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a b s t r a c t

Grid-connected Microgrids (MGs) have a key role for bottom-up modernization of the electric distri-
bution network forward next generation Smart Grids, allowing the application of Demand Response
(DR) services, as well as the active participation of prosumers into the energy market. To this aim,
MGs must be equipped with suitable Energy Management Systems (EMSs) in charge to efficiently
manage in real time internal energy flows and the connection with the grid. Several decision making
EMSs are proposed in literature mainly based on soft computing techniques and stochastic models.
The adoption of Fuzzy Inference Systems (FISs) has proved to be very successful due to their ease of
implementation, low computational run time cost, and the high level of interpretability with respect
to more conventional models. In this work we investigate different strategies for the synthesis of a FIS
(i.e. rule based) EMS by means of a hierarchical Genetic Algorithm (GA) with the aim to maximize the
profit generated by the energy exchange with the grid, assuming a Time Of Use (TOU) energy price
policy, and at the same time to reduce the EMS rule base system complexity. Results show that the
performances are just 10% below to the ideal (optimal) reference solution, even when the rule base
system is reduced to less than 30 rules.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades, several governments are implementing dif-
ferent energy policies to encompass a sustainable energy future.
These policies promote the increasing use of Renewable Energies
Sources (RESs), Hybrid Electric Vehicles (HEVs), Plug-in Electric
Vehicles (PEVs) and the efficient use of energy [1–3]. However,
with the spread of distributed generation from RESs, which is
contributing to move the energy generation into the distribution
level, the commercialization of PEVs and charging stations, the
electric grid will be subject increasing power oscillations and bi-
directionalities. These phenomena have to be properly managed
in order to keep low the risk of outages and faults, assuring the
quality and continuity of the service and avoiding to stress large
scale power plants. For example, in [4] a report on the recent
trends in PV generation in Germany well highlights the problems
caused by the excessive overproduction from PV which forces
the temporary closure of coal-fired power plants. In [5] and [6]
studies on the impact of Fast and Ultra PEVs charge stations in
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the distribution grid are described, whereas in [7] the authors
assert the necessity to strengthen the collaboration between the
Distribution System Operator (DSO) and the Transmission System
Operator (TSO).

Furthermore to tackle these problems, since the beginning of
the 2000s, the United States government has well emphasized the
importance of applying Demand Response (DR) programs in order
to improve the flexibility of the distribution grid, namely, through
the release of special energy price tariffs and incentive pro-
grams [2] able to influence and change customers behaviours [8].
DR programs should also support customers to play a more active
role in energy market by controlling, scheduling and managing
their own loads, especially in presence of local generators and
Energy Storage Systems (ESSs) [9]. However, their implementa-
tion requires the installation of local Information & Communi-
cation Technology (ICT) infrastructures and power systems able
to efficiently monitor, control and manage the customer energy
systems and devices. In literature, such kind of paradigm is often
referred to as Microgrid (MG). The U.S. Department of Energy
defines MGs as a group of interconnected loads and distributed
energy resources within clearly defined electrical boundaries,
which act as a single controllable entity with respect to the grid.
A MG can connect and disconnect from the grid to enable it to op-
erate in both grid-connected and islanded modes [10]. Therefore,
during disturbances, the MG generation systems and the local
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Adopted Notation

Γbig Genetic Algorithm big mutation opera-
tor.

γconv Genetic Algorithm best fitness mini-
mum improvement threshold used for
the stop condition.

Γcross Genetic Algorithm cross-over operator.
γdamp Mutation rate damping factor.
Γdel Genetic Algorithm delete operator.
γdist Genetic Algorithm mutation upper and

lower limit.
γfit Fitness value associated to a generic

Genetic Algorithm individual.
γfreq Mutation rate.
Γidentity Genetic Algorithm identity operator for

the best individual preservation.
Γrand Genetic Algorithm operator used to

randomly create new individuals.
γscale Genetic Algorithm scale factor used by

the big mutation operator.
Γselect Genetic Algorithm selection operator.
Γsmall Genetic Algorithm small mutation oper-

ator.
Γstop Genetic Algorithm stop condition oper-

ator.
γth Genetic Algorithm upper fitness thresh-

old used by the delete operator.
Ω FIS parameters set.
ΘCA FIS overall rule consequents association

subset.
ΘMF FIS Membership Functions subset.
ΘMH FIS rule hierarchy subset.
ΘRW FIS Rule Weights subset.
bi Element of the subset ΘMH for the

activation of the ith rule.
Nconv Number of generations of stall for

the Genetic Algorithm stop criteria
activation.

Ndel Number of deleted individuals.
Nelite Number of elite individuals for each

Genetic Algorithm generation.
Nind Genetic Algorithm population size.
Nin Number of FIS input.
NMF Maximum number of MFs composing

the FIS.
Nmf Maximum cardinality of each Fuzzy

Term Set.
NMH ΘMH cardinality.
Nrules Maximum number of Fuzzy rules.
Nstop Genetic Algorithm maximum number

of generations.

loads can separate from the distribution maintaining high level
of service without harming the transmission grid integrity [11].

A MG can be designed to cover a single dwelling (e.g. smart
home MG) up to an entire district. Moreover, also HEVs can be
considered particular MGs since they are equipped with auxiliary
or multi-generation power units capable to keep high dynamic
response performances in case of breaking or acceleration. Be-
cause of their smaller dimensions they are usually referred to

NT Number of participants to each Genetic
Algorithm tournament selection.

P Genetic Algorithm Objective Function.
pdel Uniformly distributed probability of be-

ing deleted for those individuals fea-
tured by a fitness above a given thresh-
old γth.

qi Element of the subset ΘRC for the ith
rule consequent definition.

wi Rule weight associated to the ith rule.

as ‘‘nano-grids’’ which mostly operate in islanded mode [12], i.e.
disconnected from the charging station [13–15].

About the MG electrical architecture, it is usually composed
by a main bus known as backbone which allows the connection
of the distributed energy systems power converters (i.e. loads,
generators and ESSs) and the main grid. It can be designed both
in DC and AC, as well as in ring or radial mode [16]. In [17,18]
authors discuss the advantages of installing DC MGs with respect
to AC MGs due to the simpler control and the reduction of
the conversion stages, especially in PV systems, batteries and
DC loads including the charging of PEVs. Furthermore, the same
authors affirm that such advantages will bring to the gradual
transformation of the distribution grid in DC. However, more
recent studies state that hybrid AC–DC MGs seem to be more
promising due to protection, reliability and quality of power
reasons, as well as the possibility of exploiting both the benefits
given by AC and DC MGs. Indeed, considering residential MGs,
hybrid AC–DC architectures would avoid modifications in the
electrical installation that supplies energy to the apartments [19,
20].

Concerning MG energy flows management, as stated in [21]
where is claimed the MG key-role for the smart grids realiza-
tion, MG Energy Management Systems (EMSs) belong to the
second layer of smart grid control scheme, where the first layer
is referred to the control system of each single power device
(converters) and the third has to coordinate a cluster of inter-
connected MGs by interacting with each single MG EMS of the
same smart grid. The EMS is thus in charge to implement a real
time decision making strategy in order to efficiently control and
manage the MG energy flows as well as the connection with
the grid. Said in other words, the EMS coordinates the local
MG subsystems in order to satisfy the prosumer and DSO needs
according to a proper formulated Objective Function (OF). In addi-
tion, its operational time frame is dependent on the smart meter
sampling time which ranges between few minutes to maximum
one hour [8].

Concerning the OF formulation, it can be composed of one
or more penalty(reward) functions depending on the simulation
scenario taken into consideration. These usually are formulated
to evaluate the stress on the distribution grid caused by energy
flows fluctuations, the MG auto-consumption, peak shaving op-
erations, the profit generated by the energy trading with the grid
and the minimization of the operational costs [8,19,22].

About the EMS modelling instead, several approaches have
been investigated in the literature ranging from simple rule-
based methods which rely on knowledge of expert operators to
the adoption of machine learning and data driven techniques.
In [23] for instance, three main categories of EMS modelling
have been distinguished: heuristic, stochastic and soft computing
based models, although many solutions proposed in the liter-
ature foresee a hybridization of these approaches. In addition,
reinforcement learning approaches have been explored [24–26].
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The rational behind the investigation of such complex solu-
tions based on data driven techniques in EMS modelling is due to
the fact that only in rare cases the EMS can determine an optimal
schedule of the local MG energy flows in real time. To this aim,
raw implementations of (pseudo)deterministic algorithms based
on Linear Programming (LP), Mixed Integer Linear Programming
(MILP), greedy algorithms, or Dynamic Programming (DP) are
usually reported in literature. In [27] for example, the authors
consider a fixed energy price tariff on both the energy bought and
sold and the OF is formulated in order to maximize the incomes
generated by the energy trading with the grid. Therefore, the EMS
problem has been easily solved through a simple LP formulation.

However, it is important to note that in most cases discussed
in literature, the EMS requires the knowledge of the future en-
ergy systems time series (e.g. overall energy demand, generation
from RESs, time arrival and time departure of PEVs) in order to
optimally schedule the MG energy flows, which are characterized
by intermittent and stochastic behaviours. Also in automotive
applications, EV EMSs show same problem to know the vehicle’s
route and traffic information. Therefore, as also suggested in [28],
the direct application of optimization algorithms in EMS can be
tricky and is more suitable for benchmark tests [19,29], EMS
reference solution evaluation [14,30] and the dimensioning of
energy systems [31].

A very conventional solution well known in literature, which
in [32] is even called ‘‘classical’’, consists in the implementation of
Rolling Time Horizon (RTH) strategies. It is based on the coupling
of a proper formulated optimization algorithm (LP, MILP...) with
energy systems prediction algorithms. In particular, RTH based
EMSs consist in running at each time sample the prediction algo-
rithms to obtain estimations used by the optimization algorithm
in order to compute the optimal output (command) time series
over the given time horizon. Once the optimal solution is calcu-
lated, only the first element is communicated to the MG power
converters in order to effectively balance the MG power flows.
Usually, the characteristic time horizon of both optimization and
prediction algorithms is featured by one or two days [33,34].

Although RTH strategies have been proven to be very effective
and robust in many case studies, they suffer from the dependence
on the prediction accuracy and the weak level of interpretability
of the decisions taken by the EMS, which makes them black box
models. It is worth noting that in case of complex multi-energy
systems MGs featured by several controllable energy systems
such as shiftable loads, combined heating, power generation units
and ESSs, the time interval required by the EMS to define the
energy flows can get close to the smart meter sampling time
as remarked in [22], where is criticized the use of DP optimiza-
tion, and shown in [35] where a RTH Markov decision process
based EMS is investigated. Furthermore, when the optimization
problem is featured by a multi-objective function, the linear com-
bination of the cost functions requires a proper setting of weights
(as meta-parameters of the OF) and can be ineffective. In [36]
for example, a multi-objective problem is considered in order to
minimize both the energy exchanged with the grid and its energy
oscillations, while ensuring the fulfillment of given constraints
for a correct use of the ESS. In this work, the authors avoided to
combine the cost functions since their different nature.

Regarding the choice of a prediction algorithm applied to
energy systems time series dedicated to RTH strategy imple-
mentation, beside the conventional algorithms as ARIMA, ARMA
and ARMAX, most of machine learning models proposed in lit-
erature are often based on Neural Networks (NNs) and Fuzzy
Systems as remarked in [32], where a critical review on MG
EMS methods, solutions and prospects is presented. Moreover
in [37,38] authors well highlighted that most of recent research
activities are specifically inspired on NNs models. In particular,

Long Short Term Memory (LSTM) NNs [39–42], Echo State Net-
works (ESNs) [43,44], Fuzzy Inference Systems (FISs) and Adap-
tive Neuro Fuzzy Inference Systems (ANFIS) [45,46] revealed to
be successful solutions.

Besides RTH strategy applications, other approaches are inves-
tigated in the literature in order to avoid the high dependency to
prediction systems. In [47] and [22] chance constrained schedul-
ing approach have been proposed in order to better deal with
the uncertainties of the MG energy systems. Also the adoption
of meta-heuristic approaches revealed very effective [32,48,49].
In [14] instead a NN based decision making system has been
compared to a simpler rule based EMS. Nevertheless, it is worth
noting that even in these cases (i.e. with the adoption of NNs,
heuristics and stochastic models) the EMS models still hold a low
level of interpretability.

On the contrary, rules-based systems such as FISs can be a
viable alternative for their higher level of interpretability and ease
of implementation.

Indeed, FISs can be classified as grey-box models, since the
adoption of linguistic variables, Fuzzy sets, linguistic operators
and ‘‘IF-THEN’’ rules allow to extract and interpret explicit useful
knowledge about the decision process, as well to exploit some
possible a priori knowledge [50,51].

Moreover, with the capillary diffusion of MGs the EMS com-
putational burden can be another important aspect to consider
in EMS modelling. In [52] for instance, authors validated the
implementation of a heuristic based EMS co-located on a small
smart meter with limited memory and processing power. The
complex structure of RTH EMS which relies on the combination
in cascades of prediction and optimization algorithms can be
replaced by lighter and simpler decision-making systems such as
FISs and NNs especially when these show similar or even better
performances.

In literature and industrial application, FISs are mainly pro-
posed as decision support systems for control and energy systems
prediction as mentioned above. In [53,54] for example FISs are
used for the enlightenment and HVAC control in smart homes. In
that works the controllers are designed in order to support a more
complex EMS which has to shift and schedule the smart home ap-
pliances in order to reduce the peak to average ratio and preserve
the user comfort. In [55] a type-2 FIS trained by extreme learning
machine techniques, known as Extreme Learning-Adaptive Neuro
Fuzzy Inference System (EL-ANFIS) [56], is proposed for energy
demand forecasting. The solution proposed has been compared
with more conventional models, in particular a Feed Forward NN
of 10 hidden layers and an ANFIS.

Knowledge based FISs are implemented in [57–59] as MG
EMSs for minimizing the economic costs, in [59–61] for reducing
abrupt changes in energy flows with the grid and in HEVs for
the fuel consumption minimization [15], respectively. However,
FISs defined by expert operators knowledge may suffer from loss
of accuracy for ill-known or data-intensive models that is the
main incentive for using Fuzzy rules inferred from data. As stated
in [50], such loss of accuracy can be reduced by nature inspired
methods such as Evolutionary Algorithms (EAs) which would
preserve the FIS interpretability. For example, in [62] and [63] the
effectiveness in tuning the EMS FISs Membership Function (MFs)
and Rule Consequences through EAs was analysed. In [30,43,64],
a FIS EMSs has been modelled by means of a k-means based
clustering algorithm. The use of clustering algorithms allowed
to efficiently define a small number of multi-variate Gaussian
MFs. In [43] is investigated the effectiveness of considering a
raw estimation of the future prosumer energy balance trends
supporting the FIS decision making system.

Following previous works [62,65], in this paper it is proposed
a FIS based EMS able to manage in real time the energy flows
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Fig. 1. Term Set initial structure for Nmf = 5.

of a grid connected MG equipped with an ESS. In particular, it
is in charge to define how to split the prosumer energy bal-
ance between a local ESS and the connected grid in order to
maximize the profit generated by the energy trading with the
main grid, assuming a Time Of Use (TOU) energy price policy.
The EMS is synthesized through a hierarchical Genetic Algo-
rithm (GA)-FIS paradigm which is in charge to define the FIS
consequent part of each rule, tune the Membership Functions
(MFs) position and shape, set the rule weights and delete those
input MFs considered ineffective. Once designed the EMS and
set its optimization parameters, different strategies in tuning the
FIS parameters are implemented. Results obtained are compared
with the optimal reference solution found through a LP algorithm
considering known a priori the overall prosumer energy profiles
and a benchmark solution based on a RTH strategy.

The paper is organized as follows. In Section 2 it is introduced
and explained the hierarchical GA-FIS paradigm, while Section 3
deals with the proposed grid connected MG model and the re-
lated problem formulation. Section 3.2 describes in details the
EMS synthesis procedure. In Section 4 are illustrated the simu-
lation settings, followed by the results discussed in Section 5. In
this section are also described the optimal reference solution (see
Section 5.1) and the RTH benchmark solution (see Section 5.2).
Finally conclusions are reported in Section 5.

2. GA-FIS hierarchical optimization paradigm

The adoption of heuristics for the synthesis and optimization
of inference systems through data driven approaches is a topic
widely explored in literature. In particular, GA-FIS optimization
paradigm has proved to be a very effective tool because of its
flexibility and low implementation cost on embedded systems.
In GA-FIS paradigm, a specific set of FIS parameters are properly
tuned by a GA according to one or more given OFs. In case
of multiple OFs the problem is referred as multi-objective GA
optimization. In this work, a hierarchical GA optimization is used
for the synthesis of a FIS-based MG EMS.

In hierarchical GAs, two class of genes are generally distin-
guished, namely control genes and parametric genes imitating the
functional distinction between regulatory and structural genes,
respectively, in DNA. In our case, whereas parametric (structural)
genes correspond to the FIS parameters, control genes (regulatory
sequences) are in charge to activate or deactivate a given set of
parametric genes. In this work in particular, control genes are
dedicated to activate or deactivate FIS MFs which are defined by
subsets of parametric genes [66]. The hierarchical optimization
procedure is designed to both improve the FIS effectiveness and

decrease the number of FIS parameters, namely its complexity
and computational burden.

In the following of this section, the main FIS structure is
described and all the optimization parameters defining the FIS
are listed and commented in order to explain their function-
ality and to better understand how the FIS synthesis process
works. At the end of this section, it is introduced and detailed
the GA adopted, describing each operator performed during the
optimization procedure.

2.1. FIS structure

Mamdani Type Fuzzy rules have been adopted for FIS synthe-
sis. Each Term Set is initially composed by Nmf symmetric MFs
having triangular or trapezoidal (at the domain boundaries) shape
characterized by 50% overlap as illustrated in Fig. 1 for Nmf = 5.

Assuming that the FIS has Nin inputs and a single output, every
rule is characterized by Nin antecedents. Each rule antecedent
set must consider one (and only one) MF for each Term Set.
Therefore, the maximum number of rules Nrules is given by all the
possible antecedents combination, namely Nrules = N (Nin)

mf .
The structure of the ith Fuzzy rule can be written as

If (x1 is Ai1) and (x2 is Ai2) and...and (xNin is AiNin ) then
y is Bi, i = 1, 2, . . . ,Nrules

(1)

where, xj, y, Aij and Bi are the jth input, the output, the MF
associated with the jth antecedent and the MF associated with
the consequent of the ith rule, respectively.

In case of MF deletion or deactivation, the rules including that
MF is deleted too, simplifying the rule base. The activation of
each rule is regulated by a specific rule weight parameter wi ∈

(0, 1] (for i = 1, . . . ,Nrules). It is employed for the Fuzzy out-
put evaluation by considering the Center Of Area defuzzification
method.

In case of a MF deactivation, the MF deleted could leave
uncovered intervals in the corresponding input domain. In fact,
triangular and trapezoidal MFs, unlike Gaussian or Bell MFs, are
characterized by finite supports. For this reason, it has been
imposed that, whenever a MF is deactivated, the nearest base
points of the adjacent (still active) MFs are crossed and placed
under the vertex of the corresponding new adjacent Fuzzy Set,
in order to ensure the covering of the overall Fuzzy domain and
a given fixed overlap (50%) of the adjacent MFs. In each Fuzzy
domain the number of MFs in the related Term Set must be equal
or greater than two, a constraint that has been introduced in the
synthesis procedure.

In the following it is described a procedure to optimize the
whole set of FIS parameters.
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Fig. 2. Parameters and related ranging intervals defining the limits of the
triangular MF in black. In grey an example of its possible mutation.

2.2. FIS parameters

The set of all the FIS parameters is indicated by Ω . It is
composed by four subsets named ΘMF , ΘRW , ΘCA and ΘMH , rep-
resenting the MFs shape, the rule weights, the rules consequents
association and the MF activation, respectively.

The four subsets of parameters are described in details in the
following paragraphs.

• Subset ΘMF
The subset of the MFs parameters ΘMF contains the infor-
mation about the FIS MFs shape and position. According
with [67], each triangular MF is described by three param-
eters each one ranging in a specific interval of its support
domain. More precisely, the ith triangular FIS MF is de-
scribed by means of li, ci and ri, representing the abscissas
that define the base and height of the triangle (see Fig. 2).
They range between their related upper and lower bound
named min and max, respectively, as illustrated in Fig. 2. The
MF upper and lower bound are expressed in terms of li, ci
and ri as stated in (2)

lmin
i = li −

ci−li
2

cmin
i = lmax

i = li +
ci−li
2

rmin
i = cmax

i = ri −
ri−ci
2

rmax
i = ri +

ri−ci
2

(2)

This formulation is extended to all the FIS MF including the
trapezoidal ones. Being all the MF domain supports defined
in [0, 1], those MFs of trapezoidal shape at the edges of the
support domain can be defined by two points (see Fig. 1).
Since each Term Set is composed by 3 triangular and 2
trapezoidal MFs, therefore 13 points, the ΘMF cardinality is
equal to 13 times the overall number of FIS Term Sets (i.e.
(Nin + 1) · 13). More precisely, the subset of MF parameters
is given by ΘMF = {l1, c1, r1, l2, c2, r2, . . . , lNMF , cNMF , rNMF },
where NMF is the maximum number of MFs composing the
FIS (NMF = Nmf (Nin + 1)). The ΘMF parameters are initially
set to generate the FIS Term Sets as shown in Fig. 1.

• Subset ΘRW
The subset of the FIS rule weights parameters ΘRW includes
one real number for each rule, weighting the relevance of
each single rule with respect to the others. More precisely,
each weight wi ranges in (0, 1]. The exclusion of the zero
value averts the possibility that the FIS takes no decision.
This ensures the coverage of the overall input domain by the
inference surface, avoiding uncovered subsets of the overall
input space.

The cardinality of ΘRW is equal to the maximum number
of rules Nrules allowed for a FIS composed by Nin Term Sets,
each one initialized as in Fig. 1. The rule weight values
are initially set equal to 1 in order to equally attribute the
same importance to each rule. Summarizing, the subset of
the FIS rules weighting parameters is given by ΘRW =

{w1, w2...., wNrules}.
• Subset ΘRC

The subset of the rule consequents parameters ΘRC contains
one element for each rule, which specifies the MF selected
among the output Term Set. More precisely, the element qi
of the subset ΘRC is an integer number ranging from one to
Nmf (i.e. the cardinality of the output Term Set). The subset
of the FIS rules consequent association parameters is given
by ΘRC = {q1, q2, . . . , qNrules}. In this work, it is not assumed
the presence of an expert operator aware on the problem
under analysis, therefore the definition of the initial value of
ΘRC is hard to find. For this reason, the ΘRC initial state will
be randomly generated and therefore optimized, assigning
to this step the maximum priority since it constitutes the
FIS knowledge core.

• Subset ΘMH
ΘMH subset includes one binary element for each designed
Fuzzy Set in order to establish its activation state. More
precisely, the ith binary element bi of the subset ΘMH is used
to switch on or off the corresponding MF in the related input
Term Set. The ΘMH cardinality is given by the total number
of possible antecedentes Fuzzy Sets NMH = NinNmf . Sum-
marizing, the subset of the FIS rules hierarchy parameters
is given by ΘMH = {b1, b2, . . . , bNMH }. The ΘMH initial state
foresees the activation of all the Fuzzy Sets.

2.3. Genetic algorithm

The genetic code coincides with the FIS parameters set Ω =

{ΘRC , ΘMF , ΘRW , ΘHR}, accordingly in the following the two
meanings are attributed to the symbol Ω equivalently. Due to the
heterogeneous nature of the elements belonging to the ith subset
Θi, the generic gene can be a real, an integer or a binary number.
All the genes are constrained by their respective upper and lower
bound as described previously in Section 2.2. In this work it is
assumed that genes corresponding to the parameters belonging
to each of the four subsets can be optimized simultaneously or
sequentially. In the latter approach, the overall genetic variables
set is optimized in subsequent optimization steps. During each
step the genes belonging to one or more subsets Θi are optimized
simultaneously, whereas the remaining ones are kept unchanged,
until all genes of the genetic variables set are optimized. It is
assumed that each subset can be optimized only once during the
entire optimization process. Consequently, once the parameters
belonging to a given subset Θi are optimized, the corresponding
genes are frozen for the rest of the GA optimization process.
The FIS subsets not yet optimized are set to their initial state
defined in the previous section. It is important to remark that
ΘRC set must be optimized in the first step in case of a se-
quential optimization. The number of variables simultaneously
optimized during each step depends on the cardinality of the
specific subset (or subsets) Θi considered in the specific opti-
mization step. Once the initial population G0 is set, evaluated and
sorted according with a given OF P , each step of the optimization
process is subjected to the following sub-steps repeated for each
new generation until the GA stops. Once a new generation is
created, individuals belonging to the previous generation are no
more taken into consideration. In the following all the details
concerning each sub-step of the evolutive optimization process
are illustrated. For each sub-step the number of individuals of the
kth generation Gk is fixed equal to Nind.
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Fig. 3. GA sub-step optimization procedure schematic representation, performing the computation of generation Gk+1 starting from Gk .

i The best Nelite individuals are selected, the best one is handed
down to the next generation by the Γidentity operator, whereas
the remaining Nelite − 1 are subjected to a small mutation
defined by the Γsmall operator.

ii Starting from the current generation, an even number Ncross
of individuals are chosen by the selection operator Γselect and
coupled in Ncross/2 pairs. Each couple is then subjected to the
cross-over operator Γcross.

iii Among the unselected individuals of phase-ii the best Nind−

Nelite−Ncross are extracted. Before of being integrated into the
new offspring these individuals, which were supposed to be
the best among the worst or at least a considerable part of
them, are subjected to the big mutation operator Γbig .

iv The new offspring is then simulated in order to compute the
objective (fitness) function P , sorting the population at hand
according to P .

v Individuals having a fitness greater than a fixed threshold
γth are subject to the deletion operator Γdel which calculates
their deletion probability.

vi The Ndel deleted individuals are substituted by new individ-
uals randomly generated by the operator Γrand.

Each sub-step of the GA optimization process is arrested when
the convergence is reached. The stop criteria is denoted with the
Γstop operator symbol.

A schematic representation of the sub-steps performed by the
GA in order to evaluate a new generation is given in Fig. 3.

In the following a detailed description of the genetic operators
is given:

• Operator Γselect
The Γselect operator is a tournament selection operator. The
NT value defines the number of participants to each tourna-
ment.

• Operator Γcross
The Γcross operator is a scattered cross-over operator. It is
applied to a couple of individuals randomly chosen by those
that are previously selected. This procedure is repeated until
all the selected individuals have been crossed.

• Operator Γidentity
The Γidentity operator copies individuals in the next genera-
tion without altering their genes.

• Operators Γsmall and Γbig
When an individual is subject to Γsmall or Γbig operator their
genes have a distributed probability of being mutated equal
to γfreq. The mutation consists in altering the selected gene
by adding a random real number extracted from a uniform
distribution between the interval [γdist , −γdist ] in case of
Γsmall. For Γbig the interval is extended by an integer scale
factor γscale in order to enhance the exploration. The γdist
value is expressed in percentage with respect to the differ-
ence between the respective upper and lower bound of each
gene. Integer variables are subjected to the same mutation

operators. In addition, they are successively rounded in or-
der to satisfy their constraints. Mutation rates, both big and
small, decreases generation by generation thanks to a spe-
cific exponential factor γdamp applied to Γsmall. The mutation
distances (i.e. γdist ) are then exponentially reduced and at
the generation Nstop they vanish. This procedure aims at en-
couraging the exploitation at the expense of the exploration
capability with the increasing of the generations.

• Operator Γdel
The operator Γdel assigns the probability pdel to delete an
individual characterized by a fitness γfit , as follows:

pdel =

{
1 − e−

(|γth−γfit )|
γth if γfit > γth

0 otherwise.
(3)

Therefore, the Ndel deleted individuals are replaced by other
Ndel new individuals randomly generated. The new individ-
uals are spawn by choosing the value of each gene con-
sidering a uniform distributed probability between their
respective upper and lower bounds.

• Operator Γstop
It defines the stop conditions of each GA sub-step optimiza-
tion. If after Nconv consecutive generations it is not observed
any improvement on the best fitness greater than a certain
percentage γconv of the maximum number of allowed gen-
erations Nstop, the GA stops in advance the sub-optimization
process. The process stops anyway after Nstop generations.

3. Application of GA-FIS paradigm to EMS synthesis

This section is dedicated to the application of the GA-FIS
paradigm previously introduced to the synthesis of a FIS based
EMS in a MG connected to the electric power distribution in-
frastructure. First, the MG architecture is described. Then the
implementation of the EMS through the GA-FIS is detailed.

3.1. MG architecture

In this work it is taken into consideration a grid connected
MG equipped with an ESS, loads and local generation. These sub-
components are represented as aggregated systems referred to
as: the generation G, the load L, the ESS S and the main grid N . The
MG must control and manage the power flows of the aggregated
systems, while satisfying given constraints set by the main grid
and ensuring the services requested by the prosumer (i.e. the
owner of such energy systems, as he acts both as producer and
consumer).

The proposed model is based on several hypotheses that de-
fine a useful level of abstraction to correctly place the problem
under analysis. MG aggregated systems power flows are dis-
cretized in time slots of 15 minutes. In each time slot the power
level is considered constant. Low level operations such as volt-
age and reactive power control are not considered. The power
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transmission losses within the MG are considered negligible. The
online control module ensure that the power balance is achieved
during the real-time operation. The EMS works with a sample
time considerably greater than the characteristic time of the ESS
power control, therefore the ESS inner loop has been neglected.
The power converters which connects the MG sub-components
to each other, included that one which allow the MG-grid con-
nection, are neglected in terms of power losses and characteristic
time of control.

For the sake of ease, in each time slot the aggregated power
flows are reported in terms of energy flows (i.e. exchanged kWh).
The aggregated energy flows are indicated with the terms EG

k
(generation), EL

k (load), ES
k (ESS) and EN

k (grid) in each kth time
slot.

It is assumed that the prosumer energy production EG
k has the

priority to satisfy in each time slot the prosumer energy demand
EL
k before being redistributed between the ESS and the distribu-

tion grid. Therefore the prosumer energy balance is treated as
a single aggregated subsystem that is represented by its corre-
sponding energy flow value defined as

EGL
k = EG

k + EL
k, k = 1, 2, . . . (4)

Moreover, the prosumer energy balance EGL
k is assumed to be a

known quantity read in real time by a smart meter. In each time
slot, EGL

k must be redistributed between the main grid and the ESS
in order to fulfill the following energy balance relation

ES
k + EN

k + EGL
k = 0, k = 1, 2, . . . (5)

The MG energy flows are managed in real time by an EMS which
evaluates the fraction of the prosumer energy balance EGL

k that
must be exchanged with the ESS (i.e. ES

k ) in the kth time slot.
Therefore, the residual fraction of EGL

k (i.e. EN
k ) is exchanged with

the main grid (see (5)).
As shown in Fig. 4, the inputs chosen for the EMS are the next

prosumer energy balance EGL
k+1, the present ESS SOC SoCk and the

next energy prices in sale psellk+1 and purchasing pbuyk+1.

3.2. EMS synthesis

The EMS previously introduced is synthesized by means of the
GA-FIS paradigm discussed in Section 2.

The EMS is composed by two FISs, named FISsell and FISbuy
as illustrated in Fig. 5. Both FISs have as input the actual SOC
SoCk and next time step energy balance, moreover FISsell has the
current sale energy price psellk as an additional input, whereas
FISbuy is fed by the current purchasing energy prices pbuyk as
illustrated in Fig. 5.

The two FISs work alternatively, the first in case of over-
production (i.e. EGL

k > 0) the second in case of over-demand
(i.e. EGL

k < 0). More precisely, in case of over-demand (over-
production) the output of FISbuy (FISsell) represents the fraction of
EGL
k to be discharged from (charged in) the ESS, whereas in case

over-production (over-demand) the FISbuy (FISsell) output is as-
sumed to be zero. Consequently, in order to estimate the amount
of energy ES

k+1 to exchange with the ESS during the next time slot
the two FIS outputs are summed and then multiplied by EGL

k+1, as
shown in Fig. 5.

The GA optimization is used to tune the ΘMF , ΘRW , ΘRC and
ΘMH subsets of both FISbuy and FISsell according with a given OF
P . In this approach the parameters of both the FISs belong to the
same genetic variables set Ω .

4. Problem formulation and simulation settings

4.1. Problem formulation

In this work the following four different optimization strate-
gies of the proposed MG GA-FIS EMS have been considered:

• S1: An initial sub-optimization on ΘRC , ΘMF and ΘRW is
applied. It is followed by a final optimization on ΘMH .

• S2: An initial sub-optimization on ΘRC followed by a si-
multaneous sub-optimization on ΘMF and ΘRW is applied.
Finally the hierarchical optimization on ΘMH is performed.

• S3: The same optimization process described in S1 is ap-
plied, except the Fuzzy input EGL

k+1 (i.e. the energy balance)
that is not considered in neither the FISsell nor the FISbuy.
Therefore the two FISs have two Fuzzy inputs only.

• S4: The same optimization process described in S2 is ap-
plied, except the Fuzzy input EGL

k+1, as in the S3 case.

It is clear that S2 and S4 are organized as a sequence of sub-
optimization processes unlike S1 and S3. For S2 and S4 the initial
optimization on ΘRC is motivated by the primary role of the Rule
Base Inference System (i.e decision making strategy) with respect
to the tuning of the MFs (ΘMF ) and rule weights (ΘRW ). In fact,
ΘRC has more influence on the decisional surface shape, since
a mutation on a gene referred to ΘRC is more relevant than a
mutation on one gene associated to ΘMF or ΘRW . In all cases
the hierarchical optimization is executed downstream of the op-
timization process aiming to simplify the FISs structure and to
delete those Fuzzy Sets which are not considered effective, neces-
sary or not well tuned. The execution of S3 and S4 are considered
to study the sensitivity of the proposed GA-FIS paradigm to the
presence of the EGL

k+1 Fuzzy input in terms of the generated profit
and computational burden. The input simplification in S3 and S4
implies a reduction of variables in each subsets and consequently
the complexity of the problem.

The adopted OF to be maximized is the total profit generated
by the energy trading with the distribution grid in a given time
period constituted by Nslot time slots.

P =

Nslot∑
k=1

Pk (6)

where, considering a TOU price policy, the income Pk generated
by the energy trade with the main grid at the kth time slot is
given by

Pk =

{
EN
k · pbuyk if EN

k > 0
EN
k · psellk if EN

k ≤ 0.
(7)

4.2. Specific simulation scenario

The specific MG considered in this work is composed by a PV
generator, an aggregated load and an ESS. The PV generation and
the aggregated load are characterized by 19.95 kW and 8 kW
peak power, respectively. The ESS taken into consideration is Li-
ion SCiB battery pack produced by Toshiba (see Table 1). Data of
aggregated power generation and consumption have been pro-
vided by areti S.p.A, the electric distribution utility that manages
the power grid in the area of Rome. The aggregated loads and
energy production time series consist of measurements made in
the course of one year with a sampling rate of 15 minutes, on
a real plant. However, for our test we have taken into account
only the first 90 days, because of the high computational cost
required to compute the optimal ideal solution, i.e. when having
a perfect knowledge of all future samples (upper bound bench-
mark). In Fig. 6 are shown 7 days of the aggregated load and
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Fig. 4. MG architecture. Signal wires in red, power lines in black.

Fig. 5. EMS scheme.

Table 1
Toshiba SCiB module main characteristics.
Capacity Rated voltage Current Energy Efficiency

80 (Ah) 300 (V) 8 (C-Rate) 24 (kWh) 1 (adim)

PV generation together with the energy price series. The energy
prices are expressed in Monetary Unit per kWh [M.U ./kWh]. The
overall prosumer dataset has been split in two disjoint sets taking
the samples relative to the odd and the even days in order to
build the Training Set (TR) and the Test Set (TS), respectively. The
learning procedure is performed on the TR and the results are
drawn on the TS. In Table 2 is detailed the prosumer dataset and
its partitioning in TR and TS.

4.3. GA-FIS settings

In Table 3 are illustrated the GA parameter setting introduced
in Section 2.3. The number of individuals Ncross and Nelite sub-
ject to the cross-over and the elitism operators are expressed
in percentage of the size of the whole population having Nind
individuals. The GA parameters are set in order to reach a balance

of both the exploration and the exploitation capabilities. The
ΘRC initial population genes are randomly generated between
their respective upper and lower bounds. The ΘMF subset is set
according to Fig. 1 (i.e. the MFs are equally spaced and symmetric
with a 50% overlap). Each element of the subsets ΘRW and ΘMH
is equal to one in order to give to all the rules the same degree
of importance and to make active all the input Fuzzy Sets when
the simulation starts. Summarizing, the individuals of G0 differs
from each other only for the genes associated with ΘRC . The ΘMF
subset is composed by 3 · 5 · 4 · 2 = 120 real variables (i.e. genes)
where 3, 5, 4 and 2 are the cardinality of the MFs, the Term
Sets, the number of linguistic variables and the number of FISs
(i.e. sell and buy FISs), respectively. The ΘRW subset is composed
by 53

· 2 = 250 real valued genes ∈ (0, 1] interval. The ΘRC
subset has the same number of genes in ΘRW but in this case
they are discrete. ΘRC genes assume values ranging from 1 to 5
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Fig. 6. MG power production and power demand profiles of the first 7 days of data together with the energy prices.

Table 2
Prosumer dataset description.
Dataset length 8640 pattern Time sample 15 min
TS number of days 45 (even days) TR number of days 45 (odd days)
Max. daily PV gen. 92.82 kWh Max. PV power gen. 11.84 kW
Max. daily energy dem. −13.93 kWh Max. power dem. −7.87 kW

Table 3
GA settings.
Individuals Operators Variables

settings Cardinality Type

Nind 80 Γselect tournament (3 ind.) ΘRC Nrules · 2 Integer
Nelite 10% Γcross scattered ΘMF NMF · 2 Real
Ncross 60% Γsmall γfreq = 0.8 ΘRW Nrules · 2 Real

γdist = 10% ΘMH NMH · 2 Binary
γdump = 0.5

Γbig Nscale = 4 Nrules = NNin
mf

Γdel γth = Plow NMF = Nmf (Nin + 1)
Γstop Nstop = 1000 NMH = Nmf Nin

γconv = 0.2%
Nconv = 50

For S1 and S2 Nin = 3, whereas for S3 and S4 Nin = 2. Nmf = 5.

(i.e. the Term Set cardinality). ΘMH is a binary set of size equal
to the number of input Fuzzy Sets (i.e. 15 · 2 = 30 variables).
Therefore, the overall Ω set owns 650 elements that represent
the EMS parameters and the GA genes.

5. Results

5.1. Profit lower and upper bounds

In order to rate the results obtained by the four proposed GA-
FIS solutions, an upper and a lower bound have been estimated on
the TS as benchmark solutions. Regarding the profit lower bound
estimation, it has been considered as benchmark the solution Slow
obtained simulating the same MG devoid of the ESS. This choice
seems to be reasonable because a solution having a profit lower
than the one achieved without ESS is obviously detrimental. In
this case in each time slot ES

k = 0, consequently, according with
(5)

EN
k = −EGL

k k = 1, 2, .. (8)

the lower bound of the profit Plow is obtained substituting (8) in
(7).

For the profit upper bound performance estimation it has
been chosen as benchmark the optimal solution Supp, considering

known a priori all the TS time series, namely the power de-
mand, the power generation and the energy prices. In this case
it is possible to reformulate the optimization problem as a LP
optimization problem that can be solved through the Simplex
algorithm.

In order to apply the Simplex algorithm, for each time slot,
EGL
k has been split in two parts representing the energy balance

in over production and over demand defined as:

EGL−
k =

{
EGL
k if EGL

k < 0
0 otherwise ,

EGL+
k =

{
EGL
k if EGL

k ≥ 0
0 otherwise.

(9)

According to Section 3, the problem is subject to the following
constraints

EGL
k = EGL+

k + EGL−
k , ∀ k = 1, . . . ,N (10)

ES
k = −(ES+

k + ES−
k ), ∀ k = 1, . . . ,N (11)

EN−

k = EGL−
k − ES−

k , ∀ k = 1, . . . ,N (12)

EN+

k = EGL+
k − ES+

k , ∀ k = 1, . . . ,N (13)

0 ≥ ES−
k ≥ EGL−

k , ∀ k = 1, . . . ,N (14)

0 ≤ ES+
k ≤ EGL+

k , ∀ k = 1, . . . ,N (15)

Edch−max
≤ −ES

k ≤ Ech−max, ∀ k = 1, . . . ,N (16)
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Table 4
ENS prediction performances.

Prediction on PV Generation-EG

t-slot 1–8 9–16 17–24 25–32 33–40 41–48
RMSE 0.06 ± 0.01 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00 0.06 ± 0.00

t-slot 49–56 57–64 65–72 73–80 81–88 89–96
RMSE 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.00 0.07 ± 0.01 0.07 ± 0.01 0.07 ± 0.00

Prediction on Prosumer Energy Demand-EL

t-slot 1–8 9–16 17–24 25–32 33–40 41–48
RMSE 0.08 ± 0.03 0.12 ± 0.02 0.12 ± 0.01 0.13 ± 0.01 0.15 ± 0.01 0.16 ± 0.02

t-slot 49–56 57–64 65–72 73–80 81–88 89–96
RMSE 0.17 ± 0.02 0.18 ± 0.02 0.20 ± 0.03 0.18 ± 0.01 0.17 ± 0.01 0.17 ± 0.02

Emin
− ES0

≤

i=k∑
i=0

−ES
i ≤ Emax

− ES0, ∀ k = 1, . . . ,N (17)

where ES+
k and ES−

k are different from zero when the ESS is
charged and discharged, respectively. In (17) the energy of the
ESS is constrained between its upper and lower limits. ES0 is the
initial energy ESS state.

The LP optimal OF value is used to compare the results given
by the designed FIS EMSs. Therefore, taking into consideration (6)
and (7), it is equal to

Pupp =

k=N∑
k=0

(
EN−

k · pbuyk + EN+

k · psellk

)
. (18)

5.2. A prediction based benchmark solution formulation

The application of prediction algorithms on the prosumer can
be used by the EMS for recursively evaluate and apply the first
element of a reference optimal solution time series evaluated by
a suitable optimization algorithm. It is clear that the application
of this strategy, named RTH, relies on the prediction accuracy and
the time horizon length which is usually set to one or even two
days as in [34].

In this work the model adopted, named SRTH is defined by
two ESN based prediction systems in charge to predict the future
PV generation and energy demand of the prosumer, respectively.
The prediction model used is the same proposed in [43], which
is based on the ESN described in [68–70]. In this model each
prediction system is composed by a number of ESNs equal to
the number of time frames covering the prediction time horizon.
In particular, each ESN is in charge to predict the future energy
generation (demand) at a given number of time frames ahead.
Therefore, considering a prediction time horizon of one day and
two distinct energy systems to predict, the number of ESNs to
train is 2 × 96.

As explained in [43], the ESN inputs are the current energy
production (demand) of the assigned energy system, the cur-
rent hour and a raw estimation of the daily energy generation
(demand). The inputs and the output are defined in [0; 1]. In
particular, the energy signals are normalized between their re-
spective maximum (absolute) value registered on the TR. The
ESNs are synthesized through a GA which defines the reservoir
and the input layer [70] considering the same procedure pro-
posed in [43]. The OF is formulated in order to consider both the
prediction accuracy and complexity

f = 0.99 · Φ + 10−1
· Γ + 10−4

· Ψ (19)

where Φ is the Root Mean Square Error (RMSE) with respect to
the signal to predict, Γ is the sum of the (optimized) output
weights divided by its own length and Ψ is the reservoir size
normalized by the respective lower and upper bound.

It is important to note that the ESN synthesis procedure by GA
requires a TR and a Validation Set. Indeed, given a GA individual

which defines the ESN reservoir and the input layer, the output
layer is calculated on the TR by means of a mean square re-
gression. During genetic optimization, the fitness function (19) is
evaluated on the Validation Set. For generating the Validation Set,
the TR defined in Section 4.2 has been split again in two subsets
named Training Subset and Validation Subset. In particular, 30
(randomly chosen) days of the TR have been assigned to the
Training Subset, whereas the other 15 days are assigned to the
Validation Subset (see Table 2). The GA has been set with the
same operators introduced in Section 4.3 with the exception of
Nstop = 50 considering as OF the expression (19).

In Table 4 are shown the RMSE mean values (± standard
deviation) of the generated ESNs which are grouped per assigned
time slot and time series to predict.

5.3. Results discussion

In this section are illustrated the results of the solution intro-
duced in Sections 3, 5.1 and 5.2. All tests have been implemented
in Matlab R⃝ R2019a on a workstation equipped with two Intel R⃝

Xeon R⃝ 6−cores CPUs at 2.40 GHz. The following libraries have
been used: CVX [71,72] for the evaluation of the optimal energy
distribution strategy over a give time horizon, the ESN model
proposed by Jaeger et al.1 for the prediction systems design
and finally the Matlab R⃝ built-in Fuzzy Logic Toolbox for FISs
implementation.

All the simulations results are reported in Table 5. There, the
solutions S1, S2, S3 and S4 are compared with the upper and
lower benchmark solutions Slow , Supp and two variants of the
RTH strategy solution (see Section 5.2) SRTH−ESN and SRTH−ideal.
The first refers to a RTH EMS supported by two ESN-prediction
systems with performance illustrated in Table 4, whereas the
second considers a zero-error prediction. SRTH−ideal is therefore the
SRTH−ESN upper limit. It is important to note that though both in
SRTH−ideal and Supp is assumed a (perfect) a priori knowledge of the
future time series, in SRTH−ideal it is restricted to a time horizon of
one day, whereas in Supp is extended to the overall TS.

Regarding the Fuzzy EMSs simulation S1, S2, S3 and S4, tests
have been repeated 5 times with different randomly generated
initial populations that differs only on ΘRC as explained in Sec-
tion 4.3. The values reported in Table 5 represent the aver-
age values and the standard deviation (in brackets). Each sub-
optimization step of each simulation is analysed by simulating
their respective best individual on the TS. In Table 5 for each
sub-optimization step the remainder of subsets to be optimized
are indicated with the superscript ‘0’, whereas those that were
already optimized are denoted with the superscript ’*’.

The simulation performances are rated in terms of profit (see
(6)) and number of executed generations. These values are used
to estimate the effectiveness and efficiency of the proposed EMS
optimization paradigm, respectively.

1 http://minds.jacobs-university.de/research/esnresearch/.

http://minds.jacobs-university.de/research/esnresearch/
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Table 5
Optimized EMSs TS results.
Simulation Initial population Optimized

parameters
TS profit
[MU]

Energy Sold Energy Bought ESS expl. # Deleted fuzzy
set [adim]

# Generations
[adim][kWh] [MU] [kWh] [MU] [kWh]

S1 − a Θ0
RC , Θ0

MF , Θ0
RW , Θ0

MH ΘRC , ΘMF , ΘRW 102.3(1.6) 961(14) 283(3) 349(12) 174(4) 1286(25) 650(211)+
S1 − b Θ∗

RC , Θ∗

MF , Θ∗

RW , Θ0
MH ΘMH 104.2 (1) 957(12) 283(2) 347(12) 172(3) 1290(24) 10(2) 98(40) =

748 (251)

S2 − a Θ0
RC , Θ0

MF , Θ0
RW , Θ0

MH ΘRC 96.2(2.6) 945(10) 278(2) 334(10) 175(2) 1315(20) 748(368)+
S2 − b Θ∗

RC , Θ0
MF , Θ0

RW , Θ0
MH ΘRW , ΘMF 105.4(0.8) 944(10) 280(2) 332(10) 167(3) 1092(20) 346(110)+

S2 − c Θ∗

RC , Θ∗

MF , Θ∗

RW , Θ0
MH ΘMH 105.8 (0.5) 943(10) 280(2) 332(10) 166(2) 1320(20) 5(4) 75(40) =

1170 (518)

S3 − a Θ0
RC , Θ0

MF , Θ0
RW , Θ0

MH ΘRC , ΘMF , ΘRW 103.7(0.8) 967(13) 285(3) 356(13) 174(3) 1272(26) 512(188)+
S3 − b Θ0

MH , Θ∗

RC , Θ∗

MF , Θ∗

RW ΘMH 104.0 (0.6) 975(6) 286(1) 364(6) 175(2) 1256(13) 9(1) 68(11) =

581 (198)

S4 − a Θ0
RC , Θ0

MF , Θ0
RW , Θ0

MH ΘRC 102.2(0.5) 969(1) 285(1) 359(1) 176(1) 1267(3) 277(85)+
S4 − b Θ∗

RC , Θ0
MF , Θ0

RW , Θ0
MH ΘRW , ΘMF 104.2(0.7) 971(3) 286(1) 363(7) 174(1) 1045(5) 378(223)+

S4 − c Θ∗

RC , Θ∗

RW , Θ∗

RC , Θ0
MH ΘMH 104.3 (0.6) 971(3) 286(1) 360(3) 174(6) 1263(4) 6(4) 52(4) =

707 (312)

Supp – – 135.1 901 270 289 135 1405 – –
Slow – – −144.6 1599 411 997 556 0 – –

SRTH−ESN – – 102.4 971 281 361 182 1277 – –
SRTH−ideal – – 119.3 936 271 326 156 1357 – –
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Moreover, in Table 5 are shown the overall energy sold and
bought expressed in terms of both M.U . and kWh, the total ESS
exploitation that is evaluated as the absolute sum of ES

K extended
to the overall simulation (i.e.

∑
k

⏐⏐ES
k

⏐⏐ ), and finally the number of
Fuzzy Sets deleted in each hierarchical optimization procedure.

Simulations which privileges an EMS optimization of the Ω

parameters developed in more stages (i.e. S2 and S4) present
always greater profits with respect to their corresponding opti-
mizations procedures, namely S1 and S3, respectively. However,
they are characterized by an increase in the overall efficiency, that
is affected by a higher standard deviation as well.

The simultaneous approach followed in S1 and S3 shows a
greater number of deleted Fuzzy Sets, on average almost dou-
ble with respect to the other two procedures (i.e. 9.5 vs 5.5),
thanks to the hierarchical optimization. In fact, when the subsets
ΘRC , ΘMF , ΘRW are simultaneously optimized, the GA shows a
poor ability in tuning the FIS nearby optimum or sub-optimum
values. It can be noted that the optimization on the ΘRC subset
on S4−a shows a profit lower by 3.5% with respect to S2−c , but
much higher than the profit achieved by S2−a (i.e. 102.2 Vs 96.2
M.U.). However, looking at the executed number of generations
and the profit standard deviation , solution S4 − a produces the
best performances in terms of efficiency and robustness.

On the contrary, simulation S2−a shows that the optimization
of the ΘRC subset, when the prosumer energy balance is con-
sidered as an additional input, gives the worst results in terms
of both efficiency and effectiveness. In fact, in this case the GA
presents difficulties in finding a good solution in a larger space.
However, the subsequent optimizations performed on the re-
maining subsets bring the profit to higher values, more precisely
to the best one. The Fuzzy input energy balance increases the
average profit less than 1% despite a decrease of their robustness
and efficiency (i.e. higher # Generations, standard deviations on
the profit and standard deviations on # Generations).

As it is shown in Table 5, all the Fuzzy EMS solutions present
a profit within the range 86 ÷ 90% with respect to Pupp − Plow
interval, namely about 10% close to the Supp solution. Looking at
the overall energy sold and the overall energy bought, all the
solutions show values close to the Supp solution that produce a
reduction of the overall energy exchanged to the network greater
than 50% of the overall energy exchanged by solution Slow . In
most cases the hierarchical optimization, other than improving
the profits, reduce the EMS number of rules by more than half.
Comparing with the RTH solutions, the profit of SRTH−ideal is very
close to Pupp (just 5% below). However, SRTH−ESN , which performs
with uncertainties on the prediction up to the 7% on the PV gener-
ation and 20% on the energy demand (see Table 4 in Section 5.2),
owns a profit similar to the Fuzzy EMS.

6. Conclusion

In this work we compared four different optimization strate-
gies of a MG EMS defined by two FISs in order to redistribute in an
intelligent way the prosumer energy balance. The MG is supposed
to be equipped with an ESS and to be connected to the main grid.
The optimization, performed off line on TR data through a GA,
aims at minimizing the profit generated by the energy trading
with the main grid during a given time period on a TS, exploiting
energy buffering in ESS.

The EMS optimization parameters were grouped in four sub-
sets representing the rule consequents association, the MFs shape,
the rule weights and the deactivation of input Fuzzy Sets. This
latter has the role to delete such input Fuzzy Sets that were
inefficiently arranged and therefore to simplify the EMS rule base.

The adopted strategies differ in the order in which the opti-
mization of such parameter subsets is applied. In particular, one

strategy privileges a simultaneous optimization of the parameters
relative to the rule consequents association, the MFs shape and
the rule weights. The second strategy first define the FISs rule
base inference system (i.e. the rule consequents association) and
successively tunes simultaneously the MFs shape and the rule
weights. Moreover, the simulations are repeated without consid-
ering the prosumer energy balance as Fuzzy Input in order to
study how it affects the EMS performances, possibly improving
the interpretability of the Fuzzy rule base.

TS results show that performances related to the profit of
optimized EMSs are close to 90% of the optimal performance
(upper bound). Moreover, the hierarchical optimization helps to
reduce the number of rules by more than half, allowing a more in-
terpretable EMS, especially in case where the FISs are featured by
two inputs. It this case the EMS rule base system can be reduced
up to less than 25 rules. Therefore, it proved to be very effective
in improving the overall interpretability of the solution found,
yielding a lighter rule base, better suited for running, at run time,
on low cost microcontrollers. An ESN based RTH strategy EMS is
used for a deeper comparison of the results. It is worth to note
that, although the RTH EMS shows comparable results on profit,
this system is characterized by a much higher computational cost
at training stage, as well as a higher structural complexity of the
trained model, due to the presence of prediction ESN models.
Results show that FIS based EMSs have similar performances with
respect to the RTH-based strategy in terms of the overall profit,
with a remarkable advantage in terms of computational cost at
run time.
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