Knowledge-Based Computational Support

For Architectural Design

Gianfranco Carrara
Yehuda E. Kalay
Gabriele Novembri

The process of architectural design aims to
define a physical form that will achieve certain
functional and behavioral objectives in a particular
context. It comprises three distinct, but highly
interrelated, operations: (1) Definition of the desired
objectives; (2) production of alternative design
solutions; (3) evaluation of the expected performances
of the solutions and their comparison to the predefined
objectives. Design can be viewed as a process of
search for a solution that satisfies stated needs, while at
the same time adapting the needs to the opportunities
and limitations inherent in the emerging solution.

Computational techniques were developed to
assist each one of the three operations, with varying
degrees of success. We propose to integrate all three
operations into one whole, by developing a
computational model that will facilitate smooth
transition from one operation to another. The role of
computers in supporting this model will include
providing a knowledge base of prototypical design
objectives and solutions, storing project-specific design
goals and solutions, and predicting their expected
performances.

This paper discusses the rationale and
background for developing such a knowledge-based
design system, and presents the parameters for
implementing it as a computational tool to support
architectural design. Examples from a prototype
implementation serve to illustrate the discussion.

University degli Studi di Roma, Italy
University of California, Berkeley, U.S.A.
Cartesiana Consortium, Rome, Italy

Introduction

We consider architectural design a goal-
directed search process, whose purpose is to define an
object (or an environment) that achieves some desired
behavioral and spatial characteristics, while conforming
to and relying upon cultural, social, environmental, and
other norms. We refer to the object that is being
designed as the solution, and to the desired behavioral
and spatial characteristics it strives to achieve as the
goals. We view the process of design as a dialogue
between the goals and the solutions within the
particular social and cultural context of the project. The
dialogue adapts and modifies the initial goals and
solutions until they converge, such that a solution is
found which achieves an acceptable set of performance
characteristics (what Simon called a "satisficing"
solution [1969]). This process is depicted schematically
in Figure 1.

Initial
Solution

A
Convergence

of the Goals &
the Solution \ Modified
\

Goals
™ b

Modified
Soaiution

Initial

\ / Goals

Modified
Goals

< Evaluate and inform Geals and Solutions about each other >

Design as a bi-directional search for a
"satisficing” solution.

> Modify solutions Tradeoff Goals

Figure 1:

As we near two decades of research focused on computer aided architectural

design, it is appropriate to take stock of the impact of computers on architectural

education and practice. The research to date has been exciting, diverse,

exploratory, and productive. Pilot projects, experimental labs and development

programs have become a common feature of architectural schools and it appears

Knowledge-Based Computational Support for Architectural Design

The process by which goals are generated is,
essentially, analytic and deductive. It starts by defining
a set of needs representing the wants and wishes of the
sought solution. These are translated into statements
that define more specifically the expected behavior of
the solution, expressed as structured sets of
requirements. The process by which solutions are
generated, on the other hand, is intuitive and inductive.
It begins by inventing or adapting a solution that
appears to have performance characteristics that
achieve the requirements, as well as other desired
attributes (form, style, etc.). This initial solution is
analyzed by means of deductive reasoning processes,
which generate an abstraction whose expected behavior
can be compared to the desired behavior stated by the
requirements. At the same time, the requirements are
modified to overcome irreconcilable conflicts, and to
accommodate emerging opportunities discovered as the
process unfolds.

Design activities that are based on intuition
and induction cannot, presently, be substituted by
computational means. Computers can only assist
designers by providing examples, precedents, case
studies, prototypes, and their derivatives [Flemming].
However, choosing and adapting the appropriate
solution to the context of the problem remains a human
prerogative. On the other hand, design activities that
are based on deductive reasoning can (theoretically) be
fully supported by computational means.

To implement this approach, we have
developed a computational model of the design process
which conforms to the Partnership Paradigm (discussed
in [Swerdloff & Kalay 1987]), and is based on the
method of design knowledge representation discussed
in [Carrara et al 1992].

A Computational Model of Architectural Design

The objective of any architectural design
process is to define a building that will achieve certain
functional and aesthetic needs. This is done through
two means: (1) by defining the conditions the building
and its constituent components ought to satisfy, and (2)
by defining a specific set of spaces and enclosures

(building objects) along with the methods of their
construction and use.

The two kinds of entities rely on different
representations: the first uses representations of
specific building objects (e.g., walls, spaces, and
materials), while the second uses representations of sets
of desired performances. Such sets are defined not by
listing all their individual members, but rather by the
functional needs they fulfill.

In order to arrive at a generally acceptable and
useful representation of needs, they must be defined
objectively and unambiguously. This eliminates most,
if not all, aesthetic criteria from qualifying as design
objectives in our implementation. Functional criteria,
on the other hand, can be generalized into objective
representations of needs, which we call requirements.
The requirements establish alternative sets of
qualitative (and quantitative) preferences that ought to
be achieved by the solution. We call the specific values
that satisfy a particular requirement in a particular
situation performance, and the set of all requirements
and performances the behavior of the represented class.

Requirements can be classified according to
their effect on the building as a whole. Two main
classifications are common: (1) Requirements that
affect the spatial aspects of the building; and (2)
requirements that affect the physical or technical
aspects of the building. We have represented both
kinds of requirements explicitly and made them user-
accessible. The system evaluates the proposed
solutions by comparing their expected performances to
the stated requirements.

We have chosen to represent spatial
requirements in terms of Space Units (SU) and Building
Units (BU). Space Units define the requirements that
are associated with individual rooms (or their
equivalents), such as dimensions, type of use,
environmental conditions, and so on. Building Units
define classes of requirements that are associated with
structured sets of Space Units or, recursively, other
Building Units. Similarly, we have chosen to represent
the requirements associated with the technical aspects
of the building in terms of Functional Elements (FE)
and Functional Systems (FS), which are structured sets
of FEs, or, recursively, other FSs.

Howard's End

ACADIA 1994

The stated requirements can be achieved by
many different but functionally equivalent objects
which possess the desired performance values.

Objects are organized in the database according to
different structured properties, which include hierarchy,
topology, geometry, and function. Hierarchical
Structures provide an organizational schema of parts
and wholes, where parts may be composed of sub-parts.
Topological structures help organize the reciprocal
interrelationships between objects. They provide a
model of building use, both spatially and
technologically. Geometrical structures are, of course,
the primary instrument used by designers to represent
objects. Not only does geometry help “materialize”
objects in ordinary space, but it also provides a
framework onto which properties, such as dimensions,
materials, cost, and even aesthetics, can be attached.
Functional structures help establish performances that
result from combinations of objects according to
specific hierarchical, topological, and geometric
relationships.

Implementation

To demonstrate our proposed model of
architectural design we have developed a system called
KAAD (Knowledge-based Assistant for Architectural
Design), which is intended to help architects specify
design objectives, adapt existing or create new design
solutions, evaluate their expected performance and
compare them with the stated objectives in the context
of designing health care facilities for treating infectious
diseases.

Adaptation and refinement of design solutions
is assisted by a knowledge base comprising prototypical
design solutions. It includes much of the information
pertinent to generic building objects such as walls,
windows, doors, rooms, and corridors in the context of
hospitals. Particular solutions are derived from the
prototypes by adapting them to the specific context of
the problem, adding dimensions, relationships,
orientations, and specific performance characteristics.

To support the generation of new solutions, the
system manages the representation of design
requirements and includes a host of evaluators for

predicting and comparing the expected performances of
the emerging solutions with the stated objectives. A
graphical and analytical user interface facilitates the
communication between the system and the designer.

The frame-based implementation of the
knowledge base enables us to use a single set of
operators to manage all the data and to guarantee its
integrity, while saving us much effort and greatly
reducing the overall size of the system. Following
frame conventions, each entity in the system is either a
prototype or an instance. Prototypes constitute the
system’s knowledge base, and instances constitute its
database. Each object, whether a prototype or an
instance, is represented by a set of attributes (slots),
which may assume a value selected from one of several
types (facets). Such values may consist of a number, a
text string, another frame, or a procedure. Several slots
and facets are shared by all the objects. Shared slots
include:

ISA (“is a”) designates an object as an
instance of the prototype referenced
by the slot.

AKO (“a kind of”) designates a prototype

as special sub-class of the more

general class of objects which are

defined by the prototype referenced

by the slot (the AKO slot is used to

define hierarchies of prototypes).
IMS (“immediate successor”) establishes
an assembly (part-whole) relationship
among instances (the referencing
instance is considered part of the
objects referenced by this slot).
contains procedures to compute the
geometric representation of the
object.

SHAPE

Shared facets include:

VALUE contains the value associated with the
slot.
DEFAULT establishes the value which will be

used if no other value has been
specified.

inevitable that computers will become the dominant media for design in the near

future. Architectural applications are moving from experimentation to mass
adoption. As architectural schools balance needs and resources, assessing the
past will play an important part in facing the immanent critical decisions.

Knowledge-Based Computational Support for Architectural Design

MAX, MIN defines the max/min values for the (dg3 (ako value su))
slot (a range). (description (value “space unit for patient’s
ALLOW-SET defines the set of allowed values for nursing room”))
the slot (an enumeration). (com (value connl))
CHECK-LIST establishes the list of mandatory (adj (value dg6 dg7))
values for the slot. (far (value dg2 dgl1 dgl5 conn2))
TO CALC (“to calculate”) provides the object (ims (value hfur3 ite))
with a method to calculate the value (sup (min 22)
of the slot when the system requires (unit mq)
it. This facet contains a procedural (max 28)
attachment, implemented as a Lisp (unit mq)
procedure, which is invoked when the (description “minimum and
value is required. The facet also maximum net area”)
implies the existence of an additional (wtemp (range 19 21)
facet, C-TO-CALC (“compiled to (unit °C)
calculate”), which contains the (description “interior winter
compiled version of the method. temperature™)
KAAD compiles the method the first (stemp (range 25 27)
time the procedure is invoked and (unit °C)
stores it in the C-TO-CALC facet for (description “interior summer
future use. temperature™)
TO VERIFY contains methods used to verify that (rewh (range 40 60)
the assigned values are allowed (unit %)
values, as defined in the previous (description “winter relative humidity”)
facets. (resh (range 40 60)
TO DELETE contains the method to delete the (unit %)
value associated with the slot. (description “summer relative humidity”)
TO DRAW contains the procedural attachment (vent (value 2)
used by the system to draw the object. (unit vol/h)
(description “number of air exchanges”)
As an example, consider the implementation (vela (value 0.2)
of a simple SU (space unit) prototype of a nursing room (unit m/sec)
in a hospital, which includes the slots of ADS (description “air velocity™)
(“adjacent”), establishing a spatial relationship between (pura (value 4)
the SU and the other SUs which make up the whole (unit %)
building; COM (“communication”), defining a system (description “air purity level”)
of routes among SUs; FAR, establishing that the given (press (value 10)
SU cannot be near or adjacent to some other kinds of (unit Pa)
SUs; SUP, defining the maximum and minimum values (description “pressure”)
of net surface; WIEMP and STEMP, defining the (sound (max 42)
values of the internal winter and summer temperature, (unit dbA)
REWH and RESH, defining absolute humidity (description “maximum noise level”)

conditions; and VENT, defining the number of air ~ ..is
exchanges perhour:

Howard's End

ACADIA 1994

Other prototypes used by KAAD have been
structured in a similar manner and will not be
elaborated upon here.

How the System Works

To demonstrate the structure of the knowledge
base and how the system works, we will use as an
example a small, real case comprising the nursing
module shown in Figure 2, in which the hatched arrows
represent the communication between rooms and the
white ones represent adjacent rooms. For the sake of
simplicity the adjacency with the outside and with other
modules of the hospital have not been represented. The
case study, albeit of reduced complexity, is significant
because buildings for treating infectious diseases must
respond to a considerable number of constraints, many
of which are often very important. The designer must
fulfill specific requirements related to the treatment of
symptomatic seropositive or AIDS-infected patients,
and must guarantee an adequate protection of the
patients against the risk of crossed or opportunistic
infections. At the same time the designer must
guarantee an adequate level of protection to the visitors
and the staff by carefully evaluating paths, entrances,
filter and reclamation areas and dressing rooms.

i Internal :
 Corridor :
o Internal
Entrance
Room

mpp O—1—— Bathroom

<“,E O—1— Visitors
External

1
|
Corridor !

Figure 2: BU (Building Unit) representing a nursing unit
module in an infectious diseases health care facility.

The design process is based on the
instantiation of knowledge base prototypes. The
designer may start by defining several characteristics
and constraints that KAAD uses to instantiate the
appropriate prototypes of the FEs (Functional
Elements). Typically not all the information needed to
completely define the FE instance is specified. KAAD
begins a slot-filling process that attempts to complete
the FE, asking the designer for the necessary values and
the specification as needed. When the designer has
specified the geometric information, the system
calculates many of the values needed to complete the
instantiation process, such as adjacencies, paths, areas,
and so on.

This design process may be characterized as
Top-Down design and is depicted in Figure 3. KAAD
can also operate in a Bottom-Up design mode. In that
case, the designer may start by drawing lines and
graphical objects representing a design solution.
Starting with such graphical primitives, the designer
may tell the system that one of them represents the
instance of a particular physical object. KAAD will
look up the corresponding prototype, and if it exists in
the knowledge base it will instantiate the information it
contains and attribute it to the instance. This bottom-up
mode of design is depicted in Figure 4.

Along the way, KAAD performs checks to
verify that adjacency, size, and other requirements are
met. If it discovers a violation, KAAD warns the
designer.

KAAD has been implemented in Lisp and C.
All the components concerning the knowledge base
have been implemented using the Allegro Common
Lisp 3.0 from Franz, Inc. The parts of the system
concerning the graphic and the database management
components have been implemented using the C
language. The user interface was developed under
X11R3.

The first implementation of the prototype was
developed in the UNIX environment. At present, a PC
version under Microsoft Windows 3.1 using Allegro
CLI/PC 1.0 and Borland C** is in the final stages of
development.

"No matter how completely technics relies upon the objective procedures

of the sciences, it does not form an independent system like the universe: it

exists as an element in human culture and it promises well or ill as the social

groups that exploit it promise well or ill. The machine itself makes no demands
and holds out no promises: it is the human spirit that makes demands and keeps

promises." Lewis Mumford!

10

Knowledge-Based Computational Support for Architectural Design

Internal
Corridor, Internal
Entrance,
=)
@

Corridor

The designer can create some
instances of Space System
prototypes, define their characteristics
and their requirements.

SUs and BUs can be structured,
defining the Space System of the
Building.

The designer can draw some graphic
primitives as references for
subsequent work.

The reference points can be used for
assembling components.

Req-b I Reg-c I Reg-d I

Internal

Internal
Entrance,
@

Qutside

"‘ '

i
'

‘.
nal
idos

Inten
Corri

SU-2| SU-3| su-4

SU-1 BE'1

SuU-6

The requirements related to the Space
System can be checked.

Links between the Space System and
the Building System must be defined.

thysical objects can be organized to
define Space Units (S.U.)and . ..

S.U. can be organized in more complex
entities called Building Units (B.U.).

Corridol

O ——
Outside

The designer can define requirements
over either a specific object or classes
of physical objects and/or space
entities.

O-——
Outside

Activated

The requirements can be grouped,
activated, or turned off.

The designer can define requirements
over either a specific object or classes
of physical objects and/or space
entities.

[JActivated

The requirements can be grouped,
activated, or turned off.

Not Satisfied ©'s%

- -~ OPeg—P
| Internal
\ ntrancq Bathroor
\ O O O
Internal
Corrido]

Error: Requirement Req-3
is not satisfied

Not Satisfied

Error: Requirement Req-3
is not satisfied

The designer can launch a verification
process at every phase of a design
process, or . . .

.. . ask for a continuous check of
design choices.

Figure 3: Top-down design process.

The designer can launch a verification
process at every phase of a design
process, or . . .

... ask for a continuous check of
design choices.

Figure 4: Bottom-up design process.

Howard's End

ACADIA 1994

10

Conclusion

Recent developments intended to model the
architectural design process and to represent the
knowledge it relies upon promise to become significant
forces shaping the future of computer-aided
architectural design. Nonetheless, the development of
integrated knowledge-based design systems is still a
matter for much research and development. The
difficulty is due, in part, to a lack of distinction between
design processes that can be represented as overt
knowledge (in some formal way) and those that cannot.
Whereas learning, creativity, and judgment are the
hallmarks of architectural design, they are, and for the
foreseeable future will continue to be, the prerogative
of humans. On the other hand, there are many design
processes which have already been successfully
computed, such as a host of analyses, visual
representations, and even certain solution generating
algorithms. The difficulty, then, lies in developing
design frameworks that can integrate the computable
aspects of architectural design with the ones that are not
currently computable, in a smooth, transparent way.

‘We have proposed such an integrative
approach, which facilitates design but does not fully
automate it. It is based on the observation that designers
are able to cope with and manage complex design
processes, and have for centuries achieved outstanding
results doing so without the aid of computers. It is our
contention that it is not necessary to fully automate
each and every one of the design process activities in
order to significantly improve design productivity and
quality. Rather, it is more prudent to develop a

References

practical symbiosis between the capabilities of
designers and machines.

The implementation of our approach is based
on viewing architectural design as a process of search,
which aims to reconcile the differences between a set of
requirements, given by the client, and the expected
behavior of a design solution, proposed by the architect.
In the course of negotiating the differences between the
two ends, tradeoffs must be made on both sides. The
process also contributes to better understanding the
problem itself, and informs both the architect and the
client of initially hidden opportunities and
irreconcilable conflicts.

The prototype we have developed forms a
framework for implementing our proposed design
partnership paradigm. In such partnership, the role of
the computer can be shifted dynamically between
passive representation/evaluation and active generation/
evaluation of design solutions. Such dynamics would
allow the designer and the system to respond to
changing requirements, unforeseen problems, and
emerging opportunities as they arise during the design
process. The system demonstrates the feasibility of
implementing this paradigm. Its utility for practicing
architects is, nonetheless, yet to be tested.

Acknowledgment

This paper is a shortened version of a paper on the same
topic, published in [Carrara et al 1994], and is
published here with the kind permission of Elsevier
Science Publishers, Amsterdam.

Carrara G., Y.E. Kalay and G. Novembri, “Multi-Modal Representation of Design Knowledge,” Automation in Construction,

September 1(2):111-122, 1992.

Simon H.A., The Sciences of the Artificial, MIT Press, Cambridge MA, 1969.

Swerdloff L.M. and Y.E. Kalay, “A Partnership Approach to Computer-Aided Design,” Computability of Design (Y.E.

Kalay, ed.), John Wiley & Sons, New York, 1987.

Flemming U., Case Based Design in the SEED System, Knowledge-Based Computer-Aided Architectural Design (G. Carrara
and Y.E. Kalay, eds.), Elsevier Science Publishers, Amsterdam, The Netherlands, 1994.

11

The basic question, “"Are we better off because of computers?”, supposes
that computers are one of the key factors in our future as architects. A perusal of

current opinion about the state of the architectural profession suggests that

either computers have been detrimental to architecture or the application of
computers, in itself, has not been a major factor. While one can find isolated

12

Howard's End

ACADIA 1994

=

