

Performance analysis of GPS+Galileo smartphone raw measurements

Gabriele Pirazzi, *Sapienza University of Rome*, DICEA Augusto Mazzoni, *Sapienza University of Rome*, DICEA Ludovico Biagi, *Politecnico di Milano*, DICA Mattia Crespi, *Sapienza University of Rome*, DICEA

EGU 2018, 11th April 2018

Agenda

- Objectives
- Access to GNSS Raw Measurements using ANDROID APIs
- Smartphones' Configuration
- Scenarios' description
 - Static, Urban Pedestrian, Gesture and Sub-urban Vehicle.
- Results with
 - Carrier-phase differential approach;
 - Carrier-phase variometric approach: VADASE.
- Conclusion and way ahead

Objectives

- Investigating on the quality of smartphones' GNSS measurements.
- Providing preliminary performance with consolidated positioning algorithms.
- Introducing the *variometric* approach with VADASE applied to smartphones.
- Identifying solutions and new applications with smartphones' GNSS measurements.
- Provide feedbacks.

Access to GNSS Raw Measurements using ANDROID APIs

EGU 2018, 11th April 2018

Access to GNSS Raw Measurements using ANDROID APIs

🗏 🗮 Devel	opers	DESIGN	DEVELOP	DISTRIBUTE	Q Search	
Croid APIs Coverview Interfaces Classes Address Criteria Geocoder GnssClock GnssMeasurement Gnss1	C3 API level: 24 ¢	Gns public f extends java.lang. & andro A class re	SSM Object imp Object obd.location.G	ConssMeasurement Internets Parcelat	ement Die	Summary: Constants Inh Methods Inherit
int	describeCon Describe the k	tents() inds of specia	al objects con	tained in this Parcela	ble instance's marshaled repre	sentation.
double	getAccumulatedDeltaRangeMeters() Gets the accumulated delta range since the last channel reset, in meters.					
int	getAccumulatedDeltaRangeState() Gets 'Accumulated Delta Range' state.					
double	getAccumulatedDeltaRangeUncertaintyMeters() Gets the accumulated delta range's uncertainty (1-Sigma) in meters.					
	getCarrierC	vcles()				

Selected Public methods getAccumulatedDeltaRangeMeters() getCarrierCycles() getCarrierFrequencyHz() getCarrierPhase() getCn0DbHz() getConstellationType() getPseudorangeRateMetersPerSecond() getReceivedSvTimeNanos() getSnrInDb() getSvid()

Access to GNSS Raw Measurements using ANDROID APIs

	Android 7 Location - Clock and	Measurements
ANDROID CLASS	FIELD	DESCRIPTION
GNSSClock	TimeNanos	GNSS receiver's internal hardware clock value in nanoseconds
GNSSClock	BiasNanos	Clock's sub-nanosecond bias
GNSSClock	FullBiasNanos	Difference between TimeNanos inside the GPS receiver and the true GPS time since 0000Z, 6 January 1980
GNSSClock	DriftNanosPerSecond	Clock's drift
GNSSClock	${\it HardwareClockDiscontinuityCount}$	Count of hardware clock discontinuities
GNSSClock	LeapSecond	Leap second associated with the clock's time
GNSSMeasurement	ConstellationType	Constellation type
GNSSMeasurement	Svid	Satellite ID
GNSSMeasurement	State	Current state of the GNSS engine
GNSSMeasurement	ReceivedSvTimeNanos	Received GNSS satellite time at the measurement time
GNSSMeasurement	Accumulated Delta Range Meters	Accumulated delta range since the last channel reset
GNSSMeasurement	Cn0DbHz	Carrier-to-noise density
GNSSMeasurement	TimeOffsetNanos	Time offset at which the measurement was taken in nanoseconds
GNSSMeasurement	CarrierCycles	Number of full carrier cycles between the satellite and the receiver
GNSSMeasurement	CarrierFrequencyHz	Carrier frequency at which codes and messages are modulated
GNSSMeasurement	PseudorangeRatemetersperSecond	Gets the Pseudorange rate at the timestamp

Smartphones' Configurations

RINEX Example Live data - Static

	QCOM2RINEX	Gabriele Pirazzi	20170817 205211	PGM / RUN BY / DATE	
	Qualcomm			MARKER NAME	
				MARKER NUMBER	
				MARKER TYPE	
				OBSERVER / AGENCY	
	Qualcomm	Prototype	GEN9C	REC # / TYPE / VERS	
	Unknown	Unknown		ANT # / TYPE	
	0.0000	0.0000 0	.0000	APPROX POSITION XYZ	
	0.0000	0.0000 0	.0000	ANTENNA: DELTA H/E/N	
	G 4 C1C L1C D1C	: S1C		SYS / # / OBS TYPES	
	E 4 C1X L1X D1X	S1X		SYS / # / OBS TYPES	
	CARRIER PHASES NOT	ALIGNED		COMMENT	
	G L1C			SYS / PHASE SHIFT	
	E L1X			SYS / PHASE SHIFT	
	1.000			INTERVAL	
Carrior_nhaco	1.000			INTERVAL	
Carrier-phase	2016 8 4	11 35 24.3	950000 GPS	TIME OF FIRST OBS	
•	2016 8 4	17 43 4.3	940001 GPS	TIME OF LAST OBS	Donalor
	DBHZ			SIGNAL STRENGTH UNIT	Doddier
				END OF HEADER	1- 1
Code-phase \sim	~				
		OMISSIS			
	> 2016 8 4 15 35	40.3950000 0 17			
	G 1 22929543.890	-14/10/60.105	3020.301	43.500	
	G 8 20485989.842	-26763234.862	249.751	49.000	
	G10 21352610.688	23700721.931	-1419.249	50.300	
	G11 21872368.978	-20439829.530	2819.851	47.500	
	G14 25059157.998	-3812978.755	3198.551	39.300	
	G16 25022879.826	15892348.327	-3881.299	40.400	
	G18 23850858.900	-5068656.665	-2813.649	42.700	
	G22 24580371.770	-4649776.702	3608.601	42.200 7 6 9	Ssatellites
	G27 21225545.459	-14892683.567	-2197.599	47.700	Jucomed
	G28 24752881.337	-7044161.808	2673.551	44.400	
	G30 25465884.640	-532597.453	-2204.899	34.700	
	G32 23856984.259	-10561157.132	2855.601	42.800	
	E 9 25045501.562	-12599064.211	3076.601	41.900	
	E11 23271265.633	1602356.816	-934.249	43.000	
	E12 27792245.324	8942067.559	-2525.399	36.700 5 6 2 1	on catallitae
	E19 26591875.427	4330506.011	-1925.049	40.200 J Jan	ev salemies
	E30 27347563.770	-5297485.449	409.401	41.000	

EGU 2018, 11th April 2018

Scenarios' description

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1			Static	Embedded	5 min	GPS+GAL	 Carrier Phase Differential (Static), Baseline~5Km Variometric
T-2		Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3	nuawei P10	Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km

T-1 scenario Huawei P10 2D accuracy in live Carrier-Phase static scenario

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1	Huawei P10		Static	Embedded	5 min	GPS+GAL	 Carrier Phase Differential (Static), Baseline~5Km Variometric
T-2			Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3		Live	Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km

T-1 scenario Huawei P10 2D accuracy in live Carrier-Phase static scenario

The Variometric Approach Idea

The approach is based on time single differences of carrier phase observations:

- continuously collected at high rate (1 Hz or higher);
- using a standalone GNSS receiver;
- using standard GNSS broadcast products (orbits and clocks) available in real-time ;
- Single and double frequency observations.

The approach is implemented in VADASE software, developed and patented by Sapienza University of Rome

Variometric Approach for Displacement Analysis Stand-Alone Engine (VADASE)

The Model

- Velocity Estimation
 - Epoch-by-Epoch LSQ velocity estimation, high-rate data
- Waveform or Displacement determination
 - Integration of estimated velocities, leads to high-rate site motion waveform and displacements

Outputs

- The direct outputs of the VADASE are velocities
 - Few centimeters displacements accuracy level in real-time (over short periods)

Since September 2015, on-board Leica Geosystems GNSS receivers

VADASE simplified functional model

- All GPS and Galileo equations are stacked
- ΔT^s_r and ΔI^s_r variations are computed by Saastamoinen and Klobuchar models for both systems
- ► a single $\Delta \delta t_r$ unknown is estimated for both systems (the receiver clock variations, in short intervals, can be assumed equal)

T-1 scenario Huawei P10 and static displacements with VADASE Carrier Phase only – L1

EGU 2018, 11th April 2018

T-2 scenario Huawei P10 and displacements with VADASE kinematic

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm	
T-1	Huawei P10			Static	Embedded	5 min	GPS+GAL	 Carrier Phase Differential (Static), Baseline~5Km Variometric
T-2		uawei P10 Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric	
T-3			Gesture	Embedded	5 min	GPS+GAL	- Variometric	
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km 	

T-2 scenario Huawei P10 and displacements with VADASE kinematic Carrier Phase only – L1

• Total Length = 100mt @ 1Hz

• Accumulated Error < 1 %

0.6 m

Start

End

 Smartphone displacements with VADASE Kinematic Carrier Phase Only – L1

T-3 scenario Huawei P10 and gestures with VADASE kinematic

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm
T-1	Huawei P10		Static	Embedded	5 min	GPS+GAL	 Carrier Phase Differential (Static), Baseline~5Km Variometric
T-2		uawei P10 Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric
T-3			Gesture	Embedded	5 min	GPS+GAL	- Variometric
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km

T-3 scenario Huawei P10 and gestures with VADASE kinematic Carrier Phase only – L1

Smartphone displacements Carrier Phase Only – L1

T-4 scenario

Huawei P10 in live Carrier-Phase Vehicle sub-urban scenario

Ref.	Device	Scenario	Туре	Antenna	Duration	GNSS available	Algorithm	
T-1	Huawei P10			Static	Embedded	5 min	GPS+GAL	 Carrier Phase Differential (Static), Baseline~5Km Variometric
T-2		uawei P10 Live	Pedestrian	Embedded	5 min	GPS+GAL	- Variometric	
T-3			Gesture	Embedded	5 min	GPS+GAL	- Variometric	
T-4			Vehicle sub-urban	Embedded	5 min 3 sessions	GPS+GAL	 Carrier Phase Differential (Kinematic), Baseline~4Km 	

T-4 scenario Huawei P10 in live Carrier-Phase Vehicle sub-urban scenario

T-4 scenario Huawei P10 in live Carrier-Phase Vehicle sub-urban scenario

T-4 scenario Huawei P10 in live Carrier-Phase Vehicle sub-urban scenario LEICA vs Smartphone RTK L1

EGU 2018, 11th April 2018

T-4 scenario Huawei P10 in live Vehicle sub-urban scenario LEICA vs Smartphone internal solution

Duty-cycle's effects on smartphone's measurements

Conclusions

- The preliminary results with the Variometric approach are very promising.
- Reliable solutions can be obtained when the User can:
 - Select the type of GNSS;
 - Disable/enable the duty-cycle of the power;
 - Access to data estimated with a good clock.
- The use of raw measurements from smartphone opens the way to new

interesting applications:

- IOT and LBS;
- Two ore more smartphones connected together;
- Gesture and images or video correlated (Virtual or Augmented Reality).

<text>

gabriele.pirazzi@uniroma1.it

5