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Abstract. In shape optimization, design improvements significantly de-
pend on the dimension and variability of the design space. High dimen-
sional and variability spaces are more difficult to explore, but also usually
allow for more significant improvements. The assessment and breakdown
of design-space dimensionality and variability are therefore key elements
to shape optimization. A linear method based on the principal compo-
nent analysis (PCA) has been developed in earlier research to build a
reduced-dimensionality design-space, resolving the 95% of the original
geometric variance. The present work introduces an extension to more
efficient nonlinear approaches. Specifically the use of Kernel PCA, Lo-
cal PCA, and Deep Autoencoder (DAE) is discussed. The methods are
demonstrated for the design-space dimensionality reduction of the hull
form of a USS Arleigh Burke-class destroyer. Nonlinear methods are
shown to be more effective than linear PCA. DAE shows the best per-
formance overall.

Keywords: Shape optimization, hull-form design, nonlinear dimension-
ality reduction, kernel methods, deep autoencoder

1 Introduction

The simulation-based design (SBD) paradigm has demonstrated its capability
of supporting the design decision process, providing large sets of design options
and reducing time and costs of the design process. The recent development of
high performance computing (HPC) systems has driven the SBD towards its
integration with optimization algorithms, moving the SBD paradigm further,
to automatic SBD optimization (SBDO). In shape optimization, SBDO consists
of three main elements: (i) a simulation tool, (ii) an optimization algorithm,
and (iii) a shape modification tool, which need to be integrated efficiently and
robustly. In this context, design improvements significantly depend on the dimen-
sion and extension of the design space: high dimensional and variability spaces
are more difficult and computationally expensive to explore but, at the same
time, potentially allow for bigger improvements. The assessment and breakdown



of the design-space dimensionality and variability are therefore a key element
for the success of the SBDO [1].

Online linear dimensionality reduction techniques have been developed, re-
quiring the evaluation of the objective function or its gradient. As an example,
principal component analysis (PCA) or proper orthogonal decomposition (POD)
methods have been applied for reduced-dimensionality local representations of
feasible design regions [2]. A PCA/POD based approach is used in the active sub-
space method (ASM) [3] to discover and exploit low-dimensional and monotonic
trends in the objective function, based on the evaluation of its gradient. Online
methods improve the shape optimization efficiency by basis rotation and/or di-
mensionality reduction. Nevertheless, they do not provide an assessment of the
design space and the associated shape parametrization before optimization is
performed or objective function and/or gradient are evaluated.

Offline linear methodologies have been developed with focus on design-space
variability and dimensionality reduction for efficient optimization procedures. A
method based on the Karhunen-Loéve expansion (KLE) has been formulated
for the assessment of the shape modification variability and the definition of
a reduced-dimensionality global model of the shape modification vector in [1].
No objective function evaluation nor gradient is required by the method. The
KLE is applied to the continuous shape modification vector, requiring the so-
lution of a Fredholm integral equation of the second kind. Once the equation
is discretized, the problem reduces to the PCA of discrete data. Offline linear
methods improve the shape optimization efficiency by reparametrization and
dimensionality reduction, providing the assessment of the design space and the
shape parametrization before optimization and/or performance analysis are per-
formed. The assessment is based on the geometric variability associated to the
design space of the shape optimization. Although linear methods have been suc-
cessfully applied for a wide range of problems, they may be not efficient when
complex non linear relationship are involved in the performance analysis and
optimization.

In the last years researchers have developed nonlinear methods for data di-
mensionality reduction. Nonlinear dimensionality reduction (NLDR) methods
generalize linear methods to address data with nonlinear structures. Kernel PCA
(KPCA) solves a PCA eigenproblem in a new space (called feature space) by
using kernel methods [4]. Local PCA (LPCA) divides the initial design space
in k£ clusters and a PCA is applied for each of them, supposing that the data
in each cluster has an approximate linear structure. LPCA techniques may be
differentiated based on the clustering method, which may follow k-means [5] or
spectral approaches [6]. Artificial neural networks (ANN) have been also used to
reduce data dimensionality, by performing both encoder and decoder tasks (the
method is also known as autoencoder).

The objective of the present work is to combine NLDR techniques with shape
parametrization in SBDO for ship hydrodynamics. Specifically KPCA, LPCA
with k-means (LPCA-KM), LPCA with spectral clustering (LPCA-SC), and
Deep Autoencoder (DAE) are used to build a reduced-dimensionality design-



space, resolving at least the 95% of the original design variability based on
the concept of geometric variance [1]. The methods are demonstrated for the
design-space dimensionality reduction of the hull form of USS Arleigh Burke-
class destroyer, namely the DTMB 5415 model, an early and open to public
version of the DDG-51. The effectiveness of the NLDR techniques is shown and
discussed, comparing the results to the linear KLE/PCA method from earlier
work [1].

2 Dimensionality Reduction Methods

General definitions and assumptions for the current problem are presented in the
following, along with linear and nonlinear dimensionality reduction methods.

2.1 General Definitions and Assumptions

Consider a geometric domain G (which identifies the initial shape) and a set of
coordinates x € G.

Assume that u € U is the design vari-
able vector, which defines a continuous
shape modification vector d(x,u). Con-
sider the design variables u as a random
field defined over a domain U, with asso-
ciated probability density function p(u).
The associated mean shape modification
is evaluated as

(6) = /M Sxouwpwda (1)

If one defines the internal product in Fig. 1: Scheme and notation for the

g as current formulation, showing an ex-
ample for n =1 and m =2
t.8) = [ 109 g()ax (2
with associated norm ||f|| = (f, f)!/2, the variance associated to the shape mod-

ification vector (geometric variance) may be defined as
7 = (18 = [ [ 86w 8x, wp(u)dxdu 3)
uJg

where § = §—(8), and (-) denotes the ensemble average over u. Generally, x € R"
with n = 1,2,3, u € RM with M number of design variables, and § € R™ with
m = 1,2,3 (with m not necessarily equal to n). Figure 1 shows an example
with n = 1 and m = 2. Ensemble averages (-) over u € U may be evaluated by



Monte Carlo (MC) sampling using a statistically convergent number of random
realizations S, {uy}7_, ~ p(u). These are collected in a [S x L] matrix

T

D= |d(u) e d(ug) (4)

representing the (MC sampled) original design space, where d(ux) =
{dg(ug)}yL, is the deviation from the mean of the shape modification vector

and its ¢-th component is evaluated at discrete coordinates x;, t =1...,T, as
dg(x1, up) L8 dg(x1, up)
dg(up) = ¢ gy (5)
dq(x1, uk) F=1 O (xr, up)

with §, = 6 - e;, where {e,}7"; € R™ is a basis of orthogonal unit vector. Note
that L =mT.

A reduced-dimensionality representation of D is sought after for later use in
the SBDO.

2.2 Principal Component Analysis

PCA allows to reduce the input dimensionality of the data, performing a pro-
jection of the points in a new linear subspace, defined by the eigenvectors of the
[L x L] covariance matrix C = DTD/S. These eigenvectors have the properties
to maximize the variance of points projected on them and to minimize the mean
squared distance between the original points and the relative projections [7]. The
principal components are defined by the solution of the eigenproblem

Cz =)z (6)

The solutions {z;}%; of the Eq. 6 are used to build a reduced-dimensionality
space for the shape modification vector d as

N
i=1

where «; is the i-th component of the new design variable vector a € RY.
Equation 7 may be truncated to the N-th order, preserving a desired level of
confidence 8 (0 < 8 < 1), provided that

N L
D N=BY Ni=p0° (®)
=1 =1

assuming A\; > A;41. Only M eigenvalues are expected to be non zeros.



2.3 Kernel Principal Component Analysis

The kernel PCA (KPCA) method [4] is a nonlinear extension of PCA. Tt finds
directions of maximum variance in a higher (possibly infinite) dimensional fea-
ture space F, mapping the points from the input space Z by a possible nonlinear
function @ : I — F as

dk—>¢(dk), VkZI,...,S (9)

where, for the sake of simplicity, the d(uy) of Eq. 4 is here simplified in dj.
Then PCA is computed in the feature space F. Assuming that >, #(d;) = 0,
the kernel principal component {zp}f::l can be find solving the eigenproblem

Yozp = Ap2Zp (10)

where Xg is the [P x P] covariance matrix in the feature space F, defined as

S
Se = ¢ 3. 00 P(dy)" (11)
k=1

KPCA allows the solution of Eq. 10 without computing explicitly the Eq.
9, since it appears only within an inner product [8], which can be computed
efficiently by a kernel function K (d;,dx) = #(d;)” ®(dy). Defining z, as a linear
expansion of ¢(dy)

s
Zpy = Zcpké(dk) (12)
k=1
the Eq. 10 can be recasted as
Kc, = \,S¢, (13)

where K is the symmetric and positive-semidefinite [S x S| kernel matrix, with
K, = K(d;,dy). The length of the S-component vector ¢, is chosen such that
r Tcp = 1. Once the eigenproblem in Eq. 13 is solved, the new design

Z,2Zp = )\pScp

variables can be found projecting ¢(d) on z, as

S

S
a=0(d)z, = cpp®(d) P(dr) = Y K (d, dy) (14)
k=1 k=1

The reconstruction of the original data from the feature space F in KPCA
is more problematic than PCA, since it needs to find, for every point &(dy), the
relative pre-image dy, in the input space Z. In this paper, approximate pre-images
technique proposed in [9] is used.



2.4 Local Principal Component Analysis

Local PCA (LPCA) performs a PCA for every different disjoint region of the
input space Z, assuming that, if the local regions are small enough, the data
manifold will not curve much over the extent of the region and the linear model
will be a good fit [5].

The first step in LPCA is to cluster the data in k sets, applying a clustering
algorithm, such that D = {Dy,...,D;}*_,. Herein, LPCA is performed with two
clustering techniques: the k-means (LPCA-KM) algorithm [10] and a spectral
clustering (LPCA-SC) [11]. The k-means clustering algorithm is described in
Alg. 1.

Algorithm 1 k-means clustering algorithm

Require: Random k centroids as representative points of each cluster D; Vi =1,... k.
1: repeat
2: Assign each point d; to the nearest centroid p; using the Euclidean distance as similarity

measure.
3: Update the centroids according to: pu; = ﬁ EdjeDj d;

4: until p; Vi=1,...,k remains unchanged

One issue in k-means is that using the euclidean distance as similarity mea-
sure assumes a convex shape to the underlying clusters [12].

Spectral clustering can be effective even if the clusters shape are more com-
plex. There are several versions of the spectral clustering algorithms, the main
difference is in which graph Laplacian is used [6]. Herein, the symmetric nor-
malized Laplacian Agyr, = I — B :WB: [11] is used and the corresponding
algorithm is summarized in Alg. 2 [6].

After the data are partitioned in k clusters, a PCA is performed on them
solving k PCA eigenproblem

LPCA results are highly dependent by the clustering procedure and specially
by the number of clusters used. Moreover, the number of clusters k& should be
set carefully to avoid extensive computation.

Algorithm 2 Normalized Spectral Clustering

Require: Let k the number of clusters to identify, build a similarity graph as:

— K-nearest neighbor graphs: fix K, d; is connected to a point d; if it is among the K-nearest
neighbor of d; or viceversa.

—_

. Compute the adjacency matrix W of the graph and the diagonal degree matrix B, where each
element is equal to b;; = Zle Wi .

. Compute the symmetric normalized Laplacian Agym.

Find the first k eigenvector vi,..., vy corresponding to the k smallest eigenvalues of Agyn.

Construct a [S x k] matrix V with the eigenvectors as columns.

1
Normalize the rows of matrix V by 9;; = vi;/(32, v)2
Run k-means on matrix V.




2.5 Deep Autoencoders

An autoencoder (AE) is an ANN that performs two main tasks [13]: (1) an
encoder function £ maps the data d to compress data «; (2) a decoder function D
maps from the compressed data a back to d. This operation is performed setting
the same number of neurons L in the input and output layer and constraining
the hidden layer to have N < M neurons.

Consider a single hidden layer AE, if the new design variable a can be written

as
a=EMHYd+bW) (16)

where H is a relative weight matrix, b the bias vector, and the apex “(1)”
represent the hidden layer, then the reconstruction vector d from a can be
expressed as

d=DH®Pa+b?) (17)

where the apex “(2)” represent the output layer. The network parameters H and
b, are evaluated minimizing the reconstruction error

BHY, bW H® p@) = |Idx, — di|[? (18)

N
(]

=
Il
—

e~ DEGEHEDd, +b) + b))

Il
N | =
(]

k=1
If £ and D are linear then the Eq. 18 has a  juput layer output layer
unique global minimum, in which the weights hidden layer
in the hidden layer span the same subspace as ~N_—%
the first N-principal components of the data
[14,15]. AE with nonlinear activation func- %
f\‘-ﬁp

tions and more hidden layers (called deep au-
toencoder, DAE) provides a nonlinear gener-
alization of the PCA [16], but in this case the
error function (Eq. 18) becomes non convex
and the optimization algorithm may get stuck
in poor local minima. Moreover, the intrinsic
dimensionality of the data (the number of neurons N in the hidden layer) cannot
be known a priori and have to be fixed respect to the reconstruction error.

Fig. 2: Example of AE with one
hidden layer with L = 3 and
N =2

3 Shape Modification of a Destroyer Hull

The DTMB 5415 model is an open-to-public early concept of the DDG-51, a USS
Arleigh Burke-class destroyer, widely used for both towing tank experiments [17]
and hull-form SBDO [18]. Figure 3 shows its geometry and body surface grid
used to discretize the shape modification domain.



The offline design-space assessment and dimensionality reduction of the DTMB
5415 hull form (assuming full-scale with a length between perpendiculars Ly, =
142 m) is presented as a pre-optimization study of the following problem

Minimize f(u)
subject to g,(u) =0, with a=1,...,4 (19)
and to h.(u) <0, with e=1,...,F

where f is the objective function related to the ship performance (i.e. resistance,
seakeeping, etc.) and u are the (original) design variables. Geometrical equality
constraints, g,, include fixed length between perpendicular (L) and displace-
ment (V), whereas geometrical inequality constraints, h., include 5% maximum
variation of beam and draught and reserved volume for the sonar in the bow
dome, corresponding to 4.9 m diameter and 1.7 m length (cylinder).

Shape modifications d(x,u) are
applied directly on the Cartesian
coordinates g of the computational N
body surface grid, as per ’

gu) =go+d(x,u)  (20)
where g represents the original grid.

The shape modification is deﬁned Flg 3: DTMB 5415 geometry and bOdy
using a linear combination of M = surface discretization

vector-valued functions of the Carte—
sian coordinates x over a hyper-rectangle embedding the demi hull [18]

W (x) 1 V=10,Lz] x [0, Lg,] x [0, L,,] € R® — R3 (21)
with:=1,..., M, as

W= > i) (22)

where the coefficients u; € R (i =1,..., M) are the (original) design variables,

3
H (a” L +7‘m> €q(i) (23)

and the following orthogonality property is imposed:

/w (x)dx = b (24)

In Eq. 23, {ai; }] 1 € R define the order of the function along j-th axis;
{rij}3—1 € R are the corresponding spatial phases; {L,,}3_, are the hyper-
rectangle edge lengths; e, ;) is a unit vector. Mod1ﬁcat10ns are applied along x4,
X9, or x3, with ¢(i) = 1, 2 or 3 respectively. The parameter values used here are
taken from [18].

Fixed Ly, and V are satisfied by automatic geometric scaling, while geome-
tries exceeding the constraints are not considered.



4 Numerical Results

The results obtained by linear PCA and the nonlinear methods (KPCA, LPCA-
KM, LPCA-SC, and DAE) are presented in the following subsections. Two eval-
uation metrics are used to assess the methods’ performance and compare them.

4.1 Evaluation Metrics

The methods are assessed by the portion of original geometric variance resolved
(B) and the root mean square error (RMSE) of matrix reconstruction D, defined
as

1 L S o A \2

15 (A — [

f 21_1 21;_1( ik NJ)2 and RMSE — 1
5 21 2oh=1(dje — 1)

B=

0|

s
> lldy — dg||> (25)
k=1
where fi; is the mean value of D j-th column.

4.2 Evaluation of Design-Space Dimensionality Reduction
Capabilities

In assessing the methods’ performance, a cubic polynomial kernel is used for the
KPCA, a number of cluster k¥ = 32 and 24 is used for LPCA-KM and LPCA-SC
respectively, a seven hidden layer DAE (composed by 300-150-50-N-50-150-300
neurons) with hyperbolic tangent (as activation function) is used and trained
with Adam optimization algorithm [19].
The design space (M = 27) is sam-
pled using a uniform random distribution Table 1: Numerical results
of S = 1,QOO hull—fqrm designs. F01." each Method N L] A% RMSE/L,,
dimensionality-reduction method, Fig. 4a
. . 5 PCA 24 950  1.12E-1
shows the geometric variance (8%) resolved KPCA 18 100. 0.00BEL0
by a N-dimensional design space, whereas LPCA-KM 12 95.0  1.12E-1
. . LPCA-SC 15 954  1.08E-1
Fig. 4b shows the corresponding reconstruc- DAE 5 978  9.60E-2
tion error (RMSE). The nonlinear methods
result to be more effective than the linear PCA in terms of both 3% and RMSE.
Specifically, in order to reduce the design-space dimensionality while resolving
at least the 95% of the original geometric variance, N = 24 is required by PCA,
whereas N = 18, 12, 15, and 5 are needed by KPCA, LPCA-KM, LPCA-SC, and
DAE, respectively. The results are summarized in Tab. 1. It is worth noting that
KPCA requires N = 18, but resolves the 100% of the original variance and shows
a reconstruction error equal to zero. In the current study, it was not possible
to reduce N further, due to numerical issue associated to the computation of
pre-images.
Finally, Fig. 5 shows the shape modification (d,) and the reconstruction error
(Ad,) versus grid-node index (I,.J), and the corresponding hull stations for a
design originally included in the data matrix D. For this design, LPCA shows
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the largest reconstruction error. PCA and DAE produce a close reconstruction
to the target, whereas KPCA reproduce the target exactly. With only N = 5,
DAE is the most efficient overall.

5 Conclusions and Future Work

Four nonlinear methods for design-space dimensionality-reduction in shape opti-
mization have been presented and compared. Specifically, kernel PCA (KPCA),
local PCA with k-means and spectral clustering (respectively LPCA-KM and
LPCA-SC), and deep autoencoder (DAE) have been used for an offline pre-
optimization dimensionality-reduction of the hull-form parametrization of the
DTMB 5415 model hull. A linear PCA method from earlier studies has been
also included in the analysis, for comparison.

The original shape parametrization was defined by M = 27 design variables.
The reduced-dimensionality space is required to resolve at least the 95% of the
original design variability, based on the concept of geometric variance. The linear
PCA achieved a reduction of 11.2% of the original design dimensionality (requir-
ing a number of design variables N = 24). All nonlinear methods outperform the
linear PCA. Specifically, a 33.4% dimensionality reduction is achieved by KPCA
(N = 18), 55.5% by LPCA-KM (N = 12), 44.4% by LPCA-SC (N = 15), and
finally a remarkable 81.5% by DAE (N = 5). Nonlinear methods have shown
their superior effectiveness in terms of both variance resolved and reconstruction
error, compared to linear PCA. DAE have shown the best performance overall.

The analysis of some specific behavior of the methods presented, such as
the assessment of the clusters used by the LPCA, will be addressed in future
work. Moreover, in order to investigate further on the methods’ effectiveness,
future work will include the optimization of the DTMB 5415 using the reduced-
dimensionality space produced by linear and nonlinear methods, with compar-
ison of objective function improvement and convergence to the optimum. Also,
combined geometry and physics based design variability studies [20,21] will be
addressed using current nonlinear methods.

----- PCA
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—e— KPCA
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’ S '
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--== B=095[]
0.0 “ i 0.0 e
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(a) Geometric variance resolved (b) Reconstruction RMSE

Fig. 4: Convergence of dimensionality-reduction methods in terms of 3% (a)
and RMSE (b) versus the reduced-dimensionality N
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