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Abstract
We show that quantum fluids enable experimental analogs of relativistic orbital precession in the
presence of non-paraxial effects. The analysis is performed by the hydrodynamic limit of the
Schrödinger equation. The non-commutating variables in the phase-space produce a precession and
an acceleration of the orbitalmotion. The precession of the orbit is formally identical to the famous
orbital precession of the perihelion ofMercury used by Einstein to validate the corrections of general
relativity toNewton’s theory. In our case, the corrections are due to themodified uncertainty
principle. The resultsmay enable novel relativistic analogs in the laboratory, also including sub-
Planckian phenomenology.

1. Introduction

Quantum simulations of fundamental theories realize novel tests and investigations of inaccessible physical
regimes. The phenomenology of the fundamental laws of physicsmodified at the Planck scale attracts a large
community of scientists [1–7]. The challenge is to identify feasible experiments to test the apparently
inaccessible limits of quantummechanics and general relativity [8]. The difficulties in realizing such large-scale
experiments trigger studying quantum simulations. The simulations are realizable in Earth-based laboratories in
a human-life timescale. Researchers aim at realizing analog experimentalmodels of black holes [9–11], Hawking
radiation [12–15], inflation and universe expansion [16, 17], dark-mattermodels [18], and related phenomena
[19–21]. The analogy is a fundamental tool in physics, and experimental and theoretical analogsmay deepen our
understanding of quantumgravity theories [22], and of other challenging proposals as time-asymmetric
quantummechanics [23–25]. All the considered quantum simulations in optics are limited to the paraxial
regimes. Despite this enables to simulate interesting physics, the use of non-paraxial effects is so far unexplored.

In thismanuscript, we study the orbital precession of a quantumfluid (figure 1(a)) due to the perturbation to
quantummechanics analogmodels induced by non-paraxial termsQuantum fluids are studied in the vast
literature concerning Bose–Einstein condensates (BECs), classical and quantumnonlinear optics and
polaritonics [26–30].We consider a quantumfluidwave-packet with a non-vanishing angularmomentum in a
trapping potential.We show that thewave-packet elliptical orbit is perturbed by the new terms, andwefind a
direct analog of the orbital precession induced by post-Newtonian gravitation. The dynamics is equivalent to the
known treatment of the precession ofMercury in general relativity [31–33].

We alsofind a very interesting connectionwith the study related to theGeneralizedUncertainty Principle
(GUP), considered in sub-Planckian physics. Surprisingly enough, the orbital precessionmay also be explained
in terms of non-commuting variables, as those that arise in studies in quantumgravity [34]. A large amount of
literature deals withmodifications of the uncertainty principle and related non-commutative geometry [35]. In
standard quantummechanics, there is nominimal value for the position uncertaintyΔX. However, theories in
quantumgravity imply the existence of aminimal length scale, commonly identifiedwith the Planck lengthℓP
[1]. Hence a lower bound forΔXmust be included in quantummechanics, and theHeisenberg relation
ΔXΔP�ÿ/2, with themomentumuncertaintyΔP, must be generalized—also in the non-relativistic limit
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considered hereafter. Themost accepted formulation of the so-calledmodified orGUP reads [36, 37]

( ) ( )bD D > + D


X P P
2

1 . 12

Equation (1) implies bD > X withβ a unknown constant, which is eventually related toℓP.We need
experimental evidence to assess the validity of equation (1) andfix bounds for the value ofβ. TheGUP in
equation (1) arises in a theory-independent way.Many theories attempting to unify gravity and quantum
mechanics—including string theory [38]—predictmodifications of theHeisenberg principle as in equation (1).
TheGUP is also related tomodified commutation relations and to non-commutative theories [34, 39–42]. The
GUPhasmany implications as, for example, in cosmological dynamics, black-body radiation, wave-packet
localization and related investigations reported by several authors [42–46]. Quantitative bounds for theβ
parameter in themodifiedHeisenberg principle in equation (1)were also reported [45]. Other authors discussed
human-scale laboratory tests with optomechanical and orbiting classical objects [47–50]. However, the
application of generalized quantummechanics to themacroscopic world is questionable [40].

Analogs, i.e. physical systems governed by lawsmathematically identical to those of the generalized quantum
mechanics, were considered in the fields of optics and relativistic BECs [51–55]. The fact that non-paraxial
quantumfluids enable the simulations of non-commutative quantummechanics, and general relativistic effects,
opens several possibilities for studying analogs of unexplored phenomena in the laboratory.

Figure 1. (a)Aquantum-fluidwave-packet (yellow) in an elliptical orbit in a parabolic potential; the non-paraxial perturbations to the
standard non-relativistic quantummechanics induce a orbital precession; (b) solutions of equation (10)with lmr0Ω=−0.1,β(m
r0Ω)

2=0.1 (continuous line) andβ = 0 (dashed line)withΩt in the range [0, 100]; (c) as in (a) forΩt�8, the dot indicates the initial
position; (d) x (dashed line) and y versus time t.
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2.Non-paraxial Schrödinger equation (SE)

We study the generalized SE for quantumfluidswith trapping potentialV in two or three spatial dimensions

( ) ˆ ( )y
y

b
y y y

¶
¶

= -  +  + =  
ı

t m m
V Hr

2
. 2

2
2

4
4

Equation (2) describes a non-interacting atomic BEC, realized by employing the Feshbach resonance [56].
Equation (2) also describes a polaritonic or photonic condensate. In the latter case, as extensively discussed in the
literature, t corresponds to the propagation direction, and ÿmust be replaced by the reduced light wavelengthλ/
2π [57] equation (2) contains a kinetic termweighted byβ. As considered by various authors [45, 52, 58], the
additional kinetic term is the simplestmodification to the SE that implies theGUP in equation (1) and arises
from fundamentalmodifications to the geometry of the space-time at the Planck scale, which change the
dispersion relation of free particles, as photons. In the optical case, corrections to paraxial approximation
introduce the∇4ψ term, and the ratio betweenλ and the beamwaist determinesβ in a optical analog to the
generalized quantummechanics [52]. For cold atoms, higher order derivativesmay arise from relativistic effects
(not considered here), when the fluid velocity is comparable with the velocity of light c [59]. Anothermechanism
is themodification of the dispersion relation inmodels as doubly-special-relativity [60].

Letting ˆ = - p ı , theHamiltonian in equation (2) is

ˆ ˆ ˆ ( ) ( )b
= + +H

p

m m
p V r

2
3

2
4

with the position vector ( ) ( )= =x y z x x xr , , , ,1 2 3 . One introduces non-commutative coordinates by a new
set of ‘high-energy’ variables (Xμ,Pμ), which, in the simplest case considered here, read (μ, ν=1, 2, 3)

ˆ ˆ
ˆ ˆ ( ˆ ) ( )b

=
= +

m m

n n

X x

P p p

;

1 . 42

By [ ˆ ˆ ] =m nx x, 0, [ ˆ ˆ ] =m np p, 0, [ ˆ ˆ ] d=m n m nx p ı, , , one has [ ˆ ˆ ] [ ˆ ˆ ]= =m n m n
P P X X, , 0 and [45, 50, 61]

[ ˆ ˆ ] ( ˆ ˆ ˆ ) ( )d bd b= + +m n mn mn m nX P ı P P P, 2 . 52

This represents aweak version of non-commutative phase-space coordinates: at variancewith standard
quantummechanics, themomentum and the position in different directions do not commute [34]. The
standard case involves also commutation relations between position coordinates.

By ˆmP , equation (2)has the traditional form

ˆ
( ) ( )y y y= +ı P

m
V r

2
, 6t

2

but the commutation relations aremodified and equation (1) holds true. The simplest effect of the additional
kinetic term are shiftsΔEk in the energetic levels of the eigenstates [62], ∣ ˆ ∣ ∣ ∣bD = á ñ = á ñbE k p k m k V k4k m

4 2 .
Such perturbationsmay eventually occur in optical and atomic quantum fluids, however they are very difficult
to observe [45].We consider amore accessible phenomenology related to the dynamics of awave-packet
orbiting in the potential.

3.Hydrodynamic limit andHamilton equations

We study awave-packet initially located at = + =r x y r2 2
0 that rotates with a non-vanishing angular

momentum (figure 1(a)). The trajectory is found in the hydrodynamic approximation [63, 64] by letting
( )y = A ıexp with  0 [65]. TheHamilton–Jacobi equation for  is [66, 67]

( ) ( ) ( )b¶
¶

+


+  + =
 


t m m

V
2

0. 7
2

4

By the classical HamiltonianH(q,p)=p2/2m+(β/m)p4+V, we have ( )¶ +  = H q, 0t . Equation (7)
is solved by theHamilton systemwith = p [67]

( )

= 

= -

t
H

t
H

q

p

d

d
,

d

d
. 8

p

q

Weconsider here a z-independent radial potential with polar symmetry:V= V(r). Two-dimensional condensates
are routinely considered in the literature [27, 30, 65]. In polar coordinates (r, θ, z), with conjugatemomenta (pr,
pθ, pz), we have
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )b

= + + + +q qH
m

p
p

r m
p

p

r
V r

1

2
. 9

r r
2

2

2
2

2

2

2

The corresponding Lagrangian does not depend explicitly on θ, hence the conjugatemomentum =qp l is
conserved, and themotion occurs in the zplane, with pz=0. By the conserved l, equation (8) arewritten as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
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⎞
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⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
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q
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¶
¶
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q
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l
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r

p
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r

t

p
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p
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r

p
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H
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l
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d
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2

2
2

2

2
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with ¢ =V V rd d and, for a parabolic potential,

( )= WV m r
1

2
. 112 2

4.Orbital precession and linkwith the Einstein solution

Figure 1(b) shows the numerical solutions of equation (10)with r(0)=r0 and pr(0)=0.Whenβ=0 and
¹l 0, the orbit is elliptical (dashed line infigure 1(b)).Whenβ>0—continuous line infigure 1(a)—the orbit

exhibits a precession (clockwise for l<0, and counter-clockwise for l>0). Figure 1(c) shows the precession
angleΔwith the particle at t=0, x=r0 and y=0.

As the orbit rotates, themaximal position in the y coordinate is amplified as shown infigure 1(d). This orbital
enhancement of the quantum gravity effect resembles the known gravity slingshot assist adopted to alter the
speed of a spacecraft in orbitalmechanics [68]: the radial acceleration at any turn emphasizes the
phenomenology.

We remark that the precession can be related to non-commutative coordinates in the phase-space that arise
because of the quantumgravity terms If we introduce the classical counter-part of the generalizedmomenta (4),

( ) ( )b= +q qP p p1 12r r, ,
2

theHamiltonianH is written as in the case b = 0:

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )= + +qH

m
P

P

r
V r

1

2
. 13r

2
2

2

However, while the Poisson brackets { } { }q= =qr p p, , 0r vanish [67], the corresponding quantities for the
generalizedmomenta are

{ } { } ( )q b= =q qr P r P P P, , 2 . 14r r
2

Therefore, one hasmodifiedmechanics with non-commuting coordinates. In the following, we show that the
precession is of the order ofmagnitude of the brackets in equation (14), revealing the link between the non-
commutative geometry andGUPphenomenology.

Equation (10) give the precession angleΔ by [ ( ) ]q =r l p r rd d r
2 with pr(r) expressed in terms of the

conserved quantitiesH=E0 and pθ=l. However, no closed form can be found, and figure 2 shows numerical
results.We obtain estimates by considering a nearly circular orbit with r; r0. Ifβ= 0, then q= =qp l mr2 is

constant, and the period is p=T mr l20 0
2 . Forβ>0 and r;r0

Figure 2.Effect of the perturbationβ to the uncertainty principle in equation (1) on the (a) precession angleΔ for various l and (b)
orbital periodT for lmΩr0=1.01, the dashed line is the theoretical estimate (see text).

4

New J. Phys. 21 (2019) 123038 GMarcucci andCConti



⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥ ( ) ( ) q b b+ + +mr l p

l

r
l p1 4 1 4 , 15

r0
2 2

2

0
2 0

2

with =p l

r0
2 2

0
2 . In a time intervalΔt, ( )q bD +pD p1 4t

T

2
0
2

0
, and, whenΔt=T0, we have the lower bound

( )q p pbD = D - p2 8 . 16
0
2

The orbital periodT is also altered byGUP. For aΔθ=2π, the relative variation

( )d b= - -T T T p1 4 170 0
2

is comparedwith the numerical calculation infigure 2(b).
To outline the linkwith general relativity, we compare our result with the analysis of the precession of the

perihelion ofMercury, as originally considered by Einstein [31–33].We consider a nearly circular orbit andwrite
the orbit equation starting from the conservation of energy in equation (9). By using q =r p r ld d r

2 from
equation (10), and u=1/rwehave

( ) ˜ ( ) ( )m b m= + +H
l

m
l V u

2
2 , 18

2
2 2

with ( )m qº +u ud d 2 2 and ˜ ( ) ( )=V u V u1 . By deriving equation (18) one obtains, at the lowest order inβ

˜ ( )( ) ( )
q

b m+ = - ¢ -
u

u
m

l
V u l

d

d
1 4 19

2

2 2
2

with ˜ ( ) ˜¢ =V u V ud d . Equation (19) forβ=0 furnishes the orbit equation [67]; forβ>0, an additional
contribution to the effective potential perturbs the orbit. Equation (19) is written as

⎜ ⎟⎛
⎝

⎞
⎠˜ ( ) ( )

q
b

q
+ = - ¢ + 

u
u

m

l
V u

u
u

d

d

d

d
, 20

2

2 2

with

⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎤
⎦⎥

˜ ( ) ˜ ( ) ( )m
q

= ¢ = + ¢ m V u m
u

u V u4 4
d

d
21

2
2

representing the perturbation due to themodified uncertainty principle, which disappears forβ=0.
For a nearly circular orbit ( )u r1 0 , and a parabolic potential ˜ ( ) ( )= WV u m u22 2 , thefirst term in the

right hand side of (20) ˜ ( ) ( )- ¢ = WmV u l m l u2 2 2 2 3 is nearly a constant, and plays the role of the gravitational
field. This shows theway the kinetic term induces an effective force, as general relativity induces a correction to
theNewton force.

In a perturbative expansion inβ,  in (20) produces a driving force term, as detailed in the following; such a
term is in perfect analogywith the Einstein analysis of theMercury orbit.We consider the solution forβ=0
representing an elliptical orbit with eccentricity e:

[ ( )] ( )q=
W

+u
m

l
e1 cos 2 . 220

Equation (22) is valid for the parabolic potential, similar results are obtained for other potentials as, for example,
theNewtonian gravitational potential. The perihelion corresponds tomaximal u for θn=nπwith n=0, 1,
2,K..

Forβ>0, one adopts a perturbative expansion at the lowest order in the eccentricity e andβ. The
perturbation force  reads

⎜ ⎟⎛
⎝

⎞
⎠ [ ( )] ( )

q
q= - W - 

u
u m l e

d

d
, 4 1 cos 2 . 230

0
3 2 3 2 1 2

The perturbed orbit equation (20) is

[ ( )] ( )
q

b q+ =
W

+ W -
u

u
m

l u
m l e

d

d
4 1 cos 2 . 24

2

2

2 2

2 3
3 2 3 2 1 2

The forcing term in (24) is directly corresponding to the termobtained by Einstein representing the correction to
the orbit due to general relativity. One can solve equation (24) at the lowest order inβ and e as

{ [ ( ) ( )]} ( )b q b q q=
W

- W + + Wu
m

l
m l e ml1 cos 2 sin 2 . 25
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Bywriting equation (25) as

⎜ ⎟
⎧⎨⎩

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥

⎫⎬⎭ ( ) b q
bW

- W + -
W

u
m

l
m l e

m l
1 cos 2 1

2
, 26

one sees that themaximumof u in equation (26) occurs for

⎜ ⎟⎛
⎝

⎞
⎠ ( )q p

b
= +

W
n

m l
1

2
. 27n

Hence the perihelion shifts for each half-orbit by an amountπβmΩl/2. Being @ Wl m r0
2 for nearly circular

orbits, this result is consistent with the estimate abovewithin numerical factors due to the definition of the
precession angle. Equation (27) shows that the effect accumulates as the precession angle growswith n.

5.Geodesic formulation

It is instructive towrite the previous results in a geodesic formulation [69].We give in the following the
expression ofΦ and τ in our case.

We introduce in equation (10) the proper time τ by

( ) ( )
t b

=
+ +

t

p

d

d

1

1 4
. 28

r
l

r
2 2

2

In terms of τ, equation (10) read

⎡
⎣⎢

⎤
⎦⎥( ) ( )

q
t t

t t
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= = -
¶
¶

F +

ql
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p
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p

r
r

l
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d

d
,

d

d
0,

d

d
,

d

d 2
, 29r r

2

2

2

whereΦ is amodified potential given by the solution of the equation

( ) ( )
b

¶F
¶

=
+ +

¶
¶r p

V

r

1

1 4
. 30

r
l

r
2 2

2

The expression forΦ is found at the lowest order inβ by using the energy conservationH=E. After equation (9)
wehave

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( ) ( )b b b b+ - +qp

p

r
m E m V o2 2 , 31

r
2

2

2

which, used in (30), gives at the lowest order inβ

( ) ( )b b bF = - + +V m E m V V m V1 8 4 4 , 322 2

wherewe have used the termmβE=1, as we are studying the perturbation toNewtonian dynamics (with
generic potential) and the energy is also a small quantity. In the analogywith general relativity, this corresponds
to consider a particle with energymuch smaller than the rest energymc2, with c the vacuum light velocity.

For the proper time in (33), we have

( )
t

b+
t

m V
d

d
1 8 , 33

which shows how the time speeds up at large r for a parabolic potential, hence the local velocity decreases, and
this causes the precession of the orbit.

The geodesic formulation of the (29) is found by defining x0=t, x1=r and x2=θ, sowe have

( )
t t t

+ G =
a

bg
a

b gx x xd

d

d

d

d

d
0, 34

2

2

whereGreek indices span 0, 1, 2=t, r, θ. The non-vanishing Christoffel symbols are

( )G = G =
¶F
¶

G = G = - G = G = G =qq q
q

m r
r

r

1
, ,

1
, 35tt

r r
r00

1
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1
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2
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and the (equation (34)) read explicitly as

⎛
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d

d
0. 36

2 0

2

2 1

2 00
1

0 2

22
1

2 2

2 2

2 12
2

1 2

Equation (29)with τ andΦ are theNewtonian limit of the relativistic particle withmetric [69].

( ) ( )t q= - + F +
+ F

+s r rd 1 2 d
1

1 2
d d . 372 2 2 2 2

A similar approach, but in a quantum framework, is developed in [70], and allows tofind the link between
equation (37) and the SE in(6). Other solutions to the same problem are given in [71, 72] for cosmological
descriptions of a homogeneous, isotropic universe.We describe the free particle, whosemotion is described by
geodesic equation, through a field ( )y t r, such that ∣ ( )∣y t r, 2 is the probability tofind the particle in the position
r at time t. Itmust be governed by

( )y y = - m
mk k , 38g

2

where ( ) = mn¶
¶

¶
¶m ng gg g x x

2 1 is the Laplacian operator in a curved spacetime. Specifically, equation (38) rules

themotion of a particle with kinetic energy = K k k
m j

j
2

2

0
, j=1, 2, 3,mass at restm0, and relativisticmomenta

( )= = -m mp k p,E

c
, ( )= =m mp k p,E

c
. It turns out that ( )= - + = -m

n
  

k k E

c

m K m c2 22

2 2
0
2

0 . The next step

is tofind ametric tensor mng such that, through a covariant transformation, equation (38) is equivalent to
equation (6) in aflat space, that is, the particlemoves under the effect of a gravitational parabolic potential. This
has been already done for a spherical potential [70], and in theNewtonian limitK=m0c

2, themetric in (37) is
recovered. Extensions to the parabolic potential are possible and already explored via another scheme of
derivation [71, 72], andwill be treated in a general context in future works.

From gμν, two important results are soon attained: the link between Einstein field equations and the SE [72],
and theGUP effects in the quantization of the curved space [73]. Einstein equations are =mn

p
mnG TG

c

8
4 , with

stress-energy tensor ( )r= + -mn m n mnt p U U pg of a perfectfluid of density ρ at pressure p. Uμ is the four
velocity. The quantization of the curved space follows from the canonical commutation relations
[ ] =m n mnx p ı g, [73]. These, when transformed in the previous variables,must give equation (5), and thus the
dependence of themetric tensor onβ.

6.Numerical solution of the non-paraxial SE

Wevalidate our theoretical analysis on the generalized SE equation (2) in two dimensions.We adopt
dimensionless coordinates s=t/tN, u=x/wN, v=y/wN, with = w t mN N

2 , and tN=Ω−1 andwe have
from equation (2)

( ) ( )j j
e

j j¶ =  +  + +ı u v
1

2 8

1

2
, 39s uv uv

2 4 2 2

with  = ¶ + ¶u v u v,
2 2 2, and e b= W m8 . ε=0 corresponds to the conventional paraxial regime. At t=s=0,

aGaussianwave-packet withwaistwo is the initial condition:

⎛
⎝⎜

⎞
⎠⎟( )( ) ( )j j= =

- --

u v s, , 0 e e . 40o

v
w ık v2

u uo
wo o l2

2 2

In (40), the angularmomentum is l=ÿkl u0. If ε=0 and kl=0, thewave-packet oscillates without orbiting in
the y-direction (not reported). Figure 3(a) shows the evolution, for ε=0 and kl=20, by various snapshots of
∣ ∣j 2: the bottompanel reveals the elliptical orbit.When ε=0.01, as in figure 3(b), we have evidence of the
predicted precession. Figure 3 shows representative simulations, similar results occur for all the considered
cases. Figure 4(a) shows a volumetric visualization of the solution of equation (39) for a longer timescale with
respect tofigure 3, forβ=ε=0. Panels infigure 4 give the trajectories of thewave-packet center ofmass,
which, for ε=0 do not reveal any precession. Figure 4(b) for ε>0 demonstrates the precession and the
reduction of the orbital period.
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Figure 3. (a) Snapshots of ∣ ∣j 2 at different instants s=t/tN in thefirst orbit when ε=0; (b) as in (a), forβ>0 (ε=0.01). The panels
show a two-dimensional visualization of ∣ ∣j 2 normalized to themaximal value. A precession occurs in the presence of the non-
paraxial perturbation (parameters uo=20,wo=0.1, kl=20, longer evolution is shown infigure 4).

Figure 4. (a) Isosurface of the quantum fluidwave-packet orbiting in the parabolic potential in the absence ofGUP effects (ε=0.00);
(b) as in (a) in the presence ofGUP effects (ε=0.01). The panels showorthographic projections of the center-of-mass trajectories
determined by thewave-function (parameters uo=20,wo=0.1, kl=20).
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7. Precession in analogs and real experiments with quantumfluids

To analyze possible experimental tests, we recall thatβ is typically expressed in terms of the dimensionless

ℓ
( )b b b= =


M c , 41

p
0

2

2 P
2 2

withMP the Planckmass, and c the vacuum light velocity. According to some authors,β0<1034 that we adopt
as an optimistic upper bound for a real test of GUPphenomenology [45, 74]. For emulations, e.g. by paraxial
light, we haveβ0=1055 [52, 54].

We consider a wave-packet at initial distance r0 from the center of the potential with tangential velocity v0
and ∣ ∣ = =l mv r p r0 0 0 0. For a harmonic trap, the quantumfluid size is ℓ @ W mB

2 [65], andwe take ℓ@r B0 . A
key point here is that the precession angle and the delay with respect to the unperturbed case (β=0) increase at
any orbit. Hence, the longer the observation time, themore accessible themeasurement of the predicted

perturbation. For a 1-degree precession, the number of orbits is ( )( ) ( )p b= D = 180 1440M c

mv1

2

0
P

0
.With

β0=1034,ℓB=100 μm, and = -v c100
10 , for 87RbBEC,we have  101

18 orbits occurring in a time interval
 T 101 0

15 s, which is experimentally inaccessible. On the contrary, if we consider a photonic condensate
simulation, withβ0=1055,m=10−36 kg, and v0=c [27], we have = 0.031 : an experimentally testable 30-
degrees precession inT0=2 ps.

Very interesting is themeasurement of the time delay. For example, one canmeasure the delay of the orbital
oscillationwith respect to ametrological reference clock. The period shrinks at any orbit by a relative amount

( )d b= -T 4 mv

c0 M

2

P

0 . For 87RbBEC,we have δT;−10−20: after 106 orbits (15 h of observation), one has a delay

of 1fs. The bounds for themodifications of the uncertainty principle becomemore precise when increasing the
observation time. In the photonic simulation, one has 0.1 ps delay for 1 orbit.

We remark that in order to observe the precession, one has to generate states with an initial angular
momentum in a trapping potential, as in equation (40). Considering the fact that ourmodel applies tomany
physical systems, as in photonics, polaritonics, and BECs of atoms and photons, we remark that different
approaches to realize experimentsmay be taken into account.

The literature and the experimental realizations of beams and condensates with angularmomentum is so
vast that cannot be reviewed here (see for example [75]).Wewill discuss in the following some representative
cases.

For optical propagation, a trapping transverse parabolic potential is realized by graded index systems, as
lenses or opticalfibers. A further possibility is to consider an array of optical lenses, which, as shown in [76], may
also emulate a parabolicmedium. A further possible framework is given by highly nonlocal nonlinear optical
systems, as thermalmedia, where related studies have been reported [77, 78].

In these devices, the initial state with angularmomentum in equation (40) is excited by a beam spatially
displacedwith respect to the center of the trapping potential with an initial phase tilt (a sketch is given in
figure 5). The angularmomentum is varied by the incidence angle with respect to the input plane. The beam
follows amotion described by an optical orbit as represented in our theoretical analysis and in the simulations in
figure 4. As a representative case, one can consider a beamwith a transverse size of the order of fewmicrons, with
1 μmwavelength. The propagation length infibers can be kilometers, thismay enable a precisemonitoring of
the spiraling trajectories, and the deviation froman elliptical orbit due to the precession is here predicted.

For atomic BEC, states with angularmomentumhave been reported in a large number of articles (the
interested readersmay consider the references in [75]). The preparation of the initial state is conceptually similar
to the optical case discussed above. In awide trapping potential, a fraction of condensed atoms is launchedwith

Figure 5.Graphical representation of a possible experiment by a graded index fiber, or highly non local nonlinearmedium,which is
excited by a tilted laser beam, which generates a spiraling state rotating with a period depending on the input angle.
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an angularmomentumparallel to the trap axis. This results into a spiralingmotion of the atoms. An interesting
possibility for putting atom into rotation is using transfer of orbital angularmomentum fromphotons by
stimulated Raman processes with Laguerre–Gauss optical beams, as, e.g. analyzed in [79]. This approach creates
persistent currents in superfluid Bose gases, and the observation of precession dynamics in these systemsmay
provide evidence of the effects discussed in thismanuscript.

The case of polaritonic condensates is particularly relevant, as the generation of states with angular
momentumhas been actively investigated in recent years. For example, authors in [80] demonstrated that
angularmomentum can be transferred to an exciton-polariton BECby an external incoherent pump. In a
parabolic potential, which is always present in this class of condensates, one can generate a rotatingmotion, and
correspondingly observe the predicted precession. Recent developments [81] show that it is possible to precisely
control the amount of optical angularmomentum, and the generation of various spinning states. These results
show that the observation of the precession here predicted is within current technologies for polariton
superfluids.

As further possible experimental framework, wemention the case of photonic BECs. [82]Weare not aware
of the experimental generation of photonic BECwith angularmomentum.One can however figure out
approaches similar to those discussed above for polaritonic BEC. Angularmomentummay be transferred by an
external pump to the condensate. A further possibility is adopting symmetry breakingmicrocavities (e.g. by
axiconmirrors) to generate spinning photonic BECs. The detailed analysis of these possibilities is beyond the
scope of thismanuscript.

8. Conclusions

The longtime observation of an orbiting quantumfluid is a feasible experimental road to realize analogs of
orbital precession effects in general relativity and post-Newtonian corrections to the gravity law.We predict that
the orbit of awave-packet in a trapping potential exhibits a precessionwith an intriguing connectionwith the
well-known anomalous precession of the perihelion ofMercury, the first experimental test of general relativity.
We show that the precession is also linked to themodification of the uncertainty principle predicted by themost
studied theories of quantum gravity. The resulting non-commutative geometry, for which themomentum and
the position in different directions do not commute, is derived from general relativity and interpreted in the
quantum framework of amassive particle under a parabolic potential. The link between itsmotion equations
and the corresponding geodesic equations for a free particle in a bonding gravitational field connects the
quantum theory to the general relativity.Moreover, the analogywith the original Einstein’s solutions addresses
the existence of additional effective quantum forces occurring at the Planck scale.

With reference to feasible real laboratory tests of quantum gravity theories, the perturbation to the orbital
period durationmay become accessible after a large number of orbits because of the cumulative amplification
during time. In photonic analogs, one can haveβ0; 1055, and quantum simulations and experiments with non-
paraxial light, or polaritonic condensates, arewell within current experimental possibilities. By quantum
simulations, onemay test themathematicalmodels, and also conceive improved frameworks for real probes of
Planckian physics. This is specifically relevant for theories based on non-commutative coordinates [34], for
which experiments are lacking.
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