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ABSTRACT
As freelancing work keeps on growing almost everywhere due to a

sharp decrease in communication costs and to the widespread of

Internet-based labour marketplaces (e.g., guru.com, feelancer.com,

mturk.com, upwork.com), many researchers and practitioners have

started exploring the benefits of outsourcing and crowdsourcing [13,

14, 16, 23, 25, 29]. Since employers often use these platforms to find

a group of workers to complete a specific task, researchers have

focused their efforts on the study of team formation andmatching al-

gorithms and on the design of effective incentive schemes [2–4, 17].

Nevertheless, just recently, several concerns have been raised on

possibly unfair biases introduced through the algorithms used to

carry out these selection and matching procedures. For this reason,

researchers have started studying the fairness of algorithms related

to these online marketplaces [8, 19], looking for intelligent ways

to overcome the algorithmic bias that frequently arises. Broadly

speaking, the aim is to guarantee that, for example, the process of

hiring workers through the use of machine learning and algorith-

mic data analysis tools does not discriminate, even unintentionally,

on grounds of nationality or gender.

In this short paper, we define the Fair Team Formation problem in

the following way: given an online labour marketplace where each

worker possesses one or more skills, and where all workers are

divided into two or more not overlapping classes (for examples,

men and women), we want to design an algorithm that is able to

find a team with all the skills needed to complete a given task, and

that has the same number of people from all classes.

We provide inapproximability results for the Fair Team Formation
problem together with four algorithms for the problem itself. We

also tested the effectiveness of our algorithmic solutions by perform-

ing experiments using real data from an online labor marketplace.
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1 INTRODUCTION
An online labour marketplace is defined as a web application where

workers can sell their services and skills in a fluid and delocalised

fashion. Usually, employers pay workers hourly to complete a spe-

cific task without offering them any long-term employment ar-

rangement. The OECD data on self-employment estimates that

between 10% and 20% of workers in developed countries are self-

employed, while it is estimated that in 2020, a full 40% of the US

workforce will be freelancers [18].

While crowdsourcing adoption was driven, at least in part, by the

assumption that problems can be decomposed into parts that can

be addressed separately by independent workers, recent work sug-

gests that crowdsourcing results can be improved by allowing some

degree of collaboration among them [21, 26]. The idea of combining

collaboration with crowdsourcing has led to research on Team For-
mation [1–3, 7, 9, 11, 15, 17, 20, 22, 28], in which a common thread

is the need for complementary skills, and definitions differ in as-

pects such as objectives (e.g., load balancing and/or compatibility),

constraints (e.g., worker capacity), and algorithmic set-up (online

or offline).

As previously mentioned, these online marketplaces are largely

managed through automatic algorithms designed to match sup-

ply and demand. Nevertheless, the objective of optimising a given

task, which these algorithms are usually based on, goes openly

against the need to ensure fairness and diversity, for example, in

the composition of groups. We define unfair discrimination as treat-

ing someone differently on the base of his group membership, and

not his merit. Since algorithms are "black boxes" usually protected

by industrial secrecy, legal protections and even intentional ob-

fuscation, most of the times discrimination becomes invisible, and

mitigation impossible [12]. For this reason, data scientists and re-

searchers have developed the disparate impact theory [8] whose

aim is to spot unintended discrimination in algorithms outcomes.

Among the many different sources of the bias on the Web, the one
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that directly concerns us in the research of a solution for the Fair
Team Formation problem is the algorithmic bias, that occurs when
the bias is added by the algorithm itself or by the way this algorithm

manages the bias present in the data it crunches.

Overview of problem setting and assumptions. In our frame-

work, both workers and tasks are represented by sets of skills. Each

skill of the task is possessed by at least one worker, while each

worker has a defined cost and belongs alternately to one of two

classes. In this setting, we consider the problem of finding the

cheapest team of workers that together have all the necessary skills

to complete the task, and that is made up of the same number of

workers from both classes (fairness constrains). We call this general

problem Fair Team Formation, which we formally define in Section

2 and solve in Sections 3-4.

Algorithmic techniques. To the best of our knowledge, we are

the first to consider the Fair Team Formation problem, namely the

weighed Set Cover problem with some fairness constraints imposed.

As shown in section 3, the Fair Team Formation is NP-hard and in-

approximable, for this reason the only thing we could do was to

look for some algorithms that would function well in practical sit-

uations. Now, considering that our problem is closely related to

the Set Cover problem [6, Chapter 35], it seemed natural to start

from a reasoning similar to the one behind the Greedy Set Cover

algorithm [27]. In the next sections, then, we will present four algo-

rithms we developed to solve the Fair Team Formation problem: the

first three are partially based on the Greedy Set Cover algorithm,

while the fourth is a rounding algorithm based on the linear pro-

gramming formulation of the Fair Team Formation problem.

Furthermore, since we are not able to calculate the value of the

optimal solution in reasonable time, we have built a lower-bound

for the cost of the optimal solution of the Fair Team Formation
problem by solving the relaxed Linear Programming formulation

of our problem. This lower-bound came in handy when we had to

evaluate our algorithms performance.

Contributions. The key contributions of our work are:

• We formalise the Fair Team Formation problem, which is the

problem of finding the cheapest team that can complete the

task and, at the same time, that counts the same number of

people from two not overlapping classes.

• We design four algorithms for solving our problem.

• We experiment on real data based on actual task require-

ments and worker skills from one of the largest online labor

marketplaces, testing algorithms under a broad range of

conditions.

2 PRELIMINARIES
In this section, we formally describe our setting and problem, and

provide some necessary background.

2.1 Notation and Setting
Skills. We consider a set S of skills with |S | =m. Skills can be any

kind of qualification a worker can have or a task may require, such

as video editing, technical writing, or project management.

Tasks.We consider a set of J tasks (or jobs). Each task J ∈ J is

independent, and requires a set of skills from S , therefore, J ⊆ S . In

Table 1: Notation

S Set of skills, sizem
J Set of tasks

W Set of workers, size n.
W r

ℓ
= 1 if worker r possess skill ℓ, 0 otherwise

Pℓ Subset of workers possessing skill ℓ

C the two classes {class1, class2}

our setting we do not consider a streaming of tasks, but rather we

take each task as a single instance of the problem.

Workers. Throughout we assume that we have a setW of n work-

ers:W = {W r
; r = 1, . . . ,n}. Every worker r possesses a set of

skills (W r ⊆ S). Similarly to the tasks, we useW r
to denote both

the worker and his/her skills. Moreover, each worker has a hiring

cost, and belongs alternately to one of two not overlapping classes.

Classes. The workforce is split in two not overlapping classes

C = {class1, class2}, for example women and men.

Coverage of tasks.Whenever task J ⊆ S arrives, an algorithm has

to assign one or more workers to it, i.e., a team. We say that J can be

completed or covered by a team Q ⊆ W if for every skill required

by J , there exists at least one worker in Q who possesses this skill:

J ⊆ ∪W ∈QW . We assume that for every skill in the incoming task

there is at least one worker possessing that skill, so all tasks can be

covered.

2.2 Problem Definition
We now define the problem that we study:

Problem 1 (The Fair Team Formation problem). There exists
a set of skills S . We have a pool of workersW , where each worker
W r ∈ W is characterised by a subset of skillsW r ⊆ S , a hiring
cost cr ∈ R≥0, and belongs alternately to one of two not overlapping
classes, C = {class1, class2}. Given a task J ∈ J , the goal is to
design an algorithm that, when task J arrives, decides which workers
to hire such that all the tasks are covered by the workers who are
hired, the total cost paid over all the tasks is minimised, and the team
formed is made up of the same number of workers from both classes,
C = {class1, class2}.

One special case of the Fair Team Formation problem, where no

fairness constraints are imposed, is the Weighed Set Cover problem.

This problem can be effectively addessed through a greedy approach

(see [30, Chapter 2]). As shown by Slavik [27], this greedy algorithm

has an approximation ratio of logn − log logn + Θ(1) [27]. Unfor-
tunately, this result does not hold true for the Fair Set Cover that is

the algorithmic core behind the Fair Team Formation problem.

3 INAPPROXIMABILITY & LOWER-BOUND
First, we will show that the Fair Team Formation problem (i.e. the

Fair Weighted Set Cover problem) is inapproximable, then we will

present two different lower-bounds that we can easily calculate,

and use later on to evaluate the quality of the solutions found by

our four algorithms.
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3.1 Inapproximability of the Fair Set Cover
Problem

Cover problems on hyper-graphsH (V ,E,w ) aim to find a subset S ⊂
E such thatv ∈ ∪Si ∈SSi for everyv ∈ V andw(S) is minimised. The

vertex cover problem is a special case where we are given a graph

G (V ′,E ′) and aim to find a subset S ′ ⊂ E ′ such that every edge

e ∈ E is incident to at least one node of S ′. In terms of hyper-graphs,

V corresponds to E ′ and each hyper-edge hv ∈ H corresponds to

the set of edges incident to v .
Given a coloring c : V → {red,blue} of G, we consider a set of

vertexes S ⊂ V to be fair, if |S ∩RED| = |S ∩BLUE|. The fair vertex
cover problem consists of finding a minimum vertex cover under

the constraint that it is fair. Note that unlike the unconstrained

fair vertex cover, such a set may not exist in general. Similarly,

given a coloring of the sets c : E → {red,blue} the fair set cover
problem consists of finding a minimum set cover S ⊂ E such that

|S ∩RED| = |S ∩BLUE|. We note that generally fair covers need not

exist. This feature will allow us to show the following impossibility

result.

Theorem 3.1. Computing any finite approximation of the fair
vertex cover problem is NP-hard.

Proof. Let G (V ,E) be a graph, where we consider V to be red.

Given an integer k , it is NP-hard to determine whether there exists

a vertex cover of size at most k [10]. We add k blue vertexes V ′. If
there exists a fair vertex cover in G ′(V ∪V ′,E), then it can consist

of at most k blue vertexes. Since any finite approximation of the

fair vertex cover algorithm in particular determines the existence

of a fair vertex cover, it also solves the decision problem of vertex

cover. Hence, computing any finite approximation of the vertex

cover is NP-hard. □

Corollary 3.2. Computing any finite approximation of the fair
set cover problem or the fair group Steiner tree problem is NP-hard.

Proof. Both problems contain the vertex cover problem as a

special case [10, 24]. □

Finally, it is worth noting that for the unweighted version of

the Fair Set Cover problem (i.e. all workers have the same cost),

and under the enough workers assumption, we can build a simple

algorithm whose approximation factor is equal to |C |H ( |T |).

3.2 Lower-bound
When trying to solve an instance of the Fair Set Cover problem,

we are often unable to calculate the value of the optimal solution

in reasonable time; therefore, we are forced to use algorithms that

find only a suboptimal solution to the problem. For this reason, it is

important to have a lower-bound which we are sure that the value

of the optimum would never go below. Obviously, a first really

trivial lower-bound (TLB) is represented by the cost of the solution

we obtain when the Greedy Set Cover is applied to the Fair Set

Cover instance (after eliminating the fairness constraints), divided

by its approximation factor; namely:

TLB =
Cost (GreedySetCoverSolution)

log(n) − log(log(n)) + 3. + log(log(32)) − log(32)
(1)

ALower-Bound from theRelaxed LP formulation of the Fair
Set Cover problem. A computationally feasible and mathemati-

cally elegant way to calculate a better lower-bound for the Fair Set

Cover problem is to solve its relaxed Linear Programming formula-

tion. In a nutshell, we formulate the Fair Team Formation problem

as an Integer Linear Programming problem, and then we relax its

constraints. In this way, we obtain a Linear Programming problem

that is solvable in polynomial time and whose solution always costs

no more than the optimal solution that we would get if we were

able to solve the integer linear programming. The Relaxed Linear

Programming formulation of the Fair Set Cover problem is the

following:

Relaxed Linear program for the Fair Set Cover problem:




min

|W |∑
i=1

cixi

s .t .
∑

i :s ∈Wi

xi ≥ 1 ∀s ∈ T

and xi ∈ [0, 1] ∀i ∈ {1, ..., |W |}

and

|W |∑
i=1

kixi = 0

Where xi assumes either value 0 or 1, depending on whether the

ith worker is hired or not; ci is the worker i hiring cost, and ki
is equal to -1 if worker belongs to class1, or to 1 if he belongs to

class2.

4 THE FAIR TEAM FORMATION PROBLEM
Given the previous restrictive result, in this section, we provide four

algorithms to solve the Fair Team Formation problem. Considering

that the Fair Team Formation problem has a lot in common with

the Set Cover problem, it seemed natural to start from a reasoning

similar to the one behind the Greedy Set Cover algorithm. Therefore,

algorithms 1, 2, 3 are partially based on the Greedy Set Cover

algorithm, while algorithm 4 is a rounding algorithm based on

the linear programming formulation of the Fair Team Formation

problem. The only assumption we made is that there is always

a team of workers that together have all the necessary skills to

complete the task we are handling. In other words, the task is

always coverable.

Fair Padding Greedy Set Cover algorithm. The first algorithm
we came up with is a simple extension of the Greedy Set Cover

algorithmwhere the cheapest workers of the class whose cardinality

is lower are added to make the team fair. Algorithm 1 shows its

pseudocode.

486



WWW ’19 Companion, May 13–17, 2019, San Francisco, CA, USA Barnabò et al.

Algorithm 1 FairPaddingGreedySetCoverAlgorithm

Input: (W, J ).
Ouput: FairTeamW ⊆W.

1: W0 ← GreedySetCoverAlgorithm(W, J)

2: if W0 is not balanced (i.e. different number of workers from

the two classes) then
3: W1 ←W0∪GetCheapestWorkers (W ,W0,MinorityClassCard .)

4: ReturnW1

5: else
6: ReturnW0

7: end if

The time complexity of this algorithm is equal to the time com-

plexity of the Greedy Set Cover algorithm, namely: O ( |W| |J |2).
Fair Alternating Greedy Set Cover algorithm. Let’s start by
defining the marginal utility of each worker (WMU) as:

WMU =
WorkerCost

|SetO fWorkerSkills ∩ SetO f TaskSkillsNotCoveredYet |
(2)

Heuristically, at each stage, the AlternatingGreedySetCoverAlgo-

rithm chooses the worker with the lower marginal utility alternat-

ing the class of workers within which it picks. Algorithm 2 shows

its pseudocode.

Algorithm 2 FairAlternatingGreedySetCoverAlgorithm

Input: (W , J ).
Ouput: FairTeamW ⊆W.

1: W1 ← AlternatingSetCover(W, J, StartingClass = 1)

2: if W1 is not balanced (i.e. different number of workers from

the two classes) then
3: W1 ←W1∪GetCheapestWorkers (W ,W1,MinorityClassCard .)
4: end if
5: W2 ← AlternatingSetCover(W, T, StartingClass = 2)

6: if W2 is not balanced (i.e. different number of workers from

the two classes) then
7: W2 ←W2∪GetCheapestWorkers (W ,W2,MinorityClassCard .)
8: end if
9: Return the cheapest team betweenW1 andW2

Also in this case, the time complexity is: O ( |W| |J |2).
Fair Pairs Greedy Set Cover algorithm. Algorithm 3 is particu-

larly simple and intuitive. Essentially, it is the application of the

Greedy Set Cover algorithm to all possible pairs of workers. This

idea has been suggested by [5]. Algorithm 3 shows its pseudocode.

Algorithm 3 FairPairsGreedySetCoverAlgorithm

Input: (W , J ).
Ouput: FairTeamW ⊆W.

1: WPairs ← PairsGenerator(W)

2: W0 ← CoupleGreedySetCover(WPairs , J)

3: ReturnW0

Unlike the previous three algorithms, in this case the time com-

plexity is: O ( |W|2 |J |2). The |W|2 factor is due to the fact that the

greedy algorithm for the set cover problem has as input the set of

all unordered couples of workers.

Relaxed Fair SetCoverRounding algorithm.Algorithm 4 solves

the relaxed linear programming formulation of the Fair Team For-

mation problem assigning to each worker a real number between 0

and 1: this number could be interpreted as the worker’s probability

to be hired. Then, it continues by creating random teams of workers

using these probabilities until it finds a team that is both fair and

able to complete the task.

Algorithm 4 RelaxedFairSetCoverRoundingAlgorithm

Input: (W, J ).
Ouput: FairTeamW ⊆W.

1: HirinдProbabil ityV ector ←FairTeamFormationRelaxedLP(W,

J)

2: WSor ted ← SortAccordinдToProbabilityVector (W)
3: while ¬(W balanced ∧ task skills are all covered) do
4: W ← EmptyTeam
5: forw ∈WSor ted do
6: add w to W with probability equal to

HirinдProbabil ityV ector (w )
7: if (W balanced ∧ task skills are all covered) then
8: Return W

9: end if
10: end for
11: end while
12: Return W

5 EXPERIMENTS
In this section, we will present some experiments that we ran on a

real dataset to evaluate the algorithms’ performance by comparing

their cost.

5.1 The Freelancer dataset
To create a large pool of tasks and workers needed to test the algo-

rithms, we decided to use a dataset obtained from Freelancer.com:

the largest online marketplace for outsourcing in its category ac-

cording to data from Alexa (Feb. 2018). The input data that we

obtained contain anonymised profiles from people registered as

freelancer in this marketplace. This includes their self-declared

sets of skills, as well as the average rate that they charge for their

services. Data have been cleaned to remove skills that were not

possessed by any worker, and skills that were never required by

any task. Concerning tasks, we had access to a large sample of

tasks commissioned by buyers in the marketplace. Some relevant

characteristics of our data are summarised in table 2.
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Table 2: Freelancer Dataset Characteristics

Dataset Freelancer
Skills (m) 175

Workers (n) 1,211

Tasks (T ) 992

...distinct 600

Average Skills/Worker 1.45

Average Skills/Task 2.86

As shown above, our dataset contains 992 tasks, but since many

of them require exactly the same set of skills we decided to take

into account only the 600 distinct tasks. The average number of

skills per worker is 2.86 and the maximum is 6 skills.

Experiments Design. In the first place, we split the 1211 Free-

lancer workers into two different classes, and we considered six

different compositions of the two groups. In brief, we used a random

procedure to select respectively 10%, 30%, and 50% of all workers,

and we assigned these workers to one of the two classes, while the

remaining to the other. After that, for each of these configurations,

we ran the four algorithms we designed to solve the Fair Team

Formation Problem, obtaining fair teams to complete each of the

600 tasks.

5.2 Experiments
As shown in figure 1, we observe a shift to the left in the distribu-

tion, as the workforce becomes more balanced. In most cases the

price of the fair team is no more than four times the value of the

best lower bound (LB), although for a few tasks the FairAlternat-

ingGreedySetCoverAlgorithm finds solutions that are even eight

times the value of the lower bound. It is also worth noting that the

progressive balancing of workers’ colours has a significant effect

on all algorithms, except for the RelaxedFairSetCoverRoundingAl-

gorithm whose cost (cost_RLP) distribution remains more or less

consistent as the workforce changes. Moreover, from figure 1 we

can see that all distributions are concentrated around a value of

2, indicating that our algorithms have an heuristic approximation

ratio of 2, at least on this specific dataset.

In summary, histograms in figure 2 give us some important in-

formation about the overall algorithms performance, obtained by

choosing the less expensive fair team among the four on a case-by-

case basis. The balance between the two classes of workers does not

influence the cost distributions suggesting that some algorithms

are able to efficiently address the problem of strong unbalances

between the two groups of workers; second, we can observe that

the best solution cost is never more than four times the value of its

best lower bound, and it rarely exceeds a factor of two.

To conclude, the RelaxedFairSetCoverRoundingAlgorithm beats

them all: it was able to find a team whose cost is equal to the best

solution cost in no less than 66% of cases, and with an average suc-

cess rate of 85% (all configurations of colours considered). On the

contrary, the FairPaddingGreedySetCoverAlgorithm always had

the worst overall performance, never reaching a success rate higher

than 70%.

6 CONCLUSIONS & FUTUREWORK
In this work, we have defined the Fair Team Formation problem,

that is a variation of the Set Cover problem where each subset is

assigned a colour, and whose goal is to find the cheapest collection

of subsets that both covers the input set, and that is made up of the

same number of subsets of each colour.

Despite the discovered inapproximability results, in particular for

the Fair Team Formation problem, we have focused our research

on the design and implementation of four algorithms for that prob-

lem, and we have also tested them on a real dataset. From the

experiments we conducted on the Freelancer dataset, it turned

on that the FairAlternatingGreedySetCoverAlgorithm and the Re-

laxedFairSetCoverRoundingAlgorithm outperform both the Fair-

PaddingGreedySetCoverAlgorithm and the FairPairsGreedySetCov-

erAlgorithm in almost every case we considered, both in terms of

solutions cost and in terms of solutions size. Overall, among these

four algorithms, it seems more reasonable to opt for the Relaxed-

FairSetCoverRoundingAlgorithm. We can conclude that, even if the

problem is not approximable in its weighted version, the algorithms

we designed could be effectively used in practical contexts, and are

able to find good solutions to many instances of the problem, at

least in the limited case presented in the experiments chapter.

Throughout this paper, we assumed that all workers in the work-

force can be hired to complete each task; in other words, when

creating a team for any task, algorithms can pick team members

among all workers who make up the workforce: this is a pretty

strong and unrealistic assumption since usually workers have a

limited available time; therefore, in the future, it could be inter-

esting to extend this research further by considering a stream of

tasks, or by limiting the number of times each worker can be hired.

Now, coherently with the scientific literature on Team Formation,

another possibility worth of some consideration is the introduction

of a social network among workers; this would lead to the emer-

gence of new interesting research questions, such as finding a fair

team that minimises the distance among workers. Finally, to make

this research more exhaustive, it could be convenient to study how

the behaviour of Fair Team Formation algorithms changes with

different datasets. Our experiments were, in fact, limited to tasks of

no more than 6 skills, and to a workforce of only 1211 workers. We

think that moving forward with this research could lead to some

really useful and interesting results that, in turn, could help mar-

ketplaces designers, as well as policy makers, to better engineering,

managing, and regulating these platforms.
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(f) Fair Alternating Algorithm
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(g) Fair Pairs Algorithm
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(h) Relaxed Fair Rounding Algorithm
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(i) Fair Padding Algorithm
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(l) Relaxed Fair Rounding Algorithm

Figure 1: Distribution of solutions cost over best lower bound for three different class balances.
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Figure 2: Distribution of best solution cost over best lower bound for three different class balances.
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