
A New Notational Framework for Declarative Process Modeling

Michael Hanser, Claudio Di Ciccio, and Jan Mendling

Vienna University of Business and Economics, Austria
michaelhanser@gmx.net, {claudio.di.ciccio, jan.mendling}@wu.ac.at

Abstract

In order to capture flexible scenarios, a declarative
approach to business process modeling describes con-
straints that limit a process’ behavior instead of spec-
ifying all its allowed enactments. However, current
graphical notations for declarative processes are tough
to understand, thus hampering a widespread usage of
the approach. To overcome this issue, we present a
novel notational framework for representing declara-
tive processes, devised in compliance with well-known
notation design principles.

1 Introduction

Owing to the increasing necessity of business processes
to retain a high degree of flexibility, a declarative pro-
cess modeling approach seeks to address the issue of
current modeling languages’ lack of supporting flexible
scenarios [13]. Contrary to the commonly used imper-
ative paradigm of process modeling, the declarative
approach does not enforce a strict order of activities,
but limits their behavior by using constraints. How-
ever, since this approach is considered less intuitive [6],
a modeling language and notation capable of conveying
concepts in an efficient manner is necessary. Current
state of the art solutions struggle with effectively com-
municating explicit principles of how to interpret a
declarative process model. Results in existing liter-
ature [6, 7] suggest that a new notation, facilitating
understandability, is needed. The notation presented
in this paper is designed to ease the process of compre-
hending declarative process models. Being developed
in compliance with respected notation design principles
[12], it offers a set of consistent mechanisms to effi-
ciently communicate semantic constructs. The frame-
work contributes to existing literature as it builds upon,
refines and extends the notation approaches presented
in [8, 13, 3, 4, 5]. More specifically, this paper summa-
rizes the findings presented in [8] and extends them by
providing a comparative discussion that demonstrates
in how far the proposed framework transcends the
existing state-of-the-art declarative process modeling
notation in terms of cognitive effectiveness.

This paper is structured as follows. Section 2 out-
lines the new notation and summarizes its background.
Section 3 then compares and contrasts both the old

and new declarative notation by means of exemplary
process models. Section 4 concludes the paper.

2 Notation

A declarative process model allows any order, repeti-
tion or absence of activities that does not violate the
constraints in the model. Declare [3], a well-known
language for declarative process modeling, offers a
predefined set of constraint templates, each of them
consisting of a unique name, a graphical representation
and a formal semantic specification in terms of Linear
Temporal Logic (LTL) [15, 1, 2].

Graphic notations like the one of Declare can be
evaluated using Moody’s principles for designing cog-
nitively effective notations [12], which relate to the
speed, ease and accuracy by which the human mind
can process and interpret a notation [9].

1. Semiotic Clarity: semantic constructs have a
1:1 correspondence with graphical symbols.

2. Perceptual Discriminability: symbols can be
clearly distinguished.

3. Semantic Transparency: graphical representa-
tions suggest their meaning.

4. Complexity Management: explicit mecha-
nisms for dealing with complexity exist.

5. Cognitive Integration: the integration of infor-
mation from different diagrams is supported.

6. Visual Expressiveness: full range and capaci-
ties of visual variables is used.

7. Dual Coding: text complements symbols.
8. Graphic Economy: the number of symbols is

cognitively manageable.
9. Cognitive Fit: different visual dialects exist for

different purposes.

Building upon the work of Di Ciccio et al. in [4, 5],
the new notation employs two corresponding views on a
process: (i) a static, multi-level global view, illustrating
the entire process at once and (ii) a local view, focusing
on one activity and its directly related constraints.
The static multi-level global view serves as a way of
regarding an entire process scheme at once. Within
this view, the notation provides for different levels of
granularity, thus increasing readability at first sight.
For the sake of conciseness, this paper only focuses
on the global view and its more detailed “standard”

*a b
NotSuccession(a,b)

a b
ChainSuccession(a,b)

*a b
Precedence(a,b)

*a b
Response(a,b)

a
END

End(a)

a
INIT

Init(a)

*a b
CoExistence(a,b)

*a b
RespondedExistence(a,b)

AlternatePrecedence(a,b)

*a I

b*a b
AlternateResponse(a,b)

I

a b
ChainResponse(a,b)

a b
ChainPrecedence(a,b)

*a b
Succession(a,b)

*a b
AlternateSuccession(a,b)

I I

a b
NotChainSuccession(a,b)

*a b
NotCoExistence(a,b)

a0..1
AtMostOne(a)Participation(a)

a1..x

Figure 1: Declare constraints by means of the new notation.

granularity level.
The notation’s rationale is based on a network

topology-like alignment of activities, which are accord-
ingly depicted by means of circular elements and com-
plemented by full text identifiers. Declare constraints
are divided into (i) Existence constraints, specifying
the cardinality of a task or the first and last activity in
a trace; (ii) Relation constraints, making an activity’s
behavior depend on the one of another task; (iii) Mu-
tual Relation constraints, which build upon Relation
constraints but further cover the converse behavior,
i.e., both activities depend on their respective others;
and (iv) Negation constraints, representing negated
versions of Relation or Mutual Relation constraints.

As shown in Figure 1, Existence constraints are
illustrated by placing text annotations within an ac-
tivity element. Participation(a), for instance, is an
Existence constraint specifying that activity a must
be performed at least once. Similarly, AtMostOne(a)
prescribes that this activity can only be performed
either zero times or once. The notation depicts such
constraints that prescribe the cardinality of a task by
adding text to the upper half of the circular element.
If the constraint specifies the first or last activity in a
process, Init(a) or End(b) respectively, it is indicated
by an annotation in the lower left or right part of the
element.

Relation constraints are embodied by utilizing solid
lines and cursors between activities. Conversely, a
constraint involving a dashed line always implies its
belonging to the group of Negation constraints. Re-
sponse(a,b) is a Relation constraint, which prescribes
that activity a must eventually be followed by activity
b. Dually, Precedence(a,b) imposes that b must be pre-
ceded by a. Succession(a,b) depicts a combination of
the former and the latter, i.e., every activity a must be
succeeded by b and every activity b must be preceded
by a, thus being a Mutual Relation constraint. These
three constraints can be further strengthened by using
the Alternation and Chain limitation. The concept
of Alternate constraints indicates that the activating
task can not reoccur without having the other task
executed in between. Similarly, Chain constraints rep-
resent an even stricter limitation as they prohibit the
execution of any other activity in between.

Relation constraints are perceived as “if-then” state-
ments: The “if part”, namely the activation, is comple-
mented by a cursor, placed pointing either inwards or
outwards of the activating task circle, depending on the
sequence-verse of the constraint. This suggests that, if
the cursor points inwards, the respective target activity
(“then-part”) must have been executed before the acti-
vation task can be performed. Conversely, if the cursor
points outwards, the target activity must happen af-
ter the activation task is completed. Applying this
to the Response(a,b) constraint consequently implies
that, since a is the activation task of the constraint,
the cursor is placed at this very activity. Furthermore,
as it specifies that the respective target activity b
must eventually be performed afterwards, the cursor
is placed outwards on the activity border.

In case a constraint allows executions of further
tasks in between, these optional activities are visual-
ized by means of smaller circles and complemented
by an asterisk (∗), referring to “any other activity”.
Moreover, to indicate an Alternate limitation, the Ro-
man symbol for 1 (“I”) is added to the activation part
of the constraint. Acting as a counter, it states that
this very activity is allowed to only happen once until
the target task is performed.

Certain Relation constraints may signify the cor-
related execution of activities, with no restriction on
their temporal order. RespondedExistence(a,b), e.g.,
specifies that the execution of activity a also requires
activity b to happen at some point in the process.
Similarely, CoExistence(a,b) also includes the converse
behavior, i.e., implying that the occurrence of a or b
always implies the occurrence of one another. In order
to illustrate such constraints, the notation employs
two connected cursors, thus forming a diamond, which
is placed at the activation of the constraint.

Finally, Negation constraints are based on existing
Mutual Relation constraints, depicting their respective
negated form. As already outlined, they are indicated

accepted

order

declined

receive book

receive bill pay

(a) Old notation

order

 accepted

 declined

receivebook

receivebill pay
*

*

*

*

*

*

(b) New notation

Figure 2: An order process, inspired by the work in [13]

by dashed lines and empty cursors. The NotSucces-
sion(a,b) constraint, e.g., states that activity a must
never be succeeded by b and b must never be preceded
by a – thus stating the opposite of Succession(a,b).
Likewise, NotChainSuccession(a,b) expresses that a
and b cannot occur after one another, as opposed to
ChainSuccession(a,b). NotCoExistence(a,b) imposes
that a and b are not allowed to occur in the same
trace.

3 Discussion

To demonstrate how the novel notational framework
is applied in an existing declarative process model,
Figure 2 illustrates a simplified process of ordering a
book, inspired by the work in [13]. Figure 2a depicts
the process by means of the old notation provided by
Declare, whilst Figure 2b represents a visualization in
terms of the new framework.

The order process comprises six activities: order,
accepted, declined, receive book, receive bill and pay.
Initially, an order must be placed to either be ac-
cepted or declined. To receive the book, the order
must be accepted. Moreover, receiving the book im-
plies that a bill must be obtained at some point.
One may only pay, if he/she is in possession of a
bill. Note that receive bill may occur both before or
after receive book. Accordingly, the activities’ be-
havior is limited by the constraints Precedence(order,
accepted), Precedence(order, declined), NotCoExis-
tence(accepted, declined), Precedence(accepted, receive
book), RespondedExistence(receive book, receive bill)
and Precedence(receive bill, pay).

Most notably, the two process models differ with
respect to how each of them visualizes Relation con-
straints, e.g., Precendece(order, accepted). Indeed,
both notations employ an underlying “if-then” ratio-
nale to assemble constructs. However, while the old
visualization approach utilizes dots and arrows for re-
spectively specifying the activation and the temporal
order (namely, the task occurring later), the new nota-
tion accomplishes to combine both concepts into one
symbol – a cursor, either placed inwards or outwards
of the activating task. Consequently, when using the
old notation, a user is forced to navigate through the
arcs between activities to identify both concepts, as
shown in Figure 2a. In contrast, the new notational
framework only needs one symbol per constraint to
convey this information and therefore results in a more

compact and efficient way of expressing constraints. A
less spatially sparse distribution of information turns
out to be highly valuable, especially when diagrams
increase in size and complexity. A notation’s ability
to provide concise and explicit mechanisms for deal-
ing with complexity relate to Moody’s principle of
complexity management [12], which is more properly
respected in the new notational framework.

The way both notations visualize Negation con-
straints depicts another key difference, being connected
to the principle of perceptual discriminability [12],
which strongly advises notations to clearly distinguish
between symbols. As shown in Figure 2a, NotCoExis-
tence(accepted, declined) only differs from CoExistence
by crossing out the connecting line between activities,
thus indicating its negated semantics. Though the
underlying principle appears readily understandable,
its representation is likely to be overlooked at first
sight. Particularly as process models become more
complex, identifying Negation constraints is bound to
become too difficult for it to be effective. Conversely,
Figure 2b suggests that the new notation visualizes
Negation constraints by swapping solid cursors with
empty ones and solid lines with dashed connectors.
Clearly, this visualization approach facilitates the act
of contrasting positive and negative constraints in a
model at first glance, thus respecting the principle of
perceptual discriminability to a higher degree.

Furthermore, the constraints Precedence(order, ac-
cepted) and Precedence(order, declined) in Figure 2b
accurately reflect how the circular shaping of activities
complies with the principle of visual expressiveness.
The full range and capacities of a circular rationale is
utilized to reduce the connecting lines’ bending points
and make the model appear more clearly arranged and
visually appealing.

Figure 3 illustrates a car rental process, inspired by
the work in [14]. The Existence constraints Init(register
client data), AtMostOne(schedule check) and Partici-
pation(charge) demonstrate the fact that both nota-
tions equally respect the principle of dual coding as
they complement graphical symbols for Existence con-
straints with text identifiers. Yet, when looking at
how these text identifiers are incorporated into the
visual constructs, it appears that Figure 3b manages
to include them within the activity element, resulting
in a much cleaner and smoother image. Contrarily, the
old notation requires an additional element to be put

identify problem

register client data

request service report

charge
init

schedule check
0..1 1..*

(a) Old notation

registerclient data

identifyproblem

 request service report

*

I

INIT

schedulecheck

0..1
charge
1..*

* *

(b) New notation

Figure 3: A car rental process, inspired by [14]

on top of the activity. Resultantly, the new notation
accomplishes to keep the number of graphical sym-
bols lower than the old notation and therefore better
complies with the principle of graphic economy.

Finally, the representation of the constraint Alter-
natePrecedence(request, service) suggests that the new
notation better complies with the principle of seman-
tic transparency. In contrast to Precedence(a, b), the
alternation of AlternatePrecedence(a, b) resides in the
fact b cannot reoccur until a is executed again. As
shown in Figure 3b, the new notation indicates this
alternation by adding the counter “I” to the activation-
part service. Just as one would assume, “I” indeed
suggests its meaning – the activity complemented by
it may only be performed once until the other one
reoccurs. Hence, it respects the principle of semantic
transparency, whereas the old notation’s representation
of the constraint is unable to provide any support for
this principle.

4 Conclusion

In this paper, we presented a novel conceptual frame-
work for representing declarative process models. By
utilizing exemplary process models inspired by sample
processes in existing literature [13, 14], we compared
and contrasted both the old notation and new notation
by means of Moody’s notational design principles [12]
and showed how the proposed framework is superior
to the prevailing visualization approach.

As this work is only concerned with the design and
comparison of notations, future research investigating
and evaluating the framework is needed. In the context
of process mining, scaling the size of activity circles
could be used to emphasize reoccurring activities and
constraints in a model, as first addressed in [10]. Stud-
ies on the guidelines of declarative process modeling
could be established, as for imperative languages [11].

References

[1] De Giacomo, G., De Masellis, R., Montali, M.: Rea-
soning on LTL on finite traces: Insensitivity to in-
finiteness. In: Proc. of the 28th AAAI Conf. on AI.
pp. 1027–1033 (2014)

[2] De Giacomo, G., Vardi, M.Y.: Linear temporal logic
and linear dynamic logic on finite traces. In: Proc. of
the 23rd Int. joint conf. on AI. pp. 854–860. AAAI
Press (2013)

[3] van Der Aalst, W.M., Pesic, M., Schonenberg, H.:
Declarative workflows: Balancing between flexibility
and support. Computer Science-Research and Devel-
opment 23(2), 99–113 (2009)

[4] Di Ciccio, C., Mecella, M., Catarci, T.: Representing
and visualizing mined artful processes in MailOfMine.
Springer (2011)

[5] Di Ciccio, C., Mecella, M., Scannapieco, M., Zardetto,
D., Catarci, T.: MailOfMine – Analyzing mail mes-
sages for mining artful collaborative processes. In:
Data-Driven Process Discovery and Analysis, pp. 55–
81. Springer (2011)

[6] Fahland, D., Lübke, D., Mendling, J., Reijers, H.,
Weber, B., Weidlich, M., Zugal, S.: Declarative versus
imperative process modeling languages: The issue of
understandability. In: Enterprise, BP and IS Modeling,
pp. 353–366. Springer (2009)

[7] Fahland, D., Mendling, J., Reijers, H.A., Weber, B.,
Weidlich, M., Zugal, S.: Declarative versus imperative
process modeling languages: The issue of maintain-
ability. In: BPM Workshops. vol. 43, pp. 477–488.
Springer (2009)

[8] Hanser, M., Di Ciccio, C., Mendling, J.: A novel
framework for visualizing declarative process models.
In: ZEUS. CEUR Workshop Proc., vol. 1562, pp. 5–12.
CEUR-WS.org (2016)

[9] Larkin, J.H., Simon, H.A.: Why a diagram is (some-
times) worth ten thousand words. Cognitive science
11(1), 65–100 (1987)

[10] Maggi, F.M., Bose, R.J.C., van der Aalst, W.M.: Effi-
cient discovery of understandable declarative process
models from event logs. In: Advanced IS Engineering.
pp. 270–285. Springer (2012)

[11] Mendling, J., Reijers, H.A., van der Aalst, W.M.:
Seven process modeling guidelines. Information and
Software Technology 52(2), 127–136 (2010)

[12] Moody, D.L.: The “physics” of notations: toward
a scientific basis for constructing visual notations in
software engineering. IEEE Trans. on Software Engi-
neering 35(6), 756–779 (2009)

[13] Pesic, M., Van der Aalst, W.M.: A declarative ap-
proach for flexible business processes management. In:
BPM Workshops. pp. 169–180. Springer (2006)

[14] Pesic, M., Schonenberg, M., Sidorova, N., van der
Aalst, W.M.: Constraint-based workflow models:
Change made easy. In: On the Move to Meaning-
ful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS, pp. 77–94. Springer (2007)

[15] Pnueli, A.: The temporal logic of programs. In: 18th

Annual Symp. on Foundations of Computer Science.
pp. 46–57. IEEE (1977)

	Introduction
	Notation
	Discussion
	Conclusion

