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A Bayesian oblique factor model with extension
to tensor data

Un modello fattoriale obliqguo bayesiano con estensione a
dati tensoriali

Michael Jauch, Paolo Giordani, and David Dunson

Abstract In this short paper, we discuss a novel way of constructing prior distri-
butions for correlation matrices and an associated approach to inference. We con-
struct a prior penalizing large correlations, which we incorporate into an oblique
factor model and a Candecomp/Parafac model for three-way data. We argue that
this choice of prior for the factor correlation matrix, combined with a shrinkage
prior for elements of the factor loadings matrix, leads to interpretable solutions. At
the meeting we will demonstrate this through applications to real data.

Abstract In questo short paper discutiamo un nuovo modo di costruire distribuzioni
a priori per matrici di correlazione ed i relativi aspetti inferenziali. La distribuzione
a priori, costruita in maniera tale da penalizzare correlazioni elevate, viene in-
serita all’interno di un modello di analisi fattoriale obliqua e del modello Cande-
comp/Parafac per dati a tre vie. Riteniamo che questa scelta della a priori per la
matrice di correlazione fattoriale, combinata con una a priori shrinkage per gli
elementi della matrice dei loading fattoriali permette di ottenere soluzioni inter-
pretabili. Al convegno dimostreremo il nostro assunto mediante applicazioni a dati
reali
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1 Introduction

Factor analysis aims to explain the covariance structure between observed variables
as arising from a smaller number of unobserved latent factors. A Gaussian factor
model with factor dimension S has the form

y1|Bf172NN(Ble)7 leN(O,Q) (l)

where y; is the centered vector of observed variables corresponding to the ith ob-
servation, B is the factor loadings matrix, f; is the S-dimensional vector of latent
factors for observation i, £ is the covariance matrix of the latent factors, and X is a
diagonal positive definite matrix. Marginalizing out the latent factors yields

y;|B,Z ~N(0,BQB” + ). ()

As is well-known, the factor model is not identifiable without further restrictions
on B, Q. X. Identifiability assumptions are important in Bayesian computation as a
means to ensure that estimation based on posterior samples is meaningful. See [14]
for a discussion of identifiability of the oblique factor model. We impose the usual
restriction that £ be a correlation matrix.

If Q is diagonal then the latent factors are uncorrelated (and thus independent)
and we obtain the conventional orthogonal factor analysis model. If £ is not di-
agonal, the latent factors are correlated and we obtain the so-called oblique factor
model. Many authors have argued that the restriction to uncorrelated factors is too
strict. For example, discussing application of factor anaylsis in psychology, Thur-
stone [19] remarks

It seems just as unnecessary to require that mental traits shall be uncorrelated in the general
population as to require that height and weight be uncorrelated in the general population.

A large body of methodology has been developed for the oblique factor model. For
a detailed discussion, see Chapter 12 of Harman [11].

In traditional applications of factor analysis, interest lies in interpreting the latent
factors as distinct and scientifically meaningful quantities. Interpretation proceeds
by examination of the factor loadings matrix, which relates the latent factors to
the observed variables. Interpretation is made easier if the factor loadings matrix
possesses a simple structure. An example of a simple structure is near sparsity, in
which the factor loadings matrix has a small number of large entries and a large
number of small entries. Typically, allowing correlated factors allows for a simpler
structure in the factor loadings matrix. However, correlated factors present their own
difficulties to interpretation. If two factors are highly correlated, then it becomes
impossible to interpret them as distinct quantities. When allowing for correlated
factors, we should recognize the tradeoff between factor correlation and complexity
of the loadings matrix. We tolerate some of the former if it buys us less of the latter,
and vice versa. This idea is captured in a quote from [11]:

It is clear that a certain simplicity of interpretation is sacrificed upon relinquishing the stan-
dard of orthogonality. This disadvantage may be offset, however, if the linear descriptions
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of the variables in terms of correlated factors can be made simpler than in the case of un-
correlated ones. Generally this is possible.

We can address this tradeoff in a Bayesian oblique factor analysis setting through
the choice of prior distributions for B and £. For those elements of the factor load-
ings matrix B which are not restricted to be zero for the sake of identifiability, we can
take advantage of local-global shrinkage priors which will result in a nearly sparse
estimate for B [15]. For the factor correlation matrix £, we need a prior on the set
of correlation matrices which penalizes factor correlations. Defining such a prior
distribution that lends itself to relatively simple and scalable inference is challeng-
ing. For a recent approach in the context of Bayesian factor analysis with correlated
factors, see [9] which provides extensive references to earlier relevant works.

A main contribution of this short paper is what we believe to be a novel approach
to constructing priors for correlation matrices. The construction is based on the ob-
servation that, for any N x P matrix X with unit norm columns, the product X7 X
is a correlation matrix. Assigning each column of X a probability distribution hav-
ing support on the unit sphere then induces a probability distribution on correlation
matrices. In the special case that each column of X is independent and uniformly
distributed on the unit sphere, we obtain closed-form densities for the correlations
which match priors discussed previously by [1, 9], and others. The proposed prior
does indeed penalize correlation, and the penalty increases as N increases. In this
short paper, we only discuss the special case of independent columns uniformly dis-
tributed on the unit sphere, but future work may consider other choices, leading to
more flexible distributions for correlation matrices. Inference for parameters lying
on the unit sphere can be performed using geodesic Monte Carlo [6], a scalable
Markov chain Monte Carlo (MCMC) method which can accomodate parameters
lying on manifolds embedded in Euclidean space.

We define a Bayesian oblique factor model using the aforementioned prior for
the factor correlation matrix and a global-local shrinkage prior for elements of the
factor loadings matrix. We discuss extension of the factor model to tensor valued
data with an emphasis on the three-way case. For the conference presentation, we
will show applications to real data.

2 A Bayesian model for oblique factor analysis

Suppose we have [ observations of J variables. We let y; be the vector of J centered
variables corresponding to observation i. As before, we suppose that

where B is the J x § factor loadings matrix, f; is the § x 1 vector of latent fac-
tors for observation i, £ is a § x § correlation matrix, and e; is a J x 1 vector
of errors. The errors are independent and identically-distributed N(0,X) where
X = diag(o?,...,07) is a diagonal positive definite matrix. In matrix form, we have
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that

Y=FB' +E “4)
where ¥ = (yy,...,y;)! is the I x J data matrix, F = (f,,..., f;)! is the I x S matrix
of latent factors, and E = (ey,...,es)" is the I x J matrix of errors. To complete the

Bayesian model specification, we need to define priors for our parameters.

2.1 The prior for Q

As described in the introduction, let the matrix X have columns xi,...,xp € v _1,
the N — 1-dimensional unit sphere. Suppose that the columns of X are independent
and uniformly-distributed on .#y_1. We then set 2 =X X,

Due to the simple construction for £, it is possible to derive closed-form expres-
sions describing its distribution [8]. For instance, let @ be an arbitrary off-diagonal
element of Q. Then the density of o is

()

N-3
plo)=—=—72~(1-0")7 , ocl[-11] 5)
VT (%7)
the even-order moments are
o 2j—1
E(o™) =] —1—— =1,2,3,... 6
(™) jrzllzwzj—z”" (6)

and the odd-order moments are zero. As Fig. 1 makes evident,

a’TH ~Beta (N —1)/2,(N—1)/2) (7)

and the prior places a penalty on correlations which increases with V.

The above properties make it clear that we have presented an alternate way of
constructing a prior distribution for correlation matrices having the same marginal
distributions for the correlations as the prior for correlation matrices discussed in
[9] and the relevant references given there. However, our prior construction naturally
leads to a wide variety of flexible generalizations (by choosing different distributions
on the unit sphere) and allows for a different MCMC approach to inference based
on Geodesic Monte Carlo [6].

2.2 Completing the prior specification

We would like to choose a prior for B favoring a simple, nearly sparse structure. A
variety of global-local shrinkage priors [15, 4] have been proposed which satisfy this
requirement and have desirable posterior concentration properties. These glocal-
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local shrinkage priors can typically be represented as scale mixtures of Gaussians,
simplifying computation.

As mentioned in the introduction, identifiability assumptions are important in
Bayesian computation because they ensure that estimation based on posterior sam-
ples is meaningful. We have already constrained Q to be a correlation matrix. The
article by Peeters [14] gives three additional conditions on B which, under the usual
regularity assumptions, guarantee identifiability of the oblique factor model. Deci-
sions about how to satisfy those conditions should be made on a case by case basis.

We can assign conventional priors for variances to the diagonal elements of X,
e.g. inverse gamma or reference priors.

3 Extension to tensor data

When [ observations of J variables are collected at K occasions we have a three-
way array or tensor denoted by Y of order I x J x K. Occasions may refer to time or
in general to different conditions. Three-way tensor data are characterized by three

Densities of w for various N
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Fig. 1 Density of @ for various values of N. The densities are shifted and scaled
Beta((N—1)/2,(N —1)/2) densities.
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modes, namely observation, variable and occasion modes. We let y; be the vector
corresponding to observation i. In contrast to the standard two-way case, y; contains
the scores of J centered variables at K occasions and thus has length JK.

In principle, the two-way factor model in (4) might still be applied for tensor data.
In fact, it would be sufficient to juxtapose next to each other the observation-by-
variable matrices collected at every occasion obtaining a matrix with rows given by
¥i,---,¥7- Such a matrix, usually denoted by Y 4, is the so-called observation mode
matricization (or unfolding) of the tensor Y. However, in practice, the decomposi-
tion of ¥ 4 through the factor model in (4) is inappropriate because the interactions
among the modes cannot be modelled.

A more sensible strategy is the three-mode factor analysis model known as Can-
decomp [7] or Parafac [12] which we will refer to as Candecomp/Parafac or, more
briefly, CP. The CP model can be expressed as

Y,=F(CoB) +E, (8)

where B and C are the factor loadings matrices for the variables (of order J x §)
and for the occasions (of order K x S), respectively. They capture the influences
of the variables and occasions on the § latent factors. The symbol © denotes the
Khatri-Rao product, the Kronecker product between pairs of columns (C® B =
[C] ® by |---|Cs®b5], with B = (b],...,bg) and C = (C],...,Cs)). E = (el,...,eI)T
is the I x JK matricization of the tensor of errors E. In contrast with the two-way
case, under mild conditions (see, e.g., [13]) the solution of the CP model is identified
up to trivial scaling and simultaneous permutation of the columns of F, B and C.
The CP model was originally proposed as an exploratory tool without probabilis-
tic assumptions. The probabilistic version was developed in [5] and [2, 3]. Actually,
such probabilistic counterparts were proposed for the so-called Tucker3 model [20],
which we will refer to as the T3 model. The T3 model represents an alternative
three-mode generalization of the two-way factor analysis model. It can be formu-
lated as
Y,=FG,(C®B)" +E,. 9

In the T3 model, each mode has its own factors and different numbers of latent
factors for each mode can be assumed. Hence, F, B and C are matrices of order
I xP,JxQ, and K X R, respectively, with P, Q and R denoting the numbers of
factors for each mode. The triple interactions among the factors of the three modes
are captured by the P x Q x R core tensor G, the generic element of which, g/,
expresses the strength of the interaction among factor p for the observation mode,
factor ¢ for the variable mode, and factor r for the occasion mode. Note that in (9)
G4 denotes the observation mode matricization of G.

The CP and T3 models are closely related. If P=Q =R = S and G has a su-
peridentity structure (g,4- = 1 when p = g = r and 0 otherwise), then it is easy to
see that formulas (8) and (9) coincide. Therefore, the CP model can be seen as a
constrained version of the T3 model where the same number of latent factors is as-
sumed for all the modes and each factor of a certain mode interacts with exactly one
factor of the other modes. This produces some relevant distinctions between the two
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models. The T3 model is more general than the CP model, but the solution is not
identified. Equally well-fitting solutions can be found by rotating the factor matrices
and compensating for such rotations in the core. On the other hand, the CP model
has a more parsimonious structure and the solution, as mentioned, is identified. For
this reason, we focus our attention on the CP model.

If the latent factors of F are correlated, the covariance structure of the data in-
duced by the CP model takes the form (see also [17])

(COB)Q(CoOB) +X. (10)

Hence, under the same assumptions adopted in the two-way case, the model for the
ith observation in the tensor case is

yi|B,C,Q2,X ~N(0,(Co>B)Q(C>B) +X). (11)

A Bayesian CP model can be developed as a natural generalization of the two-
way model presented previously. The prior of Section 2.1 can again be used for
the factor correlation matrix £2. For the elements of B and C, we can again use
global-local shrinkage priors which favor a nearly sparse structure. The uniqueness
of the CP solution up to scaling and simultaneous permutation of the columns of B
and C implies that we only need to worry about column switching in the posterior
samples, since the prior distributions for B and C fix their respective scales. Two
solutions are a relabeling scheme in the style of [18] or simply fixing particular
elements of B or C to be zero so that the columns can no longer be permuted.
The Bayesian CP model enjoys the same advantages as the two-way oblique factor
model. In particular, we hope to demonstrate that allowing (but penalizing) latent
factor correlation and applying a shrinkage prior on the factor loadings leads to a
general yet interpretable CP model.

4 Inference

For inference, we use geodesic Monte Carlo [6]. Geodesic Monte Carlo extends
Hamiltonian Monte Carlo [16] to certain special manifolds which can be embed-
ded in Euclidean space, such as the simplex, the unit sphere, or the Stiefel man-
ifold. Like Hamiltonian Monte Carlo, geodesic Monte Carlo can generate distant
Metropolis-Hastings proposals with a high probability of acceptance, ideally lead-
ing to a rapidly-mixing Markov chain with low autocorrelation. As described in [6],
sometimes parallel tempering [10] is required to move between isolated modes of
the posterior distribution.
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