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Chapter 1

Introduction

1.1 Complex systems
Complex systems originate from the interaction of several elemen-

tary units that together appear to us as one unit displaying behavioral
phenomena that are completely inexplicable by any conventional anal-
ysis of the systems’ constituent parts. This is what is called a complex
system. Science and nature are full of examples of complex system
and evolution itself arises complexity. Indeed, hierarchical structures
are prevalent in nature: molecules constituited by atoms, cells formed
by subcellular organules, multicellular organism composed by cells[1].
Likewise, the most complex aspects of evolved multicellular organ-
isms’ brain emerge as consequence of the joint activity of billions of
nerve cells. A primary challenge of neuroscience is to clear up how
these cells, neurons, organized in the massive neural networks of the
brain, communicate and dynamically regulate their connections to
give rise to higher brain functions.

1.2 Neuronal networks
To study and understand the complex systems of neuronal net-

works, scientists can rely on an enormous amount of detailed knowl-
edge, accumulated over the past one hundred years, about the structure
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CHAPTER 1. INTRODUCTION 2

and function of neuronal cells. Neurons are excitable cell able to
receive, integrate and transmit information through electro-chemical
signal, called action potential. It is an all-or-none pulse, which consists
in depolarization of the cell membrane followed by rapid hyperpolar-
ization, then returning the membrane potential to the resting value.
These changes in the membrane potential result from the sequential
opening and closing of voltage-gated channel and are accompanied by
influx and efflux of ionic currents (Na,Ca,K,Cl). Signal transmission
between neuronal cells occurs by means of structures called synapses.
Chemical and electrical synapses provide two distinct modes of di-
rect communication between neurons. The first ones allow a wide
variety of responses, varying in duration and intensity and represent
a more complex behavior compared to the simple passive flow of
current allowed from the electrical ones. One of the basic principle
of neuroscience is that nerve cells do not connect randomly to each
other in the formation of a network; but each cell forms a specific
connection in particular points of contact with specific postsynaptic
target cells and not with others. The strength of the connection is
modulated by the activity of the network itself. So, if a synapse is
activated the connection is strengthened (long term potentiation, LTP),
otherwise it weakens (long term depression, LTD). These are the basis
of the modern approach dedicated to the study of brain connectivity
and are used for building models. The process of modelling aims to
capture the essence of the complexity, abstracting the real system into
a manageable size that is cognitively, mathematically and theoretically
explainable. Models that simulate real-world complex systems are
built to capture the dynamics and architecture of a system to predict
the system’s future behavior and to explain its past behavior. Such
models help us to better understand and potentially fix system failures,
such as those happening in disease processes inside human cells. Com-
plex system can be mathematically represented by networks, defined
by a set of nodes and links between pairs of nodes [2]. The complexity
of the network arises as a combination of the number of nodes, the
topology of connections and the behavior of single nodes (dynamic),
distinguishing complex networks from randomly constructed networks
(random) or regular networks. Neurons and synapse together consti-
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tute the brain network. Depending on the spatial scale, we typically
distinguish three types of neuronal units [2]: single neurons (order
of µm), populations of neurons (hundreds or thousands of neurons in
areas of the order of hundreds of µm to mm), brain areas (of the order
of several mm). Modeling local microcircuits properties as well as
large scale network properties is essential to understand how the brain
works.

Among the connections, we can distinguish anatomical, functional
and effective connections [3]. Anatomical connectivity is the set
of physical or structural connections (such as electrical or chemical
synapses) that connect neuronal units at a given instant. Anatomical
connectivity is static at time scales ranging from seconds to minutes
and dynamic from hours to days, for example during learning or devel-
opment. Functional connectivity represents the emerging connections
from a measure of statistical dependence between neuronal units. Dif-
ferent approaches used to measure the activity lead to different results
in terms of the statistical estimation of functional connectivity. Then
functional connections can also occur between anatomically unrelated
regions. Functional connectivity is independent of time in the order
of hundreds of ms and is not based on models in the sense that it
measures a statistical dependence without explicit reference to causal
effects. Effective connectivity, instead, describes the set of causal
effects that one neural unit has on another. Unlike functional con-
nectivity, it requires the specification of a causal model that includes
structural parameters. The types of possible links are summarized in
1.1 with reference to the trivial case of three neural units.

1.3 Network Proprieties
Mathematically, networks are represented by graphs [3]. A graph

is a set of n nodes, which represent neurons, and k links, which repre-
sent anatomical, functional or effective connections. If we distinguish
the directionality of the connections, the graph is called direct, oth-
erwise adirectional. The structure of a graph can be described by a
squared matrix (called adjacency or connectivity) with a size equal
to the number N of nodes. The elements aij of the matrix can be
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Figure 1.1: Types of connectivity Structural connectivity (due to physical
connections), functional connectivity (due to statistical dependencies that
do not imply causal connections and that is not directional) and effective
connectivity (random and directional).

binary, indicating the presence (aij= 1) or the absence (aij= 0) of
connections, or real, in the case in which the connections are weighed.
The mathematical features of a graph are given by various parameters
which give a simple and clear indication of the type of connectivity.
Below we define most significant parameters.
Node degree is defined as the sum of incoming (afferent) and outgo-
ing (efferent) connections: ki =

∑
εNaij . Depending on the degree

distribution of the nodes, three different types of graphs can be distin-
guished:
Random graphs, in which the distribution of the degree of the nodes is
binomial [4]: pk =

(
N−1
k

)
pk ∗ (1− p)N−1−k

Regular, ordered graphs characterized by a high segregation value. In
this case, the distribution of node degrees is simply a constant: pk = c.
Scale-invariant graphs, characterized by high-connection units, called
hubs. Hubs are nodes with a degree at least equal to a standard de-
viation from the average grade of the network [5]. Because of this
feature, hubs play a crucial role in network dynamics: if removed, they
cause the loss of information. The degree distribution of the nodes is
a power law: pk = k−γ , where γ is a characteristic exponent of the
experimental sample, of order 1.
Clustering coefficient. The clustering coefficient of a node is the
number of connections with the first neighbors with respect to the
number of maximum possible connections: Ci = ni

(ki(ki−1)/2) , where
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Ci is the clustering coefficient of the i-th neuron, ni is the number of
connections between first neighbors of the neuron, ki the number of
its connections and ki(ki − 1)/2) the maximum number of possible
connections. Calculating the average value of the clustering coeffi-
cients of all the neurons in the network, we obtain the average value of
the clustering coefficient, which quantifies the level of segregation of
the network. Random networks have low clustering coefficient values
whereas complex networks have high clustering values.
Path length. A path is defined as an ordered sequence of distinct
connections and nodes that bind a node i to a node j. In a given path
no connection or node is visited two or more times. The length of a
path is equal to the number of connections necessary to go from node
i to node j. The distance between a node i and a node j is defined
as the length of the shortest path. dij =

∑
. Random and complex

networks have small distances while regular lattices have long dis-
tances. Distance is inversely proportional to the network’s efficiency
in transporting information.
Connection density. Is defined as the ratio between the number of
connections in a network and the total number of all possible con-
nections. It is directly connected to the energy cost of a network in
transferring information.
We have seen the characteristics of random and regular networks. Com-
plex neuronal networks have intermediate properties: an asymmetric
distribution of node degrees, a high value of the clustering coeffi-
cient, the presence of hubs and modularity. Furthermore, complex
networks tend to be characterized by high clustering values combined
with small values of medium distances (small - world). This type of
structure causes all the nodes of the system to be linked together by
a relatively small number of connections, even though most nodes
have few connections. The small - world organization is intermediate
between that of a random network where the small average distance is
associated with a low clustering value, and that of a regular reticular
network, in which the high clustering value is connected with a high
average distance. To characterize the small-worlds, various measures
have been proposed, based on the idea of comparing the value of the
clutering coefficient and the average path with respect to those of an
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equivalent network (with the same number of nodes and connections)
random. Humphries et al [6] proposed the coefficient σ defined as:
σ = C/Crand

L/Lrand
The classification condition of a network as small-world

is that C � Crand e L ≈ Lrand or σ > 1.

1.4 Recording neuronal activity
Recording measurements of neuronal activity is fundamental to

understand and model neuronal circuits functioning. The complexity
of the brain requires all different modeling strategies to deal with both
the complexity of its physiology and biology. Modeling local micro-
circuits properties as well as large scale network properties are crucial
to understand how the brain works. Several experimental techniques
are nowadays available to monitor directly or indirectly electrical neu-
ronal activity on different spatial scale. Since two centuries, electrical
methods have been used to control and stimulate electrical activity in
neurons [7] [8]. Patch Clamp is an electrophysiological technique, de-
veloped by Neher and Sakmann between the 70s and 80s, to measure
electric current across single ionic channel or whole cell membrane
[9] [10]. This is one of the most recognized tool to study functionality
at the scale of single neurons. On the other hand, multiple electrodes
can be applied to the scalp of the subject to measure electrical activity
of many neurons from different brain areas (electroencephalography,
EEG). Other techniques such as magnetoencephalography (MEG),
functional magnetic resonance (fMRI) and positron emission tomog-
raphy (PET) allow indirect detection of large-scale neuronal activity
by measuring correlated quantities (magnetic fields, blood oxygena-
tion level, variation of blood flow). Specific functionalites of various
cortical regions have been explained within these tools. Not only
the areas dedicated to sensory processes, but also those that perform
high-level perceptual analysis of faces, places, bodies, words. Similar
clues also concern the localization of language, musical skills and
some aspects of mathematical skills [11]. Anyway, it still remains
unanswered which are the neuronal circuits that allow each area to
perform its particular function and the connectivity mechanisms that
allow the development of these cortical regions. While is quite simple



CHAPTER 1. INTRODUCTION 7

to study neuronal functioning at single-cell level or brain-areas scale
using standard techniques, it becomes challenging when it comes
to neuronal circuits. Indeed, to study the activity of populations of
neurons it would be require collecting, at the same time, individual
signals from hundreds of neurons with sufficient resolution. Patch
Clamp techniques lacks the possibility to control activity of a big
number of neurons simultaneously. Devices such as Multi Electrode
Array (MEA) attempt to remedy this problem [12]. MEA consist in
multiple (tens to thousands) microscopic electrodes through which
neural activity is recorded and stimulated. Anyway, commercial chips
have a limited number of electrodes and electrode size (hundreds of
microns) limits the measurements to a population response. Customs
devices with elevated number of smaller electrodes (tens of micron)
are emerging and provide better spatial resolution but analysis of the
recorded data becomes more complex [13]. Beside the generally poor
spatial specificity, electrical stimulation and recording suffer the elec-
trical interference from the environment, intrinsic damage caused by
direct contact with the electrodes and the presence of high-frequency
artifacts associated with the stimulation signal. To overcome these
limitations, over the past decades, novel techniques based on optical
recordings were designed [14]. Calcium imaging with fluorescent
indicators provides an optical approach to monitor action-potential-
evoked calcium transients. Since the introduction of calcium imaging
to monitor neuronal activity over wide field with single-cell resolution,
optical imaging methods have revolutionized neuroscience.

Light has the advantage of being non-invasive and spatio-temporally
controllable with high precision. In addition, no direct contact is nec-
essary between the stimulating source and the tissue, preventing cells
damage [15] [16]. Optical imaging methods have represented a great
stride in neuroscience by enabling systematic recordings of neuronal
circuits in living animal. Anyway there are serval physical problems
that different microscopes are made to solve: deliver photons effec-
tively to the sample, minimize the dose of excitation light, collect
emitted photons efficiently and perform measurements with high tem-
poral and spatial resolution in as large and deep a territory as possible,
all while preserving good signal-to-noise ratio (SNR) [17]. This is
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technically challenging to be achieved in vivo, dissociated and in vitro
cultured neurons may serve as a more accessible model sample to
understand the insights of network dynamics. Indeed, transparent
in vitro 2-D cultures present the advantage of being observable by
traditional wide-field microscopes. The basic wide-field fluorescence
microscope illuminates the sample over an extended area (mm size)
and captures the emitted fluorescence of single cells with a camera,
and imaging speed is limited only by camera frame rate, which ap-
proaches 500 frames per second (fps) for scientific complementary
metal oxide semiconductor (sCMOS) cameras.

1.5 In vitro model
Although in vivo system represents the ideal framework to study

functional brain activity and, as we have seen, in the past decades
significant result have been achieved, they suffer two main limits. The
first one, as we anticipated in the previous paragraph, is related to the
resolution of the experimental techniques available in vivo. Neural
circuits are composed of hundreds of thousands of neurons that are
interconnected in a highly distributed manner. To study emergent
functional properties is required to record the activity of many, or
most, neurons in a circuit in order to capture the functional properties
built by the entire population. Access to such data in living animals is
a primary goal of neuroscience but is still technically challenging to be
achieved and requires complex data analysis algorithms [18], [19]. For
this reason, primary neurons isolated from animal brain and in vitro
cultured, represent a suitable model to deeply investigate neuronal
network dynamics. Transparent in vitro 2-D cultures benefit from
traditional wide-field microscopes, which offers high spatio-temporal
resolution over a large area, ideal for mapping neuronal activity. The
other limit concerns the impossibility to manipulate network and
external parameters, such as excitatory/inhibitory balance, temperature
or surrounding ionic concentration, in living subject, while in vitro
environment lends itself to be easily shaped. In the past decades,
general physical principles were elucidated within this framework,
such as theta rhythm [20], synapse dynamics [21] or the emergence of
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small-world architecture [22] [23] and coherent activity [24]. Cultures
ability to mimic the behavior in vivo is most exemplified by the fact
that primary cortical cultures can also exhibit the default activity
pattern that living cortex display when virtually isolated, thus in the
absence of external stimulus (such as during sleep or anesthesia)
[25, 26, 27].

1.6 Cortical Slow Oscillations
The mammalian cortex is an intricate network of synaptic connec-

tions: most of excitatory synapses onto cortical excitatory neurons
come from other cortical excitatory neurons [28, 29, 30]. This recur-
rent connectivity allows cortical neurons to generate patterned network
activity, even when the cortex is virtually disconnected. Indeed, during
quiescent periods, such as sleep or anesthesia, the entire neocortex
spontaneously undergoes slow, synchronized transitions between sus-
tained periods of synaptic activity (Up states) and relative periods
of silence (Down states). This alternation (<1 Hz) between Up and
Down states are called slow oscillations (SO) [25, 26, 27, 31]. The
occurrence of SO during slow-wave sleep and ketamine anesthesia
has been observed since the early times of electroencephalography
[32] but this oscillations were at first characterized only decades later
in the neocortex of the cat [33]. Since then, great strides have been
made in elucidating the cellular and network mechanisms behind
this widespread phenomenon, but several mechanistic features of the
slow oscillation, however, remain to be explored. One of the main
characteristic of SO is their multiscalarity: SO show similar features
whether they are observed in the intact cortex of a sleeping human,
in a small piece of cortex on a plate and even in random cortical net-
works ex vivo. This multiscale property originates from the fact that
SO rely mostly on local connectivity and not on long-range connec-
tivity. The persistence of SO also in large cortical network isolated
from the living brain is the main argumentation demonstrating that the
alternation between metastable cortical states is the default cortical
activity regime. Even if such bi-stable pattern is quite resilient to
changes, spatial and temporal properties of the SO can be modulated
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by modifying network or environmental proprieties, such as excita-
tory/inhibitory balance [34], temperature [35], extracellular potassium
[36], etc. These physiological parameters shape SO and, in the same
way, the shape of cortical SO gave information about the state of the
underlying network. When there are pathologies that disturb cortical
circuits, we can expect that they will be reflected in the disruption
of slow waves. Following this principle, recordings from a patholog-
ical network may reveal alterations in the SO proprieties. Several
recent works have shed light on the modification of SO features in
animal models of neurological disorders, with a particular attention
on Alzheimer’s disease [37, 38]. Indeed, the phenomenon of SO is
related to the consolidation of memory, if slow wave sleep periods are
disturbed, cognitive functions such as attention and memory can be
negatively affected.

In vivo In vitro

Figure 1.2: Cortical Slow Oscillations. Generation of the slow oscillations
in vivo (intracellular recording of primary visual cortex of anesthetized cat)
and in vitro (intracellular recording of slices of ferret visual cortex). Adapted
from Sanchez-Vives, M. V., & McCormick, D. A. (2000). Nature neuroscience.
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Thus, slow waves, universal across species and patients, detectable
from whole living cortex as well as from single neurons on a dish,
represent a unifying paradigm to study emergent properties of the
collective dynamics in cortical module: from inter-neuronal connectiv-
ity to slow-wave propagation, providing an easy probe to understand
basic functioning of cortical circuits and their pathological alteration.

1.7 Alzheimer disease model: 3xTg mouse
strain

So far, we have seen how the cortical networks spontaneously fall
into a bi-stable rhythm or SO, how this rhythm is robust to perturba-
tions, and how alterations in SO parameters reveal abnormalities in the
underlying network [37, 38]. On this basis, recent studies has focused
on the characterization of SO in animal models of neurological disor-
ders. Of particular interest are previous works aimed to characterize
cortical emergent rhythms in transgenic mouse model of Alzheimer’s
disease. Alzheimer’s disease (AD) is a primary neurodegenerative
disorder that causes a progressive impairment of memory and other
cognitive functions, and represents the leading cause of dementia
among the elderly. The principal neuropathological hallmarks of AD
are the abnormal accumulation of the amyloid-β (Aβ) peptide forming
Aβ plaques, the hyperphosphorylation of the microtubule associated
protein tau, known as neurofibrillary tangles, the loss of neurites and
synapses, and cellular death at advanced stages of the disease. These
changes in the brain are accompanied to neuronal activity dysfunction
such as hyperexcitability [39], long term potentiation deficit [40] and
altered connectivity. Graph theoretical analysis applied to matrices
of functional connectivity of beta band–filtered electroencephalog-
raphy (EEG) channels on human patients demonstrates that AD is
characterized by a loss of small-world network characteristics [41].
Aβ-induced dysfunction of inhibitory interneurons likely increases
synchrony among excitatory principal cells and contributes to the
destabilization of neuronal networks [42]. To further investigate these
alterations with high resolution technique we required a good in vitro
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model of AD. Most AD cases are sporadic and result from multiple
etiologic factors, including environmental, genetic, and metabolic fac-
tors, whereas familiar AD is caused by mutations in the presenilins
or amyloid-β (Aβ) precursor protein (APP) genes. As advances were
made in the field of genetics, scientists became increasingly adept at
manipulating genome of mice. The 1980s saw an explosion in this
technology with the advent of transgenic mice carrying additional
genetic material. A commonly used animal model for AD is the 3xTg-
AD triple transgenic mouse model, which harbors mutated presenilin
1, APP, and tau genes and thus represents a model of familiar AD.
3xTg-AD develops Aβ and tau pathology in a progressive, temporal-
and region-specific manner that resembles that in human AD brain.
Cognitive impairment is known to exacerbate in an age-dependent
manner in 3xTg-AD mice [43]. Long-term retention deficits start to
manifest at the age of 4–5 months, and short-term memory is affected
by the age of 6–7 months. When these mice are 18-month old, they
are unable to learn the platform location in the water maze, indicating
inability to encode and/or remember spatial information, a characteris-
tic of cognitive failure relative to hippocampal impairment [44]. These
neuropathological and behavioral AD-like hallmarks are likely to be
accompanied by disturbances in cortical network activity. Patricia
Castano-Prat et al. [37] compared the Up and Down states of the
spontaneously generated cortical SO, between the 3xTg-AD mouse
model of AD and control mice at different ages. This study, performed
in vivo during ketamine-induced anesthesia, reveals that 3xTg-AD
mice presented alterations in the emergent cortical activity with re-
spect to controls, and the electrophysiological phenotype of 3xTg-AD
animals changed with age in a different manner compared to that of
control animals. Vale et. al [45] showed that an increased expression
of amyloid precursor protein, amyloid-β and tau occur also in primary
cortical neurons derived from 3xTg-AD embryo. Thus, 3xTg-AD in
vitro primary cortical cultures provide an ideal experimental frame-
work to deeper investigate the effects of neuropathological AD-like
hallmarks on network activity. On one side, they allow to study the
collective phenomenon of the slow oscillations, spontaneously ex-
pressed by the isolated cortical neurons, and how SO characteristics
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are modulated by changing physiological parameters. On the other
hand, in vitro cultures enable to study neuronal activity with highly
precise spatio-temporal resolutions (µm-ms) exploiting imaging tech-
niques. The ability to detect signals from hundreds of single neurons
simultaneously allow to infer the microscopic dynamical properties of
the network in different conditions.

1.8 Aim
The aim of this thesis was to combine a custom-made high-resolution

wide-field calcium imaging setup and personalized data analysis algo-
rithms, inorder to investigate cortical emergent rhythms and provide
insights into the microscopic network mechanisms underlying associ-
ated network activity alterations in 3xTg-AD strain derived cortical
network. We could rely on the use of a homemade fluorescence mi-
croscope optimized for this purpose: the full-field signal is captured
with a sCMOS camera which allows for high-speed measurements
(200 frames/s) and a low magnification objective (5x) was chosen to
observe large areas (> 1mm2) with high spatial resolution (1 pixel
2 µ m). Furthermore, a LED light source was chosen to excite the
calcium sensitive dye loaded in the cells. The use of a low-power LED
light minimized the effects of fluorophores photo-bleaching and pre-
vented the cells damage, while preserving a good SNR. Data analysis
was performed using a custom MATLAB software that we develop to
process fluorescence data. In short, our algorithm automatically iden-
tifies neurons centroids, extracts individual neuronal signal, detects
the occurrence of spike-associated calcium events and reconstructs
the signal through a double fitting method. This procedure allowed re-
vealing neuronal activity of large cortical areas with near millisecond
precision, which in turn informed about network connectivity. In-
deed, functional connectivity of the network can be evaluated from the
binary traces through a previously described algorithm based on gen-
eralized transfer entropy (TE) method [46, 47, 48]. TE measures the
amount of directed information between each pair of neurons. By def-
inition, TE is directional and dynamic, being asymmetric and defined
on transition probabilities and importantly data-driven TE approach
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used is model-independent. With this procedure allowed us recon-
struct network functional connectivity and thus to evaluate network
proprieties. The purposed analysis will provide massive information
about the synchronization of cortical activity and the anomalies that
can occur because of environmental modification or specific pathol-
ogy. The final intent of this work is to deepening the microscopic
proprieties of cortical network and their alteration in in vitro model of
Alzheimer’s disease. Thus we:

• designed and built the custom-made fluorescence microscope to
perform wide field calcium imaging experiments;

• isolated and cultured in vitro cortical neurons derived both from
3xTg-AD mouse strain and control animals;

• measured spontaneous calcium activity of in vitro cortical net-
works, at different stage and under different conditions;

• developed an automated and personalized algorithm to analyze
fluorescence data and extract single neuron activation with near
millisecond precision;

• analyzed properties of the collective slow oscillations and signal
propagation;

• used a generalized transfer entropy method to infer network
connectivity and study network features;

• assessed the effects of the neurodegenerative disease.



Chapter 2

Materials and Methods

2.1 In vitro primary cortical cultures
In vitro neuronal cultures have been recognized as a successful

model system of neuronal activity. As well as lending themselves to
be easily manipulated (by modifying environmental or network propri-
eties), they benefit from high-resolution imaging technique available
to monitor behavior of collective dynamics.

2.1.1 Animals
Procedures using laboratory animals were in accordance with

the Italian and European guidelines and were approved by the Italian
Ministry of Health (n. 253/2016-PR) in accordance with the guidelines
on the ethical use of animals from the European Communities Council
Directive of September 20, 2010 (2010/63/UE). All efforts were made
to minimize suffering and number of animals used.

2.1.2 Cultures preparation from early post-natal mice
cortex

Primary neuronal cultures were prepared from the brain of 0-2-d-
old mice using culturing protocols previously described [49], Fig.2.1.
In brief, after removal of the meninges from the whole brain, cerebral

15



CHAPTER 2. MATERIALS AND METHODS 16

cortices of both hemispheres were isolated and digested in 0.125
% trypsin for 30 min at 37◦C followed by 5 min DNase incuba-
tion 0.3 mg/ml at RT. Cells were mechanically dissociated with a
fire-polished Pasteur pipette and plated at a density of 2.5 X 105 on
poly-L-lysine-coated glass coverslips. Neurons were maintained in
serum-free Neurobasal supplemented with 2% B27, 1% L-Glutamine
and 1% Penicillin-Streptomycin solution. Cells were cultured in con-
trolled environment for 7-30 days in vitro (DIV), with a humidified
atmosphere containing 5%CO2 at 37◦C. 2 days after plating cytosine
arabinoside (araC) were added at a final concentration of 1.5 µM
to limit the proliferation of dividing non-neuronal cells. With this
method we obtained 80-90% neurons, 8-15% astrocytes, and 2-5%
microglia, as determined with β-tubulin III, glial fibrillary acidic pro-
tein (GFAP), and isolectin IB4 staining, Fig.2.1. Neurons in culture
grew and developed processes within hours, and by DIV 7 formed an
active network with sustained spontaneous activity. Measurements of

Dissection C57 
at P0-P2

Brain 
isolation

Cortex isolation
Chemical and mechanical

dissociation Plating

Ara-C addition at DIV 2

Mature cultures from DIV 7
• 80–90% neurons
• 8–15% astrocytes
• 2–5% microglia

Figure 2.1: Culturing pyramidal neurons from the early post natal
mouse cortex. Mouse cortex were isolated, chemically and mechanically
dissociated, and cells were plated on 24-well multiwell. Addition of ara-c
limit the proliferation of non neuronal cells. We obtained culters with 80-
90% neurons, 8-15% astrocytes, and 2-5% microglia, as determined with
β-tubulin III, glial fibrillary acidic protein (GFAP), and isolectin IB4 staining.
Neurons in culture display rich spontaneous activity by DIV-7.
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neuronal calcium activity were carried out at DIV 7-30 using custom-
made fluorescence microscope described in the next section 2.2. Prior
the experiment, culture medium was replaced with a normal exter-
nal solution (NES) containing: 140 mM NaCl, 2.5 mM KCl, 2 mM
CaCl2, 2 mM MgCl2, 10 mM HEPES-NaOH and 10 mM glucose (pH
=7.3 with NaOH; osmolarity 300 mOsm). Cultures were incubated
for 30 minutes in recording solution with 5µM concentration of the
calcium-sensitive dye Fluo-4-AM (ThermoFisher), then were washed
off Fluo-4 and placed on the recording incubator mounted on the
microscope. All experiments were performed at 32 ◦C, except when
expressly stated.

2.1.3 Small-size cultures
In order to control simultaneously the dynamics of the whole cul-

ture, thus visualizing the whole culture in the field of view of the
camera, we create small, millimeter-sized cultures. Cortical neurons
were plated on 12 mm glass coverslips (CS-12R15, Mutichannel Sys-
tems) that contained a pierced PDMS mold, as illustrated in Fig.2.2.
Prior to plating, glasses were washed in 70% ethanol and flamed.
Several 12 mm diameter layers of PDMS 1 mm thick were prepared
and subsequently pierced with biopsy punchers (rapid core, Welltech)
of diameters in the range 1.5-6 mm. Each pierced PDMS mold typi-
cally contained 4 to 8 cavities, either circular or quasi–rectangular by
overlapping consecutive pierced areas. The PDMS molds were then
attached to the glasses and the combined structure were placed in 15
mm diameter culture wells for neuronal plating and maintenance. The

PDMS was gently removed before measuring, and we did not detect
any substantial damage in the network after PDMS removal. Mea-
surements from a portion of the culture can lead to record neuronal
activation that are due to external unviewed input (neurons outside
the field of view). This can cause the identification of spurious and
non-real correlations between neurons, which negatively affect con-
nectivity inference. Avoiding this effect, small size cultures allowed a
more precise reconstruction of the network. Additionally, measures
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Figure 2.2: Millimeter-size cultures. Small neuronal cultures were obtained
by plating cells on 12-mm coverslip covered with 1 mm layer of pierced
PDMS. The PDMS mold was gently removed before recording.

from cultures with different size allowed to explore how this parameter
influence network activity and functional connectivity development.

2.1.4 Physiological parameters
Excitatory-Inhibitory ballance. Sufficiently mature neuronal

cultures (above DIV 7) contain both excitatory and inhibitory neu-
rons. To study the contribution of the inhibitory sub–network in the
spontaneous activity, data was first recorded with both excitatory and
inhibitory connections active (E+I networks). Next, the culture was
treated with 20 µM bicuculline methiodide (1030/50, Biotech), a
GABA receptor antagonist, to completely block inhibition, and the ac-
tivity of the excitatory–only culture (E network) was measured again.
Bicuculline was applied to the culture 5 min before the actual record-
ing of activity for the drug to take effect.
Excitability. In order to increase calcium events frequency in culture
with poor spontaneous activity, some of the experiments were car-
ried out after the addition of 4-Aminopyridine (4-AP, 2 mM, 275875,
Sigma-Aldrich) which blocks voltage-activated K+ channels. 4-AP is
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a potent convulsant, generally used to cause epileptiform activity in in
vitro preparations [50].
TRPV4 blockage. In the work described in chapter 3 some exper-
iments were repeated after the addition of 5 µM concentration of
RN1734 (R0658, Sigma-Aldrich), a selective antagonist of thermosen-
sitive transient receptor potential vanilloid channel TRPV4 [51] [52]
[53].
Firing inhibition. To detect spontaneous calcium oscillations in
the absence of spike driven calcium entry, additional experiments
were done following the blockage of electrical activity through 1 µM
tetrodotoxin (TTX, 1078, Tocris) administration. It’s a neurotoxin
which inhibits the firing of action potentials by binding the voltage-
gated sodium channels on cell membranes and blocking the passage
of sodium ions into the neuron.

2.2 Calcium imaging setup
Transparent in vitro 2-D cultures present the advantage of being

observable by traditional wide-field microscopes. This technology
offers high spatio-temporal resolution over a large area, ideal for map-
ping neuronal activity. In this section, we report about the schematics
of the homemade fluorescence microscope optimized for this purpose:
the wide-field signal was captured with a sCMOS camera (ORCA-
Flash4.0 V2, Hamamatsu, pixel size = 6.5 µM) which allowed for
high-speed readout (up to 1000 frames/s), a low magnification and
relatively high numerical aperture objective (High-Res 5X, 0.225 NA,
28-20-44, Optem) was chosen to observe large areas (>1 mm2) with
single cell resolution. We combined the objective with an eyepiece
with shortest focal length (LA-1986-A, f=125 mm, Thorlabs) to re-
duce the overall magnification from 5X to ∼3X (pixel size ∼ 2 µm).
To minimizes the effects of fluorophores photo-bleaching and prevents
the cells damage, while preserving a good SNR, we used a low power
LED light source centered at 490 nm (M490L3, ThorLabs) to excite
the calcium sensitive dye Fluo4-AM loaded in the cells. In detail: the
LED light, filtered with a band pass filter (FB480-10, Thorlabs) was
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focused on the sample to excite the fluorescent molecules bound to
calcium ions. The emission is collected by the objective, filtered by a
dichroic beamsplitter (FF495-Di03-25x36, Semrock) that reflects all
the spectral region above 495 nm, and imaged on the display of the
computer through the camera after being further cleaned by a long-
pass filter which cut wavelengths below 500 nm (FEL0500, Thorlabs).
Optical setup is also equipped with a temperature controller (TC-324B,
Warner Instruments), which enables to regulate temperature and main-
tain it stable during the recording, and a perfusion-aspiration system
that allow the release of chemical compounds to the specimen. The
system configuration is illustrated in Fig.2.3. LED light and camera
recording are controlled by a custom MATLAB code through a Data
AcQuisition (DAQ) board. Images were acquired with a speed in
the range of 1 - 200 frames per second (fps) and a pizel size of 1.8
µm/pixel. The recording speed was adjusted in each experiment to
balance image quality, minimum photo–damage to the cells and suffi-
cient temporal resolution. The size of the images was manually set to
fit the requested acquisition speed. The maximum image size that we
could set was 1600x1600 pixels, i.e. 3.5x3.5 mm 2 at the lowest reso-
lution and acquisition speed (33.33 fps). At 200 fps, for instance, the
maximum image size was 200x200 pixels, corresponding to 400x400
µ m2. The number of neurons monitored depended on the actual size
of the culture and the recording settings, but all experiments contained
from 100 to 1000 neurons.
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Figure 2.3: Optical setup. LED light source centered at 490 nm was focused
on the sample (S) loaded with Fluo-4 and excited the fluorescent molecules
bound to calcium ions. The emission is selected with a filter and collected
by the objective (O) and imaged on the display of the computer through a
CMOS camera
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2.3 Data analysis
The advantage of our experimental setup is the possibility to ac-

cess statistical proprieties of large biological networks because of the
wide field calcium imaging of the cultures. However, to extract the
information from images requires an extended analysis. In this section
we will explain the analysis methods used in this work, which can
be divided in three main parts: neurons recognition, calcium events
detection, SO analysis and connectivity inference. All data processing
was performed through numeric codes implemented in MATLAB en-
vironment, except for Events Coincidence calculation implemented in
Pyton.

2.3.1 Neurons recognition and spike inference
At the end of each experiment, the recorded image sequences were

collected and saved as three-dimensional matrix. The first step of
data processing consists in the localization of the cells body position
on the images. Neurons centroids were identified by analyzing the
cumulative difference of the signal between the various frames of
the time series. The obtained matrix is analyzed in the frequency
domain via two-dimensional Fourier transform and suitably filtered to
eliminate high-frequency noisy components; then the local maxima of
the matrix are selected Fig.2.4. Once established cells positions (100 –
1000 for each area scanned, depending on the size of the area), their
fluorescence signal as function of time, mediated within a distance
comparable to soma radius (∼ 15 microns), were collected and taken
as an indicator of intracellular calcium at the level of neuronal soma.
The raw traces of the neurons extracted from the t-stack were baseline-
corrected and normalized as4F/F0. Traces were then filtered using
a previously described [54] modified Perona-Malik filter, an edge-
enhancing denoising algorithm that performs smoothing within slow
varying regions and prevents smoothing across fast varying regions
Fig.2.5 (preserving fast varying fluctuation events associated with the
electrophysiological activity of the neurons). On the filtered traces,
a putative event is detected when a series of conditions are satisfied:
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Figure 2.4: Neurons detection. Data were analyzed in the frequency domain
via two-dimensional Fourier transform and suitably filtered to eliminate high-
frequency noisy components; neurons position were identified as the local
maxima of the matrix.

at the onset the fluorescence intensity and the slope of the trace show
an increase; at the offset the slope of the trace decreases and a certain
time interval occurs within the onset and the offset [54] Fig.2.5. This
operation gave a first indication about the onset time of each events,
which were used as starting point for a fitting procedure based on a
previously described peeling algorithm [55]. The algorithm assumes
that there exists an elementary calcium transient characteristic of a
single action potential and that the calcium transients add up in a
linear fashion. Each putative transient was fitted in two-step with a
model function composed of a single-exponential rise and a single-
exponential decay Fig.2.5.

I(t) = a ∗ exp−
t−t0
τon ∗ (1− exp−

t−t0
τoff ) (2.1)
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In the first step, we fitted the onset to determine the start of the event t0
and the onset time constant τon. Then we fitted the entire calcium tran-
sient to obtain estimates of amplitudes a and time constants the decay
components τoff . The fitted calcium signal is then subtracted from
the trace and we proceed by iteration until all the calcium transients
have been eliminated from the time series and for each neuron the
onset time of each events t0, with near ms precision, and the relative
characteristics (τon, τoff , a) were saved. This procedure enable the
reconstruction of complex spike trains from fluorescence traces. The
inference of the events onset with oversampling precision is crucial
for a correct reconstruction of casual interaction among neurons.
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Figure 2.5: Events detection from calcium traces. Schematics explanation
of peaks detection protocol: on baseline corrected (1) and filtered (2) calcium
trace, a putative peak was identified when a series of condition were full-
filled (3) and then fitted in a two step procedure to obtain real onset time
and relative features (4).The fitted calcium signal is then subtracted from the
trace and we proceed by iteration (5) until all the calcium transients have
been eliminated from the time series.

2.3.2 Slow Oscillations analysis
As explained in section 1.6, cortical networks spontaneously un-

dergo simultaneous oscillation (SO) between periods of collective
activity (Up states) and periods of relative silence (Down states). To
characterize this emergent activity regimes in early mature cultures
under different condition, the averaged signal of the whole network
served as an indirect but reliable indicator of the network collective
dynamics. From the averaged fluorescent signal we extracted and
compared several parameters of the SO: frequency of oscillation, up
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state duration, down state duration, slope of down-to-up state transi-
tion, slope of up-to-down state transition, relative firing rate, CV of
the up state duration, CV of the down state duration, and CV of the
up state–down state cycle. On the cumulative traces, events detection
was performed as described for single neurons traces. Then, Up states
were then identified when a series of events occurs consecutively with
inter-event-intervals below 1 second. Time windows between different
Up states were assessed as Down states, Fig.2.6. The frequency of
the SO was calculated as the inverse of the duration of the whole
Up-Down cycle. We evaluated mean Up and Down duration for each
recording. To determine the characteristic frequency of the Up state
we mediated the inverse of the inter-events intervals of single neurons
per Up state. The CV was previously defined as the fraction between
the standard deviation and the mean value of the durations of Up and
Down states and of the whole Up-Down cycles singled out for each
recording, respectively [25].

Up

Down

Figure 2.6: Up and Down states identification. Once detected events
occurrence on the averaged fluorescence signal, Up states were then identified
looking for consecutive events occurring with an inter-event-intervals smaller
then 1 s. Down states results between the end of an Up state and the beginning
of the following one.

2.3.3 Signal Propagation
The propagation of the slow oscillations could occur in either

direction, even though a predominant direction was often observed in
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each culture. We computed the speed of Up state propagation across
the culture, relying on the onset time of individual neurons extracted
through peeling algorithm, as described in the previous section. In
detail, when a predominant direction is observed: we consider the
onset time of the averaged trace tA0 and collected the onset time tn0 and
the spatial coordinate cn = (xn, yn) of single neurons firing in a time
windows 2∆t around tA0 . We created a time bin vector t0 that goes
from tA0 −∆t to tA0 + ∆t with an interval δt, which element ti0 are:

ti0 ∈ t0, ti0 = tA0 −∆t+(i−1)∗ δt with i ∈
[
1,

2∆t

δt
+1

]
(2.2)

Time values tn0 were approximated to the nearest ti0 and sorted in
descendent order. For each time bin value ti0, we calculated the relative
centroid, or geometric center, of the activity C(ti0) = Ci = (xi, yi),
given by the arithmetic mean of the coordinates of the Ni neurons
firing simultaneously in the instant ti0.

xi =
∑

m|tm0 →ti0

xm

N i
(2.3)

yi =
∑

m|tm0 →ti0

ym

N i
(2.4)

This points, that serve to identify “activity position” at each time step
i, where linearly fitted to get the propagation direction y = A ∗ x+B
and ortogonally projeced onto y, see Fig.2.7. We get the aligned points
Ci
p = (xip, y

i
p), where:

xip = A/(A2 + 1) ∗ (Di −B) (2.5)

yip = A ∗ xip +Di (2.6)

where Di is y-intercept of the line y′ = −1/A ∗ x+Di orthogonal to
y and passing through (xi, yi).

Di = yi + 1/A ∗ xi; (2.7)
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We evaluate propagation speed as V =< vj >:

vj =
δSj

δt
=

√
(xj+1 − xj)2 + (yj+1 − yj)2

δt
with j ∈

[
1,

2∆t

δt

]
(2.8)

ms

Figure 2.7: Activity propagation. Example of activity propagation along a
particular direction. Events onset time of insividual neurons were used to
determine the propagation direction and velocity. Scale bar: 500µm.

2.3.4 Network connectivity
Binary traces obtained from the analysis of fluorescence traces

were processed to calculate the effective connections among neurons.
In this thesis we used and compared two distinct methods: the transfer
entropy function and the events coincidence function. Both methods
enable to infer directed functional network connectivity in which the
presence of a directed link between two nodes reflects the fact that
knowledge of the activity of one node (source) is helpful in predicting
the future behavior of another node (target). We consider that the
synaptic time constants of the neuronal network (∼ 1ms) are much
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shorter than our time bin size (5ms/10ms). We therefore need to ac-
count for “same bin” causal interactions between nodes, i.e. between
events that fall in the same time-bin. Additionally, as we discussed
long, spontaneous network activity of sufficiently mature cultures
switches between two dynamical regimes. Such cultures display pe-
riod of sustained synchronous firing, Up states, combined with sparse
irregular firing activity during Down states. Previous studies demon-
strated that connectivity reconstruction depends on the dynamical
state the network is in [48, 56]. Stetter et al. suggested that during
the Up states, because of the high excitability and the collective syn-
chronization of the network, there can happen that local events cause
changes at very long distance which don’t reflect a direct connection.
Thus, during Up states the directed functional connectivity can diverge
from the structural excitatory connectivity. On the contrary, in the
relatively quiet Down period, a post-synaptic events is presumably
influenced only by the pre-synaptic activity. To take it into account
when reconstructing the network we have to restrict the evaluation
of functional connectivity to non-synchronous dynamical state. We
followed the method described in [48]: we selected dynamical states
by introducing a variable, called Conditioning Level (CL), obtained
from the histogram of the average signal of the whole network. We
then include in the analysis all data points at time instants in which
this average fluorescence is below CL value, located just on the right
side of the Gaussian part of the histogram of the average fluorescence,
see Fig.2.8C.
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A

B

C

Figure 2.8: Network activity and selection of dynamical states. A Exam-
ples of calcium fluorescence time series for three neurons, vertically shifted
for clarity. B Corresponding averages over the whole population of neurons.
C Distribution of population-averaged fluorescence intensity for the complete
time series, divided into two ranges. The functional connectivity associated
to different dynamical regimes is then assessed by focusing the analysis on
specific amplitude ranges.
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Generalized Transfer Entropy

For two discrete Markov processes X and Y (here shown for equal
Markov order k), the Transfer Entropy (TE) from Y to X was defined
as:

TEY→X =
∑

P (xn+1, x
(k)
n , y(k)n ))log

P (xn+1|x(k)n , y
(k)
n )

P (xn+1|x(k)n )
(2.9)

TE quantifies the flow of information directed from X to Y. It goes from
0 to infinity, where 0 indicates lack of causality from X to Y and a value
¿ 0 indicates the presence of causality. By definition, transfer entropy
is directional and dynamic, being asymmetric and defined on transition
probabilities. It can be seen as the distance in probability space
(known as the Kullback-Leibler divergence [57]) between the “single
node” transition matrix P (xn+1|x(k)n ) and the “two nodes” transition
matrix P (xn+1|x(k)n , y

(k)
n ). To reconstruct functional connectivity from

binary traces of network activity, we used and customized a previously
described improved algorithmic approach based on a generalized
version of TE, which take into account the general characteristics of
the system [48]. This consists in modifying TE in two main aspects:
the inclusion of “same bin” interaction and the selection of dynamical
state. It is important to consider causal interactions between events
that occur within the same time-bin because the precision with which
events ignition is inferred (5 ms) is not high enough to extract the
temporal order of elementary spiking events. Slower interactions are
still included by calculating TE for a Markov order 1 and 2. In addition,
the restriction of TE evaluation to non-synchronous dynamical states
is crucial to properly capture interactions between neurons. Selection
of dynamical states is performed by analyzing the histogram of the
average signal of the network, and choosing a threshold value just on
the right side of the Gaussian part, Fig.2.8.

Events Coincidence

We defined an alternative measure of effective functional correla-
tion that we called Events Coincidence (EC). EC, whose algorithm
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was developed in Pyton environment, for each event of each neuron,
looks for the presence of an event of another neuron within a certain
time interval ∆t. Thus, for each pair of neurons X and Y, ECX→Y
represents the number of events coincidences revealed, normalized
to the number of total spikes of the source neuron. By definition EC,
detect the causal influence of events in the past with events at a later
time, thus is asymmetric and directional. As for TE evaluation, EC
takes into account “same bin” coincidences, and was calculated in time
instants in which the network is in the non-synchronous dynamical
regime.

Validation of connectivity index

Connectivity indices, calculated through generalized TE and EC
functions, must be subjected to a selection process in order to eliminate
non-significant connections, due to spurious and non-real correlations
between neurons. Therefore it is necessary to establish a method to
quantify index statistical significance. The easier way to determine
whether the computed connectivity value is significant above the noise
level is to choose a threshold that represents the minimum value that
corresponds to a significant transfer of information. However, connec-
tivity values depend on the amount of information present, so neurons
with higher firing rates will naturally have higher values. A more
appropriate approach would be to define a threshold for each couple
of neurons. Prior literature has found the creation of surrogate data
to be an effective way to determine whether the connectivity values
are significant, using methods such as jittering [59, 60], shuffling of
trials [61], and shuffling of inter-spike-intervals [62]. These methods
estimate the distribution of a quantity by resampling original data. In
this work we used a jittering algorithm, in which surrogate baseline
data are generated from original data by moving each event time by
a certain random offset. We constructed the offsets using a uniform
random distribution from -6 time-bins to 6 time-bins (-30 to 30 ms).
For each recording we build 50 surrogate dataset and calculated cor-
responding connectivity index. This values serve as a baseline for
insignificant index, providing, for each pair of neuron, the distribution
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of index value obtained by chance, thus 95% confidence interval. The
connectivity matrix is then filtered eliminating all connections that do
not have a value outside their own confidence interval.

In silico model

To asses the performance of our algorithm we test it on a series
of calcium fluorescence traces generated by simulating dynamics of
a network with known ground-truth topology. To model network
structure and dynamics we adapt a previously described method [24]
to fit our experimental observation.
Network construction. We used cells coordinates extracted from real
experimental data to construct an in silico model of cortical neuronal
networks. Pyramidal neurons were modelled as circular cell bodies
(somas) with fixed diameter ϕs = 15µm. We simulated axons growth
from each soma in a quasi-straight path, to mimic realistic condition.
Axons length was given by a Rayleigh distribution

p(`) =
`

σ2
`

exp

(
−`2

2σ2
`

)
(2.10)

Where σ2
` = 900µm to obtain < ` >' 1.1mm. We simulated fluctua-

tion by dividing the total length ` into small segments (∆`), placing
each segment at the end of the previous one and oriented according to
a Gaussian distribution around the previous segment given by

p(θi) =
1√

2πσ2
θ

exp

(
−(θi − θi−1)2

2σ2
θ

)
(2.11)

where θi−1 is the angle between the segment i-1 and the x-y plane. σθ
is chosen to obtain a long persistence length (' 15◦).
Finally, we modelled the dendritic tree of a neuron as a disk of diame-
ter ϕs, following the work of Wen et al. [63]. The diameter was drawn
from a Gaussian distribution with mean µ = 300µm and standard
deviation of σ2 = 40µm. The growth process described above leads
to a geometric construction of the network connectivity based on the
following rules: a connection can be established only when the axon
of a given neuron intersects the dendritic tree of any other neuron,
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Figure 2.9: Geometric construction of the neuronal network. For sim-
plicity only two neurons are shown,indicating their somas and axons. The
area covered by the dendritic tree is depicted for two neurons. A connection
between two neurons is established with a certain probability whenever the
axon of a neuron crosses the dendritic tree of another one.

those neurons that fulfill this geometric condition will connect with
probability α (in our case we considered α in the range 1/3–1). The
whole network connectivity that results from this geometric construc-
tion is stored in the adjacency matrix A, where Aij = 1 identifies a
connection i→ j.
Soma dynamics. We simulated soma dynamics and action potentials
generation using a a reduced form of a quadratic integrate-and-fire
model with adaptation [64, 65].

τc
dv

dt
= k(v − vr)(v − vt)− u+ I + η, (2.12)

τα
du

dt
= b(v − vr)− u, (2.13)

if v > vp then v → vc, u→ u+ d

where v(t) is the soma membrane potential, u accounts for the internal
slow currents generated by the activation potassium channels and the
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inactivation of sodium channels; I is the synaptic inputs from other
neurons; and η is a noise term. The quadratic part (v − vr)(v − vt)
of equation 2.4 has two fixed points, one stable, vr, and one unstable,
vt. These points characterize the dynamics of the neuron. Insufficient
stimulation keeps v < vt and the membrane potential relaxes towards
its resting potential vr. However, repeated stimulation brings v above
the threshold value vt. The potential then grows rapidly up to a preset
peak value v ≥ vp that is associated to the generation of a spike. The
potential is thereafter reset to vc.
Synaptic dynamics. The total input currents on a neuron j is

Ij(t) =
∑∑

Ei(t, tm) (2.14)

where Ei(t, tm) is the current induced by neuron i at time t as a result
of the action potential generated at time tm. The first summation
comprises all input connections kjin on neuron j, and the second one
all spikes previously generated. The post-synaptic currents due to the
firing of neuron i can be expressed as

Ei(t, tm) = gADi(tm)exp

(
−t− tm

τA

)
Θ(t− tm) (2.15)

where gA is the strength of the synapse (associated to the receptor den-
sity at the post-synaptic terminal) and τA the characteristic decay time
of the post-synaptic current. D(t) accounts for short-term depression,
a mechanism in which synapses reduce their efficacy due to depletion
of neurotransmitters in their presynaptic vesicles [66].
Sources of noise. The last term of equation 2.4 accounts for the noise
present in the system. We consider that two sources of noise: a Gaus-
sian white noise associated to fluctuations in membrane potential and
a shot noise representing the spontaneous release of neurotransmitters
in the presynaptic terminals [24].



Chapter 3

A preliminary study: light
effect on neuronal cultures

3.1 Introduction
In section 1.4, we have seen how optical techniques provided

neuroscientists with a powerful new range of tools for controlling
neuronal activity [14]. This techniques have the advantages of being
contact-free, damage-free, artifact-free and spatially precise. However,
light on its own is not completely inert. Several studies report that light
at different wavelength and intensity, may alter cellular physiology
[58]. Since 60’s infrared light has been known to have effect on nerve
cells [67, 68] and subsequently infrared neural stimulation (INS) was
proposed as an alternative approach to achieve optical stimulation of
neurons without the need for any genetic manipulation [69, 70]. INS
consists in short pulses of infrared light directly absorbed by water
[71, 72]. Nevertheless, infrared techniques require delivery of high
power pulses and have to compete with strong absorption in water.
In the past few years some investigations brought the attention to the
effects of light in the visible spectrum on naive neurons. A recent
work illustrates a significant inhibitory effect of blue and yellow LED
light (470-570 nm range,13 mW) on the firing activity of different
cell types (Mitral Cells and Tufted Neurons in the olfactory bulb and
Medium Spiny Neurons in the striatum) [73]. Other previous studies

36
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documented an excitatory effect of blue light on cortical neuron type
[74, 75]. In all these works, the effect of light exposure appears to
be due to an increase in bath or tissue temperature which leads to
changes in resting membrane potential, spontaneous spiking, input
resistance, membrane time constant, and synaptic activity in acute
slices [76] [77] [78]. The present chapter will describe a preliminary
work aimed to investigate and characterize the effects of visible LED
light on naive primary cortical neurons activity. We demonstrate
that a shift in light power (from 0.13mW/mm2 to 1.8mW/mm2)
increases overall spontaneous calcium activity (29%). Earlier studies
identified one of the potential mechanism behind optical stimulation
of neurons in the activation of heat-sensitive ion channels TRPV
[79, 80]. Different TRPV channels activate at different temperatures.
The complete characterization of this effect is out of the scope of
this work, nevertheless, we also investigated the role of the TRPV4
(sensitive to the temperature changes [51, 52, 53], and responsible
for neural activation in the framework of the INS technique [79])
in the measured effect, which has been elsewhere addressed. We
demonstrate that by blocking this channel, the activity enhancement
effect disappears.

3.2 Experimental Methods
Primary neuronal cultures used in these experiments were prepared

from the brain of 0-2-d-old C57BL/6 mice using culturing protocols
described in section 2.1.2. Here we used 4-AP in order to increase
calcium events frequency in culture with poor spontaneous activity.
Both with and without 4-AP, the experiments were repeated after
the addition of 5 µM concentration of RN1734, a blocker of TRPV4
channel. Additional experiments were done following the blockage of
electrical activity through 1 µM TTX administration. See section 2.1.4
for more information about 4AP, RN1734 and TTX administration.
Measurements of neuronal calcium activity were carried out at DIV
7-14 using custom-made fluorescence microscope described section
2.2.
Calcium imaging. Calcium imaging measurements were done under
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Figure 3.1: Experimental procedure. Two calcium imaging measurements
were performed on the same area of the sample at low (0.18mW/mm2) and
high (1.3mW/mm2) LED power illumination.

two experimental conditions (Fig.3.1b): in a first moment data were
recorded using low-power light for excitation 0.18mW/mm2) and
after 2 minutes a second measurement was performed on the same
area of the sample using high-power illumination (1.3mW/mm2). A
third measurement at low-power light was done to check the reversibil-
ity of the phenomenon. Spontaneous activity was recorded as image
sequences of 150-300 s in duration, with an acquisition speed of 1 Hz.
Low acquisition speed was required to have enough signal-to-noise
ratio in low-power measurements.
Patch Clamp. Additional electrophysiological recording were per-
formed on Fluo-4 loaded neurons. Electrophysiological recording
chamber was placed under an upright microscope (Olympus BX51WI)
equipped with a 14 bit CCD camera system (Cool SNAP Myo, Pho-
tometrics). Fluorescence was achieved using a Cairn Research - Op-
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toScan monochromator and visualized with a 40x water-immersion
objective. The system was driven by Metafluor (Molecular Devices,
Foster City, CA, USA). Membrane currents were recorded with the
patch-clamp amplifier (Multiclamp 700B; Molecular Devices) and
acquired with Clampex 10 software (Molecular Devices). Fluo-4
loaded neurons were placed in the recording chambers replacing cul-
ture medium with NES. Patch clamp recordings were obtained in
whole-cell configuration, using borosilicate glass electrodes (4–5 M)
filled with an intracellular solution containing (in mM): 140 KCl, 10
HEPES, 2 Mg-ATP, 0.01 CaCl2, 2MgCl2, and 0.5 EGTA (pH =7.3
with KOH; osmolarity 290 mOsm). Neurons were voltage clamped
at -70 mV for sEPSC recordings. Currents were filtered at 2 KHz,
digitized (10 KHz) and acquired with Clampex 10 software (Molecular
Devices).Neuronal activity was recorded in presence of fluorescent
light (1.4mW/mm2; wavelength 488; exposure 100-150 ms) for 10-
12 minutes, after their sEPSCs (excitatory postsynaptic currents) were
monitored for 5 minutes in absence of fluorescence. In control experi-
ments, cells were recorded for 15 minutes in absence of fluorescent
light.

3.3 Statistics
Calcium imaging. For each area and each value of the power

intensity, data were acquired and saved as three-dimensional matrix, a
sequence of 1600x1600 pixels images. Data analysis was performed
as described in section 2.3 except for neurons identifications. Here
centroids were extracted by analyzing the mean frame over time of
the high power recording (instead of the cumulative difference of the
signal between the various frames of the time series): we selected the
most intense cells in order to reduce signal-to-noise ratio (SNR), espe-
cially in noisy low power measurements. Once the cells positions had
been retrieved (500 - 800 for each area scanned), their fluorescence
intensities traces as a function of time were collected, both in low
and high power conditions. Calcium events detection was performed
as previously illustrated, see sec.2.3. We recognized and discarded
non-neuronal signals by analyzing calcium transients dynamics and
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discarding calcium transients with a rise time higher than 2 seconds.
In the total 4 minutes recording (2 min low power, 2 min high) from
60 to 150 spontaneously active neurons were found for each glass.
To determine the effect of light power, the number of calcium events
in low power condition and high power condition were statistically
compared, through a paired unilateral Wilcoxon rank sum test. We
obtained a certain number “n” of glass in which light power signifi-
cantly increases the number of calcium events. To establish if these
positive results are due exclusively to a repetition of type I error and
thus the null hypothesis (’light power increase don’t augment number
of calcium events’) is true, we calculated the probability to get by
chance “n” statistically significant results over N total glass measured,
as:

p =
N∑

m=n

(
m

N

)
αm(1− α)N−m (3.1)

Where α is the probability that the test failed rejecting the null
hypothesis (0.05). The relative increase was calculated for each neuron
and the average increase was calculated as:〈

EventsH − EventsL
EventsL

〉
(3.2)

We performed a populations analysis computing the mean number
of events, the average events shape and network synchronization on
each slide showing significat increment of neuron-by-neuron activity.
We compared values obtained at low and high power by Wilcoxon
rank sum tests. Synchronicity of the network was evaluated as the
relative number of simultaneous neural events.
Patch Clamp. For patch clamp data analysis, sEPSCs were identified
on the basis of a template created for each neuron using 30-50 single
events for each trace. All events, recognized through the template
search function, were visualized, identified and accepted by manual
analysis. Data were analyzed off line with Clampfit 10 software; Ori-
gin 7 software was used for statistical analysis of electrophysiological
recording.
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3.4 Results
We exploited a wide field high-resolution calcium imaging setup

to study the influence of LED illumination on spontaneous calcium
activity of primary cortical neurons from early post-natal mice. By
DIV 7 neuronal cortical cultures formed an active network and showed
spontaneous activity. We recorded spontaneous calcium transients
on 12 mm glasses at DIV 7-14, loading cells with Fluo-4 AM. For
each slide we scanned several large areas (2x2 mm2) and for each
area we performed two measurements: one using low-power LED
light (490 nm wavelength, 120 s, 0.18 mW/mm2) for excitation, the
other using higher LED power illumination (490 nm wavelength, 120
s, 1.3 mW/mm2) Fig.3.1). Data from 2 minutes recording were col-
lected and analyzed through a custom-made algorithm designed to
recognize cells Fig.2.4, select neuronal traces and sort calcium events,
discarding events characterized by slow rise time typical of astrocytes.
We analyzed a total of 65 areas from N=12 slides from 5 different
cultures. For each slide from 60 to 150 spontaneously active neu-
rons were detected and the number of calcium events per neurons, at
low and high power, were statistically compared (paired unilateral
Wilcoxon rank sum test) to evaluate the effect of light power. On n=9
over N=12 (75%) slides scanned, light induced a significant (p¡0.05)
enhancement of activity, namely an increase in number of calcium
events per neurons as exemplified in Fig.3.2a-b. The validity of these
results is assessed by the probability to obtain by chance ”n” signifi-
cant events over N experiments, i. e. the probability to repeat type I
error n time, which is p = 3.7 ∗ 10−10. The average relative increase
per neuron was 29 ± 6 %. The phenomenon was reversible, as the
number of calcium events came back to control values on 75 % of
slides when cultures were then exposed to the low power light stim-
ulation (p = 3.7 ∗ 10−10) Fig.3.2g. Populations analysis were done
by selecting statistically significant slides and comparing the average
proprieties (number of events, amplitude and time constants) from
low and high power measurements. We observed that relative high
power illumination induces a significant increase in the mean number
of events (p=0.002, N=9, rank sum test) without affecting the events
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amplitude, rise and decay time constants (p>0.05, N=9, rank sum test)
as shown in Fig.3.2c. Notably, the increase in network activity does
not affects the network synchronization (p>0.05, N=9, rank sum test),
measured as the relative number of simultaneous events (Fig.3.2c).
Parallel patch clamp recordings of spontaneous network activity on
primary cortical neurons loaded with Fluo-4 AM confirmed that the
switch-on of a fluorescent light source (488 nm, 1.4 mW/mm2, fluo-
rescent light exposure: 100-150 every second) significantly increases
synaptic currents frequency by 86% (n = 6; *p < 0.05, paired t-test)
Fig.3.2e, without affecting sEPSC amplitude (9.2 ± 2.8 pA control;
8.2 ± 1.2 pA, 488 nm light on; n = 5; p > 0.1, paired t-test; data
not shown), suggesting an increase on neurotransmitters release. The
increase in sEPSC frequency was not simply due to the switch-on of
the 488 nm Fluorescence light; indeed, when the experiments were
performed either on Fluo-4 AM loaded cells without light switch-on,
or in unloaded cells exposed to the same light stimulation, the sEPSC
frequency remained unaltered (p > 0.4, n = 6 paired t-test; Fig3.2f)).
To investigate the mechanisms involved in the light-induced effect
observed, we repeated calcium imaging experimental protocol on
cultures under different conditions: treated with 4-Aminopyridine
(4-AP, 2 mM), a K+ channel blocker; in the presence of tetrodotoxin
(TTX,1µM), a selective blocker of voltage-activated sodium channels;
in calcium free extra-cellular solution (0 calcium, 1 mM EGTA); in the
presence of RN1734 (5µM ), a selective antagonist of termosensitve
TRPV4 in the co-presence of 4-AP and RN1734.
Cultures treated with 4-AP showed an enhanced spontaneous and syn-
chronous activity compared to control, but the effect of light power on
these cultures gave similar results: the increase in light power caused a
significant increment of calcium events on 75% of the slides (ranksum
p = 4∗10−7, N=8 slides , from 4 cultures, 42 total area, 1000 neurons)
Fig.3.3b). The average increase per neurons was 58 ± 3%, almost
twice of the average increment in absence of 4-AP. Population analysis
results are reported in Fig.3.3c (rank sum, N=6).
Administration of TTX allowed to detect spontaneous calcium oscilla-
tions in the absence of spike driven calcium entry. By inhibiting action
potential network activation the application of high power light failed
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to enhance network activity (5 slides , from 1 cultures, 40 neurons)
Fig.3.2h.
To disclose the source of calcium rise involved in the observed phe-
nomenon, additional time lapse recording were performed in neuronal
cultures maintained in calcium free medium. As expected we recorded
a very low calcium activity and the light induced effect was unde-
tectable (6 slides , from 2 cultures; data not shown). These data
suggested that the observed enhancement of calcium transient fre-
quency required calcium entry from extracellular space, rather than
calcium release from internal stores.
There are multiple mechanisms that may underlie the calcium influx
from the extracellular space. Previous studies ascribed the effect of
light exposure on neuronal activity to an increasing in bath tempera-
ture. The importance of temperature for neural physiology is known:
changing bath temperatures leads to changes in the functional state of
neurons [76], [77][78]. In particular it was previously shown that upon
light stimulation of neuronal cultures thermosensitive TRPV channels
are activated [79], inducing calcium entry.

These effects can be imputed to the sensitivity of these channel
to temperature gradients across the cell membrane. Different TRPV
channels indeed were described to be temperature sensitive channels
over a wide range of temperature gradients. In particular, TRPV4
were shown to respond to small variations in the temperature range
(25-40 ◦C) typical of our experiments (32 ◦C) [51], [52], [53]. To
highlight the role of these channels in the observed phenomenon,
calcium transients were recorded in the presence of RN1734 , a selec-
tive antagonist of TRPV4 [81]. Data reported in Fig.3.4a show that
the high power induced effect was prevented in cultures treated with
RN1734 (p=0.23, 6 slides, from 5 cultures, 21 total area, 40 neurons)
and in cultures treated with both RN1734 and 4AP (p=0.23, 5 slides ,
from 3 cultures, 17 total area, 175 neurons). In addition, whole-cell
patch clamp experiments confirmed that in the presence of RN1734
the increase in spontaneous network activity frequency was abolished
(Fig.3.4b). This ensemble of results confirmed that the activation of
TRPV4 channels was responsible for the enhancement of network
activity induced by high power light stimulation. We also measured
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the firing rate as a function of the temperature, without retrieving a
significant activity enhancement, thus we can ascribe our effect to a
more complex interplay between the channel and exposure to light.
The complex pathway leading to the measured effect needs thus fur-
ther investigation which is out of the scope of this work. Possible
causes may be connected with the interaction with a different receptor,
or to a possible sensitivity of the TRPV4 channels to temperature
gradients between the internal (absorbing) volume of the cell and the
(transparent), recording medium.
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Figure 3.2: Caption on next page...→



CHAPTER 3. A PRELIMINARY STUDY 46

Figure 3.2: ←...figure on previous page. (a) Representatives fluorescence
intensities traces of four individual neurons from low (left) and high (right)
light power measurements. (b) Effect produced by increasing LED power on
12 slides. (c) Populations analysis: mean number of events, peaks amplitude,
rise time constant, decay time constant and synchronization, in low and
high power conditions. Rank sum test, N=9. (d) Representative traces of
spontaneous neuronal activity of whole-cell recordings from Fluo-4 loaded
primary cortical neurons, under transmission illumination (upper trace) and
under exposure to fluorescence illumination (488 nm, 1.4 mW/mm2; lower
trace). (e) Bar graph of corresponding mean frequency event measured before
(white bar) and after (gray bar) exposure of cells to fluorescence illumination.
(f) Mean frequency event measured in unloaded primary cortical culture by
patch clamp recordings, before (white bar) and after (gray bar) exposure of
cells to fluorescence illumination. (g) Number of calcium events came back
to control values when cultures are exposed again to low power light after
high power stimulation. (h) Results obtained by increasing LED power on 5
slides treated with TTX.
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Figure 3.3: (a) Representatives fluorescence intensities traces of individual
neuron filtered with a modified Perona-Malik filter from low (left) and
high (right) light power measurements in cultures treated with 4-AP. (b)
Effect produced by increasing LED power on 8 slides treated with 4-AP
p = 4 ∗ 10−7. (c) Populations analysis in cultures treated with 4-AP: mean
number of events, peaks amplitude, rise time constant, decay time constant
and synchronization, in low a high power conditions. Rank sum test, N=6.
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Figure 3.4: (a) Effect produced by increasing LED power in various condi-
tion: control (top-left), with 4-AP (bottom-left), with RN1734 (top-right)
and with both 4-AP and RN1734 (bottom-right). Continue on next page...→
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Figure 3.4: ←...begin on previous page. Data from control measurements
(Rank sum test, p = 8.6 ∗ 10−5, p = 4.8 ∗ 10−4) were compared with data
recorded under blockage of TRPV4 channels (Rank sum test, p=0.23). (b)
Mean frequency event measured in Fluo-4 loaded primary cortical culture
treated with RN1734 (5 mM, TRPV4 blocker). Patch clamp recordings
showed that in presence of the TRPV4 blocker, inter-event interval of sponta-
neous synaptic events was not increased by the exposure to the fluorescent
light (transmission: 77.9 ± 11.9 ms; fluorescence light: 82.7 ± 10.6 ms; n =
6; p > 0.4, paired t-test).
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3.5 Discussion
Our results are in accordance with previous studies reporting an

excitatory effect of visible light exposure on cortical neurons in vivo.
Christie et al. (2013) recorded an fMRI signal in a rat cortex while
exposed to blue laser light stimulation and Stujenske, Spellman, &
Gordon (2015) observed an increasing of prefrontal cortex firing ac-
tivity in living mice upon laser stimulation at 532 nm. Both studies
attributed the activity enhancement to a rising in tissue temperature. It
was previously shown that neurons express transient receptor potential
channels (TRPV) acting as sensory mediators and activated by endoge-
nous ligands, temperature, mechanical and osmotic stress [51]. The
components of this channels family contribute to the increase of in-
tracellular calcium by providing or modulating Ca2+ entry pathways,
and by releasing Ca2+ from intracellular stores [82].
In summary, we investigated the effect of the illumination power on
neuronal network activity on in vitro cortical cultures, using a custom-
made optical setup. We describe a light-induced increase of synaptic
activity mediated by the activation of TRPV4. We demonstrated by
optical and patch clamp experiments that high power LED exposure
transiently increased calcium events and spontaneous network activity
on cortical cultures, without affecting transients shape (amplitude,
rise and decay time) and network synchronization. Moreover, patch
clamp experiments made on neurons stimulated by high power light, in
the absence of Fluo4-AM loading, demonstrated that the fluorophore
and light together are necessary to increase sEPSC frequency. Thus
these data suggested that, during LED exposure, the Fluo-4 light ab-
sorption caused a release of thermal energy inside the cell and the
activation of the thermosensitive channels TRPV4. These results warn
who performs calcium imaging and optogenetics experiments about
possible undesired effect on neuronal activity, which should be taken
into account. Moreover, even if further studies are necessary to better
understand the mechanism behind this phenomenon, our results pave
the way to the exploitation of optical stimulation to non-invasively
modulate brain signaling avoiding genetic manipulation.
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Results

In this chapter we will show results obtained by analyzing record-
ings of spontaneous network activity in sample model of Alzheimer’s
Disease. We collected data from primary cortical cultures derived both
from 3xTg and B6/129 mouse strains, Alzheimer’s model (AD) and
Wild Type (WT), respectively. Measurements of neuronal calcium
signals were carried out at 6-30 days in vitro (DIV), on different sized
cultures (see sec.2.1.3), using the custom-made fluorescence micro-
scope described in section 2.2. We recorded 10 minutes of activity
with acquisition frequency set to 50 Hz and 2x2 mm2 field of view.
To evaluate the influence of inhibitory control on the emergent activity
of the cortical network, some experiments were repeated after the
blockage of inhibition (through the addition of 5 µM Bicucculine, see
sec.2.1.4).

4.1 Cortical Slow Oscillation
We recorded spontaneous cortical oscillatory activity (SO), which

is characterized by alternating periods of intense neuronal firing (Up
states) and rather quiescent periods regimes (Down states), in different
conditions. Several parameters of the SO were quantified and com-
pared between 3xTg-AD and control cultures: the length of the Up
state, the length of the Down state, the length of the whole Up-Down
state cycle, their respective coefficients of variation (CV) and the

51
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relative single neuron firing frequency during Up and Down states.

State duration in AD model vs Wild Type cultures

For each recording, the averaged fluorescence signal was used as
indicator of the network collective dynamics to identify Up and Down
states and evaluate their length, as explained in sec.2.3.2. First of all,
we assessed how the duration of the different regimes is affected by
the age of the culture both in AD and WT samples, fig. 4.1. While
both WT and AD cultures show a similar significant decrease of the
Down state and the whole cycle duration from early to mature stage,
WT cultures also display a significant increased duration of the Up
states with increasing age, while Up length in AD samples remained
rather unaltered (with a slight tendency to increase). We assembled
data in three group: from 6 to 13 DIV, from 13 to 19 DIV, more then
20 DIV. Mean Up state duration is lower in AD cultures since early
mature stage and significantly differ from control at mature stages
(ranksum test, DIV 14-19 p=,DIV>20 p=). The tendency of AD
sample to have shorter Up states is not accompanied by significant
alteration in the SO frequency or Down state length. Mean duration
of whole cycle and Down states did not significantly differ between
the 2 groups at any stage of maturation. Coefficients of variations
remain stable at different stages, both in AD and WT and no significant
differences were detected between two group. High CV values reflect
high irregularity in both type of cultures at each maturation stage.
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Figure 4.1: SO property in AD model vs Wild Type cultures

We also computed a measure of the firing rate of single neurons
during Up states with respect to the activity during the Down states.
Indeed, while it is true Down states are considered relatively silent
states with respect to Up states, there is some firing in Down states.
Fig. show that relative firing frequency during Up and Down states
remain unaltered in AD sample respect to control.
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Figure 4.2: Single neurons contribution.

Inhibitory modulation of SO in AD model vs Wild Type cultures

It is agreed that excitation and inhibition balance each other both
during spontaneous and during sensory activated cortical activity. We
studied the functional contribution of inhibition to the slow oscillatory
patterns generated by the cortical network, both in AD and control
cultures. We measured activity in standard condition (excitatory +
inhibitory network, E + I) and with blocked inhibition (only excita-
tory network, E). As aspected, the removal of inhibition induced a
shortening of the Up states both in control and AD. The duration of
the subsequent Down states was also modified, becoming longer and
the same for whole cycle duration in both conditions. To quantify the
effect due to inhibition blockage we evaluated the mean ratio of the
states duration in E and E + I conditions. There were no statistically
significant differences between AD and control.
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Figure 4.3: Inhibitory modulation of SO.

Scale free properties of SO

To evaluate the effect of culture size on spontaneous SO activity
we compared periods length in small circular cultures with a diameter
φ that range from 1.5 to 6 mm. No significant differences where
observed among the different sized cultures. Shorter Up states in AD
samples, respect to control were observed for each size, even if for
smallest cultures (φ < 4mm) it is not significant.
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Figure 4.4: SO properties in different sized cultures

4.2 Signal propagation

4.3 Networks property
We used a generalization of Transfer Entropy method to infer-

ring connectivity in neuronal networks based on fluorescence calcium
imaging data. As described in sec.2.3, we extracted single neurons
onset time with sub-sampling temporal resolution through an imple-
mented peel algorithm, from each recording. Binary traced were
used for TE calculation, implemented with two features, namely the
inclusion of same bin interactions and the separation of dynamical
states through conditioning of the fluorescence signal (see methods,
sec.??). Once TE was calculated, it should be filtered to eliminate
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non-significant connections. The easier way to determine whether the
computed connectivity value is significant above the noise level is to
choose a threshold that represents the minimum value that corresponds
to a significant transfer of information. However, connectivity values
depend on the amount of information present, so neurons with higher
firing rates will naturally have higher values. For this reason it is
more correct to establish a threshold proper for each neurons pair. In
this work we used a jittering algorithm, in which we generated 50
surrogates baseline data from original data by moving each event time
by a certain random offset, and calculated TE for each surrogates.
The connectivity matrix is then filtered eliminating all connections
that do not have a value outside their own confidence interval. On fil-
tered adjacency matrix we evaluated network properties: nodes degree,
clustering coefficient, path length and efficiency.
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Figure 4.5: Network properties at different stages.
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Figure 4.6: Degree distribution.
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Figure 4.7: Directionality.
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Figure 4.8: Efficiency distribution.
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Figure 4.9: ROC curves.
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