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ABSTRACT
We consider the problem of designing affirmative action policies for
selecting the top-k candidates from a pool of applicants. We assume
that for each candidate we have socio-demographic attributes and
a series of variables that serve as indicators of future performance
(e.g., results on standardized tests). We further assume that we
have access to historical data including the actual performance of
previously selected candidates. Critically, performance information
is only available for candidates who were selected under some
previous selection policy.

In this work we assume that due to legal requirements or volun-
tary commitments, an organization wants to increase the presence
of people from disadvantaged socio-demographic groups among
the selected candidates. Hence, we seek to design an affirmative
action or positive action policy. This policy has two concurrent ob-
jectives: (i) to select candidates who, given what can be learnt from
historical data, are more likely to perform well, and (ii) to select can-
didates in a way that increases the representation of disadvantaged
socio-demographic groups.

Our motivating application is the design of university admission
policies to bachelor’s degrees. We use a causal model as a frame-
work to describe several families of policies (changing component
weights, giving bonuses, and enacting quotas), and compare them
both theoretically and through extensive experimentation on a large
real-world dataset containing thousands of university applicants.
Our paper is the first to place the problem of affirmative-action
policy design within the framework of algorithmic fairness. Our
empirical results indicate that simple policies could favor the admis-
sion of disadvantaged groups without significantly compromising
on the quality of accepted candidates.

1 INTRODUCTION
In recent years, researchers across several areas of computing, in-
cluding data mining, machine learning, and information retrieval,
have sought to develop methods that are non-discriminatory, i.e.,
that do not generate an unjustified disadvantage for members of a
socially salient group.
Predictive policies for top-k selection. We consider a general
setting in which we have a large pool of applicants for, e.g., an
educational program, a scholarship, or a job, and we want to select
thek most promising ones. This selection is based on the candidates’
predicted future performance. For instance, in the case of university
admissions, this prediction stems from previous grades obtained
in different subjects (transcripts), scores in relevant standardized
tests, ratings from interviews with the candidate, and so on.
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The predictor, which induces a selection policy, is created using
historical data that tracks the performance of previously selected
candidates through outcome variables such as academic achieve-
ment or productivity measurements. A key constraint in our setting
is that we assume such outcomes can only be observed for candi-
dates that have been selected in the past.
Affirmative action in top-k selection. One of the most common
ways of operationalizing algorithmic fairness is through a notion
of demographic parity or statistical parity, which requires that a
decision such as accepting or rejecting a candidate is independent
of the protected attribute (for a criticism of this notion see [8]). In
our setting, for example, we want to admit candidates at similar
rates throughout all groups that make up the whole population.
Given that disparities exist, we seek an affirmative action policy: a
temporary intervention aimed at increasing the representation of
an underrepresented group.
University admissions. Our motivating example and the prob-
lem domain we use throughout this paper are university admission
policies. In several countries, standardized tests for university ad-
mission are administered at the end of the last year of high school
or community college. They are often framed as a measurement of
aptitude for university studies, i.e., a prediction of how a student
would eventually perform if admitted. For most students, admission
decisions are based on an admission score computed from test scores
and/or high school grades (e.g., through a linear combination).

However, an admission score is not the only mechanism for uni-
versity admission. Universities may want to have a diverse body
of students, or may have a social role in addition to their educa-
tional one, such as promoting gender equality and social mobility.
For this reason, university admissions often include a predictor
of students’ future performance plus a patchwork of additional
affirmative action programs addressed at increasing the number of
accepted candidates from disadvantaged backgrounds.
Designing affirmative action policies. The goals of an affirma-
tive action top-k selection policy are two fold. First, the policy
should select candidates who have a high expected performance.
Second, the policy should ensure a sufficient number of candidates
from disadvantaged backgrounds are selected. Both properties can
be seen as expressing notions of fairness: the former towards good
performance; the latter against disadvantages that are not related
with performance.

Effectively, to design such a policy one needs to be able to predict
its effect before it is enacted. The goal of this paper is to formalize
the problem of designing data-driven affirmative action policies and
to develop algorithms to build such policies starting from historical
data. Given the experimentation we perform, our contributions
have a direct application to university admissions, and they are
directly extensible to other applications.
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Our approach. To formalize the questions we consider, we build a
probabilistic causal model that captures the selection process and
makes our assumptions about the underlying data explicit. The
causal model takes into account each applicant’s input attributes
(e.g., test scores), as well as a number of sensitive socio-demographic
attributes, to compute an admission score, which is the main basis
for their selection. Given the causal model, we consider three types
of policies: (1) Coefficients: policies that adjust the weight of
different components of the admission score to emphasize those
that favor disadvantaged groups; (2) Bonus: policies that give extra
points in the admission score to applicants from disadvantaged
groups; and (3)Quota: policies that enforce a certain selection rate
for applicants from disadvantaged groups. Policies are considered
from the perspective of a single institution and optimized to increase
the expected performance of the selected applicants while accepting
a suitable proportion of disadvantaged applicants.

In our analysis, we build instances of causal models from the
available data, find suitable parameters for a series of affirmative
action policies, and present the results of an empirical study over
university admissions considering thousands of applicants.

2 RELATEDWORK
2.1 Fairness-aware top-k selection
This paper belongs to the emergent research field of algorithmic
fairness, specifically to fairness in predictive decision making (for a
survey, see [20]). Historically, data mining and machine learning
applications have been the focus of most works, with comparatively
less research dedicated to fairness in ranking or top-k selection.

Ranking with fairness constraints, in batch processing and online
processing scenarios respectively, is the focus of two recent works
by Celis et al. [5] and Stoyanovich et al. [26]. In these works, every
element to be ranked has a certain utility and belongs to a certain
group, and for every ranking position r = 1, 2, . . . ,k there are
two constraints per group indicating the minimum and maximum
number of candidates from that group that must be among the
top-r positions. The goal is to rank candidates by decreasing utility
without violating the constraints.

Zehlike et al. [28] define a fair representation condition based on
a binomial test that seeks to determine if a ranking of k elements is
compatible with a process in which candidates have been drawn
at random from protected and non-protected populations with a
known probability. The fair representation condition together with
a process for adjusting for multiple hypothesis testing can be used
to obtain the bounds used in ranking with fairness constraints.
Kearns et al. [16] study the case of selecting k candidates drawn
from d different groups in which candidates across groups are
not comparable. Hence, what matters is the relative position of
candidates within their groups.

2.2 Affirmative action

“Downstream” effects of affirmative action. Several recent pa-
pers study “downstream” or “cascade” effects of affirmative action
policies, mostly through a theoretical approach. Hu and Chen [14]
consider a labor market in which firms are either temporary or per-
manent employers. Temporary employers are forced to use hiring

policies that favor disadvantaged groups, while permanent employ-
ers can hire based on expected utility alone. The goal is to increase
the employability of candidates from disadvantaged groups through
their employment in the temporary market. Kannan et al. [15] ana-
lyze the potential effects of affirmative action in education on the
employability of graduates from disadvantaged groups. The goal
is to achieve parity of employability or create an incentive for em-
ployers to adopt a color-blind hiring policy. Mouzannar et al. [21]
analyze the effect of affirmative action policies on the qualifications
of different groups in society.

Data-driven analysis. Over the last four decades prestigious uni-
versities, many of which are public institutions, have become even
more selective, having a negative effect on students from low socio-
economic backgrounds and underrepresented minorities [24]. This
effect is mainly explained by the lower performance of disadvan-
taged students on standardized tests and other admission require-
ments that favor applicants from well-off families [3]. However,
admission scores might underestimate university performance for
disadvantaged students. For instance, a study by Wightman [27]
on nearly 25,000 law students in the US found that while students
of color had significantly poorer results on admission tests than
white students, their difference in terms of performance once they
were admitted (their probability of passing the bar exam) did not
justify the large gap between the admission rates of both groups.

As a result, countries and universities have promoted affirmative
action policies. For instance, Brazil has promoted bonus [9] and
racial quotas [10]. The evidence suggests that the implementation
of these policies increased both black students and students coming
from low socioeconomic backgrounds in large public universities
[10]. In Chile, where significant gaps are observed in standardized
math tests between students of public versus private schools [6] and
between women and men [1], coefficient-based policies have also
shown some effectiveness [19]. Institutional policies seem to have
an effect on admission systems that include socio-demographic
information in the selection process, as done by several universities
in the US. For instance, Bastedo et al. [4] found that when admission
officers in the US consider contextual variables (economic hardship,
family background) into the admission decision, the chances of
admitting disadvantaged students increases.

2.3 Causal reasoning and fairness
In a recent paper, Hardt et al. [13] explain how causal reasoning,
as developed by Pearl [22] and others, offers a formal and rich
theoretical framework to express notions of algorithmic fairness
that goes beyond statistical / observational measures. Indeed, the
work of Kusner et al. [18] and Kilbertus et al. [17] builds upon
that intuition by studying notions of counterfactual fairness, i.e.,
fairness notions that take into account the causal structure of the
data’s generative model. In our work, we use the framework of
causal reasoning to define the model for the admission mechanism
(Section 3), and confirm that the available data allow us to make
unbiased estimates of the performance of alternative admission
policies (Section 6).



3 SETTING
In the setting we consider, selection of candidates is performed by
one institution. We begin by defining a probabilistic causal model
that captures this process, expresses our assumptions about the data,
and allows us to quantify the effect of different selection policies
(Section 3.1). For a given policy, we then define measures of utility,
capturing the performance of selected candidates, and fairness,
capturing the similarity between selection rates (Section 3.2). Next,
we describe three types of policies (Section 3.3), and present a
formal definition of the technical problem we address as a trade-
off between utility and fairness (Section 3.4). Finally, we discuss
various modeling choices we make (Section 3.5).

3.1 Causal model
Our design of selection policies is guided by historical data that are
the result of a particular enacted selection policy. To predict what
data we would observe under alternative policies, it is necessary
to express formally our knowledge and assumptions about the
decision mechanisms we study. We do this by defining a causal
diagram [22] capturing our background knowledge about causal
relationships between quantities of interest, as shown in Figure 1.
The diagram describes the selection mechanism from the point
of view of one candidate to one institution, and assumes that each
candidate is associated with socio-economic attributes A, which
are considered sensitive, and a series of input scores X (e.g., results
of qualification tests), which are considered non-sensitive. These
are combined into a selection score S which is the basis for the
institution’s decision T. In particular, given input scores X = x and
socio-economic attributes A = a, the candidate obtains a selection
score S = s according to S = f(X,A). Here, we allow the selection
score S to depend on A to allow for affirmative action through
the selection score function. Based on this score S a decision T is
made in favor or against the candidate. Again, we allow T to be
determined by A so as to allow also for affirmative action through
policies that operate at the stage of decision.

For the purposes of affirmative action policy design, it is also
crucial that we model the possibility that sensitive socio-economic
attributes A influence the input scores X. This is done through
the dependency A → X in the diagram. This is the case if, for
instance, university applicants from families of higher income have
access to training or resources that are not affordable for families
of lower income. In that case, an affirmative action policy tries to
bring equality of opportunity [25].

One could also consider the possibility that sensitive socio-econ-
omic attributes A influence the performance of the selected candi-
dates Y, as well. This would be particularly useful to model special
cases where low socio-economic status may be associated to low
input scores but high performance of selected candidates, for in-
stance due to the persistence required to overcome their initial
disadvantage (see, e.g., observations by Glynn [12] on community
colleges in the US); in this case an affirmative action policy can
lead to the admission of applicants of higher Y by reducing discrim-
ination. Nevertheless, in this first effort to formalize the design of
selection policies as an algorithmic problem, we have opted not
to include this dependency into the analysis. We have made this
choice because (1) it simplifies the analysis, (2) it turns out not to

Symbol Description

A Socio-economic attributes
X Input scores (e.g., results of qualification tests)
S Selection score: combination of input scores
T Decision of the institution: select or not select
Y Performance of selected candidate

Figure 1: Diagram of causal model. Selection policies are de-
fined via the causal relationships (A,X) → S and (A, S) → T.

be crucial for our empirical analysis case on university admissions
(Section 6), (3) it is reasonable to assume that, in real-life systems
that have been used in practice for many years (as are, typically,
university admission systems) the input scores X are adaptively de-
signed over time to be good predictors of performance Y. Therefore,
in what follows, we assume that input scores X provide all avail-
able information to predict performance Y (hence the dependency
X → Y in the diagram), while they might be influenced by sensitive
attributes A (hence the dependency A → X). In the context of uni-
versity admissions, this would mean that socio-economic attributes
A influence the grades X obtained by university applicants – and
that, among all available information for applicants, the grades
X are enough to predict as accurately as possible an applicant’s
performance Y at the university.

The institution under consideration is interested in the accep-
tance of only a certain number or fraction of top candidates. For-
mally, we require every selection policy to be calibrated – i.e., that
it lead, in expectation, to the selection of a certain fraction θ of
candidates, considered known and fixed for the institution.

E[T] = P(T = 1) = θ (1)

If the decision for a candidate is positive (T = 1), we observe
their performance Y. If a candidate is rejected the performance of
that candidate is not observed, and we write Y = n/a.

3.2 Measures
We aim to define selection policies that lead to the selection of the
candidates with the highest expected performance. At the same
time, we aim to mitigate the disadvantage of certain demographic
groups. Towards this end, we define the following measures.



Utility of Selection (UoS).A policy is useful if it leads to the selec-
tion of the candidates that actually perform best. This is captured
by the following measure, defined in terms of the causal model.

UoS = E[Y|T = 1]

Demographic Disparity (DmD). Our objective is to produce se-
lection policies that minimize the difference between the selection
rates of candidates of different backgrounds, according to their
socio-economic features A. The following measure is defined for a
group of candidates with sensitive properties A = a; it compares the
selection rate for this group to the candidates outside the group.

DmDA = P(T = 1|A = a) − P(T = 1|A , a)

The demographic disparity is equivalent to the risk difference
measure from the literature [7], where risk is the probability of not
being selected 1 − P(T = 1), and the difference is taken between
the sensitive group and its complement.

3.3 Types of selection policies
To define alternative selection policies, we essentially have to define
instances of the relationships (A,X) → S and (A, S) → T, marked
with thick arrows in Figure 1. In other words, for a given causal
model, we aim to define the scoring function S = f(A,X) and selec-
tion function T = t(A,X) so that the policy exhibits desired values
of the utility and fairness measures as described earlier. We say that
every pair of functions f(A,X) and t(A,X) defines a selection policy
within the selection mechanism defined by the model. We consider
three types of policies: Coefficients, Bonus, andQuota.
Coefficients-based policies. This type of policy is completely
determined by a series of coefficients w that are used to compute
the selection score S as a linear combination of the input scores X.
No sensitive attributes are used. The score is computed as

S = f(X = x) = w · x, |w|1 = 1. (2)

Note that w is normalized. Each component of w represents the
degree to which an input score counts towards the selection score.
Candidates are admitted if their score exceeds a threshold τ , in
which case we write T = 1 — otherwise, we have T = 0.

T = t(S) =
{
1 if S ≥ τ

0 otherwise
(3)

Bonus policies. This type of policy differs from Coefficients
policies in that sensitive attributes A contribute to the selection
score of candidates. Specifically, the group of candidates with A =
a receive an additive bonus b in their score.

S = f(X = x,A) =
{
w · x + b, if A = a
w · x, if A , a

, |w|1 = 1. (4)

Note that the selection decision T is determined in exactly the same
way as for Coefficients policies, i.e., via a threshold τ .
Quota policies. This type of policy determines the selection score
in the same way as Coefficients, i.e., via a linear function with
normalized weights w. However, unlike Coefficients policies,
sensitive attributes A contribute to the decision T. Quota policies

constraint the selected candidates from group A = a to be (in
expectation) a fraction q ∈ [0, 1] of accepted candidates.

P(T = 1,A = a) = q · θ (5)

Specifically, the selection decision T under a Quota policy is de-
termined based on separate thresholds τ(A,a) and τ(A=a) for the two
groups, (A = a) and (A , a), respectively.

T = t(S,A) =


1 if (A , a) and S ≥ τ(A,a)
1 if (A = a) and S ≥ τ(A=a)
0 otherwise

(6)

The two thresholds are chosen so that Equation 5 is satisfied.

3.4 Problem definition
Having defined the set of policies that we consider, we can now
define our objective formally. If we were to ignore the goal of
favoring disadvantaged group (A = a) via an affirmative action
policy, it would be natural to aim for the policy that optimizes the
utility UoS of the selection mechanism. On the other extreme, if
we were to target only the demographic disparity of those selected,
it would be natural to aim for a policy that eliminates DmD (i.e.,
leads to DmD = 0). In general, we consider cases where we are
willing to trade λ units of utility to decrease disparity by one unit.
We thus define our technical objective as follows.

Problem 1. For sensitive property A, and two associated groups
of candidates (A = a) and (A , a), define f(A,X) and t(A, S) so as
to obtain a calibrated policy that maximizes

o(f , t) = UoS(f , t) − λ |DmDA (f , t)|, λ ≥ 0.

Notice that the objective function considers the absolute value
of DmD, as we wish to eliminate DmD rather than maximize it in
favor of the currently disadvantaged group.

3.5 Discussion on modeling choices
The causal model we described above might not match exactly
every real selection mechanism, as it is based on certain assump-
tions, some made for the purposes of simplification. We now briefly
discuss those in the context of university admissions, which is the
domain in which we perform our real data analysis (Section 6).
Candidate decisions might not be independent. In our setting,
the decision is made independently for each applicant based on their
individual attributes. We have made this modeling choice because
treating applicants independently simplifies analysis considerably,
while it still allows us to understand the properties of the different
policies. However, we should keep in mind that the independence
assumption does not hold in some university admission systems.
For example, for many universities there is a hard constraint on the
absolute number of students to be admitted – and hence admission
decisions are not independent, as one candidate’s admission can be
another one’s rejection.
Selection does not imply enrollment. We have also made the
simplifying assumption that an applicant who is admitted by a uni-
versity is bound to attend it. However, in reality applicants do not
apply for admission to one institution only and might be admitted



by several. In some admission systems, applicants are forced to
prioritize their preferences for institutions and attend the first to
admit them. In other admission systems, applicants have the oppor-
tunity to choose which one to attend. The model does not capture
explicitly such admission systems. However, its assumptions work
well for top universities that students are almost certain to attend
if admitted. We find the model to be a reasonable approximation
of reality for our empirical analysis, which concerns a top univer-
sity in its country and to which most selected applicants enroll
(about 95%). We also acknowledge that highly selective universities
with affirmative action policies may create a mismatch issue (i.e.,
accepted students may be better off in another type of institution)
as reported in countries such as the US and India [11].

4 POLICY SEARCH FOR A SINGLE SENSITIVE
ATTRIBUTE

For ease of exposition, this section describes algorithms to deter-
mine affirmative action policies for a single sensitive attribute A.
Section 5 extends them to multiple sensitive attributes.

4.1 Coefficients policy
Let us consider the case of λ = 0, in which the objective function
simplifies to the measure of utility UoS. Letm(x) = E[Y|X = x,T =
1] be the expected performance Y of a selected applicant with input
scores x. By straightforward calculations, we find that

UoS = E[Y|T = 1] = 1
θ

∫
m(x) δ (f(x) ≥ τ ) dP(x). (7)

Intuitively, Eq. 7 expresses that UoS is the average expected perfor-
mance of applicants that exceed the threshold τ . Using f(x) =m(x)
maximizes UoS over all possible scoring functions. In other words,
if we could use the expected performance of an applicant as the scor-
ing function, the resulting Coefficients policy would select those
applicants that are expected to have the best performance Y and
it would be optimal for λ = 0. However, we are constrained to use
linear functions as scoring function f(X), as defined in Equation 2.

In the case wherem(x) is indeed a linear function, then using
f(x) =m(x) leads to an optimal Coefficients policy for λ = 0. To
state the claim formally, let F (S = s) be the cumulative probability
distribution for selection S and F−1(β) the inverse cumulative dis-
tribution, i.e., the function that returns the score below which lies
a fraction β of the population of applicants.

Lemma 1. Letm(x) = α0 + α c · x with normalized coefficients,
|c| = 1. Then, the following Coefficients policy is optimal for λ = 0:

S = f(X,A) = c · X

T = t(S,A) =
{
1 if S ≥ τ

0 otherwise
(8)

τ = F−1(1 − θ )

Conceptually, the optimal Coefficients policy for λ = 0 cor-
responds to ordering applicants in decreasing order of c · X and
keeping the top θ -fraction of them by setting the threshold τ ap-
propriately. By construction, this policy is calibrated.

For general λ ≥ 0, c is not necessarily optimal anymore – instead,
the optimal Coefficients policy would require different score

Figure 2: For a given weight vector w, the selection score of
each candidate with input scores x is defined as the inner
product (w · x) ∝ ∥x∥ cos(w, x). In the figure, each circle cor-
responds to the input scores of a candidate. The two candi-
dates A and B have input scores with same l2-norm. Candi-
date A is assignedwith a higher selection score than B under
score weight vector w1. However, the situation is reversed
under score weight vector w2, obtained by a rotation of an-
gle d from w1. Under w2, candidate B is assigned a higher
selection score than B.

weights. To see why, notice that, for two data points x1, x2, we have

w · x1 > w · x2 iff ∥x1∥ cos(w, x1) > ∥x2∥ cos(w, x2).

Therefore, the selection score depends on the angle between the
vectors of input scores x and score weightsw. In general, a rotation
of score weights c by some angle d might lead to score weights w
that change the ordering of datapoints {x} by score value {f(x)} –
and thus possibly lead to smaller DmD and better objective value
(see Figure 2).

To identify the optimal Coefficients policy we could use a sam-
ple of data {x} and follow an approach similar to Asudeh et al. [2].
For a given set of applicants with input scores {x}, it is possible to
partition the vector space of w into regions such that any vector of
score weights w within the same region leads to the same ordering
of applicants, where the ordering is performed by {w ·x}. However,
we would have to perform an exhaustive search of such regions,
which is inefficient for high-dimensional data. Instead, we experi-
ment with a simple grid-like search strategy: starting with vector
w = c, we rotate the score weight vector w by small increments
towards different directions d, to obtain new weight vectors w’
= ρ(w; d) and evaluate the objective function in every step. The
approach is described in Algorithm 1.

4.2 Bonus policy
Let M be the optimal Coefficients policy, having parameters c
and τ as defined in Equations 8. We now consider a Bonus policy
B that favors with b points the group A = a that is disadvantaged
underM, assuming without loss of generality that

P(T = 1|A = a;M) ≤ P(T = 1|A , a;M).

For the moment, let us restrict B to use the same score weights c
as M, but score threshold τb that is potentially different than the



threshold τ used byM. We lift the restriction on score weights at
the end of Section 4.2.

Calibrating τb . As discussed in Section 3, all policies are required
to be calibrated, i.e., adhere to condition 1. Towards this end, let us
consider a fixed bonus b ≥ 0. The lemma below guarantees that
there is an algorithm to choose its threshold τb so that B becomes
calibrated.

Lemma 2. The score threshold τb that makes B calibrated can be
found via binary search over the interval [τ ,τ + b]

Optimizing b. Given τb obtained with the procedure described
above, and w = c, how do we determine b = bOPT that optimizes
the objective of Problem 1? Our main observation is that we can
pre-determine a narrow range of values within which the optimal
bOPT must fall. To be precise, let F (S = s|A = a;M) and F (S = s|A ,
a;M) be the cumulative probability functions for the score S of the
two groups under Coefficients policy M. Let д(β) = F−1(β |A =
a;M) and h(β) = F−1(β |A , a;M) be the corresponding inverse
functions: given a cumulative probability value β , they return the
score S of the β-th applicant of the respective group. The search for
optimal bOPT can be focused in the interval stated in the following
lemma.

Lemma 3. bOPT ∈ I = [0,д(1 − θ ) − h(1 − θ )]

Proof. First, notice that the following condition holds forM.

P(T = 1|A = a) ≤ θ ≤ P(T = 1|A , a) (9)

This follows from the assumption that A = a is the disadvantaged
group and the fact that the overall proportion θ of accepted ap-
plicants must be between the proportions of accepted applicants
of the two groups A = a and A , a. It is easy to see that the
proportion P(T = 1|A = a) of admitted candidates of the disad-
vantaged group is non-decreasing for increasing b ≥ 0, while the
corresponding proportion P(T = 1|A , a) for the advantaged group
is non-increasing for increasing b ≥ 0. This implies that, for in-
creasing b ≥ 0, there is a bonus value b = bDmD for which we have

Algorithm 1: Search for Coefficients policy
Parameters: {d }: set of rotation directions, k : number of rota-
tions in each direction
1 /* initialize weights */
2 w:= c, copt := c
3 for each direction d do
4 for i = 1..k do
5 /* rotate the vector of score weights */
6 w:= ρ(w; d)
7 /* normalize the vector */
8 w := w/|w|1
9 /* set the threshold τ to make the policy calibrated */

10 τ = F−1(1 − θ )
11 /* update best policy */
12 if o(w) > o(copt ) then
13 copt := w
14 return copt

Algorithm 2: Grid-based search for bOPT
Parameters: k : granularity
1 ϵ = bDmD/k
2 bOPT := 0
3 for i = 1..k do
4 b = i · ϵ
5 τi := binarysearch(τi−1,τ + b)
6 v := o(b,τb )
7 if v > vOPT then
8 bOPT := b; vOPT := v
9 return bOPT

equality between the quantities of Condition 9 and DmD = 0. This
is achieved for a bonus value that makes the (1 - θ )-th applicant of
group A = a have a score equal to the score of the (1 - θ )-th appli-
cant of groupA , a. Formally, we have bDmD = д(1−θ )−h(1−θ ) and
the Bonus policy with b = bDmD is calibrated for score threshold
τbDmD

= F−1(1 − θ |A , a;M). The above implies that the absolute
value |DmD| of disparity decreases over the interval b ∈ [0, bDmD ]
and increases over b ∈ [bDmD ,∞]. Second, it is easy to see that UoS
is decreasing for increasing b. The two observations imply that the
objective function (Problem 1) is optimized in [0, bDmD ]. □

One simple algorithm to search for bOPT is grid-based search,
in which we evaluate the performance of Bonus (b) policies for
uniformly distributed b in the range I. The calibration for each pol-
icy explored in this grid-based search can be done somewhat more
efficiently based on the following generalization of Lemma 2, which
allows us to narrow the range of binary search for the threshold
τ that makes a policy calibrated. The search algorithm for bOPT is
shown in Algorithm 2 (proof omitted).

Lemma 4. For i ∈ {1, 2}, let τi be the threshold that makes the
Bonus policy with bi bonus points calibrated, and let τ be the thresh-
old forM. If b1 ≤ b2, then τ1 ≤ τ2 ≤ τ + b2.

Solving Problem 1. So far in Section 4.2, we have constrained our-
selves to Bonus policies that adopt fixed weights w = c. This raises
the question: how do we choosew jointly with other parameters to
find the optimal bonus policy for Problem 1? The answer is that we
can simply usew = c, the optimal score weights for a Coefficients
policy with λ = 0, as stated in following lemma.

Lemma 5. There is an optimal bonus policy with w = c.

Proof. First, consider two Bonus policies B1 and B2 with the
following properties: (i) B1 and B2 are associated with the same
value of |DmD|; (ii) B1 uses score weights w = c, while B2 does
not. Then, B1 is associated with higher UoS and therefore higher
objective value than B2. Second, notice that for well-behaved score
distributions (specifically, for cumulative score distributions F (S =
s|A = a;M) and F (S = s|A , a;M) that are continuous), it is
possible to choose an appropriate bonus value b ∈ (−∞,+∞) to
achieve any value of DmD ∈ (−1, 1), irrespective of score weights
w. Combined, the above two arguments imply that for any Bonus
policy B2 with w , c, we can build a policy with same DmD and
w =c, which is associated with higher objective value. □



4.3 Quota policy
We find that there is a relationship of equivalence between Bonus
andQuota policies, as pointed out in the following lemma.

Lemma 6. For a given Bonus policy, there is a Quota policy that
leads to the selection of exactly the same candidates, and vice versa.

Proof. Let P(T = 1,A = a) be the probability admitting appli-
cants of group A = a under a Bonus policy with bonus value b. Let
also qb be such that

P(T = 1,A = a) = qb θ
P(T = 1,A , a) = (1 − qb) θ .

and define the probabilities

σA=a = P(T = 1 | A = a) = qb θ
P(A = a)

σA,a = P(T = 1 | A , a) = (1 − qb) θ
P(A , a) .

We can construct a Quota policy with a quota q = qb for the
disadvantaged group (A = a), by setting

τ(A=a) = F−1(1 − σA=a |;A = a)
τ(A,a) = F−1(1 − σA,a |;A , a),

as per the definition of Quota policies in Section 3.3. By construc-
tion, we have aQuota policy that accepts exactly the same appli-
cants as the given Bonus policy. A similar argument can be made
for the opposite direction. □

This lemma allows us to focus our empirical study (Section 6)
mainly on Coefficients and Bonus policies.

5 POLICY SEARCH FOR MULTIPLE
SENSITIVE ATTRIBUTES

Our discussion so far has focused on policies that target one sensi-
tive attribute. In this section, we introduce the problem of policy
design for multiple sensitive attributes {Ai }.

Problem 2. For sensitive properties A1,A2, . . . ,Am , each par-
titioned into two associated groups of applicants (Ai = ai ) and
(Ai , ai ), define f(Ai ,X) and t(A, S) so as to maximize

o(f , t) = UoS(f , t) −
∑

λi |DmDA (f , t)|, λi ≥ 0.

Algorithms. For Coefficients policies, Algorithm 1 is directly
extensible to the setting of multiple sensitive attributes.

For Bonus policies, our goal is to assign bonuses b1, b2, . . ., bm
to the respective disadvantaged groups (Ai = ai ). One approach
is, similarly to Algorithm 2, to perform a grid search over possible
bonus values for each sensitive attribute. However: (i) Lemma 2 does
not extend directly to multiple dimensions, and so does not binary
search; (ii) grid search at fine granularity and multiple dimensions
is inefficient. Instead, we employ an incremental algorithm that
works as follows: (i) at every step, the algorithm maintains bonus
values b1, b2, . . ., bm for each sensitive attribute, (ii) at every step,
it greedily increments by an increment δb the bonus value bi of
the attribute Ai which leads to the best objective value.

For Quota policies, the equivalence with Bonus extends to
multiple sensitive attributes (proof omitted), and so we do not
explore them further here.

6 APPLICATION
We now evaluate the performance of affirmative action policies on
a large real-world dataset of university admissions.

6.1 Data
We analyze anonymized data about university admissions from
an OECD country (details withheld for double-blind review). In
this country, the admission to undergraduate programmes in all
major universities is based on the students’ performance in a se-
ries of standardized tests, administered by a public entity, on lan-
guage, mathematics, natural sciences, and human sciences, plus
their grades in high school. The latter are converted to the same
range of values as the standardized tests using a simple formula.
Together, test results and grades form the input scores.

Each university announces the degrees it offers (such as engi-
neering, medicine, or law), and coefficients to convert the different
input scores into an admission score. For instance, the engineering
school we analyze below uses 30% grades, 10% language, 45% math-
ematics, 15% natural sciences, and 0% human sciences. At the same
university, the law school instead uses 40% grades, 25% language,
10% mathematics, 0% natural sciences, and 25% human sciences.
After learning their results in the tests, candidates rank degrees and
universities by decreasing order of preference. Then, candidates
applying to each degree are ranked by admission score and the top
ones are admitted.

We have access to two datasets from this admission process. The
first corresponds to national-level data about students taking the
standardized tests; the second corresponds to university-level data
of students admitted to one of the most sought-after engineering
degrees in one of the largest universities (95% of the admitted ap-
plicants enroll for this degree). The national-level data is provided
by country authorities in anonymized form under a research agree-
ment. . This dataset includes the gender, high school type (public
or private), income decile, grades in high school, and results in
standardized tests of about 3, 500 applicants who gave the test in
2017 and included the engineering degree of our university-level
data among their preferences. The university-level data is similarly
provided by university authorities in anonymized form specifically
for research on discrimination and bias. For the university-level
data, we have access to the same variables, except for income decile,
for about 3, 000 admitted applicants from 2010 to 2014. Most im-
portantly, the university-level data contains the grades obtained
by admitted students during their first year at the university. We
note that the period of the two datasets do not overlap, but due to
standardization of grades and test scores, the distributions of input
scores do not differ significantly across years.

6.2 Building a causal model
The causal model (see Figure 1) is built from the two datasets we
have at our disposal. In the causal model, there are two conditional
relationships that need to be set to implement an admission policy,



Figure 3: Differences in input scores by income.

Figure 4: Differences in input scores by gender.

namely (A,X) → S and (S,A) → T, and two conditional relation-
ships that need to be learnt from data, namely,

A → X : P(X | A) (10)
X,T = 1 → Y : P(Y | T = 1,X). (11)

Both probabilistic quantities above can be extracted directly from
the data (e.g., by fitting a statistical model on the related attributes).
Here is a subtle point that needs to be addressed for P(Y | T = 1,X)
(Expr. 11): if we learn a model for it from the data of students who
were admitted (T = 1) according to a specific admission policy, can
we use it to make predictions for students who would be admitted
under a different policy – or are the observed data somehow biased
by the decisions of the admission policy that generated the data?

Figure 5: First year performance vs admission score of the
optimal Coefficients policy with λ = 0. For clarity, the plot
shows only a 20% sample of the data points, stratified by Y.

The answer is provided by causality theory [23], from which we
deduce that we can, indeed, use the model we learn for from the
data to make predictions under different admission policies. The
reason is that attribute X is an appropriate ‘control’ variable for
Expr. 11 (more formally, X blocks all back-door paths from T to Y;
for an intuitive explanation see [23], Chapter 7).

In what follows, we use the attributes of gender (male or female),
high school type (public or private), income (above or below the
median) as sensitive attributes A, with the population split in the
two groups in parentheses; the values of grades, language test, math
test, and natural sciences test as input scores X; and the sum of
grades during first year at university as Y (weighted by the credits
of each subject; all first-year students take the same subjects).

For Expr. 10, we use directly the distributions extracted from
the data, as shown in Figures 3-4 (the plots for school type are
omitted here and whenever they are similar to those for income).
As we see, the two groups for income (and similarly for school type)
exhibit visibly different distributions (Fig. 3), while the distributions
differ less for gender (Fig. 4). This suggests that, for the admission
system that we study here, there is a stronger case for affirmative
action policies that target financial attributes than gender, and the
enactment of such policies has larger potential for impact.

For Expr. 11, we learn the best linear weights c for a Coeffi-
cients policy that targets only UoS (i.e., considers λ = 0) – they are
47.6% grades, 1.69% language, 23.8%mathematics, and 26.9% natural
sciences. As discussed in Section 4.1, these weights also correspond
to the linear function that expresses the expected performance Y
of a selected applicant with given input scores. Figure 5 shows the
actually observed values of admission scores S and performance Y
of admitted students during their first year of studies. There is a
correlation between the two, which supports our choice of a linear
function to model the expectationm(x) = E[Y|X = x,T = 1] (see
also beginning of Section 4.1).

We should also note, however, that there is variance in the ob-
served values of Y for a given score value. Such variance does not
directly affect the task of policy design in the setting we described in



Figure 6: Distribution of admission scores for the optimal
Coefficients policy with λ = 0.

Section 3, as utilityUoS is defined in terms of expected performance
Y. Generally speaking, however, we should note that large variance
in Y could trigger political arguments in favor or against affirma-
tive action policies in practice. On one hand, large variance might
indicate that, instead of affirmative action, policy design should
focus on the design of tests, the values X of which ought to be bet-
ter predictors of future performance. On the other hand, values of
variance that are too large compared to the expected performance
of applicants might also support arguments in favor of affirmative
action policies: if we cannot predict accurately who is going to be
a good university student, then we should not rely too much on
test scores, and instead we should provide more opportunities to
applicants from disadvantaged backgrounds.

Going back to our data, the distributions for admission score
with weights c are shown in Figure 6. It becomes obvious that, for
the Coefficients policy that targets only UoS, high-income appli-
cants have an advantage over low-income applicants (similarly for
private-school applicants against public-school applicants), in the
sense that they are admitted by larger proportions. Male applicants
have an advantage over female applicants, but the advantage is
smaller than in the case of income or school type, consistently with
our earlier observations.

6.3 Affirmative action policies
Figure 7 shows the empirical performance of different affirmative
action policies, each policy concerning a single sensitive attribute
(school type is omitted due to similarity to the plot for income). To
produce the plot, we employed Algorithm 1 to search for alterna-
tive Coefficients policies and Algorithm 2 to search for different
Bonus policies. The plots also show a few indicative quota percent-
ages for the correspondingQuota policy of the same attribute. The
plots also depict the optimal Coefficients policy with λ = 0, the
best Coefficients and Bonus (and equivalent Quota) policy with

Figure 7: Comparison of Coefficients and Bonus policies.
Percentages on the right are corresponding quotas for the
disadvantaged groups under Quota policies matching sam-
ple Bonus policies.

λ = 100 discovered by the policy search algorithms 1-2, where λ is
the parameter that dictates the trade-off between UoS and DmD in
the optimization function (see Problem 1).

We make a few observations. (1) Based on its performance for
income and school type, the Bonus and Quota policies provide
better exploration of the trade-off between UoS and DmD: they
lead to a better value of the optimization function (not shown in
the plot) and policy instances with practically zero disparity DmD,
with little loss in UoS. (2) The difference is less pronounced when
gender is used as the sensitive attribute. This is explained by the fact
that student grades show smaller discrepancy across genders than
across income and school types (see Figure 3-4) (3) Consistently
with the previous observation, the optimal Bonus policy uses larger



Figure 8: Performance of admission policies for multiple
sensitive attributes. Percentages on the right are correspond-
ing quotas for the disadvantaged groups (by income, gen-
der, and school type) underQuota policies matching sample
Bonus policies.

bonus value for income and school type (b = 30 and 35, respectively)
than the one for gender (b = 9.4). To put these numbers in context,
consider that the admission scores of the top applicant is about 833
points and of the last admitted applicant is in the range 722 - 733,
depending on the attribute A. Hence, the gender bonus is negligible.
(4) As expected, Bonus policies that lead to higher disparity (i.e.,
more favorable for the disadvantaged group) correspond to higher
quota values for the correspondingQuota policy.

Figure 8 shows the results when all three attributes (income,
school type and gender) are considered. Again, we mark the optimal
Coefficients policy for {λi = 0}, as well as the optimal Coeffi-
cients and Bonus (and equivalent Quota) policy with {λi = 100},
where {λi } are the parameters that dictate the trade-off between
UoS and DmD in the optimization function (see Problem 2). Con-
sistently with the case of single sensitive attributes, the optimal
bonus values assigned to income and school type (b = 16 and 26,
respectively) are larger than the one for gender (b = 7).

7 CONCLUSIONS
In this paper, we demonstrated how the problem of designing af-
firmative action policies can be addressed in an algorithmic frame-
work.We explored three types of policies, i.e.,Coefficients,Bonus,
and Quota. We showed the equivalence of Bonus and Quota poli-
cies, and provided efficient search algorithms for the optimal pa-
rameters of Coefficients and Bonus policies. We employed these
algorithms on real data for university admissions and obtained
instances of admission policies that achieved good utility (perfor-
mance of admitted applicants) while virtually eliminating disparity
(i.e., reducing the difference between the proportions of admitted

applicants in advantaged and disadvantaged groups). Future steps
include the application of the proposed algorithms on a wider range
of real settings and the treatment of other measures of fairness.
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