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INTRODUCTION 

    

Multivariate analysis (MA) is a fundamental part of mathematics. It is an 

effective method of modern science researching. MA is applied: to analyze 

spectroscopic data in physical chemistry; in pure component analysis in analytical 

chemistry; in high performance liquid chromatography with diode array detection 

(HPLC–DAD) chromatographic data sets; for a treatment of hyperspectral images in 

hyperspectral imaging. 

A spectral mixture is a dataset that results from the observation of a chemical 

system composed of (mixed) individual components and submitted to some 

variation. This variation is related to the change of an external factor, which is 

usually a physical or chemical variable. It can be for example sampling time, 

position, or pH. The spectral data thus consist of a superposition, or mixture, of the 

pure spectra of the individual components and their associated proportions. When 

dealing with evolving systems such as chemical reactions or processes, these 

proportions correspond to concentration profiles.  

In chemistry, spectral mixture resolution corresponds to the resolution of 

complex mixture spectra into pure contributions, consisting of concentration 

distributions and spectra of the different chemical components. It is important to 

realize that, more than often, this decomposition is aimed at situations for which little 

a priori information is available. In practice, some physical perturbations or chemical 

interferences may complicate the ideal situation. The basic model underlying this 

decomposition, usually termed multivariate curve resolution (MCR) in chemometrics 

[53]. MCR is the generic denomination of a family of MA methods meant to solve 

the mixture analysis problem, i.e., able to provide a chemically (scientifically) 

meaningful additive bilinear model of pure contributions from the sole information 

of an original data matrix including a mixed measurement.  

The main goal of the thesis is: to show the applications of the multivariate 

analysis in the study of the chemical processes.  

The tasks of the thesis are: 

1. Having the three species, coexisting in solution, and the time evolution of 

the total absorption spectra it is required to: 

 Extract the concentration 𝐶𝐶1 as it decreases, 𝐶𝐶2 as it increases and then redecreases 

and 𝐶𝐶3 as it increases over time; 
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 determine three forms of the spectra, that multiplied by 𝐶𝐶1, 𝐶𝐶2 and 𝐶𝐶3 respectively 

at each instant of time, and summed up give the original mixture dataset.  

The same goal is for the two species, coexisting in solution. 

2.  Determine the concentrations (in the function of the time), that is the 

matrix 𝐶𝐶3×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

3.  Determine the absorption spectra (in the function of energy), that is the 

matrix 𝐴𝐴3×𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. 

4. Obtain pure spectral and concentration profiles for different X-ray 

absorption near-edge structure (XANES) and ultraviolet-visible (UV-Vis) datasets 

with different number of components using computer softwares FAC-PACK and 

PyFitIt. 

5. Make a comparative analysis of the effectiveness of the obtained results in 

FAC-PACK and in PyFitIt. 

6. Develop and implement the theory for application of the nonnegative 

matrix factorization (NMF) method, constrained nonlinear method, principal 

component analysis (PCA) method and test them for different datasets. 

7. Identify the regions populated by tjk values of the transformation matrix T 

capable to provide the non-negative specta and concentration profiles, which satisfy 

mass balance sheet. 

8. For these tjk values, which satisfy the previous point 7, isolate a set of 

“pure” spectra having a chemical-physical meaning. 

9. To identify the maxima and the minima meaningful spectral and 

concentrations boundaries under constraints. 

10. To write a computer program in programming language Python to 

identify pure spectral and concentration profiles and their related range of confidence 

for different XANES datasets with different number of components. 

MA can be applied in situations where a reasonable approximation of the 

bilinear model, or any other fundamental basic equation that has the same 

mathematical structure, holds. Application of MA methods is broad, quite 

straightforward, and provides results which are readily chemically/physically 

interpretable. These assets explain why MA has spread in the chemical literature and 

in many other scientific fields. However, considering the mathematical conditions for 

exact resolution of the MCR problem, some theoretical issues remain and are 

currently the subject of intensive research.  
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The most puzzling of these issues is the so-called rotational ambiguity of the 

resolution. In more common words, this translates into the fact that a unique solution 

cannot be obtained in general. Then, particular attention should be paid at the initial 

conditions, or to the constraints applied during resolution, and it is important to 

assess the extent of rotational ambiguity before drawing any definitive conclusion. 

Considering these aspects, one may notice a certain antagonism in MA between wide 

applicability and high interpretability on the one hand, and mathematical complexity 

of the resolution on the other hand. This explains to a large extend the continuous 

development of this topic into a proper research field, still very much in progress.  

The first applications of MCR were devoted to analyze spectroscopic data 

because of the identical underlying models of the measurement and the method [8]. 

A variance with other bilinear decomposition methods, MCR provides meaningful 

profiles because chemical properties related to the concentration profiles and spectra 

are actively incorporated in the optimization of the bilinear model.  

There are many multicomponent systems described by spectroscopic data. 

MA adapts to this diversity by tuning the way of application of the method according 

to the characteristics of the spectroscopic technique and the concentration profiles. In 

a very general way, we can distinguish between process and mixture data sets. 

Process data sets show very structured concentration profiles, displaying a smooth 

variation as a function of a process variable. Typical examples may be an high 

performance liquid chromatography with diode array detection (HPLC–DAD) 

chromatographic data set, where the concentration (elution) profiles have a peak-

shaped signal or reactions monitored by spectroscopic techniques. Instead, the 

concentration profiles of a mixture data set can vary in a non-patterned way. 

This less structured variation can come from the nature of the data, e.g., a set 

of independent samples, or from the data set configuration needed for MA 

application, e.g., hyperspectral images (HSIs) are treated by using a data table of 

pixel spectra, which does not preserve the spatial organization of the original 

measurement. MA applies in all the scenarios described, but specificities of the 

different data set typologies should be taken into account in the data set configuration 

and in the different steps of application of the algorithm.  

Before describing the details and application of MA algorithms, a necessary 

comment has to be made regarding one of the fundamental assumptions of MCR, i.e., 

the bilinearity of spectroscopic data. Indeed, the natural fulfillment of the Lambert-
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Beer law may be affected by signal artifacts, such as scattering in near infrared 

spectroscopy, or fluorescence contributions in Raman spectra. Most of the times, the 

bilinear behavior is easily recovered by suitable preprocessing, e.g., scatter or 

baseline correction, adapted to the spectroscopic measurement of interest. Because of 

the nature of the spectroscopy used, some techniques need more dedicated and 

intensive preprocessing, like ultrafast spectroscopy measurements  and, in extreme 

cases, nonlinear unmixing methods can be applied.  

MA methods are key-tools in order to extract the pure component information 

(pure component spectra and the concentration profiles) from the chemical mixture 

(spectroscopic) data. The problem is to compute: 

1. the number of independent components s and  

2. the pure component factors C (concentration profiles) and A (spectra).  

Any available information on the factors can and should be integrated into the 

MCR computations.  

Typically, the data is taken by spectral observation of a chemical reaction on 

a time × frequency grid. If k spectra are measured, each at n frequencies, then the 

resulting matrix is a k × n matrix. The measured data result from a superposition of 

the pure component spectra.  

The basic bilinear model underlying these methods is the Lambert-Beer law. 

In matrix notation, the Lambert- Beer law is a relation between D and the matrix 

factors k sC ×∈  and s nA ×∈  in the form  

 D CA= . (0.1) 

Therein s is the number of the pure or at least independent components. An error 

matrix k nE ×∈  with entries close to zero can be added on the right-hand side of 

(0.1) in order to allow approximate factorizations in case of perturbed or noisy data 

D. In general, the matrices C and A are called abstract factors.  

One is interested in finding a factorization D=CA with chemically 

interpretable C and A. Then the columns of k sC ×∈  are the concentration profiles 

along the time axis of the pure components. And the rows of s nA ×∈  are the 

associated pure component spectra.  
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The main questions are:  

1. If inside the sample instead of a single substance there are several 

substances, each of them will absorb and there is a need to determine: 

  the concentration C; 

  the form of the absorption spectrum 

for each of these substances! 

2. To find a unique solution for identifying of pure spectral and concentration 

profiles and their related range of confidence. 

The main hurdle for any MCR technique is the so-called rotational ambiguity 

of the solution. By applying additional hard- or soft-constraints to the pure 

component factorization problem, one can often determine a single solution by 

means of a regularized optimization problem. In case of proper constraints this 

solution can be the chemically correct one.  

A large number of successful MCR methods has been developed. Some 

examples are methods as Multivariate curve resolution-alternating least squares 

(MCR-ALS), Resolving factor analysis (RFA), Simple to use interactive self-

modelling algorithm (SIMPLISMA), Band-target entropy minimization (BTEM) and 

Pure component decomposition (PCD). Alternatively, one can give up the aim of 

determining only a single solution by solving a regularized optimization problem. 

Instead, one can follow the global approach of determining the full range of all 

nonnegative factorizations D = CA with nonnegative rank-s matrices C and A. Such 

continua of possible nonnegative matrix factors can graphically be presented either 

by drawing the bands of possible concentration profiles together with the bands of 

possible spectra, or by plotting these sets of feasible factors by a certain low-

dimensional representation, the so-called Area of Feasible Solutions (AFS). 

The singular value decomposition (SVD) is a very powerful tool of numerical 

linear algebra to compute the left and right orthogonal bases for the expansion of the 

pure component factors k sC ×∈  and s nA ×∈ . The SVD of D reads  

 

 

Therein k kU ×∈  and n nV ×∈  are orthogonal matrices whose columns are the left 

and right singular vectors. The diagonal matrix Σ  contains on its diagonal the 

singular values iσ  in decreasing order. The singular values are real and nonnegative.  

.TD U V= Σ
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For a s-component system the first s singular vectors and the associated 

singular values contain all information on the system. For data not including 

perturbations only the first s singular values are nonzero if the chemical system 

contains s independent chemical components. For data including noise some 

additional singular values are nonzero. In such cases the SVD allows one to compute 

optimal (with respect to least-squares) rank-s approximations of D. If in the case of 

noisy data the noise-to-signal ratio is not too large, then the number of independent 

chemical components s can often be determined from the SVD. Then the relevant 

and meaningful singular values are clearly larger as compared to the remaining 

nonzero singular values which highlight the influence of noise.  

The first s singular vectors, namely the first s columns of U and the first s 

columns of V, are used as bases to expand the desired pure component factors C and 

A. For ease of notation we denote these submatrices of the SVD-factors again by U 

and V. Then k sU ×∈  and n sV ×∈ . The matrices C and A are formed according to  

 1, TC U T A TV−= Σ =  (0.2) 

Therein s sT ×∈  is a regular matrix which remains to be determined. From C and A 

the matrix T of expansion coefficients is accessible from Equation (0.2). 

The basis expansion approach (0.2) drastically reduces the number of free 

variables of the pure component factorization problem. The crucial point is that the 

number of matrix elements of C and A is (k + n)s whereas the representation by 

Equation (0.2) reduces the degrees of freedom to the 2s  matrix elements of T. Hence 

the representation (0.2) is a basic ingredient for the construction of computationally 

effective MA methods.  

Hard- and soft constraints have a crucial role in the construction of MA 

methods. A very restrictive and often successful hard constraint is a kinetic model of 

the underlying chemical reaction. Only those concentration values C are acceptable 

which are consistent with the kinetic model. Typically, the rate constants are 

implicitly computed as a by-product of the model fitting process.  

If no kinetic model is available for C, then soft constraints can be used in 

order to extract (from the set of all nonnegative factorizations) solutions with special 

properties. Typical examples of such soft constraints are those on the smoothness of 
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the concentration profiles in C or A, constraints on a small or large integral of the 

spectra in A (in order to favor solutions with few and sharp peaks or alternatively 

those with a large number of wide peaks), criteria on the closure of the concentration 

data and so on.  

Even with proper constraint functions and proper weight factors, MA 

methods cannot always find the chemically correct or “true” solution. Thus one 

might follow the alternative idea to determine the set of all nonnegative 

factorizations D = CA. Such solutions which only fulfill the nonnegativity constraint 

are called feasible or abstract factors.  

The global approach of computing all feasible factors provides an elegant 

way in order to survey the complete rotational ambiguity of the pure component 

factorization problem. However, the sets of feasible matrices k sC ×∈  or s nA ×∈  

are difficult to handle. The key idea to make these sets of feasible factors accessible 

is their low-dimensional representation in terms of the AFS. The AFS refers to the 

representation of C and A as functions of T by Equation (0.2). Only a single row of T 

is sufficient to represent a feasible factor.  

In the following, the MA aims at determining the AFS for the spectral factor 

A starting from a spectral data matrix D. This analysis can immediately be used to 

determine the concentration AFS containing the feasible factors C. Therefore, we 

apply the procedure to the transposed data matrix TD  since in D = CA the factors 

change their places by the transposition T T TD A C= .  

The developments of the AFS concepts are closely related with the growth of 

effective numerical methods for its computation.  

The AFS for two-component systems was first analyzed by Lawton and 

Sylvestre in 1971. The Lawton-Sylvestre plot is a 2D plot of the set of the two 

expansion coefficients (with respect to the basis of singular vectors) which result in 

nonnegativematrix factors C and A.  

For three-component systems a direct analogue of the Lawton-Sylvestre plot 

would be a three-dimensional plot of feasible expansion coefficients. Such three-

dimensional objects are somewhat more complicated to draw, to handle and to 

understand. However, there is a tricky dimension reduction (by a certain scaling) 

which allows one to represent these AFS sets for three-component systems only by 

two expansion coefficients (and thus by plots in 2D). This was suggested by Borgen 
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and Kowalski, who published in 1985 a geometric construction of these 2D AFS 

plots for three-component systems. These plots are called Borgen plots.   

In addition to the geometric constructions of the Borgen plots, various 

techniques for a numerical approximation of the AFS for (s = 3)-component systems 

have been devised. These are the grid search method, the triangle enclosure method 

and the polygon inflation method.  

One benefit of the numerical methods compared to the geometric methods is 

that the numerical methods are able to compute the AFS in the presence of noise.  

The permutation of the columns of C and the same permutation applied to the 

rows of A does not provide any new information. This fact is known as the (trivial) 

permutation ambiguity. A consequence of this property is that the problem to find all 

feasible factors A is equal to the problem to determine the set of all first rows of the 

feasible factors A. Hence the set of feasible pure component spectra (also called 

feasible bands) for an s-component system reads 

 { :  exist , 0 wit   h (1,:)  and }na C A A a D CA= ∈ ≥ = =  (0.3) 

For the computation of   we prefer the SVD-based approach (0.2). A further 

reduction of the degrees of freedom is possible. This is explained next.  

Equation (0.2) is a representation of the s × n matrix A by the matrix T with 

only 2s  matrix elements. These 2s  matrix elements are the expansion coefficients 

with respect to the basis of right singular vectors. As shown for the derivation of 

(0.3) only the first row of TA TV=  is required in order to form the set   of feasible 

spectra. The first row of A equals the first row of TTV . Hence only the s matrix 

elements of the first row of T are decisive. This reduces the degrees of freedom from 
2s  down to s. These remaining s degrees of freedom for a s-component reaction can 

further be reduced to s − 1 by a certain scaling of the rows of A. Here, we follow the 

approach in Ref. [16] and use a scaling which sets the first column of T equal to 

ones, i.e.  

 ( ,1) 1T i =  for all 1, ,i s= … . (0.4) 

This can be called the first-singular-vector scaling (FSV-scaling) since it uses 

for the first right singular vector the fixed expansion coefficient 1. A precise 
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justification for this choice is based on the Perron-Frobenius theory on spectral 

properties of nonnegative matrices.   

With respect to the FSV-scaling (0.4) the matrix T in (0.2) has the form 

 1 11
1

1

sx x

T
S

− 
 
 =
 
 
 





 (0.5) 

 

Therein S is an (s−1)×(s−1)matrix. Only the s−1 elements of the row vector 

( )1 1, , sx x x −= …  are decisive for the representation of the set of all feasible solutions.  

With these definitions the set n⊂   by Equation (0.3) can be represented 

by the associated set of expansion vectors 1sx −∈ . Such a set of (s − 1)-dimensional 

vectors for a chemical reaction with s species is much easier to handle as compared 

to the subset   of the higher dimensional space n
 . The set  

 { 1 :  exists  so that  in (0.5) fulfills rank( )sx S T T s−= ∈ =  

 and , 0}C A ≥  
(0.6) 

 

is called the AFS for the factor A or the spectral AFS.  

The AFS has several interesting properties. Many of these properties derive 

from the Perron-Frobenius spectral theory of nonnegative matrices. This theory 

provides the justification for the scaling condition (0.4). The properties of the AFS 

are the following: 

1) The set 

 { }1 : (1, ) 0s Tx x V+ −= ∈ ≥  (0.7) 

 

is called FIRPOL. All points x in +  result in nonnegative linear combinations of 

the right singular vectors, i.e. (1, ) Tx V . Thus FIRPOL is a superset of the set of 

feasible spectra. The membership of a certain x to +  does not guarantee that the 
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nonnegative spectrum (1, ) Tx V  is part of a feasible pure component decomposition D 

= CA. The crucial point is that nonnegativity of (1, ) Tx V  does not necessarily imply 

the nonnegativity of an associated concentration profile.  

Further, the set *  is to be introduced  

 {* 1 :  exists  so that  in (0.5) fulfills rank( )sx S T T s−= ∈ =  

and 0, (2 : ,:) 0}C A s≥ ≥  
(0.8) 

The two sets +  and *  are super-sets of the AFS  . The definition of 
+  includes only the nonnegativity constraint A(1, :) ≥ 0. The definition of *  

includes the remaining constraints on nonnegativity and the rank condition. Thus 
*+= ∩   . Finally, the vectors  

 1( ,:) (:, 2 : )( ,:)
( ,:) (:,1)

sD i V sw i
D i V

−= ∈  for 1, ,i n= …  (0.9) 

are introduced. The convex hull of these points ( ,:), 1, ,w i i n= … , is called INNPOL.  

2) The origin (or null vector) is never contained in the AFS. The proof for this 

fact is given in [79]. It is based on the Perron-Frobenius theory and uses the 

irreducibility of the matrix TD D .  

3) The AFS is a bounded set. It is proved that +  is a bounded set if and 

only if TD D  is an irreducible matrix. Thus the AFS   is also a bounded set since 
+⊂  . This property makes possible a numerical approximation of the boundary 

of the AFS. 

The AFS sets may have several shapes. For 3-component systems the most 

important cases are: a) AFS sets consisting of several isolated separated segments 

which do not contain any hole. In mathematics such sets are called simply-connected. 

The approach of inflating polygons can be used in order to approximate such AFS 

segments; b) AFS sets which have the form of a single topologically connected set 

with a single hole. Such a hole always contains the origin (null vector). The inverse 

polygon inflation algorithm is a modification of the polygon inflation algorithm 

which allows a fast and accurate numerical approximation of such one-segment AFS 

sets with a hole.  
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1. THE MATHEMATICS OF FAC-PACK 

 

FAC-PACK is a software package for the computation of nonnegative multi-

component factorizations and for the numerical approximation of the AFS. The 

software contains implementations of the polygon inflation method, the inverse 

polygon inflation method and the geometric constructive approach of generalized 

Borgen plots. 

Given a nonnegative matrix k nD R ×∈ , which may even be perturbed in a way 

that some of its entries are slightly negative, a MCR technique can be used to find 

nonnegative matrix factors k sC R ×∈  and s nA R ×∈  so that 

 D CA≈ . (1.1) 

The most rigorous approach is to compute the complete continuum of nonnegative 

matrix factors (C, A) which satisfy (1).  

  

 

1.1. FAC-PACK: principles of computations. Two-component systems. 

FAC-PACK works as follows: first the data matrix D is loaded. The SVD is 

used to determine the number s of independent components underlying the spectral 

data in D. FAC-PACK can be applied to systems with s=2, s=3 and s=4 

predominating components.  

Noisy data are not really a problem for the algorithm as far as the SVD is 

successful in separating the characteristic system data (larger singular values and the 

associated singular vectors) from the smaller noise-dependent singular values. Then 

the SVD is used to compute a low rank approximation of D.  

 After this, an initial NMF is computed from the low rank approximation of D. 

This NMF is the starting point for the polygon inflation algorithm since it supplies 

two or three points within the AFS. From these points an initial polygon can be 

constructed, which is a first coarse approximation of the AFS. The initial polygon is 

inflated to the AFS by means of an adaptive algorithm. This algorithm allows one to 

compute all three segments of an AFS separately. Sometimes the AFS is a single 

topologically connected set with a hole. Then an “inverse polygon inflation” scheme 

is applied.  
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 The program allows one to compute from the AFS the continuum of 

admissible spectra. The concentration profiles can be computed if the whole 

algorithm is applied to the transposed data matrix DT. Alternatively, the spectral and 

the concentrational AFS can be computed simultaneously within the 

“Complementarity & AFS” graphical user interface (GUI).  

FAC-PACK provides a live view mode which allows an interactive visual 

inspection of the spectra (or concentration profiles) while moving the mouse pointer 

through the AFS. Within the live view mode the user might want to lock a certain 

point of the AFS, for instance, if a known spectrum has been found. Then a reduced 

and smaller AFS can be computed, which makes use of the fact that one spectrum is 

locked. For a three-component system this locking and AFS reduction can be applied 

to a second point of the AFS.  

 Within the graphical user interface “Complementarity & AFS” the user can 

explore the complete factorization D CA=  simultaneously in the spectral and the 

concentration AFS. The factorization D CA=  is represented by two triangles. The 

vertices of these triangles can be moved through the AFS and can be locked to 

appropriate solutions. During this procedure the program always shows the 

associated concentration profiles and spectra for all components. In this way FAC-

PACK gives the user a complete and visual control on the factorization. It is even 

possible to import certain pure component spectra or concentration profiles in order 

to support this selection-and-AFS-reduction process [81]. 

 

1.1.1. The area of feasible solutions (AFS) for two-component systems. 

The AFS for systems with a number of s = 2 components can explicitly be 

described analytically. The numerical evaluation of the analytic formula results in the 

1D AFS plots. The starting point for the case s = 2 is the matrix T by (0.5) which 

together with its inverse reads 

111

11 11

1 1,
1 1 1

x S x
T T

S S x
− −   

= =   −−   
. 

The nonnegativity for the factors C and A results in feasible intervals for x and S11. 

With 
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 1 2 2
( ,2) 0 2 1 1

2 2 1
( ,2) 01 1 2

min , min ,

max , max

i i
i with V i ii i

i i
i i with V ii i

V Ua b
V U

U Vc d
U V

σ
σ

σ
σ

>

<

= − =

= = −
 (1.2) 

 

the AFS for the two-component system has the form of two separated intervals 

 = [a, b] ∪ [c, d]. (1.3) 

This result can be interpreted in a way that 

x ∈ [a, b] and S11 ∈ [c, d] and S11 ∈ [a, b] and x ∈ [c, d] 

result in nonnegative factors. A certain choice (x, S11) ∈ [a, b] × [c, d] completely 

determines a nonnegative factorization D = CA. The second choice (S11, x) ∈ [a, 

b]×[c, d] does not provide any new information. Instead, the second solution is equal 

to the first solution after a row permutation in A and a column permutation in C. This 

fact justifies that the AFS for two-component systems is often represented by the 

rectangular [a, b] × [c, d].  

 

1.1.2. Feasibility of points in AFS. 

 There is first the feasibility analysis for noise-free (model) data by 

considering a certain geometric construction. Alternatively, and with a focus on 

experimental spectral data, there is a numerical feasibility analysis which is based on 

the numerical solution of an optimization problem. Unfortunately, the numerical 

feasibility test can yield false results, if the numerical optimization procedure (e.g. 

due to convergence problems or poor initial estimates) is not successful.  

 This paragraph explains the feasibility checks of the polygon inflation 

algorithm by soft constraints, of the triangle enclosure technique as well as the grid 

search method and of the geometric-constructive Borgen plot approach. 

 Soft constraints can be added to the feasibility check on non-negativity. The 

aim of this approach is to compute the matrix elements of the submatrix S of (0.5) by 

solving a minimization problem for a certain target function which guarantees that 

CA is a good approximation of the initial matrix D. Simultaneously, various 
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constraints on C and A are to be satisfied. This feasibility test which also underlies 

the polygon inflation algorithm is explained in the following.  

 First it is introduced a small control parameter ε ≥ 0 so that −ε is a lower 

bound for the acceptable negative elements of C and A (in a relative sense related to 

the maximal value of a concentration profile or spectrum). Mathematically, these 

conditions read  

min ( , ) min ( , )
,

max ( , ) max ( , )
j j

j j

C j i A i j
C j i A i j

ε ε≥ − ≥ −  

for all i = 1,...,s. The acceptance of small negative entries can often significantly 

stabilize the computation in case of noisy or perturbed (e.g. by a background 

subtraction) data. 

The feasibility test for a point x is made in two steps. First, a rapid and 

computationally very cheap test is used in order to check whether x is contained in 

the set FIRPOL + , see Equation (0.7). If x is not in FIRPOL, then x cannot be an 

element of the AFS  . Once again, we accept small negative entries. To this end 

we use an approximate FIRPOL test in order to check whether or not 

 
0

(1, )( ) : min ,0
(1, )

T

T

x Vf x
x V

ε
∞

 
 = +
 
 

 (1.4) 

satisfies that f0(x) ≥ 0 (in a component-wise sense). Therein, ∞⋅‖‖ is the maximum 

vector norm, which is the largest absolute value of all components of its argument. If 

this test is passed successfully, then a second much more expensive test follows. 

Therefore the soft constraint function 

 2

1

(:, )( , ) min ,0
(:, )

s

i F

C if x S
C i

ε
= ∞

 
= + + 

 
∑

‖ ‖

2
2

2

( ,:)min ,0
( ,:)

s

s F
i F

A i I TT
A i

ε +

= ∞

 
+ + + − 

 
∑

‖ ‖
 

(1.5) 

is considered with T = T(x, S ) by (0.5). Further, C, A are computed according to 

(0.2). If  
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 ( 1) ( 1) tolmin ( , )s sS f x S ε− × −∈
≤



, (1.6) 

 

then x has passed the feasibility test successfully. Therein εtol is a small positive 

control parameter, e.g. εtol = 10−10.  

To summarize, the approximate feasibility test with the control parameters 

εand εtol results in the (approximate) AFS 

 { }1
0 tol :  fulfills ( ) n 0  and mi ( , )s

Sx x f x f x S ε−= ∈ ≥ ≤ . (1.7) 

The ssq-function (ssq for sum-of-squares) approach evaluates the reconstruction 

functional  

 
 

 

Therein max(C, 0) and max(A, 0) are the matrices whose negative entries are zeroed. 

The matrices C and A depend on T = T(x, S) according to (0.5). The triangle 

enclosure algorithm and the grid search method are based on the evaluation of the 

ssq-function. Computationally, the ssq-evaluation is relatively expensive as the 

computation of O(k · n) squares is required whereas the evaluation of (1.5) needs 

only O(k + n) squares. For large values of k and/or n this results in significantly 

different computation times.  

Finally, the AFS can be written as 

{ }1
tol: min ssq( , )s

Sx x S ε−= ∈ ≤  

for a fixed small parameter εtol > 0.  

The geometric feasibility test of a certain point x ∈ +  for the case s = 3 

consists of the following steps: First two tangents of INNPOL are constructed which 

run through the given point x and which (tightly) enclose INNPOL. Next the 

intersection of the first tangent with the boundary of +  (the line segment between 

x and this point must touch at least one point wi) is defined as P1. The same is done 

for the second tangent. This results in the point P2. Then x is a feasible point of the 

AFS if and only if the triangle with the vertices x, P1 and P2 includes the polygon 

2ssq( , ) max( ,0) max( ,0) Fx S D C A= − ⋅‖ ‖
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INNPOL. An extension of this geometric construction which is applicable to noisy or 

perturbed data is developed in Ref. [4].  

 

1.1.3. Peak group analysis. 

 The Peak Group Analysis (PGA) has been presented as a numerical algorithm 

which allows a step-by-step computation of the pure component spectra from the 

initial spectral data set for the chemical mixture. A crucial requirement for a 

successful application of the PGA is that certain single peaks or isolated peak groups 

can be identified whose spectral profile is dominated by a single pure component. 

Then this peak or peak group is the starting point for a local optimization procedure 

which results in a global spectrum of a pure component. This global spectrum more 

or less reproduces the initial peak or peak group. The mathematical algorithm of the 

PGA is based on the minimization of a target function to which various weighted soft 

constraints are added.  

PGA is a robust algorithm for medium-to-strong perturbed spectral data. The 

method also works very well in the case of systematic perturbations for example 

from a suboptimal baseline correction.  

PGA may extract single pure components and is able to uncover correlations 

within highly overlapping peak groups. The technical reason for these abilities is the 

window analysis of the spectra and the reduced number of variables of the cost 

function.  

 

 

1.2. Three-component systems. 

1.2.1. Perron-Frobenius theory. 

Definition 1.1. A matrix is called nonnegative (positive) if all its elements are 

nonnegative (positive).  

Here, we consider only nonnegative square matrices of order n, i.e., matrices 

that have n rows and n columns.   

Theorem 1.1 (Perron’s Theorem). Let A  be a positive matrix; then A  has a 

positive eigenvalue Aλ  such that  



21 
 

(a) Aλ  is a simple root of the characteristic equation of A , and 

(b) the value of Aλ  is strictly greater than the absolute value of any other eigenvalue 

of A .  

The eigenvalue Aλ  corresponds to a unique (with an accuracy of up to a scalar 

factor) positive eigenvector Ax . 

The set of nonnegative matrices has a special subset. Matrices from that 

subset, called irreducible (indecomposable) matrices, have many of the properties of 

positive matrices. The set of irreducible matrices is defined as the complement of the 

set of reducible (decomposable) matrices. Given a matrix that has zero elements, its 

(ir)reducibility is determined by the positions of those elements. A formal definition 

of a reducible matrix of order n (which is not necessarily nonnegative) will be 

reported below. In this definition, N denotes the index set {1, , }n… .  

Definition 1.2. Let A  be a square matrix of order n , 2n , formed by 

elements aij. The matrix A  is called a reducible matrix if there exists a subset S of 

the index set N such that aij = 0 for all j S∈  and i S∉ .  

The index set S that appears in this definition is called isolated. If A  is a 

reducible matrix such that {1, , }S k= … , then A  has the following form:  

 
11 12

220
A A

A
A

 
=  
 

, (1.8) 

 

where A11 and A22 are square submatrices of order k and n-k, respectively. These 

submatrices can also contain zero elements. Moreover, these submatrices can, in 

turn, be reducible matrices. Any reducible matrix can be put in form (1.8) by 

simultaneously permuting its rows and columns.  

It is clear that any positive matrix is irreducible. Any matrix of order 1 is 

considered to be reducible if and only if its (only) element equals zero.  

G. Frobenius generalized Perron’s theorem to irreducible matrices.   

Theorem 1.2 (Frobenius’ Theorem). Let A  be an irreducible nonnegative 

matrix; then A  has a positive eigenvalue Aλ  such that  
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(a) Aλ  is a simple root of the characteristic equation of A , and  

(b) the value of Aλ  is not less than the absolute value of any other eigenvalue of A .  

The eigenvalue Aλ  corresponds to a unique (with an accuracy of up to a scalar 

factor) positive eigenvector Ax . 

Suppose A  has m eigenvalues 1 1, , ,m m Aλ λ λ λ−… =  such that the absolute 

value of any of them equals Aλ . Then all these numbers are distinct and the set of 

these numbers, when considered as a system of points in the complex plane, goes 

over into itself under a rotation of the plane by the angle  2 / mπ , i.e., these numbers 

are the roots of the equation ( ) 0mm
Aλ λ− = . If m > 1, by simultaneously permuting 

its rows and columns, A  can be put in the following “cyclic” form:  

12

23

1,

1

0 0 0
0 0 0

0 0 0
0 0 0

m m

m

A
A

A
A

A
−

 
 
 
 = … … … … ……
 
 
  









, 

 

where there are zero square blocks along the main diagonal. 

The vector xA and the number Aλ  that appear in this theorem are called the 

Frobenius vector and the Frobenius eigenvalue of A , respectively. When it is 

important to stress that xA is a column vector, it is referred to as the right Frobenius 

vector of A. It is clear that, given an irreducible nonnegative matrix A, its eigenvalue 

Aλ  also corresponds to a unique (with an accuracy of up to a scalar factor) positive 

left eigenvector (row vector) :A A A Ap p A pλ=  [54]. The vector pA is called the left 

Frobenius vector of A.  

 

1.2.2. Definition of AFS. 

The starting point for the computation of the AFS is a SVD of the spectral 

data matrix k nD R ×∈ . Its SVD reads TU VΣ  with orthogonal matrices U, V and the 

diagonal matrix  Σwhich contains the singular values iσ  on its diagonal. If D is a 

rank-s matrix, then it holds that T TD U V U V= Σ = Σ   with 
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The so-called abstract factors UΣ   and TV  are usually poor approximations of 

the matrices C and A. A proper regular transformation by s sT R ×∈  allows one to 

solve the reconstruction problem according to 

 1, TC U T A TV−= Σ =  . (1.9) 

 

Any pair of nonnegative matrices 1U T −Σ   and TTV  is called a feasible solution. A 

feasible solution guarantees a correct reconstruction since ( )( )1 TD U T TV−= Σ  . 

However, these factors may have no physical meaning.  

For a two-component system Lawton and Sylvestre have represented the 

range of feasible solutions. For a three-component system the situation is more 

complicated but the purpose is still the same. All regular matrices T are to be found 

so that C and A in (1.9) are nonnegative matrices. The coefficients of T are the key 

for a low-dimensional representation of the AFS. 

The Perron-Frobenius theory guarantees that the first singular vector V(:, 1) 

of V can be assumed to be a component-wise nonnegative vector; possibly a 

multiplication with −1 is to be applied to give a component-wise non-positive vector 

of the desired orientation. With (1.9) the ith pure component spectrum A(i, :), i = 1, 2, 

3, reads  

 
1 2 3( ,:) (:,1) (:, 2) (:,3)T T T

i i iA i t V t V t V= + + . (1.10) 

Since (:,1) 0V ≠  these spectra can be scaled so that ti1 = 1 for i = 1, 2, 3. Then T has 

still six degrees of freedom namely ti2 and ti3 with i = 1, 2, 3. The problem is forced 

to two dimensions by looking only for those 12: tα =  and β := t13 so that 

 

11 12

21 22

1
1
1

T s s
s s

α β 
 =  
 
 

 (1.11) 

for proper s11, s12, s21 and s22 results in a feasible solution.  

(:,1: ) , (1: ,1 .: ) (:,1:, )k s s s n sU U s R s s V V s× × ×= ∈ Σ = Σ ∈ = ∈ 

 
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A point (α, β) ∈ R2 is called valid if and only if there exists at least one 

regular matrix  

 
11 12 2 2

21 22

s s
S

s s
× 

= ∈ 
 

  (1.12) 

so that T is invertible and both TA TV=   and 1C U T −= Σ   are nonnegative matrices. 

Hence the AFS can be expressed as the set 

 { }2( , ) : rank( ) 3, , 0T C Aα β= ∈ = ≥  (1.13) 

Under some mild assumptions the set   is bounded. The rows of S and α, β 

are coupled in the following sense: If (α, β) ∈  , then the rows S (i, :), i = 1, 2, of S 

are also contained in  . The reason is that an orthogonal permutation matrix P ∈ 

R3×3 can be inserted in the admissible factorization 

 



( )
1

1 1

( )

( )T T T

PT

D CA T TV U T P TU P V
−

− −Σ= = = Σ   . 

The permutation of the rows of T is accompanied with the associated permutation of 

the columns of T−1 and the nonnegativity of the factors is preserved. Further PT and 

( ) 11 TT P PT −− = are a pair of transformation matrices with permuted rows/columns in 

a way that (si1, si2) can substitute (α, β) and vice versa.  

The AFS for an s-component system is a subset of the Rs−1 with the form 

 { 1 1 :exists invertible s s st T× − ×= ∈ ∈   

}1 0  (1,:) (1, ),  and 0TT t U T TV−= Σ ≥ ≥   
(1.14) 

(1.14) implies that the rows a of a feasible factor A can be presented by linear 

combinations of the rows of TV  in the form  

 (1, ) Ta t V= ⋅  . (1.15) 

The fixed 1 in the row vector (1, t) guarantees that any spectrum has a contribution 

from the first right singular vector. This property is by no means evident and has to 
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be proved. Theorem 1.3 shows that the AFS representation (1.14) is valid if and only 

if DTD is an irreducible matrix. For such matrices Theorem 1.4 shows that  is a 

bounded set.  

Definition 1.3. Let P be an n×n permutation matrix, i.e. P is a column 

permutation of the identity matrix. An n×n matrix H with n ≥ 2 is called reducible, if 

a permutation matrix P exists so that  

1,1 1,2

2,20
T H H

PHP
H

 
=  
 

. 

Therein H1,1 is an m×m submatrix and H1,2 is an m×(n−m) submatrix with 1 ≤ m < n. 

If such a permutation matrix P does not exist, then H is called an irreducible matrix.  

The next theorem proves that the Borgen and Kowalski approach (with 1s in 

the first column of T) is justified. Further, the result is used in Theorem 1.4 on the 

boundedness of the AFS.  

Theorem 1.3. Let D ∈ Rk×n be a nonnegative matrix with rank(D) = s which 

has no zero column. Further let TU VΣ  be a singular value decomposition of D and 

let V be the submatrix of V formed by its first s columns. There exists a vector 
1 1 \{0}st × −∈  with 

 (0, ) 0Tt V⋅ ≥  (1.16) 

(in words: any linear combination of the columns 2,...,s of V has negative 

components) if and only if DTD is an irreducible matrix. 

Corollary 1.3. Let DT satisfy the assumptions of Theorem 1.3. Then no 

1sv −∈  exists with 
0

0U
v
 

Σ ≥ 
 

    if and only if DDT is irreducible.  

The matrix DTD can be assumed to be irreducible for spectroscopic 

applications. Otherwise, the series of spectra decomposes into apparently separated 

or noncoupled subblocks. A trivial example of a reducible matrix is the 3-by-3 

identity matrix D = I3 so that DTD = I3 for which T is not necessarily in the form (2) 

(since V = T = T−1 = C = A = I3 ≥ 0 is a feasible solution).  
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An important consequence of Theorem 1.3 is that the AFS is a bounded set. 

The AFS   is a subset of 

 { }1 1 : (1, ) 0s Tt t V+ × −= ∈ ≥

 , (1.17) 

which is closely related to FIRPOL in [78]. The set +  stands for the non-

negativity of the spectral factor A only, and +  is the intersection of the n half-

spaces 

 { }1 1 : ( , 2 : ) ( ,1) , 1, ,s Tt tV i s V i i n× −∈ ≥ − = … 

 . (1.18) 

The next theorem shows that   and +  are bounded sets for irreducible 

DTD.  

Theorem 1.4. Let D satisfy the assumptions of Theorem 1.3. Then +  by 

(1.17) and   are bounded if and only if DTD is an irreducible matrix.  

With few additional assumptions one can show that the set   does not 

include the origin (i.e. the zero vector).  

Theorem 1.5. Let D ∈ Rk×s be a nonnegative rank-s matrix so that DTD and 

DDT are irreducible matrices and that a factorization D = CA with nonnegative 

factors exists. Then 0∉ .  

Further, the first left singular vector (:,1)U  is not the concentration profile of 

a pure component and the first right (:,1)V  is not the spectrum of one of the pure 

components. 

  

 

1.3. The polygon inflation algorithms. 

For the computation of the AFS a procedure to classify points (α, β) ∈ R2 as 

valid, if (α, β) ∈  , or as non-valid in the other case has to be used. A procedure for 

this classification is developed next. Let ε ≥ 0 be a small nonnegative real number. 

Then −ε is used as a lower bound for the acceptable relative negativeness of the 

factors C and A in the following way 
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 min min
, , 1, 2,3

max max
j ji j ij

j ji j ij

C A
i

C A
ε ε≥ − ≥ − = . (1.19) 

 

The acceptance of small negative components of C and A allows one to stabilize the 

computational process in the case of noisy data.  

Let f be a target function which depends on the six degrees of freedom being 

α, β and S ∈ R2×2, see (1.11) and (1.12), so that 

2 2  :f R R R R×× × →  with 

 2
3

1 1
( , , ) min 0,

(:, )

k
ji

i j

C
f S

C i
α β ε

= = ∞

+
 

= + 
 

∑∑
‖ ‖

 

2
3 2

3
1 1

min 0,
( ,:

.
)

  
n

ij

F
i j

A
I TT

A i
ε +

= = ∞

 
+ + + − 

 
∑∑

‖ ‖
 

(1.20) 

 

Therein C and A are formed according to (1.9), I3 ∈ R3×3 is the 3×3 identity matrix, 

∞⋅‖‖ is the maximum vector norm and F⋅‖‖  is the Frobenius matrix norm. Further 

T+ is the pseudo-inverse of T. The last summand 
2

3 F
I TT +−  equals zero if T is an 

invertible matrix and is positive if T is singular; therefore f = 0 guarantees a regular 

T. The function f is used to form F as follows 

 
2 2

2: , ( , ) min ( , , )
S

F F f Sα β α β×∈
→ =



  . (1.21) 

 

Computationally a point (α, β) is considered as valid if and only if F(α,β) ≤ εtol with 

εtol = 10−10. Hence,  

 { }2
tol( , ) : ( , )Fα β α β ε= ∈ ≤ . (1.22) 

 

The evaluation of F requires the solution of a least-squares problem within 4 

parameters and with 3(k + n + 3) variables. Our function F given in (1.21) is 

somewhat different from the pure sum of squares 2

F
ssq D C A+ += − ; therein C+ and 
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A+ are derived from C and A by removing any negative entries. However, we prefer 

to use (1.21) for the reason of its numerical stability and as (1.21) requires a 

minimization of a sum of only O(k + n) squares. In contrast to this, the minimization 

of ssq includes the much larger number of O(k ・ n) summands of squares. Here, the 

number of components is fixed at s = 3. If the approach is generalized to larger s, 

then the computational costs increase linearly in s.  

The orientation of the AFS   depends on the orientation of the singular 

vectors. The orientation of a singular vector means that the sign of a singular vector 

is not uniquely determined in the sense that the simultaneous multiplication of the ith 

left singular vector and the ith right singular vector with −1 does not change the 

product TU VΣ . However, the orientation of the first left singular vector and the first 

right singular vector can be fixed in advance by the Perron-Frobenius theory as these 

two vectors are sign-constant and can therefore be assumed in a component-wise 

nonnegative form [99]. In other words the SVD TU VΣ  with U∈Rk×3, V ∈ Rn×3 is 

equivalent to the SVD ˆ ˆTU VΣ  with 

( )1 2
ˆ (:,1: 3) (:,1: 3) diag 1, ,U U p p= ⋅  

( )1 2
ˆ(:,1: 3) (:,1: 3) diag 1, ,V V p p= ⋅  

and p1, p2 ∈ {−1, 1}. The signs of pi are associated with a reflection of the AFS along 

the α- or the β-axes.  

Here, the AFS   is related to feasible matrices representing the pure 

component spectra. If the AFS for the concentration factor C is of interest, then the 

whole procedure can be applied to the transposed data matrix DT. 

The algorithm starts with the construction of an initial triangle which is a first 

coarse approximation of a topologically-connected subset of the AFS. Therefore, an 

admissible factorization D = CA with nonnegative factors C and A is needed. This 

factorization can be computed by any nonnegative matrix factorization tool. 

According to (1.10) the first row A(1, :) reads  

(0) (0)(1,:) (:,1) (:, 2) (:,3)T T TA V V Vα β= + +  

Hence (α(0), β(0)) ∈   are determined by  
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( )11 12 13(1,:) , , (1,:)T t t t A V= = ⋅ and (0) (0) 1312

11 11

, tt
t t

α β= =  . 

This interior point (α(0), β(0)) is the basis for the construction of the three vertices P1, 

P2, P3 of the initial triangle on the boundary ∂  of  . Since   is a bounded set, 

P1 and P2 can be determined on the straight line along the α-axis through (α(0),β(0)) 

having the form 
(0)

(0)

1
0

x
α

γ
β
   

= +   
  

. 

Hence, γ ≥ 0 for P1 and γ ≤ 0 for P2, see Figure 1.1 for the construction. Then P3 is 

one point of intersection of the mid-perpendicular of the line segment P1P2 having 

the form  

( )1 2 1 2
1, ,
2

x M v M P P v PPγ= + = + ⊥ . 

Without loss of generality 0γ ≤  can be assumed.  

 

 
Figure 1.1. Computation of an initial triangle in  . Dotted line: Boundary of a 

subset of  . Bold line: the initial triangle. Asterisk: Initial point (α(0),β(0)) = 

(0.2438, 0.0235) [78]. 

 

The edges of the initial triangle and also the edges of refined polygons are 

subdivided by introducing new vertices in a way that the refined polygon is a better 

approximation of the AFS.  

Next the adding of a new vertex is explained. Therefore, let the m-gon P with 

the vertices (P1,...,Pm) be given. Then P is inflated to an (m + 1)-gon P′ with the 
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vertices (P′1,...,P′m+1). If the edge between Pi and Pi+1 is selected for the refinement, 

then the new vertex P′i+1 is a point of intersection of the mid-perpendicular of the 

edge PiPi+1 and the boundary ∂ . The refined polygon has the vertices  

( ) ( )1 2 1 1 2 1 1, , , , , , , , , ,m i i i mP P P P P P P P P′ ′ ′ ′
+ + +… = … … . 

If P approximates a topologically connected convex subset  , then the new 

vertex 1iP +′  is located not in the interior of P so that the new polygon P′ contains P 

as a subset. In case of a concave boundary element the new polygon P′ may have a 

smaller area than P. The mid-perpendicular of the edge 1i iPP+  has the form 

 ,M vγ γ+ ∈  with ( )1 1
1 ,
2 i i i iM P P v PP+ += + ⊥ . (1.23) 

 

 

Figure 1.2. Adding of the vertex '
6P  which is located on the intersection of the mid-

perpendicular through P5 and P6 and the boundary of   [78]. 

 

The point of intersection of the straight line (1.23) and ∂  is not unique 

(there are two or more points of intersection); the new vertex 1iP′
+  is determined in a 

way that the Euclidean distance to M is minimized and that the polygon is not 

dissected into two parts (to avoid to find a new vertex on the opposite side of the 

polygon, i.e. 1iP M′
+  dissects P). Figure 1.2 illustrates the refinement of a 6-gon to a 

7-gon.  

The accuracy of a new vertex depends on the function F which is to be 

minimized along the straight line (1.23). Numerically we use the relatively slow 
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converging bisection method for the root finding because of its simplicity and 

robustness. The iteration is stopped if a final accuracy εb is reached so that 

 
1 1 2

, mini x i bP P x ε′ ′
+ ∉ +∈ − < . (1.24) 

 

The number of iterations depends on εb and on the length 1 2i iP P+−  of the 

edge. In our numerical calculations between 3 iterations (for εb = 10−2) and 8 

iterations (for εb = 10−5) were needed to determine a vertex P′i+1.  

An adaptive process is used to determine those edges of the polygon whose 

subdivision promises to improve the approximation of the AFS in the best way. Next 

a selection strategy is introduced together with a termination criterion.  

The central quantity which steers the refinement process is the change-of-area 

of the polygon which arises if an edge is subdivided. So if an edge 1i iPP+  is 

subdivided, then each of the new edges gets an equally weighted gain-of-area  

 
1 12 2

1
4i i i iP P M P′

+ +∆ = − −  (1.25) 

as an attribute. In the next step an edge   is selected for which arg max j j= ∆  in 

order to determine an edge which promises a maximal gain-of-area on the basis of its 

subdivision history. If there is no unique index  , then the algorithm starts with the 

smallest index. As for the initial triangle no subdivision history is available, all three 

initial edges are subdivided at the beginning. The refinement process is stopped if the 

largest achievable gain-of-area drops below some final accuracy δ. The actual value 

of δ may depend on the problem. It is often used δ = εb.  

The polygon inflation algorithm works well for non-perturbed, as well as for 

noisy data. The parameter ε in (1.18) controls the allowance of relative negative 

contributions in C and A and, in our experiments, appears to cause a favorable 

numerical stability with respect to perturbations.  

However, the noise level must be limited in a way that the first three singular 

vectors V(:, i), i = 1, 2, 3, still contains the essential information on the system. If this 

is not guaranteed, then the expansion (1.10) cannot guarantee for a proper 
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reconstruction of C and A. Then even no regular transformation T may exist so that C 

and A are nonnegative matrix factors [78].  

Three characteristic traits of the polygon inflation algorithm are compiled 

next and are compared with the triangle inclusion method.  

1. The polygon inflation algorithm which uses the function (1.18) has to 

minimize sums of only O(k +n) squares. In contrast to this the function ssq includes 

O(kn) squares. (It is worth noting that by the definition of the Landau symbol it holds 

that O(k + n) = O(s(k + n)) where s is the number of components which equals 3 

throughout this thesis.)  

2. Negative entries of C and A larger than −ε are not completely ignored in 

the polygon inflation algorithm but affect the minimum of F, see (1.21).  

3. The polygon inflation algorithm results in a piecewise linear interpolation 

of the boundary of   by polygons. The local approximation error of a linear 

interpolation behaves like O(h2) if the nodes of the interpolant are assumed to be 

exact. In contrast to this, the enclosure of the boundary by a chain of equilateral 

triangles with the edge-length h results in a final accuracy which is bounded by the 

width O(h) of this chain. 

Further, the local adaptivity of the polygon inflation scheme even requires a 

small number of refinement steps if the boundary is locally more or less a straight 

line. A critical non-smooth region of the boundary can be resolved to any desired 

accuracy. This adaptive resolution of the boundary results in a cost-effective 

computational procedure. In contrast to this, the number of triangles needed for the 

triangle inclusion algorithm increases as O(1/h) in the edge length h of the triangles.  

Parameters of the polygon inflation algorithm are:  

1. The parameter ε in (1.17) controls the degree of acceptable negative entries in the 

columns of C and the rows of A. Negative matrix elements are not penalized in (1.18) 

if their relative magnitude is larger than −ε. This parameter should be increased with 

growing perturbations in the spectral data. In our experience 0 ≤ ε ≤ 0.05 seems to be 

working properly. For model problems and in absence of any errors ε = 0 can be 

used. By construction increasing ε enlarges the AFS.  
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2. The parameter εb in (1.24) controls the quality of the boundary approximation of 

the AFS. It is used εb ≤ 10−3 and sometimes εb ≤ 10−4. The influence of this parameter 

on the shape and size of the computed AFS is negligible.  

3. The parameter δ defines a stopping criterion for the adaptive polygon refinement. 

If the largest gain-of -area (1.25) is smaller than δ, then the refinement can be 

stopped. It is often set δ = εb and state that the shape and size of the computed AFS is 

not sensitive to changes of δ.  

Each step of an iterative minimization of F by (1.21) includes the solution of 

a nonlinear optimization problem. For a poorly conditioned problem the numerical 

solutions will scatter around the exact solution. Hence, a new vertex P′i+1 might be 

located in the interior of the AFS in the following sense 1 2
min x i bP x ε′

∉ + − ≥ . 

With such an inaccurate vertex the further refinement steps can result in a 

nonsmooth boundary which may even contain needles directing towards the inside of 

the AFS. To avoid such misplaced boundary points, the powerful optimization 

procedure NL2SOL is used and the iterative minimization has to start with a good 

initial guess [71]. A reasonable initial guess can be a convex combination of the 

numerical solutions which have previously been gained for nearby points. Further, it 

is applied some decision tree before accepting points as valid. Nevertheless, 

misplaced boundary points can be detected by looking for obtuse angles along the 

edges of the polygon. Then, suspicious vertices may be removed and the 

optimization can be restarted.  

If parts of the boundary of two isolated subregions of the AFS are in close 

proximity, then the numerical algorithm tends to agglutinate these regions to a joint 

connected subset. However, for most of the practical problems the subsets of the 

AFS appear to be well separated.  

As it was mentioned before the AFS is a bounded set which does not include 

the origin. A challenging question is: What is the number of isolated segments an 

AFS may consist of?  

For s = 2-component systems the AFS consists of p = 2 separated intervals 

which are taken as the sides of a rectangular for its presentation. For s = 3-

component systems experimental data and model data show that a number of p = 1, p 

= 3 or even p = 6 segments may occur.  
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It is well known that the AFS for three-component systems may consist of only one 

segment and that this segment can contain a hole, which surrounds the origin. Next it 

is described a variation of the polygon inflation algorithm which can be used to 

compute such AFS with a hole or an AFS with more than three isolated segments.  

If for a three-component systems (s = 3) the entire AFS consists of one 

segment with a hole, then the triangle-enclosure algorithm and the polygon inflation 

algorithm are to be modified properly. For the triangle-enclosure algorithm two runs 

are necessary in order to cover the interior and the exterior boundary curve by 

sequences of triangles. 

 For the polygon inflation algorithm the exterior polygon and the interior 

polygon are to be treated differently but the geometric concept of inflation polygon is 

in each of these cases the same. Only the objective functions are changed.  

First, the computational effort to compute the exterior polygon is very small 

since only (1, ) 0Tt V ≥  is to be tested according to Equation (1.17). This exterior 

polygon is just the boundary of the set +  defined in (1.17). The remaining 

conditions on t to be a valid vector, i.e. t ∈  , are used to define a further set 

 { }* 1 2
2: min ( , ) 0s

St f t S−= ∈ = ‖ ‖  (1.26) 

whose inner boundary is computed by the standard polygon inflation algorithm. For t 

∈ *  the definition of *  guarantees that T is regular, C ≥ 0 and A(2 : 3, :) ≥ 0. 

The intersection of +  and *  , which combines the conditions, results in the AFS  

 *+= ∩   . (1.27) 

In order to avoid any misinterpretation it is mentioned that *  is very different to 

INNPOL as used in Ref. [88].  

The algorithm to compute a polygon which approximates the boundary of 
+  uses an objective function which guarantees (1.18) to hold. The starting point is 

the origin which is always in + . The polygon inflation starts with a triangle 

enclosing the origin and whose vertices are located on the boundary of + . 

 After this the interior boundary of *  is computed by using the objective 

function 
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 1 ( 1) ( 1) ( 1) 1: S s s ks n sf − − × − + − +× →   . (1.28) 

Therefore, the complement 2 *\   is approximated from the interior of this set. 

The starting point is, once again, the origin since Theorem 1.5 guarantees that 

*(0,0)∉ . 

The use of the complement is the reason why we call the algorithm an inverse 

polygon inflation. The computation of the hole of the AFS by applying the polygon 

inflation to 2 *\    has the advantage that only few lines of program code are to be 

adapted. Further, the relevant regions of the two sets +  and *  can be computed 

in a stable way.  

If FAC-PACK uses the standard polygon inflation algorithm and finds an 

AFS segment which has a nonzero intersection with at least three quadrants of the 

Cartesian coordinate system, then the algorithm automatically switches to the inverse 

polygon inflation. Thus a one-segment AFS is automatically computed by inverse 

polygon inflation. 

 

1.3.1. Traces of the spectral data matrix. 

The traces of spectral data matrix D can be drawn in A  and C . The 

traces in A  are the normalized expansion coefficients of the rows of D with respect 

to the right singular vectors V(:, 2) and V(:, 3). The normalization is that the 

expansion coefficient for V(:, 1) equals 1. Thus the trace A  is given by the k points 

2 3

1 1

( ) ( ) ( ,:) (:, 2) ( ,:) (:,3), , , 1, ,
( ) ( ) ( ,:) (:,1) ( ,:) (:,1)

i i
i

i i

DV DV D i V D i Vw i k
DV DV D i V D i V

   ⋅ ⋅
= = = …   ⋅ ⋅  

. 

Analogously, the traces of D in C  are the normalized expansion 

coefficients of the columns of D with respect to the scaled left singular vectors 
1

2 ( ):, 2Uσ −  and 1
3 ( ):,3Uσ −  

( )
( )

( )
( )

1 1

2 3 1 1
1 1

2 31 1

(:, 2) (:, ) (:,3) (:, ), , , 1, , .
(:,1) (:, ) (:,1) (:, )

T T
T T

j j
j T TT T

j j

U D U D U D j U D ju j n
U D j U D jU D U D

σ σ
σ σ

− −

− −

 Σ Σ  ⋅ ⋅ = = = …   ⋅ ⋅Σ Σ   
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1.3.2. Borgen Plots. 

Borgen plots are representations of the AFS which are generated by means of 

a geometric construction. 

In FAC-PACK the generalized Borgen plots can be computed for two 

different scalings. 

I. The Row Sum scaling (RS-scaling) scales the rows of data matrix D and spectral 

matrix factor A so that each row sum of these two matrices is equal to 1. For the case 

of nonnegative matrices the row sum scaling is equivalent to a normalization of rows 

with the 1-norm. 

II. The First Singular Vector scaling (FSV-scaling) is a scaling which makes the 

expansion coefficient of each row of A with respect to the normalized first right 

singular vector of A equal to 1. The FSV-scaling has predominantly been used in the 

context of numerical methods to compute the AFS. 

  

1.3.3. Weakly separated subsets of AFS. 

If the segments of an AFS are only weakly separated (in a sense that the 

polygon inflation algorithm tends to glue separated segments of the AFS to a joint 

segment), then the numerical computation of +  and * , which is followed by 

their intersection, is a stable and favorable way to construct  . The inverse polygon 

inflation procedure can even be applied to general situations with well separated 

segments - a situation we have often found for FT-IR spectral data. However, the 

computational procedure for the inverse polygon inflation is somewhat more 

expensive as compared to the direct computation of the three separated segments.  

 

1.3.4. Straight-line segments of AFS. 

An isolated segment of the AFS is most often either a set whose 

(mathematical surface) area is larger than zero or it is a single point. In some cases an 

isolated subset of the AFS appears to be a straight-line segment. In absence of 

rounding errors and perturbations its surface area equals zero; for slightly perturbed 

data such a segment practically is a long and narrow band. The polygon inflation 

method needs some algorithmic enhancement in order to compute such straight-line 

segments.  
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In FAC-PACK it is used an angle-search method for approximating such AFS 

segments. The starting point is a feasible coordinate x = (α, β) as computed by the 

NMF. Together with a small radius parameter r the function  

,

sin( )
( )

cos( )r xg x r
ϕ

ϕ
ϕ

 
= +  

 
 

is considered in order to compute a feasible angle ϕ  so that , ( )r xg ϕ ∈ .   

The numerical minimization of the objective function (1.25) is executed only 

if the rapid test (1.29) is passed, where the rapid test is 

 ( , 2 : ) ( ,1), 1, ,Tt V i s V i i n− ⋅ ≤ = … . (1.29) 

 

The initial x might be one of the endpoints of the line segment or between 

them. In the latter case and if ϕ  represents a feasible direction, then also ϕ  − π 

stands for a feasible direction. For these two oppositely oriented directions maximal 

values rl and rr are computed by the bisection method so that the desired line 

segment equals the union l r∪   with  

 

[ ] [ ]sin( ) sin( )
 with 0,  with 0,

cos( ) cos(
  

)l l r rx r r r x r r r
ϕ π ϕ
ϕ π ϕ

   −   
= + ∈ = + ∈      −      

  . 
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2. THE MATHEMATICS OF PYFITIT 
 

2.1. Principal component analysis (PCA): definition and goals. 

The central idea of PCA is to reduce the dimensionality of a data set 

consisting of a large number of interrelated variables, while retaining as much as 

possible of the variation present in the data set. This is achieved by transforming to a 

new set of variables, the principal components (PCs), which are uncorrelated, and 

which are ordered so that the first few retain most of the variation present in all of the 

original variables.  

It is a way of identifying patterns in data, and expressing the data in such a 

way as to highlight their similarities and differences. Since patterns in data can be 

hard to find in data of high dimension, where the luxury of graphical representation 

is not available, PCA is a powerful tool for analyzing data. 

 

The goals of PCA are: 

1. to extract the most important information from the data table;  

2. to compress the size of the data set by keeping only this important information;  

3. to simplify the description of the data set;  

4. to analyze the structure of the observations and the variables; 

5. to compress the data, by reducing the number of dimensions, without much loss of 

information; 

6. to use in image compression. 

 

2.1.1. Correlation Coefficient and Matrix in PCA. 

Correlation Coefficient ρ  is a measure of the linear relationship between two 

random variables ( 1 1ρ− ≤ ≤ ). 

If the correlation between two variables is positive, then an increase 

(decrease) in the value of one variable corresponds to an increase (decrease) in the 

value of the other. Similarly, a negative correlation would mean that an increase 

(decrease) in the value of one variable will correspond to an decrease (increase) in 

the value of the other. In the case of independence when there is no relation between 
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two variables, the correlation is zero. The correlation coefficient denoted by ρ , is 

computed by 

 cov( , )( , )
var( ) var( )XY

X Ycorr X Y
X Y

ρ = = . (2.1) 

 

Statistically 

 ( )( )

( ) ( )
1

2 2

1 1

( , )

n

i i
i

XY n n

i i
i i

x x y y
corr X Y r

x x y y

=

= =

− −
= =

− −

∑

∑ ∑
. (2.2) 

 

Let ( )1, , T
nX X X= …  be an n-dimensional random sample, the correlation 

between random variables iX  and jX  is denoted by 
i jx xr  and given by 

( )
( )( )

( ) ( )
1

22

1 1

,
i j

n

ik i jk j
k

i j x x n n

ik i jk j
k k

x x x x
corr X X r

x x x x

=

= =

− −
= =

− −

∑

∑ ∑
. 

Obtained 
i jx xr  values can be represented in n n×  matrix form 

 
1 1 1

1

n

n n n

x x x x

x x x x

r r

r r

⋅ ⋅ 
 

⋅ ⋅ ⋅ ⋅ =  ⋅ ⋅ ⋅ ⋅
 
 ⋅ ⋅ 

R . (2.3) 

 

 
 
2.2. Mathematics of PCA. 

PCA is a procedure that seeks an r-dimensional basis that best captures the 

variance in the data. The vector that has the largest variance is called the first 

principal component. The orthogonal vector that captures the second largest variance 

is called the second principal component, and so on. 

Prior to starting the PCA procedure, data are often pre-treated to transform 

them into a suitable form for the analysis.  
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Variables frequently have different numerical units, and different ranges. For 

example when there are two variables, the first one being a persons’ weight and the 

second variable the height, the weight has a large range so it has a large variance, but 

the height has a small range, then it has small variance. Since PCA is a method of 

maximum variance projection, it follows that the variable which has large variance 

will contribute more than the variable with low-variance [29]. 

In the data matrix each element of a column is divided by the column 

standard deviation, see Figure 2.1. 

 

 

Figure 2.1. Unit Variance (UV) scaling processing [2]. 

 

Let X be n p×  data matrix (p variables and n observations). The “center of 

gravity" of the columns is a vector ( )1 2, , , px x x= …x  in p
  of the means jx  of the p 

variables (columns) which is given by: 

1

2
1 T

n

p

x
x

n

x

−

 
 
 
 ⋅= =
 
⋅ 

 
 

x X 1  

where n1  is n n×  unit matrix. The covariance matrix S can be written as 

( ) ( )1 T 1 1 1 1  T T
n n n n nn n n n n− − − − −= − = − = −

T T T TS 1xxX X X X X X X 1I 1 X1 . 
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Hence, ( )1 T
n n nn−−I 1 1 is a centering matrix denoted by H. Rewriting the covariance 

formula 

 1 Tn−=S X HX  (2.4) 

 

is obtained.  

Note that H is symmetric and idempotent ( )2=H H . Then the standardized 

data matrix is denoted as *X and given by  

 1/2 1/2
* n− −=X HXD  (2.5) 

 

where ( )i iX Xdiag s=D .  

Let cX  be the centered matrix of X  n p×  data matrix. The SVD of cX  is 

given as 

 T
c =X LΔQ . (2.6) 

  

The matrix T
c cX X  is defined as 

 ( ) ( ) 2
c

TT T T T T T T T T
c c = ∆ = = = XX X L Q LΔQ QΔ L LΔQ QΔ ΔQ QΔ Q  (2.7) 

 

where 2
cxΔ  is n n×  matrix with diagonal entries 2

iδ  for 1, 2, ,i p= … . 

Since cX  is a centered data matrix, the covariance matrix is 1 T
c cn

=Σ X X by 

the principal axes theorem in Ref. [64]. This can be decomposed as T=Σ U ΛU  then 

 T T ( )T
c c n n n= = =X X Σ U ΛU U Λ U . (2.8) 

 

By (2.7) and (2.8), Q (right singular vectors) are the same of the eigenvectors 

of matrix Σ, additionally, the singular values of cX  are related to the eigenvalue of 

Σ. 
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The PCs are obtained from the SVD of the covariance matrix.   In the 

principal component transformation, the estimator µ  is replaced by x  and Σ is 

replaced by S. Spectral decomposition of the covariance matrix can be written as 

 = TS GLG . (2.9) 

 

Then the PCs are obtained by 

 ( )T
nY X x= −1 G  (2.10) 

 

where ( )1 2, , , pdiag= …L     is  the  diagonal  matrix  of  eigenvalues  of  S  

and ( ), , ,= …1 2 pG g g g  is a matrix of orthogonal eigenvectors jg  of S. 

If all original p variables are uncorrelated (orthogonal, independent), then the 

variables themselves are the PCs. Hence S would have the form 

11 0

0 pp

s

s

 …
 

=  
 
 

S   



 

and the eigenvalues j  of the covariance matrix S will be j jjs=  j=1, 2,..., p. 

Correspondingly, the normalized eigenvectors g j which have 1 in the jth position 

and zeros elsewhere, are 

)0,0,... 0( ,1, ,...,0T
j =g ,  j =1, 2,..., p. 

Thus, the jth PC is 1, 2, ,T
j j j j p= = = …g X xz . 

As another illustration, in the covariance S or correlation matrix R, a 

distinguishing pattern may be identified, from which formulation of the principal 

components can be deduced. For example, if one of the variables has the highest 

variance compared with others, this variable will dominate the first component, 

accounting for the majority of the variance.  

2
2 , 1, 2, , ., i

i i in i p
n
δ

λ δ λ= = = …
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Generally, the PCs are computed from S rather than R, specially if the PCs 

are used in farther computation. However, in some cases, the PCs will be more 

interpretable if calculated from R.  

After centering the data matrix ,
T T

c n c c= −X X 1 x X X  is the covariance 

matrix which is used in PCA. When the variables are measured with different units, 

the data must be standardized by dividing each variable (each column) by the column 

standard deviation (2.4). In this case * *
TX X  is equal to the correlation matrix R. Then 

the analysis is referred to correlation PCA. 

Let ~ ( , )X µ Σ , = TΣ Γ ΛΓ  and ( )TY X µ= −Γ  be a linear transformation, 

then the following properties applies: 

1) 0 1,2, ,jEY j p= = … , ( )( ) ( ) 0T T
j j jEY E X E Xµ µ= − = − =η η  

2) ( ) 1,2, ,j jVar Y j pλ= = … , 

( ) ( )( ) ( )T T
j j j j jVar Y Var X Var Xµ η λ= − = =η η  by the properties of variance 

3) ( ), 0i jCov Y Y i j= ≠ , ( ) ( ) ( ) ( ), 0i j i j i jCov Y Y E YY E Y E Y= − =  

4) Let S be the covariance matrix of original variables, and let ( )T
n x= −Y X 1 Γ . 

The covariance matrix of the PCs is Y =S Λ  where ( )1 2, , , pdiag λ λ λ= …Λ  is the 

eigenvalues of S  

( )( ) ( )1 1 1TT T T T T T
Y n nn n x x n− − −= = − − = = =S Y HY X 1 Γ H X 1 Γ Γ X HXΓ Γ SΓ Λ . 

 

2.2.1. Interpreting the Meaning of the principal components (PCs). 

PCA produces two items of basic information for interpreting the results. The 

first one is the correlation coefficients between the original variables and the PCs 

which are used to interpret the meaning of the PCs. The second one is each principal 

component associated with an eigenvalue which converts to the proportion of the 

variation that is explained by the PC.  

The covariance between the original random variable X and the PC Y is given 

in Ref. [29] as  
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 ( ) ( ) ( )( , ) ( )T T TCov X Y E XY E X E Y E XY= − = =  

( ) ( )T T TE XX Var X= − = = = =Γ μμ Γ Γ ΣΓ ΓΛΓ Γ ΓΛ  
(2.11) 

 

where T=Σ ΓΛΓ  is the covariance matrix; ( )1 2, , , pdiag λ λ λ= …Λ  is the 

eigenvalues; ( ), , ,= …2 p1Γ η η η  is a matrix of orthogonal eigenvectors jη  of the 

covariance matrix.  

The correlation between each PC and the original variables is denoted by 

i jX Yρ  and given by  

 

( )

1/2

1/2

1, 2, ,
1, 2, ,i j

i i
i i

ij i i
X Y ij

X XX X j

i p
j q

η λ λ
ρ η

σσ λ

  = …
= =    = … 

 (2.12) 

 

Using actual data, (2.12) translates to 

 1/2

i j
i i

j
X Y ij

X X
r g

s

 
=   

 



. (2.13) 

 

This correlation coefficient between the random variable X and PC is also called 

“loading”. Note that sum of squares of loadings is equal to 1. 

 
 

(2.14) 

 
Most of the foundations of rotation were developed by Thurstone (1947) and 

Cattell (1978), who defended the use of rotation to make interpretation of PCs easier 

and more reliable. After the number of PCs has been selected, an attempt is made to 

facilitate interpretation and the analysis is often based on a rotation of the selected 

PCs. 

There are two main kinds of rotations, the orthogonal and the oblique 

rotation.   

2

1

1
1i i

i j
i i i i

p

j ijp X Xj
X Y

j X X X X

g s
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s s
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= = =
∑

∑

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1) Orthogonal Rotation. An orthogonal rotation method is described by a rotation 

matrix R, where the rows represent the original factors and the columns represent the 

new (rotated) factors. At the intersection of row i and column j we have the cosine of 

the angle θ  between the original axis and the new axis.  

 

 

 

2) VARIMAX. VARIMAX is the most popular orthogonal rotation technique, which 

was developed by Kaiser (1958). In statistics, VARIMAX rotation means changing 

of coordinates used in PCA that maximizes the sum of variances of the squared 

loadings (squared correlations between variables and PCs). 

( )22 2
,jv q q= −∑
 

 

where ,jq


 is the loading of thj  variable of matrix loadings matrix Q  of PC   and 

2q


 is the squared mean of loading. VARIMAX simple solution implies that each PC 

has a small quantity of large loading and a large number of small (or zero) loading.  

If the loadings in each column were approximately equal, the variance would be 

close to 0. As the squared loadings teands 0, the variance will approach a maximum. 

Thus the VARIMAX technique attempts to make the loadings either large or small to 

facilitate the interpretation [33]. 

The VARIMAX is available in most of factor PC analysis software programs, the 

output usually includes the rotated loading matrix *Q , the variance accounted for 

(sum of squares of each column of *Q ), and the orthogonal rotation matrix R that is 

used to obtain * =Q QR . 

 

3) Oblique Rotation. The aim of using the Oblique Rotation is to get a simple 

structure by relocation of the factor axes. Oblique rotations relax the orthogonality 

constraint in order to gain simplicity in the interpretation. Oblique rotations are 

strongly recommended by Thurstone [92], but are used more rarely than their 

orthogonal counterparts. 

 

 

 

1,1 1,2 1,1 1,1

2,1 2,2 1,1 1,1

cos cos cos sin
.

cos cos sin cos
θ θ θ θ
θ θ θ θ

−   
= =   
   

R
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2.3. Spectral unmixing using PyFitIt. 

PyFitIt is the software based on the programming language Python. The main 

method of PyFitIt is the SVD of the experimental XANES data matrix in order to 

isolate pure XANES spectra and their related concentration profiles. 

PyFitIt allows the user to estimate spectra and concentration of components 

by the usage of a (dynamical) rotational matrix modified by intuitively clear sliders. 

After this trial step, the obtained spectra and their related concentration profiles have 

already a chemical/physical meaning and can be directly analysed or used as input 

for a further refinement based on MCR-ALS algorithm. 

We start from the hypothesis that each XANES spectrum, belonging to an 

experimental dataset 𝛍𝛍 and acquired during determined experimental conditions, can 

be expressed as the weighted sum of N uncorrelated “pure” spectra (or main 

components) 𝐒𝐒 for their related concentration profiles 𝐂𝐂: 

𝛍𝛍 = �

𝜇𝜇11 𝜇𝜇12 … 𝜇𝜇1𝑛𝑛
𝜇𝜇21 𝜇𝜇22 … 𝜇𝜇2𝑛𝑛
… … … …
𝜇𝜇𝑚𝑚1 𝜇𝜇𝑚𝑚2 … 𝜇𝜇𝑚𝑚𝑚𝑚

� = 𝐒𝐒 · 𝐂𝐂 = 

= �

𝑆𝑆11 𝑆𝑆12 … 𝑆𝑆1𝑁𝑁
𝑆𝑆21 𝑆𝑆22 … 𝑆𝑆2𝑁𝑁
… … … …
𝑆𝑆𝑚𝑚1 𝑆𝑆𝑚𝑚2 … 𝑆𝑆𝑚𝑚𝑚𝑚

� · �

𝐶𝐶11 𝐶𝐶12 … 𝐶𝐶1𝑛𝑛
𝐶𝐶21 𝐶𝐶22 … 𝐶𝐶2𝑛𝑛
… … … …
𝐶𝐶𝑁𝑁1 𝐶𝐶𝑁𝑁2 … 𝐶𝐶𝑁𝑁𝑁𝑁

� 

 

(2.15) 

Here 𝛍𝛍 is characterized by 𝑚𝑚 rows and 𝑛𝑛 columns while matrices 𝐒𝐒 and 𝐂𝐂 have 

respectively the following dimensions (𝑚𝑚 × 𝑛𝑛) and (𝑛𝑛 × 𝑛𝑛). In order to realize the 

decomposition reported in equation (2.15) three main steps are needed. 

 

First step:  

The experimental dataset is decomposed through the SVD procedure: 

 

𝛍𝛍 = �

𝜇𝜇11 𝜇𝜇12 … 𝜇𝜇1𝑛𝑛
𝜇𝜇21 𝜇𝜇22 … 𝜇𝜇2𝑛𝑛
… … … …
𝜇𝜇𝑚𝑚1 𝜇𝜇𝑚𝑚2 … 𝜇𝜇𝑚𝑚𝑚𝑚

� = 𝐔𝐔 ∙ 𝚺𝚺 ∙ 𝐕𝐕 = 

 

(2.16) 
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= �

𝑈𝑈11 𝑈𝑈12 … 𝑈𝑈1𝑚𝑚
𝑈𝑈21 𝑈𝑈22 … 𝑈𝑈2𝑚𝑚
… … … …
𝑈𝑈𝑚𝑚1 𝑈𝑈𝑚𝑚2 … 𝑈𝑈𝑚𝑚𝑚𝑚

� ∙

⎝

⎜⎜
⎛

𝑠𝑠11 0 … 0
0 𝑠𝑠22 … 0
… … … …
0 0 … 𝑠𝑠𝑛𝑛𝑛𝑛
… … … …
0 0 0 0 ⎠

⎟⎟
⎞
∙

∙ �

𝑉𝑉11 𝑉𝑉12 … 𝑉𝑉1𝑛𝑛
𝑉𝑉21 𝑉𝑉22 … 𝑉𝑉2𝑛𝑛
… … … …
𝑉𝑉𝑛𝑛1 𝑉𝑉𝑛𝑛2 … 𝑉𝑉𝑛𝑛𝑛𝑛

� 

 

Where U (𝑚𝑚 × 𝑚𝑚) and V (𝑛𝑛 × 𝑛𝑛) are orthogonal matrices formed, respectively, by 

the eigenvectors of matrixes 𝛍𝛍 ∙ 𝛍𝛍𝑡𝑡 and 𝛍𝛍𝑡𝑡 ∙ 𝛍𝛍. 𝚺𝚺 is a rectangular matrix whose 

elements are the positive square roots of the eigenvalues of 𝛍𝛍 ∙ 𝛍𝛍𝑡𝑡 (or 𝛍𝛍𝑡𝑡 ∙ 𝛍𝛍), called 

singular values, sorted in descending order. 

 

Second step: 

After that the correct number (i.e. N) of significant singular values has been 

identified the remaining 𝑛𝑛 − 𝑁𝑁 smaller elements of 𝚺𝚺 are set to zero. This choice 

determines the dimensional reduction of matrices 𝐔𝐔 and 𝐕𝐕 from (𝑚𝑚 × 𝑚𝑚) and (𝑛𝑛 ×

𝑛𝑛) to (𝑚𝑚 × 𝑁𝑁) and (𝑁𝑁 × 𝑛𝑛). For example, if two components are required (i.e. N=2), 

equation (2.16) acquires the following form: 

 

𝛍𝛍 = 𝐔𝐔 ∙ 𝚺𝚺 ∙ 𝐕𝐕 = 

= �

𝑈𝑈11 𝑈𝑈12 … 𝑈𝑈1𝑚𝑚
𝑈𝑈21 𝑈𝑈22 … 𝑈𝑈2𝑚𝑚
… … … …
𝑈𝑈𝑚𝑚1 𝑈𝑈𝑚𝑚2 … 𝑈𝑈𝑚𝑚𝑚𝑚

� ∙ �

𝑠𝑠11 0 0 …
0 𝑠𝑠22 0 …
0 0 0 …
… … … …

� ∙

∙ �

𝑉𝑉11 𝑉𝑉12 … 𝑉𝑉1𝑛𝑛
𝑉𝑉21 𝑉𝑉22 … 𝑉𝑉2𝑛𝑛
… … … …
𝑉𝑉𝑛𝑛1 𝑉𝑉𝑛𝑛2 … 𝑉𝑉𝑛𝑛𝑛𝑛

� = 

= �

𝑈𝑈11 𝑈𝑈12
𝑈𝑈21 𝑈𝑈22
… …
𝑈𝑈𝑚𝑚1 𝑈𝑈𝑚𝑚2

� ∙ �𝑠𝑠11 0
0 𝑠𝑠22

� ∙ �𝑉𝑉11 𝑉𝑉12 … 𝑉𝑉1𝑛𝑛
𝑉𝑉21 𝑉𝑉22 … 𝑉𝑉2𝑛𝑛

�= 𝐔𝐔 ∙ 𝚺𝚺 ∙ 𝐕𝐕 . 

(2.17) 

 

Where 𝐔𝐔,𝚺𝚺 and 𝐕𝐕 are respectively the dimensional reduced form of 𝐔𝐔, 𝚺𝚺 and V. 
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According to the Eckart-Young theorem, it is possible to assert that matrix 𝝁𝝁 

is the best approximation of μ among all other matrices with rank N [107]. If the new 

matrix 𝛍𝛍 is indistinguishable from μ within the experimental noise, then the 

experimental set of data can be described by combination of only N components. 

Otherwise, the number of components must be increased by adding the next diagonal 

elements in 𝚺𝚺. It is worth to mention that the variables 𝐔𝐔,𝚺𝚺 and 𝐕𝐕 here reported 

correspond to the 𝐔𝐔, 𝚺𝚺 and V factors present in equation (2.15). 

 

Third step: 

The third step foresees the factorization of equation (2.17) in (2.15) by the 

following relation: 𝐒𝐒 = 𝐔𝐔� ∙ 𝚺𝚺� and 𝐂𝐂 = 𝐕𝐕�. Under this representation matrix 𝐔𝐔� ∙ 𝚺𝚺� (𝑚𝑚 ×

 𝑁𝑁) becomes a data matrix composed by N spectral profiles while 𝐕𝐕� contains its 

related concentration profiles. However, matrices 𝐔𝐔� ∙ 𝚺𝚺� and 𝐕𝐕� do not have any 

chemical/physical meaning. This problem can be overcome by the introduction of a 

“transformation” matrix T in equation (2.17) in the following way: 

 

 𝛍𝛍 = 𝐔𝐔 ∙ 𝚺𝚺 ∙ 𝐓𝐓 ∙ 𝐓𝐓−𝟏𝟏 ∙ 𝐕𝐕 (2.18) 

 

In this last equation it is possible to see that, globally, matrix T does not influence 

the entire decomposition reported in equation (2.17), however each element 𝑇𝑇𝑖𝑖𝑖𝑖 can 

be modified until reasonable spectral and concentration profiles are obtained, 

realising, in this way, equation (2.15). 

 

The transformation matrix 𝐓𝐓 is a squared matrix that the user can use for 

rotating and distorting the columns of matrix 𝐔𝐔 ∙ 𝚺𝚺 and the rows of 𝐕𝐕. Clearly, the 

number of elements of 𝐓𝐓 goes as 𝑁𝑁2 [47]. For this reason, in order to reduce the 

number of elements of matrix that can be directly modified by the user, some 

constraints must be imposed. On this basis, the first or the last experimental spectrum 

(or even both) can be fixed. This procedure must be performed if and only if it has 

been attested that they represent some pure species in the chemical data mixture 

represented by μ. If these requirements are satisfied, the first or the last (or both) 

column/s of S in equation (2.15) are set equal to the corresponding column values of 

μ. Consequently, the related elements of 𝐓𝐓 are obtained solving this set of linear 

equations: 
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𝐒𝐒 = �

𝑆𝑆11 𝑆𝑆12 … 𝑆𝑆1𝑁𝑁
𝑆𝑆21 𝑆𝑆22 … 𝑆𝑆2𝑁𝑁
… … … …
𝑆𝑆𝑚𝑚1 𝑆𝑆𝑚𝑚2 … 𝑆𝑆𝑚𝑚𝑚𝑚

� = 𝐔𝐔� ∙ 𝚺𝚺� ∙ 𝐓𝐓 = 

= �

𝑈𝑈11 𝑈𝑈12 … 𝑈𝑈1𝑁𝑁
𝑈𝑈21 𝑈𝑈22 … 𝑈𝑈2𝑁𝑁
… … … …
𝑈𝑈𝑚𝑚1 𝑈𝑈𝑚𝑚2 … 𝑈𝑈𝑚𝑚𝑚𝑚

��

𝑠𝑠11 0 … 0
0 𝑠𝑠22 … 0
… … … …
0 0 … 𝑠𝑠𝑁𝑁𝑁𝑁

� ∙

∙ �

𝑇𝑇11 𝑇𝑇12 … 𝑇𝑇1𝑁𝑁
𝑇𝑇21 𝑇𝑇22 … 𝑇𝑇2𝑁𝑁
… … … …
𝑇𝑇𝑁𝑁1 𝑇𝑇𝑁𝑁2 … 𝑇𝑇𝑁𝑁𝑁𝑁

� 

 

⟹ �

𝑆𝑆11 = 𝜇𝜇11 = 𝛼𝛼11𝑇𝑇11 + 𝛼𝛼12𝑇𝑇21 + ⋯+ 𝛼𝛼1𝑁𝑁𝑇𝑇𝑁𝑁1
𝑆𝑆21 = 𝜇𝜇21 = 𝛼𝛼21𝑇𝑇11 + 𝛼𝛼22𝑇𝑇21 + ⋯+ 𝛼𝛼2𝑁𝑁𝑇𝑇𝑁𝑁1

…
𝑆𝑆𝑚𝑚1 = 𝜇𝜇𝑚𝑚1 = 𝛼𝛼𝑁𝑁1𝑇𝑇11 + 𝛼𝛼𝑁𝑁2𝑇𝑇21 + ⋯+ 𝛼𝛼𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁1

; 

 

�

𝑆𝑆1𝑁𝑁 = 𝜇𝜇1𝑁𝑁 = 𝛼𝛼11𝑇𝑇1𝑁𝑁 + 𝛼𝛼12𝑇𝑇2𝑁𝑁 + ⋯+ 𝛼𝛼1𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁
𝑆𝑆2𝑁𝑁 = 𝜇𝜇2𝑁𝑁 = 𝛼𝛼21𝑇𝑇1𝑁𝑁 + 𝛼𝛼22𝑇𝑇2𝑁𝑁 + ⋯+ 𝛼𝛼2𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁

…
𝑆𝑆𝑚𝑚𝑚𝑚 = 𝜇𝜇𝑚𝑚𝑚𝑚 = 𝛼𝛼𝑁𝑁1𝑇𝑇1𝑁𝑁 + 𝛼𝛼𝑁𝑁2𝑇𝑇2𝑁𝑁 + ⋯+ 𝛼𝛼𝑁𝑁𝑁𝑁𝑇𝑇𝑁𝑁𝑁𝑁

 

(2.19) 

 

Here, symbols 𝛼𝛼𝑖𝑖𝑖𝑖 are the elements of the 𝐔𝐔� ∙ 𝚺𝚺� matrix. 

The number of unknown values in T can be further reduced by the 

normalization of the spectra. First, each experimental spectrum 𝛍𝛍i, constituting the 

input dataset 𝛍𝛍 should be normalized using this equation:  

 

𝝁𝝁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝝁𝝁𝑖𝑖
𝜎𝜎𝑖𝑖

;  𝜎𝜎𝑖𝑖 = �
1

(𝐸𝐸max − 𝐸𝐸min)
� 𝑑𝑑𝑑𝑑[𝝁𝝁𝑖𝑖(𝐸𝐸)]2
𝐸𝐸max

𝐸𝐸min

 (2.20) 

 

Where 𝐸𝐸min and 𝐸𝐸max are the minimum and maximum values of the energy range 

where the spectra are defined. As follows from equation (2.19) each spectrum of 

matrix 𝐒𝐒 is written as a combination of a series of abstract spectral values 𝛼𝛼𝑖𝑖𝑖𝑖 

multiplied by related the “transformation” elements 𝑇𝑇𝑖𝑖𝑖𝑖. The highest contribution to 
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the construction of each “pure” spectrum comes from the 𝜶𝜶1, which is characterized 

by the highest singular value 𝑠𝑠𝑖𝑖𝑖𝑖. Actually 𝜶𝜶1 is the only one component which 

resembles the XANES spectrum, while 𝜶𝜶2…𝜶𝜶𝑁𝑁 can be considered as some 

difference additives to 𝜶𝜶1. Therefore normalization (2.20) can be applied to 𝜶𝜶1 by 

calculating coefficient σ (2.21) and introducing it into matrix T (2.22): 

 

𝜎𝜎 = �
1

(𝐸𝐸max − 𝐸𝐸min)
� 𝑑𝑑𝑑𝑑[𝜶𝜶1(𝐸𝐸)]2
𝐸𝐸max

𝐸𝐸min

 (2.21) 

 

 

�

1/𝜎𝜎 1/𝜎𝜎 … 1/𝜎𝜎
𝑇𝑇21 𝑇𝑇22 … 𝑇𝑇2𝑁𝑁
… … … …
𝑇𝑇𝑁𝑁1 𝑇𝑇𝑁𝑁2 … 𝑇𝑇𝑁𝑁𝑁𝑁

� (2.22) 

 

Finally, taking in account each possible combination of the constraints 

described above, it is possible to justify that the number of adjustable parameters (i.e. 

sliders in the program interface) that can be used in order to perform some 

transformation is given by the following formula:  

 
𝑁𝑁param

= �
𝑁𝑁2 − 𝑁𝑁 ∶  Normalization imposed;

𝑁𝑁2 − 2𝑁𝑁 + 1 ∶  Normalization imposed and first/ last spectrum fixed; 
𝑁𝑁2 − 3𝑁𝑁 + 2 ∶  Normalization imposed and both first and last spectrum fixed.

 
(2.23) 

 

 

2.4. Statistical criteria to determine number of principal components. 

From a statistical point of view, the columns of matrix V in eq. (2.15), called 

loadings, are the principal axes which extend in the directions where the data 

variance is the highest, while the columns of matrix 𝐔𝐔 ∙ 𝚺𝚺, is called “scores” or 

components, consist of the data projection over all the n axes. 

The matrix 𝚺𝚺, appearing in (2.15), is a diagonal matrix whose elements are 

called singular values. It is possible to demonstrate that each singular value 𝑠𝑠𝑖𝑖𝑖𝑖 is 

related to the eigenvalues (𝜆𝜆𝑖𝑖) of the covariance matrix of 𝛍𝛍 by the following 

relation:  
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𝜆𝜆𝑖𝑖 = 𝑠𝑠𝑖𝑖𝑖𝑖2/(𝑚𝑚− 1) (2.24) 

 

It is worth noting that each 𝜆𝜆𝑖𝑖 term corresponds to the variance associated to the ith 

component. This means that the higher is the variance related to a determinate 

component the larger is its contribution in the reconstruction of the dataset. Vice 

versa, components characterized by a low variance will account for the noise 

contributes.  

The variance values obtained from 𝚺𝚺 are used in different statistical tests 

aimed at determining the correct number of principal component (PC) to consider 

(i.e. the components related to the real signal and not to the noise). Some of the most 

popular are: the scree plot, the imbedded error function (IE-test), the factor indicator 

function (IND-function) and the Malinowski F-Test.  

In the scree plot, the variance associated with each component is used as a 

criterion for accepting or rejecting a determined component. The variance can be 

plotted against the number of components and the position of the elbow on the curve 

determines the border between the components having a real physical/chemical 

meaning and those related to the data noise. The latter components are called 

secondary components and the associated eigenvalues are called secondary 

eigenvalues: 𝜆𝜆𝑖𝑖
0.  

The Imbedded Error function (IE) is characterized by an expression given by: 

 

 
IE = �

𝑘𝑘∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=𝑘𝑘+1

𝑚𝑚𝑚𝑚(𝑛𝑛 − 𝑘𝑘)
 (2.25) 

 

where k represents the number of components used to reproduce the dataset 𝛍𝛍. If the 

experimental errors are distributed randomly and uniformly along each spectrum of 

𝛍𝛍, then the sum of squares of the projections of the errors, defined as 𝑒𝑒𝑖𝑖𝑖𝑖 = 𝜇𝜇𝑖𝑖𝑖𝑖 −

𝜇𝜇𝑖𝑖𝑖𝑖
† (𝑘𝑘) (where 𝜇𝜇𝑖𝑖𝑖𝑖

† (𝑘𝑘) represents the ij element of 𝛍𝛍 reconstructed with k 

components), onto each secondary eigenvector (i.e. noise related: 𝜆𝜆𝑖𝑖
0) should be 

approximately the same. This means that: 𝜆𝜆𝑖𝑖
0 ≅ 𝜆𝜆𝑖𝑖+1

0 ≅ ⋯ ≅ 𝜆𝜆𝑛𝑛
0hence, for k > N 

equation (2.25) can be rewritten as: 
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IE = 𝑛𝑛1/2 ⋅ ℎ ; with ℎ = �𝜆𝜆𝑖𝑖
0

𝑟𝑟𝑟𝑟
�
1/2

 
(2.26) 

 

It follows that increasing the number of components, for k < N the IE function 

progressively decreases until k = N, where it reaches a minimum. Then, for k > N the 

IE assumes a slow growing trend.  

Malinowski discovered an empirical function called IND-function, which 

seems to be more sensitive than the IE function in its ability to pick-up the proper 

number of components. The IND-function is defined as: 

 

 
IND =

1
(𝑛𝑛 − 𝑁𝑁)2

�
∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑖𝑖=𝑁𝑁+1

𝑚𝑚(𝑛𝑛 − 𝑁𝑁)
 (2.27) 

 

It is similar to the IE by definition and reaches a minimum when the correct number 

of components are employed. However, it has been observed that in this function the 

minimum is more pronounced and can appear in situation where the IE does not 

exhibit any minimum. More details about the IE and IND functions can be found in 

[85].  

The Malinowski F-Test is a statistical method applied to determine the true 

dimensionality of a dataset [43]. It is based on the observation that the secondary 

eigenvalues expressed in the reduced form REV𝑖𝑖 (see eq. (2.19)) should be 

statistically equal 

  

 
REV𝑖𝑖 =

𝜆𝜆𝑖𝑖
(𝑚𝑚− 𝑖𝑖 + 1)(𝑛𝑛 − 𝑖𝑖 + 1)

. (2.28) 

 

As the reduced eigenvalues are still proportional to a variance, a Fisher test 

can be applied. The test starts from the smallest eigenvalue, clearly associated with 

the noise, and proceeds to the eigenvalues with higher magnitude until the first 

significant one (i.e. first signal-related one) is found. The kth component is 

considered significant on the basis of the Fisher test applied on its related 

standardized F-variable: 
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 𝐹𝐹(1,𝑛𝑛 − 𝑘𝑘) =
REV𝑘𝑘
∑ 𝜆𝜆𝑖𝑖𝑛𝑛
𝑘𝑘+1

�� (𝑚𝑚− 𝑖𝑖 + 1)(𝑛𝑛 − 𝑖𝑖 + 1)
𝑛𝑛

𝑘𝑘−1
� (2.29) 

 

where the variable 𝜆𝜆𝑖𝑖 represents the noise-related (secondary) eigenvalues. If the 

percentage of significance level (%SL), associated with this variable, is lower than a 

pre-fixed value (usually it is fixed to 5%) then the kth extracted component is 

accepted as a pure component. 

Finally, it is worth to remember that the results coming from the F-Test, IND 

and IE factors must be considered with caution. These statistical criteria critically 

depend on the amount of noise in the dataset. In fact, a deviation from the real 

number of chemical/physical components occurs when the experimental noise 

(which is not known in advance) is close to the variation in the data, or when some 

component species have indistinct spectral features or when their fractional weight, 

in the data mixture, is statistically constant. 

Therefore, the main idea of PyFitit is to provide to the user a visual interface 

for varying structural parameters in a broad range and monitoring the corresponding 

changes in the spectra. In such approach the user can manually obtain the best 

agreement between the theoretical and experimental spectra and then start 

automatically the fitting procedure for a XANES spectrum. 
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3. ANALYSIS OF X-RAY ABSORPTION NEAR-EDGE 

STRUCTURE (XANES) AND ULTRAVIOLET-VISIBLE (UV-VIS) 

SPECTRA 
 

3.1. XANES: definition and detection modes. 

X-ray absorption near-edge structure (XANES) spectroscopy using 

synchrotron radiation is a well-established technique providing information on the 

electronic, structural and magnetic properties of matter. In XANES, a photon is 

absorbed and an electron is excited from a core state to an empty state. To excite an 

electron in a given core-level, the photon energy has to be equal or higher than the 

binding energy of this core-level. This gives rise to the opening of a new absorption 

channel when the photon energy is scanned. The energy of an absorption edge 

therefore corresponds to the core-level energy, which is characteristic for each 

element, making XANES an element-selective technique. 

In XANES, the changes in the absorption of X-rays due to the photoelectric 

effect is measured. The XANES spectrum is given by the absorption cross section μ. 

The Fermi Golden Rule states that the XANES intensity (IXANES) for the transition 

from a system in its initial state Φi to a final state Φf is given by: 

2
ˆXANES qI e r vε ρ∞ ⋅  

where ˆqe r⋅  is the electric dipole operator. The quadrupole transition is more than 

100 times smaller and it often can be neglected. In the case of the pre-edge structures 

of the metal K-edges, the quadrupole transition is important because the 3d density of 

states is much larger than the 4p density of states and the quadrupole peaks appear in 

the pre-edge region where there is no 4p density of states [23]. 

If an assembly of atoms is exposed to X-rays it will absorb some of the 

incoming photons. At a certain energy a sharp rise in the absorption cross-section 

will be observed. This sharp rise in absorption is called the absorption edge. The 

energy of the absorption edge is determined by the binding energy of a core level. 

Exactly at the edge, the photon energy is equal to the binding energy, or more 

precisely the edge identifies transitions from the ground state to the lowest electron-

hole excited state.  
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The core hole binding energy is formally defined in relation to the core 

electron ionization energy, as it is measured in an X-ray photoemission experiment. 

The ionization energy is the amount of energy required to remove an electron from 

an atom, as one would do in an X-ray photoemission spectroscopy (XPS) 

experiment. In case of a solid, the ionization energy is corrected by the work 

function, the energy difference between the lowest empty state and the vacuum level. 

The core hole binding energies of all metals are tabulated in the X-ray data booklet.  

The XANES edge energy is not necessarily exactly the same as the core hole 

binding energy. The two processes are respectively: 

0 0XPS: c εΨ > Ψ +  

0 0XAS: cVΨ > Ψ  

In XPS the ground state (Ψ0) is excited to the ground state plus a core hole (c), where 

the electron (ε) is excited to higher energy, while in XAS the ground state is excited 

with a core-to-valence excitation (cV).  

The XPS binding (EB) is defined as the photon energy (Ω) minus the 

measured kinetic energy of the electron (Ek) and corrected for the work function (φ ): 

B kE E φ= Ω− −  

The work function is the minimal energy to emit an electron from the material. In 

metals the XAS edge energy can be assumed to be equal to the XPS binding energy, 

because exactly at the XPS binding energy a transition is possible to the lowest 

empty state.  

Experimentally the XAS edge energy can be slightly higher than the XPS 

binding energy, for example if the transition to the lowest empty state is forbidden by 

selection rules. 

In first approximation XANES can be described as the excitation of a core 

electron to an empty state. In the Fermi Golden rule, the initial state wave function is 

rewritten as a core wave function and the final state wave function (ε) as a valence 

electron wave function (ν). This implicitly assumes that all other electrons do not 

participate in the X-ray induced transition. In this approximation, the Fermi golden 

rule can be written as: 
2

ˆXANES qI e r vε ρ⋅∞  
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The X-ray absorption selection rules determine that the dipole matrix element is non-

zero if the orbital quantum number of the final state differs by one from the initial 

state (ΔL = ± 1, i.e., s → p, p → s or d, etc.) and the spin is conserved (ΔS = 0). In 

the dipole approximation, the shape of the absorption spectrum should look like the 

partial density of the (ΔL = ± 1) empty states projected on the absorbing site, 

convoluted with a Lorentzian. This Lorentzian broadening is due to the finite lifetime 

of the core-hole, leading to an uncertainty in its energy according to Heisenberg’s 

principle [30]. The single electron approximation gives an adequate simulation of the 

XANES spectral shape if the interactions between the electrons in the final state are 

relatively weak. This is the case for all excitations from 1s core states (K-edges).  

The dominant method to calculate the density of states is Density Functional 

Theory (DFT) where either band structure, multiple scattering or chemical DFT 

codes can be used. Programs to calculate the X-ray absorption spectral shape include 

FEFF, Wien2k, QuantumEspresso, ADF and ORCA [105]. Depending on the 

specific method used one has to use a number of “technical” parameters such as the 

number of states used, the specific exchange-correlation potential and semi-empirical 

parameters such as the Hubbard U (the two-electron repulsion energy).  

1) Core hole effects and hole-electron excitations. Following the final state 

rule (von Barth and Grossmann 1982), one has to calculate the distribution of empty 

states in the final state of the absorption process [6]. The final state includes a core 

hole on the absorbing site. The inclusion of the core hole introduces a significantly 

larger unit cell in case of reciprocal space calculations. In case of real-space 

calculations, the inclusion of a core hole is straightforward and only the potential of 

the central atom is modified. It has been shown for many examples that the inclusion 

of the core hole improves the agreement with experiment.  

It is not well established if the inclusion of a full core hole gives the best 

description of the XANES spectral shape. For example, one can use the exchange 

core hole (XCH) method, or methods that explicitly calculate the creation of hole-

electron excitation such as Time- Dependent DFT.  

2) Multiplet effects. The core hole that is part of the XANES final state does 

not only have an influence on the potential, but the core state also has a wave 

function. In case of a 1s core state, this wave function can be neglected. In case of 2s 

and 3s wave functions the overlap is larger but the only effect that plays a role is the 
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spin-up or spin-down character of the core hole. The spin-moment of the core hole 

interacts with the valence electrons (or holes) giving rise to an exchange splitting in 

2s and 3s XANES. The same exchange interaction plays a role in 2s and 3s XPS 

spectra, which are more often studied than their XANES counterparts (L1 and M1 

edges). Things become dramatically more complex in those cases where a core hole 

carries an orbital momentum. The core hole spin-orbit coupling that separates the 2p 

XANES spectra into their 2p3/2 (L3) and 2p1/2 (L2) parts. In addition, the 2p wave 

function can have significant overlap with the valence electrons. In case of 3d-

systems, the 2p3d electron-electron interactions are significant and significantly 

modify the spectral shape. The term “multiplet effect” is used to indicate this core-

valence electron-electron interaction. 

 

There are several XANES detection modes.  

1) Transmission detection of XANES. A XANES spectrum originates from 

the fact that the probability of an electron to be ejected from a core level is dependent 

on the energy of the incoming beam. For this reason the energy of the X-rays is 

scanned during an experiment. The X-ray interacts with the sample of interest and 

the intensity after the sample is measured. An important factor of transmission 

detection is the requirement for a homogeneous sample. Variations in the thickness 

or pinholes are reasons for the so-called thickness effect that can significantly affect 

the spectral shape by introducing a non-linear response. Transmission experiments 

are standard for hard X-rays, but due to the attenuation length of less than one 

micron, soft X-ray XANES is usually not measured in transmission mode, except in 

the case of Transmission X-ray Microscopy (TXM) beamlines. 

2) Electron yield detection of XANES. The decay of the core hole gives rise 

to an avalanche of electrons, photons and ions escaping from the surface of the 

substrate. By measuring any of these decay products, it is possible to measure 

samples of arbitrary thickness. An important prerequisite for the use of decay 

channels is that the channels that are measured are linearly proportional to the 

absorption cross section. With the total electron yield method, one detects all 

electrons that emerge from the sample surface, independent of their energy. One can 

detect the current that flows to the sample or detect the emitted electrons. The 

interaction of electrons with solids is much larger than the interaction of X-rays with 

solids. This implies that the electrons that escape from the sample must originate 
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close to the surface. The probing depth of total electron yield (TEY) lies in the range 

between approximately 1 to 10 nm, depending on the edge strength and the material 

studied. A quantitative study on the oxygen K-edge determined an electron escape 

depth of 1.9 nm. 

 

3) Fluorescence yield detection of XANES. The fluorescence decay of the 

core hole can be used as the basis for the XANES measurement. The amount of 

fluorescent decay increases with energy and dominates over Auger decay for hard X-

ray experiments. The photon created in the fluorescent decay has a mean free path of 

the same order of magnitude as the incoming X-ray, which implies that there will be 

saturation effects if the sample is not dilute. For materials dilute in the studied 

element the background absorption μB dominates the absorption at the specific edge 

and the measured fluorescence intensity (also known as fluorescence yield (FY)) is 

proportional to the absorption coefficient. For less dilute materials the spectral shape 

is modified and the highest peaks will appear compressed with respect to the lower 

peaks, an effect known as self-absorption or saturation. In case of the L-edges of 

transition metal compounds and the M-edges of rare earths the fluorescence decay is 

strongly energy dependent, which implies that for those systems FY detection is not 

directly proportional to the X-ray absorption spectral shape. 

4) Partial Fluorescence Yield detection of XANES. Recently, a range of 

partial fluorescence yield methods have been developed. We briefly discuss two 

important approaches, respectively inverse partial fluorescence yield (IPFY) and 

high-energy fluorescence detection (HERFD). IPFY measured the integrated 

fluorescence of an element in the system other than the edge element that is 

measured. It can be shown that such an approach effectively yields a fluorescence 

yield spectrum that is effectively not sensitive to saturation effects. HERFD uses a 

high-resolution fluorescence detector to scan through a XANES spectrum. HERFD-

XANES measurements are often performed in connection to resonant inelastic X-ray 

scattering (RIXS) experiments and relate to a constant-emission-energy cross-section 

through the RIXS plane. Furthermore, by extracting the constant-incident cross-

section at the position K-edge pre-edge L-edge or M-edge-like spectra may be 

recorded. For systems where multiplet effects are important, the HERFD-XANES 

can be modified from the XANES spectral shape. HERFD-XANES effectively 

removes the lifetime broadening [51]. This largely enhances the accuracy in the 
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determination of the pre-edge spectral shapes and their intensities. HERFD detection 

also allows the detection of XANES spectra that are selective to the valence, spin-

state or site symmetry. One can tune the energy of the fluorescence detector to the 

peak position of one valence and vary the energy of the incoming X-ray, thereby 

measuring the X-ray absorption spectrum of that particular valence.  

It can be shown that electron energy loss spectroscopy (EELS) as detected in 

an electron microscope can measure exactly the same spectral shape as XANES. This 

is the case under the assumptions that the primary electron energy is higher than a 

few thousand eV and that the scattering angle is small.  

X-ray Raman spectroscopy is the X-ray analog of optical and UV Raman. A 

hard X-ray, typically with an energy of about 10.000 eV impinges on the sample and 

the scattered radiation is measured at an energy lower than 10.000 eV. Like normal 

Raman one can study vibrational excitations (meV range) and electronic excitations 

(eV range). In addition, one can study core electron excitations that relate to energy 

losses of several hundred eV. Note that such core level X-ray Raman could also be 

named X-ray energy loss spectroscopy (XELS) and as such is the direct X-ray analog 

of electron energy loss spectroscopy (EELS). As is the case for EELS, the core 

excitation spectra from X-ray Raman spectroscopy can be described in analogy with 

XANES under the assumption of small scattering moments. X-ray Raman has a great 

potential for in situ measurements and it presents a hard X-ray alternative to 

conventional XANES experiments in the study of systems with light elements, 

including Li, B, C, N and O.  

XANES experiments can be performed with X-ray microscopes. A number of 

transmission X-ray microscopes (TXM) or scanning transmission X-ray microscopes 

(STXM) exist for the soft X-ray range and the hard X-ray range. Typical resolutions 

that can be obtained are of the order of 20 nm. The TXM microscopes essentially 

allow doing XANES spectroscopy with 20 nm spatial resolution. If the sample is 

rotated in the beam the extension to XANES tomography is straightforward. 

 

 

3.2. Basic principles of UV-Vis spectroscopy. 

Ultraviolet (UV) and visible radiation comprises only a small part of the 

electromagnetic spectrum, which includes such other forms of radiation as radio, 

infrared (IR), cosmic, and X rays. The energy associated with electromagnetic 
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radiation is defined by the following equation: E hv=  where E is energy (in joules), 

h is Planck’s constant (6.62 × 10-34 Js), and v  is frequency (in s-1).  

Electromagnetic radiation can be considered a combination of alternating 

electric and magnetic fields that travel through space with a wave motion. Because 

radiation acts as a wave, it can be classified in terms of either wavelength or 

frequency, which are related by the following equation: c /v λ=  where v  is 

frequency, c is the speed of light (3 × 108 ms-1), and λ  is the wavelength (in meters). 

In UV-visible spectroscopy, wavelength usually is expressed in nanometers (1 nm = 

10-9 m). It follows from the above equations that radiation with shorter wavelength 

has higher energy.  

In UV-visible spectroscopy, the low-wavelength UV radiation has the highest 

energy. In some cases, this energy is sufficient to cause unwanted photochemical 

reactions when measuring sample spectra (remember, it is the UV component of light 

that causes sunburn).  

When radiation interacts with matter, a number of processes can occur, 

including reflection, scattering, absorbance, fluorescence/phosphorescence 

(absorption and reemission), and photochemical reaction (absorbance and bond 

breaking). In general, when measuring UV-visible spectra, we want only absorbance 

to occur. Because light is a form of energy, absorption of light by matter causes the 

energy content of the molecules (or atoms) to increase. The total potential energy of 

a molecule generally is represented as the sum of its electronic, vibrational, and 

rotational energies: 

total electronic vibrational rotational E E E E= + +  

The amount of energy a molecule possesses in each form is not a continuum but a 

series of discrete levels or states. The differences in energy among the different states 

are in the order: 

electronic vibrational rotational E E E> >  

In some molecules and atoms, photons of UV and visible light have enough energy 

to cause transitions between the different electronic energy levels [94]. The 

wavelength of light absorbed is that having the energy required to move an electron 

from a lower energy level to a higher energy level.  
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When light passes through or is reflected from a sample, the amount of light 

absorbed is the difference between the incident radiation (Io) and the transmitted 

radiation (I). The amount of light absorbed is expressed as either transmittance or 

absorbance. Transmittance usually is given in terms of a fraction of 1 or as a 

percentage and is defined as follows:  

o/T I I=  or  ( )o% / 100T I I= × . 

Absorbance is defined as follows:  

logA T= − . 

For most applications, absorbance values are used since the relationship between 

absorbance and both concentration and path length normally is linear. 

If a spectrum is expressed as absorbance (A) as a function of wavelength (λ ), 

the derivative spectra are:  

            

 

 

 

 

The first derivative is the rate of change of absorbance against wavelength. It 

starts and finishes at zero, passing through zero at the same wavelength as max of 

the absorbance band. This derivative has a positive and a negative band with 

maximum and minimum at the same wavelengths as the inflection points in the 

absorbance band. This bipolar function is characteristic of all odd-order derivatives.  

The most distinctive feature of the second-order derivative is a negative band 

with minimum at the same wavelength as the maximum on the zero-order band. This 

derivative also shows two positive satellite bands on either side of the main band. 

The fourth derivative shows a positive band with a maximum at the same wavelength 

as the maximum on the zero order band. Even-order derivatives show a negative or 

positive band with minimum or maximum at the same wavelength as max on the 

absorbance band.     

Optical, electronic, and mathematical methods all can be used to generate 

derivative spectra. Although optical and electronic techniques formed the basis of 

early UV-visible spectroscopy, these have been largely superseded by mathematical 
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methods. To calculate the derivative at a particular wavelength, a window of ± n data 

points is selected, and a polynomial  

0 1 la a aλ λ λ= + +…+  

is fitted by the least squares method. The coefficients 0 1...a a  at each wavelength are 

the derivative values, where a1 is the first derivative, 2a  is the second derivative, and 

so on. Savitzky and Golay developed a highly efficient method to perform the 

calculations that is the basis of the derivatization algorithm in most commercial 

instruments. This method also smooths the data. If the polynomial order (l) is less 

than the number of data points (2n+1) in the window, the polynomial generally 

cannot pass through all data points [57]. Thus the least squares fit gives a smoothed 

approximation to the original data points. Although transforming a UV-visible 

spectrum to its first or a higher derivative usually yields a more complex profile than 

the zero-order spectrum, the intrinsic information content is not increased. In fact, it 

is decreased by the loss of lower-order data such as constant offset factors.  

Derivative spectra can be used to enhance differences among spectra, to 

resolve overlapping bands in the qualitative analysis and, most importantly, to reduce 

the effects of interference from scattering, matrix, or other absorbing compounds in 

quantitative analysis.  

An unwanted effect of the derivatization process is the decrease in signal-to-

noise (S/N) with higher orders of derivatives. This decrease follows from the 

discrimination effect and from the fact that the noise always contains the sharpest 

features in the spectrum.   

Thus, if the spectral data used in the derivative calculation are at 2-nm 

intervals, the noise has a 2-nm bandwidth. If the analyte band has a bandwidth of 20 

nm, the S/N of the first derivative will be 10 times worse than with the zero-order 

spectrum. The smoothing properties of the Savitzky-Golay polynomial technique can 

be used to mitigate the decrease in S/N, but care must be taken as a too high degree 

of smoothing will distort the derivative spectrum.  

The higher resolution of the derivative spectra places increased demands on 

the wavelength reproducibility of the spectrophotometer. Small wavelength errors 

can result in much larger signal errors in the derivative mode than in the absorbance 

mode. The negative effect of derivatization on S/N also places increased demands on 
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low-noise characteristics of the spectrophotometer. If the spectrophotometer can scan 

and average multiple spectra, S/N can be improved further prior to derivatization.  

 

3.2.1. Qualitative and quantitative analysis of UV-Vis spectroscopy. 

UV-visible spectra generally show only a few broad absorbance bands. 

Compared with techniques such as infrared spectroscopy, which produces many 

narrow bands, UV-visible spectroscopy provides a limited amount of qualitative 

information. Most absorption by organic compounds results from the presence of π  

(that is, unsaturated) bonds. A chromophore is a molecular group usually containing 

a π  bond. When inserted into a saturated hydrocarbon (which exhibits no UV-visible 

absorbance spectrum), it produces a compound with absorption between 185 and 

1000 nm. The presence of an absorbance band at a particular wavelength often is a 

good indicator of the presence of a chromophore. However, the position of the 

absorbance maximum is not fixed but depends partially on the molecular 

environment of the chromophore and on the solvent in which the sample is dissolved. 

Other parameters, such as pH and temperature, may also cause changes in both the 

intensity and the wavelength of the absorbance maxima. Conjugating the double 

bond with additional double bonds increases both the intensity and the wavelength of 

the absorption band. For some molecular systems, such as conjugated hydrocarbons 

or carotenoids, the relationship between intensity and wavelength has been 

systematically investigated. Transition metal ions also have electronic energy levels 

that cause absorption of 400–700 nm in the visible region.  

Although UV-visible spectra do not enable absolute identification of an 

unknown species they frequently are used to confirm the identity of a substance 

through comparison of the measured spectrum with a reference spectrum. 

UV-visible spectroscopy can be used to determine many physicochemical 

characteristics of the compounds and thus can provide information as to the identity 

of a particular compound. 

If 100 photons of light enter a cell and only 50 emerge from the other side, 

the transmittance is 0.5, or 50 %. If these 50 photons then pass through an identical 

cell, only 25 will emerge, and so forth. Lambert (1760) generally is credited with the 

first mathematical formulation of this effect, although it now appears that Bouguer 

first stated it in 1729. The mathematical expression of the Lambert-Beer law is given 

by 
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( )olog / TA I I C lε= = . 

The extinction coefficient (ε ) is characteristic of a given substance under a 

precisely defined set of conditions, such as wavelength, solvent, and temperature. In 

practice, the measured extinction coefficient also depends partially on the 

characteristics of the instrument used. For these reasons, predetermined values for 

the extinction coefficient usually are not used for quantitative analysis. Instead, a 

calibration or working curve for the substance to be analyzed is constructed using 

one or more standard solutions with known concentrations of the analyte. 

For electronic transitions, the difference in energy between ground and 

excited states is relatively large. Therefore, at room temperature, it is highly likely 

that all molecules are in the electronic ground state. Absorption and return to ground 

state are fast processes, and equilibrium is reached very quickly [106]. Thus, 

absorption of UV-visible light is quantitatively highly accurate. The simple linear 

relationship between absorbance and concentration and the relative ease of 

measurement of UV-visible light have made UV-visible spectroscopy the basis for 

thousands of quantitative analytical methods.  

Multicomponent analyses using UV-visible spectra have been performed for 

almost as long as single-component analyses, but because the techniques used in 

multicomponent analysis often gave incorrect results (as detailed below), they were 

not widely applied. However, modern instruments yield more precise data, and 

modern curve-fitting techniques give more accurate results and—perhaps more 

importantly—indicate when results are incorrect. For these reasons, multicomponent 

UV-visible analyses are becoming more popular. 

  

1) Principle of additivity. According to Beer’s law, absorbance is 

proportional to the number of molecules that absorb radiation at the specified 

wavelength. This principle is true if more than one absorbing species is present. All 

multicomponent quantitative methods are based on the principle that the absorbance 

at any wavelength of a mixture is equal to the sum of the absorbance of each 

component in the mixture at that wavelength.  

 2) Simple simultaneous equations method. The simple approach to 

multicomponent analysis is based on measurements at a number of wavelengths 

equal to the number of components in the mixture. The wavelengths chosen usually 

are those of the absorbance maximum of each component. For calibration, the 
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absorbance of standards of known concentrations of pure components is measured to 

determine the extinction coefficient for each component at each wavelength selected. 

The absorbance of the mixture at each wavelength is the sum of the absorbance of 

each component at that wavelength, which in turn depends on the extinction 

coefficient and the concentration of each component. Thus for two components x and 

y, the equations are: 

( )x y x y x x y yA A clA clε ε′ ′ ′ ′ ′
+ = + = +  and  ( )x y x y x x y yA clA A clε ε′′ ′′ ′′ ′′ ′′

+ = + = +  

where A′  is absorbance at wavelength λ′ , A′′  is absorbance at wavelength λ′′ , ε ′  is 

molar absorptivity at wavelength λ′ , ε ′′  is molar absorptivity at wavelength λ′′ , c is 

concentration, and l is path length.  

These equations are easily solved to determine the concentration of each 

component. If measurements were always perfect, accurate results could be obtained 

even for complex mixtures of components with very similar spectra. In practice, 

however, measurement errors always occur. Such errors can affect significantly the 

accuracy of results when spectra overlap significantly.  

3) Least squares method. The effect of random noise can be reduced through 

the use of additional spectral information, that is, a series of data points can be used 

for quantification instead of only two. In this so-called overdetermined system, a 

least squares fit of the standard spectra to the spectrum of the measured sample 

yields quantitative results.  

This method enables the analysis of more complex mixtures and of simple 

mixtures of components with similar spectra. The residual from the least squares 

calculation is a good indicator of how well the standard spectra fit the sample spectra 

and is therefore a good indicator of the probable accuracy of the results. An example 

of multicomponent analysis is the quantification of five hemoglobins in blood with 

minimum sample preparation.  

4) Other methods. Other statistical approaches to multicomponent analysis 

include the partial least squares (PLS), principle component regression (PCR), and 

multiple least squares (MLS) methods. In theory, these methods offer some 

advantages over those described above, but in practice the calibration process is 

much more complex.  
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4. APPLIED CHARACTER OF XANES AND UV-VIS 

SPECTROSCOPY 

 

4.1. Oxidation reactions catalyzed by nonheme iron complexes. 

Nonheme iron complexes constitute an important family of catalysts for the 

oxidation reactions of the bonds C-H and C=C in which the role of the oxidant is 

covered by 2 2H O  in most of the studies present in the literature, but can also be 

performed by alkyl peroxides, peracids, hypervalent iodine or persulphate [13, 56]. 

Two paradigmatic examples of nonheme iron complexes of this kind and relevant to 

the present thesis are shown in Figure 4.1. 

 
Figure 4.1. Molecular structures of the nonheme iron complexes. 

In the present thesis there are 7 reactions belonging to the family of oxidation 

reactions catalyzed by nonheme iron complexes, which are investigated with 

XANES and UV-Vis Spectroscopies. 

 

4.2. Reactions investigated with XANES spectroscopy.  

In particular, nonheme iron complexes were studied with different substrates, 

namely: 

1) para-cyano thioanisole (pCNPhSMe); 

2) thioanisole (PhSMe); 

3) para-methoxy thioanisole (MeOPhSMe); 

4) benzyl alcohol (PhCH2OH); 

5) 9,10 – dihydroanthracene (DHA); 

6) diphenylmethane (Ph2CH2). 
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The aforenamed reactions were analyzed for the cases of presence of two and 

three components. 

 

4.2.1. Results of FAC-PACK. 

 

Figure 4.2. Reaction with 1) para-cyano thioanisole (pCNPhSMe), 2-component 
case. 
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a  b   

c d  

e f 

g h 
Figure 4.3. Reaction with 1) para-cyano thioanisole (pCNPhSMe); a-d: 2-
component case; e-h: 3-component case. 
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a  b 

 c  d 

e f 

g h 
Figure 4.4. a-d: Peak group analysis for the reaction with 1) para-cyano thioanisole 

(pCNPhSMe); e-h: reaction with 2) thioanisole (PhSMe), 2-component case. 
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Figure 4.5. Reaction with 2) thioanisole (PhSMe), 2-component case. 
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The description of the contents of some figures: 

 

as it was mentioned in the introduction the soft constraints can be used in 

order to extract (from the set of all nonnegative factorizations) solutions with special 

properties [82].   

In the present chapter the following constrain functions are applied to spectral 

and concentrational AFS:  

• monotone concentration profiles: monotonously increasing or decreasing 

profiles are favored and are shown in light gray or white rispectively in Figure 4.7 

(d); 

• smooth concentration profiles: profiles with a small Euclidean norm of the 

discrete second derivative are favored (shown white in Figure 4.7 (b)); 

• exponentially decaying concentration profiles: for every point of a grid in 

the (α, β)-plane the approximation error for an exponentially decaying function (with 

an optimized decay constant) is calculated. This allows to favor reactants decaying 

exponentially, which can be found in the light gray or white areas in the AFS for 

factor C in Figure 4.7 (c) and Figure 4.21; 

• smooth spectra: spectra with a small Euclidean norm of the discrete second 

derivative are favored. They are shown in Figure 4.6 (h) and Figure 4.21; 

• small norm spectra: spectra with a small Euclidean norm of the representing 

vector are favored. Thus, in Figure 4.6 (g) spectra with few isolated and narrow 

peaks are shown in light gray compared to those with wide absorbing peaks (shown 

in darker gray).       

In some graphics (Figure 4.16 (b, d, f, h) and others) it is shown that the 

parts of the concentrational profiles and the parts of the spectra meet at one point. 

These points are called inversion points [93]. It happens when the values of the 

transformation matrix 
11

1
1

x
T

S
 

=  
 

coincide: 11x S= . 
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 a  b 

 c  d 

 e  f 

 g  h 
Figure 4.6. Reaction with 2) thioanisole (PhSMe), 3-component case. b, c, e, g, h: 
spectral area of feasible solutions with the traces of the spectral data matrix; g: 
small norm spectra; h: smooth spectra. 
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 a  b 

 c  d 

 e  f 

 g h 
Figure 4.7. Reaction with 2) thioanisole (PhSMe), 3 componenti; b, c, d: 
concentration area of feasible solutions; b: smooth concentration profiles; c: 
exponentially decaying concentration profiles; d: monotone concentration profiles; 
e-h: peak group analysis. 
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Figure 4.8. Reaction with 3) para-methoxy thioanisole (MeOPhSMe), 2-component 

case. 
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a b 

c d 

e f 

g h 
Figure 4.9. Reaction with 3) para-methoxy thioanisole (MeOPhSMe); a-d: 2-

component case; e-h: 3-component case. 
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a b 

c d 

e f 

g h 
Figure 4.10. a-d: Reaction with 3) para-methoxy thioanisole (MeOPhSMe), peak 

group analysis; e-h: Reaction with 4) benzyl alcohol (PhCH2OH), 2-component case. 
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Figure 4.11. Reaction with 4) benzyl alcohol (PhCH2OH), 2-component case. 
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a b 

c d 

e f 

g h 

Figure 4.12. Reaction with 4) benzyl alcohol (PhCH2OH); a-d: 3-component case; 
e-h: peak group analysis. 
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Figure 4.13. Reaction with 5) 9,10 – dihydroanthracene (DHA), 2-component case. 
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a b 

c d 

e f 

g h 

Figure 4.14. Reaction with 5) 9,10 – dihydroanthracene (DHA), 

 a-d: 2-component case; e-h: 3-component case. 
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a b 

c d 

e f 

g h 
Figure 4.15. a-d: Reaction with 5) 9,10 – dihydroanthracene (DHA), peak group 
analysis; e-h: Reaction with 6) diphenylmethane (Ph2CH2), 2-component case. 
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a b 

c d 

e f 

g h 
Figure 4.16. Reaction with 6) diphenylmethane (Ph2CH2), 2-component case. 
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a b 

c d 

e f 

g h 

Figure 4.17. Reaction with 6) diphenylmethane (Ph2CH2); a-d: 3-component case;  

e-h: peak group analysis. 
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4.2.2. Results of PyFitIt.  

a b 

c d 

e f 

g h 
Figure 4.18. Two-component case: I. a, b – 1) para-cyano thioanisole (pCNPhSMe); 
II. e, f – 2) thioanisole (PhSMe). Three-component case: I. c, d – 1) para-cyano 
thioanisole (pCNPhSMe); II. g, h – 2) thioanisole (PhSMe). 
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a b 

c d 

e f 

g h 
Figure 4.19. Two-component case: I. a, b – 3) para-methoxy thioanisole 
(MeOPhSMe); II. e, f – 4) benzyl alcohol (PhCH2O). 
Three-component case: I. c, d – 3) para-methoxy thioanisole (MeOPhSMe); II. g, h – 
4) benzyl alcohol (PhCH2O). 
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4.3. Reaction with CNPhSMe+FeIVN4Py(O) investigated with UV-Vis 

spectroscopy. 

  

4.3.1. Results of FAC-PACK. 
 

 
Figure 4.20. Reaction with CNPhSMe+FeIVN4Py(O), 2-component case. 

 
Figure 4.21. Reaction with CNPhSMe+FeIVN4Py(O), 3-component case;  
AFS for factor C represents exponentially decaying concentration profiles; AFS for 
factor A represents smooth spectra. 
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Figure 4.22. Reaction with CNPhSMe+FeIVN4Py(O). Generalized Borgen plot for 

the spectral data matrix computed for RS-scaling. 

 

 

 
Figure 4.23. Reaction with CNPhSMe+FeIVN4Py(O). Generalized Borgen plot for 

the concentration data matrix computed for FSV-scaling. 
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4.3.2. Results of PyFitIt. 

 

 

Figure 4.24. Reaction with CNPhSMe+FeIVN4Py(O), 2-component case, first and 

last spectrum fixed. 
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5. PROBLEMS OF PROGRAMS: FAC-PACK AND PYFITIT 

 

The main problem of FAC-PACK as well as that of PyFitIt is the absence of a 

unique univocal solution. 

Typically the factorization (1.1) does not result in unique nonnegative matrix 

factors C and A. Instead a continuum of possible solutions exists; this non-

uniqueness is called the rotational ambiguity of MCR solutions. Sometimes 

additional information can be used to reduce this rotational ambiguity. 

 

 

5.1. Problems of program FAC-PACK. 

For instance known concentration profiles or pure component spectra lead to 

a significant reduction of the rotational ambiguity by means of the duality- and 

complementarity theory. Alternatively, soft constraints can be very useful for 

extracting chemically meaningful solutions from the AFS. 

 

5.1.1. Equality constraint. 

The knowledge of a certain pure component spectrum is often called an 

equality constraint. It means that a certain point of the AFS is fixed (or locked). The 

effect on the remaining components is a reduction of the rotational ambiguity or 

equivalently a reduction of the area of the AFS segments. The reduced AFS can 

either be constructed geometrically (then one vertex in the simplex rotation algorithm 

is fixed) or numerically (then a certain row of T is fixed). One observes that the 

reduction effect on the remaining segments of the AFS is relatively large if a point 

close to the origin is fixed. All these concepts also apply to known concentration 

profiles. Then the whole procedure works with DT = ATCT where C and A have 

changed their places.  

The representation of the AFS for the spectral factor is based on the 

expansion of the spectra with respect to the basis of right singular vectors given by V. 

In a similar way the AFS for the concentration factor rests on an expansion of the 

concentration profiles with respect to the basis of left singular vectors given by U [5].  

In equation (5.1) 
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

1 T

AC

D U T TV−≈ Σ


 (5.1) 

 

the rows (spectra) of A are represented as linear combinations of the right singular 

vectors, which are the columns of V. The ith row of A = TVT reads 

 
( ) 2

1 1 1
1 1

.( ,:) , , 1, , , (1, )T T Ti is
i is i i

i i

t tA i t t V t V t x V
t t

 
= … = … = 

 
 (5.2) 

 

Therein 1 0it ≠ . Equation (5.2) shows that the ith spectrum A(i, :) aside from scaling is 

uniquely determined by the row vector x ∈ Rs−1 of the expansion coefficients. The 

scaling constant ti1 in (5.2) can be written as 

 1 1 1( ) ( ) ( (:,1))i i i it T AV AV= = = . (5.3) 

 

The construction for the factor C is similar. The jth column of 1C U T −= Σ  

with ( )1
ijij

T t− =  reads  

 
( ) 2

1 1 1
1 1

.(:, ) , , 1, , , (1, )
T

T j sj T
j sj j j

j j

t t
C j U t t t U t U y

t t

 
= Σ … = Σ … = Σ  

 
 (5.4) 

 

Once again, 1 0jt ≠  is guaranteed by the Theorem 1.3 in the first chapter. It holds 

that 

 ( ) ( )1 1 1
1 11 1

(:,1) (:, )T T
j j j

t T U C U C jσ− − −= = Σ = . (5.5) 

 

It is useful to represent C and A and some of their submatrices by their 

expansion coefficients x and y according to (5.2) and (5.4). We call this the block 

representation of truncated expansion coefficients with respect to the basis of 

singular vectors.  

Definition 5.1. Let s0 be an integer with 1 ≤ s0 ≤ s and let for 01,  . . . ,i s=  the 

row vector x(i) ∈ Rs−1 be the truncated vector of expansion coefficients of A(i, :) with 
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respect to the right singular vectors in the sense of (5.2). Considering s0 rows of A(1 : 

s0, :) simultaneously yields 

( )

0

0

(1)

( 1)s s

s

x
X

x

× −

 
 

= ∈ 
 
 

   

as the block representation of truncated expansion coefficients. In the same way let 

y(j) be the representative of C(:, j) in the sense of (5.4). Then 

( )

0

0

(1)

( 1)s s

s

y
Y

y

× −

 
 

= ∈ 
 
 

   

is the block representation of C(:, 1 : s0) [16].  

 

Remark 5.1. If s0 = s, then the block representations X, Y ∈ Rs×(s−1) define 

two simplices in the Rs−1 whose vertices are the row vectors of either X or Y.  

Further, Equations (5.2) and (5.3) result in 

( )( )( )( ,:) (:,1) 1, i T
iA i AV x V=  

This yields for s0 = s and with the s-dimensional 1- vector )1,.( ..,1 T se R= ∈  

1( , ) TA M e X V=  with 1 diag( (:,1))M AV=  

Similarly, Equations (5.4) and (5.5) result in  

( ) ( )1 ( )
1(:, ) (:,1) (:, ) 1,

TT jC j U C j U yσ −= Σ  

so that for s0 = s 

2

T

T

e
C U M

Y

 
= Σ  

 
 with ( )1

2 1diag (:,1)TM U Cσ −= . 

 

5.1.2. Complementarity theorem. 

Next the complementarity theorem is reproduced.  

Theorem 5.1. Let k nD ×
+∈  be a matrix of rank s, which is assumed to be 

decomposable in the form D = CA with nonnegative factors k sC ×
+∈  and s nA ×

+∈ . 

Let  be TU VΣ  a singular value decomposition of D. Further let the rows ( ,:)A i  for 

01, ,i s= …  be given.  



92 
 

Then all the complementary concentration profiles C(:, j) for j = s0 +1,...,s are 

contained in the (s−s0)- dimensional linear subspace 

 { :  chas the form  for a vector kc c U y∈ = Σ  

0which satisfi  es (1: ,: 0} sy A s Vy∈ = . 
(5.6) 

 

The complementarity theorem shows how pre-given spectra for certain pure 

components restrict the concentration profiles for the remaining components and vice 

versa. A comparable observation has been made for three-component systems. Next 

it is shown how such a pre-given spectrum, which is represented by a single point in 

the spectral AFS A reduces the AFS C  for the complementary components.  

 

Theorem 5.2. Let a spectrum/row A(i0, :) be given. According to (5.2) it holds 

( )
00 1,: (1, ) T
iA i t x V=  and x specifies a point in the spectral AFS A .  

Then all concentration profiles C(:, j) with 0j i≠  are represented in the sense of (5.4) 

by points y which are elements of the s − 2-dimensional affine subspace 

 

 ( )0
1

1

1
: 1

si sC y x y
−

−

=

 = ∈ = − 
 

∑
 



 . (5.7) 

 

Thus all feasible concentration profiles C(:, j) with 0j i≠  have the form 

(1, )TU yΣ  with ( )0iy C∈ . 

 

Proof. For given A(i0, :) Theorem 4.2 from Ref. [75] can be applied (for the 

case that 1 : s0 is substituted by i0). This theorem guarantees that the complementary 

concentration profiles C(:, j) for 0j i≠  are elements of the space 

 

 ( ){ }0:  for  with ,: 0sU y y A i VyΣ ∈ =  
 . (5.8) 

 

Therein y  is a column vector in the Rs. 

Insertion of ( )
00 1,: (1, ) T
iA i t x V=  into (5.8) shows that 
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0 01 1(1, ) (1, ) 0T
i it x V Vy t x y= =   (5.9) 

 

is the decisive condition, which is now transformed in order to prove (5.7). First, 

Equation (5.4) allows one to write the concentration profile (:, )C j U y= Σ  in the 

form 

1 (1, )T
jU y t U yΣ = Σ  

 with the row vector y ∈ Rs−1. Thus 1 (1, )T
jy t y= . Inserting this into (5.9) yields 

0 0

1

1 1 1 1
1

(1, )(1, ) 1 0
s

T
i j i jt t x y t t x y

−

=

 = + = 
 

∑
 



. 

Since 
01 1 0it t j ≠ , the second factor equals 0, i.e. 

1

1
1

S

x y
−

=

= −∑
 



, which proves (5.7). 

Finally, the dimension of C(i0 ) equals s−2 because the vector y ∈ Rs−1 has to satisfy 

one linear constraint.  

 

The set C(i0 ) is an (s − 2)-dimensional affine subspace which is a hyperplane 

in Rs−1 and which intersects C . Further, Theorem 5.2 also applies to the situation 

in which A  and C  have changed their places [80]. This fact does not require a 

separate proof but is now stated explicitly.  

 

Corollary 5.1. Theorem 5.2 is applicable to the case in which A and C are 

swapped. Then a given representative y for a concentration profile C(:, i0) results in 

the set  

( )0
1

1

1
: 1

si s Tx x y x y
−

−

=

 = ∈ ⋅ = = − 
 

∑
 



  

 of representatives for the complementary pure component spectra A( j, :) with 0j i≠ .  

 

Theorem 5.2 constitutes a relation between a certain point in either the 

spectral or concentration AFS with an affine subspace in the concentration or 

spectral AFS. For a two-component system a certain point x ∈ A  is directly related 

to another point y ∈ C . For a three-component system a certain point x ∈ A  is 

connected with a straight line in C .  For an (s = 4)-component system a certain 

point x ∈ A  is related to a plane. If more than one spectrum or concentration 



94 
 

profile of the pure components is known, then A  and C  can be further reduced. 

Then, in the best case, even a unique decomposition can be determined.  

 

Corollary 5.2. For given s0 rows A(i, :), i = 1,...,s0, let x(i) ∈ Rs−1 be the 

representatives in the sense of (5.2). Let X ∈ Rs0×(s−1) be the block representation of 

these coefficients according to Definition 5.1.  

Then the representatives y ∈ C  of the complementary columns C(:, j), j = 

s0 + 1,...,s, are elements of the (s − s0 − 1)-dimensional affine subspace 

 ( ) { }01: 1 : ( 1, , 1)s s T TC y Xy−= ∈ = − … − . (5.10) 

 

Proof. Let C(:, j) with j >s0 be a concentration profile and let y ∈ C  be its 

representative, see Equation (5.4). Theorem 5.2 imposes the conditions x(i)y = −1 for 

i = 1,..., s0, which gives (5.10). The dimension of ( )01:sC  equals s − s0 − 1 since s0 

linear equations are imposed on y ∈ Rs−1. 

 

Remark 5.2. The dimension s−s0−1 of ( )01:sC  is consistent with the 

dimension s−s0 in Equation (7) of Theorem 4.2 in Ref. [75]. The reason that the 

dimension of ( )01:sC  is reduced by 1 is that the block representation of the expansion 

coefficients in Definition 5.1 includes the fixed scaling of the first left singular 

vector. In other words, (1, y) is the vector of expansion coefficients under scaling 

assumptions and ω(1, y), for ω ∈ R, is the full subspace without any scaling. 

Corollary 5.2 can also be formulated in a way in which C and A have changed their 

places.  

 

5.1.3. Relations of spectral and concentration AFS. 

In this paragraph it is assumed that so much information on a factor is 

available that the second factor is completely determined by the complementarity 

theorem. A well known fact on MCR factorizations D = CA is that one given factor 

determines the second factor. The second factor can be determined as follows: in the 

case of noise-free data D a linear system of equations is to be solved if CA has the 

full rank of D. In the case of noisy data or if a low-rank approximation of D is 

considered, then the second factor can be computed by solving least-squares 
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problems. In any case the knowledge of a full factor completely determines the 

system.  

A successful factorization means that in the AFS A  and the AFS C  each 

s point is specified. These points are the vertices of two simplices, one in A  and 

one in C . For the factor A the simplex in A  has the vertices x(i), i = 1, . . . , s, see 

(5.2). The block representation of these vertices is X ∈ Rs×(s−1) according to Remark 

5.1. Analogously, the factor C defines a simplex in C  with the vertices y(j) given 

by the rows of Y.  

For a two-component system the simplex in R is a line segment. For a three-

component system the simplex in R2 is a triangle and its edges are determined by the 

complementarity theorem 5.2. For four-components systems the simplex in R3 is a 

tetrahedron and its side surfaces, the triangles, are determined by the 

complementarity theorem once again. All this is analyzed and demonstrated in the 

following. First the relation of the simplex defined by X to the simplex defined by Y 

is described in Theorem 5.3.  

 

Theorem 5.3. Let X ∈ Rs×(s−1) be the block representation of A as introduced 

in Definition 5.1. Then the vertices Y( j, :), j = 1,...,s, can be computed by solving s 

linear systems of equations. For j = 1,...,s and Y( j, :) = y( j) the linear system of 

equations reads  

 

( )

(1)

( 1)

( )( 1)

( 1)

( )

1

1

j

Tjj

j

s

x

x
yx

x

x

−

+

+

 
 
 
  −      =     −  
 
 
 
 







. (5.11) 

 

The assertion also holds if X and Y are interchanged.  

 

Proof. Corollary 5.2 for s0 = s − 1 results in a 0- dimensional affine subspace 

C(1:s−1) which is just the single vertex Y(s, :) = y(s) and proves the case j = s. The 

argument can also be applied for the remaining indexes j [28].   
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Remark 5.3. Theorem 5.3 in Equation (5.11) formulates a relation between 

the simplices in C  and A  which are defined by X and Y. This relation cannot 

immediately be translated into a factorization of D since the feasible factorizations 

 

1 1T T

AC C A

D U T TV U Z Z V
′ ′

− −= Σ = Σ
 

 

with T and Z defined in (5.12)  

 (1,:) (1, ), (:,1) (1, )TT x Z y= =  (5.12) 

 

include a specific scaling of the rows of A and columns of C. Thus in general 
TC A U ZTV D′ = Σ ≠ , D holds. What is needed for a correct representation of the 

factorization are the two diagonal matrices M1 and M2 as introduced in Remark 5.1. 

With these matrices and with T = (e, X) and ( , )TZ e Y=  for (1, ,1)T se = … ∈  it 

holds that 2 1
TD U ZM M TV= Σ .  

FAC-PACK includes an algorithmic implementation of the complementarity 

theorem which allows one to import known spectra or known concentration profiles, 

to mark their representatives in the AFS and to construct as well as to draw the 

complementary affine spaces.   

 

5.1.4. Presence of noise in AFS. 

Theorem 5.1 and Equation (5.7) can be used to derive a relation on the 

sensitivity of the AFS with respect to noise.  

Lemma 5.1. Let x ∈ A  be given and let y ∈ C  be in the complementary 

space of concentration profiles as given by (5.7). If the perturbation of x due to noise 

is given by δx, then the induced perturbation δy of y is bounded as follows 

 ( ) T
x

y

y

x

δ
δ ≥

‖ ‖
 (5.13) 

 

if the quadratic term (δx)(δy)T is ignored. The inequality also holds with (x, δx) and (y, 

δy) having changed their positions. 
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Proof. Let a certain spectrum be given and let its representative be x ∈ A . 

Theorem 5.2 shows that the representatives y of the complementary concentration 

profiles fulfill xyT = −1. Let δx ∈ Rs−1 be a perturbation (row) vector of x and δy be the 

resulting perturbation for y. From 

(x + δx)(y + δy)T = −1 

one gets after subtraction of xyT = −1  

( ) ( ) ( )( ) ( )T TT
x y x y x yy x Oδ δ δ δ δ δ+ = − =  

where O  is the Landau symbol and where ⋅‖‖ is the Euclidean vector norm. (The 

Landau or big O notation is used to describe the asymptotic behavior of a function; 

here it expresses that (δx)(δy)T is a mixed quadratic term in the δ-perturbations, which 

quadratically tends to 0, if δx → 0 and δy → 0.)  

Next the second order term of perturbations on the right-hand side is ignored. 

Application of the Cauchy- Schwarz inequality leads to 

( ) ( )T T
y y xx x yδ δ δ≥ =‖ ‖ . 

This proves that ( ) /T
y x y xδ δ≥ ‖ ‖.  

Inequality (5.13) shows that the resulting perturbation yδ  is bounded from 

below by ( ) /T
x y xδ ‖ ‖. This lower bound is reciprocal to x‖ ‖ which is the 

Euclidean distance of x to the origin [66]. An interpretation of this result is as 

follows: for points x far away from the origin the influence of perturbations δx on y 

decreases. However, any x close to the origin appears to be sensitive with respect to 

perturbations.  

This perturbation argument is consistent with spectroscopic observations: for 

IR-spectra with narrow localized peaks next to non-absorbing frequency bands, the 

representatives x are often far away from the origin. Hence the sensitivity with 

respect to noisy data is relatively small. In contrast to this UV-Vis data often has 

wide absorbing frequency bands without non-absorbing bands. Then the representing 

vectors x of the true solutions are often close to the origin and the reliability of the 

results of Theorem 5.1 for noisy data decreases.  
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The reciprocal relation between x‖ ‖ and the perturbation yδ  which is 

expressed by Equation (5.13) has some structural resemblance to the observation of 

Windig, Keenan et. al. [98] namely that in MCR techniques high contrast solutions in 

the C-space are related to low contrast solutions in the A-space and vice versa.  

The next lemma shows that the acute angle which is enclosed by x and x + δx 

in the A-space equals the acute angle which is enclosed by the associated 

onedimensional affine spaces in the C-space and vice versa. This result can be 

interpreted as a bound on the potential perturbation δy resulting from a given 

perturbation δx. The application of this result to the AFS plots in the current paper 

requires that the α and β axes are scaled to the same length units.  

 

Lemma 5.2. For (s = 3)-component system let x and x + δx be given in A . 

Further, let Cy and Cy+δy be the associated one-dimensional affine linear subspaces as 

determined by Theorem 5.1. Then it holds that 

( ) ( ), ,
yx y yx x C C δδ +∠ + = ∠ . 

The relation also holds if x and y interchange their positions.  

 

 
Figure 5.1. The geometric construction underlying Lemma 5.2 [80]. 

  

Proof. For a given x in A  any element y of the complementary space Cy 

satisfies 1 1 2 2( , ) 1x y x y x y= + = − . This relation can be rewritten in the Hesse normal 

form of a straight line 

1,x y
x x

 
− = + 
 ‖ ‖ ‖ ‖

. 



99 
 

This means that the Cy is a straight line which is orthogonal to /x x− ‖ ‖ and 

whose smallest distance to the origin is 1 / x‖ ‖.  

Similarly the relation (x + δx, y + δy) = −1 can be rewritten as 

1,x
y

x x

x y
x x

δ
δ

δ δ
 +
− + = +  + + 

 

so that Cy+δy is a straight line which is orthogonal to ( ) /x xx xδ δ− + +  and whose 

smallest distance to the origin is 1 / xx δ+ . The geometric setup is shown in Figure 

5.1. Simple geometric arguments (on the sum of angles in a triangle) show that the 

acute angle ϕ  which is enclosed by x and x+δx equals the acute angle enclosed by Cy 

and Cy+δy.   

 

5.1.5. Reduction of AFS. 

The complementarity theory is only one source for an AFS reduction from 

pre-given information. Next, three different sources for a reduction of the AFS are 

listed. We always assume that a single spectrum is known, i.e. a single point in the 

AFS A  is determined. (The same arguments apply if a single concentration profile 

or single point in the AFS C  is given.)  

Then three different sources for restrictions on A  and C  are:  

1. Restrictions on the AFS segments of the complementary components in C .   

2. Restrictions on the concentration profile of the component for which the spectrum 

is given.  

3. Restrictions on the AFS segments for the remaining components in A . 

In any case the predictions for C  by the complementarity theorem are much more 

restrictive compared to the other criteria.  

 

There are various further options for the reduction of the rotational ambiguity 

in multivariate curve resolution techniques. For instance hard-modeling by means of 

a kinetic model and the restrictions on the concentration profiles in C have been 

presented in Ref. [15]. Other important and well established techniques for the 

ambiguity reduction are the evolving factor analysis (EFA) and window factor 
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analysis (WFA)  and techniques which exploit local rank information in order to 

extract single pure component spectra and single concentration profiles. For these 

techniques the Manne theorems are key tools. 

It is worth noting that the complementarity theory is a hard constraint due to 

known spectra and concentration profiles which makes predictions on the remaining 

unknown parts of C and A. In this sense EFA and WFA are related to the 

complementarity theory.  

 

 

5.2. Calculations of the XANES spectra with the PyFitIt program. 

The calculation of theoretical XANES spectra can be carried out using 

different approaches: 

(1) Gradient descent approach. This strategy includes many branches with 

trial and error steps to optimize the structure. It is based on the comparison of a 

XANES experimental spectrum with several theoretical calculations by varying 

selected structural parameters starting from a defined initial geometrical 

configuration around the absorber. The optimization process is based on the square 

of the residual function in the parameters space. Multi-dimensional minima search is 

performed by MINUIT function developed in CERN [25]. Typically, hundreds 

theoretical spectra are needed to obtain the best fit of the data. 

 

(2) Indirect approach: prediction of a XANES spectrum for a given set of 

structural parameters. Approach (1) may lead to inconsistent results when several 

local minima exist in the region of variation of structural parameters. The repetition 

of the descendent procedure, starting from different initial conditions, can help to 

find the global minimum but increases significantly the computational time. 

Alternatively, the studied space of structural parameters can be sampled with some 

points where XANES spectra are calculated a priori before comparison with 

experimental data. Such approach is realized in FitIt [83]. It performs the multi-

dimensional polynomial interpolation of spectra as a function of structural 

parameters. Once the polynomial interpolation has been constructed, the minima of 

discrepancy between the experimental XANES spectrum and the interpolated one are 

searched, by varying the structural parameters, under the application of a gradient 



101 
 

descendent algorithm. In this way, the required number of ab initio calculated 

XANES spectra is considerably smaller with respect to the approach (1). 

 

(3) Direct approach: prediction of structural parameters for a given 

XANES spectrum. Approach (2) can be inverted to establish correspondence 

between points in an experimental XANES spectrum μ(Ei) and related structural 

parameters. This eliminates the trial-error search of structural parameters providing 

the minimal discrepancy between the theoretical and experimental XANES 

spectrum. The structural parameters are predicted directly as a function of the μ(Ei) 

variables. Several authors described the application of the direct method to the 

XANES analysis. Zheng et al. [100] created a large dataset of computed references 

of XAS spectra calculated in the muffin-tin approximation. Afterwards, they applied 

an Ensembled-Learned Spectra-Identification (ELSI) algorithm to predict the 

oxidation state and the local environment for a wide set of compounds. The 

algorithm combines 33 weak “learners” comprising a set of pre-processing steps and 

a similarity metric, and it can achieve up to 84.2% accuracy. Timoshenko et al. [90] 

used supervised machine learning (SML) to study 3D structure of supported platinum 

nanoparticles. The authors constructed an artificial neural network (NN) in Wolfram 

Mathematica, using an input layer composed by 129 nodes and two hidden layers 

having 339-387 nodes in each. A hyperbolic tangent function was used for the 

activation function while the NN was trained creating a dataset of ab initio calculated 

XANES calculations on different size/shape nanoparticles. Their approach allowed 

to reconstruct the average size, shape, and morphology of well-defined platinum 

nanoparticles from their XANES spectra [89]. The same group successively extended 

the method to the EXAFS part of the spectrum processed by wavelets. 

 

 

5.3. Problems of PCA in PyFitIt. 

Since PyFitit is based on PCA it has the following disadvantages, which are:  

1) The covariance matrix is difficult to be evaluated in an accurate manner.  

2) Even the simplest invariance could not be captured by the PCA unless the training 

data explicitly provides this information. 
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Variance is another measure of the spread of data in a data set. It is defined as 

the mean of the deviation of each term from its arithmetic mean of whole data. In 

fact it is almost identical to the standard deviation. The formula is this 

( )( )
2 1

- -
( )

( -1)

n

i
i

iX X X X
s Var X

n
=

′ ′
= =

∑
 

X ′  = Arithmetic mean  

 –  iX X ′  = Deviation of individual observation from arithmetic mean,  

n  = Number of observations.  

Many data sets have more than one dimension, and the aim of the statistical 

analysis of these data sets is usually to see if there is any relationship between the 

dimensions. For example, we might have as our data set both the height of all the 

students in a class and the mark they received on genetics paper. We could then 

perform statistical analysis to see if the height of a student has any effect on their 

mark. Standard deviation and variance only operate on one dimension, so that we 

could only calculate the standard deviation for each dimension of the data set 

independently of the other dimensions. However, it is useful to have a similar 

measure to find out how much the dimensions vary from the mean with respect to 

each other. Covariance is such a measure. Covariance is always measured between 2 

dimensions. If we calculate the covariance between one dimension and itself, we will 

get the variance. So, if we had a 3-dimensional data set (A, B, C), then we could 

measure the covariance between the A and B dimensions, the B and C dimensions, 

and the A and C dimensions. Measuring the covariance between A and A, or B and 

B, or C and C would give us the variance of the A, B and C dimensions respectively. 

The formula for covariance is very similar to the formula for variance. The formula 

for covariance with respect to variance could also be written  

( )( )
1( , )

( 1)

i i
i

n

X X Y Y
Cov X Y

n

′

=

′− −
=

−

∑
 

where, X ′ = Arithmetic mean of data X, Y ′ = Arithmetic mean of data Y, n = Number 

of observation. 

As mentioned above if we have a data set with more than 2 dimensions, there 

is more than one covariance measurement that can be calculated. For example, from 
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a 3 dimensional data set (dimensions x, y, z) we could calculate the cov(x,y), cov(y,z) 

and cov(x,z). In fact, for an n-dimensional data set, we can calculate !
( 2)!*2

n
n −

 

different covariance values [96]. 

A useful way to get all the possible covariance values between all the 

different dimensions is to calculate them all and put them in a matrix. So, by 

definition the covariance matrix for a set of data with n-dimensions is 

 

 

Where, *M NC  is a matrix with n rows and n columns, and (Dim x) is the xth 

dimension.  

This typical formula says that if you have an n-dimensional data set, then the matrix 

has n rows and columns (so is square) and each entry in the matrix is the result of 

calculating the covariance between two separate dimensions.  

E.g. the entry on row 2, column 3, is the covariance value calculated between 

the 2nd dimension and the 3rd dimension. 

 

Properties of Variance and Covariance. 

1) ( )
,

( )
i j

T T
i j X X

i j
Var X Var X a a σ= = ∑a a a  

2) ( ) ( ) TVar X b Var X+ =A A A  

3) ( ) ( ) ( , ) ( , ) ( )Var X Y Var X Cov X Y Cov Y X Var Y+ = + + +  

4) ( , ) ( , ) ( , )Cov X Y Z Cov X Z Cov Y Z+ = +  

5) ( , ) ( , ) TCov X Y Cov X Y=A B A B  

 

The correlation matrix R formula can be rewritten in algebra matrix 

 
( ) ( )

( ) ( )
cov ,

,
var vari j

i j
X X i j

i j

X X
r corr X X

X X
= = =  

( )
( )

( )
1 1cov ,

var var
i j

i j

X X
X X

= . 

(5.14) 

 

( )( )*
, ,, cov , .M N

i j i j i jC c c Dim Dim= =
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Let D be a diagonal matrix such that the diagonal elements are the same as 

those of the covariance matrix S i.e. ( ii iid s= ). From (5.14) the relation between the 

correlation matrix and the covariance matrix is given by (5.15).  

 1/2 1/2− −=R D SD . (5.15) 

 

Assume a random vector X , taking values in mℜ , has a mean and 

covariance matrix of Xµ  and X∑ , respectively. 021 >>>> mλλλ   are ordered 

eigenvalues of X∑ , such that the i -th eigenvalue of X∑  means the i -th largest of 

them. Similarly, a vector iα  is the i -th eigenvector of X∑  when it corresponds to 

the i -th eigenvalue of X∑ . To derive the form of principal components (PCs), 

consider the optimization problem of maximizing 111 ]var[ ααα X
TT X ∑= , subject to 

111 =ααT . The Lagrange multiplier method is used to solve this question. 

)1(),( 1111111 −+∑= ααφααφα T
X

TL  

022 111
1

=+∑=
∂
∂ αφα
α X
L  ⇒  111 αφα −=∑X  ⇒  11111 ]var[ φααφα −=−= TT X . 

Because 1φ−  is the eigenvalue of X∑ , with 1α  being the corresponding normalized 

eigenvector, ]var[ 1 XTα  is maximized by choosing 1α  to be the first eigenvector of 

X∑ . In this case, Xz T
11 α=  is named the first PC of X , 1α  is the vector of 

coefficients for 1z , and 11)var( λ=z  [38]. 

To find the second PC, Xz T
22 α= , we need to maximize 

222 ]var[ ααα X
TT X ∑=  subject to 2z being uncorrelated with 1z . Because 

0),cov( 21 =XX TT αα  ⇒  021 =∑ αα X
T  ⇒  021 =ααT , this problem is equivalently 

set as maximizing 22 αα X
T ∑ , subject to 021 =ααT , and 122 =ααT . We still make 

use of the Lagrange multiplier method. 

)1(),,( 22221122212 −++∑= ααφααφααφφα TT
X

TL  

022 22112
2

=++∑=
∂
∂ αφαφα
α X
L  
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⇒  0)22( 221121 =++∑ αφαφαα X
T  ⇒  01 =φ  

⇒  222 αφα −=∑X  ⇒  222 φαα −=∑X
T . 

Because 2φ−  is the eigenvalue of X∑ , with 2α  being the corresponding normalized 

eigenvector, ]var[ 2 XTα  is maximized by choosing 2α  to be the second eigenvector 

of X∑ . In this case, Xz T
22 α=  is named the second PC of X , 2α  is the vector of 

coefficients for 2z , and 22 )var( λ=z . Continuing in this way, it can be shown that 

the i -th PC Xz T
ii α=  is constructed by selecting iα  to be the i -th eigenvector of 

X∑ , and has variance of iλ  [70]. The key result in regards to PCA is that the 

principal components are the only set of linear functions of original data that are 

uncorrelated and have orthogonal vectors of coefficients. 

 

Proposition 5.1 [Jolliffe, 2002]. For any positive integer mp ≤ , let 

],,,[ 21 pB βββ =  be an real pm×  matrix with orthonormal columns, i.e., 

ijj
T
i δββ = , and XBY T= . Then the trace of covariance matrix of Y  is maximized 

by taking ],,,[ 21 pB ααα = , where iα  is the i -th eigenvector of X∑ . 

 

Proof. Because X∑  is symmetric with all distinct eigenvalues, so 

},,,{ 21 mααα   is an orthonormal basis with iα  being the i -th eigenvector of X∑ , 

and we can represent the columns of B  as 

∑
=

=
m

j
jjii c

1
αβ ,  pi ,,1= . 

So we have 

PCB =  

where ],,[ 1 mP αα = , }{ ijcC =  is an pm×  matrix. Then, Λ=∑ PP X
T , with Λ  

being a diagonal matrix whose k -th diagonal element is kλ , and the covariance 

matrix of Y  is, 

T
mmm

TT
X

TT
X

T
Y ccccCCPCPCBB λλ ++=Λ=∑=∑=∑ 111  
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where T
ic  is the i -th row of C . So, 

∑ ∑∑∑∑
= ====

====∑
m

i
i

p

j
ij

m

i
i

T
ii

m

i
i

T
ii

m

i

T
iiiY ccccctracecctracetrace

1 1

2

111
)()()()( λλλλ . 

Because IBBBPPBCC TTTT === , so pcCCtrace
m

i

p

j
ij

T == ∑ ∑
= =1 1

2)( , and the 

columns of C  are orthonormal. By the Gram-Schmidt method, C  can expand to D , 

such that D  has its columns as an orthonormal basis of mℜ  and contains C  as its 

first p  columns. D  is square shape, thus being an orthogonal matrix and having its 

rows as another orthonormal basis of mℜ . One row of C is a part of one row of D , 

so 1
1

2 ≤∑
=

p

j
ijc , mi ,,1= . Considering the constraints 1

1

2 ≤∑
=

p

j
ijc , pc

m

i

p

j
ij =∑ ∑

= =1 1

2  and 

the objective ∑ ∑
= =

m

i
i

p

j
ijc

1 1

2 )( λ . We derive that )( Ytrace ∑  is maximized if 1
1

2 =∑
=

p

j
ijc  for 

pi ,,1= , and 0
1

2 =∑
=

p

j
ijc  for mpi ,,1+= . When ],,,[ 21 pB ααα = , 

straightforward calculation yields that C  is an all-zero matrix except 1=iic , 

pi ,,1= . This fulfills the maximization condition. Actually, by taking 

],,,[ 21 pB γγγ = , where },,,{ 21 pγγγ   is any orthonormal basis of the subspace 

of },,,{ 21 pspan ααα  , the maximization condition is also satisfied, thus yielding 

the same trace of covariance matrix of Y .  

Proposition 5.2 [Jolliffe, 2002]. Suppose that we wish to approximate the 

random vector X  by its projection onto a subspace spanned by columns of B , where 

],,,[ 21 pB βββ =  is a real pm×  matrix with orthonormal columns, i.e., 

ijj
T
i δββ = . If 2

iσ  is the residual variance for each component of X , then ∑
=

m

i
i

1

2σ  is 

minimized if ],,,[ 21 pB ααα = , where },,,{ 21 pααα   are the first p  

eigenvectors of X∑ . In other words, the trace of convariance matrix of XBBX T−  

is minimized if ],,,[ 21 pB ααα = . When 0)( =XE , which is a commonly applied 

preprocessing step in data analysis methods,  this property is saying that 
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2
XBBXE T−  is minimized if ],,,[ 21 pB ααα = . 

 

Proof. The projection of a random vector X  onto a subspace spanned by 

columns of B  is XBBX T=ˆ . Then the residual vector is XBBX T−=ε , which has 

a convariance matrix 

)()( T
X

T BBIBBI −∑−=∑ε . 

Then, 

)()(
1

2 T
X

T
X

TT
XX

m

i
i BBBBBBBBtracetrace ∑+∑−∑−∑=∑=∑

=
εσ . 

Also, we know 

)()()( BBtraceBBtraceBBtrace X
T

X
TT

X ∑=∑=∑  

)()()( BBtraceBBBBtraceBBBBtrace X
TT

X
TT

X
T ∑=∑=∑ . 

The last equation comes from the fact that B  has orthonormal columns. 

So, 

)()(
1

2 BBtracetrace X
T

X
m

i
i ∑−∑=∑

=
σ . 

To minimize ∑
=

m

i
i

1

2σ , it suffices to maximize )( BBtrace X
T ∑ . This can be done by 

choosing ],,,[ 21 pB ααα = , where },,,{ 21 pααα   are the first p  eigenvectors of 

X∑ , according to Proposition 5.1 stated above.  
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6. A STRATEGY OF SCIENTIFIC IDENTIFICATION OF PURE SPECTRAL 

AND CONCENTRATION PROFILES 

 

Let’s consider a XANES spectrum 𝝁𝝁𝑖𝑖 characterized by 𝐿𝐿 energy points. It is 

part of a XANES data  matrix 𝐗𝐗 composed by 𝑀𝑀 spectra (i.e. dim(𝐗𝐗) = L ×  M). By 

the Lambert-Beer equation (0.1), it is possible to express 𝝁𝝁𝑖𝑖 as the sum of N pure 

spectra 𝑠𝑠𝑖𝑖 weighted by their related concentration profiles 𝑐𝑐𝑖𝑖𝑖𝑖: 

 
𝝁𝝁𝑖𝑖 = �𝑐𝑐𝑖𝑖𝑖𝑖𝒔𝒔𝑗𝑗

𝑁𝑁

𝑗𝑗=1

 (6.1) 

It is possible to demonstrate by means of PCA that each spectrum 𝒔𝒔𝑗𝑗 is rewritable in 

the following way: 

 
𝒔𝒔𝑗𝑗 = �𝑡𝑡𝑗𝑗𝑗𝑗𝒗𝒗𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 (6.2) 

Where 𝒗𝒗𝑘𝑘 are a set of orthogonal vector that can be obtained by the diagonalization 

of the covariance matrix associated to 𝐗𝐗 i.e. 

 
𝑅𝑅 =

𝐗𝐗 ∙ 𝐗𝐗𝑡𝑡

𝑀𝑀
  

 

Matrix 𝑡𝑡𝑗𝑗𝑗𝑗 is an unknown matrix. In PyFitIt it is possible to access to its 

elements by means of sliders. Moreover, their number can be reduced through 

constraints. One of the most widely used is the so called “normalization” that fixes 

the first row of 𝑡𝑡𝑗𝑗𝑗𝑗 as: 

 
𝑡𝑡𝑗𝑗𝑗𝑗 = �

1/𝑎𝑎 … 1/𝑎𝑎
𝑡𝑡21 … 𝑡𝑡2𝑁𝑁…
𝑡𝑡𝑁𝑁1

…
…

…
𝑡𝑡𝑁𝑁𝑁𝑁

� (6.3) 

 

 
𝑎𝑎 = �

1
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑑𝑑𝑑𝑑𝝁𝝁𝑖𝑖(𝐸𝐸)2
𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚

 (6.4) 
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Where 𝑎𝑎 is the normalization parameter and 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚, 𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚 are respectively the 

maximum and minimum values of energy. 

To retrieve a set of chemical/physical meaningful spectra and their related 

concentration profiles it is necessary to satisfy the following requirements: 

1) 𝒔𝒔𝑗𝑗 ≥ 0: Non-negativity of spectral profiles 

2) 0 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖 ≤ 1 with ∑ 𝑐𝑐𝑘𝑘𝑘𝑘 =𝑁𝑁
𝑗𝑗=1 1 for every 𝑘𝑘 point: non negativity of the 

concentration profiles 

3) Mass balance condition 

These constraints can influence the values of 𝑡𝑡𝑗𝑗𝑗𝑗 leading to the formation of a 

determined AFS. These regions can be obtained via “brute force” (i.e. varying 

randomly each element 𝑡𝑡𝑗𝑗𝑗𝑗 and collecting the values satisfying points number 1) and 

2) and 3)) or minimizing a penalty function. 

This second strategy seems to be more accessible especially because it allows 

one to save an higher amount of computational time. The AFS, then, can be 

recovered minimising the following equation:  

 

 
𝑃𝑃(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) =  ��𝐻𝐻𝑠𝑠(𝑠𝑠𝑖𝑖𝑖𝑖)(𝑠𝑠𝑖𝑖𝑖𝑖)2 + ��𝐻𝐻𝑐𝑐(𝑐𝑐𝑘𝑘𝑘𝑘)(𝑐𝑐𝑘𝑘𝑘𝑘)2

𝑁𝑁

𝑗𝑗=1

𝑀𝑀

𝑘𝑘=1

𝑁𝑁

𝑗𝑗=1

𝐿𝐿

𝑖𝑖=1

 (6.5) 

 

Where 𝑃𝑃 is the “penalty function”, while 𝐻𝐻𝑠𝑠 and 𝐻𝐻𝑐𝑐 are two step function, which 

preserve requirements 1) and 2): 

𝐻𝐻𝑠𝑠(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0
0 𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0 

𝐻𝐻𝑐𝑐(𝑥𝑥) = �1 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 𝑜𝑜𝑜𝑜 𝑥𝑥 > 1
0 𝑖𝑖𝑖𝑖 0 ≤ 𝑥𝑥 ≤ 1  

 

 

6.1. Dataset 1. 

As a first test dataset for this method, we considered a set of XANES 

composed of 30 spectra acquired during the MTM process (methane to methanol 

conversion: CH4 loading and CH3OH extraction by means of water) catalysed by the 
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Cu-zeolite characterized by the Ferrierite (FER) framework: 0.20Cu-H, Na-FER(11). 

The details of the experiment together with the description of the reaction can be 

found in Ref. [60]. 

The test of this dataset is reported below: 

 
Figure 6.1. XANES dataset used for this study composed of 30 spectra acquired 

during the MTM conversion. 

 

As it is possible to see from Figure 6.1, the total dataset variation is quite 

low. The PCA executed on it reveals the presence of three main components: 



111 
 

 

Figure 6.2. Scree Plot of the analysed dataset. As it is possible to see the elbow of 

this curve is localised in proximity of the third PC. 

A first attempt for the spectral separation can be realised by means of the 

MCR-ALS approach, initializing the ALS routine using the SIMPLISMA algorithm 

[26]. The results are reported in Figure 6.3:  

 

 

Figure 6.3. Principal components/pure spectra extracted from MCR-ALS. 
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As it is possible to observe, the pure spectral profiles extracted by this 

technique do not have any chemical/physical meaning. Thus, we proceeded to apply 

the PyFitIt method based on the application of a transformation matrix. 

Considering 3PCs the number of sliders to move corresponds to nine. 

However, imposing the normalization constraint this number is reduced to six. Due 

to the finer energy step (0.005 eV), using the normalization, condition 3) is satisfied. 

Sliders are then moved basing on the the spectral and concentration profiles non 

negativity trends. Finally, we required, for all the components, that the XANES 

white line magnitude could not be higher than 2 (unrealistic solution for this system) 

and that the highest value of concentration is one. All these constraints have been 

implemented in a proper penalty function using equation (6.5). 

The AFS obtained with this method are reported in Figure 6.4: 

 
Figure 6.4. Some selected plots representing the AFS obtained minimizing function 

(6.5) using 1000 initialization set of points chosen randomly between -10 and 10. The 

minimization procedure has been realised using the Nelder-Mead algorithm. 

 

Once the AFS have been defined, it is possible to identify, moving the 

elements of matrix (6.3), the set of spectra 𝒔𝒔𝑗𝑗 closest to given references. It is worth 

noting that the results obtained by this method are not unique and this approach 

cannot be defined as a “blind method” as MCR-ALS.  
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The first method foresees the comparison of each spectrum calculated for 

every point with the reference. The comparison is performed minimizing the L2 norm 

of the following difference: 

 

min
(𝑡𝑡21…𝑡𝑡2𝑁𝑁…𝑡𝑡𝑁𝑁1…𝑡𝑡𝑁𝑁𝑁𝑁)

⎝

⎛��(𝑠𝑠𝑖𝑖(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) − 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖)2∆𝐸𝐸
𝐿𝐿

𝑖𝑖=1
⎠

⎞ (6.6) 

 

In case of a multi-values solution, a second reference spectrum can be added 

to the minimization then equation (6.6) becomes: 

min
(𝑡𝑡21…𝑡𝑡2𝑁𝑁…𝑡𝑡𝑁𝑁1…𝑡𝑡𝑁𝑁𝑁𝑁)

�����𝑠𝑠𝑖𝑖𝑖𝑖(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) − 𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖�
2
∆𝐸𝐸

𝐿𝐿

𝑖𝑖=1

𝑁𝑁

𝑗𝑗=1

� (6.7) 

 

Generally, the PyFitIt user must exploy his/her chemical/physical intuition in 

order to isolate some results that can be interpretable. A meaningful solution is 

reported in Figure 6.5 together with some selected references used for the 

comparison. 

 

 

Figure 6.5. In the upper panel a feasible set of spectra is reported, having a 

chemical/physical meaning while in the bottom panel three XANES references are 

shown used for the comparison. The CuII hydrated state has been taken at RT (25 °C) 
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in a water solution of Cu acetate. The CuI reference is referring to a state of a Cu site 

in the same FER framework taken at 400 °C after two hours of activation in vacuum. 

The black spectrum is related to a CuII site of the FER framework. This spectrum has 

been obtained at 400 °C in oxygen atmosphere after two hours of activation. 

 

How it is possible to see from Figure 6.5, the similarity between the pure 

spectral set extracted by PyFitIt and the references spectra is extremely high. 

Looking at the related concentrations profiles in Figure 6.6, more information about 

the chemistry of the process can be extracted: 

 

 

Figure 6.6. Concentration profiles extracted by PyFitIt during the loading of CH4 

and the extraction of CH3OH. 

 

After the interaction of the O2-activated catalyst with CH4 at 200 °C it is 

possible to observe the partial reduction of CuII to CuI . The reduction of CuII to CuI 

during CH4 loading is in agreement with the formation of a reaction intermediate i.e. 

methoxy species, as suggested in the literature [3, 46, 58-59, 86]. 

Recently, the percentage of reduced Cu from the interaction of active sites 

with CH4 has been taken as a descriptor of the productivity. Finally, the introduction 

of steam in the reactor used to release CH3OH, correlates with the formation of an 

hydrate state (the blue-one component) and involves the oxidation of a fraction of the 
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Cu(I) ions. More information about the chemical results obtained by these 

experiments can be found in [60]. 

As it is possible to see, the solution reported in Figure 6.5 and Figure 6.6 is 

not unique. The idea to minimize the R-factor related to the reconstruction of the 

dataset, that should be able to provide a well defined solution, can not be followed. 

The reason is easily explained having a look at the cumulative variance explained by 

the three components (that is higher than 90%) and remembering that the total 

variation to the right and left singular values provided by sliders is zero. At the 

moment, the possibility to find a global objective function that minimized, under 

constraints, is able to provide a unique, chemical/physical meaningful solution, is 

still under development. However, we were able to identify the maxima and the 

minima meaningful spectral and concentrations boundaries under constraints. 

We defined an objective function as the ratio between the Frobenius norm of 

the signal contribution of a particular species with respect to the Frobenius norm of 

the whole signal for all the considered species. In this way, the objective function has 

a scalar output within 0 and 1, that is a good approach for an further optimization 

process. 

 
𝑓𝑓𝑘𝑘(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) =

‖𝒔𝒔𝑘𝑘𝒄𝒄𝑘𝑘T‖
‖𝐗𝐗‖

 (6.8) 

 

The optimization of this objective function, either maximized or minimized, will give 

respectively the maximum and the minimum boundary for the k-species. The 

definition of this objective function requires the initial values of the variables in the 

transformation matrix together with the initial values for the species profiles, 𝒔𝒔𝑘𝑘 and 

𝒄𝒄𝑘𝑘. When the optimization is implemented as a minimization of the objective 

function it is appropriate to find the minimum band boundaries, whereas if the 

optimization is implemented as a maximization of the objective function, the 

functions given in Equations (6.8) and should be changed in sign. 

Clearly, without constraints, equation (6.8) can not be minimized; the usage 

of some constraints is then required. Moreover, a proper set of spectra as 

initialization profiles must be provided in order to find meaningful boundaries. The 

extension of the minimization of equation (6.8) in a large range of variation of 

elements of the transformation matrix can lead to an overestimation of the 

boundaries profiles. For this reason, we considered a hypercube, having an initial 
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side of 0.25 and centered in the set of parameters that provides Figure 6.5 and 

Figure 6.6. In order to get meaningful boundaries, equation (6.8) has been 

minimized together with equation (6.5) in the following way: 

 
𝑓𝑓𝑘𝑘(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) =

‖𝒔𝒔𝑘𝑘𝒄𝒄𝑘𝑘T‖
‖𝐗𝐗‖

+ 𝛾𝛾𝛾𝛾(𝑡𝑡21 … 𝑡𝑡2𝑁𝑁 … 𝑡𝑡𝑁𝑁1 … 𝑡𝑡𝑁𝑁𝑁𝑁) (6.9) 

 

Herein, the penalty function guarantees to obtain a solution located in the 

AFS. The parameter 𝛾𝛾 works as a Lagrange multiplier. We minimized equation (6.9) 

iteratively, using the Sequential Least Squares Programming Algorithm (SLSQP) 

provided by the Sci.py package of python, which allows one to impose constraints on 

the variation of the 𝑡𝑡𝑖𝑖𝑖𝑖 elements. For each iteration, the solution of equation (6.9) is 

used as the initialization of the following cycle. At the same time, the 𝛾𝛾 term is 

progressively increased with a step of 10 for each cycle. This algorithm is globally 

quite long to find a convergence (usually in 10 iterations), however it allows to reach 

it. A proper set of boundaries is reported below: 

 

Figure 6.7. Spectral and concentration boundaries obtained minimizing equation 

(6.9) and using as initial guess spectra the set reported in Figure 6.5. Colour legend: 

blue tonality: CuII hydr. specie, red tonality CuI specie, black tonality CuII framework 

specie. 
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It is interesting to note that with this kind of constraints, only small spectral 

variations are detectable. The most evident regards the white line of the CuII hydr. 

state and the pre edge features of CuII-oxo specie. On the contrary, in the field of 

concentration profiles, high variations are evident, in particular the critical point is 

related to the maximum CuII hydr. boundary profile which seems to be overestimated 

in proximity of the first scan number (#). In fact the first scan should correspond to 

an activated state obtained cooling down the sample from 200 °C to 400 °C in 

oxygen. The CuII hydr. state is an indicator of water in the system and, for this 

reason, an amount comparable to 20% of the mixture is unfeasible. The range of 

variation of sliders can be then reduced to 0.1. Using this constraint, the total amount 

the CuII hydr. component, in the first scan goes under the 8%. This maximum 

estimation is reasonable and can be interpreted considering the fact that cooling 

down the temperature, some Cu sites can rearrange their local environment assuming 

an hexahedral/octahedral configuration or that all the water molecules are not 

completely deleted from the framework. A similar result can be obtained fitting the 

first spectrum of the dataset using references of Figure 6.5 as was made by Pappas et 

al in [60]. The resulting concentrations profiles are reported below: 

 

 

Figure 6.8. Concentrations profiles retrieved considering a hypercube of side 0.1. 
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It is interesting to observe that reducing the side of the hypercube of variation 

the concentration profiles of the CuI and CuII species do not change, remaining 

globally stable.  

The method still remains not unique. In fact the size of the minimization 

range must be defined by user. However, a general procedure can be described in this 

way. It is possible to increase progressively the size of the minimization range. For 

each minimization cycle, determined spectral or concentration features (such us some 

unfeasible pecks) can be monitored. Their appearance will correspond to the 

maximum variation for the set of transformation elements associated with the spectra 

having these features. Once the limits of variation of each element of the 

transformation matrix have been defined, the minimization process can be applied as 

showed before. 

The program code for the aforesaid strategy was developed in programming 

language Python in web-based, interactive computing notebook environment Jupyter 

in collaboration with researches of the university of Turin. 

The program code is reported in Appendix A. 

 

 

6.2. Datasets 2-3. 

The next datasets are represented by the spectra XAS for the reactions: 

1) PhSMe + FeIVN4Py(O) – dataset 2; 

2) PhCH2OH + FeIVN4Py(O) – dataset 3.  

 

These reactions are the reactions of the substrates PhSMe and PhCH2OH for 

which the kinetic study has been already published in Ref. [11] so that it is possible 

to obtain the XANES spectra of the pure species. The concentrations were obtained 

by applying the program PyFitIt to the succession of the UV-Vis spectra of the 

reactions, and normalizing the concentrations to 1. In both reactions the number of 

components is equal to 2: the forma is relative to the reagent and the latter to the 

product. 

The process for the identification of the pure spectral and concentration 

profiles and their related range of confidence for dataset 2 and dataset 3 is analogical. 

The program code for this process for dataset 2 and dataset 3 is identical and it was 
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written in programming language Python in web-based, interactive computing 

notebook environment Jupyter in collaboration with researches of the university of 

Turin. The program code is reported in Appendix B. 

 

6.2.1. Dataset 2.  

 
Figure 6.9. XAS spectra for the reaction PhSMe + FeIVN4Py(O). 

 

In Figure 6.9 the XAS dataset composed by 49 spectra. 

In order to perform a correct decomposition of the input dataset in a reduced 

set of pure independent spectra, each experimental spectrum 𝝁𝝁𝑖𝑖 must be normalised 

using the formula (6.4). It is worth noting that the higher the number of points 

characterizing each experimental spectrum, the more accurate the normalization 

results. For this reason, before this step, the experimental spectra were interpolated 

with a finer sampling interval changing the step parameter in the interpolation 

function (energy, data, step=0.005). By this function, the user (modifying the energy 

step between two consecutive points by the "step" parameter) can increase the 

number of points for each spectrum in the experimental dataset [84]. On the other 

hand, if the user wishes to use the original energy range, this step can be skipped. 

The normalized spectra are shown in Figure 6.11 and their related 

normalized concentration profiles are shown in Figure 6.10. 
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Figure 6.10. Normalized concentration profiles. 

 
Figure 6.11. Normalized spectra. 

 
Figure 6.12. Number of principal components. 
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In Figure 6.12 the number of principal components is reported and it is equal 

to 2. The qualitative analysis of the PCs extracted by SVD can help to identify the 

correct number of components related to physical variation of signals. It is worth 

noting that the number of points characterising each PC is equal to the number of 

points of the energy column. This fact implies that each PC can be plotted vs the 

column energy and interpreted as an abstract spectrum without any 

chemical/physical meaning. 

 

 
Figure 6.13. Example of the spectra to be multipled with the elements of the 

transformation matrix T. 

 

As it is possible to observe, the pure spectral profiles in Figure 6.13 do not have any 

chemical/physical meaning.  

 
Figure 6.14. The AFS obtained by minimizing function (6.5). 

α 

β  
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The AFS in Figure 6.14 is obtained using 1000 initialization sets of points 

chosen randomly between -5 and 5. The minimization procedure has been carried out 

using the Nelder-Mead algorithm. 

 

 
Figure 6.15. Variation of the spectra as a function of estimated parameters. 

 

Estimated parameters are the matrix containing 1000 rows and 2 columns. 

The first row of this matrix contains estimated parameters t1, t2 obtained during the 

first iteration of the AFS calculation process. The second row of this matrix contains 

estimated parameters t1, t2 obtained during the second iteration of the AFS 

calculation. And so on until the 1000th row of the matrix, which contains estimated 

parameters t1, t2 obtained during the 1000th iteration of the AFS calculation. Spectra 

of estimated parameters are represented in Figure 6.15. 

In Figure 6.16 the maximum and the minimum meaningful boundary of 

concentrations profiles are reported. In Figure 6.17 the maximum and the minimum 

meaningful boundary of spectral profiles are reported. 

The results shown in Figures 6.16-6.17 were obtained by minimizing 

equation (6.9) iteratively, using the Sequential Least Squares Programming 

Algorithm (SLSQP). Minimization was performed by the Sci.py package of python, 

which imposes constraints on the variation of the 𝑡𝑡𝑖𝑖𝑖𝑖 elements. The set reported in 

Figure 6.15 was used as initial guess spectra.  

 Energy (eV) 

N
or

m
a
li

ze
d
 µ

x
(E

)  



123 
 

 

Figure 6.16. Concentration boundaries obtained minimizing the objective function 

(6.9) with constraints by method SLSQP. 

 

 

 

Figure 6.17. Spectral boundaries obtained minimizing the objective function (6.9) 

with constraints by method SLSQP. 

 

It is interesting to note that with this kind of constraints, a big concentration 

profiles variation is detectable in Figure 6.16 as compared to the recovered 

concentration profiles reported in Figure 6.18. 

A big spectral variation is detectable in Figure 6.17 as compared to the 

recovered spectra reported in Figure 6.19. 
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Figure 6.18. Сoncentration profiles of the species present in solution during the 

reaction. 

 

 
Figure 6.19. Spectra of the species present in solution during the reaction. 

 

In Figure 6.18 the recovered concentration profiles are reported. In Figure 

6.19 the recovered spectra are reported. The results shown in Figures 6.18-6.19 were 

obtained by the optimization of the objective function using the method of Nelder-

Mead. The optimization of the objective function was implemented as its 

minimization performed by the Sci.py package of python. 
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6.2.2. Dataset 3. 

 
Figure 6.20. XAS spectra for the reaction PhCH2OH + FeIVN4Py(O).  

 

In Figure 6.20 the XAS dataset composed by 99 spectra. 

Since the strategy for obtaining of the desired results is similar and the 

program code for this strategy is identical for dataset 2 and dataset 3, the descriptions 

of all reported below graphics of this paragraph are similar to their descriptions in the 

paragraph 6.2.1. 

The normalized experimental spectra using the formula (6.4) are shown in 

Figure 6.22 and their related normalized experimental concentration profiles are 

shown in Figure 6.21. Before the normalization the experimental spectra were 

interpolated with the step parameter equal to 0.005. 

 

 

Figure 6.21. Normalized concentration profiles. 
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Figure 6.22. Normalized spectra. 

 
Figure 6.23. Number of principal components. 

In Figure 6.23 the number of principal components is reported which is equal to 2. 

 
Figure 6.24. Example of the spectra to be multipled with the elements of the  

transformation matrix T. 
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As it is possible to observe, the pure spectral profiles in Figure 6.24 do not 

have any chemical/physical meaning.  

 

 
Figure 6.25. The AFS obtained by minimizing function (6.5). 

 

The AFS in Figure 6.25 is obtained using 1000 initialization sets of points 

chosen randomly between -5 and 5. The minimization procedure has been carried out 

using the Nelder-Mead algorithm. 

 

 
Figure 6.26. Variation of the spectra as a function of estimated parameters. 

 

Spectra of estimated parameters are represented in Figure 6.26. 
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In Figure 6.27 the maximum and the minimum meaningful boundary of 

concentrations profiles are reported. 

In Figure 6.28 the maximum and the minimum meaningful boundary of 

spectral profiles are reported. 

The set reported in Figure 6.26 was used as initial guess spectra.  

  

 

Figure 6.27. Concentration boundaries obtained minimizing the objective function 

(6.9) with constraints by method SLSQP. 

 

 

Figure 6.28. Spectral boundaries obtained minimizing the objective function (6.9) 

with constraints by method SLSQP. 
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With this kind of constraints, a big concentration profiles variation is 

detectable in Figure 6.27 as compared to the recovered concentration profiles 

reported in Figure 6.29. 

A big spectral variation is detectable in Figure 6.28 as compared to the 

recovered spectra reported in Figure 6.30. 

 

 

Figure 6.29. Сoncentration profiles of the species present in solution during the 

reaction. 

 

 

Figure 6.30. Spectra of the species present in solution during the reaction. 

In Figure 6.29 the recovered concentration profiles are reported. In Figure 

6.30 the recovered spectra are reported. 
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CONCLUSIONS 

 

In this thesis we developed and applied a deconvolution procedure to the 

XAS spectra of different species undergoing a chemical reaction. 

In the thesis the following tasks were realized: 

1) Having three species, coexisting in solution, and the time evolution of the total 

absorption spectra: 

 three concentration variations with time were extracted (𝐶𝐶1 as it decreases, 

𝐶𝐶2 as it increases and then redecreases and 𝐶𝐶3 as it increases over time); 

 three forms of the XANES spectra were determined, that multiplied by 𝐶𝐶1, 

𝐶𝐶2 and 𝐶𝐶3 respectively at each instant of time, and summed up gave the original 

mixture dataset. 

The same goal was realized when two species were present in solution. 

2) The concentrations (as a function of the time), that is the matrix 𝐶𝐶3×𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, were 

determined. 

3) The absorption spectra (as a function of the energy), that is the matrix 𝐴𝐴3×𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 

were determined. 

4) Pure spectral and concentration profiles were obtained for different XANES and 

UV-Vis datasets with different number of components using the computer softwares 

FAC-PACK and PyFitIt. 

5) A comparative analysis of the effectiveness of the obtained results in FAC-PACK 

and in PyFitIt was made. 

6) The theory for application of the NMF method, constrained nonlinear method, 

PCA method was developed and implemented. These methods were tested for 

different datasets. 

7) The regions populated by tjk values of the transformation matrix T capable to 

provide the non-negative specta and concentration profiles, which satisfy mass 

balance sheet were identified. 

8) A set of “pure” spectra having a chemical-physical meaning was isolated for these 

tjk values, which satisfy the previous point 7). 

9) The maxima and the minima meaningful spectral and concentration boundaries 

under constraints were identified. 
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10) A computer program was written in programming language Python to identify 

pure spectral and concentration profiles and their related range of confidence for 

different XANES datasets with different number of components. 
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ABSTRACT 

 

The classical problem of the determination of the spectral components from a 

data set is very often a badly conditioned problem without univocal solutions. Very 

often one deals with experimental data which are a superposition, or mixture, of the 

pure spectra of the individual components and their associated proportions. When 

dealing with evolving systems such as chemical reactions several compounds are 

coexisting and if one collects UV-Vis or any other kind of absorption spectra they 

will be the overimposition of the singles spectra associated with the chemical species 

present in the reaction bath with an intensity that depends on their concentration 

profiles. In this case it is very important to be able to extract each single component 

that is the absorption spectrum associated with each species, and the concentration 

evolution with time. More than often, this decomposition is aimed at situations for 

which little a priori information is available. Several theoretical approaches have 

been developed to achieve this goal and the multivariate analysis is one of the most 

promising approach. The multivariate curve resolution (MCR)  is the generic 

denomination of a family of methods meant to solve the mixture analysis problem 

that is able to provide a chemically meaningful additive bilinear model of pure 

contributions from the sole information of an original data matrix including a mixed 

measurement. MCR methods are key-tools in order to extract the pure component 

information (pure component spectra and the concentration profiles) from the 

chemical mixture (spectroscopic) data. The problem is to compute: 1) the number of 

independent components s and 2) the pure component factors C (concentration 

profiles) and A (spectra).  

An actuality of the problem of the determination of the spectral components 

from a chemical-physical data is driven by its broad range of applications in 

situations where a reasonable approximation of the bilinear model, or any other 

fundamental basic equation that has the same mathematical structure, holds. Also, 

the bilinear model can be extended for the analysis of multiple data sets that are 

meant to connect different experiments together.  

The main goal of the thesis is to develop and apply an innovative MCR 

approach for the multivariate analysis of chemical systems. In particular, this method 

has been developed to have an ad hoc tool to be used for chemical reactions for 

which a combined UV-Vis and X-ray absorption (XAS) investigation is carried out. 
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The final goal is to extract the UV-Vis and XAS spectra associated with all the 

intermediates that are formed during bimolecular chemical reactions occurring in the 

ms time range. 

In particular, in the first part of the thesis I have implemented the non 

negative matrix factorization (NMF) method to a newly written code, PyFitIt, that 

has been specifically developed for the multivariate analysis of XAS spectra. This 

method has been then applied to different sets of experimental data collected on 

different bimolecular chemical reactions in solution for which UV-Vis and XAS 

spectra were collected simultaneously.  

By using this new approach it was possible to extract, from the initial 

experimental data sets, both the XAS spectra and the concentration profiles of the 

intermediate species that were formed during the reaction. From the analysis of the 

X-ray absorption near edge structure (XANES) spectra it will be possible to 

determine the oxidation state of the absorption element, the nature of the short-lived 

intermediates that are formed during the reaction, and their three-dimensional 

structure with a picometric accuracy. To test the reliability of the entire procedure ten 

different systems have been investigated and the principal components and 

concentration profiles have been successfully extracted for all the investigated 

systems. The new procedure and code that has been developed in this thesis will be a 

valid tool that can be applied to different XAS data sets in the future. 
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APPENDIX A 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import minimize 

import random 

import copy 

import collections 

from scipy.optimize import basinhopping 

import scipy.interpolate 

from mpl_toolkits import mplot3d 

 

# Import of the experimental dataset 

dataset=np.loadtxt('dataset_Fe.dat')    

 

# Procedure of the normalization 

def normalization(energy,data):    

    scaled=np.zeros(np.shape(data)[1]) 

    for i in range(np.shape(data)[1]): 

        scaled[i]=np.sqrt((1./((1./(np.max(energy)-

np.min(energy)))*(np.trapz((data[:,i])**2,energy))))) 

    for i in range(np.shape(data)[1]): 

        data[:,i]=data[:,i]*scaled[i] 

    return data 

 

def sigle_norm(energy,spectrum): 

    scale=np.sqrt((1./((1./(np.max(energy)-

np.min(energy)))*(np.trapz((spectrum)**2,energy))))) 

    return scale*spectrum 

 

# Procedure of the interpolation 

def interpolation(energy,data,step):    

    e_valor=np.arange(min(energy),max(energy),step) 

    dat_valor=[] 
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    col=np.shape(data)[1] 

    for i in range(col): 

        d=np.interp(e_valor,energy,data[:,i]) 

        dat_valor.append(d) 

    data=np.transpose(dat_valor) 

    energy=e_valor 

    return energy, data 

 

# Definition of the spectral step function 

def H_s(x):    

    if x<0 or x>2: 

        return 1 

    elif x>=0 and x<=2: 

        return 0 

     

# Definition of the concentration step function 

def H_c(x):    

    if x<0 or x>1: 

        return 1 

    elif x>=0 and x<=1: 

        return 0 

 

# Import of the references 

ref_1_imp=np.loadtxt('Cu_Hydr.dat') 

ref_2_imp=np.loadtxt('Cu_I_ammino.dat') 

ref_3_imp=np.loadtxt('Cu_II.dat') 

 

ref_p10=np.loadtxt('pappas_1_Hydr.dat') 

ref_p20=np.loadtxt('pappas_2_ammino.dat') 

ref_p30=np.loadtxt('pappas_3_Cu_II.dat') 

 

ref_oxo_1=np.loadtxt('Cu_I_oxo.dat') 

ref_oxo_2=np.loadtxt('Cu_II_oxo.dat') 

 

ref_2Al_I=np.loadtxt('CHA_2AL.dat') 
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energia=dataset[:,0] # energia 

X_old=dataset[:,1:] 

energia,X_int=interpolation(energia,X_old,0.05) 

X=normalization(energia,X_int) 

ref_1=np.interp(energia,ref_1_imp[:,0],ref_1_imp[:,1]) 

ref_2=np.interp(energia,ref_2_imp[:,0],ref_2_imp[:,1]) 

ref_3=np.interp(energia,ref_3_imp[:,0],ref_3_imp[:,1]) 

 

ref_1p=np.interp(energia,ref_p10[:,0],ref_p10[:,1]) 

ref_2p=np.interp(energia,ref_p20[:,0],ref_p20[:,1]) 

ref_3p=np.interp(energia,ref_p30[:,0],ref_p30[:,1]) 

 

ref_2Al=np.interp(energia,ref_2Al_I[:,0],ref_2Al_I[:,1]) 

 

ref_Cu_I_oxo=np.interp(energia,ref_oxo_1[:,0],ref_oxo_1[:,1]) 

ref_Cu_II_oxo=np.interp(energia,ref_oxo_2[:,0],ref_oxo_2[:,1]) 

plt.xlabel("Energy (eV)") 

plt.ylabel("Norm. XANES") 

_=plt.plot(energia,X) 

ref_Hydr=sigle_norm(energia,ref_1) 

ref_Cu_I=sigle_norm(energia,ref_2) 

ref_Cu_II=sigle_norm(energia,ref_3) 

 

ref_H_p=sigle_norm(energia,ref_1p) 

ref_Cu_I_p=sigle_norm(energia,ref_2p) 

ref_Cu_II_p=sigle_norm(energia,ref_3p) 

 

ref_Cu_OXO_1=sigle_norm(energia,ref_Cu_I_oxo) 

ref_Cu_OXO_2=sigle_norm(energia,ref_Cu_II_oxo) 

 

ref_2AL=sigle_norm(energia,ref_2Al) 

 

# Plotting of the references used for the comparison 

plt.plot(energia,ref_Cu_OXO_1)    

plt.plot(energia,ref_Cu_OXO_2) 
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_=plt.plot(energia,X) 

np.savetxt('X.dat',X) 

_=plt.plot(energia,X) 

plt.plot(energia,ref_H_p) 

plt.plot(energia,ref_Cu_I_p) 

plt.plot(energia,ref_Cu_II_p) 

plt.plot(energia,ref_Hydr) 

plt.plot(energia,ref_Cu_I)    

plt.plot(energia,ref_Cu_II)    

_=plt.plot(energia,X) 

plt.plot(energia,ref_Hydr) 

plt.plot(energia,ref_Cu_I) 

plt.plot(energia,ref_Cu_II) 

plt.plot(energia,ref_2AL) 

plt.plot(energia,ref_Hydr) 

plt.plot(energia,ref_Cu_I) 

plt.plot(energia,ref_Cu_II) 

plt.plot(energia, ref_Cu_II) 

 

# Singular value decomposition 

U,S,VT=np.linalg.svd(X, full_matrices=False)    

_=plt.plot(S,'-*') 

plt.yscale("log") 

plt.xlim(-0.50,8) 

plt.ylim(10**-3,10**4) 

np.savetxt('S.dat',S) 

 

# Principal components number 

nPC=3    

nPC_n=4 

u=U[:,:nPC] 

vt = VT[:nPC,:]    

s=np.diag(S[:nPC]) 

u_n=U[:,:nPC_n] 

vt_n = VT[:nPC_n,:]    
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s_n=np.diag(S[:nPC_n]) 

us_n=np.dot(u_n,s_n) 

us=np.dot(u,s)  

_=plt.plot(us) 

a=-1*np.sqrt((1./((1./(np.max(energia)-

np.min(energia)))*(np.trapz((us[:,0])**2,energia))))) 

print(a) 

plt.plot(a*us[:,0]) 

Z = np.full(3, a) 

parametri=[3.4,-1.05,-0.7,0.45,1.5,-0.3] 

def spectra(params): 

    params=np.reshape(params,(2,3)) 

    t=np.vstack((Z,params)) 

    return np.dot(us,t) 

def concentrations(params): 

    params=np.reshape(params,(2,3)) 

    t=np.vstack((Z,params)) 

    return np.dot(np.linalg.pinv(t),vt) 

 

plt.plot(concentrations(parametri).T) 

np.savetxt('s_X.dat',spectra(parametri)) 

L,M=np.shape(X) 

N=nPC 

print(L,M) 

L,M=np.shape(X) 

 

# Definition of the penalty function 

def P(params):    

    term_S=np.zeros((L,N)) 

    term_C=np.zeros((M,N)) 

    sp=spectra(params) 

    cp=concentrations(params).T 

    for j in range(N): 

        for i in range(L): 

            term_S[i,j]=H_s(sp[i,j])*(sp[i,j])**2    
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    for i in range(N): 

        for j in range(M): 

            term_C[j,i]=H_c(cp[j,i])*(cp[j,i])**2   

    penalty=(((sum(sum(term_S)))+(sum(sum(term_C))))) 

    return penalty 

plt.plot(ref_3p) 

 

# Definition of the norm L2 

def L2_1(params):    

    spettri_1=spectra(params) 

    return np.sqrt((1/(np.max(energia)-np.min(energia)))*(np.trapz((spettri_1[:,0]-

ref_2p)**2,energia))) 

def L2_2(params): 

    spettri_2=spectra(params) 

    return np.sqrt((1/(np.max(energia)-np.min(energia)))*(np.trapz((spettri_2[:,1]-

ref_1p)**2,energia))) 

def L2_3(params): 

    spettri_3=spectra(params) 

    return np.sqrt((1/(np.max(energia)-np.min(energia)))*(np.trapz((spettri_3[:,2]-

ref_3p)**2,energia))) 

def L2(spectrum,ref): 

    return np.sqrt((1/(np.max(energia)-np.min(energia)))*(np.trapz((spectrum-

ref)**2,energia))) 

 

# Definition of the second derivative 

def Second_D(spectra):    

    secondS=np.zeros((np.shape(spectra)[0]-2,np.shape(spectra)[1])) 

    for i in range(np.shape(spectra)[1]): 

        dS=np.diff(spectra[:,i],1) 

        dE=np.diff(energia,1) 

        S_first=dS/dE 

        E_first=0.5*(energia[:-1]+energia[1:]) 

        dS_first=np.diff(S_first,1) 

        dE_first=np.diff(E_first,1) 

        S_second=dS_first/dE_first 
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        E_second=0.5*(E_first[:-1]+E_first[1:]) 

        scale_derivative=abs(np.sqrt((1./((1./(np.max(E_second)-

np.min(E_second)))*(np.trapz((S_second)**2,E_second)))))) 

        secondS[:,i]=abs(S_second)*scale_derivative 

    for n in range(np.shape(spectra)[1]): 

        for m in range(np.shape(spectra)[0]-2): 

            if secondS[m,n]==0: 

                secondS[m,n]=10**-9 

    return secondS 

energy_derivative=copy.copy(energia) 

e_Min= 8980 ;  

e_Max= 8987 

e_Min_near=min(energy_derivative, key=lambda x:abs(x-e_Min));  

e_Max_near=min(energy_derivative, 

key=lambda x:abs(x-e_Max)) 

p_Min=list(energy_derivative).index(e_Min_near) 

p_Max=list(energy_derivative).index(e_Max_near) 

 

# Definition of the fourth derivative 

def Fourth_D(spectra):    

    second_derivative_spectra=Second_D(spectra) 

    fourthS=np.zeros((np.shape(spectra)[0]-4,np.shape(spectra)[1])) 

    for i in range(np.shape(spectra)[1]): 

        E_first=0.5*(energia[:-1]+energia[1:]) 

        E_second=0.5*(E_first[:-1]+E_first[1:]) 

        dS2=np.diff(second_derivative_spectra[:,i],1) 

        dE2=np.diff(E_second,1) 

        S_third=dS2/dE2 

        E_third=0.5*(E_second[:-1]+E_second[1:]) 

        dS_third=np.diff(S_third,1) 

        dE_third=np.diff(E_third,1) 

        S_fourth=dS_third/dE_third 

        E_fourth=0.5*(E_third[:-1]+E_third[1:]) 

        scale_derivative_4=abs(np.sqrt((1./((1./(np.max(E_fourth)-

np.min(E_fourth)))*(np.trapz((S_fourth)**2,E_fourth)))))) 
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        fourthS[:,i]=abs(S_fourth)*scale_derivative_4 

    for n in range(np.shape(spectra)[1]): 

        for m in range(np.shape(spectra)[0]-4): 

            if fourthS[m,n]==0: 

                fourthS[m,n]=10**-9 

    return fourthS 

 

def Second_D_Reduced(spectra): 

    secondS=np.zeros((np.shape(spectra[p_Min:p_Max,:])[0]-

2,np.shape(spectra[p_Min:p_Max,:])[1])) 

    for i in range(np.shape(spectra[p_Min:p_Max,:])[1]): 

        dS=np.diff(spectra[p_Min:p_Max,i],1) 

        energy_R=energy_derivative[p_Min:p_Max] 

        dE=np.diff(energy_R,1) 

        S_first=dS/dE 

        E_first=0.5*(energy_R[:-1]+energy_R[1:]) 

        dS_first=np.diff(S_first,1) 

        dE_first=np.diff(E_first,1) 

        S_second=dS_first/dE_first 

        E_second=0.5*(E_first[:-1]+E_first[1:]) 

        scale_derivative=abs(np.sqrt((1./((1./(np.max(E_second)-

np.min(E_second)))*(np.trapz((S_second)**2,E_second)))))) 

        secondS[:,i]=abs(S_second)*scale_derivative 

    for n in range(np.shape(secondS)[1]): 

        for m in range(np.shape(secondS)[0]): 

            if secondS[m,n]==0: 

                secondS[m,n]=10**-9 

    return seconds 

energy_derivative=copy.copy(energia) 

e_Min= 8979    

e_Max= 8983    

e_Min_near=min(energy_derivative, key=lambda x:abs(x-e_Min));  

e_Max_near=min(energy_derivative, 

key=lambda x:abs(x-e_Max)) 

p_Min=list(energy_derivative).index(e_Min_near) 
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p_Max=list(energy_derivative).index(e_Max_near) 

 

def L2_1_red(params): 

    energia_red=energia[p_Min:p_Max] 

    spettri_1=spectra(params) 

    spettri_1_red=spettri_1[p_Min:p_Max,:] 

    return np.sqrt((1/(np.max(energia_red)- 

np.min(energia_red)))*(np.trapz((spettri_1_red[:,0]-

ref_Hydr[p_Min:p_Max])**2,energia_red))) 

 

def L2_2_red(params): 

    energia_red=energia[p_Min:p_Max] 

    spettri_2=spectra(params) 

    spettri_2_red=spettri_2[p_Min:p_Max,:] 

    return np.sqrt((1/(np.max(energia_red)- 

np.min(energia_red)))*(np.trapz((spettri_2_red[:,0]-

ref_Cu_II[p_Min:p_Max])**2,energia_red))) 

def entropy(params):    

    spettri_entropy=spectra(params) 

    der_S=Fourth_D(spettri_entropy) 

    matrixP=np.zeros(np.shape(der_S)) 

    for j in range(np.shape(der_S)[1]): 

        for i in range(np.shape(der_S)[0]): 

                       matrixP[i,j]=-1*der_S[i,j]*(np.log(der_S[i,j])) 

    entropia=sum(sum(matrixP)) 

    return entropia 

 

def similarity(params): 

    matrix_sim=np.zeros((L,nPC)) 

    spettri_s=spectra(params) 

    average_s=np.sum(X,axis=1)/(np.shape(X)[1]) 

    for i in range(np.shape(matrix_sim)[1]): 

        matrix_sim[:,i]=(spettri_s[:,i]-average_s)**2 

    return sum(sum(matrix_sim))/sum(sum(X**2)) 
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# AFS calculation. Warning! Long calculation! 

# Definition of the matrix of the estimated parameters 

parametri_stimati=[]    

for j in range(1000):    

    params_init=np.zeros(6) 

    for i in range(6): 

        params_init[i]=random.uniform(-5, 5)    

    res = scipy.optimize.minimize(P, params_init,method='nelder- 

mead',options={'xtol': 1e-6}) 

    parametri_stimati.append(res.x) 

for i in range(1000): 

    plt.plot(spectra(parametri_stimati[i])) 

np.shape(spectra(parametri_stimati[1]))[0] 

parametri_stimati_s=copy.copy(parametri_stimati) 

parametri_da_tenere_s=[] 

for i in range(1000): 

    spettri=spectra(parametri_stimati_s[i]) 

    s1=0 

    for j in range(nPC): 

        for l in range(L): 

            if spettri[l,j]>=0 and spettri[l,j]<=2: 

                s1=s1+1 

    if s1==nPC*L: 

        parametri_da_tenere_s.append(parametri_stimati_s[i])         

for i in range(np.shape(parametri_da_tenere_s)[0]): 

    plt.plot(spectra(parametri_da_tenere_s[i])) 

parametri_stimati_c=copy.copy(parametri_da_tenere_s) 

parametri_da_tenere_c=[] 

for i in range(np.shape(parametri_da_tenere_s)[0]): 

    concentrazioni=concentrations(parametri_stimati_c[i]) 

    concentrazioni=np.transpose(concentrazioni) 

    c1=0 

    for j in range(nPC): 

        for l in range(M): 

            if concentrazioni[l,j]>=0 and concentrazioni[l,j]<=1: 
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                c1=c1+1 

    if c1==nPC*M: 

        parametri_da_tenere_c.append(parametri_da_tenere_s[i]) 

np.shape(parametri_da_tenere_c) 

np.shape(parametri_da_tenere_s) 

for i in range(np.shape(parametri_da_tenere_c)[0]): 

    _=plt.plot(energia,spectra(parametri_da_tenere_c[i])) 

for i in range(np.shape(parametri_da_tenere_c)[0]): 

    plt.plot(concentrations(parametri_da_tenere_c[i]).T) 

 

# Finish long calculation of the AFS 

np.savetxt('good_parameters.dat',parametri_da_tenere_c) 

parametri_da_tenere_c=np.loadtxt('good_parameters.dat') 

spettri_t=np.zeros((np.shape(X)[0],3)) 

for i in range(len(parametri_da_tenere_c)): 

    spettri_s=spectra(parametri_da_tenere_c[i]) 

    spettri_t=np.hstack((spettri_t,spettri_s)) 

p0=[3.4,-1.05,-0.7,0.45,1.5,-0.3] 

v=1 

bounds=[[p0[0]-v,p0[0]+v],[p0[1]-v,p0[1]+v],[p0[2]-v,p0[2]+v],[p0[3]-

v,p0[3]+v],[p0[4]-v,p0[4]+v],[p0[5]-v,p0[5]+v]] 

bounds[5] 

_=plt.plot(spectra(p0)) 

matrix_t_list=np.zeros(np.shape(parametri_da_tenere_c)) 

for j in range(6): 

    for i in range(np.shape(parametri_da_tenere_c)[0]): 

        matrix_t_list[i,j]=parametri_da_tenere_c[i][j] 

matrix_P0=np.zeros((5,2*nPC)) 

for i in range(2*nPC): 

    matrix_P0[:,i]=np.linspace(p0[i]-v,p0[i]+v,5) 

 

# Definition of the elements of the transformation matrix 

t21=matrix_P0[:,0] 

t22=matrix_P0[:,1] 

t23=matrix_P0[:,2] 
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t31=matrix_P0[:,3] 

t32=matrix_P0[:,4] 

t33=matrix_P0[:,5] 

p_values=np.vstack(np.meshgrid(t21,t22,t23,t31,t32,t33)).reshape(6,-1).T 

plt.scatter(p0[0],p0[5],color='red') 

plt.plot(matrix_t_list[:,0],matrix_t_list[:,5],'*') 

plt.show() 

np.shape(p_values) 

plt.scatter(p_values[:,0],p_values[:,1]) 

 

# Objective Function 

nT=np.shape(parametri_da_tenere_c)[0] 

def obiettivo(params):  

    return L2_1(params)+L2_2(params)+L2_3(params)+gamma*P(params) 

gamma=1 

cons = [] 

for factor in range(len(bounds)): 

    lower, upper = bounds[factor] 

    l = {'type': 'ineq', 

         'fun': lambda x, lb=lower, i=factor: x[i] - lb} 

    u = {'type': 'ineq', 

         'fun': lambda x, ub=upper, i=factor: ub - x[i]} 

    cons.append(l) 

    cons.append(u) 

cons 

parameters_to_save=[] 

params=p0 

nT=np.shape(p_values)[0] 

for i in range(1): 

    gamma=1 

    print('ciclo',i) 

    params=p_values[random.randint(0,nT-1),:] 

    iteration=0 

    while iteration<15: 

        print(params) 



155 
 

# Minimization of the objective function using SLSQP algorithm  

opt=scipy.optimize.minimize(obiettivo,params,method='SLSQP',constraints=cons) 

        params_min=opt.x 

        params=params_min 

        gamma=gamma*10 

        iteration=iteration+1 

    parameters_to_save.append(params) 

plt.plot(energia,spectra(parameters_to_save[0])) 

plt.plot(energia, ref_H_p) 

plt.plot(energia, ref_Cu_I_p) 

plt.plot(energia, ref_Cu_II_p) 

plt.plot(concentrations(parameters_to_save[0]).T) 

parameters_to_save[0].reshape((2,3)) 

t1=np.linalg.lstsq(us_n,spectra(parameters_to_save[0])[:,0],rcond=None)[0] 

t2=np.linalg.lstsq(us_n,spectra(parameters_to_save[0])[:,1],rcond=None)[0] 

t3=np.linalg.lstsq(us_n,spectra(parameters_to_save[0])[:,2],rcond=None)[0] 

Z4=np.transpose(np.array([a,0,0,0])) 

Msave=np.vstack([t1,t2,t3,Z4]).T 

 

# Plot Objective 

np.savetxt("spectra_Reerences.dat",spectra(parameters_to_save[12])) 

np.savetxt("parameters_References.dat",parameters_to_save[12]) 

np.savetxt("concentrations_References.dat",concentrations(parameters_to_save[12]).

T) 

parametri_stimati_Ob=[] 

for j in range(1000): 

    params_init_Ob=np.zeros(6) 

    for i in range(6): 

        params_init_Ob[i]=random.uniform(bounds[i][0],bounds[i][1]) 

    res_Ob = scipy.optimize.minimize(P, params_init_Ob,  

method='SLSQP',constraints=cons,tol=1e-6) 

    parametri_stimati_Ob.append(res_Ob.x) 

 

# Definition of the procedure of the refinement 

def Refinement(parametri_stimati):    
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    parametri_stimati_s=copy.copy(parametri_stimati) 

    parametri_da_tenere_s=[] 

    for i in range(1000): 

        spettri=spectra(parametri_stimati_s[i]) 

        s1=0 

        for j in range(nPC): 

            for l in range(L): 

                if spettri[l,j]>=0 and spettri[l,j]<=2: 

                    s1=s1+1 

        if s1==nPC*L: 

            parametri_da_tenere_s.append(parametri_stimati_s[i]) 

    parametri_stimati_c=parametri_da_tenere_s 

    parametri_da_tenere_c=[] 

    for i in range(np.shape(parametri_da_tenere_s)[0]): 

        concentrazioni=concentrations(parametri_stimati_c[i]) 

        concentrazioni=np.transpose(concentrazioni) 

        c1=0 

        for j in range(nPC): 

            for l in range(M): 

                if concentrazioni[l,j]>=0 and concentrazioni[l,j]<=1: 

                    c1=c1+1 

        if c1==nPC*M: 

            parametri_da_tenere_c.append(parametri_da_tenere_s[i])  

    return parametri_da_tenere_c 

Ps=Refinement(parametri_stimati_Ob) 

Pz=np.zeros((len(Ps),6)) 

for i in range(len(Ps)): 

    Pz[i,:]=Ps[i] 

plt.scatter(Pz[:,0],Pz[:,1]) 

Oz=np.zeros(np.shape(Pz)[0]) 

for i in range(len(Oz)): 

    Oz[i]=obiettivo(Pz[i,:]) 

x=Pz[:,0] 

y=Pz[:,1] 

xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100) 
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xi, yi = np.meshgrid(xi, yi) 

rbf = scipy.interpolate.Rbf(x, y, Oz,function='linear') 

zi = rbf(xi, yi) 

plt.contourf(zi, vmin=Oz.min(), vmax=Oz.max(), origin='lower',extent=[x.min(), 

x.max(), y.min(), y.max()]) 

plt.colorbar() 

plt.show() 

 

# Finish Plot Objective 
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APPENDIX B 

 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.optimize import minimize 

import random 

import copy 

import collections 

from scipy.optimize import basinhopping 

import scipy.interpolate 

from mpl_toolkits import mplot3d 

 

# Import of the experimental dataset 

dataset_S=np.loadtxt('norm_5spettri_XAS_PhSMe_0.35M_49spettri_da7100eV.dat') 

                 ('norm_deg_99_spettri_PhCH2OH_2.19M_nuovoformato_da7100eV.dat') 

data=dataset_S[:,1:] 

dataset_C=np.loadtxt('PhSMe_Pure_Concentrations.dat') 

                             ('PhCH2OH_Concentrations_XAS.dat') 

energia=dataset_S[:,0] 

scan_index=dataset_C[:,0] 

concentrazioni=dataset_C[:,1:] 

 

# Procedure of the normalization 

def normalization(energy,data):    

    scaled=np.zeros(np.shape(data)[1]) 

    for i in range(np.shape(data)[1]): 

        scaled[i]=np.sqrt((1./((1./(np.max(energy)-

np.min(energy)))*(np.trapz((data[:,i])**2,energy))))) 

    for i in range(np.shape(data)[1]): 

        data[:,i]=data[:,i]*scaled[i] 

    return data 

 

# Procedure of the interpolation 

def interpolation(energy,data,step):    
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    e_valor=np.arange(min(energy),max(energy),step) 

    dat_valor=[] 

    col=np.shape(data)[1] 

    for i in range(col): 

        d=np.interp(e_valor,energy,data[:,i]) 

        dat_valor.append(d) 

    data=np.transpose(dat_valor) 

    energy=e_valor 

    return energy, data 

def spectra(params): 

    params=np.reshape(params,(1,2)) 

    t=np.vstack((Z,params)) 

    return np.dot(us,t) 

def concentrations(params): 

    params=np.reshape(params,(1,2)) 

    t=np.vstack((Z,params)) 

    return np.dot(np.linalg.pinv(t),vt) 

 

# Definition of the penalty function 

def P(params):    

    term_S=np.zeros((L,N)) 

    term_C=np.zeros((M,N)) 

    sp=spectra(params) 

    cp=concentrations(params).T 

    for j in range(N): 

        for i in range(L): 

            term_S[i,j]=H_s(sp[i,j])*(sp[i,j])**2    

    for i in range(N): 

        for j in range(M): 

            term_C[j,i]=H_c(cp[j,i])*(cp[j,i])**2   

    penalty=(((sum(sum(term_S)))+(sum(sum(term_C))))) 

    return penalty 

 

# Definition of the spectral step function 

def H_s(x): 
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    if x<-0.5 or x>2.5: 

        return 1 

    elif x>=-0.5 and x<=2.5: 

        return 0 

     

# Definition of the concentration step function 

def H_c(x): 

    if x<-0.5 or x>1.5: 

        return 1 

    elif x>=-0.5 and x<=1.5: 

        return 0 

 

def Obiettivo(params): 

    conc=np.transpose(concentrations(params)) 

    return sum(sum((conc-concentrazioni)**2))/sum(sum(concentrazioni)**2) 

 

# Definition of the procedure of the refinement 

def Refinement(parametri_stimati): 

    parametri_stimati_s=copy.copy(parametri_stimati) 

    parametri_da_tenere_s=[] 

    for i in range(100): 

        spettri=spectra(parametri_stimati_s[i]) 

        s1=0 

        for j in range(nPC): 

            for l in range(L): 

                if spettri[l,j]>=0 and spettri[l,j]<=2: 

                    s1=s1+1 

        if s1==nPC*L: 

            parametri_da_tenere_s.append(parametri_stimati_s[i]) 

    parametri_stimati_c=parametri_da_tenere_s 

    parametri_da_tenere_c=[] 

    for i in range(np.shape(parametri_da_tenere_s)[0]): 

        concentrazioni=concentrations(parametri_stimati_c[i]) 

        concentrazioni=np.transpose(concentrazioni) 

        c1=0 
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        for j in range(nPC): 

            for l in range(M): 

                if concentrazioni[l,j]>=0 and concentrazioni[l,j]<=1: 

                    c1=c1+1 

        if c1==nPC*M: 

            parametri_da_tenere_c.append(parametri_da_tenere_s[i])  

    return parametri_da_tenere_c 

 

# Normalization of the concentrations 

lista_somma=[] 

for i in range(np.shape(concentrazioni)[0]): 

    f_r=concentrazioni[i,0] + concentrazioni[i,1] 

    lista_somma.append(f_r) 

concentrazioni[:,0]=concentrazioni[:,0]/lista_somma 

concentrazioni[:,1]=concentrazioni[:,1]/lista_somma 

_=plt.plot(scan_index,concentrazioni,'-*') 

 

# Normalization of the spectra 

energia,data=interpolation(energia,data,step=0.005) 

spettri=normalization(energia,data) 

L,M=np.shape(spettri) 

nPC=2 

N=nPC 

_=plt.plot(energia,spettri) 

 

# Singular value decomposition 

U,S,VT=np.linalg.svd(spettri, full_matrices=False)  

_=plt.plot(np.log10(S),'-*') 

plt.xlim(-0.50,6) 

 

# Principal components number 

nPC=2    

u=U[:,:nPC] 

vt = VT[:nPC,:] # cij 

s=np.diag(S[:nPC]) 
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us=np.dot(u,s)  

_=plt.plot(us) 

 

# Parameters of the spectral normalization  

a=-1*np.sqrt((1./((1./(np.max(energia)-

np.min(energia)))*(np.trapz((us[:,0])**2,energia))))) 

Z = np.full(2, -a) 

print(Z) 

parametri=[1,2] 

 

# AFS calculation. Warning! Long calculation! 

parametri_stimati=[] 

for j in range(1000): 

    print(j) 

    params_init=np.zeros(2) 

    for i in range(2): 

        params_init[i]=random.uniform(-5, 5)    

    res = minimize(P, params_init, method='nelder-mead',options={'xtol': 1e-6}) 

    parametri_stimati.append(res.x) 

for i in range(len(parametri_stimati)): 

    plt.plot(energia,spectra(parametri_stimati[i])) 

Pz=np.zeros((len(parametri_stimati),2)) 

for i in range(len(parametri_stimati)): 

    Pz[i,:]=parametri_stimati[i] 

plt.scatter(Pz[:,0],Pz[:,1]) 

plt.xlabel("Energy (eV)") 

plt.ylabel("Norm. XANES") 

 

plt.axhline(y=-10) 

plt.axhline(y=15) 

plt.axvline(x=-8) 

plt.axvline(x=12) 

plt.show() 

 

# Constraints for Minimization 
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p0=[1,2] 

v01x=-8  

v02x=12  

v11y=-10  

v12y=15  

bounds=[[v01x,v02x],[v11y,v12y]] 

cons = [] 

for factor in range(len(bounds)): 

    lower, upper = bounds[factor] 

    l = {'type': 'ineq', 

         'fun': lambda x, lb=lower, i=factor: x[i] - lb} 

    u = {'type': 'ineq', 

         'fun': lambda x, ub=upper, i=factor: ub - x[i]} 

    cons.append(l) 

    cons.append(u) 

opt=scipy.optimize.minimize(Obiettivo,p0,constraints=cons,method='SLSQP') 

plt.plot(concentrazioni,'-*') 

plt.plot((concentrations(opt.x).T),'-*') 

_=plt.plot(energia,(spectra(opt.x))) 

 

# Nelder-Mead Optimization 

p0=[1,2] 

opt=scipy.optimize.minimize(Obiettivo,p0,method='nelder-mead',options={'xtol': 1e-

6}) 

opt.x 

plt.plot(concentrazioni,'-*') 

plt.plot((concentrations(opt.x).T),'-*') 

_=plt.plot(energia,(spectra(opt.x))) ## obtained spectra 

 

# 2D Map 

matrix_P0=np.zeros((50,2*nPC)) 

v_range=2 

for i in range(2*nPC): 

    matrix_P0[:,i]=np.linspace(-v_range,v_range,50) 

t21=matrix_P0[:,0] 
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t22=matrix_P0[:,1] 

p_values=np.vstack(np.meshgrid(t21,t22)).reshape(2,-1).T 

Oz=np.zeros(np.shape(p_values)[0]) 

for i in range(len(Oz)): 

    Oz[i]=Obiettivo(p_values[i,:]) 

x=p_values[:,0] 

y=p_values[:,1] 

xi, yi = np.linspace(x.min(), x.max(), 100), np.linspace(y.min(), y.max(), 100) 

xi, yi = np.meshgrid(xi, yi) 

rbf = scipy.interpolate.Rbf(x, y, Oz,function='linear') 

zi = rbf(xi, yi) 

plt.contourf(zi, vmin=Oz.min(), vmax=Oz.max(), origin='lower',extent=[x.min(), 

x.max(), y.min(), y.max()]) 

plt.colorbar() 

plt.show() 

np.savetxt('x.dat',x) 

np.savetxt('y.dat',y) 

np.savetxt('z.dat',Oz) 

 


