
Artificial Intelligence and Turbulence
Modeling

Development of data-driven tools for RANS models in
Turbomachinery Flows

Department of Astronautical, Electrical and Energy Engineering,
Sapienza University of Rome

PhD Candidate:
LORENZO TIEGHI

Supervisor:
PROF. ALESSANDRO CORSINI

Co-supervisor:
PROF. GIOVANNI DELIBRA

A dissertation submitted in partial satisfaction of the requirements for
the Doctor of Philosophy degree in Energy and Environment, XXXII cycle

Oct. 2019

”To Antonio and Ester”

Contents

1 Introduction 21
1.1 Internal Flows in Turbomachinery 22
1.2 Experimental Fluid Dynamics 25

1.2.1 Computational Fluid Dynamics 26
1.3 Learn by Observations 27
1.4 Learn by Data . 30
1.5 Outline of the Dissertation 32

Abstract 20

2 Turbulence Modeling in the Big Data Era 33
2.1 Turbulence: A Big Data Perspective 34
2.2 A General Form for Data-Driven Turbulence Models . 36
2.3 Uncertainty Quantification 37
2.4 Model Calibration 38
2.5 Machine Learning . 41

2.5.1 Key Issues . 41
2.5.2 Field Inversing 42
2.5.3 Anisotropic Modeling 44
2.5.4 Relevant Prior Work 46

3 Machine-learning Tools and Techniques 49
3.1 What is Machine-Learning? 49
3.2 Machine-Learning Tribes 51
3.3 The Connectionists Paradigm: Neural Networks . . . 54

3

CONTENTS

3.3.1 Learning as Optimization 56
3.3.2 Architecture 58

3.3.2.1 Single-layer Neural Networks 58
3.3.2.2 Multi-layer Neural Networks 59
3.3.2.3 Activation Functions 62
3.3.2.4 Error Functions 64

3.3.3 Optimization 65
3.3.3.1 Gradient Descent 65
3.3.3.2 Back-propagation 66
3.3.3.3 Adaptive Momentum Estimation . . 72

4 Development of Machine-Learning Assisted Tools for Tur-
bulence Modeling 75
4.1 A Data-driven Wall Function for Stationary Flows . . 76

4.1.1 Introduction 77
4.1.2 Training Dataset 78

4.1.2.1 Numerical Methodology 78
4.1.2.2 Filtering 79

4.1.3 ANN Training 79
4.1.3.1 ANN Morphology and Hyperparam-

eter Tuning 80
4.1.3.2 Training Results 81
4.1.3.3 Forwarding Algorithm and Imple-

mentation in the Solver 82
4.1.4 Test Application: 2D Periodic Hills 82

4.1.4.1 Numerical Methodology 84
4.1.4.2 Results 85

4.1.5 Test Application: Sinusoidal NACA 4415 . . . 88
4.1.5.1 Numerical Methodology 90
4.1.5.2 Results 90

4.1.6 Final Remarks 92
4.2 A Data-driven Wall Function for Rotating Passages . 94

4.2.1 Introduction 95
4.2.2 Data Generation 97

4.2.2.1 Numerical methodology 99
4.2.2.2 Flow Description 101

4

CONTENTS

4.2.3 Data Preprocessing 101
4.2.3.1 Data Sampling and Filtering 101
4.2.3.2 Features creation and normalization 103

4.2.4 Exploratory Data Analysis 105
4.2.5 Data-driven Modeling 108

4.2.5.1 Forwarding algorithm and implemen-
tation in the solver 110

4.2.6 Cross-validation Results 111
4.2.7 Final Remarks 115

4.3 Identification of Poorly Ventilated Zones in Gas-Turbines
Enclosures with Machine-learning 116
4.3.1 Introduction 117
4.3.2 Rationale and Selection of Test Cases 119
4.3.3 Numerical Setup 120
4.3.4 CFD Results 121

4.3.4.1 Steady-state computations 121
4.3.4.2 Two-phase transient computations . 122

4.3.5 Poor Ventilation Index map 130
4.3.6 Machine Learning Module 133
4.3.7 Test Model Case 134
4.3.8 Conclusions 142
4.3.9 Acknowledgments 142

5 Conclusions 143

5

List of Figures

1.1 Nature of the flow in an axial flow compressor rotor
passage . 23

1.2 Simple internal flow development 24
1.3 Modeling, observations and theoretical ideas 28
1.4 Relationships between the realms of learn by data . . 31

2.1 Turbulence modeling under a big data perspective. . 35

3.1 A visualization of the different ML tribes 51
3.2 A single-input neural unit 59
3.3 A multi-input neural unit and its dimensions 59
3.4 Single layer neural network and its dimensions. . . . 61
3.5 Example of three-layered perceptron. 62
3.6 Common activation functions - a) linear: αx with

α > 0, b) logistic: 1/(1 + e−x, c) hyperbolic tan-
gent: (ex − e−x)/(ex + e−x), d) Heaviside function:
0 for x < 0 | 1 for x ≥ 0 63

3.7 Iterations of GD algorithm when fitting data with a
linear model y = w · x+ b 67

4.1 Effect of each data filter on 2D periodic hills 80
4.2 Algorithm convergence history 82
4.3 Predicted turbulent kinetic energy (blue dots) vs

input data (solid black line) 83
4.4 Overall accuracy vs Number of Training Epochs . . . 83

7

LIST OF FIGURES

4.5 ANN-enhanced turbulent solver 84
4.6 Velocity streamlines for the three grids. ANN-WF

(left), k − ε WF (right) 86
4.7 Wall-to-wall profiles for x=0.05h, x=0.5h and x=7h,

ANN-enhanced (blue) vs standard k−ε wall function
(red). 87

4.8 Streamwise distributions of y+ values along the solid
walls. 88

4.9 Modified NACA 4410 vs base blade profile 89
4.10 Pressure coefficient distribution vs normalized chord

for a) solid black line k-ε-WF base blade, b) dashed
black line k-ε-WF modified blade, c) solid red line
ANN-WF base blade, d) dashed red line ANN-WF
modified blade. 91

4.11 Velocity streamlines for base airfoil. 92
4.12 Velocity streamlines for modified airfoil, for a) stan-

dard k wall treatment, b) ANN wall function. 93
4.13 Schematic of test section and coordinate system . . . 98
4.14 View of the diffuser 99
4.15 Mean relative velocity field 100
4.16 Cross-section view of the ratio between resolved and

total TKE . 101
4.17 Static pressure recovery along at mid-height of pas-

sage as a function of the streamwise coordinate . . . 102
4.18 Visualization of the effect of data pre-processing on

a cross-section . 103
4.19 Frequency plot of: TKE for LES and RANS (a) - δk (b).106
4.20 Correlation map for the eight input features. 107
4.21 Mean squared error for test train and test dataset as

a function of training epochs. 109
4.22 Normalized values of TKE after the training phase:

predicted (blue dots) vs training data (solid black line).110
4.23 A machine-learning enhanced solver for OpenFOAM. 111
4.24 Model outcome for the whole computation domain

of δk for the last time step of the cross-validation
simulation. 113

8

LIST OF FIGURES

4.25 Averaged TKE for LES (a) and RANS simulations (b),
predicted (c) and true δk (d) 114

4.26 Comparison of the standard WF vs ML for the mid-
height in the last iteration of the cross-validation
case, between 0 and 0.6 meters from the inlet 115

4.27 Streamwise (top) and wall-to-wall (bottom) velocity
component profiles for case BFS1. Red: reference
DNS, black: current results from k − ε computations. 122

4.28 Streamwise (top) and wall-to-wall (bottom) velocity
component profiles for case 2DH1. Red: reference
DNS, black: current results from k − ε computations. 123

4.29 Methane concentration after one flow through time. 123
4.30 Discharge of methane in channel flow. 124
4.31 Discharge of methane in BFS cases. 124
4.32 Asymptotic distribution of methane for BFS1, BFS2,

BFS3 and BFS4 respectively from the top to the bottom.125
4.33 Discharge of methane in 2DH1 and 2DH2 cases. . . . 126
4.34 Asymptotic distribution of methane for 2DH1 (top)

and 2DH2 (bottom). 127
4.35 Discharge of methane in 3DH and CYL cases. 127
4.36 Discharge of methane in case 3DH, after 1 FT (top), 2

FT (center) and 5 FT (bottom) at different spanwise
immersions. 129

4.37 PVI Levels. 131
4.38 Lα and LT (center) and PV map (bottom) for 2DH1

case. 132
4.39 Lα and LT (center) and PV map (bottom) for 2DH2

case. 132
4.40 Isometric view of the domain geometry. 134
4.41 Sketch of the computational domain with 8 reference

planes (a,b,1,2,3,I,II,III) used to show the numerical
results. 135

4.42 Velocity magnitude field for the enclosure model case.136
4.43 Temperature field for the enclosure model case. . . . 137
4.44 Discharge of methane in enclosure model case. . . . 138
4.45 PVI map for enclosure model case. 139

9

LIST OF FIGURES

4.46 Concentration of methane for the test case after 1
(left) and 2 (right) flow through times. 140

4.47 Discharge time (tD) distribution for the test case. . . 141

10

List of Tables

2.1 Classification of popular works on UQ and RANS
modeling, from [31]. 39

2.2 Machine Learning and Turbulence 48

4.1 ANN Parameters . 81
4.2 2D Hills computational grids 85
4.3 Reattachment length for the three grids 85
4.4 Reattachment length for the three grids 90
4.5 Domain dimensions 98
4.6 Domain dimensions 99
4.7 Boundary conditions 100
4.8 Features Normalization & Creation 105
4.9 Hyperparameters of the network 108
4.10 Relative Absolute Errors in Cross-Validation 114
4.11 Summary of test cases 121

11

Abstract

To numerically simulate a turbulent flow through Computational
Fluid Dynamics (CFD) has become a mandatory step in turboma-
chinery design and performance prediction. CFD users live in a
constant compromise between accuracy of results and reasonable
computational times. The most high-fidelity approach that is cur-
rently affordable is constituted by Large Eddy Simulations (LES),
that grants the best representation of the physics of the flows. The
tradeoff lies in the difficulty of generating proper inflow conditions,
the complex numerical setups and the extreme grid refinements
that are required. The latter is additionally worsened by the high
Reynolds numbers that are normally involved in turbomachinery
flows. Thus, the combination of long computational times with the
complexity of the approach seriously impairs the applicability of
LES simulations to internal flows.
On the other hand, Reynolds Averaged Navier-Stokes approach
(RANS), constitute the workhorse in the CFD practice. The less
restrictive grid requirements lead to faster computations and an
increase in robustness. The stationary assumption provides infor-
mation on the time-averaged fields, that suffice in most of the cases,
especially in performance prediction. Drawback of the RANS ap-
proach is constituted by the turbulence closure of the turbulent
kinematic viscosity term, i.e. a set of equations or parameters that
model the physics of turbulence. Such closure necessarily embeds a
source of errors. Popular two-equation closures, e.g. k − ε or k − ω,
correlates the turbulent viscosity to the transport of the Turbulent

13

ABSTRACT

Kinetic Energy (TKE) and additional variables. A set of heuristically
tuned coefficients are also included to maximize the effectiveness
of the model. It is universally accepted that the previous hypoth-
esis provide a fairly good agreement with physics of undisturbed
flows, gradually losing consistency as long as we step away from
the two-dimensional stationary flow assumption. RANS approach
dramatically loses accuracy in presence of flows that are subject
of unsteadiness such as adverse gradients of pressure, mixings, ro-
tational forces or irregular geometries ??. The correct prediction
of the previous phenomena become critic in turbomachinery flows,
where it is necessary to take in account their influence on the overall
performance of the turbomachinery.
Many strategies have been exploited to increase the fidelity of RANS
simulations, like adding additional equations, e.g. v2 − f model,
including quadratic or cubic terms in the modeled Reynolds stress
tensor (RST), e.g. Lien cubic k − ε, hybrid approaches, etc. Some
of the previous solutions have been proven effective, but most of
the RANS uncertainties remain yet unsolved. Despite that, we
can conclude that research on the topic has reached a stagnation
point, with no major breakthrough expected in the next years [1].
Machine-learning (ML) has found a deep consensus in the engi-
neer community, becoming extremely popular in fields like robotics,
maintenance and diagnosis. Nevertheless, the application of ar-
tificial intelligence to turbulence modeling is still a novelty, with
the first comprehensive literature report only published in 2015
to Duraisamy et al [2]. In spite of the successful results, many
questions remain unanswered and an exhaustive methodology has
not been proposed so far.
After an introduction to the topic, the manuscript articulates in
three different sections. In the first part, ”Turbulence Modeling in
the Big Data Era”, we report a deep literature review of works on
the topic, classifying them in different categories, based on the
methodology. To the best of the authors’ knowledge, this is the first
available attempt to organize the available contents. Three classes
of approach were identified: field inversing, anisotropic modeling
and derivative works.

ABSTRACT

1. Field inversing: a correction coefficient for the production or
dissipation term in the TKE transport equation is inferred by
means of ML.

2. Anisotropic modeling: the anisotropic part of the RST is cor-
rected or predicted by neural networks / random forests.
Turbulent invariants are exploited to this purpose.

3. Derivative application: isolated attempts or non-popular method-
ologies fall within this category.

We analyze each of the classes and provide a mathematical for-
mulation of the methodology. We also highlight some key issues
that are still to be solved.
In the second part of the manuscript, ”Machine-learning Tools and
Techniques”, after a brief historical introduction, we perform a dis-
sertation on the currently available machine-learning algorithms. In
particular, we focus on multi-layer multi-input neural networks that
constitute our artificial intelligence further in the work. We give
a mathematical representation of advanced non-trivial techniques,
useful for our applications.
The third section, ”Development of Machine-Learning Assisted Tools
for Turbulence Modeling” treats three distinct applications of neural-
networks to turbomachinery flows. The first two are focused on
the creation of ML-assisted wall treatments for internal flows, while
the last part is centered on the identification of stagnation zones
in Gas Turbines (GTs) enclosure. Wall treatment is a crucial and
non-trivial task in numerical simulations. In fact, CFD results can be
considered reliable if the grid is fine enough for a proper resolution
of the boundary layers. However, grid refinement comes at the cost
of a larger mesh that reflects in increased computational time. To re-
duce the impact of wall refinements, wall functions are universally
accepted to model part of the boundary layers, returning values of
dissipation rate, TKE, turbulent viscosity, etc.. These functions were
derived by direct observations of turbulent flows over flat plates and
come as polynomial expressions depending from Reynolds number
and wall distance. In so doing, every deflection of the flow from
the flat plate assumption is not considered and it can become an

ABSTRACT

important source of errors.

A Data-driven Wall Function for Stationary Flows

ASME GT 2019-91238

RANS approach fails to predict separating flows, regardless
of the source of separation, i.e. geometrical or pressure-induced.
We therefore created a training database through LES simulations
of canonical flows, namely a 2D periodic hill, channel flows and
backward-steps at different Re numbers. Simulations were val-
idated against data available in literature. An Artificial Neural
Network (ANN) is trained in Python 3.6 to predict TKE values on
the first layer of cells near the walls. A deep analysis of data prepro-
cessing, ANN training and testing phases shows the feasibility and
accuracy of the approach. The model has been implemented in an
open-source environment, OpenFoam v18, as a custom boundary
condition. During run-time operation of the solver flow fields are
extracted, manipulated and forwarded to the algorithm, that even-
tually predicts TKE boundary values. Coupling between theC++

based solver and Python is realized through the CAPI library. The
framework is tested in two different cases and results from k − ε
model are compared with standard wall treatment. No significate
increase in computational time is found in the ML-enhanced frame-
work.
The first one is a two-dimensional periodic hill with three different
grid resolutions, coarse, intermediate and fine. A similar geome-
try is included in the training dataset. ANN-based wall function
corrects the overprediction of the model regardless of the mesh,
showing that this approach is grid-insensitive. Reattachment length
is compared with literature numerical results.
A cross-validation is performed through the analysis of the flow
around NACA profiles in a cascade arrangement. Two version are
considered, a standard airfoil and a modified profile with leading

ABSTRACT

edge bumps for stall control. While in the former results show no
significative difference between the two wall treatments, in the
modified airfoil the ANN-enhanced computations return more ac-
curate results. In addition, flow fields and coefficient of pressure
around the airfoils are reported.

A Data-driven Wall Function for Rotating Passages

ASME GT 2020-15353

The framework previously developed is here applied to rotating
ducts. The effect of Coriolis and centrifugal forces are responsi-
ble of de- and stabilization of boundary layers. RANS approach,
however, do not take in account rotating forces. In this work we
create a wall treatment for rotating passages, commonly found
in turbomachinery flows. A training database is created through
LES simulation of a diverging diffuser with Rossby number = 0.41
and a diverging angle of 15deg., following experimental setup of
Moore [3]. A comparison between LES, RANS and experimental
results highlight the discrepancy of the RANS approach. Results
from Exploratory Data Analysis (EDA) are reported. Data is filtered
to obtain a zonal training with y+<400. EDA is used as a base
to create input features that are also independent from the frame
of reference. Training and Testing convergence histories show the
quality of the training. The predictor returns a correction term for
the TKE values on the first layer of cells. The derived model is
tested with run-time computations of the same geometry with an
inferior Rossby number, in cross-validation. On the last iteration of
the solver, we report the prediction of the algorithm in different part
of the domain. We report flow fields, accuracy and absolute relative
errors for the whole domain, the inner layer and the first layer of
cells. Results show the effect of the algorithm in the different zone
of the domain, with an expected increase in accuracy as we move

ABSTRACT

closer to the viscous sublayer.

Identification of Poorly Ventilated Zones in GT Enclosures

ASME GT 2019-91198

This part of the work has been conducted in cooperation with Baker
Hughes, a GE company. Gas Turbines (GTs) ventilation systems of
enclosures should grant the complete washing if gas leaking occurs.
Given the extremely complex geometry that may lead to gas stagna-
tion and the presence of high temperature surfaces, poor ventilation
may lead to potential dangers. The aim is to build a model that, in-
ferring from stationary fields provided by RANS simulations, classify
portion of the computational domain through a Poorly Ventilated
Index (PVI). PVI ranges from 1-safe to 16 – extremely dangerous
and is based on the product of two term, function of temperature
and concentration. The temperature term can be directly computed
through numerical simulation, while the concentration of methane
requires several days of URANS computations. The classifier there-
fore predicts the level of danger associated with the concentration
of methane, reducing time requirements from several days to few
seconds.
A training database is generated through multi-phase simulations
of the washing process of simplified geometries. Test geometries
include high Reynolds computations of plain channel flow, back-
ward facing step, and 2D sinusoidal hill flow, at different Reynolds
number, axisymmetric hill flow and confined cylinder in cross-flow.
Input features are constructed from the flow variables to assure
independence from frame of reference and locally normalized. The
ANN is trained to solve a four-class labeling problem, mapping local
fields to the corresponding level of methane concentration. The
algorithm was tested on all the training case, showing an extremely
high accuracy (>95%).
The model was validated on a model geometry of the GT enclosure.

ABSTRACT

Temperature, concentration and velocity fields for different sam-
pling planes are reported. A comparison between PVI levels given by
the full URANS simulations and those derived by the RANS-derived
classifier show a final accuracy of 91.3%.

Chapter 1

Introduction

”Nature is the source of all true
knowledge. She has her own logic,
her own laws, she has no effect
without cause nor invention without
necessity.”

Leonardo Da Vinci

Since the very origin of mankind, human beings looked at uni-
verse and asked themselves questions. Those problems were usually
not easily solved, and sometimes answers were given several cen-
turies later, or are still part of an open debate. Today, physics has
provided an explanation, under the form of theories and models,
for the majority of the classic problems that can be found in nature.
However, scientific progress is all but at a stagnation point, thanks
to the capability of pushing human observation to unimaginable
scales, from atoms to entire star clusters.

The work here proposed is mainly focused on the study of tur-

21

1.1. INTERNAL FLOWS IN TURBOMACHINERY

bulence,”the most important unsolved problem of classical physics”1.
It embeds an extremely non-linear and time dependent chaotic
nature [4]. Turbulence happens in a wide range of different scales,
from the atmospheric mesoscales, of hundreds of kilometers, to the
nanoscales of the smallest eddies. Complete, or at least satisfying,
modeling of turbulent flows is far from be achieved,thus it can still
be considered as an hot topic in classic physics [5].
Further in this dissertations we will focus on turbomachinery inter-
nal flows, where the need a robust representation of turbulence is
coupled with the challenging analysis of complex flows.

1.1 Internal Flows in Turbomachinery

Internal flows are distinguished from external flows due to the
strong mutual interactions in the shear layers that the former
presents. When trying to model such flows, ad-hoc solutions are
usually exploited [6]. An example of internal flow is provided by
the field in a real compressor stage (Figure 1.1 from [7]). It is
universally considered as one of the most complex flows to analyze,
especially in a centrifugal compressor where the effect of rotation
is predominant. It is evident that such complexity cannot be taken
into account by the use of blade element theory.

Bradshaw defines complex turbulent flows as those that ”cannot
be adequately treated by calculation methods developed for simple thin
shear layers”[8]. Sources of deflection from the unperturbed shear
layers are multiple and coexist in the same scenario (e.g. rotating
passages, mixing, sudden abrupt, separations).
Even the simplest internal flow can present a non-trivial behavior.
As a further example, we report the flow within a constant area
duct with an inlet section constituted by a short curved nozzle (Fig.
1.2 from [9]). Boundaries of the zones are not well defined in
reality, as there is no harsh transition between them. As we move
downstream, from zone I to IV, the interaction between boundary
layers becomes stronger and stronger. In zone I, we can observe that

1Richard P. Feynman - The Feynman Lectures on Physics (1964)

22

1.1. INTERNAL FLOWS IN TURBOMACHINERY

Figure 1.1: Nature of the flow in an axial flow compressor rotor passage

the core of the flow in the interior is not affected by the thin wall
shear, whereas in zone III the maximum interaction is reached, and
no region of inviscid flow can be found. At more than 20 diameters
from the inlet, zone IV, the flow can be considered fully developed,
i.e. flow field is no longer a function of the streamwise coordinate.
In a real scenario, a fully developed flow is hardly achieved, as
even ducts that are theoretically long enough are affected by inlet
distortion/fluctuation. Unfortunately, flows in turbomachinery are
not as easy to predict.

Turbomachinery flows can be roughly defined as a particular
class of internal flows where the interaction between solid walls
(rotating or not) and the fluid is exploited to perform energy ex-
change, in both directions. Turbomachinery flows share common
features that uniquely determine their complex nature [10]. Within
the most relevant we can find:

• Unsteadiness, as every flow can be characterized by fluctua-
tions, instabilities, waves, etc. that affect the output and the
overall performance of of the system.

• Coriolis and centrifugal forces are responsible of strong de-

23

1.1. INTERNAL FLOWS IN TURBOMACHINERY

Figure 1.2: Simple internal flow development

flection of the streamlines.

• Absence of uniform free stream.

• Presence of work or heat transfer.

• Full three dimensionality of the flows, that cause a transport
of momentum, mass and energy in all the directions.

• Secondary flows, caused by the geometry or by the interaction
of the flow with moving surfaces.

• Strong swirls.

• Wall bounded flows.

A complete representation of turbomachinery flows is probably
impossible, as the entire flow cannot be solely seen as a superim-
position of the previous effects, due to their mutual interaction.
Not by chance, in the design practice most of the complexity is
modeled through loss functions or empirical corrections, that ease
the process at the expense of accuracy/generality [11]. Two strate-
gies are currently exploited to study turbomachinery flows, through

24

1.2. EXPERIMENTAL FLUID DYNAMICS

experimental observations or numerical simulations.
As the quote at the beginning of the chapter highlights, the for-
mulation of fluid mechanics theory has always been based on the
direct observation of natural phenomena. Modern theories can be
considered as the direct heir of the 18th century models [12]. Since
the development of CFD, the second half of the 20th century and on,
a long debate regarding the best approach has arisen. The answer,
of course, is yet far and it would probably never be discovered.

1.2 Experimental Fluid Dynamics

One of the key arguments that supports the superiority of experi-
mental observations is that experiments capture the ground truth of
the flow. This ability is also a strong improvement on what happens
in numerical simulations, as no arbitrary assumption or model is
naturally embedded in the process. In reality, experimental tests
on turbomachinery present challenges that are not so easy to over-
come. First, both time-resolved and time-averaged measurements
are necessary to fully capture flow behavior. Unfortunately, no
experimental technique is able to provide all information that are
needed at once. Measurements with different levels of complexity
and detail are combined together, from qualitative flow visualiza-
tions (smoke injection) to time-resolved measurements (hot wire)
[13]. As Simoneau et al. pointed out, ”ultimately, all levels (of
complexity ndr.) are needed to do the job. The challenge is to choose
the right tool for the right job.”. A brief overview of the two classes
of techniques (see [14]) is reported below.

Non-optical measurements, that includes five-hole probes, Pitot
tubes and pressure transducers, are exploited to measure wall shear
stress, static pressure and to visualize surface flows. The imple-
mentation is tricky as they must be inserted in a rotating frame.
Extensive data post-processing is also required to isolate the contri-
bution of a single phenomenon from global instabilities.

Optical measurements, include laser Doppler and particle image

25

1.2. EXPERIMENTAL FLUID DYNAMICS

velocimetries. Such technologies can be implemented also in a ro-
tating frame, however the main deficiency lies in the requirement of
an optical access to the interior of the machine. This need seriously
cripple their capability in real scenarios.

Once these difficulties have been overcome, a collection high
fidelity observations is obtained.

1.2.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) comes in great aid for tur-
bomachinery performance prediction and flow investigation, and
it is universally accepted as the main tool for research, design and
optimization. Theoretically, it is be possible to entirely build a
virtual test rig, as shown by [15][16], to cover each aspect of the
design process through CFD. The extreme popularity of the numeri-
cal approach, both in academia and industry, is given by the savings
in terms of time and costs. The capability of simulating almost
every geometrical configuration, in fact, reduces the necessity of
expensive prototype construction and testing.
As previously highlighted for experimental measurements, numer-
ical simulations comes with different level of complexity and ap-
proximation, with the Large Eddies Simulations (LES) at the apex
and the quasi-1D equations at the bottom. Direct Numerical Sim-
ulations (DNS) are not included in the standard practice as high
Reynolds numbers that are normally involved in turbomachinery
flows lead to prohibitive computational costs. The phenomena
under investigation define the complexity of the approach, as to
the best accuracy corresponds the highest computational cost. If
the overall performances of the machine are solely needed, fast
approaches are preferred, such as RANS or lower dimension approx-
imations. Transient, unstable, small-scale or fluctuating features,
however, can only be captured by models of higher level, with all
the complexity that results. The state of art, LES approach, is con-
fined to very specific problems, with RANS and Unsteady-RANS
covering the majority of numerical simulations. Lower level ap-

26

1.3. LEARN BY OBSERVATIONS

proaches are usually limited to fast prototyping or optimization
problems [17][18].
Nevertheless, in contrast to the aforementioned advantages, CFD
cannot entirely substitute experimental testing. In fact, CFD is not
an exact science and several aspects are modeled or approximated.
Even the simple assumption of steady flow in a RANS simulation
can lead to seriously misleading results [19]. Frequent non-trivial
sources of error can be ascribed to:

• Incorrect modeling of a phenomenon (e.g. low accuracy
turbulence model)

• Uncertain conditioning of the problem (e.g. unknown BCs)

• Steady flow assumption

• Discretization errors (e.g. computational grid, numerical
schemes)

Great efforts have been made to overcome part of the previous
problems, and this dissertation can be considered as one of the
trials focused on improving existing turbulence models.

1.3 Learn by Observations

Figure 1.3 from [20] shows the process of learning by observations.
This flow of ideas has not drastically changed since the start of the
scientific method (see [21]). First, a clarification of the modern
meaning of observation is mandatory. Historically, in fact, the term
experiment and observation represented different concepts, even if
closely intertwined [22]. Observations were experience caught by
eyes, thus subjective, prone to arbitrary interpretation and human
errors. In a modern fashion, we define observations as a collection
of measured variables (observables), either as data from the physical
(real) world or obtained through computer simulations. By so doing,
scientists put themselves in the condition of ”perfect observers” as
no arbitrary assumption is taken in the process.

27

1.3. LEARN BY OBSERVATIONS

Figure 1.3: Modeling, observations and theoretical ideas

Once that enough data has been collected, theoretical ideas are
created. We define as theoretical ideas the domain where obser-
vations are mapped, i.e. a mathematical representation of the
observations is provided . Models eventually organize theoretical
ideas in a coherent structure. Everything is embedded in a constant
loop, where new observations discuss an existing model, and the
model itself demands new heuristic proofs. Obviously, the key of
such a process is given by the capacity of transposing observations
into ideas, and only modeling comes only at the end. This flow
of ideas is entirely human-driven, as the success or failure of the
process is decided by the sole ability of the observer. However,
questions arise when trying to model complex problems.

Observations

- Are our experiments free of errors?
Numerical simulations and experimental tests are not immune to
error from any source. Fidelity of observation is the key ingredient
to avoid misleading results.

- Are we observing all the significant variables?
To properly define complex phenomena, all the factors of influence
must be taken in account. Turbulence, for instance, need both a
spatial and a temporal representation.

- Is our space of experiments large enough to capture the full be-

28

1.3. LEARN BY OBSERVATIONS

havior of the phenomenon?
If the final aim is to derive a model, generality is the feature that
the modeler should be looking for. A model should work for at least
a small restriction of setups. The more general, the better.

Theoretical Ideas

- Are we looking the data from the right perspective?
Relationships and correlations can be hidden in the raw observ-
ables. Changing perspective, e.g. moving to the plane of phases,
can significantly ease the creation of a model.

- Is our data statistically significant?
Duplicated, redundant and sparse data impair model effectiveness.
A trade-off between the limited amount of data that one can con-
sider at once and proper statistical representation must be found.
However, knowing the boundaries of the model, a complete repre-
sentation of the phenomenon can be provided.

Modeling

- Are we using the proper mathematical representation?
Within the family of available statistical and mathematical tools, a
selection of the instrument that best fit our purpose is not trivial.
Unfortunately, high accuracy demands also a complex structure of
theoretical ideas, sometimes even higher than the affordable.

- How do we improve the model?
Improving an existing model is a challenging task. First, a deep
knowledge of all the limitations of the model is required. Second,
one should be able to correct model deficiencies without impairing
its successes.

Even if we are able to give an answer to all the previous ques-
tions, the model would not be capable of entirely reproducing

29

1.4. LEARN BY DATA

the ground truth underlying the phenomenon. In turbomachinery
existing flow models present such discrepancies mainly due to:

1. The limited number of observations that are considered at
once (many of the models are tuned on half-a-score flow
topologies at best);

2. Difficulties encountered in representing the chaotic nature of
turbulence;

3. The need to limit computational time and costs required to
solve the problem;

Despite the daunting challenges, great advancements have been
made in the past sixty years. More recently, particularly in the last
10 years, big data techniques have become more and more popular,
leading turbomachinery flow modeling into a new direction.

1.4 Learn by Data

Big data is ”high-volume, high-velocity and/or high-variety informa-
tion assets”2. As evident from the historical background, the big
data approach is not naturally suited for physics, being born for
social media and economic studies. This also means that extra care
must be taken when applying existing tools to a field of interest
that is far from the initial design intention. However, the statistical
approach that lies in the background is still robust and it ensures
that a big data approach can be proficient as long as enough data
is provided [23]. Further in the dissertation we will provide an
overview of the most popular techniques.
Under the previous assumptions, the usual learn by observation ap-
proach now becomes learn by data. The standard scheme of Figure
1.3 can be therefore transformed, thanks to the big data perspective,
to something closely related but extremely more powerful.

2Gartner’s Master Data Management - 2018

30

1.4. LEARN BY DATA

Figure 1.4: Relationships between the realms of learn by data

The collection of raw observations is substituted by data gather-
ing. It must be highlighted that the two are somehow coincident,
with few remarkable differences. One is surely the amount of ob-
servables that are considered: we move from few thousands for
the former to several billions of the latter. Also different types
of data (e.g. visual, audio, measurements) concur to create data
lakes, repositories of organized and unorganized data of any size
[24]. Data gathering is not static but dynamic: observables form
a constant stream of data that feeds repositories. Hence, models
can be periodically improved and adjusted as the process of data
gathering goes on.
The exploratory data analysis, abbreviated with EDA, is the corre-
spondent of theoretical ideas. Through statistical tools, in fact, EDA
transform every pack of data of any kind and from any source into
a mathematical representation. Modeling is probably the realm that
is mostly affected by the new environment, as modelers have access
to a completely new family of powerful algorithms and tools. To
sum up we enhance the standard learn by observations approach,
as we look at more data at the same time and we model it better,
by making use of statistical tools.

31

1.5. OUTLINE OF THE DISSERTATION

1.5 Outline of the Dissertation

This dissertation is constituted by four different chapters.

1. Turbulence Modeling in the Big Data Era.
We first perform a general classification of the predominant
methodologies involving turbulence modeling by means of
machine-learning. We mainly focus on field inversing and
anisotropic modeling. In the second part, we report an overview
on the relevant prior works on the topic.

2. Machine-learning Tools and Techniques.
In the first section, we summarize the state of art of machine-
learning algorithms. The aim is to justify the use of neural
networks and we report the major competitor algorithms.
A mathematical formulation of the multi-layer perceptrons
then follows. The last part is dedicated to the description of
advanced techniques for turbulence modeling.

3. Development of Machine-Learning Assisted Tools for Turbulence
Modeling.
This chapter proves the merit of application of machine-
learning to two-equation models. It is organized in three
different sections, following prior publications from the au-
thor:

• A Data-driven Wall Function for Stationary Flows;

• A Data-driven Wall Function for Rotating Passages;

• Identification of Poorly Ventilated Zones in Gas-Turbines
Enclosures with Machine-learning.

4. Conclusions
We try to provide answers to some of the research open issues.

32

Chapter 2

Turbulence Modeling in
the Big Data Era

”All models are wrong, but some are
useful.”

George Box

This chapter focuses on the novel vogue in turbo-machinery that
resulted from the A.I. revival. Quoting Box (1987 [25]), ”every
model is just an approximation of the whole truth”. Turbulence
models do not constitute an exception to this rule. Thus, the ques-
tion we need to ask is not if a model is true (as it never is) but if it
fits the particular application that is designed for [26].

33

2.1. TURBULENCE: A BIG DATA PERSPECTIVE

2.1 Turbulence: A Big Data Perspective

Two farsighted reports from Slotnik and his coworkers [27][1].
investigated a future perspective of traditional RANS modeling,
highlighting that despite all the efforts of the scientific community
in the past years, a stagnation point has been unavoidably reached.
On one side pros and cons are perfectly known and understood,
while on the other very few practical solutions have been proposed
to date to increase the effectiveness of existing turbulence models.
A model where generality, robustness and cheapness coexist has not
been developed yet. As such, in the standard CFD practice model
selection is driven by the problem to solve (e.g. internal flows, tran-
sient, heat transfer). In fact, various options are usually available to
the CFD practitioners, and only a toe to toe comparisons between
different approaches decides the best one.
By looking at turbulence modeling through a big data perspective,
however, new approaches become available. The growing avail-
ability of high fidelity data, e.g LES/DNS simulations and large
experimental programs, in combination with the development of
efficient statistical inference algorithms, have opened the path to
innovative solutions.
Figure 2.1 gives an overview on the topics of the following sections.

Motivations behind this classification are evident if we consider
each of previous the categories.

• Uncertainty quantification: the approach tries to enhance
RANS modeling through considering uncertainties and inade-
quacies that come from various sources, such as parameters
or numerical approximations;

• Calibration: by means of statistical inference model a best
fitting suit of coefficients is eventually derived for specific
applications.

• Machine learning: machine-learning algorithms and method-
ologies are applied to directly infer from high fidelity flow

34

2.1. TURBULENCE: A BIG DATA PERSPECTIVE

Figure 2.1: Turbulence modeling under a big data perspective.

simulations. We can further classify those efforts as:

1. Field inversing: a spatially varying field is included in the
model and eventually calibrated. The aim of this field is
to reduce the discrepancy between LES/DNS simulations
and RANS. A machine-learning algorithm is trained to
infer the correct field, using flow variables as input fea-
tures;

2. Anisotropic modeling: the anisotropic part of the Reynolds
stress tensor is modeled trough means of ML algorithms;

3. Derivative approach: in this field fall all the works that
tries to indirectly extract information from the fluid dy-
namic fields, to various extents. In this case, the final
goal is not to derive a model for turbulence, but to ex-

35

2.2. A GENERAL FORM FOR DATA-DRIVEN TURBULENCE MODELS

ploit machine-learning algorithms to discover hidden
relations. They are included in the dissertation as they
share common features and problems with the following
classes.

2.2 A General Form for Data-Driven Turbu-
lence Models

The former taxonomy draws strong boundaries, as the approaches
and aims completely differ between each other. However, it is
possible to recognize a shared underlying mathematical structure.
To the best of the author’s knowledge, the first attempt to represent
this relationship can be attributed to Duraisamy, Iaccarino and Xiao
[28]. This novelty is especially impressive if we consider its contrast
with the secular development of the study of turbulence.
A general data driven model can be written as:

M̃ =M (w;P (w) ; c;θ; δ; εθ) (2.1)

where:

M̃ : the computational model, as a function of an array of indepen-
dent variables w and based on a set of algebraic or differential
operators P ;

c: a set of parameters of the model, the primary target of the
modeling;

θ: the data that comes with an uncertainty εθ;

δ: a discrepancy between actual data and the data represented
through the model.

Usually, the final goal of the model is predicting an interest
feature or variable q(M̃). The algebra in Eq. 2.1 facilitates the iden-
tification of the approximations embedded into a RANS formulation:

q = q
(
N(·);M(w;P (w); c)

)
(2.2)

36

2.3. UNCERTAINTY QUANTIFICATION

Four levels are naturally embedded, each contributing to the uncer-
tainty of the model. In order of generality (with tuning being the
most specific) we can find:

A1: Time averaging, that is intrinsic of the methodology. It auto-
matically implies that the Navier-Stokes equations (indicated
hereafter N(·) =0 need to be closed somehow. This is caused
by the fact that N(·) 6= N(·), where the overline operator
points to the temporal averaging.

A2: Closure of NS equations, as we have N(·) = N(·) + M(·),
where M(·) is just the divergence of the Reynolds stress tensor
M = ∇ · τ . M is a function of a series of independent,
averaged variables w, that leads to the various closures.

A3: Choice of w, obviously not all the variables can be included
in the set of equations of the closure, here denoted with P (·).
In so doing, M(w) can also be seen as M(w, P (w)). The
physics of the problem and computational power available
define the complexity of P (·) [29].

A4: Tuning of P (w), that depends on a series of coefficients c.
Calibration of the model is completely arbitrary, and it is
usually performed to ensure that the model is working on
all the simplest configurations (e.g. flat plate, channel flows,
cylinder) [30].

To conclude, a general formulation for a predicted quantity is:

M =M (w : P (w); c(Θ); δ(Θ, η); εΘ) (2.3)

The following sections are dedicated to analyzing each of the cate-
gories in Figure 2.1, highlighting the state of art and further devel-
opments.

2.3 Uncertainty Quantification

A complete and deep analysis of UQ techniques is far from the
author’s intents, however a brief overview is beneficial. The uncer-

37

2.4. MODEL CALIBRATION

tainties described in the previous section are also called epistemic
or model-form uncertainties. An additional source of uncertainty
can be derived from the variability of the input of every numerical
simulation, like unknown boundary conditions, also called aleatory
uncertainties. The final aim of the UQ is to study how the coupling
of the two sources affects the output.
Looking at Eq. 2.1, the first step is to describe ε in a probabilistic
form. The error is propagated through the model M and the final
prediction becomes a function of the error q(M, ε). In so doing,
the final output is no longer deterministic but stochastic, hence
we derive a distribution of the predicted values P (q). Current ap-
proaches to UQ can be classified into two main classes: parametric
and non-parametric. In parametric approaches, all the uncertain-
ties are introduced in the turbulence closure coefficients c. Such
approach eases the process, as the implementation in popular CFD
solvers is trivial. On the other hand, non-parametric approaches
analyze the contribution to uncertainty of the modeled terms, e.g.
turbulent viscosity, Reynolds stress tensor.

q = q

N(·);M(w;P (w)︸ ︷︷ ︸
Non-parametric

; c︸︷︷︸
Parametric

)

 (2.4)

Non-parametric approaches are generally physics-driven and more
prone to capture flow instabilities. However, computational costs,
complexity and implementation difficulties present challenges. A
further classification can be performed based on data-free (forward)
or data-driven (backward) approaches. The former propagates the
uncertainties and eventually studies the statistical distributions of
the outputs. Instead, the latter infers errors and model coefficients
from available data.

2.4 Model Calibration

All the turbulence closures, even the simplest algebraic, rely on
some empirical coefficients. Those coefficients have been derived

38

2.4. MODEL CALIBRATION

Table 2.1: Classification of popular works on UQ and RANS modeling, from
[31].

Non-parametric Parametric

data-free

Turgeon et al. [32],
Dunn et al. [33],

Platteuw et al. [34],
Margeri et al. [35],
Shaefer et al. [36]

Emory et al. [37, 38],
Iaccarino et al.[39],

Mishra and Iaccarino [40],
Edeling et al. [41]

data-driven
Edeling et al. [42, 43],

Cheung et al. [44],
Kato et al. [45, 46]

Wang et al. [47],
Singh et al. [48],
Xiao et al. [49],

Wu JL et al. [50, 51]

from direct observations of canonical flows, granting physics-consistency
of the model in simplified scenarios. For example, citing the original
k − ε formulation from 1972, ”in order to estimate the form of the
function fµ, attention was first confined to the prediction of constant
stress Couette Flows” [52]. In so doing, a model is first calibrated
on few canonical flows and later applied to every possible flow
configuration.
Many works show the methodology that extends model effective-
ness, embedding flow physics that is not included in the standard
formulation, e.g. [53, 54, 55]. The non-trivial goal is to infer a new
set of coefficients by the observation of a number of flows during
the adjustment process, with the expectation of not worsening the
model in a more general scenario. This aspect strongly reduces
the feasibility of the so called naive model calibration (NMC), as on
one hand the adjustment process requires a lot of high fidelity data,
while on the other hand the improvement that is achieved is strictly
limited to the physics described by the data.
For this purpose, Bayesian model calibration (BMC) has been devel-
oped, not so far from the standard approach. In NMC the source
of errors is completely ascribed to the model coefficients, therefore

39

2.4. MODEL CALIBRATION

the model can be seen as:

M̃ =M (w;P (w) ; c̃q) (2.5)

where the goal is to improve model predictions q only by finding
better c̃q.

In a more general approach, BMC is a form of statistical infer-
ence where additional terms in the Eq. 2.5 are included:

M̃ =M (w;P (w) ; c̃θ) + θ + εθ (2.6)

By so doing, two approximation sources are additionally in-
cluded in the formulation: uncertainties in data and the misfit
between model prediction δ and the data.
Here we will provide a mathematical representation of BMC. WithC
we denote the collection of n model coefficients C = {C1, ..., Cn}.
From high fidelity data we extract a vector ye of experimental
observations, sampled at a set of Np locations. The initial set of co-
efficients provides a prediction ym(C). That prediction differs from
the ground truth due to errors, either modeling or structural, that
can be summed in a term ε, so that ye = ym(C) + ε. We assume
that the errors are uncorrelated within the different probing loca-
tions, following a centered Gaussian, i.e. ε = {εi}, εi ∼ N(0, σ2).
The σ2 variance is a direct measure of the data-model misfit.
Let P (C, σ2 | yε) be the joint probability density function of the
parameters and the model-data misfit on the observed data. Let
Π1(C) and Π2(σ

2) be the initial guess of the distribution of C and
σ2. The likelihood L(yε | C) of observing yε, given C is:

L(yε | C, σ2) ∝ 1

σNp
exp

(
−‖ ye − ym(C)‖22

σ2

)
, (2.7)

with ‖ · ‖2 the l2 − norm of the vector. Following Bayes’ theorem
the calibrated distribution can be seen as:

P
(
C, σ2 | ye

)
∝ L

(
yε | C, σ2

)
Π1 (C)Π2

(
σ2
)

∝ exp

(
−‖ ye − ym(C)‖22

σ2

)
Π1 (C)Π2

(
σ2
)

(2.8)

40

2.5. MACHINE LEARNING

P
(
C, σ2 | ye

)
can be reconstructed by means of kernel density

estimation. The larger the collection of {C, σ2}, the better the de-
termination of the density function. Once that the density function
has been calculated, the maximum likelihood of a model parameter
is found, and it assures that the difference between observations
and predictions ye − ym(C) is minimized. By taking the mode
of the posteriori probability, the corresponding calibrated model
becomes deterministic. Potentiality and limits to this approach are
highlighted in [56, 57].

2.5 Machine Learning

”Machine learning is the science of getting computers to act without
being explicitly programmed”. C. Bishop in this quote from [58],
summarize the core of every machine-learning approach. By means
of machine-learning algorithms data is firstly observed and parsed,
afterwards transformed into a training database and eventually
predictions about something in the world are made. Challenges
and expectations from this approach are presented hereafter.

2.5.1 Key Issues

Despite the novelty of the topic, several key issues have already
been highlighted [59].

1. Predictive standard models come as sets of equations that
are a combination between observed physics and empirical
correlations. It is not trivial to define where and if ML might
outclass a standard representation.

2. Investigations on the topic, see [60] as example, proves that
even a term of equations that is modeled almost exactly could
lead to poor prediction. The balance of equations, and not
only a single term, should be considered when data-modeling.

3. It is not always possible to directly use data from high fidelity
simulations or experiments, as lower level models may live in

41

2.5. MACHINE LEARNING

different scales of variables.

4. The information being extracted can be defined only in terms
of the turbulence closure. For example, is not possible to di-
rectly apply data-mining techniques from DNS data to directly
predict a field in a RANS simulation, as some information
from the latter must be retained.

5. A general form of the models must be derived. Local correc-
tions, in fact, have few practical uses, mainly restricted to
optimization purposes.

6. ML should correct the deficiencies of the standard model only,
and not impair it where it is working properly.

7. A ML approach need to be at least as robust as the standard
model, especially if implemented in run-time computations.

2.5.2 Field Inversing

Field inversing and turbulence modeling, hereafter denoted with
FIML, is currently a paradigm of machine-learning enhanced turbu-
lence modeling. The underlying concept is that one should model
a correction form for the model instead of a complete new form.
It is performed through the inclusion of a correction field β(x) to
the transport equation, where x is the vector of spatial coordinates.
In so doing, a ML algorithm is trained to minimize the discrep-
ancy between an output of the high fidelity data Gf and the same
output in the model to correct Gfi, min(‖Gf −Gfi‖). G is usually
expressed in terms of aero or thermodynamic properties. The field
β is discretized in the whole computational domain as any other
variable, leading to a local correction of the standard model.
An ensemble of problems Gf

1,Gf
2..will be used as training database.

Infering from those data sets is just the first step of the modeling,
because β needs to vary as the inputs change, even in configurations
not included in the starting Gf

i. Also, the dependence on x leads
to a poor-conditioning of the problem, as geometries and frames
of reference change dramatically within different simulations. It is

42

2.5. MACHINE LEARNING

therefore necessary to find some input variables that are geometry-
independent. Duraisamy expresses this process as ”converting the
inference into modeling knowledge” [2]. Thus, the domain of the
inputs of β is no longer constituted by the spatial coordinates but it
is substituted by the feature space η, β(x)→ β(η). η is a function of
flow variables, preferably locally normalized into non-dimensional
quantities. In synthesis, raw variables are extracted from the flow,
converted into input features η, fed to the ML algorithm that derives
the correction field β.
Once that β has been defined, we are also interested in character-
izing the impact of uncertainties in the data, model inadequacies
and existing knowledge, on the inferred outputs. The following
mathematical formulation follows the Bayesian approach [61]. The
posteriori probability distribution q(β|d), given a priori distribu-
tion p(β), a data vector d, and a likelihood function h(d|β) can be
expressed as:

q(β|d) = h(d|β)p(β)
c

(2.9)

where c =
∫
h(d|β)p(β)dβ. The value of β is inferred at ev-

ery point of the computational domain of the RANS grid. To ease
computations, p(β|d) = e−(β−βprior)

TC−1
prior(β−βprior) and h(d|β) =

e−F
TCobs

−1F are considered Gaussian. F is a vector i elements long
with fi = di,RANS − di,hfidelity the ith element.βprior is the prior
mean of the parameters, corresponding to the base model. Un-
der the Gaussian assumptions, the maximum a posteriori estimate
(MAP) is taken to be representative of the mean of distribution. The
MAP can be computed by maximizing the numerator of Eq. 2.9, or
alternatively solving:

βMAP = argmin J(β) = argmin
1

2

[
FTCobs

−1F + (β − βprior)
TC−1

prior(β − βprior)
]

(2.10)

The resulting optimization can be solved using adjoint-driven tech-
niques, but the posteriori distribution is not determined by sampling
methods and instead is approximated by linearizing about the MAP
point. By so doing, we can express the covariance as the inverse of

43

2.5. MACHINE LEARNING

the Hessian of the objective function J(β):

Cposteriori =

[
d2J(β)

dβdβ

]−1
(2.11)

To summarize FIML, it happens in two steps:

• Solution of a deterministic optimization problem with the
objective function J(β), through means of gradient based
method, to obtain the MAP model.

• Building an approximation of the posteriori covariance by the
inverse of the Hessian around the MAP point.

2.5.3 Anisotropic Modeling

In a RANS formulation three stresses appear in the momentum
equation:

µ

(
∂Ui
∂xj

+
∂Uj
∂xi

)
︸ ︷︷ ︸

Viscous

− Pδij︸︷︷︸
Isotropic

− ρUiUj︸ ︷︷ ︸
Apparent

, (2.12)

where P ,µt and ρ are the thermodynamic pressure, the dynamic
viscosity and density respectively, see [62] for reference. The addi-
tional stress ρUiUj acting in the mean turbulent flows and is much
larger than the viscous counterpart. The apparent stress arises from
momentum transferred by the fluctuating velocity field.
The Reynolds stress tensor is a 2nd order symmetric tensor with the
element on the diagonal representing the normal stresses and the
off-diagonal the shear stresses. Eq. 2.12 can also be written as:

τij = νtSij −
2

3
kδij (2.13)

where k = 1
2u
′
u
′

is the turbulent kinetic energy and Sij the mean
rate of strain tensor. With 2

3kδij being the isotropic stress, the
anisotropic stress becomes:

aij = τij −
2

3
kδij (2.14)

44

2.5. MACHINE LEARNING

Thus,

τij =
2

3
kδij︸ ︷︷ ︸

Isotropic

+ aij︸︷︷︸
Anistropic

(2.15)

The anisotropic term is only responsible for the momentum trans-
port. Linear Eddy Viscosity Models (LEVMs) assume that aij can be
modeled as a linear function of the mean rate of strain tensor, such
as:

ãij = −2νtSij (2.16)

The former approximation strongly eases the RANS approach, how-
ever it is the prime cause of poor accuracy in flows with strong
anistropies. A more general effective-viscosity hypothesis was pro-
posed by Pope in [63]. ã can be seen as a polynomial of ten
independent tensor bases:

ã =

N∑
n=1

G(n)T (n), N = 10 (2.17)

By defining the mean rate-of-rotation tensor Ω as:

Ωij =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
, (2.18)

we can easily write the ten bases as:

T (1) = S

T (2) = SΩ −ΩS

T (3) = S −

(S) I

T (4) = Ω −

(Ω) I

T (5) = ΩS − SΩ

T (6) = ΩS + SΩ − 2

3
(SΩ) I

T (7) = ΩSΩ −ΩSΩ
T (8) = SΩS − SΩS

T (9) = ΩS + SΩ − 2

3
(SΩ) I

T (10) = ΩSΩ −ΩSΩ
(2.19)

Machine learning-assisted invariance anistropic modeling (IAM)
derives a correction in a RANS approach for the previous bases.

45

2.5. MACHINE LEARNING

Given Πi,hf as one of the bases from high fidelity data, i.e. again
DNS/LES or experiments, the goal of the machine-learning algo-
rithm is to minimize the discrepancy:

error =
∑
‖Πi,hf −Πi,ML|∑

Πi,hf
(2.20)

where Πi,ML is an invariant predicted by machine-learning and
the summation is over all the training points. Please note that
expression 2.20 vary from author to author and ad-hoc adjustments
can be found in literature. Theoretically, this approach could be
viable without recurring to the integrity bases, i.e. a machine-
learning algorithm predicts each component of the Reynolds stress
tensor directly. The reason behind the usage of the terms in (2.19)
is the CPU time required for an algorithm training. Integrity bases,
in fact, automatically grant the rotational invariance of the trained
function. Using raw components has been proved to be wasteful, as
pointed out by Ling et al. in [64], where rotational invariance was
reached after 10 rotations in the training data in each Euler angle.
Additional strategies to obtain Galielian and reflection invariance
will be discussed further in the dissertation.
To summarize IAM:

• Write asymmetric part of the Reynolds stress tensor as a func-
tion of invariance bases;

• Invariance bases grant rotational invariance;

• Build a discrepancy function between high-fidelity data and
RANS data;

• Train a ML algorithm to predict bases.

2.5.4 Relevant Prior Work

Literature strictly reflects the status at the start of the chapter, with
three dominating schools of thought. Very few efforts have been
put into achieving a machine-learning-based calibration, despite
in [65] Yarlanki et al. improving the accuracy of the k − ε model

46

2.5. MACHINE LEARNING

by 25%. This correction is still highly local and not guaranteed
to work when the training space is expanded. Duraisamy et al.
successfully applied FIML to the Spalart-Allmaras turbulence model
to enhance model accuracy, by correcting the production term in
the ν̃ equation [2]. It can be extended to other turbulence models,
as done in [66] for the k − ω model. The field of application differs
from work to work, from transition to turbulence on a flat plate
[67] to turbulent channel flow [68]. To bypass transition Zhang
and Duraisamy investigate the similarity between Gaussian-process
regression and Multi-Layer Perceptron Neural Networks [68]. The
latter are usually preferred thanks to their high non-linearity in
respect to other ML algorithms, as in [69]. A similar approach is
followed by Singh et al. to better predict the aerodynamic efficiency
on a family of NACA profiles [70]. Wang et al. in [71] are able to
directly predict the velocity and turbulent field past a porous disk by
means of Ensembled Karman applied to an experimental database.
Anistropic modeling is also very common, due to the relative sim-
plicity of formulation. Ling et al. in [72] shows that the use of
invariance bases greatly reduces the computational costs of train-
ing a ML algorithm. Direct prediction of ã is performed through
means of Random Forest or MLPNN algorithms. The methodology
is proved to be effective both in simple problems (periodic hills /
channel flows in [73, 64] and in heat transfer [74]. Similar results
are obtained in [75], achieving a better prediction of Prandtl num-
ber in a crossflow.
Sandberg et al. follow an intermediate approach between field
inversion and anisotropic modeling. In this case, machine-learning
predicts the various components of the Reynolds stress tensor. An
evolutionary algorithm is applied to derive the best function that
minimizes the error between high fidelity data and a RANS model.
The error is written in terms of macroscopic features (e.g. cascade
deflection, Prandtl number), similarly to that seen in Duraisamy et
al. An algebraic expression for ã as a function of integral basis is
eventually derived. It is proven to be effective in a cascade flows
enhancing wake mixing [76, 77], in film cooling [78] and cross-
flows [79]. In [80] Wu et al. applied the sample formulation to

47

2.5. MACHINE LEARNING

recirculating flows, coming to similar conclusions. An interesting
variation on the theme is proposed by Wang et al., that in [81]
decompose ã into its magnitude and orientation, the aims of the
ML algorithm. This framework, applied to 2D geometries (periodic
hills and a square duct), leads to promising results.
Few efforts can be found regarding near wall modeling. Tieghi et
al. in [82] try to enhance near wall modeling of the k − ε model
in run-time RANS simulations through a correction in the turbu-
lent kinetic energy. Milano et al. in [83] train an artificial neural
network to perform a non-linear proper orthogonal decomposition
of the flow fields near the walls to perform intense dimensionality
reduction for ML applications.

Table 2.2: Machine Learning and Turbulence

Ref. ID ML Alghoritm Methodology Turb. Model
[70] MLPNN AM Spalart-Allmaras
[67] MLPNN FI Spalart-Allmaras
[66] GP FI k − ω
[68] MLPNN FI k − ω
[73] MLPNN IAM k − ε
[72] MLPNN/RNDMF IAM k − ε
[64] MLPNN IAM k − ε
[75] Decision Tree IAM k − ε
[74] RNDMF IAM k − ω
[79] GEP Hybrid FI/AM Esplicit Algebraic SM
[78] GEP Hybrid FI/AM URANS k − ω
[69] MLPNN Hybrid FI/AM Spalart-Allmaras
[77] GEP Hybrid FI/AM Esplicit Algebraic SM
[76] GEP Hybrid FI/AM URANS k − v2 − ω
[80] RNDMF IAM Spalart-Allmaras
[81] RNDMF IAM k − ε
[71] Ensembled Kalman IAM k − ε
[82] MLPNN Derivative k − ε
[83] MLPNN Derivative General
[84] Boosting Tree Derivative General

48

Chapter 3

Machine-learning Tools
and Techniques

”I’m sorry, Dave. I’m afraid I can’t do
that.”

HAL 9000

This chapter will provide the reader a mathematical description
of neural networks and popular machine-learning techniques that
have been exploited further in the work.

3.1 What is Machine-Learning?

In standard programming an algorithm is designed, coded in a
machine-intelligible language and eventually executed by one or
more processing units. For engineering purpose, the performance

49

3.1. WHAT IS MACHINE-LEARNING?

of an algorithm can be easily evaluated by the quality of its re-
sponse. As soon as the program is designed, its performances are
unequivocally defined, and can be improved only by changing input
data. Regardless of the complexity of the algorithm, computers
cannot go beyond the boundaries imposed by their programmers.
An algorithm will always produce the expected output. In tradi-
tional programming you hard code the behavior of the program. In
machine-learning, you leave a lot of that to the machine that learns
from data.
Machine learning comes as an answer to problems, e.g. advice for
products marketing, advanced medical diagnostics or self-driving
cars, where a difficult task coexists with the need of a constant
self-improvement of the the algorithm. In face recognition, for
example, it is important to have a software that is able to correctly
identify each individual in different poses and lighting conditions,
while becoming better and better with the use of algorithm. Thus,
we can summarize machine-learning in a synthetic but still effective
way as ”[...] the science of getting computers to act without being
explicitly programmed” 1. The discipline, intended in a modern
fashion, began to flourish during the early ’90s. Today, hundreds
of algorithms have been developed and optimized, with a fervent
research still ongoing.
Following an original fashion (see The Master Algorithm from P.
Domingos, 2015 [85]), whoever is a familiar with ML algorithms
practice can identify himself in a different tribes. In [85] Domin-
gos is searching for the ”Master Algorithm”, that can be playfully
defined by paraphrasing a famous quote as ” the algorithm to rule
them all”. His search ends with an open debate, identifying in the
Markov logic networks (MLNs) the supreme learner on one side,
while stating at the same time that ”I wouldn’t be so rash as to call
this learner the Master Algorithm”.

1Dr. Danko Nikolic, CSC and Max-Planck Institute

50

3.2. MACHINE-LEARNING TRIBES

3.2 Machine-Learning Tribes

Whoever designs an algorithm knows that is non-trivial to state
which algorithm will perform better in the assigned task. It is a
common standard design practice, in fact, to compare different
predictors and techniques to assess the best. Therefore, from a
theoretical perspective, boundaries between tribes are sharp and
clear. In a real scenario a AI expert will take into account them all.

Figure 3.1: A visualization of the different ML tribes

51

3.2. MACHINE-LEARNING TRIBES

Regardless of the tribes, each methodology is based on three
different layers:

L1 Representation: flow of data is transposed in a set of classi-
fiers or regressors, e.g. the language that a computer under-
stands;

L2 Evaluation: the performance of the algorithm is evaluated
through means of objective / scoring function;

L3 Optimization: the algorithm is self-optimized to get better
scores during the evaluation phase.

Each tribe has a set of core beliefs and addresses its effort to
specific categories of problems. Every clan bets on their master
algorithm.

• For symbolists, understanding cannot be directly derived
from the preexisting knowledge from scratch. They are good
at manipulating symbols, as mathematicians solves equations
by replacing expressions by other expressions. They don’t
start with an initial guess of the conclusions, but rather work
backward to fill in the gaps between premises and conclu-
sions. Not by chance, their chosen master algorithm is inverse
deduction.

• Connectionists started by observing the learning process of
the human brain, thinking that their algorithms should behave
in a similar manner. An artificial brain is then build, miming
the basic structure of a biological neural network. The key
of the success is the goodness of the connections, that are
morphed and weighted during a learning process. The mas-
ter algorithm is backpropagation, which compares outputs
from the connections and the reality and gradually adjust the
structure in a constant improvement to the optimum.

• Evolutionaries have learned from the natural selection pro-
cess. The key idea is that a population of initial solutions that
withstand an evolution process eventually generates a family

52

3.2. MACHINE-LEARNING TRIBES

of best solutions. Virtual era after virtual era, individuals are
mated together and their heirs are selected by their capacity of
fitting the environment. The evolutionaries’ master algorithm
is genetic programming, which algorithmically replicates most
of the features of natural selection.

• Bayesians think that uncertainty is the source of all knowl-
edge. Learning the uncertainty is knowledge itself. They
know better than other how to deal with noisy, incomplete,
and even contradictory information. The solution is proba-
bilistic inference, and the master algorithm is Bayes theorem.

• For analogizers, no knowledge stands alone, thus it is always
possible to derive information by analyzing similarities. An
individual is what it resembles. Similar phenomena behave
in similar manner. The key lies in the ability of discerning be-
tween different behaviors. The analogizers master algorithm
is the support vector machine, which draws boundaries and
eventually infers.

In this dissertation we will focus on the connectionists. The
choice is justified by several factors:

• Non-linearity: NNs are naturally non-linear, allowing the algo-
rithm to solve complex and simple problems as well;

• Generalization capability: within the non-linear algorithms,
NNs present the best performances when inferring out of the
bounds of training data;

• Overfitting resilience: advanced techniques avoid the tendency
of ML algorithms to overfit training data;

• Literature documentation: different authors highlight the ef-
fectiveness of NNs, additionaly providing useful information
on the architecture of the algorithms (see Chapter 2).

We must also point out that as long as the problem is well con-
ditioned and training data in statistically significant, non-linear

53

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

algorithms show similar performances. As an example, it is the
case of random forest regressors, that can achieve the same accu-
racy as NNs. Therefore, NNs were mainly selected based on their
generalization capability.

3.3 The Connectionists Paradigm: Neural
Networks

The idea of reproducing a self-organization organism was born
into biology and neuroscience, where we find the first attempts to
replicate a human brain. One of the initial steps towards an artifi-
cial intelligence can be attributed to the neurophysiologist Warren
Sturgis McCulloch and to the mathematician Walter Pitts. In 1943,
in fact, they wrote a cutting-edge work describing the basic func-
tioning of neurons, with the final aim to replicate that behavior in a
machine. Neurons were intended as binary, e.g. they can be either
activated or quiet. The state of activation was only triggered if the
weighted sum of the inputs (also intended as binary), exceeded
some limit value. In the initial view of neurons, weights were fixed.
By so doing, it was expected that a simple circuit could replicate
the behavior of a human neuron. Sturgin and McCulloch thought
that they could replicate an entire brain by building a large enough
circuit.
The concept of fixed weights was overcome only in 1949, when the
psychologist Donal Olding Hebb published the book The Organiza-
tion of Behavior. Hebb theorized that weights were updated at every
usage, thus the learning process was a property of the connection
between neurons. Hebb also defined the famous Hebb rule, that
constitute nowadays the fundamental algorithm for AI learning.
The Hebb rule can be summarized as it follows: if two neurons are
excited at the same time, the connection between them increases,
otherwise it diminishes.
During the early ’50s we can find several attempts to create a ”think-
ing machine”, as done by Nathaniel Rochester, creator of the first
IBM computer. In 1956, Claude Shannon, Bell Laboratories, and

54

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

John McCarthy, Dortmund College, instituted the ”Dartmouth Re-
search Project on Artificial Intelligence”, where we can find one of
the first involvements of industries on the topic, treated before as a
purely academic subject.
In 1958 von Neumann published The Computer and the Brain, where
through a reductionist approach he analyzes similarities between
analogical calculators and human brain. A brain is here seen as a
sum of basic functions. Due to the inability of performing complex
tasks, neurons can only respond to some inputs with the boolean
operations: AND, OR and NOT. However, a neuron is not able to
be activated repetitively, thus two responses have a delay of 10−4

and 10−2 seconds. In calculators this interval can be reduced to a
minimum of 10−7. However, von Neumann states, the human brain
is still superior to a machine thanks to its bigger dimensions. He
also concludes with the assumption that the human brain naturally
includes some sort of non-linearity, althought its source has not
been identified yet.
To find the introduction of the concept of perceptron we need to
wait until 1957, when Frank Rosenblatt, from Cornell Aeronautical
Research Laboratory, develops the first thinking machine, the Per-
ceptron. The computer is able to learn and recognize pictures, and it
is the oldest neural network still working. The perceptron computes
a weighted sum of the inputs, subtracts a threshold and returns one
among two possible values. In Rosenblatt’s neurons, weights no
longer have discrete values (-1/0/1), but they vary continuously. A
set of weights is derived to minimize the error between predictions
and observations, through a supervised learning process. The work
from Rosenblatt was seriously criticized by two mathematicians,
Marvin Minsky and Seymour Papert. In 1969 they publish ”Per-
ceptrons. An introduction to Computational Geometry”, where they
demonstrate that the former structure of neurons was not able to
replicate the basic XOR function. Minsky and Papert also states that
even more complex structures would not able to simulate such func-
tion. The historical impact of this work is unimaginable, as it was
taken as an example of the uselessness of neural networks. An halt
to researches on neural networks is consequently found all along

55

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

the Seventies. The same Minsky and Papert in 1988 would negate
the negative impact of their former work, and, in the third edition
of Perceptrons, they show that the learning capability of perceptrons
were dramatically enhanced. As a side note, the lack of adequate
mathematical theories strongly affected ongoing researches.
Development of neural networks has been flourishing since 1986,
when David Everett Rumelhart, Geoffrey Hinton and Ronald Williams
introduces the concept of backpropagation. Through backpropa-
gations, weights are no longer fixed but they change dynamically,
granting better performances while performing complex tasks. The
golden year for neural networks is 1988, when connectionism be-
comes a pardigm among the statistical sciences. By the end of 1988,
the International Neural Network Society counts more that 2000
members that publish in its own journal.
Today, the pros of neural networks and machine-learning are known
worldwide. A fast search on Google Trends 2 shows a steep rise
in interest on the neural-networks and related topics in the past
decade. In spite of the incredible rate at which new algorithms are
invented, we are in store for a golden age of neural networks.

3.3.1 Learning as Optimization

The term neural networks does not uniquely define a structure
but a large class of models and learning techniques. To ease the
discussion we will focus on the so called vanilla neural network, i.e.
single/multi-hidden layer back-propagation algorithms.
The goal of the learning process is to train an algorithm, or predictor,
to perform complex tasks. We distinguish between three different
types of learning processes:

• Supervised learning: the predictor is asked to learn from a
set of given examples. The examples contains both the input
values and the known output. To our extents, we will always
work with supervised learning.

2https://trends.google.com

56

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

• Reinforced learning: a score that is a measure of the per-
formance of the algorithm is used in place of the known
outcome.It is similar to supervised learning but less popular.
It is proved to be especially effective in control systems.

• Unsupervised learning tries to discover patterns and simi-
larities in input data without knowing anything about the
expected output.

Neural networks learn similarly to the human brain. It is there-
fore useful to provide basic concepts on the topic. Merits of the
first researches on that subject go to Edward Lee Thorndike, with
his work ”Trial and Error Learning” [86]. This heuristic method
can be summarized by the idea that, while performing a task, by
increasing the number of trials we decrease the number of fails. It
was exported as a problem solving technique in computer science,
also called ”generate and test”. Thorndike’s theory was developed
observing animal behaviors, however human beings learn in a simi-
lar manner through the operant conditioning, see [87]. The human
brain relates a specific behavior to a reaction from the surrounding
environment. In so doing, it becomes better at avoiding actions with
negative consequences, through a system of reinforcements and
punishments. In the experiments of Sinner, for example, when a rat
pressed a level it was rewarded with food, leading to an increase in
frequency of such action.
We have already stated that neural networks behave in a similar
manner. However, how is it possible to mathematically define a neg-
ative consequence from a good one? In which way can we replicate
the complex and mostly unknown animal connectome through a
computer? How do we represent human experience?
In the following sections we will distinguish between the architec-
ture of the neural network, that conceives the physical brain, and
the optimization process, that mimics the learning process of human
beings.

57

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

3.3.2 Architecture

We will now virtually ”dissect” the artificial brain in its most basic
anatomic parts. Any network can be seen as a sum of basic units,
called artificial neurons. The notation in use is:

• Scalars - small italic letters: a,b,c;

• Vectors - small bold nonitalic letters: a,b,c;

• Matrices - capital bold nonitalic letters: A,B,C;

• ̂ - data from a training database, taken as ground truth.

3.3.2.1 Single-layer Neural Networks

On an abstract level, a neural network can be thought of as a
function f that maps inputs x ∈ Rm, also called features, to an output
y ∈ Rn, with m and n being the dimensions of the spaces. Inputs
and outputs can assume either categorical or continual values. Thus:

fθ : x→ y (3.1)

where θ are the parameters of the model. Those can be divided
into hyperparameters, e.g. parameters that are chosen only once
and remain the same during the learning process, and weigths and
biases, optimized during the training process. Fig. 3.2 shows the
basic unit that builds up a neural network.

Any unit accepts as input a value x∈ R3. Its neuron can be
parameterized by two values a weight w and a bias b. The product
of weight and input is summed to the bias to obtain the transfer
potential Σ. The transfer potential is used as an input for the
activation function Φ. At this point, the neuron has been activated
and it fires. The output y is also called action potential. This process
can be summarized by the expression:

y = Φ (w · x+ b) (3.2)

58

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

Figure 3.2: A single-input neural unit

3.3.2.2 Multi-layer Neural Networks

A multi-input neuron is just a generalization of the single input
neuron(Fig. 3.3). Each of the individual inputs x1, x2, ..., xN is
weighted by the w1,w2, ...,wN coefficients.

Figure 3.3: A multi-input neural unit and its dimensions

59

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

In this case, the transfer potential is given by:

n = w1 ·x1+w2 ·x2+...+wn ·xn+b =

N∑
i=1

wixi+b = W·x+b (3.3)

where W and x are the weights and input matrix respectively. The
action potential can be therefore written as:

y = Φ

(
N∑
i=1

wi · xi + b

)
(3.4)

In multi-inputs neural networks defining the dimension of each
of the elements is trivial (Fig. 3.3b). In fact, all the former expres-
sions consider each of the input as a scalar. It means that the input
matrix x has N × 1 dimensions, where N is the number of inputs.
The expected outcome of the neural unit is a scalar, therefore the
only allowed dimensions for the weight matrix is 1×N .
In a more complex scenario, the number of neurons S could dif-
fer from the number of inputs N. Fig. 3.4 shows an example of a
multi-input single-layer network, with S 6= N . N inputs from the
first layer are fired and used in turn as inputs for the S-sized layer.
By so doing, the new shape of the weight matrix becomes S × N.

W =

w1,1 w1,2 · · · w1,N

w2,1 w2,2 · · · w2,N

...
...

...
wS,1 wS,2 · · · wS,N

The value of an i,j element of the weight matrix represents

the strength of the connection between the ith input and the jth
neuron. The higher the values, the stronger the connection. When
the number of neurons differs from the number of inputs, instead of
a single bias we find a vector b. The transfer potential is eventually
transformed in a vector of outputs y. Nothing forbids the use of a
different transfer function for each neuron, even though it is usually
the same to ease implementation, especially in bigger networks.

60

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

Figure 3.4: Single layer neural network and its dimensions.

Single layer neural networks, however, show strong deficiencies
when dealing with complex problems, and today their performances
fall behind modern approaches like Random Forests or Support
Vector Machines. It is therefore necessary to deepen the complexity
of the structure seen before. It is achieved through multi-layering,
e.g. the outputs of a layer are exploited as inputs for a subsequent
layer. Each layer has its own number of neurons, set of weights,
biases and activation functions. A superscript will consequently
address which layer a matrix belongs to.

The last layer is also called the output layer, while the other are
usually denoted as hidden layers. Input of an intermediate layer,
namely the net input, will be denoted with n. The final output of the
network can be therefore written as a combination of the previous
layer:

y3 = Φ3
(
W3Φ2

(
W2Φ1

(
W1x1 + b1

)
+ b2

)
+ b3

)
(3.5)

We will now provide a further insight on how neural networks are
built and trained.

61

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

Figure 3.5: Example of three-layered perceptron.

3.3.2.3 Activation Functions

Φ is the source of non-linearity of neural networks, and its shape
changes from application to application. Several activation func-
tions have reached high popularity. The simplest ones are the linear
function (Fig. 3.6a) , where the action potential is only controlled
by the slope of the curve, and the Heaviside function (Fig. 3.6d),
that represents a neuron that can be either activated by the full
inputs or not.

The function that has achieved the highest popularity is the
logistic function, also known as sigmoid (Fig. 3.6b). In modern
practice preferences are shifting toward the hyperbolic tangent (Fig.
3.6c), due to higher capability dealing with outliers. Activation
functions must satisfy several requirements:

• Non-linearity: it can be easily proved mathematically that mul-
tiple linear layers can collapse into a single layer, vanquishing
the advantages of use of the multiple layers;

• Limited response: some functions, such as the linear or ReLu,
provide an infinite response as the activation potential be-
comes high. In so doing they vanquish any training instance

62

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

Figure 3.6: Common activation functions - a) linear: αx with α > 0, b)
logistic: 1/(1 + e−x, c) hyperbolic tangent: (ex − e−x)/(ex + e−x), d)
Heaviside function: 0 for x < 0 | 1 for x ≥ 0

with lower values. Outliers are particularly disruptive due to
this aspect;

• Continuously differentiable: training in an algorithm is per-
formed through minimizing the difference between predicted
output and ground truth. The gradient of the cost leads the
process. Steep gradients or ravines hinder the training pro-
cess, therefore activation functions should be differentiable
everywhere, a part from few discontinuity points;

• Monotonic: it can be proven mathematically that a monotonic
function has a convex error surface, e.g. a global minimum is
guaranteed;

• Smooth functions with a monotonic derivative: this attribute is
not mandatory. During the training phase, backpropagation
handle the influence of each neuron in the next layer. If
we use a non-monotonic activation function we introduce
a chaotic behavior in the network, as when increasing the

63

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

weight of a neuron it may have less influence, that is opposite
of what was intended.

• Approximates identity near the origin: it helps weight-independent
initialization. In fact, it is accepted practice to initialize
weights and biases will values that are close to zero. In so do-
ing, computed gradients of cost will be near-zero, that speed
up the convergence process. Otherwise, an ad-hoc weight
initialization should be performed and it seriously impair the
robustness of NN design.

3.3.2.4 Error Functions

The aim of the error functions, also called cost or loss functions, is to
reduce the complexity of training a model down to a single number.
In so doing, various instances of training can be immediately com-
pared and evaluated. Each model requires an ad-hoc selection of
the loss function, and a wrong choice may lead to a unsuccessful
training. It is therefore necessary that the chosen form represents
the design goals. J provides a measurement of how good the model
in approximating the relationship between inputs x and outputs.
Two forms have gained popularity in machine-learning practice,
thanks to their relatively simple mathematical formulation and ef-
fectiveness: mean squared error (MSE) and cross entropy (CE).
Mean squared error computes the averaged error over all the train-
ing examples. The error is measured as a simple squared difference
between the expected output of the model ŷ and the actual output
of the net y:

MSE =
1

2N

N∑
i=1

(ŷi − yi)2 (3.6)

Squared error relates to Gaussian noise. In most of the scenarios,
regardless of any set of weight or biases, the difference ŷ − y will
never be zero. Training data, in fact, will almost surely be affected
by noise due to various independent sources, e.g. measurement
errors, environmental factors. When developing an algorithm, we
are trying to model relationships underlying data and not the noise

64

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

itself. In reality, our goal is to find the best set of weight and biases
that takes the noise distribution into account. Following the central
limit theorem, noise will be normally distributed, i.e. it can be
represented through a Gaussian distribution. A Gaussian curve can
be described by two parameters, mean and variance. If we assume
that there is no systematic error in data, i.e. the distribution has a
zero mean, computing MSE is equivalent to computing the variance
[88]. The best predictor is the one with the narrowest distribution
around the predicted values (smallest variance). This explains why
minimizing MSE usually turns out to be effective in most of the
regression problems, regardless of the data to model.
The learning process in classification problems relies on maximum
likelihood estimation (MLE). MLE searches the optimum set of
weights and biases by maximizing a likelihood function derived
from the training data [89]. Minimizing the difference between the
empirical distribution and the likelihood function is the real goal of
the training phase. It is the same as minimizing the cross-entropy
between the two distributions. In a classification problem we are
interested in labeling a combination of input variables to a class.
We therefore model the probability of a training example belonging
to each class:

CE = −
∑
N

pŷ(x) log qy(x), (3.7)

where p and q can be read as the probability distributions from the
training data and from the modeled data respectively.

3.3.3 Optimization

Every component of the architecture of a neural network have
been fully explained. Effectiveness of a neural network lies in the
ability of organizing and optimizing weight and biases. That is done
through solid optimization techniques.

3.3.3.1 Gradient Descent

Cost functions, apart from a few lucky exceptions, do not present an-
alytic forms. Points of minimum/maximum must be found through

65

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

numerical iterative methods. To this extent, the most popular opti-
mization methodology is the gradient descent (GD). The key idea of
GD is that in a curvy function, if we keep moving downhill, we will
eventually come to a local/global minimum. The size of the step
we take is also called learning rate and it is a scalar value α.
Every iteration GD computes the derivative of the cost function with
respect to weights and biases.

J ′ (w, b) =

 ∂J∂w
∂J
∂b

 (3.8)

The derivative of the cost function tells us the slope of the cost
function, e.g. in which direction to perform the update step. GD
change values of W and b until, for each of the N th feature:

xn = xn − α
∂J

∂xn
J (xn) (3.9)

In a mono-dimensional feature space it is easy to plot GD iterations
toward convergence (Fig. 3.7). Unfortunately, we cannot simply
optimize multi-layer neural network by running instances of a GD
layer per layer. For a single-layer linear network the error is an
explicit linear function of the network weights, and its derivatives
with respect to the weights can be easily computed. On the oppo-
site, we experience a signficant increase in the computational costs
of the derivative in Eq.3.8 with the number of hidden layers and
neurons. Consequently, convergence toward a point of optimum is
dramatically slow and it can become impossible for networks with
complex architectures or data with high-dimensionality. To over-
come these difficulties, back-propagation technique is universally
accepted and exploited in the common machine-learning practice.

3.3.3.2 Back-propagation

Referring to previous lexicon, the equation that describes data flow
in an intermediate layer for a network with M layers is:

yj+1 = Φj+1
(
Wj+1yj + bj+1

)
for x = 2, . . . ,M − 1 (3.10)

66

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

Figure 3.7: Iterations of GD algorithm when fitting data with a linear model
y = w · x+ b

The expression in Eq.3.10 remains valid even for the first and last
layers (j = 0,M − 1), with slight modifications. The first layer
(j = 0) has external data x as input, while we denote outputs of
the last layer (j = M) as y′. During a training phase, the neural
network maps the kth input to the y

′

k output. ŷk is the true kth

target value. The goal of the algorithm is to minimize the error e,
expressed through the cost function:

J(x,b) = MSE
[
e2
]
= MSE

[
(ŷ − y)2

]
(3.11)

It is possible to generalize Eq.3.11 for multiple outputs:

J(x,b) = MSE
[
eTe

]
= MSE

[
(ŷ − y)2

]
(3.12)

MSE can also be written in an approximated form as:

J(x,b) = (ŷ(k)− y(k))2 (ŷ(k)− y(k)) = eT (k)e(k) (3.13)

67

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

where the expectation of the squared error is replaced by the
squared error at iteration k. Each iteration of the GD algorithm in
the mth computes:

wmi,j (k + 1) = wmi,j (k)− α
∂J

∂wmi,j
(3.14)

bmi,j (k + 1) = bmi,j (k)− α
∂J

∂bmi,j
(3.15)

where α is the learning rate. For a single-layered neural network,
the previous expressions are iterated towards convergence with
small computational efforts. In multi-layer architecture the error
is not an explicit functions, therefore these derivatives are hard
to compute. We can use the chain rule of calculus to compute
derivatives. Taking a function f that is an explicit function only of
the variable v1, we can compute the derivative with respect to a
different variable v2 by:

df(v1(v2))

dv2
=
df(v1)

dv1
× d(v1(x2))

dv2
(3.16)

In a similar way, derivatives of Eq. 3.14 and 3.15 with respect to
the net input n can be computed by:

∂J

∂wmi,j
=

∂J

∂nmi
× ∂nmi
∂wmi,j

(3.17)

∂J

∂bmi,j
=

∂J

∂nmi
× ∂nmi
∂bmi,j

(3.18)

Those terms can be computed in a easy way, since we already know
that the net input n to a layer m is a direct function of weights and
biases of that layer.

nmi =

M−1∑
j=1

wmi,jn
m−1
j + bmi (3.19)

68

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

And consequently:
∂nmi
∂wmi,j

= ym−1j (3.20)

∂nmi
∂bmi

= 1 (3.21)

We can define sensitivity of J as the change in the ith element of the
input at layer m:

smi =
∂J

∂nmi
(3.22)

Therefore:
∂J

∂wmi,j
= smi y

m−1
j (3.23)

∂J

∂bmi
= smi (3.24)

In so doing, we can rewrite gradient descent in a simpler form:

wmi,j(k + 1) = wmi,j(k)− αsmi nm−1j (3.25)

bmi (k + 1) = bmi (k)− αsmi (3.26)

that in a matrix form becomes:

Wm(k + 1) =Wm(k)− αsm(nm−1)T (3.27)

bm(k + 1) = bm(k)− αsm (3.28)

We can write Eq. 3.22 in matrix form as well:

sm =
∂J

∂nm
=

∂J
∂nm

1
∂J
∂nm

2

...
∂J
∂nm

M

 (3.29)

69

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

At this point, we can finally compute all the sensitivities sm. The
process is called backpropagation, as it describes a recurrence rela-
tionship in which the sensitivity at layer m is computed from the
sensitivity at layer m+ 1. We can write the Jacobian matrix as:

∂nm+1

∂nm
=

∂nm+1
1

∂nm
1

∂nm+1
1

∂nm
2

. . .
∂nm+1

1

∂nM
1

∂nm+1
2

∂nm
1

∂nm+1
2

∂nm
2

. . .
∂nm+1

2

∂nM
1

...
...

...
∂nm+1

M

∂nnm
1

∂nm+1
M

∂nm
2

. . .
∂nm+1

M

∂nM
1

 (3.30)

where each i,j element of the Jacobian matrix:

∂nm+1
i

∂nmj
=
∂
(∑M

l=1 w
m+1
i,l yl + bm+1

i

)
∂nmj

= wm+1
i,j

∂ymj
∂nmj

(3.31)

= wm+1
i,j

∂Jm(nmj)

∂nmj
= wm+1

i,j J ′m(nmj) (3.32)

J ′ reads as the first derivative of the Jacobian matrix with respect
to the jth net input. Eq. 3.30 can be eventually written as:

∂nm+1

∂nm
= Wm+1J′(nm) (3.33)

On the right side of Eq. 3.33, J ′(nm) is the diagonal matrix of the
partial derivatives:

J′(nm) =

J ′(nm1) 0 . . . 0

0 J ′(nm2) . . . 0
...

...
...

0 0 . . . J ′(nmM)

 (3.34)

At this point, we can combine Eq. 3.33 with the chain rule of

70

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

derivatives in matrix form, Eq. 3.18:

sm =
∂J

∂nm
=

(
∂nm+1

∂nm

)T
∂J

∂nm+1
= J′(nm)(Wm+1)T

∂J

∂nm+1

(3.35)

= J′(nm)(Wm+1)T sm+1 (3.36)

The name backpropagation comes from the next step. Starting from
the last layer, in fact, sensitivities are propagated back layer per
layer until the first one.

sM → sM−1 . . .→ s2 → s1 (3.37)

To complete the description of backpropagation, we need to define
the first step, i.e. how we compute the first derivative for the Mth
layer:

sMi =
∂J

∂nMi
=
∂(ŷ − y)T (ŷ − y)

∂nMi
(3.38)

=
∂
∑sM

j=1(ŷj − yj)
∂nMi

= −2(ŷj − yj)
∂yi
∂nMi

(3.39)

We already know that

∂yi
∂nMi

=
∂yMi
∂nMi

=
∂JM (nMi)

∂nMi
= J ′M (nMi) (3.40)

therefore the sensitivity for the ith neuron in the last layer M be-
comes:

sMi = −2(ŷi − yi)J ′M (nMi) (3.41)

expressed in a matrix form as:

sM = −2J′M (nM)(ŷ − y) (3.42)

Back-propagation is now complete. To summarize, to perform
back-propagation:

71

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

1. Propagate the input x toward the second-last layer: ym+1 =
Jm+1(Wm+1ym + bm+1) for m=0, 1, . . . ,M − 1;

2. Compute the sensitivity of the last layer: sM = −2J′M (nM)(ŷ−
y);

3. Back-propagate the sensitivities toward the first layer: sM =

J′
M
(nM)(Wm+1)sm+1 for m=M − 1, . . . , 2, 1;

4. Update weights and biases using the steepest descent rule:
Wm(k + 1) = Wm(k) − αsm(ym−1)T and bm(k + 1) =
bm(k)− αsm.

All the process discussed thus far can be considered the core of the
learning process.

3.3.3.3 Adaptive Momentum Estimation

Whoever decides to enhance turbulence modeling through means of
machine-learning, soon or later encounters one of the most difficult
problem to overcome, namely generalization. Real flows, in fact,
come with the most various configuration and typologies. Good pre-
diction of those flows are achieved through modeling Navier-Stokes
equations, that represent a common underlying physical structure.
To build an artificial intelligence, however, a training database is
required. Training data is constituted of a limited number of entries,
few billions at best, leading to a strong under-representation of
physics. It means that a complete ML driven model is far to be
achieved, due to the limited amount of computational power that
is available. An accepted practice involves building algorithms that
enhance the standard models only in a few configurations, while
not deteriorating their quality on the others. Even so doing, getting
the model to work with every possible frame of reference is not an
easy task. Furthermore we must deal with the difficulty of manag-
ing sparse data, i.e. dataset entries do not smoothly populate the
feature space.
ADAptive Momentum estimation optimizer (ADAM) constitute one of
the best tools to deal with sparse data [90]. They key idea is very

72

3.3. THE CONNECTIONISTS PARADIGM: NEURAL NETWORKS

similar to the classical stochastic gradient descent (GD). However,
instead of using a fixed value, ADAM computes the optimal learning
rate for each of the input features. This per-parameter optimization
is based on the first and second statistical moments of the gradients,
i.e. mean and variance. In fact, ADAM stores an exponentially
decaying average of the past gradients m and their square m2:

mt = β1mt−1 + (1− β1)∇Jt (3.43)

m2
t = β2m

2
t−1 + (1− β2)∇J2

t (3.44)

where t is the current iteration of optimization and t−1 the previous
one. β1 and β2 constants are chosen a-priori, with common reported
values of 0.9 and 0.999 respectively. ADAM update rule therefore
becomes:

Wt+1 =Wt −
J ′√
m2
t + ε

mt (3.45)

where ε is a small number to avoid division by zero. Apart from
a few exceptions, ADAM performances are superior to any other
optimizer, making it the benchmark for optimizers in machine-
learning applications [91].

73

Chapter 4

Development of
Machine-Learning
Assisted Tools for
Turbulence Modeling

This chapter will describe three different application of artificial
intelligence to turbulence modeling:

• A data-driven wall function for stationary flows;

• A data-driven wall function for rotating ducts;

• A tool for the identification of poorly ventilated zones in GT
turbines.

75

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

4.1 A Data-driven Wall Function for Sta-
tionary Flows

This part of the works was subject of paper GT-91238 [82]. Near-
wall modelling is one of the most challenging aspects of CFD compu-
tations. In fact, integration-to-the-wall with low-Reynolds approach
strongly affects accuracy of results, but strongly increases the com-
putational resources required by the simulation. A compromise
between the accuracy and speed to solution is usually obtained
through the use of wall functions, especially in RANS computations,
which normally require that the first cell of the grid to fall inside the
log-layer (50 < y+ < 200) [29]. This approach can be generally
considered as robust, however the derivation of wall functions for
attached flow boundary layers can mislead to non-physical results
in the presence of specific flow topologies, e.g. recirculation, or
whenever a detailed boundary layer representation is required (e.g.
aeroacoustics studies) [92]. In this work, a preliminary attempt to
create an alternative data-driven wall function is performed, exploit-
ing artificial neural networks (ANNs). Whenever enough training
examples are provided, ANNs have proven to be extremely powerful
in solving complex non-linear problems. The learner that is derived
from the multi-layer perceptron ANN, is here used to obtain two-
dimensional, turbulent production and dissipation values near the
walls. Training examples of the dataset have been initially collected
either from LES simulations of significant 2D test cases or have
been found in open databases. Assessments on the morphology and
the ANN training can be found in the paper. The ANN has been
implemented in a Python environment, using scikit-learn and ten-
sorflow libraries [93, 94]. The derived wall function is implemented
in OpenFOAM v-17.12 [95], embedding the forwarding algorithm
in run-time computations exploiting Python3.6m CApi library. The
data-driven wall function is here applied to k-epsilon simulations
of a 2D periodic hill with different computational grids and to a
modified compressor cascade NACA aerofoil with sinusoidal leading
edge. A comparison between ANN enhanced simulations, available

76

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

data and standard modeling is here performed and reported.

4.1.1 Introduction

Theoretical models for turbulence closure were historically derived
by experimental observations of turbulent phenomena. Mathemat-
ics and statistics then followed, leading to an analytical formulation
of the problem. Further observations eventually tuned the model,
improving its robustness. However, this learn-from-observations
approach was limited by the number of observations that could be
considered at the same time. The growth of available computational
power has made this approach available for huge datasets of turbu-
lent flows, finally granting the capability of developing data-derived
turbulent models [96].
In the past five years, a small but growing community has worked
on improving existing turbulence models through a data-driven
approach. All the works share a common feature, as they try to
overcome the restriction imposed by the well-known Boussinesque
closure in the RANS approach, granting a better approximation of
the anisotropic part of the Reynolds stress tensor. Within all the
machine learning techniques, neural networks have been used in
turbulence modeling applications, thanks to their capability of real-
izing predictors as complex as needed. However, this complexity
comes at a cost, as huge computational resources are required to
generate a turbulence database that is detailed enough to support
a proper algorithm training. To effectively achieve a data-driven
model of turbulent flows, it is necessary to reach a compromise
between the complexity of the considered flows and the amount
of CPU time needed to generate the database. Due to this require-
ments, smart and general solutions to reduce the complexity of the
problem have still to be found.
A dimensionality reduction of the considered flows is achieved, fol-
lowing the approach of [69]. Considering only two-dimensional
flows, in fact, allows a faster data generation through two-dimensional
period flow simulations, and it further reduce the complexity of the
algorithm, as one third of the training feature are ignored. This also

77

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

increase the overall accuracy of the ANN algorithm, because as the
number of considered features is increased over a certain number,
the effectiveness of the predictor drops dramatically [97].
To speed up the convergence of the algorithm, a zonal training is
used. In this way, only a portion of the computational grid is con-
sidered as significant for the training, leading to extreme reduction
in the number of useless or redundant training examples. In the
work, all generated training examples are filtered with a y+ cutoff
value of 300.

4.1.2 Training Dataset

Training examples were collected from numerical simulations of
three different test cases: a channel flow, a 2D periodic hill and
a backward-facing step [98, 99]. For the first geometry, all the
DNS data available from [100] at different Reynolds numbers are
included in the database. The remaining data were generated with
LES simulations.

4.1.2.1 Numerical Methodology

LES modeling relies on a dynamic one equation model from David-
son [101]. Both simulations were carried out with OpenFOAM
v-17.12 using the PISO algorithm for velocity-pressure coupling, a
second order time integration scheme, preconditioned conjugate
gradient (PCG) for pressure and preconditioned bi-conjugate gra-
dient (PbiCG) for U and k. Convergence tolerance was set to 1E-6
and 1E-7 for pressure and other quantities respectively. A fixed
time-step was used. Courant number was run-time monitored, and
it did not exceed 0.8 for the first iterations. Both simulations ran
up to full convergence. Backward facing step inlet conditions were
generated using a precursor channel. Statistics on the mean field
were collected during the simulations.

78

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

4.1.2.2 Filtering

Once the initial database of ≈ 8M training examples had been
generated, four different filters were applied in data preprocessing
to reduce the number of redundant or non-significant observables
(Fig.4.1).

• Time averaging: only the mean field of velocity was consid-
ered for the training of the algorithm. This filter dramatically
reduced the number of observables;

• A dimensional reduction was performed through spatial av-
eraging in the third dimension. It led to 125 000 training
examples;

• A y+ cutoff set to 300, which selected 18 000 observations
only;

• Using bins inside the computational domains leads to the final
value of 2 300 examples.

Theoretically, the filtering operations listed above can be applied
in any order, however spatially and temporal averaging grants a
saving in computational time.

4.1.3 ANN Training

Eight significant input features was used to train a prediction model:
the two components of mean velocity, the four velocity gradient
components, kinematic viscosity and wall distance. Kinematic vis-
cosity was added to include the effect of different Reynolds numbers
on the predictor. The algorithm is trained on predicting turbulent
kinetic energy on solid walls. The total turbulent kinetic energy
(resolved plus sub-grid) has been previously computed in the nu-
merical simulations through an in-house application, integrated
in the solver. Within the family of machine learning algorithms
commonly used for regression problems, a multi-layer perceptron
neural network has been chosen [102]. The choice is justified by the

79

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.1: Effect of each data filter on 2D periodic hills

extreme complexity of the problem and by the high accuracy that
can be reached through this approach . It has been implemented
using Python 3.6 and Tensorfow libraries.

4.1.3.1 ANN Morphology and Hyperparameter Tuning

All the hyperparameters reported in Table 4.1 were heuristically
tuned to grant the maximum accuracy and convergence speed.
Input features have been preprocessed with a minmax criterion. A
total of 25% of the initial dataset was used to test the algorithm.
The final ANN entails 7 biased hidden layers. Weights wg have been

80

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

initialized using a truncated normal distribution and biases using a
constant value of 0.01. To grant weight initialization independency,
algorithm training for the final configuration was run in parallel ten
times, eventually choosing an intermediate result, as proposed by
[73]. Instead of recurring to early stopping, the cost function has

Table 4.1: ANN Parameters

Nr. of neurons 30
Nr. of hidden layers 7

Nr. of training epochs 2000
Activation Hyperbolic Tangent
Optimizer ADAM

Cost Function Modified MSE
Batch Size 600

been modified as proposed by [97] to include a weight decaying
effect, with λ = 1E-5. It is able to reduce predictor overfitting for a
high number of training epochs.

MMSE =
1

2N

N∑
i=1

(
(ŷi − yi)2 + λ

(
w2
i + bi

))2
(4.1)

Sigmoid function was used as activator for all but the last layer,
which is activated through a linear function. Adaptive Moment
Estimation Gradient Descent (ADAM) was used to optimize the
cost function, that automatically applies a learning rate decaying
effect. Batch feeding is used to speed up the convergence of the
algorithm, as weights and biases are updated four times for each
training epoch.

4.1.3.2 Training Results

Fig. 4.2 shows the convergence history of the algorithm. Final cost
is stably below 1.0E-6. The test dataset was forwarded during the
training, to monitor overfitting. Predictor shows a high capability
in predicting turbulent kinetic energy for all the test examples, with

81

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.2: Algorithm convergence history

an overall accuracy of ≈ 97.9 % (Fig. 4.3). Fig. 4.4 highlights
how the chosen number of training epochs is enough to provide
a complete model training. After the training, test examples were
forwarded to guarantee the absence of model overfitting.

4.1.3.3 Forwarding Algorithm and Implementation in the Solver

The trained weights and biases have been eventually stored and
used in an algorithm that only performs a prediction of the turbulent
kinetic energy. This algorithm has been embedded in OpenFOAM
v-17.12 as a custom boundary condition. The Python algorithm
has been directly embedded in the C++ code using the Python CApi
library. A scheme of how the modified solver is able to determine
wall values is reported in Fig. 4.5.

4.1.4 Test Application: 2D Periodic Hills

The first application of the machine-learnt wall function is here
reported. It is applied to the very well known test case from Tem-
mermann and Leschziner at Reh = Ub · h/ν = 10595. Two k − ε
simulations on the same geometry were carried out using different

82

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.3: Predicted turbulent kinetic energy (blue dots) vs input data (solid
black line)

Figure 4.4: Overall accuracy vs Number of Training Epochs

83

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.5: ANN-enhanced turbulent solver

wall modeling: one that computes turbulent kinetic energy from
the standard expressions of k − ε wall function [103] and the other
that is derived from the ANN.

4.1.4.1 Numerical Methodology

To highlight the capability and the limits of this approach, three
different computational grids were used for the same simulation
(Tab. 4.2). They differ in the number of cells and in the first cell
placement.

Span- and stream- wise periodicities are imposed through the
Arbitrary Mesh Interface (AMI) coupling. In all the simulations, the
flow is driven through a momentum source. No-slip boundary con-
ditions are imposed for velocity on the two solid walls. Steady state
calculations with the simpleFoam solver ran up to full convergence
in approximately the same CPU time.

84

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Table 4.2: 2D Hills computational grids

Case Cells First Cell Distance Expected y+

A 300× 16× 2 0.05 30
B 300× 32× 2 0.02 10
A 300× 64× 2 0.015 1

4.1.4.2 Results

Streamlines for the various computations are shown in Figure 4.6.
A true comparison with results in literature is challenging, because
flow features are strongly influenced by grid refinements and SGS
models used. Available LES simulations indicate the reattachment
length to be between 4.5 and 4.7h, while experiments report a
value of 4.21h [104], with h the height of the hill.

In this case results are strongly affected by grid refinement, as
Table 4.3 suggests. Predicted values forreattachment for both mod-
els perfectly falls between the commonly reported range of x=3.8h
and 4.8h for the finer grids, while grid resolution for simulation A
seems insufficient for the standard WF to fall in that range, while
ANN seems able to work also on this very coarse grid. The ANN
modeling seems generally responsible of an under-prediction in the
recirculation amplitude if compared to the standard k − ε model.

Table 4.3: Reattachment length for the three grids

Grid
Reattachment length [x/h]
ANN WF k − ε WF

A 4.7 5.4
B 4.1 4.3
C 3.8 4.2

Here it must be highlighted how the ANN-WF seems superior to
the standard wall treatment regardless of first cell placement.

85

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.6: Velocity streamlines for the three grids. ANN-WF (left), k − ε WF
(right)

For velocity distributions, the change in turbulent kinetic values
on the solid end-walls strongly affects the overall distributions, and
regardless of the streamwise coordinate, the ANN-WF is providing
a better match with the highly resolved LES. With the coarser mesh
(grid C), the ANN is able to partially recover the correct trend near
the wall, correcting the standard model. For the other two cases,
differences are less marked, but the ANN is partially applying a
correction to the turbulent kinetic energy that is predicted near
the wall. Figure 4.8 shows that the ANN-WF far from the solid

86

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

(a) Spanwise velocity (b) Turbulent kinetic energy

Figure 4.7: Wall-to-wall profiles for x=0.05h, x=0.5h and x=7h, ANN-
enhanced (blue) vs standard k − ε wall function (red).

87

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

(a) Lower wall (y/h=0) (b) Upper wall (y/h=3.125)

Figure 4.8: Streamwise distributions of y+ values along the solid walls.

walls presents a profile similar to that of the standard wall function.
Near the solid walls it seems able to correct the predicted turbulent
kinetic energy values, providing a better match with the LES simu-
lation. This is especially true for case A, where the standard model
completely fails.

Fig. 4.8a reports the streamwise distributions of y+ values along
the lower endwall: in the coarse grid y+ streamwise distribution
is identical with for approaches. As the grid is refined, the recircu-
lation length (represented by the lower peak at x/h=4) gradually
shifts to the inlet of the domain. This trend is slightly evident in
case B, however it is strongly visible for the finest mesh. Fig. 4.8b
reflects the trend previously seen for the lower wall. The curves
perfectly match for the coarse mesh, they become slightly different
for case B, while in case C they differ in magnitude. In this the
case shape of the curve is conserved by the ANN-WF, which is only
affecting the y+ distribution through a reduction of magnitude of
10 %.

4.1.5 Test Application: Sinusoidal NACA 4415

The adaptive wall capabilities were stressed to the limits with a
test on a modified NACA4415 airfoil, characterized by a sinusoidal

88

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

leading edge. This peculiar profile is adopted in fan applications
to control noise emissions and stall inception. Test data for the
isolated airfoil are available from [105].
The sinusoidal amplitude of the leading edge is equal to 2.5% of the
chord. Fig. 4.9 shows a comparison between the modified profile
and the base NACA 4410. Both airfoils were treated in a cascade
configuration, with a solidity of σ = 1.3. This choice is motived by
the fact that the ANN-WF has been trained using data from internal
flows only, so a comparison based on external aerodynamic would
be unfair or not really significant. The ANN is expected to perform
worse than the standard model, especially in the modified geometry,
due to the mismatch between the full three-dimensionality of the
problem and the training data constituted only by 2D test cases.
However, the choice was motivated by the author’s intent to stress
the capability of the model.

Figure 4.9: Modified NACA 4410 vs base blade profile

89

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

4.1.5.1 Numerical Methodology

The computational domain entails 46.5k cells for the baseline
NACA4415, and 1.5M hexahedral cells for the sinusoidal version.
Grid spacing is set to obtain y+ ≈ 1 for the first cell on the airfoil
surfaces. The difference is caused by the fact that the base airfoil
can be treated as two-dimensional and the number of cells in the az-
imuthal direction can be limited to only one. Each side of the airfoil
is discretized using 120 cells. The computational domain extend
1.3c and 9.3c upstream and downstream of the chord respectively,
and 0.5c in the spanwise direction. Inlet velocity magnitude was set
to 1.0 m/s, with an inlet angle of attack of 10 deg. The turbulent
kinetic energy intensity was set to 1.5%. Wall treatment relied on
no slip condition for velocity, on the standard epsilon wall function
for ε. Two different wall treatments for k were tested: the standard
k-wall function and the adaptive one. Periodicity conditions were
imposed in pitch- and span- wise directions. A Convective outlet
condition was set at the outlet. Turbulence closure relied on the
standard k-ε model.

4.1.5.2 Results

Tab. 4.4 reports the results for lift and drag coefficients. Cascade
data are not available in literature, however they are derived using
an in-house code [106].

Table 4.4: Reattachment length for the three grids

Baseline Modified w L.E. Bumps
ANN-WF k − ε WF Ref. ANN-WF k − ε WF Ref.

CL 0.07029 0.07022 0.0711 1.32509 1.37819 1.311
CD 0.00262 0.00260 0.00259 0.14192 0.13299 0.139

For the baseline airfoil, the difference between the ANN WF and
the standard modeling is close to zero, with both values close to the
calculated reference values. Surprisingly, in the modified geometry
standard k wall function is still performing worse. Results from the

90

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

ANN are slightly different, with an underprediction of 3.8 % and an
overestimation of 0.6 % in the lift and drag coefficients respectively.
This trend is reflected through the pressure distribution along the
chord of the airfoil, Fig. 4.10. Variations in resultant pressure distri-
bution for the base NACA4415 are close for both wall treatments,
so they collapse on the same curve. Dashed results are taken in a
section of the airfoil where the chord length is coincident with the
base airfoil. There, the ANN modeling is able to correctly reproduce
the slope of the curve, like the cuspids at c=0.01, however the
magnitude is completely different.

Figure 4.10: Pressure coefficient distribution vs normalized chord for a) solid
black line k-ε-WF base blade, b) dashed black line k-ε-WF modified blade, c)
solid red line ANN-WF base blade, d) dashed red line ANN-WF modified blade.

Fig. 4.11 shows velocity streamlines for the base airfoil for AOA
= 10deg. Both simulations provided the same identical distribu-
tion, hence only one is reported here. In Fig. 4.12, the velocity
streamlines for the two wall treatments lead to different results.
In particular, ANN seems responsible of a different prediction in
terms of the velocity magnitude on the suction side of the blade

91

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.11: Velocity streamlines for base airfoil.

of 10%. This behavior is fully justified by the fact that the ANN is
using only four components of the velocity gradient and two of the
velocity field as input features, leading to an incorrect behavior of
the predictor.

4.1.6 Final Remarks

An artificial neural network was trained to derive turbulent kinetic
energy values from the following inputs: wall distance, velocity,
velocity gradient and turbulent kinetic energy. The generation of
a turbulent database was necessary to provide enough training
examples, and data was collected from LES simulations of simple
turbulence test cases. The application of a y+ filter and other simpli-
fications allowed a reduction of the complexity of the problem. An
optimization of the algorithm morphology was conducted, exploit-
ing Tensorflow library. Smart solutions, i.e. batch feeding, feature
normalization and weight and learning rate decays, granted the
creation of a proper predictor. The derived predictor, transformed
into a forwarding function, was embedded in OpenFoam v17.12 in
a custom boundary condition to perform run-time computations.
The custom boundary was able to derive turbulent kinetic values
on the wall during iterations, in approximately the same CPU time

92

4.1. A DATA-DRIVEN WALL FUNCTION FOR STATIONARY FLOWS

Figure 4.12: Velocity streamlines for modified airfoil, for a) standard k wall
treatment, b) ANN wall function.

as the standard expression of the k wall function.
The ANN wall function was firstly applied to a 2D periodic hill flow.
Three different grid resolutions were tested, with an expected y+

values on the first cell of 1, 10 and 30 respectively. The aim was to
compare performances of the ANN wall function with the standard
wall treatment. The predicted values were really close for the coarse
and intermediate meshes, while the coarsest grid was not able to
correctly reproduce the highly resolved LES simulation. In the finest
grid, ANN performed better. Streamwise velocity profiles and reat-
tachment length are reported in the manuscript. An analysis of y+

values versus the streamwise direction showed a similar behavior
of the two models, with the greatest differences in the finest grid,

93

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

with the ANN underpredicting the reattachment length.
Eventually, the ANN was also applied to a completely different ge-
ometry: a NACA4410 profile. A modified 3D airfoil with leading
edge bumps was considered in order to stress the ANN capability.
This aerodynamic profile is commonly in use in the fan industry,
and both airfoils were tested in a cascade configuration with an
angle of attack of 10 deg. For the base profile, results of both mod-
els are practically identical. In the modified version of the airfoil,
the ANN performed sensibly better if compared to the standard
k − ε which shows an overprediction in the lift coefficient and an
underprediction in the drag force. This result is quite surprising,
considering that the training of the model was achieved through 2D
simulations only.
This attempt to create a data-driven turbulent wall function could
be further developed to include three-dimensional flows and more
physical phenomena in the training database, however preliminary
results shows capability far beyond the standard approaches, that
were limited by the number of observation performed.

4.2 A Data-driven Wall Function for Rotat-
ing Passages

Data-driven tools and techniques have proved their effectiveness in
many engineering applications. Machine-learning has gradually be-
come a paradigm to explore innovative designs in turbomachinery.
However, industrial Computational Fluid Dynamics (CFD) experts
are still reluctant to embed similar approaches in standard practice,
and very few solutions have been proposed so far. The aim of the
work is to prove that standard wall treatments can obtain serious
benefits from machine-learning modeling.
Turbomachinery flow modeling lives in a constant compromise
between accuracy and the computational costs of numerical simu-
lations. One of the key factors of that process is defining a proper
wall treatment. Many works point out how insufficient resolutions
of boundary layers may lead to incorrect predictions of turboma-

94

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

chinery performances. Wall functions are universally exploited
to replicate the physics of boundary layers where grid resolution
does not suffice. Widespread wall functions were derived by the
observation of few canonical flows, further expressed as a simple
polynomial of Reynolds number and turbulent kinetic energy. De-
spite their popularity, these functions are frequently applied in flows
where the ground assumptions cease to be true, such as rotating
passages or swirled flows. In these flows, the mathematical for-
mulations of wall functions do not account for the distortion on
the boundary layer due to the combined action of centrifugal and
Coriolis forces.
Here we will derive a wall function for rotating passages, through
means of machine-learning. The algorithm is directly implemented
in the N-S equations solver. Cross-validation results show that the
machine-learnt wall treatment is able to effectively correct turbu-
lent kinetic energy field near the solid walls, without impairing the
accuracy of the RANS turbulence model in any way.

4.2.1 Introduction

Turbulence modeling through big data is raising extreme expec-
tations in the scientific community [28]. Machine-learning, in
particular, has been exploited in the past few years to overcome
model deficiencies in Reynolds Average Numerical Simulations
(RANS). For example, Duraisamy and his co-workers successfully
improved the Spalart-Allmaras model in simple configurations [67,
66]. That methodology involves ad-hoc data-driven corrections
to the anisotropic part of the Reynolds stress tensor or to the dis-
sipation term in the nutilda equation. Similar approaches were
also applied to two equation models, e.g. [70, 48]. J. Wu clearly
addressed the pros and deficiencies of machine learning in fluid
dynamics by looking at the tensorial representation of turbulence
[80].
In turbomachinery simulations,the RANS approach predominates
as workhorse. Despite this, we find fewer applications of machine
learning to turbomachinery design and optimization. The reason

95

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

lies in the flows themselves, that present critical aspects such as
wall-bounded flows, recirculation, rotation, high curvatures or high
Reynolds number. Obtaining high fidelity data becomes extremely
time consuming and difficult. Standard models, however, still fail
to capture that complex physics, leading to incorrect prediction, as
addressed by Denton in [19].
One of the problematic aspects to improve lies in the generality
of models. Most of the models work in flow configurations that
are statistically similar to the training data, constituting therefore
ad-hoc solutions. Interesting progresses toward this final goal can
be attribute to J. Ling and her co-workers, who found a smart
and physics-based strategy to achieve frame of reference indepen-
dency [73, 72]. They improved Reynolds stress tensor prediction
through multi-layer perceptrons. A similar approach, using decision
trees and random forests and applied to heat transfer problem, is
followed by Milani in [75, 74]. Sandberg et al. applied genetic
programming to Explicit Algebraic Stress Tensor Models (EASMs)
in different slopes of trailing edge slots commonly used for film
cooling, finding results closer to Large Eddy Simulations [77, 79].
In [78], Wheateritt design a new methodology, comparing perfor-
mances of neural networks and genetic algorithms in a crossflow.
Works inheriting near wall modelling and wall functions are scarce
in literature, despite the importance of the topic. Wall functions
are commonly accepted in RANS practice as instruments to reduce
computational costs and to ease the meshing process. Milano tries
to find similarity in flows close to the wall through non-linear Prin-
cipal Component Analysis [83]. In 2019, Tieghi et al. derived a
data-driven expression of a wall function through neural networks,
improving performances of k-ε model in recirculating flows [82]. To
the best of the authors’ knowledge, no previous work can be found
on machine-learnt enhanced wall treatments developed for rotating
flows. Experimental observations show that, within a certain range
of the Rossby number, the well-known law of the wall ceases to be
true due to the combined effect of centrifugal and Coriolis forces
[10]. Those rotational speeds are unfortunately compatible with
common low-speed subsonic turbomachinery. Here we will focus on

96

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

diverging rectangular ducts with different Rossby numbers. Prelimi-
nary investigations report that standard two-equations turbulence
models and wall treatments are inadequate to properly predict flow
within the passage, the superimposition of flow separation and
rotating forces.
A multi-layer neural network (MLNN) was trained to provide a
correction for the turbulent kinetic energy at the wall, effectively
substituting the standard wall treatment. MLNNs are suitable for
this application, thanks to their non-linearity and high accuracy. A
LES simulations of rotating ducts at a Rossby number equal to 0.41
is performed to build a significant training database. A single axis
of rotation is here considered. Rossby numbers were selected to
match with common reported values for fan applications. Input fea-
tures were derived by locally normalizing combinations of raw flow
fields. Exploratory data analysis assured quality of data and leads
the process of feature selection/combination. The algorithm was
trained and optimized using the Keras library [107]. The derived
predictor was embedded in runtime computations of OpenFOAM
v.18. Interface between C++ and Python 3.6 relied on the Capi
library. Advanced solutions was applied to reduce training time and
to prevent overfitting. The model is eventually validated through
a RANS simulation of a rotating duct at a lower Rossby number.
Turbulence closure is performed using the k-ε model. Test data is
not included in the original dataset to better understand generality
of the model. In the lasts part, a toe to toe comparison between
the derived predictor and standard OpenFOAM’s kWallFunction is
reported. Computational time remained the same between the two
SimpleFoam solvers.

4.2.2 Data Generation

The training datasets were generated through numerical simula-
tions of a rotating radial diffuser. This problem is one among the
most important in centrifugal compressors and it has been well
documented and studied since the ′40s [3, 108, 109]. The geom-
etry, illustrated in 4.13, features a squared inlet, that gradually

97

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

diverges up to three times the inlet section (4.14). In addition,
4.5 gives a summary of the main duct dimensions. Dimensions of

Figure 4.13: Schematic of test section and coordinate system

the diffusing duct is similar to the test section of the experimental
study performed by Moore [3]. With respect to those results, we
performed the simulation in kinematic similarity.

Table 4.5: Domain dimensions

Length L 0.6096 m
Inlet Width WI 0.0762
Exit Width WE 0.2362

Height H 0.0762
Included Angle α 15 deg

Simulation of the whole geometry of Moore is computationally
too expensive, due to the dimensions of the domain coupled with
the high Reynolds number (4.6E7). We therefore decided to per-
form a numerical simulation of the diverging passage only, without
any converging duct at the inlet. 4.6 reports the flow operating
parameters for all the numerical simulations.

98

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Table 4.6: Domain dimensions

Volumetric flow rate Q 0.097 m3/s
Relative inlet velocity (positive x axis) UI 16.72 m/s
Relative exit velocity (positive x axis) UE 5.39 m/s

Rotational speed Ω 21.6 rad/s
Included angle α 15 deg

Figure 4.14: View of the diffuser

4.2.2.1 Numerical methodology

Numerical simulations were carried out in OpenFOAM v-18. LES
simulation relied on dynamic one equation model from Kim and
Menon [110] using PISO approach for velocity-pressure coupling, a
second order time integration scheme, geometric-algebraic multi-
grid (GAMG) for pressure and preconditioned bi-conjugate gradient
(PbiCG) for U and k. Moreover, the RANS simulation relies on
Launder-Sharma model [111] using the SIMPLE approach, with
geometric-algebraic multi-grid (GAMG) for pressure and a smooth
solver (GaussSeidel) for U, k and ε.

The fixed time-step of 1.0E-5 seconds was led to a maximum
and mean Courant Number of 0.77 and 0.127 respectively. Grid
resolution is 600×85×85 cells. Wall distance of the first cell is set to
achieve a y+ < 1. Proper turbulent inlet conditions was generated
by means of a precursor squared duct, that entails 91×85×85 cells.
Volumetric flow rate is forced thorough a source momentum at the

99

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.15: Mean relative velocity field

inlet of the square duct to match experimental flow rate.
Statistics on the mean field were collected during the simulations
and exploited to assess the convergence of the simulations; 4.15
shows the mean relative velocity field. Boundaries remains the
same between the RANS and LES simulations, with the exception
of ε obviously not present in the latter (4.7).

Table 4.7: Boundary conditions

Patch U p k νt ε
Inlet mapped ZG mapped mapped mapped

Outlet ZG TP ZG ZG ZG
WallS NoSlip ZG kLowRe nutLowRe εWF

Grid independency is observed by looking at the resolved TKE
in the LES simulation. To ensure that majority of turbulence scales
are well resolved, the ratio between resolved and the total TKE
(resolved plus modelled) needs to be above 0.8 [112]. A cross-
section, shown in 4.16, reports the fulfillment of that requirement.

Under the same Reynolds number, RANS approach requires an
inferior grid refinement compared to LES simulations, therefore
computational grids remained the same within both approaches.

100

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.16: Cross-section view of the ratio between resolved and total TKE

4.2.2.2 Flow Description

In a non-rotating diffuser with the same geometric configuration,
the observed flow was perfectly symmetric. As the passage under-
went rotation, the flow features changed dramatically.
One of the metrics which illustrates the most peculiarity of the flow
in a diffuser is the static pressure recovery. It can be computed by
the difference between pressure on a solid wall and the pressure
value at the inlet of the domain. In a rotating frame of reference,
the reduced pressure recovery, that takes into account rotating
forces, is commonly exploited. It is obtained by subtracting the
centrifugal pressure field to the static pressure, i.e. p− 0.5ρΩ2R2

[10]. Figure 4.17 reports the coefficient for the upper (suction side)
and lower (pressure side) solid walls. It qualitatively proofs the
pressure unbalance between pressure and suction surfaces. The
delta between the two curves remains almost constant between the
two curves, especially close to the outlet of the domain. As such,
it can be inferred that the simulation is uninfluenced by the exit
boundary conditions.

4.2.3 Data Preprocessing

4.2.3.1 Data Sampling and Filtering

Our algorithm was designed to provide a wall treatment. That
involves that LES simulation generates a database of ≈ 6M that also
entails zones of the computational domain of no interest. This could

101

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.17: Static pressure recovery along at mid-height of passage as a
function of the streamwise coordinate

worsen the algorithm accuracy/learning phase. Therefore, two
filtering operations were performed (Figure 4.18). The precursor
was not taken into account for data collection at any point.

1. A time averaging filter leads the LES quantities to station-
ary conditions and greatly reduces the number of training
examples, through considering the mean field only for the
algorithm training.

2. A selection of 2M observations was made by imposing a y+
cut-off of 400, in this way it is possible to train the model
only near the walls, avoiding training it even in the core of
the flow.

102

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.18: Visualization of the effect of data pre-processing on a cross-section

4.2.3.2 Features creation and normalization

Enhancing a turbulent model through machine learning presents
serious difficulties in terms of feature selection. We define as feature
any observed characteristic of the flow. Three key issues regarding
feature selection were addressed during the work:

103

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

1. Unavailability of data. The first problem lies in the map be-
tween high fidelity data (LES/DNS simulations or experimen-
tal observations) and low-level fast approaches like RANS
simulations. Within all the features that are available to the
model, in fact, it makes sense to select the ones that can be
derived from RANS computations. Small scales of LES simula-
tions or non-stationary fields, for instance, cannot be derived
during RANS simulation and find no direct application to
the predictor. Therefore, only mean fields will be considered
hereafter as observables.

2. Dependence on the frame of reference. Simple geometries,
where one direction is predominant, e.g. mono-dimensional
or periodic flows, can be easily modelled without too much
efforts. On the opposite, complex flows can present local
regions where the amplitude of secondary flows is comparable
to the core of the flow. That means that a model needs
to capture relationships within the features respecting the
Galilean invariance. Therefore, the magnitude of vector and
tensor fields was used as a predictive factor instead of the
single components.

3. Feature scales of magnitude. Neural networks are strongly
impaired whenever features present high differences in mag-
nitude. This behavior can lead the predictor to neglect the
influence of features with the smallest numerical values, e.g.
turbulent kinetic energy vs dissipation rate. To avoid this, in
standard machine-learning practice, features are normalized
with respect to a combination of statistical parameters like
mean or min/max values. Unfortunately, this is not the best
approach in fluid dynamics, as flow fields can present sharp
probability density functions. Standard normalizations treat
the least represented scales in the data as outliers, while for
our purposes these can be highly significant. Following [67],
we will perform a local normalization for the j-th feature,

104

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

namely:

Fj =
F̂j

F̂j + kj
(4.2)

where F̂j denotes the unnormalized values and kj is an ad-hoc
term of normalization.

The previous points lead the initial selection of features, re-
ported in Table 4.8.

Table 4.8: Features Normalization & Creation

Name Derivation Normalization Type (Factor)
mag(U) ‖ U ‖ Local(UI)
epsilon ε Local(U3

I /L)
∇P

∑
i ∂p/∂xi zScore

∇k
∑
i ∂k/∂xi zScore

nut νt Local(ν)
yPlus y+ minMax

sum(S)
∑
ij(∂Uij/∂xj + ∂Uij/∂xi) zScore

sum(Ω)
∑
ij(∂Uij/∂xj + ∂Uij/∂xi) zScore

where S and Ω are the symmetric and the asymmetric compo-
nents of the decomposition of the gradient of velocity.

4.2.4 Exploratory Data Analysis

The feasibility of the former feature selection was checked through
Exploratory data analysis (EDA). The final aim of the model is to
perform a correction in the turbulent kinetic energy near the walls.
The standard calculation for TKE in LES simulations can be written
as:

kLES =
1

2
(u′u′ + v′v′ + w′w′) (4.3)

where u′, v′ and w′ denote the three components of velocity fluc-
tuations. In the Launder Sharma turbulence model [26], kRANS is

105

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

derived by solving the transport equation:

∂

∂xj

[
ρkRANSuj −

(
µ+

µ

σk

)
∂

∂xj
kRANS

]
= P − ρε− ρD (4.4)

with P and D read as:
P = τ tij

∂ui
xj

(4.5)

D = 2ν

(
∂

∂y

√
kRANS

)
(4.6)

In so doing, the algorithm is trained on the term δk, defined as:

δk = kRANS − kLES (4.7)

Figure 4.19a reports frequency plot for the turbulent kinetic energy
for both approaches.

Figure 4.19: Frequency plot of: TKE for LES and RANS (a) - δk (b).

We can easily observe that TKE values in the RANS simulation
are higher than the one in the high-fidelity approach. This is re-
flected by the distribution of δk, that shows a predominance of

106

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

negative values (4.19b). To effectively build a predictive model,
we must assess that there is no evident predominance between
input variables and the output. In so doing, we ensure the non-
predominance of any of the feature. In addition, neural networks
are not suited for working with datasets that present variables that
present mutual direct correlations, that are instead automatically
transferred to the final model. A correlation analysis of training
data has been performed and reported in Figure 4.20. We can

Figure 4.20: Correlation map for the eight input features.

observe that all the input features are statistically uncorrelated with
the output of the model (last row in the heat map). The maxi-
mum reported value of inverse correlation is -0.17, given by the
magnitude of velocity. That value is completely acceptable and
should not impair the predictor. The maximum value of correlation
among the input features is 0.27 and is therefore acceptable. It is
attributed to the relationship between the turbulent viscosity and
the magnitude of velocity. The higher magnitudes of minimum
values of correlations is -0.38 and -0.365, are given by epsilon-yPlus

107

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

and grad(k)-yPlus respectively. Negative correlations have a lower
impact on the model effectiveness [29]; therefore, these values can
be tolerated.
A final check on the quality of data was performed through boxplots
(not shown here), to verify the absence of outliers that could impair
the accuracy of the model.

4.2.5 Data-driven Modeling

The training dataset eventually embedded 2M data entries. A
multi-layer perceptron neural network has been chosen to build
the regressor. Our choice was led by previous works on the topic
that highlighted their effectiveness. Modelling relies on a multi-
layer multi-input feed-forward neural network. The algorithm was
implemented with Python 3.6, exploiting Keras open-source library.
4.9 reports the hyperparameters of the final setup of the network.
Initialization of the model is performed through a Xavier uniform
initializer for weights, while biases had a constant starting value of
0.01. Multiple training instances of the model were run, eventually
choosing an intermediate set of parameters. Initial number of
neurons, the same within all the layers, was set to 6, equal to the
sum of half of the input features plus one. This number has been
increased in the final network architecture to 16 to obtain a higher
accuracy.

Table 4.9: Hyperparameters of the network

Nr. of neurons 16
Nr. of hidden layers 5

Nr. of training epochs 30
Activation Tanh

Initial learning rate 1E-5
Optimizer ADAM

Cost Function MSE
Batch size 1/25th

The number of hidden layers was chosen based on the cross-

108

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

correlation results. Each biased layer is activated by a hyperbolic
tangent function. Gradient of cost function is backpropagated
and optimized with respect to weight and biases through Adap-
tive Momentum Estimation Gradient Descent (ADAM). ADAM self-
optimizes learning rate epoch by epoch, without any need of decay-
ing effect [90]. A percentage equal to the 25% of the initial entries
were kept as a test dataset to monitor overfitting during the training.
The Training dataset was randomly shuffled before each instance
of training. Batch feeding sped up the process of learning. The
batch size was set equal to 1/25th of the total dataset, according to
common reported values. Trends in Figure 4.21 highlight that the
model is not overfitting data. The Waviness of the training curve is
caused by the presence of batches.

Figure 4.21: Mean squared error for test train and test dataset as a function
of training epochs.

Figure 4.22 shows normalized values of TKE that were predicted
from the algorithm with respect to training data. Within the whole
range, relative errors remain far below 1.0%, therefore the two
curves appear mostly superimposed. That verifies either the initial
assumptions, e.g. feature selection, and the network architecture
and hyperparameters selection, as the training was successfully

109

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

achieved.

Figure 4.22: Normalized values of TKE after the training phase: predicted
(blue dots) vs training data (solid black line).

4.2.5.1 Forwarding algorithm and implementation in the solver

After the training, the set of weights and biases was stored into
a graph. To perform run-time predictions during standard solver
iterations, we were forced to embed the Python- based algorithm in
a C++ environment. To do so, we relied on the CApi library.

Figure 4.23 reports how each iteration of the solver is working.

• Once per simulation, wall distance is derived from the com-
putational grid. It will be later used to derive y+ values;

• For every solid wall, we derive the internal field of the first

110

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.23: A machine-learning enhanced solver for OpenFOAM.

layer of cells. It is obtained by solving the standard equations
of the k-ε model;

• Internal field is transformed into CApi operators and is for-
warded to the Python algorithm;

• Data is normalized and pre-processed to build input features;

• Stored graph is loaded, and input features are fed to the
network, obtaining the values of δk for each of the cells;

• A custom boundary condition in OpenFOAM eventually cor-
rects the values of TKE, derived from the set of equations of
the turbulence models, with the output of the model [31];

4.2.6 Cross-validation Results

To test the generalization capability of the model, the machine-
learnt wall treatment was applied to a simulation of the same case
with an inferior Rossby number of 0.22. Given the definition of
Rossby, the lower number was achieved through reducing inlet flow
rate while leaving rotational velocity unchanged. We carried out

111

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

two RANS simulations with a different wall treatment: standard
(kWF) and machine-learnt (ML). Standard formulation of kWF,
namely kLowReWallFunction in OpenFoam, computes TKE values
as an explicit form of y+ and constitutes the common practice for
Low Reynolds grid [103]. An additional LES simulation gave us
high-fidelity data for further comparisons, and it was not included
in the training database. Computational time required to reach
convergence remained the same between ML and kWF. The aim
is to discover how the model is behaving out of the training data.
Cross-validation is necessary to assess the generality of the model
out of the training. We therefore report a zoom-in, from the general
prediction of the whole computational domain down to the design
goal of the algorithm.
Figure 4.24 shows the outcome of the model for the last iteration
of the solver. The whole computational domain was fed to the
algorithm. The model has good agreement with the true values,
directly computed by the differences between the TKE in RANS and
LES approaches. The normalization applied to δk, i.e. z-score, asses
that the most frequent values are the ones closer to the zero of the
axes, where cells have values equal to the mean of data. In so doing,
we can observe that even in the cross-validation configuration, the
model can statistically reproduce the behavior of δk, confirming the
validity of the choice of the TKE delta as output feature. However,
at the extremes of values (top right and down left of Figure4.24),
model presents higher deviation from the true values. This issue
can be easily ascribed to the fact that the model is predicting values
in a part of the flow not originally present in the training database.
It also suggests that the model may obtain a general validity, e.g.
far from the wall, with an extended training.

By looking at a portion of the computational domain with
y+¡400, we can observe how the model is behaving closer to solid
walls. Figure 4.25 reports TKE values for the mid-height suction
wall section between 0.2 and 0.5 meters from the inlet of the
domain. LES and RANS simulations (Figures 4.25a and 4.25b re-
spectively) differ especially in terms of magnitude. As expected, we
also observed a tendency in RANS approach to overpredict the sep-

112

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.24: Model outcome for the whole computation domain of δk for the
last time step of the cross-validation simulation.

aration over the suction side. Predicted δk (Figure 4.25c) versus the
LES values (Figure 4.25d) reflects the trend seen in 4.24. We also
highlight some discrepancy in Figure 4.25c that can be attributed to
small errors in the predictor. In this visualization, the whole filtered
computational domain was forwarded to the algorithm, obtaining a
correction field from the solid wall to the outer layer.

As a final remark we provide the Relative Absolute Errors (RAE)
for the three datasets. RAE is expressed for the j-th example by
the ratio between the absolute of residuals, i.e. predicted minus
true values, and the corresponding true value. Regarding that, a
perfect predictor shows an averaged RAE equal to zero. Errors
listed in Table 4.10 confirm that the model accuracy is drastically
lower when the full domain is predicted. This is expected as the

113

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.25: Averaged TKE for LES (a) and RANS simulations (b), predicted
(c) and true δk (d)

model was not provided examples on the core of the flow. Filtered
and First cells subdomains, however, show a similar behavior, with
a maximum computed RAE of 0.092. Through a comparison with
the standard approach we observe that, in this case, the use of a
machine-learnt correction for the TKE may not lead to satisfactory
results far from the walls, but this trend could be inverted with an
aimed training. From the viscous sublayer to the outer layer ML
provides a strong correction for k, with averaged RAEs far below
the standard wall treatment.

Table 4.10: Relative Absolute Errors in Cross-Validation

ML Treat. Standard Treat.
Subdomain Aver. RAE Max. RAE Aver. RAE Max. RAE

Full 0.073 0.171 0.094 0.211
Filtered 0.012 0.092 0.145 0.224

First cells 0.011 0.071 0.178 0.245

114

4.2. A DATA-DRIVEN WALL FUNCTION FOR ROTATING PASSAGES

Figure 4.26: Comparison of the standard WF vs ML for the mid-height in the
last iteration of the cross-validation case, between 0 and 0.6 meters from the
inlet

4.2.7 Final Remarks

A machine-learnt wall treatment for TKE was derived. Training
data was generated through high fidelity numerical simulation of
rotating diffusers. These simulations were chosen as cases where
traditional RANS approaches struggle to properly reproduce physics,
especially with respect to the turbulent kinetic energy. A simplify
geometry reduced the computational cost of the process. Despite
the simplification, the effect of rotating forces was still preserved
and marked, suggesting that the computational domain can be used
in the future for extended studies. An analysis of the resolved grid
scales and the pressure recovery coefficients provided us informa-
tion on the reliability of the simulation.
We exploited data pre-processing to reduce computational costs of
the algorithm training and to increase the accuracy of the model.
The filtering operations that we performed on the dataset were
eventually effective for a correct training of the model. This can
possibly be used as a paradigm for all the models used for wall
treatments. The choice of δk as a predictive target was investigated
through frequency plots and correlations maps. In addition, this
proved to be an effective way to assess that the training data is free

115

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

of outliers. Features were manipulated to assure Galilean invariancy.
Results from the test data were extremely good, meaning that the
learning was successfully achieved. That was also confirmed by
looking the algorithm metrics as a function of the training epochs.
The derived wall treatment was implemented in run-time compu-
tations of OpenFOAM v-18, as a custom boundary condition. The
custom boundary was tested in a cross-validation case, namely a
RANS numerical simulation of a similar geometry with an inferior
Rossby number. It was compared to the standard wall treatment,
using an additional LES simulation as a high-fidelity reference. We
observed that the model was not effective in predicting δk far from
the walls. This behaviour was expected as the model itself was
not included in the original dataset training. Looking at the region
of the fluid closer to walls, instead, our model achieved a higher
accuracy than standard treatment. By investigating the δk field we
observed some small predictive errors, but the RAE metric points
out that this error is still below 1%. This behavior is also reflected
in the first layer of cells, were the model showed similar metrics.
This methodology can be easily extended to any geometry, as long
as high-fidelity data is available. The first step is discovering where
and how to correct physics. Once the correct elements are laid out,
in term sof feature selections, algorithm, learning parameters and
mathematical formulation, machine learning becomes a challenging
alternative to standard modeling.

4.3 Identification of Poorly Ventilated Zones
in Gas-Turbines Enclosures with Machine-
learning

Ventilation systems are used in gas turbine packages to control the
air temperature, to protect electrical instrumentation and auxiliary
items installed inside the enclosure and to ensure a proper dilu-
tion of potentially dangerous gas leakages. These objectives are
reached only if the ventilation flow is uniformly distributed in the
whole volume of the package, providing a good air flow quality as

116

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

prescribed by international codes such as ISO 21789. To evaluate
the effectiveness of the ventilation design, numerical computations
are performed for several purposes, one of which is the identifi-
cation of poorly ventilated portions of the enclosure. In fact, it is
essential to accurately detect the regions which are less ventilated,
since they could be prone to the accumulation of an accidental fuel
gas leak. There are different approaches to identify these portions,
such as decay regression or inlet source analysis, that require un-
steady simulations of the flow field inside the package. The present
work discusses the implementation of a new methodology using
machine learning and artificial neural networks (ANN) to detect the
poorly ventilated regions where a gas cloud can accumulate. The
concentration of fuel gas is estimated starting from a steady-state
computation without running a more expensive unsteady compu-
tation. The entire process is built around an accurate training of
the ANN using a proper set of simpler test-cases that have been
identified to match the characteristics of the gas turbine enclosure.
During the training phase accuracy and overfitting of the ANN were
monitored to ensure robustness of the method. The procedure is
then applied to a real case scenario and the results are presented
in this paper highlighting the main advantages of this approach
respect to a conventional use of CFD analysis. Computations of
the flow fields are carried out using OpenFOAM with RANS and
U-RANS approaches, while the ANN is developed and trained in
Python.

4.3.1 Introduction

The ventilation is an essential auxiliary system for gas turbines
when they are installed inside an enclosure [113, 114, 115]. In fact,
incorrect operations of ventilation inhibit the start of the gas turbine,
while a loss of ventilation causes an emergency shut down, with
clear consequences for the availability of the gas turbine train. The
ventilation system is therefore essential, since it guarantees to cool
down the instruments and equipment installed inside the package,
that are used for the control of the engine. Moreover, a ventilation

117

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

flow is required to dilute the accidental fuel gas leaks potentially
present inside an enclosed volume. Since inside a gas turbine pack-
age, instruments and other items are located everywhere and a
potential leakage source from the fuel gas system can occur in a
lot of possible locations, such as valves, flanges and piping, it is
required to the ventilation flow to be uniformly distributed, e.g.
ISO 21789 [116]. This requirement represents the main challenge
during the design of a gas turbine package, because the geometry
of the fluid domain is very complex and it is not so obvious that the
flow entering in the enclosure from one or two inlets will be able
to reach the whole volume [117]. This is the reason why, in the
past, the design concept passed from a simple count of air volume
exchange rate to a quality of the flow distribution [118, 119].
The verification of the effectiveness of the ventilation in terms of
cool down and therefore of temperature reached by critical items,
is easily detectable during tests using thermal strips or temperature
sensors. On the other hand, an experimental acknowledgement of
the influence of the ventilation on an unexpected fuel gas leakage
is more complicated to perform. First of all, it would require to
generate a credible sonic fuel gas leak inside the package without
adopting invasive methods, then all the safety aspects should be
handled and the more appropriate measurement approach should
be selected. The mentioned matters make a computational analysis
(CFD) the most suitable tool to be largely used for designing and
verifying the effectiveness of the ventilation system. In this ambit,
several methods could be considered to detect the poorly ventilated
zones inside a package.
During the past years, BHGE developed, internally tested and vali-
dated several methods in to define the best compromise in terms of
accuracy and computational time. In the present work, it is shown
an innovative method developed taking advantage of the potential-
ity of the machine learning based on classification of temperature
and flow patterns inside the enclosure.
In this paper a series of test cases are selected to study the purge of
domains with simple geometries and peculiar flow characteristics
(attached flow, geometry- and pressure-induced separation and so

118

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

on). From these cases the authors studied how the mass of methane
dropped over time inside the domain and acquired information on
the time evolution of concentration. These were used to identify the
poorly ventilated zones of the domain that can be then correlated
to the dilution level of any accidental gas leak and to provide a
criterium to derive a domain criticality map. All the acquired data
were used to train an artificial neural network (ANN) to define the
effectiveness of the ventilation from velocity and temperature fields.
Finally, after proper validation ANN was tested on a model of gas
turbine enclosure. Finally, the purge of the same geometry was
carried out to verify the ANN method.

4.3.2 Rationale and Selection of Test Cases

The rationale behind this project is the following: since computing
the purge of a gas turbine enclosure is time consuming and requires
a significant computational power, the authors want to train an
ANN to classify the cells inside the package with a Poor Ventilation
Index, starting from the averaged flow and temperature features
obtained from a steady-state computation.
To do so, we need to train the ANN to recognize different flow
and temperature patterns, providing a suitable number of examples
related to the characteristic flow phenomena encountered in the
enclosure. To this aim, the authors selected a series of test cases,
mainly from available literature.
Test geometries include high Reynolds computations of plain chan-
nel flow (CF) [120], backward facing step (BFS) [121, 122] and
2D sinusoidal hill flow (2DH) at different Reynolds number [123,
124], axisymmetric hill flow (3DH) [125] and confined cylinder in
cross-flow (CYL), [126]. This selection was driven by the necessity
to explore different flow features such as attached flow, geometry-
induced and pressure induced separation, three-dimensional shed-
ding in simple geometries. Applying different Reynolds numbers
allow to instruct the ANN to sort between different flow patterns
that can occur in the same geometry and, as highlighted in the
following, can result in a completely different purge dynamics of

119

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

the domain. Further information was collected by changing the
turbulence intensity at the domain inflow.
As starting point, it was also decided to test this method to a simpli-
fied geometry to assess the capability of the approach.

4.3.3 Numerical Setup

Numerical computations were carried out using the open-source li-
brary OpenFOAM v1712. The compressible rhoSimpleFoam steady-
state solver for turbulent flows was used to derive the average flow
and temperature fields to be used in the training phase. Convective
terms were computed using the QUICK scheme for velocity and
turbulent quantities, gradients and laplacians were computed using
the Gauss linear scheme.
The unsteady purge of the domains was then computed using the
pressure, velocity, k and ε average fields previously computed as
initial conditions, filling the volumes with methane and pushing
fresh air at the inflow using the interIsoFoam solver for two-phase
flows computations. Convective terms were computed using the
QUICK scheme for velocity and turbulent quantities, gradients and
laplacians were computed using the Gauss linear scheme. Time
integration scheme was Crank-Nicholson with an adaptive timestep
set to adjust the maximum CFL number to 1.0. During the compu-
tations we stored at runtime a series of data that included the total
mass of methane still present in the volume, its center of mass, and
the local value of tD, here defined as the total amount of time for
which the methane concentration of the cell was between lower and
upper flammability levels (LFL and UFL). Linearized equations were
solved using a conjugate gradient solver with DIC preconditioner on
pressure and DILU preconditioner on other equations. Convergence
threshold was set to 10-5 for pressure and 10-7 for other equations.
In both steady-state and purge analysis, turbulence closure relied
on the standard k−ε model of Launder with adaptive wall functions
that allowed to switch between low- and high- Reynolds approach.
A summary of grid density and final y+ for each case is given in

120

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Table 4.11.

Table 4.11: Summary of test cases

case Re inlet TI cell count average y+

CF 50500 N.A. 300x128x4 1
BFS1 5100 6% 401x97x6 1
BFS2 5100 10% 401x97x6 1
BFS3 5100 6% 401x97x6 1
BFS4 132000 6% 401x98x5 7
2DH1 10595 N.A. 300x65x6 1
2DH2 37000 N.A. 160x100x60 2
3DH 6500 5% 138x30x79 8
CYL 140000 5% 278x128x20 11

4.3.4 CFD Results

4.3.4.1 Steady-state computations

Results for each test case were validated against available data from
referenced papers. Here we limit the discussion of validation to
BFS1 and 2DH1 cases as examples of the capability of the approach
to reproduce the velocity field within the accuracy of the RANS
model.
In Figure 4.27 wall-to-wall velocity profiles at different streamwise
positions are shown for BFS1 giving a direct comparison with DNS
data. As it is well known, the k − ε model slightly overpredicts the
length of recirculation after the step, but in general the result is ac-
curate with an acceptable approximation of the flow characteristics
for the industrial purposes.

Entirely similar profiles are obtained with 2DH1 case, as shown
in Figure ??. In fact, the RANS modelling again slightly overpre-
dicts the recirculation length respect to DNS, but again this is the
expected level of approximation of this model.

121

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.27: Streamwise (top) and wall-to-wall (bottom) velocity component
profiles for case BFS1. Red: reference DNS, black: current results from k − ε
computations.

4.3.4.2 Two-phase transient computations

The average flow field computed with the steady-state approach was
used as initial condition for the purge analysis by filling the volume
with methane and introducing fresh air at the inlet of the domain.
Computations were carried out until the volume was filled with air
or, in the cases where a complete gas purge was not possible, when
the amount of methane in the domain reached a constant value.
As expected, for channel flow (CF) there is not much evolution
inside the volume as methane is pushed out by the incoming air.
However, as seen in Figure 4.29, after a flow through there is
still about 17% of the original methane inside the volume, mainly
trapped in the developed boundary layers. A little more than 2

122

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.28: Streamwise (top) and wall-to-wall (bottom) velocity component
profiles for case 2DH1. Red: reference DNS, black: current results from k − ε
computations.

flow-throughs are necessary to completely clean the environment
from the gas.

Figure 4.29: Methane concentration after one flow through time.

When dealing with the backward facing step (BFS), the different
geometrical configurations and boundary conditions (see Table
4.11) determine different purge histories as reported in Figure 4.31.
BFS1 and BFS2 differ from BFS3 and BFS4 for the different height
of the step, which is respectively one fifth and one third of the total
channel height.

123

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.30: Discharge of methane in channel flow.

Figure 4.31: Discharge of methane in BFS cases.

Here, two different characteristics need to be highlighted. The
first one is the sudden initial drop of methane concentration, that

124

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

occurs over the same amount of time, corresponding to 1 flow
passage for all the four configurations. The second one is that the
three cases for which a considerable amount of methane cannot
be expelled (corresponding to BFS1-2-4) an almost asymptotic
behavior is reached after 2 flow-throughs. In Figure 4.32 snapshots
of the concentration of methane in the BFS cases are given, to
visualize the entrapped mass of gas still present after the air purge.
The difference between BFS1 and BFS2 is only due to the influence
of inlet turbulence intensity, while for BFS4 it is evident the effect of
the Reynolds number. However, the main effect seems to be related
to the aspect ratio of the domain as the only case for which total
purge is possible is that of BFS3.

Figure 4.32: Asymptotic distribution of methane for BFS1, BFS2, BFS3 and
BFS4 respectively from the top to the bottom.

The purge of the two-dimensional hill (2DH) cases confirms
that the washing mechanism is strongly dependent on the Reynolds
number. Figure 4.33 shows the purge for 2DH cases and the con-
centration trends clearly indicate that the methane cannot be com-
pletely washed out from the domain for 2DH1, while this is possible
for 2DH2.

In Figure 4.34 snapshots of the concentration of methane for

125

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.33: Discharge of methane in 2DH1 and 2DH2 cases.

2DH1 and 2DH2 domains are shown after 14 flow-throughs: for
the first case the recirculating flow entraps a bubble of methane
that is not washed away, while at higher Reynolds number there
is a full purge. The interesting part of this mechanism is that the
recirculating flow engulfs the methane and shield it from direct
exposure to the hot surface below.

Referring to the three dimensional hill case (3DH) and the cylin-
der in cross flow (CYL), it is possible to note from Figure 4.35
that 1 flow through time (FTT) is sufficient to purge most of the
domain for both cases, while a second flow through time is needed
to achieve an asymptotic behavior.
The dynamics of purge for 3DH case is shown in Figure 4.36,
where the concentration of methane is shown after 1, 2 and 5
flow-throughs times in 3 different planes corresponding to midspan,
z/h=1 and z/h=2. Away from the hill, the only methane that gets
trapped is inside the boundary layers on the endwalls.

The wake of the obstacle, however, releases bubbles of methane
with flammable concentration and in the aft section of the hill a
small amount of methane is present even after 5 flow throughs.Time

126

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.34: Asymptotic distribution of methane for 2DH1 (top) and 2DH2
(bottom).

Figure 4.35: Discharge of methane in 3DH and CYL cases.

history of the gas purge and their close similarities give a fairly good

127

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

and useful insight, but also helps in drawing some conclusions on
the poorly ventilated zones and relative hazardous considerations.
From this viewpoint, it has to be also considered that a real ignitable
condition would be present only with a proper concentration of
methane (between LFL and UFL). Therefore, looking at the evolu-
tion of the gas concentration over time we can visualize ignitable
fringes of methane while the purge is going on and inevitably those
spots are positioned in boundary layers and recirculating or low
speed regions. So, going back to the discharge histories, we can
conclude that the ignitable portions of the domain are generally less
extended during the period between 0 and 1 flow-throughs time
than those between 1 and 2, which in turn are less extended than
those after 2 flow-throughs.

128

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.36: Discharge of methane in case 3DH, after 1 FT (top), 2 FT (center)
and 5 FT (bottom) at different spanwise immersions.

129

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

4.3.5 Poor Ventilation Index map

The screening analysis of the poorly ventilated zones inside the gas
turbine enclosure is an essential step of the entire assessment of the
ventilation system effectiveness required by ISO 21789 [116].
There are several approaches adopted in other fields, such as for
civil building applications, where the quality of ventilation is evalu-
ated by a parameter defined as the mean air age, that is proportional
to the residence time of the air particles inside the domain to be
studied. An older age corresponds to a lower quality of the flow and
so to a poorly ventilated zone. For gas turbine package applications,
this approach is not completely suitable, since the velocity field
is only one factor of the complete analysis to be performed. In
fact the really important poorly ventilated zones of a gas turbine
enclosure are only those where a fuel gas accumulation may occur,
with a concentration of methane within a specific range and where
sufficiently high temperature is present. To consider simultaneously
these aspects, the Authors synthetized them into a thresholds ma-
trix, which allows to classify the different zone of a CFD domain
through a Poor Ventilation Index (PVI) map.
To build this map, it was required to identify levels of fuel gas
concentration (Lα) based on the value of the discharge time (tD).
Then, a second level related to different thresholds of absolute
temperature (LT) was defined according to the Auto Ignition Tem-
perature (AIT) of the fuel gas. For both parameters, four levels
were considered with a progressive integer value from 1 to 4 pro-
portional to the severity of danger. Combining these levels (Lα and
LT) with a specific rule (Figure 4.8) for each cell of the domain,
it is possible to define a scale of Poor Ventilation Index (PVI) map,
from a minimum of 1 to a maximum of 16, Figure 4.37. This scale
is directly dependent on the fuel gas concentration history and
temperature field, while it is implicitly dependent on the velocity,
which influences the fields of these two parameters. Finally, each
level is multiplied by a coefficient varying from 0 to 1, which is
dependent to the particular application case.

PVI = βαLα · βTLT (4.8)

130

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Applying this method to the simulation results of the two-
dimensional hill (2DH1 and 2DH2) case and adopting both β coef-
ficients equal to 1, nine different possible map values are achieved
between 1 and 16, according to Figure 4.37. Figures 4.38 and
reffig:gl14 show the fields of these levels (Lα and LT) and the
resultant PVI map.

Figure 4.37: PVI Levels.

At lower Reynolds number, Figure 4.38, total purge of the do-
main is not possible, and therefore there is a portion of recirculating
flow with values of Lα equal to 3 and 4. However, the heat removal
mechanism is quite efficient and the value of LT is always equal to
1, leading to a final PVI that does not exceed 4.
At higher Reynolds number, Figure 4.39, the overall ventilation
system performs better, as the domain is purged from methane com-
pletely in a short time leading to a Lα equal to 1 everywhere. Also
the heat removal is efficient and the only region where LT reaches
a level of 2 is in the reattachment region of the separation bubble.
When both factors are combined into the PVI the index does not go
above 2, and we can conclude that this situation is even better than
that of low-Reynolds number and both lead to satisfactory results
in terms of PVI.

131

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.38: Lα and LT (center) and PV map (bottom) for 2DH1 case.

Figure 4.39: Lα and LT (center) and PV map (bottom) for 2DH2 case.

132

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

4.3.6 Machine Learning Module

Our final aim is to build and test an artificial neural network (ANN)
able to build a poor ventilation (PVI) map directly from steady
state solutions of the flow and temperature fields, as in a real-case
scenario of a gas turbine enclosure the computational requirements
of an unsteady purge analysis would be quite long due to the mesh
size. To this aim we built and trained an ANN to derive the PVI
map from steady-state flow and temperature features. Training data
were derived from the aforementioned test cases, with a total of
about 5M training samples, that were pre-processed using a Z-score
normalization.
Here, a single-label multiclass classification problem was solved,
as every cell has a univocally-associated level. As input features,
velocity and temperature fields were provided to the ANN, for
a total of 4 input features. The algorithm was implemented in
Python using the sklearn library. ANN morphology was optimized
to obtain the maximum predictive accuracy and the best training
convergence. The final structure of the ANN has 6 layers with 30
neurons, each activated by a RELU function; the last layer uses the
softmax activation function. In this way, the network computes
a probability distribution over the 9 levels for each. The highest
level was considered as the final state of the cell. Cross-entropy cost
function was optimized by an adaptive gradient descent optimizer,
automatically assuring a learning rate decay during each raining
epoch. Batch feeding, with each batch equal to one fourth of the
total data, was exploited to grant a faster convergence. After 2000
training epochs, algorithm reached full convergence, with an overall
accuracy of 93.2%. Initial database of training examples was split to
obtain a 30% of test examples. training epochs. After the algorithm
training, test examples were used as input and they provided a
negative check on possible overfitting of the predictor. The ANN
was validated against a model geometry for the gas enclosure.

133

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

4.3.7 Test Model Case

The test model geometry was derived from available literature,
starting from [127]. After validation of results with comparison
of available velocity profiles, the model was scaled to a size com-
parable to that of an enclosure and the air velocity increased to
that of a normal ventilation system. To best resemble the proper
layout of a gas turbine enclosure, the inlet and outlet of the domain
were extended. The final geometry is shown in Figure 4.40, while
in Figure 4.41 a sketch with different reference planes is shown,
corresponding to the planes that will be used for the following
discussion.

Figure 4.40: Isometric view of the domain geometry.

Then, a RANS computation was performed to generate the
average velocity and temperature fields to be fed to the ANN. These
are shown in Figure 4.42 and Figure 4.43. The most important flow
features that characterize the motion inside the test case are:

• the high speed region corresponding to the inlet, that results
in a fast jet impinging on the bottom (heated wall);

• the separation due to the presence of the partition wall, that
separates the inlet and outlet regions;

• the low-speed region below the outlet chimney, due to the
separated flow behind the partition wall.

134

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.41: Sketch of the computational domain with 8 reference planes
(a,b,1,2,3,I,II,III) used to show the numerical results.

These reflect in the temperature distribution, Figure 4.43, and
in particular:

• the inlet jet with fresh air is characterized by low temperature
and is able to remove heat from the bottom endwall where it
impinges;

• comparing the half of the domain below the inlet with that
behind the partition wall, it is apparent that the first is cooled
down by the inlet jet, while the latter is characterized by
higher temperature due to the slower heat removal in the
stagnant flow region.

Once the velocity and temperature data are given as input to
the trained ANN, the PVI map shown in Figure 4.45 was computed.
Here we recognize that the chamber below the outlet pipe shows
higher levels of PVI, due to the combining factor of recirculation and
high temperature, while in the chamber below the outlet the PVI is

135

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.42: Velocity magnitude field for the enclosure model case.

high only near the bottom (heated) endwall where the expansion
of the air jet coming from the inlet is blocked by the vertical walls.

136

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

The more complex and threedimensional flow features results, with
respect to the previous cases, to higher PVI levels as a combination
of all the mentioned factors.

Figure 4.43: Temperature field for the enclosure model case.

Later, the authors run an unsteady computation with the two-

137

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

phase solver to study the purge of the enclosure model with the
standard strategy. A first important finding, Figure 4.44, is that the
discharge history still follows the same trend that was found for the
previous cases, with a sharp drop over the 1st flow through time, a
second drop over the 2nd and an asymptotic trend after that.
Concentration of methane and air after 1 and 2 flow-throughs are
shown in Figure 4.45. Here it is interesting to notice that after
the 1st flow through the region below the inlet jet appears already
well washed, with only limited amount of methane distributed
in large bubbles. However, these are surrounded by dangerous
concentration and therefore poses a risk of flammability. After 2
flow-throughs the same zone has only limited amount of methane
left, while the chamber below the outlet ventilation pipe shows a
trend similar to the inlet chamber after 1 flow through.
From the temperature map, Figure 4.43, and the map, Figure 4.47,
it was possible to evaluate the LT and Lα values and therefore to
build a danger map similar to that of Figure 4.33. A one-to-one
comparison lead to an accuracy of 91.3% of the ANN solution.

Figure 4.44: Discharge of methane in enclosure model case.

138

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.45: PVI map for enclosure model case.

139

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.46: Concentration of methane for the test case after 1 (left) and 2
(right) flow through times.

140

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

Figure 4.47: Discharge time (tD) distribution for the test case.

141

4.3. IDENTIFICATION OF POORLY VENTILATED ZONES IN GAS-TURBINES
ENCLOSURES WITH MACHINE-LEARNING

4.3.8 Conclusions

To develop a new methodology for the definition of the poorly venti-
lation zones in gas turbine enclosure, the authors studied the purge
of methane from a series of test cases, that were selected to repre-
sent different flow phenomena typical of the enclosure. From the
analysis of these purges a typical evolution of the mass of methane
was detected inside the enclosure that can be related directly to
the amount of fresh air fed to the domain. From this behavior we
derived a level of criticality associated to the time spent by each cell
of the domain with an ignitable concentration of methane. Similarly,
a level of criticality was associated to the temperature field with
levels related to the auto-ignition temperature of the fuel gas. A
Poor Ventilation map of the domain was then derived as a function
of these two indexes.
Later an artificial neural network was designed to classify the level
of poor ventilation from the velocity and temperature field. The
network was optimized, trained and tested over the data from the
test cases. After it was validated on a test model and demonstrated
to be able to correctly predict the poorly ventilated zones inside the
domain. The major takeaway of this work is that, once the ANN
was trained and tested, it is possible to avoid an unsteady purge
analysis of the enclosure. This means that the information that
was derived by this time-consuming computation, lasting several
days, can be extrapolated in post-processing from the steady state
solution in a couple of minutes.

4.3.9 Acknowledgments

We thank Dr. Lucherini, Dr. Minotti and Dr. Rossin from BHGE, a
GE Company, for the support and funding of the project.

142

Chapter 5

Conclusions

This work has treated several cutting-edge and crucial aspects of
turbulent modeling and turbomachinery. The final aim was to prove
how data-driven tools can be extremely useful in CFD. Industrial
CFD, and RANS approach in particular, is the workhorse of opti-
mization and validation of turbomachinery design. Although the
efforts put in developing faster and more efficient codes, higher
fidelity approaches (namely DES or LES) still present a significant
cost for the majority of application. Three needs must be satisfied:

• Generality of model;

• Robustness of model;

• Speed of computations;

So far, no existing RANS model excels in each of the three points. De-
spite that, research on the topic has reached a stagnation point, and
no major breakthrough can be found in the past decades. Machine-
learning come in aid, showing the ability to overcome some of the
deficiencies of the models. As a new approach, however, it is still
an open debate how and where to apply an artificial intelligence.
In the work we focused on the k − ε turbulence model, the most
popular among all the two-equations models.

143

The first part of the work reports an analysis of the majority of the
works already published on machine-learning enhanced turbulence
modeling. Statistical inference from huge dataset is not a novel
topic in turbulence modeling. All the models currently available, in
fact, were derived from physics and eventually tuned to fit experi-
mental observations. A similar approach has been followed in the
past years through machine learning. To the best of the author’s
knowledge, the classification here reported is the first attempt to
review and organize the different works published on the topic so
far. We opted for a three-categories classification, based on the
methodology.

• Field Inversing - a part of the production or dissipation term
in the T.K.E. equation is incorrect and is addressed as source
of error in RANS simulation. A correction for these term is
derived and exploited to correct two-equation models;

• Anisotropic Modeling - discrepancy between RANS and higher
fidelity simulation is attributed to the isotropic turbulence
assumption. Turbulence invariance as input feature grants
independence from the frame of reference.

• Derivative Application - few works have tried different ap-
proaches to the problem. Methodology is usually a mix be-
tween the previous two.

We also report some key points that were discovered from literature
analysis:

• There is no a dominant methodology, with many approaches
only superficially investigated;

• Non-linear algorithms, e.g. neural networks, random forest
regressors, ensemble models, share behavior and accuracy;

• Multi-layer perceptrons and random forests have the most
popularity within machine-learning algorithms, followed closely
by genetic programming;

144

• Achieving frame of reference independence is a non-trivial
task, and the only viable solution proposed so far is the use of
turbulence invariance;

• All the methodologies have been applied to relatively simple
configurations, the feasibility of machine learning in complex
flows has not been fully investigated;

• Some authors claim that run-time computation of the machine-
learning enhanced fields may lead to a worsening of the RANS
approach, in contrast with other works;

• All the works agree that data-preprocessing and Exploratory
Data Analysis are fundamental to assure the statistical signifi-
cance of data and to maximize model effectiveness.

In the second part, a full mathematical representation of neural
networks is provided. Multi-layer perceptrons neural network have
been identified as our master algorithm for turbomachinery appli-
cations. The choice was justified by several factors:

• Non-linearity, as the phenomena of interest cannot be lin-
earized;

• Overfitting monitoring, to improve the generalization capabil-
ity of the models;

• Fast implementation;

• Ability to handle sparse data.

In the third part, neural network were directly applied to turbu-
lence modeling, in three different cases: two wall treatments and a
multi-phase flow. Standard two-equation models fail in presence of
adverse gradient of pressure and recirculating flows. For example,
in a 2D periodic hill, standard RANS approaches overpredict the
reattachment length. That can lead to strong error in predicting
real flows.
In the first part of the work we created a database through LES
simulations of flows that share similar behaviors. The series of

145

filtering operation to reduce redundant data and fasten training
time proved to be effective. A multi-layer perceptron was trained to
map local features to the T.K.E. values of the first cells. We created
an architecture for machine-learning enhanced computations of
Launder-Sharma model in OpenFoam v18.

• CAPI library perfectly handle data flow between the two envi-
ronments;

• Computational time remains the same;

• It is necessary to create a custom boundary condition to run-
time update T.K.E. values.

The first wall-function was than tested on two different cases. The
2D periodic hill was included in the original dataset. We adopted
three different grid resolution. ANN-treatment proved to be more
effective than the standard treatment in predicting reattachment
length. However, no treatment obtained satisfying results with the
coarsest grid. Thus we concluded that:

• The algorithm is mostly insensible to grid refinement and it
can work with different grids;

• Requirements in term of grid resolution are identical for the
two approaches.

The second application was a NACA profile and its modified version
with leading edge bumps, both in a cascade arrangement. Thus,
we applied the first wall function on a cross-validation case, not
included in the original database. It was done to stress the frame-
work and test the generalization capability of the model. We drew
two important conclusions:

• In the simulation of the base profile we obviously observed
a two-dimensional flow. Results from the standard and ANN
treatment could be superimposed and were coincident. In-
vestigation on the full flow fields did not highlight significant
differences. Its importance is high as the ANN was not wors-
ening the base model.

146

• The simulation of the modified profile was instead fully three-
dimensional. In this case a better prediction of the T.K.E.
values led to a more accurate estimation of the pressure coef-
ficient on the airfoil. It proved the generalization capability
and therefore the feasibility of the approach.

The second wall treatment was developed for rotating flows. In
fact, turbomachinery flows can be roughly approximated as rotating
flows in forced passages. As in the previous work, our algorithm
acted on the T.K.E. values near the walls, with a correction term
δk. Results from CFD showed that the k − ε model was insensible
to the effect of rotation which was in contrast with experimental
results. A deep analysis of data pre-processing and treatment has
been reported.

• We could achieve independence from from the frame of refer-
ence without exploiting turbulent invariants by using scalar
fields only;

• In this application, the filtering operations had a positive
impact on the model. That suggests that filtering can be
further extended to future works;

• Exploratory Data Analysis points out that flow fields do not
show strong mutual interaction and no additional feature
manipulation/creation is required;

• A mix of local normalization and zScore leveled the scales of
magnitude of all the features;

• Advanced techniques, such as modifying the cost function,
batch feeding and cross-validation overcame common issue
in ANN training.

Training and testing phases of the algorithm were satisfactory and
the reached convergence. The model was eventually used in run-
time computation in the same framework of the recirculating flows.
An in-depth analysis of the flow fields showed that:

147

• In spite of the zonal training, the model predictive capability
was excellent in the whole domain. This suggest that, with
additional training and a modified mathematical formulation,
it may be possible extension of the methodology to the full
domain;

• In the inner layer, the effect of a better prediction of T.K.E.
values is evident, with rotating forces that affect the boundary
layers.

In the final part of the work, we developed through ANN a model
to automatically detected and classified dangerous zones in Gas-
Turbine enclosure. To do so, we first trained the algorithm on
canonical flows that share common features with the full domain,
such as attached flow, geometry-induced and pressure induced
separation, three-dimensional shedding. We eventually verified
the effectiveness of model in a simplified configuration of the GT
enclosure. Further comments on the work are reported below.

• By analyzing the center of mass of methane, we discover a
common pattern of during the purge of the phase;

• Machine-learning was capable of reconstructing a full-three di-
mensional flow as a superimposition of simpler configuration,
drastically reducing the complexity of the problem;

• Machine-learning was able to handle transport of multi-phase
flows;

• Despite being desirable, high-fidelity data are not always nec-
essary. In fact, we treated the problem with data as accurate
as the one required by the final application, i.e. data from
RANS simulations;

The three cases pointed out that machine-learning enhanced tur-
bulence modeling is not only possible, but extremely effective in
the turbomachinery field. The development may be slow, given the
relatively novelty of techniques and instruments, but the growing
community of researchers is relentless searching for new solution

148

and further advances. We surely find ourselves in the big data era
of turbulence modeling.

149

Acknowledgments

First of all, I would like to express my sincere gratitude to my super-
visor Prof. Alessandro Corsini, for his guidance and trust during my
Ph.D. studies. It has been an honor to be his student.

Endless thanks go also to my co-supervisor Prof. Giovanni Delibra,
for everything he taught me.

A special thank goes to Prof. Johan Van Der Spuy, for his insightful
comments and encouragement in the past months.

Last but not least, I want to thank my workmates for all the fun we
had in the past three years.

151

Un ringraziamento alla mia famiglia, per l’incessante supporto
durante tutti questi anni.

La mia più profonda gratitutine a Renato, Francesca, Marco,
Spino, Giuseppe, Giorgio, Federico, Irene, Edoardo, Michele, Luca,
Francesco, Lorenzo, Anna, Giulia, Marta, Riccardo, Petty. Senza di
voi questo percorso sarebbe stato decisamente più difficile e meno
divertente.

Infine, un grazie speciale a Gino, David, Tommaso, Valerio, Fab-
rizio, Paolo, Graziano e Lucio, amici e colleghi con i quali ho avuto
l’onore di condividere quotidianamente gioie e disavventure.

152

Bibliography

[1] J P Slotnick et al. CFD Vision 2030 Study: A Path to Revolu-
tionary Computational Aerosciences. 2014.

[2] H. Karthik Duraisamy. A Framework for Turbulence Modeling
using Big Data. 2017.

[3] J. Moore. “A Wake and an Eddy in a Rotating, Radial-Flow
Passage—Part 1: Experimental Observations”. In: Journal of
Engineering for Power 95.3 (July 1973), pp. 205–212. ISSN:
0022-0825. DOI: 10.1115/1.3445724.

[4] Stephen B Pope. Turbulent flows. Cambridge: Cambridge
Univ. Press, 2011.

[5] P. Davidson. Turbulence: An Introduction for Scientists and
Engineers. Oxford University Press, 2015. ISBN: 9780198722595.

[6] M Nallasamy. “Turbulence models and their applications to
the prediction of internal flows: a review”. In: Computers &
Fluids 15.2 (1987), pp. 151–194.

[7] Y.-H Ho and B Lakshminarayana. “Computation of Three-
Dimensional Steady and Unsteady Flow Through a Com-
pressor Stage”. In: June 1996, V001T01A026. DOI: 10 .

1115/96-GT-070.

[8] P Bradshaw. “Variations on a theme of Prandtl(Complex
turbulent flows as perturbations of classical thin shear lay-
ers and application of Prandtl approximation)”. In: AGARD
Turbulent Shear Flows 10 p(SEE N 72-20273 11-12) (1972).

153

https://doi.org/10.1115/1.3445724
https://doi.org/10.1115/96-GT-070
https://doi.org/10.1115/96-GT-070

BIBLIOGRAPHY

[9] J. P. Johnston. “Internal Flows”. In: Turbulence. Ed. by Pe-
ter Bradshaw. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1976, pp. 109–169. ISBN: 978-3-662-22568-4. DOI:
10.1007/978-3-662-22568-4_3.

[10] E.M. Greitzer, C.S. Tan, and M.B. Graf. Internal Flow: Con-
cepts and Applications. Cambridge Engine Technology Series.
Cambridge University Press, 2007. ISBN: 9781139451116.

[11] J. D. Denton. “Loss Mechanisms in Turbomachines”. In: May
1993, V002T14A001. DOI: 10.1115/93-GT-435.

[12] Gregory A Tokaty. A history and philosophy of fluid mechan-
ics. Courier Corporation, 1994.

[13] RJ. Simoneau et al. Turbomachinery. Aircraft Propulsion
and Power. NASA United States, 1987.

[14] C. Tropea, A. Yarin, and J. Foss. Springer Handbook of Exper-
imental Fluid Mechanics. Jan. 2007. ISBN: 9783540251415.
DOI: 10.1007/978-3-540-30299-5.

[15] Tommaso Bonanni et al. “Modelling of Axial Fan and Anti-
Stall Ring on a Virtual Test Rig for Air Performance Evalua-
tion”. In: June 2016, V001T09A005. DOI: 10.1115/GT2016-
56862.

[16] Alessandro Corsini et al. “A CFD-based Virtual Test-rig for
Rotating Heat Exchangers”. In: Energy Procedia 82 (2015).
70th Conference of the Italian Thermal Machines Engineer-
ing Association, ATI2015, pp. 245 –251. ISSN: 1876-6102.
DOI: https://doi.org/10.1016/j.egypro.2015.12.
029.

[17] MV Casey. “The industrial use of CFD in the design of
turbomachinery”. In: In AGARD, Turbomachinery Design
Using CFD 24 p (SEE N95-14127 03-34). 1994.

[18] MV Casey. “Computational methods for preliminary design
and geometry definition in turbomachinery”. In: In AGARD,
Turbomachinery Design Using CFD 22 p (SEE N95-14127
03-34). 1994.

154

https://doi.org/10.1007/978-3-662-22568-4_3
https://doi.org/10.1115/93-GT-435
https://doi.org/10.1007/978-3-540-30299-5
https://doi.org/10.1115/GT2016-56862
https://doi.org/10.1115/GT2016-56862
https://doi.org/https://doi.org/10.1016/j.egypro.2015.12.029
https://doi.org/https://doi.org/10.1016/j.egypro.2015.12.029

BIBLIOGRAPHY

[19] J. D. Denton. “Some limitations of turbomachinery CFD.”
In: June 2010. DOI: ASMEGT2010-˘22540.

[20] Douglas L Dwoyer, M Yousuff Hussaini, and Robert G Voigt.
Theoretical approaches to turbulence. Vol. 58. Springer Sci-
ence & Business Media, 2012.

[21] A. Corsini. “Modeling (Understanding and Controlling) Tur-
bulent Flows: the Heritage of Leonardo da Vinci in Modern
Computational Fluid Dynamics”. In: Sept. 2018.

[22] L. Daston and E. Lunbeck. Histories of Scientific Observation.
University of Chicago Press, 2011. ISBN: 9780226136783.

[23] Xindong Wu et al. “Data mining with big data”. In: IEEE
transactions on knowledge and data engineering 26.1 (2013),
pp. 97–107.

[24] Huang Fang. “Managing data lakes in big data era: What’s
a data lake and why has it became popular in data manage-
ment ecosystem”. In: 2015 IEEE International Conference
on Cyber Technology in Automation, Control, and Intelligent
Systems (CYBER). IEEE. 2015, pp. 820–824.

[25] G.E.P. Box and N.R. Draper. Empirical model-building and
response surfaces. Wiley series in probability and mathemati-
cal statistics: Applied probability and statistics. Wiley, 1987.
ISBN: 9780471810339.

[26] R.L. Launer and G.N. Wilkinson. Robustness in Statistics.
Academic Press Rapid Manuscript Reproduction. Elsevier
Science, 2014. ISBN: 9781483263366.

[27] Jeffrey Slotnick et al. “Enabling the environmentally clean
air transportation of the future: A vision of computational
fluid dynamics in 2030”. In: Philosophical transactions. Se-
ries A, Mathematical, physical, and engineering sciences 372
(Aug. 2014). DOI: 10.1098/rsta.2013.0317.

[28] Karthik Duraisamy, Gianluca Iaccarino, and Heng Xiao.
“Turbulence Modeling in the Age of Data”. In: Annual Review
of Fluid Mechanics 51.1 (2019), pp. 357–377. DOI: 10.1146/
annurev-fluid-010518-040547.

155

https://doi.org/ASME GT2010-�22540
https://doi.org/10.1098/rsta.2013.0317
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547

BIBLIOGRAPHY

[29] D.C. Wilcox. Turbulence Modeling for CFD. Turbulence Mod-
eling for CFD v. 1. DCW Industries, 2006. ISBN: 9781928729082.

[30] B. E. Launder and D. B. Spalding. Lectures in mathematical
models of turbulence [by] B. E. Launder and D. B. Spalding.
English. Academic Press London, New York, 1972, 7, 169 p.
ISBN: 0124380506.

[31] Heng Xiao and Paola Cinnella. “Quantification of Model Un-
certainty in RANS Simulations: A Review”. In: (Apr. 2019).

[32] É Turgeon et al. “Application of a sensitivity equation method
to the K-epsilon model of turbulence”. In: Optimization and
Engineering 8 (Oct. 2007), pp. 341–372. DOI: 10.1007/
s11081-007-9003-5.

[33] Matthew CollessAndrew M. Dunn, Babak Bahram Shotor-
ban, and Abdelkader Frendi. “Uncertainty Quantification
of Turbulence Model Coefficients via Latin Hypercube Sam-
pling Method”. In: 2010.

[34] P.D.A. Platteeuw, G.J.A. Loeven, and H. Bijl. “Uncertainty
Quantification Applied to the k-epsilon Model of Turbu-
lence Using the Probabilistic Collocation Method”. In: 49th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynam-
ics, and Materials Conference. DOI: 10.2514/6.2008-2150.

[35] L. Margheri et al. “Epistemic uncertainties in RANS model
free coefficients”. In: Computers and Fluids 102 (2014),
pp. 315 –335. ISSN: 0045-7930. DOI: https://doi.org/
10.1016/j.compfluid.2014.06.029.

[36] John Schaefer et al. “Uncertainty Quantification of Tur-
bulence Model Closure Coefficients for Transonic Wall-
Bounded Flows”. In: AIAA Journal 55.1 (2017), pp. 195–
213. DOI: 10.2514/1.J054902.

[37] Michael Emory, Rene Pecnik, and Gianluca Iaccarino. “Mod-
eling Structural Uncertainties in Reynolds-Averaged Com-
putations of Shock/Boundary Layer Interactions”. In: 49th
AIAA Aerospace Sciences Meeting including the New Horizons

156

https://doi.org/10.1007/s11081-007-9003-5
https://doi.org/10.1007/s11081-007-9003-5
https://doi.org/10.2514/6.2008-2150
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.06.029
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.06.029
https://doi.org/10.2514/1.J054902

BIBLIOGRAPHY

Forum and Aerospace Exposition. DOI: 10.2514/6.2011-
479.

[38] Michael Emory, Johan Larsson, and Gianluca Iaccarino.
“Modeling of structural uncertainties in Reynolds-averaged
Navier-Stokes closures”. In: Physics of Fluids 25.11 (2013),
p. 110822. DOI: 10.1063/1.4824659.

[39] Gianluca Iaccarino, Aashwin Ananda Mishra, and Saman
Ghili. “Eigenspace perturbations for uncertainty estimation
of single-point turbulence closures”. In: Phys. Rev. Fluids
2 (2 2017), p. 024605. DOI: 10.1103/PhysRevFluids.2.
024605.

[40] Aashwin Ananda Mishra and Gianluca Iaccarino. “Uncer-
tainty Estimation for Reynolds-Averaged Navier–Stokes Pre-
dictions of High-Speed Aircraft Nozzle Jets”. In: AIAA Jour-
nal 55.11 (2017), pp. 3999–4004. DOI: 10.2514/1.J056059.

[41] Wouter Edeling, Gianluca Iaccarino, and Paola Cinnella.
“Data-Free and Data-Driven RANS Predictions with Quanti-
fied Uncertainty”. In: Flow Turbulence and Combustion 100
(Nov. 2017), pp. 593–616. DOI: 10.1007/s10494- 017-
9870-6.

[42] W.N. Edeling, P. Cinnella, and R.P. Dwight. “Predictive
RANS simulations via Bayesian Model-Scenario Averaging”.
In: Journal of Computational Physics 275 (2014), pp. 65
–91. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.
jcp.2014.06.052.

[43] Wouter N. Edeling et al. “Bayesian Predictions of Reynolds-
Averaged Navier–Stokes Uncertainties Using Maximum a
Posteriori Estimates”. In: AIAA Journal 56.5 (2018), pp. 2018–
2029. DOI: 10.2514/1.J056287.

[44] Sai Hung Cheung et al. “Bayesian uncertainty analysis with
applications to turbulence modeling”. In: Reliability Engi-
neering and System Safety 96.9 (2011). Quantification of
Margins and Uncertainties, pp. 1137 –1149. ISSN: 0951-

157

https://doi.org/10.2514/6.2011-479
https://doi.org/10.2514/6.2011-479
https://doi.org/10.1063/1.4824659
https://doi.org/10.1103/PhysRevFluids.2.024605
https://doi.org/10.1103/PhysRevFluids.2.024605
https://doi.org/10.2514/1.J056059
https://doi.org/10.1007/s10494-017-9870-6
https://doi.org/10.1007/s10494-017-9870-6
https://doi.org/https://doi.org/10.1016/j.jcp.2014.06.052
https://doi.org/https://doi.org/10.1016/j.jcp.2014.06.052
https://doi.org/10.2514/1.J056287

BIBLIOGRAPHY

8320. DOI: https://doi.org/10.1016/j.ress.2010.09.
013.

[45] Hiroshi Kato and Shigeru Obayashi. “Approach for uncer-
tainty of turbulence modeling based on data assimilation
technique”. In: Computers and Fluids 85 (2013). Interna-
tional Workshop on Future of CFD and Aerospace Sciences,
pp. 2 –7. ISSN: 0045-7930. DOI: https://doi.org/10.
1016/j.compfluid.2012.09.002.

[46] Hiroshi Kato et al. “A data assimilation methodology for
reconstructing turbulent flows around aircraft”. In: Journal
of Computational Physics 283 (2015), pp. 559 –581. ISSN:
0021-9991. DOI: https://doi.org/10.1016/j.jcp.2014.
12.013.

[47] Qiqi Wang and Eric Dow. “Quantification of Structural Un-
certainties in the k -w Turbulence Model”. In: (Apr. 2011).
DOI: 10.2514/6.2011-1762.

[48] Anand Pratap Singh and Karthik Duraisamy. “Using field
inversion to quantify functional errors in turbulence clo-
sures”. In: Physics of Fluids 28.4 (2016), p. 045110. DOI:
10.1063/1.4947045.

[49] H. Xiao et al. “Quantifying and reducing model-form uncer-
tainties in Reynolds-averaged Navier–Stokes simulations:
A data-driven, physics-informed Bayesian approach”. In:
Journal of Computational Physics 324 (2016), pp. 115 –136.
ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.
2016.07.038.

[50] Jinlong Wu, Jian-Xun Wang, and Heng Xiao. “A Bayesian
Calibration-Prediction Method for Reducing Model-Form
Uncertainties with Application in RANS Simulations”. In:
Flow, Turbulence and Combustion 97 (Oct. 2015). DOI: 10.
1007/s10494-016-9725-6.

158

https://doi.org/https://doi.org/10.1016/j.ress.2010.09.013
https://doi.org/https://doi.org/10.1016/j.ress.2010.09.013
https://doi.org/https://doi.org/10.1016/j.compfluid.2012.09.002
https://doi.org/https://doi.org/10.1016/j.compfluid.2012.09.002
https://doi.org/https://doi.org/10.1016/j.jcp.2014.12.013
https://doi.org/https://doi.org/10.1016/j.jcp.2014.12.013
https://doi.org/10.2514/6.2011-1762
https://doi.org/10.1063/1.4947045
https://doi.org/https://doi.org/10.1016/j.jcp.2016.07.038
https://doi.org/https://doi.org/10.1016/j.jcp.2016.07.038
https://doi.org/10.1007/s10494-016-9725-6
https://doi.org/10.1007/s10494-016-9725-6

BIBLIOGRAPHY

[51] Jian-Xun Wang, Jinlong Wu, and Heng Xiao. “Incorporating
Prior Knowledge for Quantifying and Reducing Model-Form
Uncertainty in RANS Simulations”. In: International Jour-
nal for Uncertainty Quantification 6 (June 2016), pp. 109–
126. DOI: 10.1615/Int.J.UncertaintyQuantification.
2016015984.

[52] W.P Jones and B.E Launder. “The prediction of laminariza-
tion with a two-equation model of turbulence”. In: Inter-
national Journal of Heat and Mass Transfer 15.2 (1972),
pp. 301 –314. ISSN: 0017-9310. DOI: https://doi.org/
10.1016/0017-9310(72)90076-2.

[53] Svetlana V. Poroseva and Gianluca Iaccarino. “Simulating
separated flows using the k − ε model By”. In: 2002.

[54] Ichiro Kimura and Takashi Hosoda. “A non-linear k–ε model
with reliability for prediction of flows around blunt bodies”.
In: International Journal for Numerical Methods in Fluids 42
(July 2003). DOI: 10.1002/fld.540.

[55] P. A. Durbin. “Separated flow computations with the k-ε-
v-squared model”. In: AIAA Journal 33.4 (1995), pp. 659–
664. DOI: 10.2514/3.12628.

[56] Wouter Edeling et al. “Bayesian estimates of parameter
variability in the k − ε turbulence model”. In: Journal of
Computational Physics 258 (Feb. 2014), pp. 73–94. DOI:
10.1016/j.jcp.2013.10.027.

[57] Jaideep Ray et al. “Bayesian Calibration of a RANS Model
with a Complex Response Surface - A Case Study with Jet-
in-Crossflow Configuration”. In: June 2015. DOI: 10.2514/
6.2015-2784.

[58] Christopher M. Bishop. Pattern Recognition and Machine
Learning (Information Science and Statistics). Berlin, Heidel-
berg: Springer-Verlag, 2006. ISBN: 0387310738.

[59] HKarthik Duraisamy. “A Framework for Turbulence Model-
ing using Big Data”. In: Summary of Research, 2015-2017
().

159

https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016015984
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016015984
https://doi.org/https://doi.org/10.1016/0017-9310(72)90076-2
https://doi.org/https://doi.org/10.1016/0017-9310(72)90076-2
https://doi.org/10.1002/fld.540
https://doi.org/10.2514/3.12628
https://doi.org/10.1016/j.jcp.2013.10.027
https://doi.org/10.2514/6.2015-2784
https://doi.org/10.2514/6.2015-2784

BIBLIOGRAPHY

[60] Svetlana Poroseva and Scott M. Murman. “Velocity/Pressure-
Gradient Correlations in a FORANS Approach to Turbulence
Modeling”. In: June 2014. ISBN: 978-1-62410-289-9. DOI:
10.2514/6.2014-2207.

[61] B.B.C.H.T. Richard C. Aster et al. Parameter Estimation and
Inverse Problems. International geophysics series. Elsevier
Science, 2005. ISBN: 9780120656042.

[62] P.K. Kundu, I.M. Cohen, and D.R. Dowling. Fluid Mechan-
ics. Science Direct e-books. Elsevier Science, 2012. ISBN:
9780123821003.

[63] S. B. Pope. “A more general effective-viscosity hypothesis”.
In: Journal of Fluid Mechanics 72.2 (1975), 331–340. DOI:
10.1017/S0022112075003382.

[64] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. “Reynolds
averaged turbulence modelling using deep neural networks
with embedded invariance”. In: Journal of Fluid Mechanics
807 (2016), 155–166. DOI: 10.1017/jfm.2016.615.

[65] S. Yarlanki, B. Rajendran, and H. Hamann. “Estimation of
turbulence closure coefficients for data centers using ma-
chine learning algorithms”. In: 13th InterSociety Conference
on Thermal and Thermomechanical Phenomena in Electronic
Systems. 2012, pp. 38–42. DOI: 10.1109/ITHERM.2012.
6231411.

[66] Eric J. Parish and Karthik Duraisamy. “A paradigm for data-
driven predictive modeling using field inversion and ma-
chine learning”. In: Journal of Computational Physics 305
(2016), pp. 758 –774. ISSN: 0021-9991. DOI: https://doi.
org/10.1016/j.jcp.2015.11.012.

[67] Karthikeyan Duraisamy, Ze J. Zhang, and Anand Pratap
Singh. “New Approaches in Turbulence and Transition Mod-
eling Using Data-driven Techniques”. In: 53rd AIAA Aerospace
Sciences Meeting. DOI: 10.2514/6.2015-1284.

160

https://doi.org/10.2514/6.2014-2207
https://doi.org/10.1017/S0022112075003382
https://doi.org/10.1017/jfm.2016.615
https://doi.org/10.1109/ITHERM.2012.6231411
https://doi.org/10.1109/ITHERM.2012.6231411
https://doi.org/https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/https://doi.org/10.1016/j.jcp.2015.11.012
https://doi.org/10.2514/6.2015-1284

BIBLIOGRAPHY

[68] Ze Jia Zhang and Karthik Duraisamy. “Machine Learning
Methods for Data-Driven Turbulence Modeling”. In: June
2015. DOI: 10.2514/6.2015-2460.

[69] Brendan D. Tracey, Karthikeyan Duraisamy, and Juan J.
Alonso. “A Machine Learning Strategy to Assist Turbulence
Model Development”. In: 53rd AIAA Aerospace Sciences Meet-
ing. DOI: 10.2514/6.2015-1287.

[70] Anand Pratap Singh, Shivaji Medida, and Karthik Duraisamy.
“Machine Learning-augmented Predictive Modeling of Tur-
bulent Separated Flows over Airfoils”. In: CoRR abs/1608.03990
(2016). arXiv: 1608.03990. URL: http://arxiv.org/abs/
1608.03990.

[71] Jian-Xun Wang and Heng Xiao. “Data-driven CFD modeling
of turbulent flows through complex structures”. In: Interna-
tional Journal of Heat and Fluid Flow 62 (2016), pp. 138–
149. ISSN: 0142-727X. DOI: https://doi.org/10.1016/j.
ijheatfluidflow.2016.11.007.

[72] Julia Ling, Reese Jones, and Jeremy Templeton. “Machine
learning strategies for systems with invariance properties”.
In: Journal of Computational Physics 318 (2016), pp. 22
–35. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.
jcp.2016.05.003.

[73] Julia Ling, Andrew Kurzawski, and Jeremy Templeton. “Reynolds
averaged turbulence modelling using deep neural networks
with embedded invariance”. In: Journal of Fluid Mechanics
807 (2016), pp. 155–166.

[74] Pedro M. Milani, Julia Ling, and John K. Eaton. “General-
ization of Machine-Learned Turbulent Heat Flux Models
Applied to Film Cooling”. In: June 2019.

[75] Pedro M. Milani et al. “A Machine Learning Approach for De-
termining the Turbulent Diffusivity in Film Cooling Flows”.
In: Journal of Turbomachinery 140 (Oct. 2017). DOI: 10.
1115/1.4038275.

161

https://doi.org/10.2514/6.2015-2460
https://doi.org/10.2514/6.2015-1287
https://arxiv.org/abs/1608.03990
http://arxiv.org/abs/1608.03990
http://arxiv.org/abs/1608.03990
https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.11.007
https://doi.org/https://doi.org/10.1016/j.ijheatfluidflow.2016.11.007
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/https://doi.org/10.1016/j.jcp.2016.05.003
https://doi.org/10.1115/1.4038275
https://doi.org/10.1115/1.4038275

BIBLIOGRAPHY

[76] Harshal Akolekar et al. “Development and Use of Machine-
Learnt Algebraic Reynolds Stress Models for Enhanced
Prediction of Wake Mixing in LPTs”. In: May 2018. DOI:
10.1115/GT2018-75447.

[77] Jack Weatheritt et al. “Machine Learning for Turbulence
Model Development Using a High-Fidelity HPT Cascade
Simulation”. In: June 2017, V02BT41A015. DOI: 10.1115/
GT2017-63497.

[78] Richard Sandberg et al. “Applying Machine Learnt Explicit
Algebraic Stress and Scalar Flux Models to a Fundamental
Trailing Edge Slot”. In: Journal of Turbomachinery 140 (Sept.
2018), p. 101008. DOI: 10.1115/1.4041268.

[79] Jack Weatheritt et al. “A Comparative Study of Contrasting
Machine Learning Frameworks Applied to RANS Modeling
of Jets in Crossflow”. In: Volume 2B: Turbomachinery. Char-
lotte, US, 2017, pp. 1–10. DOI: 10.1115/GT2017-63403.

[80] Jinlong Wu, Heng Xiao, and Eric G. Paterson. “Data-Driven
Augmentation of Turbulence Models with Physics-Informed
Machine Learning”. In: 2018.

[81] Jian-Xun Wang, Jinlong Wu, and Heng Xiao. “Physics in-
formed machine learning approach for reconstructing Reynolds
stress modeling discrepancies based on DNS data”. In: Phys-
ical Review Fluids 2 (Feb. 2017), pp. 1–22. DOI: 10.1103/
PhysRevFluids.2.034603.

[82] Tieghi Lorenzo et al. “Assessment Of A Machine-Learnt
Adaptive Wall-Function in a Compressor Cascade With Si-
nusoidal Leading Edge.” In: (June 2019). DOI: ASMEGT2019-
91238.

[83] Michele Milano and Petros Koumoutsakos. “Neural Network
Modeling for Near Wall Turbulent Flow”. In: Journal of
Computational Physics 182.1 (2002), pp. 1 –26. ISSN: 0021-
9991. DOI: https://doi.org/10.1006/jcph.2002.7146.

162

https://doi.org/10.1115/GT2018-75447
https://doi.org/10.1115/GT2017-63497
https://doi.org/10.1115/GT2017-63497
https://doi.org/10.1115/1.4041268
https://doi.org/10.1115/GT2017-63403
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/10.1103/PhysRevFluids.2.034603
https://doi.org/ASME GT2019-91238
https://doi.org/ASME GT2019-91238
https://doi.org/https://doi.org/10.1006/jcph.2002.7146

BIBLIOGRAPHY

[84] Corsini Alessandro et al. “Identification of poorly ventilated
zones in gas-turbine enclosures with machine learning.” In:
June 2019.

[85] Pedro Domingos. The Master Algorithm: How the Quest for
the Ultimate Learning Machine Will Remake Our World. New
York, NY, USA: Basic Books, Inc., 2018. ISBN: 0465094279,
9780465094271.

[86] Edward Lee Thorndike. “Animal intelligence: An experimen-
tal study of the associate processes in animals.” In: American
Psychologist 53.10 (1998), p. 1125.

[87] Burrhus F Skinner. “Operant conditioning”. In: The encyclo-
pedia of education 7 (1971), pp. 29–33.

[88] J.O. Berger. Statistical Decision Theory and Bayesian Analysis.
Springer Series in Statistics. Springer New York, 2013. ISBN:
9781475742862.

[89] Christopher M. Bishop. Neural Networks for Pattern Recog-
nition. New York, NY, USA: Oxford University Press, Inc.,
1995. ISBN: 0198538642.

[90] Diederik Kingma and Jimmy Ba. “Adam: A Method for
Stochastic Optimization”. In: International Conference on
Learning Representations (Dec. 2014).

[91] Sebastian Ruder. “An overview of gradient descent opti-
mization algorithms”. In: CoRR abs/1609.04747 (2016).

[92] Timothy Craft et al. “Wall-function strategies for use in
turbulent flow CFD”. In: Jan. 2002. DOI: 10.1615/IHTC12.
3100.

[93] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”.
In: Journal of Machine Learning Research 12 (2011), pp. 2825–
2830.

[94] Mart́ın Abadi et al. TensorFlow: Large-Scale Machine Learn-
ing on Heterogeneous Systems. Software available from ten-
sorflow.org. 2015.

[95] “OpenFoam User Guide v5”. In:

163

https://doi.org/10.1615/IHTC12.3100
https://doi.org/10.1615/IHTC12.3100

BIBLIOGRAPHY

[96] J. Nathan Kutz. “Deep learning in fluid dynamics”. In: Jour-
nal of Fluid Mechanics 814 (2017), 1–4. DOI: 10.1017/jfm.
2016.803.

[97] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning. Vol. 1. 10. Springer series in
statistics New York, 2001.

[98] Jochen Fröhlich et al. “Highly resolved large-eddy simula-
tion of separated flow in a channel with streamwise peri-
odic constriction”. In: Journal of Fluid Mechanics 526 (Mar.
2005), pp. 19 –66. DOI: 10.1017/S0022112004002812.

[99] HUNG LE, PARVIZ MOIN, and JOHN KIM. “Direct numerical
simulation of turbulent flow over a backward-facing step”.
In: Journal of Fluid Mechanics 330 (1997), 349–374. DOI:
10.1017/S0022112096003941.

[100] Matteo Bernardini, Sergio Pirozzoli, and Paolo Orlandi. “Ve-
locity statistics in turbulent channel flow up to Ret =4000”.
In: Journal of Fluid Mechanics 742 (Feb. 2014). DOI: 10.
1017/jfm.2013.674.

[101] Ahmad Sohankar, Lars Davidson, and Christoffer Norberg.
“Large eddy simulation of flow past a square cylinder: com-
parison of different subgrid scale models”. In: Journal of
Fluids Engineering 122.1 (2000), pp. 39–47.

[102] Junfei Qiu et al. “A survey of machine learning for big
data processing”. In: EURASIP Journal on Advances in Signal
Processing 2016.1 (2016), p. 67. ISSN: 1687-6180. DOI:
10.1186/s13634-016-0355-x.

[103] Liu F. “A Thorough Description Of How Wall Functions Are
Implemented In OpenFOAM”. In: n Proceedings of CFD with
OpenSource Software, 2016 ().

[104] M. Breuer et al. “Flow over periodic hills – Numerical
and experimental study in a wide range of Reynolds num-
bers”. In: Computers and Fluids 38.2 (2009), pp. 433 –457.
ISSN: 0045-7930. DOI: https://doi.org/10.1016/j.
compfluid.2008.05.002.

164

https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1017/jfm.2016.803
https://doi.org/10.1017/S0022112004002812
https://doi.org/10.1017/S0022112096003941
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1186/s13634-016-0355-x
https://doi.org/https://doi.org/10.1016/j.compfluid.2008.05.002
https://doi.org/https://doi.org/10.1016/j.compfluid.2008.05.002

BIBLIOGRAPHY

[105] Alessandro Corsini, Giovanni Delibra, and Anthony G. Sheard.
“On the Role of Leading-Edge Bumps in the Control of Stall
Onset in Axial Fan Blades”. In: Journal of Fluids Engineer-
ing 135.8 (June 2013). 081104. ISSN: 0098-2202. DOI:
10.1115/1.4024115.

[106] Tieghi Lorenzo et al. “Exploration of axial fan design space
using a metamodel for aerodynamic properties of NACA
4-digit profiles.” In: (June 2019). DOI: ASMEGT2019-91588.

[107] François Chollet. keras. https://github.com/fchollet/
keras. 2015.

[108] Jr. Dean Robert C. and Yasutoshi Senoo. “Rotating Wakes
in Vaneless Diffusers”. In: Journal of Basic Engineering 82.3
(Sept. 1960), pp. 563–570. DOI: 10.1115/1.3662659.

[109] John D. Stanitz and Gaylord O Ellis. “Two-dimensional
compressible flow in centrifugal compressors with straight
blades”. In: NACA Annual Report 36 (Jan. 1950), pp. 141–
163.

[110] S. Menon and W.-W. Kim. “High Reynolds number flow sim-
ulations using the localized dynamic subgrid-scale model”.
In: 1996.

[111] Brian Launder and B.I. Sharma. “Application of the energy-
dissipation model of flow near a spinning disc”. In: Lett.
Heat Mass Transfer (Jan. 1974), pp. 131–138.

[112] P. Davidson. “Turbulence: An Introduction for Scientists
and Engineers”. In: Jan. 2004. ISBN: 019852949X. DOI:
10.1063/1.2138427.

[113] Balakrishnan Ponnuraj et al. “3D CFD Analysis of an Indus-
trial Gas Turbine Compartment Ventilation System”. In: Jan.
2003. DOI: 10.1115/IMECE2003-41672.

[114] Numerical Assessment of Fan-Ducting Coupling for Gas Tur-
bine Ventilation Systems. Vol. Volume 1: Aircraft Engine;
Fans and Blowers; Marine. Turbo Expo: Power for Land,
Sea, and Air. June 2015. DOI: 10.1115/GT2015-42449.

165

https://doi.org/10.1115/1.4024115
https://doi.org/ASME GT2019-91588
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.1115/1.3662659
https://doi.org/10.1063/1.2138427
https://doi.org/10.1115/IMECE2003-41672
https://doi.org/10.1115/GT2015-42449

BIBLIOGRAPHY

[115] Alessandro Corsini et al. “CFD Analysis of Ventilation Sys-
tems for Gas Turbine Enclosures”. In: 2015.

[116] ISO Central Secretary. Gas turbine applications – Safety.
Standard. Geneva, CH: International Organization for Stan-
dardization, 2009.

[117] Experimental and Numerical Investigation on Gas Turbine
Package Scale Model. Vol. Volume 9: Oil and Gas Applica-
tions; Supercritical CO2 Power Cycles; Wind Energy. Turbo
Expo: Power for Land, Sea, and Air. June 2018. DOI: 10.
1115/GT2018-75694.

[118] Roger Santon, Jasper Kidger, and Chris Lea. “Safety Devel-
opments in Gas Turbine Power Applications”. In: Jan. 2002.
DOI: 10.1115/GT2002-30469.

[119] Roger Santon, Mat Ivings, and David Pritchard. “A New Gas
Turbine Enclosure Ventilation Design Criterion”. In: Jan.
2005. DOI: 10.1115/GT2005-68725.

[120] Matteo Bernardini, Sergio Pirozzoli, and Paolo Orlandi.
“Velocity statistics in turbulent channel flow up to Reτ =
4000”. In: Journal of Fluid Mechanics 742 (2014), 171–191.
DOI: 10.1017/jfm.2013.674.

[121] HUNG LE, PARVIZ MOIN, and JOHN KIM. “Direct numerical
simulation of turbulent flow over a backward-facing step”.
In: Journal of Fluid Mechanics 330 (1997), 349–374. DOI:
10.1017/S0022112096003941.

[122] Siva Thangam. “Analysis of Two-Equation Turbulence Mod-
els for Recirculating Flows.” In: 1991.

[123] Y Jang, Lionel Temmerman, and M Leschziner. “Investiga-
tion of anisotropy-resolving turbulence models by reference
to highly-resolved LES data for separated flow”. In: Eu-
ropean Community on Computational Methods in Applied
Sciences ECCOMAS Computational Fluid Dynamics Confer-
ence (Oct. 2001), pp. 4–7.

166

https://doi.org/10.1115/GT2018-75694
https://doi.org/10.1115/GT2018-75694
https://doi.org/10.1115/GT2002-30469
https://doi.org/10.1115/GT2005-68725
https://doi.org/10.1017/jfm.2013.674
https://doi.org/10.1017/S0022112096003941

BIBLIOGRAPHY

[124] Bruno Chaouat and Roland Schiestel. “Hybrid RANS/LES
simulations of the turbulent flow over periodic hills at high
Reynolds number using the PITM method”. In: Computers
& Fluids 84 (2013), pp. 279 –300. ISSN: 0045-7930. DOI:
https://doi.org/10.1016/j.compfluid.2013.06.012.

[125] Jony Castagna, Yufeng Yao, and Jun Yao. “Direct numerical
simulation of a turbulent flow over an axisymmetric hill”. In:
Computers & Fluids 95 (2014), pp. 116 –126. ISSN: 0045-
7930. DOI: https://doi.org/10.1016/j.compfluid.
2014.02.014.

[126] Michael Breuer. “A challenging test case for large eddy
simulation: high Reynolds number circular cylinder flow”.
In: International Journal of Heat and Fluid Flow 21.5 (2000).
Turbulence and Shear Flow Phenomena 1, pp. 648 –654.
ISSN: 0142-727X. DOI: https://doi.org/10.1016/S0142-
727X(00)00056-4.

[127] Z.F. Tian et al. “Numerical studies of indoor airflow and
particle dispersion by large Eddy simulation”. In: Building
and Environment 42.10 (2007), pp. 3483 –3492. ISSN: 0360-
1323. DOI: https://doi.org/10.1016/j.buildenv.2006.
10.047.

167

https://doi.org/https://doi.org/10.1016/j.compfluid.2013.06.012
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.02.014
https://doi.org/https://doi.org/10.1016/j.compfluid.2014.02.014
https://doi.org/https://doi.org/10.1016/S0142-727X(00)00056-4
https://doi.org/https://doi.org/10.1016/S0142-727X(00)00056-4
https://doi.org/https://doi.org/10.1016/j.buildenv.2006.10.047
https://doi.org/https://doi.org/10.1016/j.buildenv.2006.10.047

	Dedication
	Abstract
	Introduction
	Internal Flows in Turbomachinery
	Experimental Fluid Dynamics
	Computational Fluid Dynamics

	Learn by Observations
	Learn by Data
	Outline of the Dissertation

	Turbulence Modeling in the Big Data Era
	Turbulence: A Big Data Perspective
	A General Form for Data-Driven Turbulence Models
	Uncertainty Quantification
	Model Calibration
	Machine Learning
	Key Issues
	Field Inversing
	Anisotropic Modeling
	Relevant Prior Work

	Machine-learning Tools and Techniques
	What is Machine-Learning?
	Machine-Learning Tribes
	The Connectionists Paradigm: Neural Networks
	Learning as Optimization
	Architecture
	Single-layer Neural Networks
	Multi-layer Neural Networks
	Activation Functions
	Error Functions

	Optimization
	Gradient Descent
	Back-propagation
	Adaptive Momentum Estimation

	Development of Machine-Learning Assisted Tools for Turbulence Modeling
	A Data-driven Wall Function for Stationary Flows
	Introduction
	Training Dataset
	Numerical Methodology
	Filtering

	ANN Training
	ANN Morphology and Hyperparameter Tuning
	Training Results
	Forwarding Algorithm and Implementation in the Solver

	Test Application: 2D Periodic Hills
	Numerical Methodology
	Results

	Test Application: Sinusoidal NACA 4415
	Numerical Methodology
	Results

	Final Remarks

	A Data-driven Wall Function for Rotating Passages
	Introduction
	Data Generation
	Numerical methodology
	Flow Description

	Data Preprocessing
	Data Sampling and Filtering
	Features creation and normalization

	Exploratory Data Analysis
	Data-driven Modeling
	Forwarding algorithm and implementation in the solver

	Cross-validation Results
	Final Remarks

	Identification of Poorly Ventilated Zones in Gas-Turbines Enclosures with Machine-learning
	Introduction
	Rationale and Selection of Test Cases
	Numerical Setup
	CFD Results
	Steady-state computations
	Two-phase transient computations

	Poor Ventilation Index map
	Machine Learning Module
	Test Model Case
	Conclusions
	Acknowledgments

	Conclusions

