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ABSTRACT 
 
Photovoltaic (PV) technology for renewable energy utilization is constantly growing throughout 
the world. This widespread application is going to determine the disposal of large amounts of 
wastes (as end of life panels): only in Europe about 500,000 ton/year are expected in the next 20 
years. European Union issued the Guideline 2012/19/EU in order to fix rules about end of life 
photovoltaic panel’s treatment establishing both collecting rates and minimum recovery targets. 
Currently the dominant PV technology uses crystalline silicon (monocrystalline and 
polycrystalline) as semiconductor, but the thin film photovoltaic modules using cadmium 
telluride (CdTe), amorphous silicon, Copper Indium Gallium Selenide (CIGS) and Copper 
Indium Selenide (CIS) are recently getting much more importance. Wastes of PV installations 
are secondary raw materials which could be treated in order to recover glass and Al, but also 
other metals such as Cu, Ti, Ag, Te, In, Se, Ga, along with plastic and metallic components of 
electronic equipment.              
Many recent efforts were devoted to treatment of end of life panels, but only two full scale 
processes were developed for crystalline silicon modules (Deutsche Solar) and CdTe panels 
(First Solar). Further recent developments concerned with new technologies designed for treating 
together more kinds of photovoltaic panels by automated processes. In this work a picture of the 
PV world in terms of market, typology, waste dynamics and recoverable materials will be given. 
A description of full scale processes will be reported evidencing products and yields of recovery. 
A case study of process development for the simultaneous treatment of different kinds of PV 
panels will be presented. In particular experimental results in lab and pilot scale will be described 
regarding the development and optimization of a process including both physical pretreatment 
and hydrometallurgical recovery of target metal concentrates. 
 

INTRODUCTION 
 
Photovoltaic Technologies 
 
Photovoltaic installations during the last years have been growing exponentially with European 
PV markets accounting for 80% of global demand. Recent reduction (2011) in subsidy levels 
across the major European markets didn’t have a decisive effect due to emerging markets such as 
India, US, Canada, Australia and others countries which are going to have a great deal of growth 
momentum, which could even be sufficient to offset the impact of weakening European demand. 
In Figure 1 the trend of global installation in the last years is reported evidencing the previously 
described trend. 
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In Table 2 materials and rare metals which could be recovered by the different types of 
photovoltaic panels are reported along with their actual price and future exploitation previsions2. 
 
Materials  Price (euro/Kg) Type of PV  Estimated future 

demand 
Current 
recycling rate 

Glass 0.05 Crystalline Si, 
amorphous Si, 
CdTe, CIS, 
CIGS, CPV and 
emerging 
technologies 

low 64% 

Aluminum 1.2 Crystalline Si, 
amorphous Si, 
CdTe, CIS, 
CIGS, CPV and 
emerging 
technologies 

medium 41-95% 

Ag 650 Crystalline Si high 30-50% 
In 442 Amorphous Si, 

CIS, CIGS 
medium Limited but 

increasing  
Ga 515 CIGS, CPV and 

emerging 
technologies 

medium 20% 

Ge 957 Amorphous Si, 
CPV and 
emerging 
technologies 

low 30% 

 
Table 2. Recoverable materials from different types of photovoltaic panels. 
 
Projections of end of life panel amounts that will be disposed of in the next years are reported in 
Figure 4 showing that huge amounts of these wastes are expected for 2035 and that thin film 
types will increase steadily over the years2. 
 
Recycling Technologies 
 
Scientific literature and patent survey denoted the use of different kinds of treatments for 
photovoltaic panel treatment: mechanical treatments (crushing, attrition, density separation, 
flotation), thermal treatments (incineration, pyrolysis, melting) and chemical treatments 
(acid/base treatment solvent treatment).  
Even though a number of treatments were tested for photovoltaic recycling in laboratory scale 3-8 
there are currently only two processes that have been tested in large scale: the Deutsche Solar 
process and the First Solar process. 
Deutsche Solar process was launched in Germany in 2003 and halted due to its costliness for the 
low quantities of photovoltaic panels at that time and the low automation level of the process.  
Deutsche Solar process was designed for crystalline silicon panels to recover silicon wafer in 
intact solar cells by manual dismantling according to the process scheme reported in Figure 5. 
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Figure 4. Projections of amounts of wastes (ton) disposed of during next years in EU 

countries. 
 
 

 
 
Figure 5. Block diagram for Deutsche Solar process for crystalline Si recycling. 
 
 
Main process steps are: 

 Heating and manual separation of wafers 
 Manual separation of intact solar cells  
 Chemical treatment of solar cells for the removal of metallization layer,  
 Chemical treatment of solar cells for the removal of antireflective coating  
 Chemical treatment of solar cells for the removal of n doped layer 

Glass and metals manually separated after initial thermal treatment were recycled according to 
conventional process routes. 
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Main disadvantages of the process are the manual treatment of panels, the use of sequences of 
thermal and chemical operations involving mineral acids for solar cell treatment, the use limited 
to crystalline silicon panels. 
First Solar process is currently operated in United States, Germany and Malaysia and is primarily 
used for CdTe panels treatment according to the process scheme reported in Figure 6.  
The process consists of the following steps: 

 Crushing and grinding 
 Removing the semiconductor film by leaching with sulfuric acid and hydrogen peroxide. 
 Physical separation EVA-glass through mechanical operations: classification and 

vibrating screen 
 Precipitation of metals by addition of sodium hydroxide 

In this process there is the recovery of 90% of the glass and about 95% of cadmium and 
tellurium which must still be subjected to a purification step. 
 
 

 
 
Figure 6. Block diagrams of First Solar process for CdTe panel recycling. 
 
 
Main disadvantages of First Solar process is the treatment of the whole amount of waste by 
hydrometallurgical treatment and the use limited to CdTe panels. 
In this work experimental results were reported for an innovative process for the treatment of 
different kinds of panels (crystalline Si, amorphous Si, CdTe) according to the same process 
scheme including a pretreatment section and a hydrometallurgical section (Figure 7).  
All physical pretreatments were performed in conventional equipment easily available for waste 
collectors not requiring specific design and high investment costs. 
Then a simple and flexible process route, not requiring specifically designed equipment and high 
investments, can be used in order to make easily available and economically feasible the 
valorization of different kinds of photovoltaic panels in the same plant.  
The specific sequence of physical operation was determined trying different combinations of 
crushing (single and multiple), milling (hammer mill and attrition mill) and thermal treatment9. 
Experimental results here reported referred to the optimal configuration tested for physical 
treatment. 
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Figure 7.  Schematic representation of the treatment of end of life panels according to the 

presented process scheme valid for different kinds of photovoltaic panels.   
 
The process here discussed includes: 

 manual dismantling of all electronic equipment (printed circuit boards) for the integral 
recovery of plastics and of precious metals therein (such as Cu, Au, Ag and Pd)  

 manual dismantling of frames for the integral and direct recovery of aluminum, 
 physical and chemical pretreatment of panels for glass recovery: automatic shredding of 

panels gives three fractions: a coarse fraction (containing EVA agglomerates), an 
intermediate fraction (directly recoverable as glass), a fine fraction (sent to 
hydrometallurgical section for metal recovery). The coarse fraction was thermally or 
chemically treated by solvents for EVA dissolution, then sieved giving further portions of 
intermediate fraction and fine fraction. 

 hydrometallurgical section for metal recovery: fine fractions are treated by acid and/or 
alkaline leaching for extraction of Te, Zn and Al, Fe and Cd, giving a residual solid as a 
concentrate of Ti, Ag and Si. 

This approach has the advantage that only a small fraction of treated wastes (about 10-20% in 
weight) is treated for metal recovery by hydrometallurgical operations, requiring small units for 
such treatment and then low cost of investments. 
Si recovery was not specifically addressed for different reasons: 

 very low % of this constituent in photovoltaic panels (less than 1% still decreasing in new 
commercial products), 

 recent dramatic diminution of electronic Si price (from 400$/Kg of 2008 to the current 
200-40$/Kg) 

 recent development in electronic Si production estimating 8$/Kg as final price. 
Over all these reasons it should be also evident that the cost of electronic Si used in panel 
construction is not due to the cost of raw material but to the cost of production. Then except 
when a manual dismantling of Si cells is performed on intact panels (which is only a part of end 
of life panels), the recovery of reusable electronic Si cannot be technically and economically 
feasible. 
 

MATERIALS AND METHODS 
 
Experimental results reported in this work were obtained by using different kinds of photovoltaic 
panels: polycrystalline silicon module (BYD-230P6-30), monocrystalline silicon module 
(SHARP NT-175E1/NT-R5E3E), amorphous silicon PV module (Sharp NA-901 WQ), CdTe PV 
module (First Solar FS2).  



The silicon devices were previously manually disassembled in order to separate the modules 
from external frames and then, in each test, around 2 kg of photovoltaic modules were used as 
input materials. 
Three successive crushing operations were carried out in a two blade rotors crusher (DR120/360, 
Slovakia) without any controlling sieve.  
After size reduction, a sieving analysis was carried out to evaluate size and products distribution 
as well as mass fluxes in the process. For this purpose all samples were sieved by using 5 
different sieves (8 mm, 5 mm, 1 mm, 0.4 mm, 0.08 mm) and an automatic shaker, then they were 
weighed.  
Coarse fraction (d > 1 mm) was treated at 650 °C for 1 hour in a silite resistance furnace or with 
a mixture of acetone and cyclohexane  aiming to a complete degradation of cross-linked EVA. 
0.2 g samples of recoverable glass fractions (0.4-5 mm) were tested by thermo gravimetric 
analysis to evaluate residual EVA traces after thermal treatment. 
0.2 g samples of recoverable glass fractions from CdTe panels were digested using sulfuric acid 
(9 ml of a 96% solution) and hydrogen peroxide (1 ml of a 35 % vol solution) at 220 °C in  a 
microwave digester (Milestone Ethos 900 Microwave Digestor). Liquid samples were filtrated 
and analyzed by Atomic Absorption Spectrophotometer, AAS (Analytik Jena ContrAA 300) for 
the determination of dissolved Cd. 
Fine fractions to be treated in hydrometallurgical section (d< 0.4 mm) were characterized by acid 
digestion with aqua regia (HNO3+HCl) and liquid samples analyzed by AAS. 
Preliminary leaching tests in lab scale were performed. Acid leaching of fine fractions of 
monocrystalline, polycrystalline and amorphous Si were performed in 100 ml leach solutions 
prepared using H2SO4 5M and 5 ml of H2O2 (30%) with a solid liquid ratio 1:3 for 3 h at 60°C. 
After solid liquid separation by centrifugation the liquid was analyzed by AAS and the solid was 
further leached by using H2SO4 10 M and H2O2 (25 ml) at 100°C for 1h. 
Basic leaching on the fine fraction from CdTe panels were performed using a solution with 
NaOH 5M and H2O2 at 100°C for 3 h varying the solid/liquid ratio (0.5 g/50 ml and 1 g/50 ml) 
and leaching temperature (40 and 80 °C) according to a factorial design. Liquid samples after 
solid/liquid separation were analyzed for extracted metals by AAS. 
 

RESULTS AND DISCUSSION  
 
Physical Pretreatments 
 
Experimental results of physical pretreatment on the different types of photovoltaic module gave 
similar results in terms of weight distribution in the different size classes (Figure X).  
 

 
 
Figure 8. Particle size distribution in mm for the different panel types after triple crushing. 
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hand the fine fraction resulting from CdTe treatment can be leached by alkali for sequential 
extraction of Te, Al and Zn leaving a concentrated containing Cd which can be further treated by 
acid leaching to extract Cd. Otherwise if no preliminary separation is performed between Si-
panels (crystalline and amorphous) and CdTe panels, the fine fraction can be treated in the 
hydrometallurgical section according to a sequential scheme of basic and acid leaching allowing 
the separation of the different metals. 
Preliminary experimental results of sequential leaching performed using fine fractions emerging 
from pilot plant tests were reported here. 
Fine fractions emerging from monocrystalline, polycrystalline and amorphous Si panels were 
preliminary leached in mild conditions to extract Zn, Al and Fe (Figure 16). Residual solid 
mainly containing Ti, Si and Ag was further treated in stronger leaching conditions in order to 
extract Ti (Figure 16). By this way a final residual solid containing Ag and Si was obtained.  
 

 
 
Figure 16. Sequential leaching of Zn, Al, Fe and Ti using the fine fractions of Si panels. 
 
 
Experimental results of basic leaching in different operating conditions denoted that Cd 
extraction is always zero, while a selective extraction of Te can be obtained working at 80 °C 
(Figure 17). 
After this step extraction the residual containing Cd can be further treated by acid or directly 
inertised being 5-10% of initial waste. 
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Figure 17. Extractive yields of Al and Te in different basic leaching conditions using fine 

fraction form CdTe panels. 
 
 

CONCLUSIONS 
 

In this work a review of the status of the recycling activities for photovoltaic panels was reported 
along with pilot scale experimental results for the treatment of various types of panels according 
to the same process route.  
This process allowed 70% recovery of the module weight (without frame and other equipment) 
as glass and the treatment by hydrometallurgical operations of only the 20% of the module 
weight. 
A pilot scale installation with a potentiality of 200 ton/year is going to be realized including 
physical pretreatment and solvent treatment for the recovery of aluminum and glass from end of 
life panels, in which the previously described route will be assessed. This pilot plant will 
comprehend the operations described in Figure 18.  
Fine fractions and electronic equipment included in photovoltaic installations will be treated 
according to hydrometallurgical operations in a mobile pilot plant already built within FP7 
founding scheme (HydroWEEE project). 
After fulfilling of targets related to photovoltaic panels the same integrated units (physical 
pretreatment and hydrometallurgical section) will be used to implement the pretreatment section 
in other processes already developed for the hydrometallurgical section for similar wastes such 
as liquid crystal display (HydroWEEE DEMO project). 
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Figure 18.  Block diagram for the pretreatment operations included in the pilot plant unit. 
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