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Gauge invariant formulation of metric f(R) gravity for gravitational waves
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We analyze the propagation of gravitational waves in metric f(R) theories of gravity, on the
special setting of flat background geometry (Minkowski spacetime). In particular, adopting a gauge
invariant formalism we clearly establish that the exact number of propagating degrees of freedom is
three, consisting in the standard tensorial modes along with an additional massive scalar field. Then,
investigating their effects on test masses via geodesic deviation equation, we show that the additional
dynamical degree contained in such extended formulations is actually detectable as superposition of
longitudinal and breathing stresses, which even though in principle corresponding to distinct pure
polarizations, turn out to be never separable in the wave dynamics and cannot be interpreted as
proper independent excitations.

I. INTRODUCTION

General Relativity (GR) has a really solid kinemati-
cal morphology, based on the covariant formulation of
the spacetime geometry. Nonetheless, its dynamical fea-
tures are more questionable, in view of extensions of the
Einstein-Hilbert Lagrangian versus more general scalar
functions [1–5]. Among the available choices, when we
consider the generalization of the Einstein gravity to
larger frameworks, the so-called f(R) models [6–10] stand
for their simplicity and viability. Especially, such an ex-
tended approach turns out to be very suitable in spe-
cific applications, by virtue of its equivalence with Brans-
Dicke theories [1, 11–14].
The recent detection of gravitational waves from com-

pact objects coalescence [15–17] suggests that in the near
future it will be possible to test GR via the morphology
of the observed gravitational wave template and spectra
[18–24]. Then, it becomes very relevant to be able to
predict the modifications induced by extended theory of
gravity on the morphology and detectability of spacetime
ripples. In this respect, a crucial role is surely played by
f(R) models and many efforts have been pursued in past
and recent years to suitably characterize the specific track
left by this modified theory of gravity.
The analysis of linear modes featuring f(R) theories,

even on a flat space-time background, suffers from a cer-
tain extent of ambiguity concerning the exact number of
degrees of freedom carried by the gravitational wave dur-
ing its propagation. In particular, if in [25] it was claimed
the existence of three independent propagation modes,
consisting in ordinary tensorial degrees of freedom along
with an additional massive scalar mode, other analyses
introduced a further massless scalar field, eventually es-
tablishing four degrees of freedom [26], in contrast with
the scalar tensor representation of the theory. A primary
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contribution of clarification on this literature debate, was
provided by the Hamiltonian approach in [27], where the
existence of only three independent modes was clearly
inferred from the constraint algebra analysis.
Here, we give a definitive word on this debate, by us-

ing fully gauge-invariant quantities to treat gravitational
waves and looking the problem both in the scalar-tensor
formulation of f(R), as well as in the forth order modified
equation approach, obtaining the same firm result: the
number degrees of freedom is, as expected by its scalar-
tensor formulation, equal to three, i.e. the two standard
tensorial modes and an additional scalar one. In this re-
gard, we show also that this extra degree is detectable as
a superposition of a longitudinal and breathing stresses.
The key point of the obtained results is that these two
components, in principle corresponding to distinct pure
modes, are actually never separable in the wave dynam-
ics. Eventually, we investigate the nature of the emerging
polarizations, in order to get information of the effective
morphology that a modified wave could manifest in the
interferometers of present and further generations.
The paper is organized as follows: in Sec. II we study

the fourth order equation stemming from metric f(R)
theory in terms of gauge invariant variables, outlining
the emergence of an additional degree of freedom with
respect to GR; in Sec. III we repeat the analysis in the
scalar-tensor representation. Eventually in Sec. IV con-
clusions are drawn.

II. METRIC f(R) THEORIES OF GRAVITY

The action for a generic f(R) model is given by1

S =
1

2κ

∫

d4x
√−g f(R) + SM (gµν , χM ), (1)

where f(R) is a function of the Ricci scalar R and SM the
action for the matter fields collectively denoted by χM ,

1 In the following we set c = 1 and κ = 8πG.
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which we assume to be only minimally coupled to the
metric. According the metric approach (or second order
formulation), we consider the Ricci scalar as a function
of the metric variable only, i.e.

R = gµνRµν(g), (2)

with the Ricci tensor obtained by the following contrac-
tion of the Riemann tensor

Rµν = Rρ
µρν = ∂ρΓ

ρ
µν − ∂νΓ

ρ
µρ+Γρ

τρΓ
τ
µν −Γρ

τνΓ
τ
µρ,
(3)

where the connection components are the usual Christof-
fel symbols (Levi-Civita connection). Varying (1) with
respect to gµν yields the field equations:

f ′(R)Rµν−
1

2
f(R)gµν−∇µ∇νf

′(R)+gµν�f ′(R) = κTµν ,

(4)
where a prime indicates differentiation with respect to
the argument and Tµν is the stress energy tensor defined
as

Tµν =
−2√−g

δSM

δgµν
. (5)

We note that the class of solutions offered by this refor-
mulation is clearly wider than that one viable in GR, as
one can easily infer by the inspection of the trace of (4)
(the so-called structural equation), i.e.

f ′(R)R − 2f(R) + 3�f ′(R) = κT, (6)

that even in the vacuum case (T = 0) does not com-
pel any more the Ricci scalar to identically vanish, as it
occurs in the standard formulation in the absence of cos-
mological constant.
In the following, we will restrict our attention to metric

perturbations around the Minkowski background, i.e.

gµν = ηµν + hµν , (7)

keeping in mind that, in extended theories of gravity,
the Minkowski space-time can no longer be considered
as the unique ”ground state” of General Relativity (a
privileged globally flat state in the quantum dynamics
of the gravitational field). Actually, by the inspection
of (6), it is clear that we could deal with equivalently
possible ”ground states”, as far as we determine forms of
the Ricci scalar that are solutions of the vacuum trace
equation. In such cases we could have a non-vanishing
background Ricci scalar R(0) and therefore we would be
considering gravitational waves propagating on a curved
space-time. Although this situation is surely of physical
interest, we restrict our analysis to ordinary propaga-
tion on Minkowski geometry. Indeed, there exist no ex-
perimental evidences that the detection of gravitational
waves by present interferometers is affected by an ap-
preciable value of background curvature, except for local
turbulent effect, like the Newtonian noise [28]. Our only
aim is to clarify the nature of the wave polarization, in

view of their possible detection, and to give a contribu-
tion to the debate concerning the number of degrees of
freedom featuring the considered extended theories. In
fact, this information should be not affected by the curva-
ture of the background metric, but it must be an intrinsic
information of the gravitational dynamics.
In (7) we retain |hµν | ≪ 1 valid in some reference frame,
ηµν = diag(−1, 1, 1, 1) and the inverse metric given by

gµν = ηµν − hµν , (8)

in order to gµρgρν = δµν + O(h2) be preserved. At the
first order in hµν the Riemann and the Ricci tensor read
as, respectively:

R(1)
ρσµν =

1

2
(∂σ∂µhρν + ∂ρ∂νhσµ − ∂σ∂νhρµ − ∂ρ∂µhσν)

(9)

R(1)
µν =

1

2

(
∂µ∂ρh

ρ
ν + ∂ν∂ρh

ρ
µ − ∂µ∂νh−�hµν

)
,

(10)

where the trace h is defined as h ≡ ηµνhµν and� ≡ ∂µ∂µ.
Lastly, by virtue of (10), the Ricci scalar turns out to be

R(1) = ηµνR(1)
µν = ∂µ∂νh

µν −�h, (11)

which is, in general, not vanishing. Concerning the func-
tional form of f(·), we can imagine to perform a Tay-
lor expansion around the background value R(0), which
taken into account (7) is constrained to be zero. We point
out that with respect the analysis pursued in [29], we are
considering a spacetime globally flat at the lowest order,
neglecting the issues of a non vanishing background cur-
vature on cosmic scale. Accordingly, the function f(R)
can be put into the form

f(R) ≃ R+ αR2 +O(R3), (12)

that inserted in (4) carries out

R(1)
µν − 1

2
ηµνR

(1) − 2α (∂µ∂ν − ηµν�)R(1) = κTµν . (13)

Similarly to (6), by tracing (13) we can get a differential
equation for the R(1), that is

(
�−m2

)
R(1) = m2κT, (14)

which represents a massive Klein Gordon equation, where
m−2 ≡ 6α > 0 holds for α > 0. Finally, by means of (14)
the gravitational field equation can be recast as

R(1)
µν − 1

6m2

(
m2ηµν + 2∂µ∂ν

)
R(1) = κ

(

Tµν − 1

3
ηµνT

)

.

(15)

Following [30, 31], we introduce for the metric perturba-
tion hµν the generic decomposition of a rank two sym-
metric tensor, i.e.

h00 = 2φ,

h0i = βi + ∂iγ,

hij = hTT
ij +

1

3
Hδij + ∂(iǫj) +

(

∂i∂j −
1

3
δij△

)

λ,

(16)
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where δij is the Kronecker delta, △ ≡ ∂i∂
i the Lapla-

cian operator and symmetrization is defined as A(ij) ≡
1
2 (Aij + Aji).
The irreducible parts introduced in (16) are accompanied
by the conditions:

∂iβi = 0

∂ihTT
ij = 0

ηijhTT
ij = 0

∂iǫi = 0,

(17)

which, as stressed in [31] (or more generally in [30] for
a curved background), are required in order to preserve
the uniqueness and the consistency of the splitting (16).
Then, it can be demonstrated that under a generic gauge
transformation the following combinations of fields, to-
gether with hTT

ij , turn out to be invariant

Φ = −φ+ γ̇ − 1

2
λ̈

Θ =
1

3
(H −△λ)

Ξi = βi −
1

2
ǫ̇i,

(18)

with a dot denoting time derivative. The trace compo-
nent of the metric perturbation hµν is now encoded in the
gauge invariant scalar fields Φ and Θ and, with respect
to the usual trace-reverse approach, we are not assuming
a priori any condition on h. In fact, if in General Rela-
tivity the latter is ultimately non dynamical and can be
conveniently made vanishing by a gauge fixing, in f(R)
formulations that does not hold anymore and trace con-
tributions cannot be neglected. Indeed, it is easy to show
that the first order Ricci scalar can be rewritten as

R(1) = 3Θ̈− 2△ (Θ + Φ), (19)

and by virtue of (14) the trace elements Θ and Φ are
inherently related to an evolving quantity, and cannot
be set to zero. Eventually, the two standard tensorial
degrees of freedom for hµν are instead enclosed in the
symmetric transverse and traceless part hTT

ij , whereas Ξi

is a divergence free vector (see (17)), endowed with two
independent components. As a result, the decomposition
of hµν in the set of fields {Θ,Φ, hTT

ij ,Ξi} depletes entirely
all six of the independent degrees featuring a rank two
symmetric tensor for diffeomorphism invariant theory.
Now, in order to unambiguously identify the propagating

degrees of freedom, we express the components of R
(1)
µν in

terms of the set of variables (18):

R
(1)
00 = △Φ− 3

2
Θ̈ (20a)

R
(1)
0i = −1

2
△ Ξi − ∂iΘ̇ (20b)

R
(1)
ij = −∂(iΞ̇j) − ∂i∂j

(

Φ +
1

2
Θ

)

− 1

2
�
(
δijΘ+ hTT

ij

)
.

(20c)

In turn, a completely analogous decomposition can be
performed on the stress energy tensor, namely

T00 = ρ,

T0i = Si + ∂iS,

Tij = σij + Pδij + ∂(iσj) +

(

∂i∂j −
1

3
δij△

)

σ,

(21)

with the relative set of constraints

∂iS
i = 0

∂iσij = 0

ηijσij = 0

∂iσ
i = 0.

(22)

Due to the fact that the stress energy tensor must satisfy
the conservation law, that in linearized theory reads as
∂µT

µν = 0, the irreducible parts just introduced are not
independent. Indeed, the following relations must hold

△S = ρ̇,

△σ = −3

2
P +

3

2
Ṡ,

△σi = 2Ṡi.

(23)

In terms of the set of variables (18) the field equations
(15) are equivalent to the set of differential equations:

△Φ− 3

2
Θ̈ +

1

6
R(1) − 1

3m2
R̈(1) = κ

(

P +
2

3
ρ

)

(24a)

Θ̇ +
1

3m2
Ṙ(1) = −κS (24b)

△Ξi = −2κSi (24c)

�hTT
ij = −2κσij (24d)

Ξ̇i = −κσi (24e)

Φ +
1

2
Θ +

1

3m2
R(1) = −κσ (24f)

�Θ+
1

3
R(1) =

2

3
κ (△σ − ρ) . (24g)

Then, by implementing (14) and (23) and operating the
substitution (Φ,Θ) → (ΦR,ΘR) with

ΦR = Φ +
1

6m2
R(1) ΘR = Θ+

1

3m2
R(1), (25)

which still provides gauge invariant combinations, we get
a much simpler form for system (24):

△ΦR =
κ

2

(

3P + ρ− 3Ṡ
)

(26a)

△ΘR = −κρ (26b)

△Ξi = −2κSi (26c)

�hTT
ij = −2κσij. (26d)

By the inspection of the system (26a)-(26d) we see that
the two tensorial modes hTT

ij are the only propagating
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degrees of freedom, in conjunction with R(1). The two
modified scalars ΦR and ΘR together with the vector Ξi

are instead solutions of Laplace equation and they cannot
exhibit radiative behaviour. Therefore, we claim that
metric f(R) theories are naturally equipped with three
independent propagating degrees, in agreement with the
results of [27].
Now, since we are interested in analyzing the effects due
to (14) and (26d) on a sphere of test masses, it may be
instructive to consider the geodesic deviation equation in
the comoving frame, having set Tµν = 0. In this case, the
only relevant Riemann components are given, in terms of
gauge invariant quantities, by

Ri0j0 = −1

2
ḧTT
ij + ∂(iΞ̇j) + ∂i∂jΦ− 1

2
δijΘ̈. (27)

Even if it seems that the only proper dynamical effects
be induced by the ordinary hTT

ij gauge invariant part, we
stress the fact that now the truly static degrees are not Θ
and Φ. In fact, by virtue of (25) they actually depend on
the propagating degree R(1) and, solving these relations
for the new static components ΘR and ΦR, expression
(27) can be recast as

Ri0j0 =

Static part
︷ ︸︸ ︷

∂(iΞ̇j) + ∂i∂jΦR − 1

2
δijΘ̈R +

+ α
(
δij∂

2
t − ∂i∂j

)
R(1) − 1

2
ḧTT
ij

︸ ︷︷ ︸

Radiative part

. (28)

Now, if we consider a gravitational wave travelling along
the z axes, the contributes of the solely R(1) mode to the
geodesic deviation equation are given by

∂2δx
∂t2

≃ R(1)

6

(

1 +
k2z
m2

)

x0

∂2δy
∂t2

≃ R(1)

6

(

1 +
k2z
m2

)

y0

∂2δz
∂t2

≃ R(1)

6
z0

(29)

where we set the vector denoting the separation between
two nearby geodesics as

~x = (x0 + δx, y0 + δy, z0 + δz), (30)

with x0 and δx indicating the rest position and the dis-
placement of order O(h) induced by the wave, respec-
tively2. Lastly, the wave vector for R(1) is fixed in
kµ = (

√

k2z +m2, 0, 0, kz).
We remark that the phenomenology associated to the
R(1) mode is actually the result of a superposition of two

2 Analogously for y, z.

distinct kind of polarizations. In particular, from (29) is
easy to identify in R(1) excitations a breathing mode act-
ing on the transverse plane xy and a longitudinal mode
along the z direction, which is moreover independent on
the mass parameter m. In this regard, it is useful to de-
fine the polarization matrices3 Eb and El (see [32] for a
comparison):

Eb ≡





1 0 0
0 1 0
0 0 0



 El ≡





0 0 0
0 0 0
0 0 1



 , (31)

which allows us to recast (29) as

∂2
t δ~x = (P1 Eb + P2 El) ~x0 (32)

with P1 ≡ R(1)

6

(

1 +
k2
z

m2

)

, P2 ≡ R(1)

6 and ~δx, ~x0 repre-

senting the rest and the O(h) component of (30), respec-
tively. However, we can introduce a new set of polariza-
tion matrices {Et, Ed}, related to the irreducible repre-
sentations for a spin 2 particle described by a symmetric
tensor of rank 2, namely

Et ≡
1

3





1 0 0
0 1 0
0 0 1



 , Ed ≡ 2

3





1/2 0 0
0 1/2 0
0 0 −1



 , (33)

where Et is the trace part concerning the state |0, 0〉 and
Ed the traceless component pertaining the state |2, 0〉.
Then, expressing the set {Eb, El} in terms of {Et, Ed}
the geodesic deviation (32) can be rearranged as

∂2
t δ~x =

1

3
((2P1 + P2)Et + (P1 − P2)Ed) ~x0. (34)

Therefore, we see from (34) that the additional degree
of freedom R(1) is actually capable to excite two dis-
tinguished scalar parts of the available modes for the
hµν tensor, and this is ultimately due to the fact that
trace free condition cannot be achieved in f(R) gravity in
Minkowski background as well. Such an outcome is also
consistent with the fact that, even in the absence of ordi-
nary matter, f(R) theories are equipped with an effective
stress energy tensor related to the additional degree of
freedom, as it can be appreciated in the scalar-tensor re-
formulation (see Sec. III). In this respect, we note that it
is in agreement with ordinary General Relativity results,
where the trace of hµν cannot be set vanishing within
matter sources.

3 We point out that such a decomposition is strictly applicable
only in the case of waves following null geodesics, i.e. in the
presence of massless modes. Therefore, despite the application
of this method is not formally allowed in this case, we suggest
it could still give a precious physical insight about the emerging
new phenomenology.
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III. SCALAR-TENSOR REPRESENTATION

FOR f(R) MODELS

Scalar-tensor representations of f(R) theories repre-
sent a useful tool for investigating the enlarged dynamical
content of these models. In particular, such a reformu-
lation enables us to single out the additional degree of
freedom contained in the functional form f(·), by means
of a scalar field non minimally coupled to gravity and
self-interacting. Hence, let us rearrange (1) as

S =
1

2κ

∫

d4x
√−g (f(Υ) + f ′(Υ)(R−Υ)) + SM , (35)

where Υ is an auxiliary field whose variation carries out
the dynamical condition Υ = R, provided f ′′(R) 6= 0.
Then, introducing the scalar field ξ ≡ f ′(R), action (35)
can be recast in the scalar-tensor form4

S =
1

2κ

∫

d4x
√−g (ξR − V (ξ)) + SM , (36)

the potential term V (ξ) being defined by

V (ξ) ≡ Υ(ξ)ξ − f(Υ(ξ)). (37)

Variation of (36) with respect to the metric and the field
ξ gives us, respectively:

Gµν − 1

ξ
(∇µ∇ν − gµν�) ξ +

1

2ξ
gµνV (ξ) =

κ

ξ
Tµν (38)

and

R = V ′(ξ), (39)

where Gµν = Rµν − 1
2gµνR. Eventually, by close analogy

with (6), taking the trace of (38) and using (39), it is
easy to get a dynamical equation for the scalar field ξ,
that is

3�ξ + 2V (ξ)− ξV ′(ξ) = κT. (40)

Now, since we are interested in the linearized limit of the
theory (see (7)), it is reasonable to assume also for the
field ξ the perturbative expansion

ξ = ξ0 + δξ, (41)

where δξ = O(h). Thus, by virtue of (41), we can expand
the potential V (ξ) around ξ0 as well, i.e.

V (ξ) ≃ V (ξ0) + V ′(ξ0)δξ +
1

2
V ′′(ξ0)δξ

2. (42)

However, when we required Minkowski background be a
solution, i.e. R(0) = 0, from (39) it follows the constraint

4 Especially, expression (35) can be considered as a Brans-Dicke
model of parameter ω = 0.

V ′(ξ0) = 0, and consistency at the lowest order for (40)
leads to the additional condition V (ξ0) = 0. That also
guarantees that in (38) cosmological constant contribu-
tions do not appear, in which case we should instead deal
with de Sitter-like backgrounds. Of course, the require-
ment of having a stable minimum in ξ0 for the potential
V (ξ) cannot be always attainable [34, 35], but in the fol-
lowing we shall disregard these cases.
Now, analogously to (14) we can rearrange (40) in the
following way

(
�−M2

)
δξ =

κ

3
T, (43)

where we define M2 = ξ0V
′′(ξ0)
3 and we require V ′′(ξ0) >

0 in order to avoid instabilities of the solution.
We write (38) at first order in hµν and δξ, obtaining

R(1)
µν − 1

2
ηµνR

(1) − (∂µ∂ν − ηµν�) ζ = κ′Tµν , (44)

where we have introduced κ′ ≡ κ/ξ0 and ζ ≡ δξ/ξ0. Ac-
cordingly with the previous section, we obtain a set of ten
differential equations that must be solved together with
equation (43). Therefore, we remove the redundancies
by virtue of (23) and we define the new couple of scalars
(Φζ ,Θζ) in the following way

Φζ = Φ +
1

2
ζ Θζ = Θ+ ζ. (45)

Lastly, we manage to reduce the number of independent
equations to six:

△Φζ = −1

2
κ′

(

3Ṡ − 3P − ρ
)

(46a)

△Θζ = −κ′ρ (46b)

△Ξi = −2κ′Si (46c)

�hTT
ij = −2κ′σij . (46d)

As in the metric case it is easy to recognize that only the
tensorial degrees hTT

ij and the massive scalar ζ are solu-
tions of wave-like equations, whilst the transverse vector
Ξi and the couple of scalars (Φζ ,Θζ) are static. Given the
fact that the two transformations (Φ,Θ) → (ΦR,ΘR) and
(Φ,Θ) → (Φζ ,Θζ) are identical if one makes the identi-

fication 2αR(1) ↔ ζ, it follows that the phenomenology
associated with the presence of the massive scalar ζ is
the same described in the previous section. Especially,
the amplitudes of the polarizations are rescaled by the
ξ0 factor and the coincidence of the results is reached if
ξ0 → 1, corresponding to (12), where the coefficient of
the linear term is set to unity.

IV. CONCLUDING REMARKS

We investigated the nature of the oscillating linear
modes that the gravitational field outlines in metric f(R)
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models. In particular, our analysis relies on a gauge-
invariant formulation of the gravitational wave propaga-
tion, obtained from a linear expansion of the dynamics
near the Minkowski spacetime.
The necessity for such an approach finds its justifica-

tion in the debate present in literature, concerning the
number of degrees of freedom that the theory possesses
in the considered formulation. In this regard, the advan-
tage of a gauge-invariant study consists in the possibility
to unambiguously identify the actual propagation modes,
in order to evaluate their effects on test particles arrays
via the geodesic deviation.
We clarified out of any doubts that only three indepen-

dent dynamical degrees are present in the linear theory,
consistently with the degrees of freedom of the full non-
linear theory. Our findings are also compatible with [33],
where perturbations around a Kerr metric are studied.
We elucidated that the source of the debate regarding

the exact number of modes is originated by a very sub-
tle feature of the obtained gauge invariant formulation.
Indeed, even though we deal with a single scalar degree
in addition to the metric field of the standard Einstein-
Hilbert action, such a degree appears in the geodetic de-
viation equation like the superposition of two different
and well known polarizations, i.e. a breathing and a lon-
gitudinal mode. However, we remarked that these two
polarizations can be never physically separated and they
always act on particle arrays like a single one, bringing
features of its basic constituent at the same level.
We stress that a characteristic feature of General Rel-

ativity is the traceless nature of vacuum gravitational
waves. Especially, in Minkowski space-time this prop-
erty is an exact output of the dynamics, while on a
curved background it is valid up to higher order terms
[18, 36, 37]. In f(R) theories of gravity, instead, the
traceless character of vacuum gravitational waves is in-
trinsically lost both in Minkowski and curved back-
grounds. Indeed, our analysis clearly elucidates the dy-

namical and non-vanishing nature of the trace and this
feature is expected to be preserved on any background,
since the gauge invariant variables method can be ap-
plied straightforwardly to the general case (see [30]). The
reason for such a different morphology of modified gravi-
tational waves consists of the scalar-tensor nature of the
f(R) model, in which the non-minimally coupled scalar
field plays the role of matter source. With this regard,
we suggest that the excitation of the trace part of the
metric tensor could be due to the presence of an effective
stress energy tensor, related to the additional scalar de-
gree. Exactly as in General Relativity the passage from
flat to curved space-time does not alter the number of
degrees of freedom associated to the wave, at least at the
considered order of approximation, analogously we ex-
pect that the two tensorial and the scalar modes of the
present Minkowski model unaltered survive in the same
curved space-time extension. This firm conjecture is also
validated by the Hamiltonian analysis performed in [27],
verifying the first class nature of the emerging Hamilto-
nian constraints.
It has been demonstrated in [38, 39] that a class of ex-

tended theories of gravity, which f(R) models belong, is
equivalent to standard General Relativity possibly cou-
pled to scalar fields, which may not coincide with the
scalar field we deal with in the Jordan frame. This in-
terpretation is certainly viable, and without entering the
details of a possible quarrel about the geometrical or mat-
ter representation of this more general framework, we ob-
serve that the present analysis about the number of phys-
ical degrees of freedom remains significant in both these
scenarios, even if the associated phenomenology could be
altered by the peculiar representation adopted.
In conclusion, since the morphology of the theory is

now under control and the actual features of the gravita-
tional polarizations are well-traced, it is possible to better
characterize the phenomenological implications and the
detectability of such extended gravitational ripples.
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