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Abstract

The aim of process discovery is to build a process model from an event log
without prior information about the process. The discovery of declarative
process models is useful when a process works in an unpredictable and
unstable environment since several allowed paths can be represented as a
compact set of rules. One of the tools available in the literature for discovering
declarative models from logs is the Declare Miner, a plug-in of the process
mining tool ProM. Using this plug-in, the discovered models are represented
using Declare, a declarative process modeling language based on ltl for
finite traces. However, the high execution times of the Declare Miner when
processing large sets of data hampers the applicability of the tool to real-life
settings. Therefore, in this paper, we propose a new approach for the discovery
of Declare models based on the combination of an Apriori algorithm and a
group of algorithms for Sequence Analysis to enhance the time performance
of the plug-in. The approach has been developed in a way that it is easy to
be parallelized using two different partitioning methods: the search space
partitioning, in which different groups of candidate constraints are processed
in parallel, and the database partitioning, in which different chunks of the
log are processed at the same time. The approach has been implemented in
ProM in its sequential version and in two multi-threading implementations
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leveraging these two partitioning methods. All the new variants of the plug-in
have been evaluated using a large set of synthetic and real-life event logs.

Keywords: Process Mining, Process Discovery, Declarative Process Models,
Apriori Algorithm, Sequence Analysis

1. Introduction

Process mining [1] is a family of techniques that allow for the analysis
of business processes using event logs. It consists of three main branches:
process discovery, model enhancement and conformance checking. Process
discovery deals with the extraction of process models from an event log.
Model enhancement is the extension or improvement of process models using
information extracted from a log. Conformance checking consists in analyzing
whether the real executions of a process, as recorded in a log, are compliant
with a process model representing the expected behavior of the process.

The majority of process discovery algorithms try to construct a procedural
model. However, the resulting models are often spaghetti-like and difficult to
interpret especially for processes working in unstable environments. Therefore,
when dealing with processes with high variability and where multiple paths
are allowed, declarative process models are more effective than procedural
ones [2, 3, 4]. Instead of explicitly specifying all possible sequences of activities
in a process, declarative models implicitly specify the allowed behavior of
the process with constraints, i.e., rules that must be followed during the
execution. In comparison to procedural approaches, which produce closed
models (what is not explicitly specified is forbidden), declarative languages
are open (everything that is not constrained is allowed). In this way, models
enjoy flexibility and still remain compact. An example of a declarative
process modeling language is Declare, first introduced in [5]. A Declare
model consists of a set of constraints which, in turn, are based on templates.
Templates are parameterized classes of rules and constraints are their concrete
instantiations.

The Declare Miner is a plug-in for the discovery of Declare models from
an event log included in the process mining tool ProM. It implements the
two-phase approach presented in [6]. The first phase is based on the Apriori
algorithm developed by Agrawal and Srikant for mining association rules
[7]. During this preliminary phase, the frequent sets of correlated activities
are identified in the log. A list of candidate constraints is computed on
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the basis of the correlated activity sets only. During the second phase, the
candidate constraints are checked by replaying the log on specific automata,
each accepting only those traces that are compliant with one constraint. Each
constraint among the candidates becomes part of the discovered model only
if the percentage of traces accepted by the related automaton exceeds a
user-defined threshold. Constraints constituting the discovered Declare
model are weighted according to their support, i.e., the probability of such
constraints to hold in the mined process. To filter out irrelevant constraints,
more metrics are introduced, such as confidence and interest factor.

In [8], an approach for the discovery of Declare models enhancing the
time performance of the Declare Miner has been presented. Such an approach
integrates the Apriori algorithm and a set of algorithms for Sequence Analysis ,
i.e., algorithms that, based on the analysis of the positioning of events in a
trace, are able to understand whether a Declare constraint is satisfied in
that trace or not. In this paper, we further enhance the approach presented
in [8] to make it suitable for parallelization. In particular, we leverage the
notions of search space partitioning and database partitioning presented in [9]
using them as a basis for two multi-threading implementations of the plug-in.
The difference between the two partitioning methods lies in the fact that
in database partitioning the event log is divided into separate chunks and
each chunk is analyzed by a different thread. In the other case (search space
partitioning), the candidate Declare constraints to be checked are grouped
per template and each template is processed separately. All three variants of
the approach (the sequential one and the two additional variants leveraging
search space partitioning and database partitioning) have been implemented
in the Declare Miner 2.0 plug-in in ProM and evaluated using 76 synthetic
logs with different characteristics and 8 publicly available real-life logs.

The paper is structured as follows. Section 2 introduces some background
notions about process mining and Declare. Section 3 illustrates the proposed
approach. Section 4 describes the experimental evaluation. Finally, Section 5
discusses related work and Section 6 concludes the paper and spells out
directions for future work.

2. Background

In this section, we provide a brief overview about the main concepts
used in this work. Section 2.1 gives some background about process mining.
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Section 2.2 provides some basic notions about Declare. In Section 2.3, we
introduce an example of a Declare model.

2.1. Process Mining

Process mining is still a rather young research discipline, which lies between
data mining and computational intelligence, and between process modeling
and analysis. The general idea of process mining is to discover, monitor and
improve real-life processes by extracting knowledge from event data registered
by different information systems [1]. Over the last ten years, event data has
become more widely available and process mining techniques have greatly
matured. Different process mining algorithms have been implemented in
academic and commercial systems. As there is an increasing interest from
industry in this discipline, a growing number of software vendors are adding
functionalities that provide process mining capabilities to their software and
tools.

Starting point for process mining techniques is an event log. Each event
in a log refers to an activity (i.e., a well-defined step in some process) and is
related to a particular trace (i.e., a process instance). The events belonging
to a trace are ordered and can be seen as one “run” of the process. Event
logs may store additional information about events such as the resource (i.e.,
person or device) executing or initiating the activity, the timestamp of the
event, or data elements recorded with the event.

Process mining mainly covers three different groups of techniques:

• process discovery, which takes an event log and produces a model without
using any apriori information;

• model enhancement, which is used to extend or to adapt an existing
process model based on the behavior recorded in an event log;

• conformance checking, which is used to compare an existing process
model with an event log.

The main guiding principles and upcoming challenges of process mining have
been reported in [10]. The former serve as a means for process miners to
orient their investigations in real-life environments. The latter shed light
on relevant open issues that are worth being tackled in the future. In
this work, we tackle the challenge of implementing an approach dealing
with logs of different sizes and characteristics (Challenge C2 in [10]), the
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challenge related to the creation of representative benchmarks for process
mining (Challenge C3), and the challenge related to the improvement of
the representational bias used for process discovery (Challenge C5). Indeed,
our extensive evaluation shows that the proposed discovery approach is able
to deal with logs with diverse characteristics (Challenge C2). In addition,
the large set of synthetic logs we generated starting from Declare models
provide the process mining community with benchmark data characterized
by high variability typical of unstable environments (Challenge C3). Finally,
the proposed approach aims at discovering process models described using a
declarative language (Declare), which alleviates the representational issues
that procedural languages need to face in case of processes working in highly
variable environments (Challenge C5).

2.2. The Declare Modeling Language

Recently, several works have investigated advantages and disadvantages
of using procedural or declarative process modeling languages to describe a
business process [2, 3, 4]. The results of these studies highlighted that the
dichotomy procedural versus declarative reflects the nature of the process.
Procedural models like Petri nets, BPMN, and EPCs are more suitable
to support business processes working in stable environments, in which
participants have to follow predefined procedures, since they suggest step by
step what to do next. In contrast, declarative process modeling languages like
Declare provide process participants with a (preferably small) set of rules
to be followed during the process execution. In this way, process participants
have the flexibility to follow any path that does not violate these rules.

Declare is a declarative process modeling language introduced in [5]. A
Declare model consists of a set of constraints applied to (atomic) activi-
ties. Constraints, in turn, are based on templates. Templates are abstract
parameterized patterns, and constraints are their concrete instantiations on
real activities. Templates have a user-friendly graphical representation un-
derstandable to the user. Their semantics can be formalized using different
logics [11], the main one being ltl for finite traces. Each constraint inherits
the graphical representation and semantics from its template. The major
benefit of using templates is that analysts do not have to be aware of the
underlying logic-based formalization to understand the models. They work
with the graphical representation of templates, while the underlying formulas
remain hidden. Table 1 reports the main Declare templates, their graphical
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Figure 1: The Declare model for a fracture treatment process.

representation and a textual description. The reader can refer to [12] for a
full description of the language.

Here, we indicate template parameters with capital letters (see Table 1)
and real activities in their instantiations with lower case letters (e.g., constraint
Responsepa, bq). A trace is a sequence of events like xa, a, b, cy. Declare
templates can be grouped in three main categories: existence templates
(first 4 rows of the table), which involve only one event; (mutual) relation
templates (rows from 5 to 15), which describe a dependency between two
events; and negative relation templates (last 3 rows), which describe a negative
dependency between two events.

Consider, for example, the Response constraint Responsepa, bq. This
constraint indicates that “If a occurs, then b occurs after a”. Therefore, the
Response constraint is satisfied for traces xa, a, b, cy, xb, b, c, dy and xa, b, c, by.
It is not satisfied for xa, b, a, cy, because the second occurrence of a is not
followed by a b in such a trace. An activation of a constraint in a trace
is an event whose occurrence imposes, because of that constraint, some
obligations on another event (the target) in the same trace. For example, for
Responsepa, bq, a is an activation, because the execution of a forces b to be
executed eventually. Event b is a target.

An activation of a constraint can be a fulfillment or a violation for that
constraint. When a trace is perfectly compliant with a constraint, every
activation of the constraint in the trace leads to a fulfillment. Consider, again,
the Response constraint Responsepa, bq. In trace xa, a, b, cy, the constraint
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Template Explanation Notation

Existence templates

Existencepn,Aq A occurs at least n times
A

n..˚

Absencepm` 1,Aq A occurs at most m times
A

0..m

InitpAq A is the first to occur
A

Init

EndpAq A is the last to occur
A

End

Relation templates

RespondedExistencepA,Bq If A occurs, then B occurs A B

ResponsepA,Bq If A occurs, then B occurs after A A B

AlternateResponsepA,Bq Each time A occurs, then B occurs af-
terwards, before A recurs

A B

ChainResponsepA,Bq Each time A occurs, then B occurs im-
mediately after

A B

PrecedencepA,Bq B occurs only if preceded by A A B

AlternatePrecedencepA,Bq Each time B occurs, it is preceded by
A and no other B can recur in between

A B

ChainPrecedencepA,Bq Each time B occurs, then A occurs im-
mediately before

A B

Mutual relation templates

CoExistencepA,Bq If B occurs, then A occurs, and vice
versa

A B

SuccessionpA,Bq A occurs if and only if B occurs after A A B

AlternateSuccessionpA,Bq A and B occur if and only if the latter
follows the former, and they alternate
each other

A B

ChainSuccessionpA,Bq A and B occur if and only if the latter
immediately follows the former

A B

Negative relation templates

NotCoExistencepA,Bq A and B never occur together A B

NotSuccessionpA,Bq A never occurs before B A B

NotChainSuccessionpA,Bq A and B occur if and only if the latter
does not immediately follow the former

A B

Table 1: Declare templates.

is activated and fulfilled twice, whereas, in trace xa, b, c, by, the same constraint
is activated and fulfilled only once. On the other hand, when a trace is not
compliant with a constraint, at least one activation leads to a violation. In
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trace xa, b, a, cy, for example, the Response constraint Responsepa, bq is
activated twice, but the first activation leads to a fulfillment (eventually
b occurs), whereas the second activation leads to a violation (b does not
occur subsequently). Finally, there exist cases in which the constraint is
not activated at all. Consider, for instance, trace xb, b, c, dy. The considered
Response constraint is satisfied in a trivial way in this trace, because a never
occurs. In this case, we say that the constraint is vacuously satisfied [13].
In [14, 15], the authors introduce the notion of semantical vacuity detection
according to which a constraint is non-vacuously satisfied in a trace when it
is fulfilled and activated at least once in that trace.

2.3. Declare Model Example

As an example of a Declare model, we consider the frac-
ture treatment process reported in Fig. 1. It includes 8 activi-
ties: Examine patient, Check X-ray risk, Perform X-ray, Perform reposition, Apply cast,
Remove cast, Perform surgery, and Prescribe rehabilitation. Its behavior is specified
by the following constraints 1 - 7:

1. InitpExamine patientq

2. AlternatePrecedencepCheck X-ray risk, Perform X-rayq

3. PrecedencepPerform X-ray, Perform repositionq

4. PrecedencepPerform X-ray,Apply castq

5. SuccessionpApply cast, Remove castq

6. PrecedencepPerform X-ray, Perform surgeryq

7. ResponsepPerform surgery, Prescribe rehabilitationq

According to these constraints, every process instance starts with ac-
tivity Examine patient. Moreover, if activity Perform X-ray is performed, then
Check X-ray risk must be performed before it, without other executions of
Perform X-ray in between. Activities Perform reposition, Apply cast and Perform surgery

require that Perform X-ray is executed before they are executed. If Perform surgery

is performed, then Prescribe rehabilitation is performed eventually after it. Finally,
after every execution of Apply cast, eventually Remove cast is executed and, vice
versa, before every execution of Remove cast, Apply cast must be performed.
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Figure 2: Architectural scheme of the approach without partitioning.

3. Approach

The approach proposed in this paper aims at discovering Declare con-
straints from an event log. The idea is to identify and provide users with
frequent constraints, i.e., constraints that are fulfilled in a percentage of
traces (in the log) higher than a given threshold (suppmin). To this extent, it
combines the Apriori algorithm presented in [7], and Sequence Analysis , i.e.,
a novel collection of algorithms that aim at discovering declarative constraints
by analyzing how events are positioned along traces.

The approach is composed of two phases (Fig. 2). In the first phase,
a list of frequent activity sets is derived from the log using the Apriori
algorithm. In the second phase, the frequent activity sets are used to generate
candidate Declare constraints (by instantiating Declare templates with
those activities). The list of candidate constraints is then pruned by only
keeping those that are frequently satisfied in the log, i.e., with a support
higher than suppmin (through Sequence Analysis).

As shown in detail in our experiments in Section 4, the application of
the Apriori algorithm is less time consuming than the Sequence Analysis on
the traces in the log. Therefore, we propose two versions of the discovery
algorithm that can be used to parallelize the Sequence Analysis phase.

3.1. Search Space and Database Partitioning

The first version (Fig. 3(a)) of the discovery algorithm presented in this
work is based on search space partitioning [9]. In particular, the analysis
of each template is managed independently in a separate thread and the
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(b) database partitioning

Figure 3: Architectural scheme of the approach with partitioning.

results coming from each thread are finally collected to return the discovered
constraints.

The second version (Fig. 3(b)) is based on a database partitioning [9]. In
this case, the analysis of each trace is managed independently in a separate
thread. In this version, we can compute the support of each candidate
constraint only when all the threads have completed their execution. As
shown in Section 4, in some cases this additional step can decrease the
performance of this algorithm. In this version of the algorithm, since we
partition per trace, it is possible, for each trace, to reduce the number of
candidate constraints to be checked. In particular, two actions are performed
for each trace:
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Figure 4: The hierarchy of the Declare constraints.

1. we remove candidates that are not activated at all;

2. we rank the constraints so as to check first the strongest ones.

In particular (action 1), for each trace, we derive the events that occur
in the trace and we only check candidates whose activation occurs at least
once in the trace. The ones that are not activated at all are not needed
to be checked and are classified as vacuously satisfied. For instance, con-
straint Responsepd, bq, would be directly discarded for traces xa, j, j, e, ey and
xa, b, b, c, j, e, f, by. Indeed, the constraint is vacuously satisfied in these traces
and it does not need to be checked.

In addition (action 2), for each trace, we start checking the candidates
instantiations of the strongest templates according to the hierarchy presented
in [16]. Figure 4 reports a detailed view of the lattice describing the order of
the Declare templates. In the figure, each node is labeled with a shortening
for a Declare template (for example, the label C S in the lattice stands for
ChainSuccession). According to the lattice, for instance, ChainResponse
is stronger than AlternateResponse, which is, in turn, stronger than
Response. Moreover, for the transitivity of the order, ChainResponse
is also stronger than Response. When checking whether constraints are
valid in a given trace, if a stronger constraint has already been found to
be (non-vacuously) satisfied in the trace, it is not necessary to check also
the weaker constraints, as they will also be (non-vacuously) satisfied. For
instance, if ChainResponsepa, bq is verified in a trace, Responsepa, bq will
also hold.

Algorithm 1 and Algorithm 3 report the pseudo-code of the two versions
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of the discovery algorithm based on search space and database partitioning,
respectively. After a common part including the discovery of frequent activity
sets through the Apriori algorithm (procedure apriori, line 1 in Algorithm 1
and Algorithm 3) and an initialization phase (lines 2-3) required to prepare
the necessary data structures (detailed in Algorithm 2), they implement the
Sequence Analysis differently.

In particular, in the case of search space partitioning, a replayer is created
for each template (line 5 in Algorithm 1) in charge of processing one by one
all the traces of the log and identifying, among the candidate constraints, the
ones that are fulfilled in each trace. In the case of the database partitioning
(Algorithm 3), instead, the templates are ordered according to their strength
(line 4), and processed starting from the strongest ones. More specifically,
for each trace and each template the list of candidate constraints is pruned
by removing the candidates that are not activated at all in the current trace
(line 7), as well as the ones for which there exists a stronger constraint that is
satisfied in the current trace (line 12). In this way, we are able to instantiate
a replayer for each trace and each template (line 13) on a smaller set of
candidate constraints.

The core part of the Sequence Analysis is then the invocation of procedure
process (line 8 and line 15, respectively) to analyze the traces event by event
and identify the fulfilled constraints for each template. The number of traces
fulfilling each constraint is computed both in case of vacuity detection enabled
(lines 10-13 and lines 19-22, respectively) and disabled (lines 15-18 and lines
24-27, respectively). In particular, in the case of search space partitioning,
the number of traces fulfilling a given constraint is directly retrieved from
the replayers, which incrementally update the number of fulfilling traces. In
the case of database partitioning, instead, the number of traces fulfilling
a given constraint is obtained by combining the number of traces fulfilling
the constraint with the number of traces fulfilling the stronger constraints.
Finally, the list of candidate constraints is filtered based on their support
(line 19 and line 28), i.e., based on the percentage of traces fulfilling them.

In Section 3.2, we explain in detail how procedure apriori works. The
implementation of process is different for different templates. In Section 3.3,
we provide a detailed description of the algorithms used to implement this
procedure for all the standard Declare templates.
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Algorithm 1: Discovery algorithm with search space partitioning
Input: L “ rt1, . . . , t|L|s the event log to be analyzed, consisting of traces ti (1 ď i ď |L|);

T “ tT1, . . . ,T|T|u the set of templates Tj (1 ď j ď |T|);
suppmin the minimum support;
vacuity? : a flag to enable or disable vacuity detection, such that v P J,K.

Data: ful: a map associating each constraint instantiating a template Tj P T to the number of
traces where it is fulfilled.

1 tA1,A2u Ð aprioripL, suppmin q /* frequent activity sets of size 1 and 2 */

2 t xA1, xA2u Ð initializeCandidatespA1,A2q

3 ful Ð initializeMapp xA1, xA2,Tq
4 foreach Tj P T do

5 rj Ð new ReplayerpTj , xAkq /* one replayer for each template */

6 foreach ti P L do
7 foreach ei,h P ti do
8 rj .processpei,h, tiq /* process event ei,h in trace ti with the replayer */

9 if vacuity? then

10 foreach paq P xA1 do
11 ful.putpT 1

j paq, ful.getpT 1
j paq ` rj .fulfillingTraces.getpaq q

12 foreach pa, bq P xA2 do
13 ful.putpT 2

j pa, bq, ful.getpT 2
j pa, bq ` rj .fulfillingTraces.getpa, bq q

14 else

15 foreach paq P xA1 do
16 ful.putpT 1

j paq, ful.getpT 1
j paqq`rj .fulfillingTraces.getpaq`rj .vacuousTraces.getpaq q

17 foreach pa, bq P xA2 do
18 ful.putpT 2

j pa, bq, ful.getpT 2
j pa, bq ` rj .fulfillingTraces.getpa, bq `

rj .vacuousTraces.getpa, bq q

19 ful Ð filterOnSupportpful, suppmin q

3.2. Phase 1: Apriori Algorithm

The Apriori algorithm [7] applied in the first phase of the approach
allows for the discovery of sets of activities occurring frequently in the traces
composing the log (frequent activity sets). This algorithm implements the
procedure apriori reported in Algorithm 1 and Algorithm 3.

Let Σ be the set of activities available in the input event log L. Let t P Σ˚

be a trace over Σ, i.e., a sequence of activities in Σ. L is a multi-set over Σ˚

(a trace can appear multiple times in an event log). The support of a set of
activities is a measure that assesses the relevance of this set in an event log.

Definition 1. The support of an activity set A Ď Σ in an event log
L “ rt1, t2, . . . , tns is the ratio of traces in L that contain all the activities in
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Algorithm 2: Initialization procedures
1 Procedure initializeCandidates

Input: A1, A2

2 xA1 ÐH

3 xA2 ÐH

4 foreach tau P A1 do

5 xA1 Ð xA1 Y tpaqu

6 foreach ta, bu P A2 do

7 xA2 Ð xA2 Y tpa, bq, pb, aqu

99 return xA1, xA2

10 Procedure initializeMap

Input: xA1, xA2,T

11 foreach paq P xA1 do
12 foreach T 1

j P T do

13 ful.putpT 1
j paq, 0q /* existence templates */

14 foreach pa, bq P xA2 do
15 foreach T 2

j P T do

16 ful.putpT 2
j pa, bq, 0q /* relation templates */

1818 return ful

19 Procedure initializeMaps

Input: xA1, xA2,T

20 foreach paq P xA1 do
21 foreach T 1

j P T do

22 ful.putpT 1
j paq, 0q /* existence templates */

23 vac.putpT 1
j paq, 0q

24 foreach pa, bq P xA2 do
25 foreach T 2

j P T do

26 ful.putpT 2
j pa, bq, 0q /* relation templates */

27 vac.putpT 2
j pa, bq, 0q

2929 return ful, vac

A , i.e.,

supppA q “
|LA |

|L|
, where LA “ rt P L|@x P A , x P ts

An activity set is considered to be frequent if its support is above a given
threshold suppmin. Let Ak denote the set of all frequent activity sets of size
k P N and let Ck denote the set of all candidate activity sets of size k that
may potentially be frequent. The Apriori algorithm starts by considering
activity sets of size 1 and progresses iteratively by considering activity sets of
increasing sizes in each iteration. The consideration upon which this iterative
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Algorithm 3: Discovery algorithm with database partitioning
Input: L “ rt1, . . . , t|L|s the event log to be analyzed, consisting of traces ti (1 ď i ď |L|);

T “ tT1, . . . ,T|T|u the set of templates Tj (1 ď j ď |T|);
suppmin the minimum support;
vacuity? : a flag to enable or disable vacuity detection, such that v P J,K.

Data: ful: a map associating each constraint instantiating a template Tj P T to the number of
traces where it is fulfilled;
vac: a map associating each constraint instantiating a template Tj to the number of
traces where it is vacuously satisfied;
inheritedFromStronger: a map associating each constraint instantiating a template Tj to
the number of traces where a stronger constraint is satisfied.

1 tA1,A2u Ð aprioripL, suppmin q /* frequent activity sets of size 1 and 2 */

2 t xA1, xA2u Ð initializeCandidatespA1,A2q

3 ful, vac Ð initializeMapsp xA1, xA2,Tq

4 TÐ sortpTq
5 foreach ti P L do
6 foreach Tj P T do

7 t xAk, pVku Ð filterVacuouslySatisfiedCandidatesp xAk, ti,Tjq

8 foreach paq P pV1 do
9 vac.putpT 1

j paq, vac.getpT 1
j paqq ` 1 q

10 foreach pa, bq P pV2 do
11 vac.putpT 2

j pa, bq, vac.getpT 2
j pa, bqq ` 1 q

12 xAk Ð filterCandidatesSatisfiedByStrongerp xAk, ful,Tjq

13 rj Ð new ReplayerpTj , xAkq /* one replayer for each trace and each template */

14 foreach ei,k P ti do
15 rj .processpei,h, tiq /* process event ei,h in trace ti with the replayer */

16 foreach Tj P T do
17 inheritedFromStronger.updateTemplatepT k

j q

18 if vacuity? then

19 foreach paq P xA1 do
20 ful.putpT 1

j paq, ful.getpT 1
j paq ` rj .fulfillingTraces.getpaq `

inheritedFromStronger.getpT 1
j paqq q

21 foreach pa, bq P xA2 do
22 ful.putpT 2

j pa, bq, ful.getpT 2
j pa, bq ` rj .fulfillingTraces.getpa, bq `

inheritedFromStronger.getpT 2
j pa, bqq q

23 else

24 foreach paq P xA1 do
25 ful.putpT 1

j paq, ful.getpT 1
j paqq ` rj .fulfillingTraces.getpaq `

inheritedFromStronger.getpT 1
j paqq ` vac.getpT 1

j paq q

26 foreach pa, bq P xA2 do
27 ful.putpT 2

j pa, bq, ful.getpT 2
j pa, bq ` rj .fulfillingTraces.getpa, bq `

inheritedFromStronger.getpT 2
j pa, bqq ` vac.getpT 2

j pa, bq q

28 ful Ð filterOnSupportpful, suppmin q

15



algorithm is built is that every set is always at least as frequent as its supersets
(downward closure).

The set of candidate activity sets of size k ` 1, Ck`1, is generated by
joining relevant frequent activity sets from Ak. Ck`1 can be pruned efficiently
by using the downward closure property ensuring that a relevant candidate
activity set of size k ` 1 cannot have an infrequent subset. The activity sets
in Ck`1 that have a support above the given threshold suppmin constitute the
frequent activity sets of size k ` 1 (Ak`1) used in the next iteration.

For instance, let L be an event log on the alphabet Σ “

ta, b, c, d, e, f, g, h, i, ju:

L “ rxa, b, c, j, b, b, d, ay, xa, b, b, c, d, ay, xa, b, b, i, i, a, c, dy,

xa, j, j, e, ey, xa, d, b, c, j, e, f, bys

and suppose that suppmin=0.5.
The Apriori algorithm starts considering frequent activity sets of size 1.

C1, in Table 2(a) (table on the left), shows the candidate activity sets of size
1 on the log L and the corresponding support values (supp). A1 (table on the
right) shows the corresponding frequent activity sets (i.e., all the activity sets
with a support value higher than suppmin). The candidate activity sets of
size 2, C2, are then computed starting from A1. C2, in Table 2(b) (table on
the left), shows the candidate activity sets of size 2 and the related support
values (supp). A2 (table on the right) shows the list of the frequent activity
sets (of size 2) that will become the starting point for building C3, and so
on. The Apriori algorithm also allows for taking into account negative events
(non-occurrences). Such information might be useful for inferring, for instance,
events that are mutually exclusive, e.g., a and b never occur together.

The Apriori algorithm returns frequent activity sets, without specifying
what kind of relation exists between activities. These relations are captured
by Declare templates. Therefore, we generate candidate constraints to
be verified over the event log as follows: for every Declare template, we
assign its k parameters with the permutations of activities taken from the
discovered frequent sets of size k. For instance, given a frequent activity
set ta, bu and templates Response and Precedence, the following con-
straints are generated: Responsepa, bq, Responsepb, aq, Precedencepa, bq,
and Precedencepb, aq. It is worth noting that we configure the Apriori
algorithm according to the template under analysis. For example, for relation
templates, we discover frequent activity sets including only pairs of positive
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Candidate
activity sets

C1 supp [%]

tau 100
tbu 80
tcu 80
tdu 80
teu 40
tfu 20
tgu 0
thu 0
tiu 20
tju 60

Frequent
activity sets

A1 supp [%]

tau 100
tbu 80
tcu 80
tdu 80
tju 60

(a) Activity sets of size 1

Candidate
activity sets

C2 supp [%]

ta, bu 80
ta, cu 80
ta, du 80
ta, ju 60
tb, cu 80
tb, du 80
tb, ju 40
tc, du 80
tc, ju 40
td, ju 40

Frequent
activity sets

A2 supp [%]

ta, bu 80
ta, cu 80
ta, du 80
ta, ju 60
tb, cu 80
tb, du 80
tc, du 80

(b) Activity sets of size 2

Table 2: Candidate and frequent activity sets of size 1 and 2 (suppmin “ 50%).

(i.e., occurring) events. On the other hand, for negative relation templates,
also negative (i.e, non-occurring) events are taken into account.

3.3. Phase 2: Sequence Analysis

After the list of candidate constraints has been generated in Phase 1, a
list of relevant Declare constraints is extracted from it using a group of
algorithms for Sequence Analysis . These algorithms implement the procedure
process reported in Algorithm 1 and Algorithm 3 for each Declare template.
Relevant constraints are the ones that are frequently fulfilled in the input log.

Let L be an event log on the alphabet Σ and constr a constraint, i.e., an
instantiation of a Declare template with activities in Σ. The support of
constr is a measure that assesses the relevance of the constraint in the event
log.

Definition 2. The support of a constraint constr in an event log L “

rt1, t2, . . . , tns is the ratio of traces in L where the constraint is fulfilled,
i.e.,

suppconstr “
|Lconstr |

|L|
,

where Lconstr “ rt P L|constr is fulfilled in ts
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A constraint constr is considered to be relevant if its support is greater than
a given threshold suppmin.1

Each Sequence Analysis algorithm is in charge of computing the support
of each candidate constraint instantiation of a given Declare template. To
this aim, these algorithms check, for each candidate constraint, whether each
trace in the input log is compliant with the constraint. Therefore, for each
template, each Sequence Analysis algorithm requires to have access to the

list of candidate constraints generated in Phase 1, xAk.
The event log is replayed and, all events in each trace of the log are

processed and analyzed by the algorithms. Based on their position in the trace,
each specific Sequence Analysis algorithm assesses whether each candidate
constraint is fulfilled or not in the trace. Once all events in the log have been
processed, only the candidate constraints with suppconstr greater than the
minimum support suppmin are kept and presented to the user.

The discovered constraints can also be filtered in order to leave out
vacuously satisfied constraints. If vacuity detection is enabled only constraints
that are activated and satisfied frequently will be discovered. If vacuity
detection is disabled, also vacuously satisfied constraints will be presented
to the user. For instance, let L be an event log on the alphabet Σ “

ta, b, c, d, e, f, g, h, i, ju:

L “ rxa, b, c, j, b, b, d, ay, xa, b, b, c, d, ay, xa, b, b, i, i, a, c, dy,

xa, j, j, e, ey, xa, d, b, c, j, e, f, bys

and suppose that suppmin=0.7.
By applying the Sequence Analysis algorithm for the Precedence tem-

plate to constraint Precedencepc, dq, it results to be satisfied in the first
four traces. Therefore, the support value for this constraint is suppconstr “ 0.8,
which is greater than suppmin. Constraint Precedencepc, dq will thus be
discovered. If vacuity detection is enabled, only the first three traces of the

1Note that we use the same support threshold for activity sets (in the Apriori algorithm)
and for constraints (in the Sequence Analysis). Indeed, these two notions of support are
strictly correlated. Suppose, for example, that we want to discover Response constraints
with vacuity detection enabled and with minimum support suppmin. In this case, we should
instantiate the Response template using all the pairs of activities that occur together
in a ratio of traces that is at least equal to suppmin. Indeed, the Response constraints
instantiated using pairs of activities whose support is lower than suppmin can never be
(non-vacuously) satisfied in a percentage of traces equals to or higher than suppmin.
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Algorithm 4: Sequence Analysis for RespondedExistence
Input: e the event to be processed;

t the current trace.
Data: fulfillingTraces a map associating each candidate constraint to the number of traces where

it is fulfilled;
vacuousTraces a map associating each candidate constraint to the number of traces where
it is vacuously satisfied;
xA2 the set of candidate constraints.

1 if isF irstEventpe, tq then
2 initialize set occurredEvents
3 initialize map pendingActivations

4 if e R occurredEvents then
5 occurredEvents.addpeq

6 foreach pa, bq P xA2 do
7 if e ““ b then /* e is equal to the second activity */

8 pendingActivations.putppa, eq, 0q
9 else if e ““ a then /* e is equal to the first activity */

10 if b R occurredEvents then
11 pendingActivations.putppe, bq, 1q

12 if isLastEvent(e,t) then
13 acts Ð pendingActivations.get(pa, bq)
14 if acts == 0 then
15 if a P t then
16 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ` 1)
17 else
18 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1))

example log are counted for suppconstr , which is 0.6 and lower than suppmin.
Therefore, in this case, constraint Precedencepc, dq will not be returned.

The Sequence Analysis algorithms for all the standard Declare templates
are presented in the following.

Sequence Analysis for RespondedExistence. The semantics of the
RespondedExistence template can be defined as “If A occurs, then B

occurs”. The pseudo-code for the RespondedExistence algorithm is re-
ported in Algorithm 4. It takes as input the current event e and the current
trace t and, if e is the first event in t, it initializes set occurredEvents
(containing the events already occurred at least once in the current trace)
and map pendingActivations (containing the number of pending activations
in the current trace for each candidate RespondedExistence constraint)
(lines 2-3). If event e has never occurred in t, e is added in occurredEvents
(line 5). Line 8 of the algorithm sets to 0 the pending activations in t for
the RespondedExistence constraints having e as second parameter (there
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Algorithm 5: Sequence Analysis for Response
Input: e the event to be processed;

t the current trace.
Data: fulfillingTraces a map associating each candidate constraint to the number of traces where

it is fulfilled;
vacuousTraces a map associating each candidate constraint to the number of traces where
it is vacuously satisfied;
xA2 the set of candidate constraints.

1 if isF irstEventpe, tq then
2 initialize map pendingActivations

3 foreach pa, bq P xA2 do
4 if e ““ b then /* e is equal to the second parameter */

5 pendingActivations.putppa, eq, 0q
6 else if e “ a then /* e is equal to the first parameter */

7 pendingActivations.putppe, bq, 1q

8 if isLastEvent(e,t) then
9 acts Ð pendingActivations.get(pa, bq)

10 if acts == 0 then
11 if a P t then
12 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ` 1)
13 else
14 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1))

are no longer pending activations for these constraints when e occurs). All
the RespondedExistence constraints having e as first parameter are acti-
vated when e occurs and, therefore, if the second parameter has not occurred
yet, the number of pending activations for these constraints in t is set to
1 (indicating that there is at least 1 pending activation) (line 11). At the
end of each trace, if the number of pending activations is 0 for a candidate
constraint, the constraint is satisfied (or vacuously satisfied) in that trace.
If the first parameter of the constraint occurs in the current trace, i.e., the
constraint is activated, the number of fulfilling traces is incremented by one
for that constraint (since the constraint is non-vacuously satisfied in this case)
(line 16); if, instead, the constraint is not activated, the number of traces in
which the constraint is vacuously satisfied is incremented by one (since the
constraint is vacuously satisfied) (line 18).

Sequence Analysis for Response. The semantics of the Response template
can be defined as “If A occurs, then B occurs after A”. The pseudo-code
for the Response algorithm is reported in Algorithm 5. It takes as input
the current event e and the current trace t and, if e is the first event in
t, it initializes map pendingActivations (containing the number of pending
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activations in the current trace for each candidate Response constraint)
(line 2). Line 5 of the algorithm sets to 0 the pending activations in t for the
Response constraints having e as second parameter. On the other hand, all
the Response constraints having e as first parameter are activated when e

occurs and, therefore, the number of pending activations for these constraints
in t is set to 1 (indicating that there is at least 1 pending activation) (line
13). At the end of each trace, if the number of pending activations is 0 for
a candidate constraint, the constraint is satisfied (or vacuously satisfied) in
that trace. If the first element of the constraint occurs in the current trace,
i.e., the constraint is activated, the number of fulfilling traces is incremented
by one for that constraint (since the constraint is non-vacuously satisfied in
this case) (line 12); if, instead, the constraint is not activated, the number
of traces in which the constraint is vacuously satisfied is incremented by one
(since the constraint is vacuously satisfied) (line 14).

Sequence Analysis for AlternateResponse. The semantics of the
AlternateResponse template can be defined as “Each time A occurs,
then B occurs afterwards, before A recurs”. The pseudo-code for the
AlternateResponse algorithm is reported in Algorithm 6. It takes as
input the current event e and the current trace t and, if e is the first
event in t, it initializes set violatedCandidates (containing the candidate
AlternateResponse constraints that have already been recognized as vi-
olated in the current trace) and map pendingActivations (containing the
number of pending activations in the current trace for each candidate
AlternateResponse constraint) (lines 2-3). Line 7 of the algorithm sets
to 0 the pending activations in t for the AlternateResponse constraints
having e as second parameter. Every candidate AlternateResponse con-
straint having e as first parameter is activated when e occurs. Therefore, if
the number of pending activation for a candidate (not yet violated) is greater
than 0, the constraint is violated in the current trace. Otherwise, the number
of pending activations for this constraint in t is set to 1 (line 13). At the end
of each trace, if the number of pending activations is 0 for a (not violated)
candidate constraint, the constraint is satisfied (or vacuously satisfied) in
that trace. If the first parameter of the constraint occurs in the current trace,
i.e., the constraint is activated, the number of fulfilling traces is incremented
by one for that constraint (since the constraint is non-vacuously satisfied in
this case) (line 18); if, instead, the constraint is not activated, the number
of traces in which the constraint is vacuously satisfied is incremented by one
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Algorithm 6: Sequence Analysis for AlternateResponse
Input: e the event to be processed;

t the current trace.
Data: fulfillingTraces a map associating each candidate constraint to the number of traces where

it is fulfilled;
vacuousTraces a map associating each candidate constraint to the number of traces where
it is vacuously satisfied;
xA2 the set of candidate constraints.

1 if isF irstEventpe, tq then
2 initialize set violatedCandidates
3 initialize map pendingActivations

4 foreach pa, bq P xA2 do
5 if  violatedCandidates.containsppa, bqq then
6 if e ““ b then /* e is equal to the second parameter */

7 pendingActivations.putppa, eq, 0q
8 else if e ““ a then /* e is equal to the first parameter */

9 pends Ð pendingActivations.getppe, bqq
10 if pends ą 0 then
11 violatedCandidates.addppe, bqq
12 else
13 pendingActivations.putppe, bq, 1q

14 if isLastEventpe, tq then
15 acts Ð pendingActivations.get(pa, bq)
16 if acts == 0 then
17 if a P t then
18 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ` 1)
19 else
20 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1))

(since the constraint is vacuously satisfied) (line 20).

Sequence Analysis for ChainResponse. The semantics of the
ChainResponse template can be defined as “Each time A occurs,
then B occurs immediately after”. The pseudo-code for the ChainResponse
algorithm is reported in Algorithm 7. It takes as input the current event
e and the current trace t and, if e is the first event in t, it initializes set
violatedCandidates (containing the candidate ChainResponse constraints
that have already been recognized as violated in the current trace) (line 2)
and the global variable lastEventInTrace (containing the last event processed
in the current trace) (line 3). All candidates having the previous event
processed as first parameter and an event different from the current one as
second parameter are recognized as violated (line 8).

If a candidate constraint has not yet been violated in the current trace
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Algorithm 7: Sequence Analysis for ChainResponse
Input: e the event to be processed;

t the current trace.
Data: fulfillingTraces a map associating each candidate constraint to the number of traces where

it is fulfilled;
vacuousTraces a map associating each candidate constraint to the number of traces where
it is vacuously satisfied;
xA2 the set of candidate constraints;

lastEventInTrace a variable containing the last event occurred in the current trace.

1 if isF irstEventpe, tq then
2 initialize set violatedCandidates
3 initialize variable lastEventInTrace

4 foreach pa, bq P xA2 do
5 if  isF irstEventpe, tq then
6 if pa ““ lastEventInTraceq then
7 if pe ‰ bq then /* e is not equal to the second parameter */

8 violatedCandidates.addppe, bqq

9 if  violatedCandidates.containsppa, bqq then
10 if isLastEventpe, tq then
11 if pe ‰ aq then /* e is not equal to the first parameter */

12 if a P t then
13 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ` 1)
14 else
15 vacuousTraces.put(pa, bq, vacuousTraces.get(pa, bq ` 1))

16 lastEventInTrace “ e

and the current event e is the last event of the trace and is different from
the first parameter of the constraint, the constraint is satisfied (or vacuously
satisfied) in the trace. If the first parameter of the constraint occurs in the
current trace, i.e., the constraint is activated, the number of fulfilling traces is
incremented by one for that constraint (since the constraint is non-vacuously
satisfied in this case) (line 13); if, instead, the constraint is not activated, the
number of traces in which the constraint is vacuously satisfied is incremented
by one (since the constraint is vacuously satisfied) (line 15).

Sequence Analysis for Existence and Absence. The existence constraint
Existencepn, Aq can be described as “A occurs at least n times”. Similarly,
Absencepm` 1, Aq means “A occurs at most m times”. Algorithm 8 shows
the pseudo-code for the Existence and Absence algorithms. Their imple-
mentations differ based on the existenceCondition function. The algorithm
takes as input the current event e and the current trace t and, if e is the first
event in t, it initializes the maps eventCounter (for counting the number of
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Algorithm 8: Sequence Analysis for Existence and Absence
Input: e the event to be processed;

t the current trace.
Data: fulfillingTraces a map associating each candidate constraint to the number of traces where

it is fulfilled;
xA1 the set of candidate constraints.

1 if isF irstEventpe, tq then
2 initialize map eventCounter
3 if e R eventCounter then
4 eventCounter.putpe, 1q
5 else
6 eventCounter.putpe, eventCounter.getpeq ` 1q

7 forall a P xA1 do
8 if isLastEventpe, tq then
9 acts Ð eventCounter.getppaqq

10 if existenceConditionpactsq then
11 fulfillingTraces.put(pa, bq, fulfillingTraces.get(pa, bq ` 1))

occurrences of each event in the current trace). At the end of each trace, if
the existenceCondition is verified for a candidate constraint, the constraint
satisfied in that trace and the number of fulfilling traces is incremented by
one for that constraint (line 11).

The existenceCondition differs based on the specific template of the
Sequence Analysis :

• Existencepn, Aq: the number of occurrences of A must be greater than
or equal to n,

• Absencepm` 1, Aq: the number of occurrences of A must be at most
m.

The algorithms for the other templates specified in Table 1 can be easily
derived from the ones described in this section. In particular, the algorithms
for Precedence, AlternatePrecedence and ChainPrecedence are
the same as the ones described for Response, AlternateResponse
and ChainResponse, respectively. The only difference is that, for the
Precedence templates, the traces in the input log have to be parsed from
the end to the beginning. Similarly, the algorithms for checking the negative
relation templates are the same as the ones described for the corresponding
relation templates. In this case, every trace that is (non-vacuously) satisfied
for a relation template is violated for the corresponding negative relation
template.
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Figure 5: A screenshot of the Declare Miner 2.0 ProM plug-in.

We close this section by mentioning that we handle the specific case of
empty traces outside the presented algorithms. An empty trace (vacuously)
satisfies all relation, mutual relation and negative relation constraints. It
satisfies Absence constraints and violates any Existence constraint.

3.4. Implementation

All the algorithms presented in this work have been implemented in the
Declare Miner 2.0, a plug-in of the process mining tool-kit ProM.2 In the
plug-in, the user can select the version that she prefers to run (sequential,
with search space or with database partitioning), according to her needs.
Figure 5 shows a screenshot of the Declare Miner 2.0 plug-in.

To enhance the usability of the tool, a feature has been added, which allows
for avoiding to retrieve overcomplicated models when looking for negative
constructs such as NotSuccession and NotChainSuccession. Such a
feature allows for considering NotSuccession and NotChainSuccession
constraints activated in a trace only if both the involved activities occur in

2http://www.processmining.org/
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the trace. In this way, if we have the following log

L “ rxb, a, dy, xb, c, ay, xb, d, ay,

xb, e, ay, xb, f, ay, xb, g, ay, xb, h, a, dys

such a new feature allows the user to consider the NotSuccession template
as interesting only when instantiated with the pair of activities pa, bq, instead of
considering as activated and satisfied all over the log also constraints obtained
by instantiating the NotSuccession with pairs pa, cq,pa, eq,pa, fq,pa, gq,pa, hq.
This significantly improves the understandability of the resulting models.

Finally, the application has also been enhanced with a new feature
that provides users with a textual report about the discovered De-
clare constraints. For instance, a Response constraint between activ-
ities Accepted-Wait - Implementation and Completed-Resolved, discovered from the
BPIC2013 (incidents) log [17] will be verbalized as follows:

Whenever activity “Accepted-Wait - Implementation” is executed, activity “Completed-Resolved” is
eventually executed afterwards.

• cases where activity “Accepted-Wait - Implementation” is executed and the statement is valid
(5,33% of cases, 403 cases in total)

• cases where activity “Accepted-Wait - Implementation” is executed and the statement is not
valid (0,13% of cases, 10 cases in total)

• cases where activity “Accepted-Wait - Implementation” is not executed (94,53% of cases,
7 141 cases in total)

4. Evaluation

We evaluated the presented algorithms in terms of memory consumption
and time performance using a wide range of synthetic and real-life logs. In
the remainder of this section, we describe the event logs in Section 4.1 and
the procedure we used for the evaluation in Section 4.2. Finally, we discuss
the results in Section 4.3.

4.1. Event Logs

For our experimentation we used: (i) 76 synthetic logs with different char-
acteristics to compare how the algorithms perform under different conditions;
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and (ii) 8 real-life logs, made publicly available during the last six years
(2012–2017) by the IEEE Task Force on Process Mining.3

4.1.1. Synthetic Logs

The synthetic logs have been generated using the generator described
in [18, 19]. The log generator allows for the generation of logs obtained
simulating a Declare model. In our experiments, we have used the Declare
model of our running example shown in Fig. 1. Using the generator, we can
create logs of a specified size (s), containing traces of a given length (l)
and built on an alphabet of a given size (|Σ|). We used these parameters,
characterizing the complexity of an event log, as independent variables for
assessing and comparing the performance of the different algorithms. To
account for the separate effect of the three dimensions under analysis, we let
each variable vary individually while keeping the remaining two assigned with
a default value. In particular, we assigned s with values ranging from 400 to
8 800 traces at steps of 400, l ranging from 8 to 108 events at steps of 4, and
|Σ| ranging from 8 to 116 activities at steps of 4 (the smallest one being the
alphabet of the running example, Σ “ ta, b, c, d, e, f, g, hu). We assigned as
defaults s “ 1 600, l “ 16, and |Σ| “ 16.4 The following configuration sets
have thus been applied for the generation of the synthetic logs:

1. s P t400, 800, . . . , 8 800u, l “ 16 (default), and |Σ| “ 16 (default), i.e.,
22 logs of different sizes;

2. s “ 1 600 (default), l P t8, 12, . . . , 108u, and |Σ| “ 16 (default), i.e., 26
logs with traces of different lengths;

3. s “ 1 600 (default), l “ 16 (default), and |Σ| P t8, 12, . . . , 116u, i.e., 28
logs built on alphabets of increasing sizes.

We remark that the increase in the size of Σ introduces activities that are
not subject to constraints, thus entailing a higher variability in the sequences
of events in each trace. We have made the used synthetic event logs publicly

3Available at https://data.4tu.nl/repository/collection:event_logs_real
4The default values were selected to resemble the characteristics of the Sepsis2016 [20]

real-life log.
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available as benchmarks,5 to the benefit of researchers and practitioners
interested in the conduction of similar performance experiments.

4.1.2. Real-Life Logs

To evaluate the performance of our approach on real-life benchmarks, we
have used the event logs listed in Table 3:

• the BPI Challenge 2012 log (BPIC2012 [21]) and the BPI Challenge
2017 log (BPIC2017 [22]) pertain to an application process for personal
loans or overdrafts in a Dutch financial institute;

• the BPI Challenge 2013 logs (BPIC2013 (open), BPIC2013 (incidents),
BPIC2013 (closed) [17]) are related to an incident management process
supported by a system called VINST in use at Volvo IT Belgium;

• the BPI Challenge 2014 log (BPIC2014 [23]) pertains to the manage-
ment of calls or mails from customers to the Service Desk concerning
disruptions of ICT-services from Rabobank Group ICT;

• the Traffic Fines log (Fines2015 [24]) was extracted from an information
system handling road traffic fines that are processed by an Italian
municipality;

• the Sepsis log (Sepsis2016 [20]) reports the trajectories of patients
showing symptoms of sepsis in a Dutch hospital, from their registration
in the emergency room to their discharge.

Sepsis2016 was included because of the reported flexibility of the healthcare
process behind it [25]. This makes it a suitable input for declarative process
discovery, because of the inherent knowledge-intensive nature of the underlying
process [12, 26].

In order to prove that our approach is not only suitable for flexible
scenarios, but also applicable to event logs stemming from more structured
processes, we have considered other benchmarks chosen for their heterogeneous
characteristics in terms of number of traces, events per trace, and alphabet
sizes. In particular, BPIC2012 and BPIC2014 have a large alphabet size.
BPIC2017 contains more than one million events and traces with high average

5The full set of synthetic logs can be found at https://github.com/cdc08x/

DeclareMiner2
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Log Traces Events Alph. size

Total Avg. per trace

BPIC2012 13 087 262 200 20.03 36
BPIC2013 (closed) 1 487 6 659 4.48 7
BPIC2013 (open) 819 2 350 2.87 5
BPIC2013 (incidents) 7 554 65 532 8.68 13
BPIC2014 46 616 466 737 10.01 39
Fines2015 150 370 561 469 3.73 11
Sepsis2016 1 050 15 214 14.49 16
BPIC2017 31 509 1 202 266 38.16 26

Table 3: Characteristics of the real-life logs.

length. Fines2015 contains a large amount of traces, but traces are rather
short (3 to 4 events per trace).

In real-life use cases, indeed, it might not be possible to be aware of the
degree of flexibility of the mined process prior to the analysis of its event
logs, hence the need to make our approach capable of analyzing a wider
spectrum of datasets. In addition, we remark that declarative models are
reportedly effective to shed light on circumstantial information, i.e., to clarify
which circumstances will cause an action to be performed [27]. Conversely,
procedural models tend to obscure such a representation of facts. Therefore,
the opportunity to mine declarative models should be given regardless of the
nature of the underlying process, so as to provide the process analyst with a
different view on details that could otherwise remain hidden.

4.2. Procedure

All the experiments have been run using all the combinations of values
80%, 90%, and 100% for suppmin with both vacuity detection enabled and
disabled. Both the multi-threading variants have been configured with 4
threads. This configuration has been chosen because, on the machine used for
the experiments, the performance of the algorithms improves when increasing
the number of threads from 1 to 4 and starts to degrade with more than 4
threads. The experiments have been run on a Ubuntu Linux 12.04 server
machine, equipped with Intel Xeon CPU E5-2650 v2 2.60GHz, using eight
64-bit CPU cores and 16GB main memory quota. The time required for
both Apriori algorithm and Sequence Analysis has been collected for all logs
and configurations, averaged over three runs and reported in seconds. The
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memory usage has been checked for the processing of every trace in the 8
real-life logs, and finally averaged. The reported measurements are in MBs.

4.3. Results

In the following, we discuss the results of our evaluation. First, we show
the results obtained with the synthetic logs in terms of computation times
(Section 4.3.1). Then, we show computation times and memory consumption
obtained from experiments on the real-life logs (Section 4.3.2).

4.3.1. Synthetic Logs

The synthetic logs have been used to investigate the time performance
of the 3 algorithms presented. We show the plots obtained using suppmin “

90% since the trends for different supports are similar with generally lower
computation times for higher suppmin.6 We report the results when varying
the log size, the trace length, and the alphabet size. In particular, we show,
for all configurations, both the computation time needed for the Apriori
algorithm (apriori) and for Sequence Analysis without partitioning (no
par), with database partitioning (par.db), and with search space partitioning
(par.src.sp). In addition, we show the relative difference between the
computation times needed for Sequence Analysis without partitioning, and
with database (vs par.db) and search space partitioning (vs par.src.sp).

Varying the log size. Figure 6 reports the plots related to the time performance
of the presented algorithms when varying the log size. The computation times
are very low (in the order of few seconds). As expected the average times
obtained with vacuity detection enabled („ 6 sec for the log with 8 800 traces)
are lower than the ones obtained with vacuity detection disabled („ 10 sec for
the log with 8 800 traces). Indeed, with vacuity detection disabled the Apriori
algorithm returns a significantly higher number of frequent activity sets that
need to be handled in the Sequence Analysis . However, the trends in the two
cases are similar and, in both cases, par.db and par.src.sp perform slightly
better than no par. The plots showing the relative difference of par.src.sp
and par.db with respect to no par show that par.src.sp improves a bit
more the performance with respect to par.db, especially when the vacuity
detection is disabled. The time needed for the Apriori algorithm („ 4 sec and

6The entire collection of plots can be downloaded at https://github.com/cdc08x/

DeclareMiner2
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Figure 6: Computation time as a function of the log size.

„ 7.5 sec for the log with 8 800 traces with and without vacuity detection,
respectively) is always significantly lower with respect to the one needed for
Sequence Analysis .

Varying trace length. Figure 7 reports the plots related to the time per-
formance of the presented algorithms when varying the trace length. The
highest average computation time obtained for par.db and par.src.sp with
vacuity detection enabled is „ 3 sec and with vacuity detection disabled
is „ 4 sec (for traces with 108 events). The highest average computation
time obtained for no par with vacuity detection enabled and disabled is of
„ 7.5 sec and „ 8 sec, respectively. Thus, for logs containing long traces,
par.db and par.src.sp perform significantly better than no par. The plots
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Figure 7: Computation time as a function of the traces length.

showing the relative difference of par.src.sp and par.db with respect to no

par show that par.src.sp performs a bit better than par.db and reaches
50% of improvements with respect to no par with both vacuity detection
enabled and disabled. The time needed for the Apriori algorithm is always
significantly lower with respect to the one needed for Sequence Analysis .

Varying alphabet size. Figure 8 reports the plots related to the time perfor-
mance of the presented algorithms when varying the alphabet size. In this
case, the trends of the average computation times obtained with and without
vacuity detection is significantly different. When vacuity detection is enabled
par.src.sp, par.db and no par have similar performance (the computation
time is extremely low and always lower than 7 sec). par.db and no par
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Figure 8: Computation time as a function of the alphabet size.

have a similar trend also in the case in which vacuity detection is disabled.
However, in this case, par.src.sp performs significantly better than no par

with an improvement of up to 50%. Also in this case, the time needed for
the Apriori algorithm is lower with respect to the one needed for Sequence
Analysis .

Enabling Vacuity Detection. Figure 9 shows how the time performance of the
implemented algorithms improves by enabling vacuity detection. The reported
times are gathered from runs on the synthetic event log having default values
for s, l, and |Σ|. Computation times of no par, par.db, and par.src.sp

are compared at different levels of suppmin (80%, 90%, and 100%) having
vacuity detection either enabled (dark grey) or disabled (light grey). All the
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Figure 9: Computation time reduction achieved through the enablement of vacuity detec-
tion.

implemented algorithms show a similar improvement in terms of computation
times when the vacuity detection is enabled. In addition, the number of
constraints returned when the vacuity detection is enabled is much lower.
This confirms the usefulness of this mechanism especially when dealing with
real-life logs.

To summarize, the results found with the experiments on synthetic logs
show that:

• the computation times are generally very low (few seconds);

• the time needed for the Apriori algorithm is always significantly lower
with respect to the one needed for Sequence Analysis ;

• the computation times with vacuity detection disabled are significantly
higher than the ones obtained with vacuity detection enabled;

• par.db and par.src.sp perform in general better than no par. The
highest improvement is obtained with logs containing long traces and,
in general, a better improvement is obtained with vacuity detection
disabled (when the computation time is higher);
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Log suppmin
Average computation time [sec]

no par par.src.sp par.db [6]

BPIC 80% 19.196 17.240 17.372 68.270
2012 90% 19.292 18.092 17.391 66.544

100% 19.952 17.512 17.064 64.251

BPIC 80% 0.504 0.421 0.444 7.613
2013 90% 0.461 0.431 0.487 7.553
(closed) 100% 0.433 0.435 0.405 0.544

BPIC 80% 4.243 3.769 3.673 2.968
2013 90% 3.972 3.634 3.889 2.759
(incidents) 100% 4.080 3.991 3.755 2.401

BPIC 80% 0.210 0.180 0.187 0.415
2013 90% 0.195 0.170 0.186 0.401
(open) 100% 0.197 0.180 0.169 0.344

BPIC 80% 65.422 59.761 62.078 1 292.303
2014 90% 64.771 61.852 64.066 482.475

100% 60.897 61.056 60.353 26.052

Fines 80% 66.656 59.073 58.901 33.832
2015 90% 67.031 57.574 60.658 25.782

100% 62.561 59.106 59.643 24.449

Sepsis 80% 1.022 0.738 0.850 62.591
2016 90% 0.956 0.730 0.869 43.684

100% 0.790 0.792 0.900 7.207

BPIC 80% 114.863 90.593 99.007 17 431.343
2017 90% 112.916 88.799 101.801 17 974.533

100% 98.528 83.862 87.526 3 505.525

Table 4: Computation times using real-life logs (with vacuity detection).

• in general, par.src.sp improves more the performance of no par than
par.db.

4.3.2. Real-Life Logs

The real-life logs have been used to investigate the performance of the
three algorithms presented both in terms of computation time and memory
consumption.

Computation time. Tables 4 and 5 report, for each of the presented algo-
rithms, the computation times required to process the 8 real-life logs for
different values of suppmin with vacuity detection enabled and disabled, re-
spectively. By looking at the tables, it is possible to recognize the same trends
observed in the experiments with synthetic logs. The computation times are
in general low (from few milliseconds for BPIC2013 (open) to few minutes
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Log suppmin
Average computation time [sec]

no par par.src.sp par.db [6]

BPIC 80% 59.638 41.677 45.443 13 630.461
2012 90% 50.386 39.764 41.185 8 708.702

100% 45.655 36.593 38.455 5 169.026

BPIC 80% 0.671 0.550 0.687 39.422
2013 90% 0.665 0.643 0.643 33.259
(closed) 100% 0.709 0.580 0.687 14.776

BPIC 80% 6.854 5.836 6.412 33.259
2013 90% 6.786 5.541 6.235 39.422
(incidents) 100% 5.901 5.840 5.474 81.495

BPIC 80% 0.250 0.233 0.250 10.486
2013 90% 0.257 0.233 0.239 6.037
(open) 100% 0.218 0.217 0.209 0.349

BPIC 80% 185.442 125.619 153.482 ą 18 000.000
2014 90% 181.092 130.707 152.194 ą 18 000.000

100% 111.903 109.115 109.225 2 268.203

Fines 80% 107.106 90.914 97.097 ą 18 000.000
2015 90% 101.198 87.012 93.948 ą 18 000.000

100% 98.126 86.400 91.889 9 521.085

Sepsis 80% 1.647 1.225 1.432 221.289
2016 90% 1.600 1.217 1.534 181.873

100% 1.321 1.426 1.386 65.857

BPIC 80% 394.033 259.912 298.170 ą 18 000.000
2017 90% 361.741 255.384 288.128 ą 18 000.000

100% 270.920 227.391 230.755 ą 18 000.000

Table 5: Computation times using real-life logs (without vacuity detection).

for BPIC2017). The computation times obtained with vacuity detection
disabled are significantly higher than the ones obtained with vacuity detection
enabled. par.db and par.src.sp perform in general better than no par

and par.src.sp improves more the performance of no par with respect to
par.db. The highest improvement of the parallel algorithms is obtained with
BPIC2017 that contains traces with high average length. With large alphabet
and log sizes the improvement is less evident. See, for example, the case of
Fines2015 which contains a large amount of traces but short. Also, a better
improvement is obtained when the vacuity detection is disabled. From the
tables it is also possible to notice that, in general, the discovery of constraints
with lower support requires higher computation time (the computation time
decreases when suppmin increases).
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Log suppmin
Average memory usage [MB]

no par par.src.sp par.db

BPIC 80% 2797.896 2990.313 2987.244
2012 90% 3479.370 3672.308 3689.226

100% 2814.076 2982.535 2951.414

BPIC 80% 3224.890 3402.379 3321.312
2013 90% 3250.195 3422.971 3320.683
(closed) 100% 3224.701 3375.245 3378.217

BPIC 80% 3272.994 3405.096 3350.712
2013 90% 3336.335 3467.524 3423.487
(incidents) 100% 3383.542 3582.805 3509.252

BPIC 80% 3418.733 3591.149 3552.671
2013 90% 3452.391 3620.048 3567.557
(open) 100% 3410.776 3594.08 3571.845

BPIC 80% 2522.498 2525.335 2752.694
2014 90% 2554.258 2558.694 2784.968

100% 3041.431 2812.829 3043.947

Fines 80% 2757.921 2753.657 2780.860
2015 90% 3311.736 3031.759 2771.034

100% 2756.915 3033.848 2743.068

Sepsis 80% 3080.066 3117.173 3086.295
2016 90% 3085.615 3095.000 3111.557

100% 3095.138 3097.057 3118.443

BPIC 80% 3385.102 2730.640 2754.912
2017 90% 2776.020 2775.573 3225.580

100% 3470.691 2816.340 3482.457

Table 6: Memory consumption using real-life logs (with vacuity detection).

Tables 4 and 5 report the execution times required to process the logs using
the Declare Miner [6]. The original version of the Declare Miner attains better
timings occasionally, e.g., with vacuity detection enabled and for BPIC2013
(incidents) and Fines2015 logs. However, our approach clearly improves over
it for scalability: even having vacuity detection enabled, the performance
of the original Declare Miner steeply decays as logs increase in the number
of events per trace (see Table 3). For these logs, indeed, the performance
improvement is noticeable and the ratio reaches peaks of approximately 1 : 50
in the case of Sepsis2016 and 1 : 100 for BPIC2017, as shown in Table 4.
When vacuity detection is disabled, the performance of the original version of
the Declare Miner decay dramatically, as opposed to our proposed approach.
In particular, 5 hours turned out to be not sufficient to return a result when
analyzing BPIC2014, Fines2015, and BPIC2017.
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Log suppmin
Average memory usage [MB]

no par par.src.sp par.db

BPIC 80% 3164.679 3360.663 3344.785
2012 90% 2507.653 2671.431 2607.790

100% 3179.398 3343.870 3269.200

BPIC 80% 3222.504 3402.914 3326.421
2013 90% 3251.205 3422.295 3319.545
(closed) 100% 3233.109 3399.611 3375.306

BPIC 80% 3311.958 3459.879 3388.076
2013 90% 3369.209 3523.088 3497.857
(incidents) 100% 3422.844 3598.485 3541.132

BPIC 80% 3410.075 3621.799 3576.108
2013 90% 3440.457 3608.402 3586.726
(open) 100% 3422.180 3628.260 3569.316

BPIC 80% 2492.127 2682.854 2878.689
2014 90% 2527.365 2521.371 2531.285

100% 3124.654 2553.222 2552.657

Fines 80% 2677.579 2685.744 3104.895
2015 90% 2683.610 3082.046 2895.949

100% 2882.841 2889.041 2916.918

Sepsis 80% 3082.985 3086.389 3069.019
2016 90% 3085.844 3097.296 3101.323

100% 3094.253 3110.253 3139.643

BPIC 80% 2648.188 2873.389 2672.466
2017 90% 2915.772 2912.520 2927.845

100% 3184.292 2947.643 3429.015

Table 7: Memory consumption using real-life logs (without vacuity detection).

Memory consumption evaluation. Table 6 and Table 7 report the average
memory usage (in MBs) needed for processing each trace in the real-life logs.
The reported measurements are in MBs. The memory consumption is quite
uniform across all the logs and ranges from 2 500 to 3 500 MBs. This suggests
that, overall, the characteristics of the input logs do not affect the memory
usage.

5. Related Work

Different approaches have been proposed so far for mining declarative
process models. Some of them belong to the group of the probabilistic process
mining approaches. For instance, Statistical Relational Learning has been
used for learning, from process traces labeled as compliant or non-compliant,
declarative constraints expressed as ICs (Integrity Constraints) [28]. A logic-
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based approach for probabilistic process mining that leverage this approach
is presented in [29].

An approach that makes use of logic programming for declarative process
mining is presented in [30]. The proposed methodology is based on Inductive
Logic Programming. The Inductive Constraint Logic algorithm, used in that
approach, is adapted to the problem of learning ICs in SCIFF and is able to
learn a model by considering both compliant and non-compliant traces.

An algorithm to discover Declare models was developed in [31] using
email messages as event log traces. The implemented algorithm, MINERful
[32], is a two-step algorithm. The first step aims at building a knowledge
base starting from the event log. The second step aims at computing the
support of constraints by querying the knowledge base. In [33, 34], the
authors propose an extension of the approach presented in [32] to discover
target-branched Declare constraints, i.e., constraints in which the target
parameter is replaced by a disjunction of real activities.

In [35, 36], a semantics for defining Declare constraints on non-atomic
activities and an approach for the discovery of this type of constraints are
presented. In [37, 38], the semantics of Declare is extended to consider
metric temporal constraints and, in [39], an approach for the discovery of these
constraints is presented. In [40], the semantics of Declare is extended to
consider conditions on data. In the same paper, a technique based on daikon
and decision trees is presented for the discovery of data-aware Declare
constraints.

In [41], the authors present a mining approach that works with Relation-
alXES, a relational database architecture for storing event log data. The
relational event data is queried with conventional SQL. Standard queries allow
for the discovery of Declare constraints. However, they can be customized
and cover process perspectives beyond control flow as shown in [42].

An on-line process discovery technique which takes data from event streams
is presented in [43, 44]. The proposed approach is able to produce at runtime
an updated picture of the process behavior in terms of Declare constraints.

6. Conclusion

The Declare Miner is a plug-in of the process mining tool ProM for the
discovery of Declare models from logs. The high execution times of the
Declare Miner when processing large sets of data hampers the applicability
of the tool to real-life settings. Therefore, in this work, we have presented a
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new approach for the discovery of Declare models based on a combination
of an Apriori algorithm and a group of algorithms for Sequence Analysis to
enhance the time performance of the plug-in. In addition, we have used the
notions of search space partitioning and database partitioning as a basis for
the development of two multi-threading variants of the approach. The new
algorithms have been implemented and tested on synthetic and real-life logs
to assess their efficiency.

In the future, we aim at investigating the possibility of using the proposed
algorithms to: (i) support branched Declare; and (ii) consider additional
perspectives other than the pure control flow, such as time and data.
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