

E(k) =) _gjojow (k —k;), (9.1)
j

where ¢; indicates the field amplitude incoming on each pixel. In Eq. (9.1)
we make reference - without loosing generality - to a one dimensional
spin configuration to simplify the notation. The normalized rectangular
function &y models the pixel of finite size 2W [Fig. 9.1(c)], so that ki =
2Wj, with j = 1,...,n. The resulting far-field intensity after free-space
propagation is

I(x) = |E(x)|* = Y &&nojondn (x)e* W h-i)x, 9.2)
jh

with dy(x) = sin(Wx)/(Wx) the inverse Fourier transform of dyy (k).
Spin-spin interaction can be induced by acting on the intensity on the de-
tection plane. We constrain I(x) by a measurement and feedback method
to couple the phases on the SLM plane. Minimizing ||IT(x) — I(x)]| for an
arbitrary target intensity image It(x) thus corresponds to minimizing a
Hamiltonian H. After normalization [ [I7(x)]?dx ~ [[I(x)]?dx, and the
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Figure 9.1: Ising machine by spatial light modulation. (a) The wave phase in differ-
ent spatial points gives the spins evolving through optical propagation.
(b) Experimental setup: an amplitude-modulated laser beam is phase
modulated by a reflective SLM and detected by a CCD camera in the
far-field. (c) A discrete phase mask with binary values ¢; = 0, 7t in the
Fourier plane mimics Ising spins ¢; = &1. Spin interaction is encoded
in the input intensity distribution and occurs through recurrent feed-
back from the detection plane [Eq. (9.3)]. Inset is an example of the
detected intensity when the binary hologram is tailored to generate a
squared intensity target Ir.

function H takes the form of the Ising Hamiltonian in Eq. (8.1), with spin
interactions given by

Jin = ZCjCh/IT(X)5§v(x)ezlw(h7j)xdx' (93)
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When the effect of the SLM pixel size can be neglected, dyy(x) ~ 1, and
the couplings reduce to

Jin = 27;CpIr2W(j — h)], (9-4)

which indicates that the interaction matrix is set by the input amplitude
modulation along with the Fourier transform of the far-field target image.
The interaction passes from short- to long-range by changing the spatial
profile of It. In particular, in the case of a point-like target image,
the spins are all-to-all interacting (J;;, = const) for an input wave with
constant amplitude. Using a programmable (quenched) amplitude mask
on the input beam the couplings can be varied according to [, « ¢;¢p,
which allows us to implement the entire class of spin-glass models,
known as Mattis models [331, 332], where the pairwise interaction can be
expressed as product of two independent variables. Figure 9.1(c) shows
the principle of operation of our Ising machine. A spin configuration
{0} is generated upon an amplitude-modulated wavefront using binary
phases on the SLM and the corresponding intensity distribution I(x) is
measured in the far-field. The detected image is compared with the
target I7(x), which, according to Eq. (9.4), fixes the interaction together
with the specific input modulation, and the information is feedback
to the SLM plane. At each time step, the system is made to evolve
towards minimization of the cost function f = ||Ir(x) — I(x)|| , which
corresponds to looking for the Ising ground state.

The experimental implementation of this optical machine follows the
setting shown in Fig. 9.1(b). Light from a CW-laser source with wave-
length A = 532nm is expanded, eventually modulated in amplitude, and
made to impinge on a twisted nematic liquid crystal reflective modulator
(Holoeye LC-R 720, 1280 x 768 pixels, pixel pitch 20 x 20um) whose ac-
tive area is selected by a rectangular aperture to host N = L x L spins
(pixels). The SLM is set into a phase-modulation mode with less than
10% residual intensity modulation by a combination of incident and
analyzed polarizations. Phase-modulated light is spatially filtered (3mW
power) and then focused by a lens (f= 500mm) on a CCD camera. The
intensity is measured on M = 18 x 18 spatial modes obtained grouping
16 x 16 camera pixels to average over speckles arising from spatial phase
fluctuations in the far-field plane.

ALL-TO-ALL SPIN INTERACTIONS

We first demonstrate the spatial Ising machine for N = 4 x 10* spins
with all-to-all couplings (J;, = const), which corresponds to a number
of spin-spin connections orders of magnitude larger than those realized



9.3 ALL-TO-ALL SPIN INTERACTIONS

in time-multiplexed platforms [321, 322]. In this case, §; = ¢, = {p and
the target corresponds to intensity focused only in a single spatial mode,
that is, a bright localized spot [Fig. 9.2(a)]. The binary phases on the
SLM are initialized by a random distribution, which gives a weak and
broad speckle pattern in the detection plane. By a Monte Carlo-like
method, at each iteration we randomly flip a small cluster of spins and
measure the corresponding far-field intensity, retaining the change only
if its difference with the target image decreases [333]. Unlike other pho-
tonic Ising machines [334], no information about the target Hamiltonian
is used to affect electronically the spin evolution. To prevent trapping
into local minima induced by the algorithm, we select clusters with a
gradually increasing size. To follow the system evolution, we consider
as physical observables the energy H and the magnetization m = (c})
of each configuration. As shown in Fig. 9.2(b) for different realizations,
we observe a monotonic growth of |m|, which saturates to a large value
after approximatively 103 iterations. The Hamiltonian monotonically
decreases toward a plateau, thus indicating the onset of a low-energy
ferromagnetic-like state. The actual temperature T of these spin configu-
rations is determined by the random phase fluctuations in the Fourier
plane, which results from the intrinsic noise characterizing each operation
in the experimental setup. Sources of noise come from the quantization
on the CCD discrete modes of the detected intensity as well as from the
imperfect spatial phase modulation [335].

To test the solution found by our machine, we use a different and
complementary approach based on phase retrieval. The aim is to evaluate
the energy statistical distribution function (PDF) of all those {c;} that
satisfy the far-field constraint and compare with the low-energy solutions
found by the machine. The method allows distinguishing the errors
related to the feedback algorithm to those associated with the optical
setup. We use a Quantized Phase-Retrieval (QPR) algorithm [336] to
numerically generate binary phase distributions from the target image I
and we measure the far-field intensity I. Among the many possible states
that we determine by the QPR, which are associated with different phase
patterns in the target plane, the solution of the machine is determined by
minimizing the cost function f. Figures 9.2(c,d) show the results from 16
sets of measurements, each with 100 phase-retrieved spin configurations.
We observe that the identified solutions populate the tail of the energy
distribution [Fig. 9.2(c)] and have maximum magnetization [Fig. 9.2(d)].
This indicates that ground states of the Ising Hamiltonian are successfully
found. In particular, the machine gives with 87% probability the correct
minimum solution, that is, a spin configuration lying in the 5% of those
with the lowest energy. This ground state probability quantifies the
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Figure 9.2: Optically solving the Ising Hamiltonian with all-to-all spin interactions.
(a) An unweighted Mobius-Ladder graph with fully-connected vertices
(results refer to N = 4 x 10* vertices) along with the employed target
intensity Ir. (b) Measured evolution of the system energy H (], =
1) and magnetization |m| for different initial random spin matrices.
(c-d) Observed probability distribution function for the (c) energy
and (d) magnetization of spin configurations satisfying the interaction
constrain Iy (see text); red and magenta lines indicate H and |m| of the
identified ground state solutions, respectively. (e) A set of ground state
spin configurations: small-size ferromagnetic clusters with opposite
magnetization are visible.

correspondence between the cost-function minima and spin states with
lower energy, and is independent of the way the ground state has been
found.

To quantify the physical state resulting from the optical computation,
we analyze the spin configurations. Figure 9.2(e) shows the typical
ground states retrieved by the optical machine. We observe ferromagnetic
domains of various size embedded in a phase with opposite magneti-
zation. Spin states with m < 0 and m > 0 appear with almost equal
probability, as expected from spontaneous symmetry breaking in the
absence of external magnetic fields. From the set of {O’j} we can estimate
the actual temperature according to the mean-field solution of Eq. (5.35),
which describes the case with all-to-all interacting spins [332, 337]. Con-
sidering the equation of state m = tanh [(T./T)m], from the observed
mean magnetization we obtain T/ T, = 0.80 £ 0.03. We also analyze the
measured spin spatial autocorrelation according to g(r) = exp (—r/¢),
where the autocorrelation length ¢ gives an estimation of the mean
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domain size. In the mean-field approach, ¢ diverges at the critical tem-
peratureas { = R, (1—-T/ T.) P, where the critical exponent f = 1/2
and Ry is the minimum cluster length. In this case, the resulting temper-
ature is T/ T, = 0.83 & 0.02. Therefore, the observed ground states have
magnetizations and domain configurations consistent with a mean-field
Ising model at fixed temperature.

One of the main features of our spatial photonic setting is the extremely
large number of spins that can be simulated. Varying the active area
on the SLM (the transverse size of the spatially modulated laser beam),
we investigate how the machine operation depends on the system size
L. Figure 9.3(a) shows the magnetization and the fidelity (probability
of finding the Ising ground state) of the observed ground state varying
the number of spin from N = 74 X 74 to N = 274 x 274 and leaving un-
changed their interaction. At variance with other photonic settings [321],
we find that the performance of our Ising machine does not sensibly
depend on the number of spins [inset in Fig. 9.3(a)]. For large sizes N, a
minor decrease of the magnetization and fidelity is observed, and due to
the lower spatial resolution in the detection plane. At low spin number,
we observe a linear decrease of |m| as N is reduced. We ascribe this
behavior to finite-size effects. The observed spin autocorrelation function
strongly varies with the number of spins, and a well-defined single decay
only emerges at large N [Fig. 9.3(b)]. For configurations with few spins,
we find that the measured correlation length grows linearly with the
configuration size [Fig. 9.3(c)], in close agreement with finite-size scaling
arguments, which predicts a mean-field behavior ¢ o L [338]. For large
L the size of ferroelectric domains becomes independent of the system
scale. The photonic machine thus points out a fundamental phenomenon
of spin models [339].

MATTIS MODEL

We investigate other Ising models, by tailoring the spin couplings. As
suggested by Eq. (9.4), Mattis spin-glasses can be realized varying the
input amplitudes ¢; and keeping a point-like target image (IT[2W (i —
j)] = const).

For these experiments, the SLM is split into two independent parts [340].
A portion of the SLM is used for amplitude modulation to generate
controlled ¢; distributions, that are imaged pixel by pixel on the second
portion, where binary phase modulation and spin dynamics occur. We
implement coupling matrices [, « {;; made of large random blocks
with strongly (¢; = o) and weakly (¢; = 0) interacting spins [Fig. 9.4(a)].
Following the theoretical solution of the Mattis model [332], the expected
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spin ground state is identical to the interaction configuration ¢;, or to
its reversal, except for the weakly interacting regions where spins are
randomly oriented. Therefore, in our photonic simulation, we quantify
the fidelity of the measured inhomogeneous ferromagnetic ground state
by the spatial correlation C = };0;¢;/&o. C = %1 for the ideal Mattis
model in the lowest energy state. Figure 9.4(b) shows that the measured
ground states are strongly correlated or anticorrelated with the interaction
matrix, as expected. Since in the Mattis models a minimal amount of
noise introduces frustration [332], the differences between the machine
solutions and the ideal ones are due to the non-zero effective temperature
of the system.
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CONCLUSIONS

We have demonstrated that spatial light modulation can be exploited
to find the ground state of Ising Hamiltonians. By using binary phases
on the wavefront of an amplitude modulated laser beam, a detection
and feedback method, we optically calculate the low-energy ferromag-
netic spin configuration. The ground states display finite-size scaling
effects and mean-field properties at a fixed temperature. This finding
opens the way to photonic simulations of phase-transition phenomena.
The platform naturally hosts tens of thousands of spins (not limited
to binary spins, when adopting multilevel phase modulations) and is
scalable to larger sizes. The speed of our machine is limited only by
the SLM response, camera rate, and data processing. The iteration time
can be potentially reduced to few milliseconds with the most recent
technologies [341]. Moreover, a recent theoretical proposal in the time
domain [327] suggests a possible direction for further reducing the steps
performed digitally by wave-mixing devices. The use of temporally
modulated light pulses in addition to spatial modulation may also allow
implementing three-dimensional spin systems with controllable interac-
tion, even including the quantum optical regimes in which the coherent
laser source is replaced by non-classical light. Similar large-scale simula-
tors may also be conceived with quantum wavepackets as in ultracold
gases, and Bose-Einstein condensates, by proper control and preparation
of the initial states.
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Figure 9.3: Scaling properties of the ferromagnetic ground state. (a) Observed
magnetization varying the spin number (the dotted line is a linear
trend serving as a guide). The inset shows the scaling of the machine
performance. (b) Spatial spin autocorrelation functions (distance in
pixel units) for different N. (c) Corresponding autocorrelation length
as a function of the system size L (dots) and linear fitting behavior
(line).
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HINE LEARNING AND APPLICATIONS TO
OPTICS

INTRODUCTION

Early research on ML adopted an informal approach to evaluation. Papers
typically reported runs of learning methods on a small set of training
cases or problems, the outputs of these runs, and arguments for why the
latter were reasonable or desirable results. In 1988, Kibler and Langley [342]
laid out a framework for an experimental science of ML. Many authors
adopted this perspective and, within a few years, the vast majority of
articles reported experimental results about performance improvement
on well-defined tasks.

The early movement in ML was also characterized by an emphasis on
symbolic representations of learned knowledge, such as production rules,
decision trees, and logical formulae. This bias was understandable, since
ML was an outgrowth of symbolic Artificial Intelligence (AI) and cognitive
science, with most of these researchers being concerned with automat-
ically constructing expert systems or modeling human acquisition of
knowledge structures. However, the growing interest on performance
improvement definitively changed the definition of this field. In 1980s, ML
was still viewed as a branch of AL By 2000, many researchers committed
to ML treated it as a separate field with few links to its parent discipline.
This shift occurred partly because it was far easier to carry out experi-
ments in classification and regression domains, and partly because of
the commercial success of many data-mining applications. The growing
use of statistical and pattern-recognition approaches, which improved
performance, pushed away ML from AL

Recently, ML [343-345] has been proposed as an encompassing tech-
nology for dealing with greatly differing problems through an unified
approach. ML techniques have shown a remarkable growth in sophisti-
cation and application scope in multiple fields [346-348]. Moreover, ML
offers exciting perspectives in photonics. It is applied in two main classes
of problems:

1. classification for categorizing information,

2. regression to predict continuous values,
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and, depending on the nature of the problem, there are different ML
approaches, based on the type and volume of the data, here listed.

Supervised learning.

Supervised learning typically begins with an established set of data
and a certain understanding of how that data is classified. It is
intended to find patterns in data that can be applied to an analytics
process. This data has labeled features that define the meaning
of the data itself. When the label is continuous, it is a regression;
when the data comes from a discrete set of values, it is known
as classification. The algorithms are trained using preprocessed
examples, and the performance of the algorithms is evaluated with
test data.

Unsupervised learning.

Unsupervised learning is best suited when the problem requires a
massive amount of data that is unlabeled. Understanding the
meaning behind this data requires algorithms that are able to
classify the information based on patterns or clusters. Then, the
supervised learning conducts an iterative process of analyzing data.
In essence, either this process is used to add labels to the data so
that it becomes supervised, or it is used to determine outcomes
from huge amounts of data more quickly than a supervised learning
approach.

Reinforcement learning.

Reinforcement learning is a behavioral learning model. The al-
gorithm receives feedback from the analysis of the data, so the
user is guided to the best outcome. Reinforcement learning differs
from other types of supervised learning because the system is not
trained with the sample data set. Rather, the system learns through
trial and error. Therefore, a sequence of successful decisions will
result in the process being “reinforced”, because it best solves the
problem at hand.

ANNs and Deep Learning.

Deep learning is a specific method of ML that incorporates ANNs in
successive layers, in order to learn from data in an iterative man-
ner. Deep learning is especially useful when one is trying to learn
patterns from unstructured data. Complex ANNs are designed to
emulate how the human brain works, so computers can be trained
to deal with abstractions and problems that are poorly defined.
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An ANN consists of three or more layers: an input layer, one or
many hidden layers, and an output layer. Data is ingested through
the input layer. Then the data is modified in the hidden layers
and the output layer, based on the weights applied to these nodes.
Figures 10.1a,b show examples of regressive ANNs. A regressive
ANN is a configuration of computational layers such that a specific
set of input nodes [ is connected to a single output node, through
a configurable set of Ny, hidden layers, each containing 7; nodes h;;,
where i = 1,..Ny and j = 1, ..n;. A generic node k + 1, j, shown
in Figs. 10.1¢, receiving as inputs hy;, with i = 1,..., ny, yields on

output hy ;=g (El Wy 1jkthi + ka]-), with g(x) being a nonlin-
ear activation function, wy 1 the weight of iy on hy11j, and by 14;
a bias term. The typical ANN may consist of thousands or even
millions of simple processing nodes that are densely interconnected.
The term deep learning is used when there are multiple hidden
layers within an ANN. Using an iterative approach, an ANN contin-
uously adjusts and makes inferences until a specific stopping point
is reached. Deep learning is a ML technique that uses hierarchical
ANN' s to learn from a combination of unsupervised and supervised
algorithms, and it is often called a sub-discipline of ML.

SOLVING THE INVERSE PROBLEM IN TOPOLOGICAL LASERS

The rapidly growing interest in topological photonics [349, 350] is leading
to the design of complex structures for the many applications of optical
topological insulators [351]. One leading goal of topological photonics
is photon transport protected from unwanted random scattering. This
is achieved by realizing analogues of the quantum Hall effect [352—354]
through magnetic-like Hamiltonians in photonic systems [355]. In the
optical domain, topological insulators [356] have been implemented in
modulated honeycomb lattices [355], in arrays of coupled optical ring res-
onators [357] and optical quantum walks [358]. Geometry-independent
topological structures have been proposed to obtain nonreciprocal single
mode lasing [359-362] as well as systems with balanced gain and loss for
parity-time symmetric structures with topological order [363, 364]. Emu-
lations of four-dimensional physics have also been reported [365, 366].
By using one-dimensional Harper modulations, it is possible to simu-
late two-dimensional topological systems. Similarly, by two-dimensional
topological systems, one can simulate four-dimensional ones, as recently
investigated in [365, 366].
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0; = g (T wis1jmhas + i)

Figure 10.1: Architecture of fully-connected feed-forward ANNs. Orange and green
circles are the input and output units, respectively. Blue ones represent
the nodes of the hidden layers. Interconnections among the units are
given by arrows. The networks in the background are specific to the
unfolded problem; in the foreground we show the networks with
extra mode and trend inputs. a) Inverse problem network. b) Direct
problem network. c) Single unit scheme. The node performs a linear
combination of its inputs followed by a nonlinear activation function.

One challenge in this field is to find an effective methodology for
the inverse problem in which the target optical properties result from
topological characteristics. Although various computational techniques
are available, these require specific implementations, tailored to the task
at hand. In this Chapter, we employ ML regression for solving the inverse
problem in topological photonics. We apply advanced ML techniques to
design photonic topological insulators, enabling innovative applications
through custom tailoring of desired optical parameters. In our approach,
we introduce a twist in order to ensure that only physically possible
solutions are found. This twist is based on a self-consistent cycle, in
which a tentative solution, obtained from the inverse problem ANN, is
run through the direct problem ANN in order to ensure that the solution
obtained is indeed viable. This has the added benefit of checking that
multivalued degeneracy has been effectively removed.
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The Photonic Topological Insulator

We consider one of the simplest structures that support non-trivial topo-
logical properties. In one-dimensional (1D) systems, synthetic mag-
netic fields occur by lattice modulation [367] of the optical structure. In
the Aubry-Andre-Harper (AAH) model [368, 369], identical sites - res-
onators, two-level atoms, waveguides, etc. - are centered at positions
zn = do (n +y6), with n an integer label, d, the primary lattice period,
1 the modulation strength and 65 = cos(27t8n + ¢) the Harper modula-
tion [369]. The parameter j is the frequency of the Harper modulation.
Together, B and the phase shift ¢ furnish the topological properties by
a “two-dimensional ancestor” mapping [370]. The 2D ancestor is char-
acterized by the dependence of the dielectric function on the coordinate
z and on the parameter ¢, which acts as a periodic artificial coordinate.
Hence, the phase ¢ can be treated as a wave vector in a fictitious aux-
iliary direction [370]. For 8 = p/q, with p > 0 and g > 0 integers, the
lattice displays two commensurate periods with g sites z; in the unit-cell.
Properly chosen parameters give rise to nontrivial topological phases
with protected states at the border of the structure. These “edge-states”
are hallmarks of topological insulators. The phase ¢ tunes edge-state
eigenfrequency in the photonic band-gaps.

Our photonic topological insulator is an array of layers A of normalized
thickness ¢ = L, /d, (characteristic size ratio), centered in z,, in an
homogeneous bulk of material B. This kind of structure can be effectively
modeled by the transfer matrix technique [364, 371], as reported in
Fig. 10.2a. In this figure Ay and A, are the initial and final amplitudes of
the right-travelling waves; while By and B, are their equivalent for the
left-travelling wave amplitudes.

Given the stepped and periodic dielectric function of period D = gd,:

eo(z) = ea,ifzy —La/2<z<zy+Ls/2
¢ ep,ifzy + La/2 <z <z, 1—La/2

in each layer the electric field can be represented as the superposition of
a left- and a right-traveling wave. Applying the boundary conditions, the
matrices

Ma,Y:L"FQIX ( L Tay >
Tay 1
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Figure 10.2: a) Scheme of the topological optical structure. b) Dielectric function
profile for an AAH chain with g = 1/3, with s; = [zj41 —z; — La]/d,.
¢) Band diagram with x = ¢ + (28 —1)/2. For |x/7m| > 1 one can
identify the gaps of the unmodulated structure (blue regions). The
range |x/7t| < 1 shows the gaps with Harper modulation: each gap of
the unmodulated structures (|x /7| > 1) splits into g bands. d) Orange
and green regions correspond to gaps. White areas indicate the
regions where Q(w, x, &) > 0, blue the regions where Q(w, x, &) < 0.
Edge states are possible only in the regions with crosses in orange
and green gaps.

with &,y = AorB, and 14y = Z;;Zi, describe the light propagation
through the interfaces, having introduced g, = (w/c)+/€x, while the

propagation within each layer A and B is given by:

eiquog 0 gi‘inosn 0

,Tp, =

Ty =
A 0 e—i9adol 0 e~ 19BdoSn

where s, = [z,.1 — zn — L4]/d, are the normalized thicknesses of the B
layers.
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From these we obtain the transfer matrix for the single period T(}) (w),
the matrix connecting the fields in the left side of the elementary cell to
the ones in the right side:

q—1
T =TT Tg(y-y M
i=0

with M = M T4 Mpa. The quantity p = —%TrT(l) (w, ¢, &) allows one
to locate bulk bands in the regions where p? < 1, and gaps where p? > 1.
Alternatively, the amplitude |reo(w, ¢, §) |2 of the reflection coefficient of
the structure [370]

k@D _ 10 (0, ¢,¢)
T (w,9,€)

where ¢ is an eigenvalue of the matrix T(l)(a), ¢, &), can also be
used to locate the gaps of the system.

Figure 10.2a shows the final wave amplitudes A;, B, by the n-fold
repeated action of T (w, ¢, &) on Ag, By. The dielectric constant profile -
for the case B = 1/3 - is schematically illustrated in Fig. 10.2b.

For # = 0, we have a periodic unmodulated structure with frequency
bandgaps labeled by an integer i, with frequency @y = wpdg/c =
/(\/€a+ (1 —¢&)\/p). For n # 0, each gap of the unmodulated struc-
ture splits into q gaps, each one labelled by indices (i,)) (j =1, ..., q) [372].
This splitting is shown in Fig. 10.2c for B = 1/3 with respect to the
variable x = ¢ + (28 —1)/2.

To determine the existence of the edge states, one needs to specify the
boundary conditions on each edge of the structure. For the left edge this
condition is given by:

, (10.1)

reo(w, ¢,8) =

ik(w)D

0= (qp +9a)A1+ (95 — 9a)B1

where Aj and Bj are the amplitudes of the right and left-travelling waves
in the first layer of the structure. This condition can be reformulated as

det(bl,al) =0

with by = ((92 — qp), (92 + q»))T and a1 = (A1, By)T, and, together
with the eigenvalues A+ and eigenvectors v+ = (Tl(;), Ay — Tl(} )) of the
transfer matrix T(1), it is possible to determine existence and dispersion
of edge states.

Following [373, 374], it can be, in fact, shown that a proportionality

relation exists between the boundary vector b; and the eigenvectors v+ of
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the transfer matrix. So the condition for the existence of the edge states is
given by det(by,v+) = 0, in a gap where |A+| < 1. This entails searching
for the zeros of the function F; ; = (g4 —qB)(A+ — Tﬁ)) — Tl@ (qa+9B)-

Specifically, the real part of F; . = 0 yields the function Q(w, ¢,&) =

Re{Tl(;) (ga+4g8) — (g4 — qB)(ng) — Tl(%))/Z} and, as shown in Fig. 10.2¢,

this implies that edge states exist only in the gaps where |po| > 1 and
Q(w,¢,¢) - p > 0. At the same time, edge states cannot exist in gaps
where Q(w, ¢, &) does not change sign. Moreover, due to a bulk-boundary
correspondence [375], the number of these edge modes is equal to the
modulus of the associated topological invariant |v;;|, given by the winding
number of the reflection coefficient:

o , (10.2)

1 7 i Aln(re(w, x))
= om / X— .,
-7
i.e., the extra phase (divided by 27) of re(w, x) when x varies in the
range (—7, 77), with w in the stop band [376].

By relying on the transfer matrix method, our approach can be ap-
plied to a general class of problems and thus makes it suitable for a
wide range of systems beyond our baseline AAH model. Specifically,
it can be extended to many physical systems whose behavior is de-
scribed by a gapped unitary operator, e.g photonic Floquet topological
insulators [355, 377] and photonic topological quantum walks [378].
Analogously to the AAH model, the edge states of these systems can be
defined with an equivalent F; 4 (w, p1, ..pn) function, where (p1, ..py) are
relevant parameters describing the structure. The imaginary component
of F; L (w, p1,..pn) = 0 furnishes the dispersion relations of the edge
modes and hence the training dataset of our ML inverse problem.

Implementation of Supervised Machine Learning Regression

As illustrated in Fig. 10.2d, enforcing boundary conditions at the left
edge [373, 374], and defining the function Q(w, ¢, &), enables one to
establish the presence of edge states corresponding to poles w; of the
reflection coefficient. However, the function w; = w(x, &) cannot be
analytically inverted to express the geometrical parameters x and ¢ in
terms of the variable w;. Exploiting ML techniques, we solve this inverse
problem and design topological insulators with target edge modes.

The inverse problem in ANN theory - and therefore in ML - is widely
discussed in numerical modelling, engineering and other fields [379—383].
Regression in ML optimizes an ANN so that a given vector input (R")
results in a scalar (R) output, emulating the behaviour of the training
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data. For our purposes, we use a regressive ANNs approach, with g(x) =
tanh(x) the activation function, as common, accepted practice.

Optimization of the ANN is performed by minimizing a cost function by
a gradient descent method that updates weights and biases. In the initial
state, weights wjy; are selected from a truncated normal and biases are
set to zero. Training applies this procedure to a data-set randomly split
into two separate classes: (i) an actual training set and (ii) a validation
set. The network is iteratively updated until the error on the validating
data-set converges to a given rate.

The inverse topological problem at hand is to obtain the desired optical
behaviour: a target edge-state at frequency w;, which is an input to
the design (Fig. 10.1a). ML techniques achieve this result by modeling
the multidimensional nonlinear relationships among all the structure
parameters wy, X, B, €4, € and ¢. In our specific case, the data-set fixes
€4, €p, B at the valuesey =9,ep =4 and  =1/3.

First we generate a data-set to train our ANNs by numerically comput-
ing the complex roots of Tl(? (w, x, €), covering the region of interest for
parameters x and ¢. The real part of these roots, shown in Fig 10.3a,
represents the edge states dispersion. Interestingly, the same data-set
can be used both for the inverse and direct ANN training phase, by suit-
ably selecting the features and target fields. The inverse problem ANN
(Fig. 10.1a) targets a value x = o, a topological parameter on the basis
of features including w;. For a direct problem (Fig. 10.1b), the mode
frequency w; would be the target of a network whose features include
the topological parameters (), ¢).

The data-set contains various branches, since there exists an edge state
for each band gap (i,j) with j # 3, as results by Eq. (10.2). Due to the
folding of the Brillouin zones, the edge state frequency w(y, ¢) is then
a multi-mode function, which we unfold by introducing a label m;f for
each mode; here i = 1,...co and j = 1,...q, while the sign + indicates
modes in the positive/negative x domain. In Fig. 10.3a, data points with
different i, j values are identified with different colors and, solving the
inverse problem is a matter of determining when these surfaces intercept
a specific target value of the w axis. Three outcomes are possible: a single
value for x and ¢ when a monotonic mode surface is intercepted, no
solution for values of w laying between surfaces, and multiple solutions
in other cases. This implies that the feature set (), ¢, mi) is insufficient.
To tackle this problem, we take into account the trend s+ = sgn (dw;/dx)
as an additional variable. The ANNs with this enlarged feature set are
illustrated in Figs. 10.1a,b.
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Figure 10.3: a) The training dataset. Points are the real component (mode frequen-

cies) of the complex roots of the function Tl(;) (w, x,€). b) Edge state
dispersion for a specific mode and ¢ value, exhibiting a positive s
(green) and negative s_ (red) trend. c) Multivalued relationship of
features and targets for the same edge mode dispersion. The s.. labels
are used for training the inverse model.

In the terminology used in ML, the mode indices ml:‘E and trend labels
s+ are categorical features and lead to two possible courses of action for the
actual implementation of the ANNs used in our problem. One in which a
single ANN is constructed in a hybrid feature space with both continuous
variables (real valued ¢’s and x’s) and categorical features, as illustrated
in Fig. 10.1b. Another course is to adopt multiple independent ANNs, one
ANN for each mode and each trend.

The single ANN approach is hindered by the presence of discontinuities
in the features domain: with respect to the w variable they are a conse-
quence of the fact that edge states fall within the bulk energy gaps; with
respect to the x variable these arise from considering only the left-edge
states. Fig. 10.3a clarifies this aspect. Due to these discontinuities we have
chosen to use multiple independent ANNs. Moreover, when considering
the solution provided by the inverse ANNs, we identify a specific problem
in the use of ML as they may furnish solutions that are not physical. An
example of this issue is given in Fig. 10.3b, where - for a fixed band
and a fixed ¢ - the curve representing w as a function of x is shown
together with its inverse (Fig. 10.3¢). Inverting the function w(x), we
consider an interval of values for w spanning from its minimum wy,;,,
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Figure 10.4: Reconstruction of edge states dispersion by ANN models. a) Direct
problem solution as reproduce by our self-consistent cycle. b) Inverse
problem solution. w is in units of dy/c.

to the maximum w4y, but for the two branches of the inverse function
Xx(w) - identified by colors in Fig. 10.3¢c - the range of w is different. For
example, for the red branch the maximal value of w is W),y < Wnax-
When the target frequency is outside this range, the ANN produces an
output outside the physically acceptable range for x. The inverse ANN
can furnish spurious non-physical solutions.

Our approach tackles this issue by a two-step self-consistent cycle: (i) in
the first stage, a desired input w; forms part of the feature set (w;, mi, 54)
resulting in the output ), of the inverse ANN; this set is used as input
()(o,mijjt,si) to a direct problem network; (ii) in the second stage, the
target of this direct network ws. is compared with the input value w;
and yx, is retained as a solution of the inverse model if |wsc — wi| < 8
with é a user-defined small positive quantity. The value of § affects the
model accuracy. A reasonable choice can be 6 ~ E]’-”’” (with j=LD), i.e,,
the maximum value of the squared error functions for the inverse (I) and
the direct (D) networks.

In details, let us consider as target a smooth, non monotic func-
tion we(x). Without loss of generality, w;(x) may have two regions
of monoticity: it decreases from wy = wj,,y t0 Wi = Wy for x € (0, x1),
and increases from wy = Wy, 0 Wi = wWpax for x € (x1,1), with
Wipin < w;mx < Wmax, 0 < x1 < 1. When we use an inverse ANN to
compute x,(w;), ML is engineered in a way such that it generalizes the
solutions and associates to every wy € (Wi, Wmax| @ value x, € [0,1] for
each branch, producing new, unphysical values for w; € (W}, Wiax]-



10.2 SOLVING THE INVERSE PROBLEM IN TOPOLOGICAL LASERS

These values must be eliminated. To avoid the solution generalization,
we test the self-consistency by the procedure sketched in Fig. 10.5. After
the training stage, implemented through numerically computed data
(w, x,€), we use an inverse ANN with input (w¢, {) to attain an output
Xo- In order to have the unfolding and determine in advance the slope of
wi(x) in its different branches, we add the mode index mljE and the trend
s+ as inputs. To clarify the idea, let us fix the normalized thickness ¢ and
the mode index m; we have two correspondences, i.e., on one hand
(w,5-) — (Xo,5-), (10.3)

on the other hand

(wi,s4) — (Xo,5+)- (10.4)

While Eq. (10.4) associates w; € [Wyin, Wmax] t0 Xo € [x1,1], Eq. (10.3)
should associate just wt € [Wpin, Whax) to Xo € [0, x1], but ML produces
extra values. Hence, how may we be sure that y, corresponds to a
physical solution, i.e., x, does not belong to a forbidden region? We need
to test the validity of our result by a direct ANN that takes the previous
values (xo, &, mi, s+) as input and gives back a self-consistent output ws.
In order to complete our cycle, we need to compare the resulting value
wse with the input w; by the choice of a tolerance J, which affects the
model accuracy. Finally, if |ws. — wt| < &, then ), is accepted as solution
of the inverse model, otherwise it is discarded.

a
) .—)—l Inverse NN |

.—<—| Direct NN |

Figure 10.5: Scheme of the self-consistent procedure for the ML inverse problem
solution.

The training dataset is generated with eleven sets of ¢ ranging from
0.10 to 0.20 in steps of 0.01 and for each set x spans —7 to 7 with 997
equally spaced values. Results based on using an array of ANNs each
composed of 5 hidden layer of 131 nodes are shown in Fig. 10.4 together
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with its training set (colored lines). The model is developed using 80%
of the dataset randomly chosen the rest being used for validation and
comprising of 250,000 steps. Training each model takes about 8 minutes
on our hardware using a single Nvidia GP-GPU Tesla K2oc. The purple
dots in Fig. 10.4 are based on 100 values of ¢ while exploring the w
domain with a resolution of 107°. Each array element is trained for a
specific value of the categorical features and pertains to either the positive
or the negative x domain.

The results of applying the direct and inverse ANNs, portrayed in
Figs. 10.4a,b, respectively, show that the proposed method gives accurate
solutions matching the original data in the whole range of interest. Fig-
ure 10.4 clearly shows that our ML strategy solves the inverse topological
design problem.

To implement the ML algorithm we use TF. TF is Google’s versatile open-
source multiplatform dataflow library capable of efficiently performing
ML tasks such as implementing ANNs. Multidimensional data arrays,
referred to as “tensors” are executed on the basis of stateful dataflow
graphs, hence the name TF. For our final code implementation, TF version
1.3 with python Application Program Interface (API) bindings is used.

The nature of our problem is such that there is a discontinuity in { = 0
which cannot be correctly handled by a single ANN bridging this point;
this is relevant to both the inverse and direct cases. Breaking up the
data-set into two parts to be used for two separate ANNs is the simplest
solution to this problem.

Another interesting aspect is related to the fact that the feature set
in our inverse and direct ANNs contain both continuous and discrete
variables. The discrete variables can either be treated as such or handled
by constructing multiple ANNs each relative to a specific value of the
discrete variable. The trend variable which has two possible values is one
such case as is the mode number. In our code we have implemented a
flexible system which allows one to decide which discrete variables are to
be included in each ANN, the others being broken up into arrays of ANNs
one for each value of the variable. Once the bookkeeping issues have
been tackled,this generalized approach allows one to tailor the problem
to the given data-set.
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CONCLUSIONS

The inverse problem in topological design is solved by a supervised
ML regression technique. We employ a self-consistent procedure to
rule out unphysical solutions enabling tailored engineering of protected
edge-states. We successfully tackle multivalued functions introducing
categorical features, as the trend, which tags training data according to
their gradient’s sign. Discontinuous domains are effectively treated by
adopting multiple independent ANNs each one specific to its domain. Our
general method can be extensively applied - well beyond the example
considered in this work - and may also be exploited for other physical
systems in topological science, as polaritonics [384, 385], quantum tech-
nologies and ultra-cold atoms [386, 387]. The method is scalable to very
complex structures involving hundreds of topological devices, as those
recently considered for large scale synchronization [388], and frequency
comb generation [389], eventually including non-hermitian systems [390,
391]. Further applications include 2D and 3D topological systems [359]
and quantum sources and simulations [365, 366].
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INTRODUCTION

In the long path for designing all-optical machines, able to do compu-
tation, Chapter 9 and this Chapter, together, show our main results on
the engineering of photonic computers. In Chapter 9, the realization
of a scalable Ising machine is illustrated, and its relevance towards the
fulfilment of our aspiration of building all-optical machines able to solve
NP-Complete problems drives us to do many other attempts. The the-
oretical design of a random optical machine, where light transmission
in random media turns out to act as an ANN architecture, performing
untrained ML, is undeniably an important achievement in that direction,
and it is here illustrated, together with applications to quantum gates
implementation.

Random media with tailored optical properties are attracting for appli-
cations in many areas, such as imaging, biophysics, energy, nanomedicine,
spectroscopy, cryptography, and telecommunications [1, 392—-396]. The
transmission of light in the presence of diffusion and multiple scattering
can be effectively controlled by manipulating its wavelength, polarization,
and spatiotemporal dynamics [397—400]. This rich behavior is enabled
by a large multitude of optical modes that can interact during propaga-
tion [401, 402].

A key paradigm for describing this modes interaction is the transmis-
sion matrix, the tensorial link between the input and the output signals,
completely measurable even in case of nonlinearity [403, 404]. The trans-
mission matrix has specific statistical properties, such as the existence of
lossless channels, that can be used to transmit information, and are deter-
mined by the disorder distribution. Lossless channels may be modulated
and the transmission matrix tuned accordingly. Typically, this approach
is based on iterative algorithms that modify the state of the light at the
input of the random material, until a predetermined figure of merit is
obtained at the output.

This approach can be implemented very efficiently [405—409]. The
trait of this technique is that it treats the random material as a black
box, in which light is efficiently coupled to and transported by transmis-
sion channels created by long-range intensity correlations, as a result of
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interference effects [410, 411]. In essence, the random medium acts as
an untrained ANN with a large number of weights, each one optimized
iteratively by tuning input and readout.

It turns out, by electromagnetic perturbation theory, that weakly tam-
pering the medium with external factors, such as changing enviroment
temperature or adding chemical agents, alters the transmission matrix,
which at the new steady state is given by the product between the pre-
vious matrix and a further one. So forth, the higher the number of
perturbations is, the longer the product between transmission matrices is.

In standard ML, one trains the parameters (weights) of an ANN to fit a
given function linking input and outputs. In reservoir computing [412,
413], due to the increasing computational effort to train a large number
of weights, one internal part of the network is left untrained (“the reser-
voir”) and the weights are optimized only at input and readout. If each
transmission matrix represents a ANN hidden layer, we are moving from
an extreme learning machine (unperturbed system) to untrained deep
learning (many perturbations). In any case, we obtain a random optical
machine working through reservoir computing, as demonstrated in what
follows.

TRANSMISSION THROUGH DISORDERED MEDIA

We first review the Green function formalism [404, 409, 414], which shows
the way light propagation in a complex medium is mapped to an ANN
model.

We follow [409], and adopt the Dirac notation formalism, which is
handy for classical vectorial waves. This notation is detailed in the
book by Economou [414]. The field scattered by a random medium
is |[E) = K|E™), where |[E") is the incident field, K = 1 — Ges is a
generalized propagator [415], 1 is the identity operator, and the Green
function G is such that

(D+e)G=1. (11.1)
In Eq. ((11.1)), D(r) = =V x VX, and e = e}, + e; is the operator given
in terms of the position representation

(rle|r) = K3e(r)o(r — '), (11.2)

associated to the relative permittivity e(r) = &,(r) + &(r), with e,(r) =1
the permittivity of the homogenous background medium and 1 + &,(r)
the relative permittivity of the scattering medium.

In the position representation r, the propagator reads

(f[K|r') = o(r — ') — kge(r')(r|G[r'), (11.3)
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and its matrix elements are
kmn = (m|K|n), (11.4)

where |n) corresponds to input/output eigenmodes, or “channels” (as
detailed in [409]), withn =1, ..., N.

Given the input field |E™), one can choose a basis representation such
that the input is represented by a vector (EiN),_; _n. Since, in our
random optical machine, we design the input by a SLM set in the Fourier
input plane, we choose to represent each n as a different plane wave
corresponding to each segment in the SLM. The SLM pixels are grouped
in a number N of segments and, as also detailed below, the SLM and the
related Fourier-transforming optics act as an optical convolutional ANN
layer. As the total field in the presence of the scatterer is |E) = K|E™),
one can represent the trasmission through the system by the matrix
elements k;;;, such that, letting E, = (n|E). One obtains

N
En = Z kmnEp. (11.5)
n=1
Equation ((11.5)) can be represented as in Fig. 11.1a: to the input mode
with amplitude Eil is associated the input node 7, for the output node
with amplitude E;; we have the output node m, and the link is weighted
by the coefficient k. A schematic representation of the overall network
is in Fig. 11.1b, with x denoting the input vector with components x,, =
E}{‘ and n = 1,2,.., N, while y is the output vector, with components
yn=E,andn=1,2,.., N.

EFFECT OF PERTURBATIONS

In the presence of the perturbation, the perturbed propagator is

K =1-G'¢, (11.6)
with G’ the perturbed Green’s function such that

(D+e,+es+¢€)G =1, (11.7)

and e’ is the operator associated to the perturbed permittivity Ae(r),
where €(r) = €;,(r) + &5(r) + Ae(r) is the total relative permittivity.

The field in the presence of perturbation |E’) can be then expressed in
terms of the state without perturbation |E) and the input state |E™) as
operator multiplication

|E') = K'[E) = K'K[E™). (11.8)
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Figure 11.1: Representing light propagation in a random medium as a layer of an

ANN with random coefficients. (a) Dense layer representing Eq. 11.5.

(b) Representation of the random layer.

Correspondingly, the transmission matrix elements kP, in the presence of
the nonlinear perturbation are written as results of a matrix multiplication

) _
Kyn = Z k;nqkq‘rb (11.9)
q=1
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To simplify the notation, we omit in the following the sum over re-
peated indices, and Eq. ((11.9)) reads

kS,lf,E = Kingkgn- (11.10)

In addition, we introduce a tensorial notation by using a three index
tensor kg, such that

Kinn1 = kmn, (11.11)
Kz = kgfn) (11.12)

. This notation is useful when one has many layers, and each layer
corresponds to a different value of the third index 4. In this notation,
Eq. ((11.9)) reads

knn2 = kgkqn1- (11.13)
By using (11.6), the element of the rotation matrix k;nq is written as
k;nq = Omq + Wmg, (11.14)
with 6,5 the Kronecker symbol and the perturbation elements
Wng = —(m|G'e’|g). (11.15)
The element of the perturbed matrix can then be written as
Kinna = Kinn1 + Wimgkqn = kmn1 + w1k + - + winnknpr- (11.16)

Eq. (11.16) is graphically represented in Fig. 11.2, and can be interpreted
as follows: in the absence of perturbation, light is channelled - with
amplitude ky;;; - from the channel # to the channel m (see Fig. 11.2a). In
the presence of the perturbation, further contributions arise from other
channels. For example, the light channeled from n to 1 with amplitude ky,,
also contributes to the signal in the channel m with amplitude wy,, (see
Fig. 11.2b). This may be described by stating that any perturbation adds
further channels for light by scattering from one unperturbed channel
to another or, in terms of ANNs, this corresponds to a new layer whose
weights wy,;, are proportional to the strength of the perturbation. This is
sketched in Fig. 11.3: in the presence of the perturbation, the input signal
x activates an hidden layer with state vector h() and elements N1, such
that

I = Kn1%n, (11.17)
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and the hidden layer activates the output layer as

Ym = Kighqr = KiugkgmXn = KnnoXn. (11.18)

This analysis shows how to implement ANNs by the mean of random
(or multimodal) media. It also demonstrates that these ANNs can be multi-
level, depending on the number of perturbations, since each perturbation
adds a new hidden layer to the ANN. Such an approach has already been
applied to a biological system [1], which worked as a random medium,
to study the growth of brain tumor spheroids in the absent (unperturbed
case) and the presence (perturbed case) of chemotherapy. In what follows,
we illustrate another application of the random optical machine to the
design of quantum gates. For this purpose, we do not use a random
medium, but a multimodal one, such as a multimodal fiber, where the
random optical machine is easier to implement [27, 409].

IMPLEMENTATION OF QUANTUM GATES

The development of multilevel quantum information processing systems
has steadily grown over the past few years, with experimental realiza-
tions of multi-level, or qudit, logic gates for several widely used photonic
degrees of freedom, such as orbital-angular-momentum and path en-
coding [416—419]. However, efforts are still needed for increasing the
complexity of such systems while, still being practical, with the ultimate
goal of realizing complex large-scale computing devices that operate in a
technologically efficient manner.

Here we adopt reservoir computing-ML to design complex multi-
level gates [417, 418, 420, 421], which form a building block for high-
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dimensional quantum information processing systems. While low-dimensional

examples of such gates have been implemented using bulk and integrated
optics, efficiently scaling them up to high dimensions remains a challenge.
We explore methodologies to train the input and the output gates by
using different implementations of ML concepts.

Figure 11.4 shows the scheme of a device including the complex
medium, represented by the unitary operator U and two trainable input
$in and readout 5°" operators. The use of an optical gate as in Fig. 11.4 is
also related to a Quantum Key Distribution (QKD) with Physically Unclon-
able Function (PUF) [276, 422, 423]. A PUF may be realized by a random
medium to authenticate an object or data. Top panels in Fig. 11.4a
display the concept by introducing input/output readout operators that
provide a programmable gate. Assuming (bottom panels in Fig. 11.4b)
that one has two g-dits as input, one |c) acting as a “control”, and the
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other acting as the “challenge” |¢). The challenge/response relation will
depend on the control and the training. |1(12)) are hidden states.

In our general framework, we have a random system modeled by
a unitary random matrix. We want to use the random medium to
perform a random optical machine in a Hilbert space containing many
g-dits. The random medium is not necessarily a disordered system (for
example, a dielectric assembly of scattering particles), but may also be a
multimode fiber, or an array of waveguides. The input/output relation
is represented by a linear unitary matrix operator Uy and only forward
modes are considered. The Uys matrix has dimensions M x M, with M
the dimension of the embedding space.

The “reduced” state vector at input has dimensions N x 1, with N < M.
This models the case in which we use a subset of all the available modes.
The input to the reservoir is a “rigged” state vector x with dimension
M, where the missing complementing C components are replaced by
C ancillas with C = M — N. Our goal is to use the random medium to
perform a given operation denoted by a gate unitary matrix

Ty = St - Uy - SH. (11.19)

in and SQUt are two “training” operators that are applied at input and
output (see Fig. 11.4), and whose elements can be adjusted. We first
consider the presence of the input operator Sl = Sy, and S5t = 1y,
which can be implemented by SLMs (we denote as 1 the identity matrix
with dimension M).
We identify two cases:

(i) we know the matrix Uy,

(ii) we have to infer U), from the input/output relations.

In the following, we show the way these two problems can be solved by
an ANN, where we denote the two families as (i) non-inferencing and (ii)
inferencing gates.

Non-inferencing Gates

We consider a target gate with complex-valued input state with di-
mension N, and components xi,xp,...,.xny. We embed the input vec-
tor in a RHS with dimension M > N, thus the overall input vector is
x = {x1,x2, ..., XN, XN+1, -, XM }. We have a linear propagation through
a medium with unitary complex transmission matrix Ups. The overall
transmission matrix is Ty; = Uy - Sy, such that the output vector is
y = Tp - x = Upr - Spp - x. The observed output vector is written as P -y,
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where P is a N—projector operator with dimensions N x M, such that
P = [15]0], with 1y the identity matrix of size N x N, and 0 a null matrix
of dimension N x C. The goal is to find the matrix Sy such that

P-Upy - Sy = [Xn]0], (11.20)

where X is the N X N target gate and 0 is the null complement N x C at
dimension M. Eq. (11.20) is a matrix equation, which guarantees that the
overall system behaves as a Xy gate on the reduced input. Solving the
matrix Eq. (11.20) may be demanding and non-trivial when the number of

dimensions grows. In the following, we discuss the use of ML techniques.

The transmission matrix Ty in the rigged space from x to y can be
written as blocks
Xy 0

Ty = , (11.21)
0 Oc¢

where O¢ is a unitary matrix with dimensions C x C to be determined.

If Up; and Sy are unitary, the resulting transmission matrix Ty, is also
unitary. However, if one uses Eq. (11.20), the problem may also have a
nonunitary solution (“projected case”) as some channels are dropped
at the output. In other words, solving Eq. (11.21) is not equivalent to
solving Eq. (11.20), and we adopt two different methodologies: one can
look for unitary or nonunitary solutions by ANN.

By following previous work developed for real-valued matrices [424],
we map the complex-valued matrix equation ((11.20)) into a recurrent
ANN. In the non-inferencing case, the matrix Uys is known, and the
solution is found by the recurrent ANN in Fig. 11.5. The recurrent ANN
solves an unconstrained optimization problem by finding the minimum
of the sum of the elements ¢;; > 0 of an error matrix E. The error depends
on a “state matrix” Wy, and one trains the elements w;; of Wy to find
the minimum

minE[G(Wy)] = min ) _e;;[G(Wy)]. (11.22)
Wm Wum 1'/]'
In the adopted approach, the sum of the elements e;; is minimum when
the hidden layer elements g;; of the matrix G(W) are zero. E and G have
to be suitably chosen to solve the considered problem. We found two
possible G matrices: (i) the “projected” one

Gp =P UM . WM — XNO/ (11.23)
with Xyo = [Xn|0] as in Eq. (11.20) and, (ii) the “unitary” one (see
eq. 11.21)

Gu = UM . WM — TM. (11.24)
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These two cases are discussed below.

To find the unknown training matrix Sy, one starts from an initial
guess matrix Wy;(0). The guess is then recurrently updated, as in
Fig. 11.5, until a stationary state Wy;(o0) is reached. Once this opti-
mization has converged, the solution is given by Sy; = Wpy(c0). The
update equation is determined by a proper choice of the error matrix E.

As the matrices are complex-valued, ¢;; is a function of g;; and gl’; We

set ¢;; = ¢;j(|gij|*). The corresponding dynamic recurrent ANN equation,
which for large time gives the solution to the optimization problem, is

AW

a —uUj - FIG(Wp)], (11.25)

where y is the “learning rate”, an optimization coefficient (hyperparam-

eter) which is set to speed-up the convergence. The elements f;; of the
= %. Letting e;; = \g,-]-|2, one has fj = gij.

Eq. ((11.25)) implies that the recurrent ANN is composed of two bidirec-
tionally connected layers of neurons, the output layer with state matrix
W, and the hidden layer with state matrix G. The training corresponds
to sequential updates of F and W when solving the Ordinary Differen-
tial Equation (ODE) ((11.25)). As shown in [424], this recurrent ANN is
asymptotically stable and its steady state matrix represents the solution
(an example of training dynamics is in Fig. 11.5b).

We code the recurrent ANN by TF and use the ODEs integrator odeint.
In the case N = M, as Xy = X} is a unitary operator, the solution of the
recurrent ANN furnishes a unitary Sps matrix, which solves the problem.
For M > N the recurrent ANN furnishes a unitary solution Sy; - and a
unitary transfer function Ty, - only if we embed the target gate Xy in a
unitary operator as in ((11.21)) with O¢ a randomly generated unitary
matrix.

matrix F are f;;

Single Non-inferencing Q-trit X Gate

We study the training of a gate X3 defined by [417]

i 01 0
Xz=) [len)({l=1]0o 0 1 (11.26)
=0 100

The gate X3 is obtained by an embedding dimension M = 5 and unitary
transfer function Us, as in Fig. 11.5.

For G = Gp, the number of ODEs for the training of the network is
minimal (N = 3), but the solution is not unitary, as some channels are



11.4 IMPLEMENTATION OF QUANTUM GATES

dropped out by the N—projector. The overall M x M transmission matrix,
after the training, Tj; is such that T;{,I - Tm # I, because the solution Sy,
is not unitary. However, the system always reaches a stationary case.

A unitary solution is found by letting G = Gy; and involving the
maximum number M of ODEs in ((11.25)) with a unitary embedding of
X asin ((11.21)), i.e., adopting a further - randomly generated - unitary
matrix Oc. The key point is that the system finds a solution for any random
unitary rigging of the matrix Xy, that is, for any randomly assigned matrix
Oc. This implies that we can train all these systems to realize different
multilevel gates.

Inferencing Gates

In the case that we do not know the transmission matrices of the system,
we can still train the overall transmission matrix by using an ANN and
infer Uy;. Here we use an ANN to determine the training operators
without measuring the transmission matrices. Figure 11.6 shows the
scheme of the ANN, where the unitary matrix Uy, is represented by its
elements u;j, and the w;; are the adjustable weights. After the training,
the resulting w;; are the elements of the solution matrix Sps. For the
sake of simplicity, we first consider Sout — 11, as above. For a target
XN, we build the Ty as in (11.21) by randomly generating the unitary
complement Oc. As Ty and Uy are unitary, the resulting Sy is also
unitary. One can use a non-unitary Ty by choosing, for example, O¢ = 0,
correspondingly - after the training - Sjs is not unitary.

We randomly generate a set of input states x;, with i = 1, ..., 14,4, Each
input state is labelled with the target output y; = T - X;. We remark that
x; and y; are vector with size M. A further set of 1,,,;;; validation rigged
vectors is used to validate the training.

For any input x; in the training set, we adjust the weights to minimize
the error function

1
6= Yo lyi — Unm- Wit -xi?, (11.27)
N

with y; = Ty - x;. After this training, we test the accuracy on the valida-
tion set. Each cycle of training and validation is denoted as epoch.

Figure 11.6 shows the ANN for N = 3, and M = 5. In our model,
we build a matrix Wj; of unknown weights. As we deal with complex
quantities, Wy is written as Wy = Wy, + tW},, where W}, and Wy,
are real-valued matrices with elements forming the weights of the ANN.
Using random matrices as initial states, we end the iteration when the
validation cost is below a threshold ¢€,,;4-
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Single Q-trit Inferencing X Gate

Figure (11.6) shows the training of a single g-trit gate X3 in 11.26. Similar
results are obtained with other single q-dit gates as X? and Z. Training
typically needs tens of iterations and scales well with the number of
dimensions. Figure 11.6 shows an example with N = 3 and M = 5.
Figure 11.6c shows that the number of training epoch 1,1, scales with
the embedding space dimension M.

Generalized Q-trit Gate

We next consider the implementation of a generalized g-trit gate CNOT,
shown in Fig. 11.7. The gate is obtained by training a random system
with a unitary transmission matrix Uy by using an input layer SI'. In
this case, we consider N = M = 9 corresponding to the dimensional
space of two g-trits (one control and one challenge/response, denoted as
target). Other controlled g-trits gates can be realized, as Feynman gates
or GXOR [421].

Figure 11.7a shows the input/output matrix S$in — A obtained after
the training when Sout — 1g. One can also figure out other configurations,
for example by employing a double passage in the random system, such
Sout — Uy, with U = Uy. In this case, the previous input matrix Sin — A
does not produce the correct result, as shown in Fig. 11.7b. One has to
calculate a novel input matrix Sin — B, as described in Figs. 11.7¢,d.

This analysis may be the starting point for designing cryptographic
quantum transmission systems with PUF.
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CONCLUSIONS

Random materials, appearing as black boxes, transmit light through
transmission channels, created by long-range intensity correlations. The
result is that random media acts as an untrained ANN with a large number
of weights, each one optimized iteratively by tuning input and readout.
In essence, a random medium by itself is an extreme learning machine.
When we weakly tamper the medium with external stimuli, we add layers
to our ANN, and the architecture becomes deep. Thanks to this principle,
here demonstrated, we created our reservoir computing random optical
machine.

We have investigated the use of ML paradigms for designing linear
multilevel quantum gates by using a complex transmitting multimodal
system. In this application, the random optical machine is not necessarily
a random medium, but may also be a multimode fiber, or an array of
waveguides. The key point is the complexity of the radiation-matter
interaction. We developed versatile algorithms and demonstrated their
efficiency both for known and unknown random system unitary opera-
tors. We showed that single- and multi-qudit gates can be designed. We
also considered the use of the ML training for QKDs with PUFs.

The overall methodology has been easily implemented by TF API, and
can be directly adapted to experimentally retrieved data. The method can
be generalized to more complex information protocols, and embedded
in real-world multimodal systems. We believe that these results can
give further momentum to the applications of Al and new computing
paradigms, and to quantum technologies.
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Figure 11.2: Schematics of the effect of the perturbation in the ANN. (a) Unper-
turbed transmission linking input channel 7, and the output channel
m. (b) In the presence of the perturbation, new links are created
and all the channel in addition to the channel #n contribute to the
output m, see Eq. ((11.18)). (c) As in (b) an equivalent representation
of Eq. ((11.18)).
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Figure 11.3: Synthetic representation of the effect of the perturbation to the input

and output vector, through the formation of a hidden layer, with state
vector h(1).
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Figure 11.4: A general optical gate based on a complex random medium; the input
state x is processed to the input layer with operator Sin, the system is
modeled by the unitary operator U, and the ouput further elaborated
by 5°Ut. When the complex system cannot be cloned, the overall gate
is a cryptographic scheme in which the input and readout operators
are keys to decode the transmission. An example of the controlled
gate is sketched in the bottom panel. In the simplest formulation, one
of the input and the readout operators can be omitted.
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Figure 11.5: (a) Recurrent ANN for the matrix equation ((11.25)). The status nodes
are denoted by the elements of the matrix W, and the hidden state of
the system is in the nodes of the matrix F; (b) training dynamics for
the case N = M = 3 with X7 corresponding to a single-qutrit X gate
(# = 100); (c) resulting transfer function for the case N =3 and M =5
in the unitary and non-unitary case. In the latter case, the excess
channels are ignored during the training. The resulting transmission
channels Ty are displayed. O, is the unitary complements for C =
M — N = 2 in the unitary case.
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Figure 11.6: Example of inference training of a M = 5 random system to act as X3
gate. (a) ANN model (in our example Sg/‘[‘f is not used); (b) numerical
examples for the transmission matrix Tyy = Uy - Sil\'/‘I before and after
training; (c) scaling properties in terms of training epochs. Parameters:
Nrain = 100, Nygrig = 50, eyarig = 1073, epoch = 6.
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Figure 11.7: Training of a random system to realize a CNOT-like gate. Here N =
M =9, fyygin = 100, nygrig = 50, eyarig = 1073, 12 epochs. C denotes
the control g-trit, and T the transmitted g-trit. The circuit diagram
and the transmission matrix of the gate are shown in top panel. Panel
(a) corresponds to the trained transmission, when Sg'” =1y, for a
randomly generated unitary matrix Uy, representing the complex
system. The trained input operator is Sif = A. Panel (b) shows the
output with Si' = A and $§* = Uy (double passage in the random
system). Panel (c) shows the output with Sé" = B and Sg”t =1Iy. Bis
the calculated input operator for S§*/ = Uy. Panel (d) is the output
for Si' = B and S§* = Uy. Information is decoded only if transmitter
and receiver use the correct combination of input and output layers
(panels (a) and (d)).
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LUSIONS

In an era in which the long overdue promise of quantum technologies has
not been fulfilled yet, the perspective of an all-optical nonlinear computer,
which does computation at the speed of light, is more than appealing.
Given that quantum technologies should be able to solve most of the
main complexity science problems, but no significant progress can be
seen in the near future, scientific community interest is moving towards
other methodologies to realize super-fast computers. Indeed, new opto-
electronic chips and machines have been recently developed [425, 426],
and photonics is progressively more involved in the engineering of com-
putational systems through artificial neural networks.

In this context, two neural network mathematical models are drawing
the main research directions: the deep neural network and the reser-
voir computing. The optical realization of deep neural networks has
been developed in many systems, as integrated circuits with coupled
waveguides [325], pulse propagation in fibers [427] and continuous wave
propagation in air [428]. For reservoir computing, we have devices
made by multimodal fibers with delayed feedback [429, 430], diffrac-
tive resonator arrays via spatial light modulator [413, 431], and random
media [27, 425, 432].

Beyond the engineering of conventional computational techniques, an-
other field is gaining interest: the solutions of optimization problems,
which have been analyzed both by classical and quantum models, includ-
ing experimental implementations. In the field of quantum technologies,
the most widespread approach is quantum annealing, which has its
actualization in D-Wave processors. These devices are designed to find
the ground states of Ising Hamiltonians with specific coupling constants.
Classical minimization of the Ising models also solves optimization prob-
lems. Indeed, there is no proof that quantum annealing algorithms are
more efficient than the classical ones. Classical Ising machines have been
demonstrated by continuous waves propagating in air and designed via
spatial light modulator [9], photonic integrated circuits [426], and pulse
propagation in ring cavities [322].

However, we are still far away from the realization of a nonlinear all-
optical device. This thesis is an in-depth study of classical and quantum
complex nonlinear dynamics in optical systems, aiming at setting the
basis to realize in future a machine that uses a highly nonlinear radiation-
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matter interaction and iterative algorithms to solve NP-Complete prob-
lems.

After a general introduction to complexity science, we treated light
complexity both in classical and in quantum systems. In Part ii, we
investigated classical nonlinear dynamics in complex, extreme regimes.
We dealt with new theoretical models for dispersive shock waves, rogue
waves, Fermi-Pasta-Ulam-Tsingou recurrence, and soliton gas generation,
and reported experimental results in thermal media and photorefractive
crystals. Part iii was about quantum nonlinear systems described in
a nonperturbative framework. By using the positive Prepresentation,
we numerically solved stochastic nonlinear Schrodinger equations and
studied quantum effects in solitons and rogue wave generation. In Part iv,
we explored the use of waves for novel computational devices, able to
solve complex optimization problems, like Ising machines random optical
neural networks.

In this thesis, the complexity of light propagation in nonlinear media
was examined from many points of view to try to answer a specific ques-
tion: can nonlinear waves do computation? We think to have demonstrated,
in various ways, that complexity can be controlled, and enlightening
works in random media [1, 27] experimentally prove that randomness
does generate a reservoir computing neural network.

This thesis also opens novel, inspiring questions: What if we replace
randomness with extreme nonlinear dynamics, or with quantum noise? What
if the weights of the optical artificial neural network are given by an extreme
radiation-matter interaction, which can be highly nonlinear, or even stochastic?
Maybe this could increase the neural network efficiency, maybe not. We
hope to be able to respond certainly to all these open questions in the
near future.
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APPENDIX

IRREVERSIBLE EVOLUTION IN TIME ASYMMETRIC QUANTUM ME-
CHANICS

Fundamental theorems of QM

In order to build a mathematical theory behind a generic quantum
system, we need to define a Hausdorff vector space ¥ with a locally
convex topology T and a scalar product (+|-). We need also an algebra A
of T-continuous linear operator on ¥ and a probability measure P on A.
By the scalar product (-|-), we are able to build a norm ||¢|| = /(¥|¢)
V¢ € ¥ and a metric d(¢,¢) = ||¢ — ¢|| V¢, ¢ € ¥, that is induced
by the norm, therefore we can settle a new topology 7; on ¥, given by
the distance d. Now, we have a Euclidean space (¥, 7;), which is also
normed and separable. To be a physical space it needs the completeness.

Let (H,ty) be the completion of (¥, 7;); H is a separable Hilbert
space, and is the space used to formulate the known time symmetric
quantum theory. The temporal symmetry in a Hilbert space arises from
the following three theorems:

Theorem A.1.1 (Gleason). [433] For every probability P(A), there exists a
positive trace class operator p such that

P(A) = Tr(Ap). (A1)

Theorem A.1.2 (Stone-Neumann). [434] Let us consider the Schrodinger-
Neumann equation for p previously defined

1.0 (*2)

with H Hamiltonian operator. The solutions of such an equation are time
symmetric and they are given by the group of unitary operators ut(t) =
exp — ¢ Ht.

Theorem A.1.3 (Hegerfeldt). [435] For every Hermitian and semi-bounded
Hamiltonian H, either

Tr(A(t)p) = Tr(Ap(t)) =0 Vi€ R (A.3)
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or
Tr(A(t)p) = Tr(Ap(t)) >0 Vt € R (A.g)
except on a set of Lebesque measure zero.

These theorems imply that time asymmetric solutions of the Schrodinger
equation

aP(t
zh% = Hp(t) (A.5)
with time asymmetric boundary conditions are not allowed, hence we

need to modify the mathematical description of the system.

Rigged Hilbert Space Topology

For every fixed ¢y € ¥, the translation T : ¥ — ¥ such that ¢ — ¢ + g
is a linear homeomorphism of ¥ on itself. Therefore 7 is uniquely
determined by the neighborhood system I(0) centered at the origin,
because every other neighborhood of any point ¢ of ¥ is obtained by
translating a neighborhood of the origin of the vector . (¥, T) is said to
be locally convex if C = {C € I(0) | Cisconvex} is a neighborhood local
basis. Since every open ball centered at the origin is convex, it is also a
member of C if and only if 3A € T | 0 € A C B+(0) VB,(0). By this last
condition, we build a locally convex topology T on ¥ that is finer than
the topology 7; induced by the norm.

Let us suppose that (¥, 7) and (#, 7y) are the previously described
spaces and, besides, 7 is locally convex and finer than 73;. Then we can
define another completion @ of ¥, this time with respect to 7, and find
another complete space (P, 7g) that is different from (H, T3 ). Precisely,
® C H, and @ is dense in H. Moreover, ® C H = H* C ®*, where H*
and ®* are the dual spaces of H and &, respectively.

The definition of dual space is the basis to build a RHS and we need a
more physically accessible dual space, according to [102, 103]. Let £ be a
Euclidean space. We identify the scalar product on £ as (+|-); instead (-|-)
is the operatorial product on the dual space £*, namely F(v) = (F|v).
We define our dual space ®* as the space of antilinear and continuous
functionals on @, that is

Fed® <« F(¢) = (9|F). (A.6)

Thus every functional in ®* has a sort of complex conjugate in ®*, and
the Riesz-Frechet representation theorem on the Hilbert space H still
works, hence #H = H*. In this manner we obtain the Gelfand triplet
® C H C ®*, which defines our RHS.
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Gamow Vectors

It is well known that, in order to be observable, the Hamiltonian op-
erator H of a quantum system must be self-adjoint on H, so H = H.
Nevertheless H # H* on ®*. Let us consider the secular equation

H*|E) = E|E). (A7)

If |E) € ®* \ H, we cannot affirm that the corresponding eigenvalue E
is a real number. We define a generalized eigenvector |E) € &*, which
has complex eigenvalue, as a GV |¢g) = |[ET) = |Ex + 1%) (subscript R
is due to one of the first applications of this theory, that Bohm developed
in scattering experiments [103], and it is related to the resonances of the
system). From the Schrédinger equation (in units such that 7 = 1), we
get a unitary operator U(t) = e ! for the temporal evolution of any
state in H. We see that U(t)* = ¢/ is not unitary on ®*:

r , y r
U(t)*|Eg i) :elERfe]FrTﬂERii?”), (A.8)

U(t)™ is not an isometry, because

IU1(6)* | g 2} P = e[| Eg -2 (A9)
Moreover

() [E £ i20)| =550 (A10)
and

() g £ i) ] 25 4o (A1)

In a physical context, we need to identify ® with the Schwartz space
S(RN), that is, the space of rapidly decreasing functions, and the Hilbert
space H with the space of quadratically integrable functions £2(RN), so
these last two expressions suggest that we need to define the following
new spaces:

o ={pe@|f(E)=(pE") e SR)NH2}, (A.12)

o= {pe@|f(E) = (PIE") e SR)NMA | (A13)
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where H2 and H2 are Hardy spaces bounded from below and from
above, respectively. To sum up, @+ are dense in &, & = &_ + P
(®_ NP, # 0 generally) and P is dense in H, consequently

dense dense dense dense

P CPCHCD C DX (A.14)

dense dense dense dense

O, CDOCHCP C P (A.15)
We have now found two Gelfand triplets, ®_ C H C ®*X and 1 C H C
@, where the evolution operator U(t) acts as a semigroup, because it
is well defined and continuous only for t < 0 on ®_, and only for ¢t > 0
on ® . The value t = 0 expresses the intrinsic irreversibility we have
when, for example, we divide an experiment into a preparation stage and
a registration stage. In this case, ®_ will be the space of the initial states
and & will be the space of the detected states.

Quantization of a Damped Motion

For its simplicity and its relevance, the HO can be chosen to introduce the
study of quantum mechanics in a time symmetric context [105, 106]. The
classical HO Hamiltonian is

H=F T 2 (A.16)

We quantize the HO by converting the canonical coordinates x, p into the
operators £, p such that

(%, p] =ih, (A.17)
and we find the spectrum of H:
Hy(x) = Ey(x), E, =hw (n + %) , (A.18)
_ yfme 1 e
lp”(x) - hn, \/WHH ( h x) 7 (A19)

where Hy (x) = (—1)”9(2;%@*)‘2 are the Hermite polynomials.
In a time asymmetric context, considering the equation of a damped
motion comes natural for its inherent irreversibility. In fact, if we consider

the classical dynamical system in one dimension

{ Fu(t) = —u(t) (4.20)
u(0) = ug
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where v > 0 and m = i = 1, we have
u(t) = e uy, (A.21)

which represents a damping for ¢t > 0. We quantize it exactly as we did
for the HO, even if this one is not a Hamiltonian system. In a general
n-dimensional space, one defines a dynamical system as

du
i X(u), (A.22)
1 1

where X is a vector field. Using canonical coordinates (u", ..., u",v*, ..., v"),
we get the Hamiltonian

n
H(u,0) = Y 0 Xe(u), (A.23)
k=1
where Xj are the components of X in the coordinate basis, so for Eq.(A.20)

H(u,v) = —yuv. (A.24)

Since the quantization must take into account that 9 does not commute
with 71, we have

A(n,9) = f%(ﬁﬁJrz?ﬁ). (A.25)
By performing the canonical transformation

P e S o o) 4

= , 0= , (A.26)

V2Y V2y
one obtains the Hamiltonian of the RHO:
52 242
Noe oy P07 R
A, p) = £ - T (A27)

Let us compare the HO and the RHO. We pass from the first one to the
second one, by changing w into the complex value iy [436]. This simple
transformation allows us to move from a parabolic potential bounded
from below to a parabolic barrier. This potential overturning produces a
completely different physics: the HO models the behavior of a pointlike
mass around a stable equilibrium and the RHO gives the dynamics around
an unstable equilibrium, an intrinsically irreversible evolution (at variance
with an oscillator, a falling body never goes back to its initial position).
In this section, we analyze the Hamiltonian of the damped motion,
defined in (A.25). As proved in [105], H(#,9) is self-adjoint on £2(RR)
and parity invariant. We define the time reversal operator T such that

TH(t) == p(—t) = TU) =U'(H)T = UHTU{) =T, (A.28)
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where U(t) := e"**. T plays a fundamental role in this system, and
coincides with the inverse FT, i.e. T$(u,t) := F[p](u, t),where

Elpl(x,1) = r [ ek, k. (A.29)

Let us define two families of tempered distributions in ®*, the first
one

afe) =0, fo (u) =d(u), (A.30)

“Loliy) = gy = CE s, (s

VneN |f, ) :=

and the second one

off) =0, ff(w)=1, (A32)

un

Nk

Hereafter, following [99, 102, 103], we denote a tempered distribution fnjE
a resonance. We can see that

H*|fi') = £Eulfa), (A:34)

where E;; := iy <n + %) € C. Given that f;" are tempered distributions,

Vn e N |[fy) = %ﬁ"vm = fi() = (A33)

their inverse FTs are well defined, and they are

[fn ] rfn ’ (A.35)
Flff] =i"Vanf, . (A36)

We show the quasi-orthogonality and the quasi-completeness of the reso-
nances:

<fn ‘fm *(snml an fn )* (”_y)' (A~37)

In order to find real energy values, we need to analyze also the contin-
uous spectrum. Since H is parity invariant, each generalized eigenvalue
is doubly degenerate, thus

H*yf = EyE. (A.38)



A.1 TRREVERSIBLE EVOLUTION IN TIME ASYMMETRIC QUANTUM MECHANICS

As one can see in [105], the generalized eigenfunctions are

L (5e)
E 72
= , A.
¢i(”) mui ( 39)
where 1. are tempered distributions such that
M u>
”/-\s- =" =0 ,ut = 0 u<0 . (A.40)
0 u<o0 ut u<0

It is possible to prove both the orthonormality and the completeness of
the eigenfunctions, namely

Y [ 05 ) 95 () = 8By — Ea); (A4
+
L [ )] pE (u)aE = o(u— ). (A42)
+

Therefore we can apply the Gelfand-Maurin theorem [437] and write any
function in S(R) as

00 = X [ ¥E ) (glyt) dE. (A43)
By repeating the same reasoning

H*F [y2F] = EF [93F], (A4q)

so one can prove also the orthonormality and the completeness of the
inverse FTs of the eigenfunctions, whence

00 = X [ F[vz] 0 gIF [wzF]) e (A45)

We have just defined two groups of eigenfunctions, % (1) and F [1}7;5 ] (u),

which represent the continuous spectrum of the Hamiltonian of a damped
motion into the RHS. Moreover, we have just seen that they depend on
- ributions 1Y)
the tempered distributions u
complex plane when

, which have simple poles in the

E=—-E, = —iy (n + %) . (A.46)
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Thanks to the properties of the generalized function u% [105], we can
finally state what follows:

E _ &E)hiyy
Res [l/’i/ —En} = an ’ (A.47)
s —E (£0)"iV/7 4
Res [1?[1/;i ],En] = VY (A48)
By defining the following spaces, we get two Gelfand triplets:
H =L*(R), ®=S(R), (A.49)
= {pe@| f(E) = (pIFp:™) e H2 }, (A.50)
o, ={peco|f(E) = (glyk) e 3 }. (As51)

From this framework into the RHS ®*, we can infer the irreversible
evolution of certain waves in . We established above the connection
between the continuous and the point spectrum. Now we make this
link definitively clear and we show that the evolution operator acts as a
semigroup on ®. for a well-defined orientation of the arrow of time. By
recalling Egs.(A.47) and (A.48), we apply the residue theorem to initial
data in ®+ [105] and get two different expansions in GV:

+00

¢t (u) = gowmf;(u) Vot e, (A.52)
+c0

¢ (u) = §0<¢‘|f,:>f,r<u) Vo ed_. (A.53)

Thanks to the following definitions of two new function spaces, both
of them subspaces of S(R) and isomorphic by the inverse FT, we can
establish the relation between ® and ®_:

D = CZP(R) is the space of the infinitely differentiable functions with
compact support;

Z = {F[¢]| ¢ € D}, where [ is the inverse FT.

Since for each function ¢ € Z, we have

+001 4an

‘P(u) = n;) Edu” ‘u ou" Z fn fn |¢ (A.54)
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while, at the same time, every i € D is the FT of a function in Z, hence

o0 = 2= [FWEe o= 3 f Gl as

We can state that
&, =D, o_=Z. (A.56)
At last, we study the evolution operator U(t) = e~'H!. U is a unitary
group on H = L2(R), given that if ¥(u,0) € £2(R) then
P t) = UDP(,0) = e'y(e"u,0), (A57)

transformation that turns out to be an isometry on £2(IR). This means
that if ¢(u,t) solves the Schrodinger equation, then also Ty(u,t) =
(u, —t) does. Therefore the theory is time-reversal invariant on the
Hilbert space H, without letting us see the damping we expected. Where
do we observe the temporal irreversibility? It lacks the analysis of U
restricted to @+. If ¢+ (u,0) € Oy then

Ut lph) = (pT|U* (k) = H (T |ph) e HE & t>0; (As8)
on the other hand, if ¢~ (1,0) € ®_ then
(U ()~ |F[pzE]) = (U (=t Flp~]lyF) =

= (Flp*]|U (—t)pF) = B (Flp~]piF) = (A.59)
=B (¢~ [FlpiF]) e H2 & t<0.

We conclude that U(t) establishes two semigroups:

Ui(t): Dy —> Dy VE>0 (A.60)
and

U (H):®d —d V<O (A.61)

We have just found a way to model irreversible phenomena. In fact, the
action of U allows us to choose an orientation of the temporal arrow: if it
goes forward from zero, then our initial data is in @, otherwise it is in
&_, indeed

<
+
—
&
-
=
Il

L e VDN GH ) o (u) (A62)
¢ (uwt) = L, eV F0) A (u).
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Moreover, all the physics we get fixing a specific orientation of time’s ar-
row is achievable fixing the other one too, because time reversal operator
T establishes an isomorphism between & and ®_, in fact

T (u,t) = U(=1)Tp™" (u,0) = ¢~ (u, ). (A.63)

Summarizing, we got an irreversible quantum system by observing
that the evolution operator acts as a semigroup on @+, due to the pres-
ence of resonant states f} In this way, the instant t = 0 separates the
evolution in two complementary directions: if one starts from @, one
can stays forever in @ only evolving forward in time. In other words
one chooses the temporal orientation, fixes the signature of ®-, and
cannot go backwards.

Figure A.1: Pictorial representation of Gelfand triplet defined in Eq.(A.15). Here
@, =D, ® = S(R) and X = £L2(R). One can get an Euler-Venn
diagram also for the triplet in Eq.(A.14) by changing & with ®_ and
D with Z.

The Reversed Harmonic Oscillator: Remarkable Results
We consider the family of operators [106]
N A,
V) =exp E(xp +pR) ¢ (A.64)

In a system of measurement where /i = 1, we have
[%,p] =1, s0

p(x) = e p(e ), (A.65)
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whence
Va2Vt =e g, VypVt =t (A.66)

If we recall the Hamiltonian in the equation (A.19)

52 242
P~ rX
Hpyo := = , A.6
HO =5+ — (A.67)
it is easy to see that
VoxHV_} = +1Hpo (A.68)
4 4

and we can transform the results we already know for the HO in results
for the RHO:

1
EHO = q(n+ 5), E, =1E0 € C (A.69)
1/4
Ho _ (1) 12 () (a70
fi = Vi@ € X (R). (A71)

The Unitary Transformation: from (u,v) to (x, p) Framework

One passes from the HO to the RHO through the operator Vi%, but can
also pass from H(i1,9) to H(%, p), i.e. from the damped motion to the
RHO, through a canonical transformation and find a relation between the
spectra of these two Hamiltonians.

The canonical transformation from (u,v) to (x, p) it is generated by
the generating function

1
S(x,u) = %xz —\/2yxu + 5”2’ (A.72)
with p = g—i,v: 7‘3—5.
We define the unitary transformation
U: L3(R) — L*(R) (A.73)
such that

flw) — WUA() = € [ fwyeSeau, (A74)
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with € := ¢~i% . # and we can prove that ¢/ is unitary by demonstrat-
ing that

|CJ2 /]Re"[s(x’”%s("/'”)]du =6(x—x). (A.75)

In order to get a relation of quasi-orthogonality and quasi-completeness
for the resonances, we need to understand the nature of the operator V.
It acts almost like the evolution operator U in Eq.(A.57), with a complex
(instead of real) exponential, but this is enough only to say that V) is
unitary for pure imaginary A, not for every A € C. In fact, for a generic
A = w + iy, where w, v € R, one has

r—iw

<VA¢|V/\IP> — f]R dx [e%qﬁ <e’7—iwx>]* e 2
= [pdx [p(x)]" p(x) = e (gly).

Therefore it is not surprising that f;© are only proportional to U [f;F (u)](x)
and not exactly equal. In fact

Fi(x) = €T ) S TULfE ()] (x). (A.77)

Nevertheless, we achieve the same relation of quasi-orthogonality and
quasi-completeness we had before:

P <€7_i“’x> = (A76)

—+o00

(o ()| fo (%)) = S ZO fa O] fif () =8(x =) (A78)
Moreover
[ (0] = £iF (2. (A.79)

Recalling the equations (A.35), (A.36) and the meaning of the inverse FT
for the damped motion represented by H (i, 9) (the inverse FT coincides
with the time reversal operator T in that system), one has T = C, where
C is the complex conjugation operator, as shown in [106].

We want to find x¥ such that

HxE = ExE. (A.80)
From [106] we get the complete derivation of the following solutions:

xE(x) = \/ZCTWN? T(v+1)D_y_q(—y/—27ix), (A.81)

xE(x) = x5 (—x), (A.82)
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where here v = — (1% + %) and
_2
I e Ve = T
Dv(a) = =y [t a (A83)

is a Whittaker function [438].
If one remembers the equation (A.44), one knows that the set of
eigenfunction is not complete yet. In fact, the two families of functions

7k (x) == (Z/{F[tpf]) (x) still miss, and we obtain

Hpk = —Enf, (A84)
E(x) = —C i T(—v)Dy(—y/Z7ix) (A.85)
ni(x) = 27_571 v)Dy Yix), .85
nE(x) = nk(—x). (A.86)

We observe that
n(x) = Xk ()%, (A.87)

fact which confirms that the time reversal operator T acts like the complex
conjugation C.

From the corresponding properties satisfied by ¢ (1) and from the
unitary nature of I/ we have

L JHE@I A () = o(E - E'); (A59)
L J @I AE)E = o(x - X (A89)
L J E )0 (= o(E ~ B (A.90)
3 L IEGOT RE ()dE = 6(x =), (Agn)

At this point, we have all the tools we need to study the analytic
properties of these four families of eigenfunctions. The outcome is that



174 APPENDIX

x% (x) and 5 (x) have simple poles at E = —E,, and E = E,,, respectively.

Furthermore,
E C (-1)"._au .
Res[x% (x); —En] = i i 2 D (F+/—27ix), (A.92)
C (=1)" .
Res[qi(x);En] = \/m( n!) i Dy (F+/27ix). (A.93)

In [438], [439] and [440] one can find out that

n 2
Dy(y) = 2-2¢"TH, (% . This, together with H,(—y) = (—1)"H,(y),

SN——

allows us to obtain

Res[xk (x); —En] o f,f (x) (A.94)
and
Res([i (x); En] o fi; (). (A.95)
Following section A.1.4, we get ®1 from the residues of the RHO
eigenfunctions:
H = L%(R), ®=S5(R), (A.96)
o ={pe|f(E)=(glyk) e}, (A97)
o, ={pec|f(E) = (plxk) e H3 }. (A.98)

The Evolution Operator Acting like a Semigroup

We study waves ¢+ € @4 and the action of the evolution operator. We
have T = C and

T(®) = (A.99)

Writing envelopes of ¢+ in series of resonances:

P = LSRN S (x) Vet ey, (Ar00)
P = LSS () Ve
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Thanks to the Gelfand-Maurin spectral theorem

¢r(x) = Li[rdEXE(x)(9"[pE)* (A101)
T frdEnk (x){p~ k)"

In conclusion, even in this case, the temporal evolution operator U(t) =

S
L
=
=
I

e~'H! establishes a unitary group on H = £2(R), and two semigroups:
U+(t) : <D+ — q>+ Vit > 0; (A.102)
U-(t): - — d_ vt <O0. (A.103)

Furthermore, if ¢ (x,0) € @4 then
Ze T2 G H ) f (%), (A.104)
while, if ¢~ (x,0) € O_ then

t) =Y "D o £y £ (x). (A.105)

We stress again that we got an irreversible quantum theory by studying
the action of U on @4 as a semigroup. Time ¢ = 0 splits the evolution in
two diametrically opposed directions, and it becomes the instant which
separates two different dynamics.

Functions with Compact Support

In this section we examine a function set in ®,. We start working in

the (u,v) representation, where H(il,0) = —%[0 + 01l]. We analyze

the evolution in (#,v) and (x, p) planes. In (x,p) the Hamiltonian is
52

H= % - # (we fix v = 1 hereafter).

Wawve Packets in (u,v) Plane

We previously proved that @ and ®_ coincide with D and Z, respec-
tively. We choose the forward orientation of the temporal arrow, so we
focus our attention on the triplet

d,. CHCDY, (A.106)

thatis D C £L2(R) C D*.
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Let us consider the family of functions

Keexp {ﬁ} lu| < e

0 |u| > €

pe(u) = (A.107)

1
where € > 0 and K is such that ||¢e||2 = 1, i.e. ([ |¢e(u)[?dx)? = 1.
¢e(u) is a function of class C*°(RR), precisely

¢e(u) €D Ve >0. (A.108)
25
—e=0.25
---e=0.50
ol
o
c
2 15
2
£
EA
©
=
0.5t
5

. 0 .
Coordinate u

Figure A.2: Functions ¢ with compact support defined in Eq.(A.107) for several €
values.

Starting from

Z fo W) fif (w) = 6(u — w), (A.109)
with f; (1) = (_\/%n A26(u) and f;f (u) = f’ we have
Pelu f]R dwd(u = w)ge(w) = (A.110)

= fIR dw Yoo fu (W) (w)e(w) = 5 fu (1) (Pel fil),
since ¢ € D. In deriving Eq.(A.110), as discussed in Sec. A.1.4 and
in [106], the residue theorem allows us to swap the integral and the
summation. This is not valid for general functions in ® not belonging to
@,. We define the N-order background function as

PrC(u,t) == ¢ an (HPIfih)* € @5 (A.111)
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consequently

Z fa ) UBPIf)* + (M, t) V¢ e P. (A.112)

For ¢ € @, p8° . =0and U(t) acts as a semigroup. The evolution
is a superposition of exponentially decaying functions. On the contrary,
forp £ 4, ¢I%g +oo does not converge and the evolution includes non
exponentially decaying components.

—1=0.0

3.5F t=0.5
--t=1.0

3k t=1.5
t=2.0

250 ! --t=2.5

Wave Function ¢1
5w

|

o

0.5 1

1
S

]
o

0
Coordinate u

Figure A.3: One-dimensional evolution of |¢1 (u, t)| [Eq.(A.107) with € = 1].

We numerically simulate the Schrodinger equation 1%—? = Hy for
the Hamiltonian H = 1y <u% + %) (with y=1), with initial condition
P(u, t = 0) = ¢pe(u). Figures A.3 and A.4 show the resulting “focusing”
evolution.

Figure A 5 reports the evolution of the coefficients Cy (t) := (U(t)¢1|f)*-

These brackets exponentially decay, with quantized decay rates. Into a
semilogarithmic scale, the decay rates correspond to straight lines with
different slopes.

Wave Packets in (x, p) Plane

We pass from the (1, v) to (x, p) by the unitary transformation I:

(Pe(x): Zufn <u¢€‘ufn an ‘PS‘fn >/
(A.113)
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Coordinate u

Coefficients CN

0o HA~NO

o

Figure A.5: Numerically calculated projections Cy/(t) := (U(t)¢1|f5)* on the N
order resonances of a function with compact support [Eq.(A.107) with
€ = 1] in the (u,v) representation, in a semilogarithmic scale.

with fni(x) = V:E%wﬁo(x).

We numerically analyze the transformed functions. In Fig. A.6, one can
see several (U¢e) (x). We remark that functions ¢, which have compact
support in (u,v), do not have compact support in (x, p) phase plane.

We numerically study the evolution of wave packets in (x, p). We solve

numerically i aa—lf = Hy with initial condition ¢ (x, t = 0) = (U¢e) (x) and
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0.7} —e=0.25
--¢=0.50
0.6/ --£=0.75
w e=1.00
2 ost —g=1.25
S ---e=1.50
2 o04f - d
=]
w
o 03 1
[
= 02 ]
0.1 1
5 "0 s 5 10 15

0
Coordinate x

Figure A.6: Transformed ¢ [Eq.(A.113) for various €].

0.6
—1=0.0

--t=0.2
--t=0.4
t=0.6
t=0.8
t=1.0

o
2]
T

°
=

Wave Function ¢1/2
o
)

0.2r 1
0.1+ |
—qO -5 10

0
Coordinate x

Figure A.7: One-dimensional evolution of a transformed function with compact
support [Eq.(A.113), € = 1/2] with a RHO potential.

a RHO potential. Figures A.7 and A.8 show the resulting “defocusing”
evolution.

Gaussian Function

We examine the Gelfand triplet in Eq.(A.15) defined in sections A.1.4
and A.1.5, in the case of the Gaussian function as element of the Hilbert
space but not belonging neither to @ nor to ®_ (see figure 1). For this
kind of functions, the expansion in Gamow states must be truncated
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Coordinate x

-

0 0.2 0.4 0.6 0.8
Time t

Figure A.8: Evolution of a transformed function with compact support [Eq.(A.113),
€ = 1/2] with a RHO potential.

and completed by an additional background function, not decaying
exponentially, as discussed in Sec. A.1.8.2. We illustrate theoretically

and numerically the properties of the background function, specifically

u?

"’;Z and its transformed U [¢](x).
We analyze the evolution both in (u,v) and (x, p) planes.
Let us define a normalized Gaussian function

P(u) = \4%67% € S(R). (A.114)

¢(u) does not belong to D or to Z because the Fourier transformed of
a Gaussian function is still a Gaussian function and D N Z = @. Since

Yo fif () fi (w) = 6(u — w), we have

studying a Gaussian function ¢(u) =

W= [ Y frf @) Ve (A115)
/R n=0

The integral and the summation in Eq.(A.115) cannot be swapped in
general, at variance with the case of ¢ (1) previously considered. Without
loss of generality, we write

Z fn 4)|fn ( )/ (A.116)

where ¢BC (1) is the N-order background.
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x
1.6 —0¢=0.5/
% —ag=1
14 —*e=1.5]
1.2 *e=2
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0.2 1
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- T S S SR

Index n

Figure A.9: Projections (¢ |f,7)* of a function with compact support [defined in
Eq.(A.107), e =1].

Projections

0.5

0 2 4 6 8 10
Index n

Figure A.10: Projections (¢|f,/)* of the Gaussian function.

Since ¢(u) = ¢(—u), while f,(u) = —f,(—u) for odd n, we have

ntl

% forevenn
@lfa) = Vvt (A.117)
0 foroddn

Both (¢|f;7) and {¢e|f;}) decrease for even n, but the Gaussian (¢|f,;")
decay much more slowly, as one can see by comparing figures 9 and
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10. However, this is not a mathematical proof of the existence of the
background. The presence of the background is proved through the
study of the initial datum: ¢.(u) is an initial state that is composed
only by a discrete sum of resonances without any component in the
continuum, because it belongs to D; on the contrary ¢(u) is an initial
state with a component of continuous radiation that is the background.

We analyze the evolved N-order background wave for a Gaussian
initial data. We want to study its limit as N — +co. We have

¢§]G(M/t) = ¢(u t) = nlo f W U®)9) =
U(t)p(u) — Ofn ( U))@)) = (A.118)
U(t)p(u) - —E@HD () (fif ).

We notice that the limit as N approaches infinity could diverge or not
exist. This happens in most cases, and specifically for the Gaussian
function. In fact, in Eq.(A.117), we can approximate the Gamma function

I'(z) = V2rzF1e7E {1 +0 (%)} (A.119)
and the factorial
n! = 2mn"tie " {1 +0 (%)} (A.120)

for large values of z and 7, thanks to the Stirling’s formula [438]. We find,
for even n

o 2P A

Plf) = N o ~ =, (A.121)
hence (§|f;/) approaches zero with order }, too slowly to let the series
converge Vt > 0, Vu € R, so the limit N — +oc0 does not exist globally.
This confirms that an expansion like Eq.(A.113) with an infinite number
of GV is meaningless for a Gaussian function, and a background term is
needed.

Figures A.11 and A.12 show a portrayal of the Gaussian function
evolution. In Fig. A.13 and in Fig. A.14 one can observe the decay of the
coefficients.

The (u, v) phase space remains the simplest configuration for numerical
tests of the theory. Since one runs into a high computational complexity
when analyses the background evolution, we choose (1, v) phase space
to compare the evolution of a Gaussian function with a specific ¢.. We
best fit the normalized Gaussian function by a function ¢ in order to
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Figure A.11: One-dimensional evolution of the Gaussian wave ¢(u) =

i
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Figure A.12: Evolution of the Gaussian wave ¢(u) =

i

compare the background function with the difference between these two
waves. Figure A.15 shows ¢(u) and its best fit by ¢ (1), obtained for
€ = eg = 1,802425. Fig. A.16 compares the calculated evolution of
¢(u) and ¢,. We should see the dispersive component that occurs on
the boundaries of the Gaussian evolution. However, appreciating the
dispersive behavior is difficult in a linear scale; we report a comparison
between 47%3 and ¢ — ¢¢, in Fig. A.17 in a semilogarithmic scale. The
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Figure A.14: Evolution of the projections on the N order resonances Cy(t) :=

w2

(U(H)¢|f)* of the Gaussian wave ¢(u) = % in the (u,v) represen-

tation, in a semilogarithmic scale.

continuous lines represent the Gaussian background for several time
values, while the dashed lines give the difference between the Gaussian
and the function with compact support. One can now see without
difficulties that the outlines on the boundaries are well overlapped, so
the long time evolution of a Gaussian background, that is, the dispersive
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tail of a function not belonging to &, can be approximated to the
rest between the function we are studying and an appropriately chosen
function ¢e.

Wave Function
o
=

0
Coordinate u

2
Figure A.15: Fit of the Gaussian function ¢(u) = ¢ = by the function ¢¢, (1)
(€0 = 1.802425).
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Figure A.16: Comparison of the Gaussian evolution ¢(u, t) with ¢¢, (1, ). Pe, (1, t)
focalizes without any loss or dispersion of energy, while the Gaussian
presents a dispersive background (see also Fig. A.17).
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Figure A.17: We want to analyze if a region where
BG(u,t) =~ ¢(u, t) — Pe, (1, t) exists. A comparison between p5 (i, t)

and ¢(u, t) — Pe, (1, t) is here reported in semilogarithmic scale: these
two wave packets are well overlapped on their borders.
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Figure A.18: One-dimensional evolution of the Gaussian wave ¢(x) = 4= under

S

a RHO potential.

We want now complete our analysis by considering the (x, p) —system.
By the transformation U we see that ¢(x) = [U¢(u)] (x) is a Gaussian
function anyway, because

[Up(u)] (x) = n’%C’/}R e elStom) gy — (%) fem1r, (A.122)



A.2 MATHEMATICAL DEFINITIONS
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Figure A.19: Evolution of the wave |¢| with initial condition ¢(x) =

i

The focusing dynamics in the (1, v) space corresponds to a defocusing
propagation in the (x, p) space as shown in Fig. A.18 and in Fig. A.19.

MATHEMATICAL DEFINITIONS

This appendix is written to let the reader find the mathematical definitions
used in Sec. A.1 quickly. It presents only a list of definitions, without any
ambition to explain the mathematics that is behind. For more details, one

can see [441-444].

Definition A.2.1. Given a set X, a topology 7 is a collection of elements
of the power set P(X) such that:

e 0, XeT;

o U;ozlAn eET V{AH}HE]N (@

o UN A, eTV{A, .., AN} C T
The members of T are called open sets.

Definition A.2.2. Given two topologies 71 and 1, on the same set X, we
say that 7y is finer or stronger than 7, if 7, C 7y.

Definition A.2.3. Let f : X — Y be a function between two topological
spaces (X, tx) and (Y, 7y). f is said to be continuous if and only if

fH(A) etx VAETy. (A.123)
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Definition A.2.4. Let f : X — Y be a function between two topological
spaces (X, tx) and (Y, y). f is called a homeomorphism if and only if
f is a bijective continuous function with continuous inverse function.

Definition A.2.5. Let (X, T) be a vector space with a topology . If T
makes the vector addition and the scalar multiplication be continuous on
X, then we say that (X, 7) is a topological vector space.

Definition A.2.6. A subset B of the topology 7 is a basis (or a base) of T
if

VA €T H{Bilticicn CB | A=UieBi. (A.124)

Definition A.2.7. Given x € X, a neighborhood U of x is a subset of X
suchthat3JA et | x€ ACU.

Definition A.2.8. Given x € X and given the neighborhood system
centered at x

I(x) = {U C X | Uisaneighbourhoodofx}, (A.125)

aneighborhood local basis is a subset | of I(x) such that VU € I(x) JA €
J | AcClU.

Definition A.2.9. A topological space (X, 7) is a Hausdorff space if
Vx,ye X 3Uel(x),Velly) | UNV =Q. (A.126)

Definition A.2.10. Let (X, 7) be a topological vector space. A subset C
of X is said to be convex if the segments {(1 —#)x+ty | 0 <t <1} are
contained in C for any x,y € C.

Definition A.2.11. Let (X, T) be a topological vector space. (X, T) is said
to be locally convex if C = {C € I(0) | Cisconvex} is a neighborhood
local basis.

Definition A.2.12. Let {¢;, },cN be a sequence of elements of X, where
(X, 7) is a topological vector space. Let B be a neighborhood local basis
that is centered at 0. {yy, },cN is said to be a Cauchy sequence if

VBeB weN | ¢—¢u € B Ym,n>v. (A.127)

Definition A.2.13. A topological vector space is said to be complete
when it contains the limit elements of every its Cauchy sequence.

Definition A.2.14. Let (X, T) be a topological vector space. A topological
vector space Y is the X completion according to T if it is the smallest
vector space that contains every members of X and each limit element of
Cauchy sequences in X.
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Definition A.2.15. Let X be a set. A metric (or a distance) on X is a
function d : X x X — R that satisfies the following three conditions:

e d(x,y) >0Vx,ye Xandd(x,y) =0 ©x=y;
o d(x,y) =d(y,x) Vx,y € X;
o d(x,z) <d(x,y)+d(y,z) Vx,y,z € X.

Definition A.2.16. Given a metric space (X, d), we define an open ball
of radius r € RT centered at xg € X as the set

By(xg) ={x € X | d(xo,x) <r}. (A.128)

Definition A.2.17. Let (X, d) be a metric space. 4 induces a metric topol-
ogy 7; on X, which is generated by the basis B = {B,(x) |[x € X, r €
R*}. In 14, the subset | = {B,(0) | r € R"} of B is a neighborhood
centered at the origin.

Definition A.2.18. Let X be a set. A norm on X is a function || - || : X —
IR that satisfies the following three conditions:

o ||x|| >0Vxe Xand ||x]| =0 & x=0;
o |lax|| = |a| ||x|| Vx € X, Vscalara;
o llx+yll <[l + Iyl vVx,y € X.

Definition A.2.19. In a topological space (X, T), a point xg € X is the
limit of the sequence {xy},cpy if

YUel(xg) IveN | x, €U Vn>v. (A.129)

Definition A.2.20. A C X is dense in (X, 7) if every point x € X either
belongs to A or is a limit point of a sequence in A.

Definition A.2.21. A topological vector space that is normed and com-
plete with respect to the norm is called Banach space.

Definition A.2.22. A topological vector space with a scalar product is
called Euclidean space.

Definition A.2.23. A Banach space with a scalar product is called Hilbert
space.

Definition A.2.24. Given a set X, an algebra A is a collection of elements
of the power set P(X) such that:

e e A
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e Ac AVAEc A

e AUBe A VA,Be A.

Definition A.2.25. Given a set X, a o-algebra A is a collection of elements
of the power set P(X) such that:

e Ve A

o Ac AVAc A

o UY Ay € AV{Autpen C A
The members of A are called measurable sets.
Remark A.2.1. Each o-algebra is an algebra.

Definition A.2.26. Given an algebra A, a measure on A is a function
prA— R that satisfies the following three conditions:

* u(@)=0;
o u(A)>0 VAc A
o w(Up1An) = Lo p(An) Y{Antwen CA | UZ_1An C (A), ArN

= OVk#£].

Definition A.2.27. Given a set X, an algebra .4 on X and a measure y on
A, a measure space is the triplet (X, A, ).

Definition A.2.28. Let (X, A, ) be a measure space. If u(X) = 1,
(X, A, ) is a probability space and  is called a probability measure.

Definition A.2.29. Given a vector space V on a field K, V* = {F:V —
K | Fiscontinuousandlinear} is called a dual space of V, and any F € V*
is called a linear functional. Moreover, if W is a vector subspace of V,
then V* C W*.

The one which follows is a fundamental theorem about the representa-
tion of the dual space of a Hilbert space.

Theorem A.2.1 (Riesz-Fréchet). Let H be a Hilbert space. Given any F € ‘H*,
there exists a unique f € H such that

(Flg) = (flo) V¢ € H, (A.130)
where (F|¢) := F(¢) is the operatorial product. Moreover,
[Ell3 = sup [(Flp)| = [|flln- (A.131)

gl <1



A.2 MATHEMATICAL DEFINITIONS

Definition A.2.30. Let us consider a continuous linear operator A : H —
‘H, where H is a Hilbert space. Then the adjoint of A is the continuous
linear operator A" : % — H satisfying

(Ax|y) = (x|ATy) Vx,y € H. (A.132)

If A= A' it is a Hermitian (or self-adjoint) operator. Moreover, if A is
a Hermitian continuous operator, its spectrum is real.

Definition A.2.31. A continuous linear operator U : H — H is said to
be unitary if and only if UT = U~!. Moreover, an operator U is unitary
on H if and only if U is an isometry, i.e. ||Ux|| = ||x]|.

Definition A.2.32. Let us define the Hardy space 'Hi M), p € (0; +00)
for the upper half space (for the lower half space) as the space of the

holomorphic functions f : C — C such that ||f][| := sup, [/ \f}l/p
(\ |fII := sup, g [fr |f}1/p> is a finite real number.
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