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Abstract

Image analysis applied to astronomy is a vast field. It contains several solutions to
handle the many issues inherent to the peculiar nature of astronomical images. The
entire area is cross-disciplinary, and it is based on a variety of mathematical and
computer science approaches, which are also at the foundation of two techniques
that are essential for the analysis of astronomical extragalactic images: “denoising”
and “deblending”.

On the one hand, the goal of denoising algorithms is to reduce the observational
noise intrinsic to the images without losing details (in our case, for example, faint
distant galaxies). On the other hand, the purpose of deblending algorithms is to
efficiently separate objects that appear overlapped in the image.

State-of-the-art mathematical algorithms for denoising are commonly used in
several fields, but there is almost no trace of application to astronomical observations
in the scientific literature, in particular concerning optical and near-IR extragalactic
observations. These algorithms have the potential to enhance objects detection,
granting improved statistics without requiring additional telescope time. Deblending
parametric algorithms have been tested, with good, albeit not optimal, results.
Many new methods, based on machine learning techniques, have been developed
and are now being proposed. Improved deblending algorithms have the potential
to enhance high-precision measurements at the basis of cosmological and galaxy
evolution investigations.

Therefore, an in-depth study of these techniques is mandatory to assess all
their possible advantages and risks quantitatively, and plan their application to
forthcoming surveys where unsupervised image analysis will be unavoidable due to
the massive amount of data that will be acquired. The goal of this thesis is to test
new approaches to the denoising and deblending of astronomical images.

In particular, we found that a small group of denoising algorithms (ATVD, Perona-
Malik, Bilateral, and TV Chambolle) enhance objects detection without altering
fluxes and shapes. Whereas, tested machine learning techniques (ASTErIsM-
DENCLUE, blend2flux, and blend2mask2flux) accurately separate and recover
fluxes of two blended objects, more reliably than the standard approaches.
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Introduction

M odern astronomy is a scientific field that profoundly relies on digital images.
Cutting-edge telescopes and technologically advanced CCDs, allow us to pro-

duce high-quality astronomical images. Images are the primary source of information
for astronomers, encoding enormous quantities of data that we analyze to under-
stand the Cosmos. Therefore, astronomical images are of vital importance, although
different factors limit the amount of information stored (e.g., noise, spatial resolution,
atmosphere, exposure time, etc.). New techniques that improve the quality of the
available data are always welcomed.

Next-generation extragalactic imaging surveys aim at pushing forward the limits
of our knowledge about the Universe, observing the sky at different wavelengths with
unprecedented depth, resolution, and/or survey area. The amount of data expected
to be produced by these modern missions will officially introduce astronomy in the
“Big Data” era, meaning that optimized algorithms of data “reduction” and data
“mining” will be essential in the upcoming years.

Advanced image analysis techniques can be applied in astronomy to enhance
the quality of the images, improving their scientific value. In this thesis, two kinds
of digital image processes are investigated, “denoising” and “deblending”. Several
techniques, belonging to these two topics, are tested and compared against standard
approaches.

Denoising algorithms aim at reducing noise in digital images. In astronomy, many
natural sources of noise degrade the image quality, lowering the signal-to-noise ratio
of the bright objects and suppressing the faintest ones. State-of-the-art denoising
techniques have been already applied in other scientific fields, with impressive results.
In this work, we investigate their application to astronomical images, comparing their
performances to those of the standard approaches used in our field. In particular,
we examine the advantages obtained in the detection of faint galaxies and in the
preservation of the shape and flux of bright ones.

Deblending algorithms aim at separating overlapping (blended) objects enabling
an accurate recovery of their fluxes and shapes. Indeed, objects blending is the
result of the 3-dimensional space projection on a 2-dimensional hyperplane, which
is how telescopes observe the sky. The blending of the objects negatively affects
the accuracy of measurements yielding to systematic errors. Therefore, blending
is not a negligible issue, especially for scientific surveys whose goal is to produce
high-precision cosmological measurements. Nowadays, machine learning algorithms
are gaining popularity in several scientific fields, astronomy included. Since these
approaches are built to find patterns and similarities in the data, they look as optimal
candidates for handling blending issues. In this work, we test two different categories
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of machine learning techniques and compare them to the commolny adopted multi-
threshold approach implemented in the well-known code SExtractor. We test the
ability of ML techniques at separating blended object and recovering their fluxes.
The present thesis is organized into six chapters.

In chapter 1, we discuss digital imaging and instrumentation, highlighting the
advantages and the problematics involved. We discuss digital images acquisition
and the processing techniques aimed at extracting information from raw data. At
the end of the chapter, we introduce the two main topics of this thesis, denoising,
and deblending.

In chapter 2, we discuss upcoming extragalactic imaging surveys. The goal is to
provide an overview of next-generation telescopes, discussing the “big” amount of
data that they will produce, and the scientific advantages expected.

In chapter 3, different algorithms are discussed. In the first part, we introduce
several techniques belonging to different families of noise reduction approaches. In
the second part, machine learning is discussed, focusing on possible applications to
the deblending problem.

In chapter 4, we present an in-depth analysis of different families of denoising
algorithms (Anisotropic diffusion, Bilateral filtering, Total Variation, Structure-
texture decomposition, etc.) and their application to extragalactic images. The
analysis is based on a dataset of simulated and real optical and near-infrared images
at different depths and resolutions.

In chapter 5, the impact of objects blending on scientific measurements is dis-
cussed in details, and the performances of various "deblenders" is analyzed. In the first
part, we introduce an unsupervised learning algorithm (ASTErIsM-DENCLUE).
We study its efficiency in separating blended objects compared to the baseline
multi-threshold solution. In the second part, two convolutional neural networks
(blend2flux and blend2mask2flux) are compared against the same baseline, testing
their performances in the recovery of the correct fluxes of the objects.

In chapter 6, we discuss the results obtained and highlight directions for future
developments.
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Chapter 1

Imaging the extragalactic sky

T he origin of astronomy has profound roots in the history of humanity. The two
are entangled and strictly related to one another.
Over the centuries, humankind developed an ever-tighter connection with the

sky. Discoveries and inventions by different civilizations mark our history, laying the
foundation for a wide variety of theories about the Cosmos. A comprehensive and
detailed presentation would be necessary for a complete understanding of the path
that lead to the modern astronomical scenario; however, this spectacular part of our
past is not the aim of this work. Nevertheless, in the following we will mention a
small number of important discoveries, to provide a coarse idea of the history of
astronomy progression in centuries.

With this in mind, we introduce the topic of astronomical imaging, from different
points of view. In the first part of this Chapter (Sect. 1.1), we briefly discuss
the afore-mentioned historical background. The goal is to provide an introduction
to modern techniques, used in present-days astronomy. In the second part (Sect.
1.2 - 1.3 - 1.4), we discuss modern detectors, their calibration, and processing
techniques with digital images. In the third part (Sect. 1.5 - 1.6 - 1.7), we discuss
the astronomical images, the underlying mathematical formalism, and the basic
techniques used to extract scientific information.

1.1 Historical Background
In the ancient times, before the invention of the telescope, the only possible

observations of celestial objects were those by naked eye. The observed objects were
used to perceive the flow of time, determining the seasons’ periodicity and the length
of the year [55]. With the advancement of human civilizations (in Mesopotamia,
China, India, Greece, etc.), measurements of celestial objects position and movement
played a growing historical role. For instance, Babylonians discovered the repeating
cycle of the lunar eclipses (named saros [123]), and cuneiform inscriptions in Sumerian
clay tablets (3500-3200 BC) record astrometry studies and observations (e.g., Halley
comet observation in 164 BC) [8]. Greek astronomers further contributed to the
advancement of astronomical discoveries. Aristarchus of Samos (c.310-c.230 BC),
for instance, proposed the first heliocentric model of the Solar System [16] (echoed
more than 1000 years later by Copernicus, 1543). Hipparchus (c.127 BC) determined
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the duration of the seasons and the length of the year, estimated the distances to
the Moon and the Sun with outstanding precision, and probably invented the first
astronomical tool, the astrolabe; nonetheless, the most astonishing of his discoveries
is the precession of the equinoxes [128]. In 1054 AD, on the other side of the globe,
Chinese astronomers recorded the explosion of the supernova that created the Crab
Nebula[119].

The invention of the telescope profoundly revolutionized Astronomy, and Science
in general. In the 17th century, the first low magnification refractive telescopes
spread throughout Europe. Galileo Galilei built its own improved version of the
telescope with a magnification factor of 20× [86]. Thanks to its invention, he
discovered the four largest moons of Jupiter [165], he found that our Moon has
craters, and observed the Venus phases and the sunspots, demonstrating the total
incompatibility with the geocentric model [5] (introduced by Ptolemy in c. 100-170
AD [47]). Since then, improvements in the technical design and power of telescopes
can be paired with impressive astronomical discoveries: for instance, the discovery of
Uranus by William Herschel (1781) [117], or the invention of the prism spectroscope
by Joseph Fraunhofer, which allowed the study of the Sun chemical constitution
(1814)[53].

A further leap forward was the introduction of photographic plates, in the
late 19th century. Even if less sensitive than the human eye, they permanently
record faint objects by accumulating light, when exposed for long enough time
(integrating detector), and far better precision. Using this new technique, Charles
Pickering and his assistants classified and analyzed a large amount of data, putting
the basis to modern quantitative astrophysics [37]. These classifications led to the
understanding of the color-temperature relation of stars, and the discovery of the
Cepheid variables[98].

At the beginning of the 20th century major scientific advancements completely
changed our understanding of the Cosmos. In 1915, Albert Einstein, with his
General Relativity theory [172], revolutionized our comprehension of gravitation
and consequently our conceptions about the large-scale structure of the Universe
as a whole. A few years later, in 1924, Edwin Hubble used Cepheids stars to prove
that M31 (at that time dubbed Andromeda Nebula) is not part of our Galaxy [77],
thus discovering the existence of other galaxies outside the boundaries of the Milky
Way (he did so thanks to a crucial property of Cepheids, their luminosity-period
relation discovered by H. S. Leawitt in 1927, which makes them ideal standard
candels allowing to easily and precisely estimate their distance). In 1927 Georges
Lemaître proved that our Universe is expanding, observing the linear dependence
between distant galaxies velocity and their distances from us and estimating the
proportionality constant [100]. In 1929, Hubble corrected the proposed value of this
constant, which is today commonly known as the Hubble constant [102].

With ever more advanced technologies, modern astronomy (and in particular
Cosmology) made terrific progress in the last 60 years. Thanks to radio astronomy
and radio telescopes, in 1964, Arno Penzias and Robert Wilson accidentally discovered
the Cosmic Microwave Background (CMB) [138], boosting the evidence of a Big
Bang model to describe the origin of the Universe. Since 1965, a growing number of
Space telescopes have been launched to orbit the Earth (although the very first were
actually built for military reasons, and only a few for astronomical purposes). The
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space telescopes propelled a further leap forward, vastly enhancing the quality of the
observations (in space light is not absorbed, blurred and disturbed by the Earth’s
atmosphere, although this advantage comes at the cost of smaller apertures). In the
same years, Willard Boyle and George E. Smith invented the the Charge-Coupled
Device (CCD) [155], the electronic detector still used nowadays, scoring the passage
from analog to digital.

1.2 From analog to digital
The advent of digital detectors like the CCD replacing photographic plates

represented a crucial improvement for the astronomical data analysis. Digital and
analog detectors share some similarities: in both cases, a photon, hitting their
surface, excites an electron. In the CCD, electrons are attracted by the electrodes
and remains in their excited state (see Sect. 1.3.1). In a photographic plate, the
electrons tends to radiate their energy, returning to their original state, unless other
electrons are excited. In the latter case, they can form an excited stable state. This
makes photographic plates “non-linear” detectors, whereas CCDs are classified as
“linear” detectors. Linearity of the response is not the only difference. CCDs are
generally smaller and more expensive than photographic plates; on the other hand,
the latter have a smaller dynamic range (1:103 compared to 1:104) and a smaller
sensitivity [59].

Nowadays, CCDs are the standard devices of choice for astronomical observation.
Even ignoring the sensitivity and the dynamic range advantages provided by CCDs,
the main reason of their popularity is the unquestionable advantage provided by
using digital information. Digital data are easy to share, to reproduce without losing
quality, they can be stored indefinitely, and above all they can be easily analyzed
by semi-automatic tools and software for data analysis and reduction. Information
can be extracted, saving a significant amount of time and resources, building chains
of software, called pipelines. Modern statistical analysis is indeed specialized in
receiving large amounts of data, and, in many cases, the information is analyzed in
different facilities around the globe, now quite a common practice for large scientific
collaborations.

1.3 Digital Imaging: Detectors and Calibration
The term “digital imaging” refers to the processing, compression, storage, printing,

and display of images in digital format. The quality of a digital image usually depends
on the sensor used to capture it. Typically, the sensor needs to be calibrated, and
the image in its raw state needs to be corrected from defects. The aim of this section
is to describe the detectors used to create digital images (the CCDs), and to discuss
some standard corrections and calibrations, usually implemented in astronomy.

1.3.1 Charge-Coupled Devices

CCD detectors are used in many fields (e.g., medicine, security, physics, but also
standard cameras in cellphones). In astronomy, all modern telescopes focus the light
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received from celestial sources on a CCD to capture images of the sky and store
them in digital format. These devices, due to the intrinsic properties of the used
materials, perform at best in the wavelength range of 300-1100 nm (today the range
also includes X-rays), therefore being exceptional tools for visible and near-infrared
astronomy.

Figure 1.1. On the left: A picture of a CCD (Credit: https://www.elprocus.com); In
the middle: A schematized CCD, showing the path followed by the captured electrons
through the pixels array (Credit: https://www.stemmer-imaging.com); On the right:
The schematized vertical section of a pixel moving the captured electrons employing
potential wells (Credit: https://www.elprocus.com).

A CCD is an array of several picture elements (pixels) composed of metal
electrodes (generally 3 per pixel), a p-silicon semiconductor layer, and a silicon
dioxide layer. Pixels hit by photons produce photo-electrons within the silicon
semiconductor, and holes of positive charge are formed proportionally, due to the
photoelectric effect. The electrons are captured in a potential well, generated
applying a voltage through the electrodes to the semiconductor and the silicon
dioxide layer. These wells can store several electrons provided by their capacitance.
This quantity is inversely proportional to the separation between the semiconductor
and the electrodes while it is proportional to their surface.

The structure of the pixels in a CCD is called (p-doped) metal oxide semiconductor
(MOS). The pixels dimensions, then, are essential to determine the capacitance of
the entire detector. Larger pixels mean a larger number of electrons that can be
stored before reaching saturation, but this also means a lower resolution of the image.
Indeed considering a fixed area of the CCD, smaller MOS structures means a higher
number of pixels (modern CCD can have 5000-7000x9000-10000 pixels 2-10 microns
wide).

Once the electrons are captured, they are moved along the CCD columns, shifting
the three electrodes voltage periodically. Once an entire row of captured electrons is
shifted, the electronic charge is collected and is measured as a voltage. The voltage is
then converted into a digital number. Generally speaking, the digital output number
is in terms of digital counts or analog-to-digital units ADU. A minimum number
of electrons need to be captured to produce an ADU. This factor is called Gain (a
reasonable Gain value can be 10 electrons/ADU). The production of electrons is
expressed in terms of Quantum Efficiency (QE). The ideal CCD has a QE=100%,
meaning that for every striking photon, an electron is produced. Ideally, the electrons
should have the same QE, but in the real case, it can slightly differ from an electron
to another. Thus a technique called flat fielding is required to calibrate the pixels
response. For what concerns the CCD noise, a mention of the readout noise and the
dark current is needed. Due to the electronics, a CCD can be affected by readout

https://www.elprocus.com
https://www.stemmer-imaging.com
https://www.elprocus.com
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noise, also known as read-noise.
Read noise can be produced in the conversion from analog-to-digital or by

spurious electrons produced by the electronics. This kind of noise can contribute
with an additive uncertainty in the value of each pixel. The other noise component
is called Dark Current. It is the result of thermal electrons production. To lower this
contribution to noise, the CCD needs to be cooled, working at low temperatures,
using an appropriate cooling system. The signal-to-noise ratio for observations made
with a CCD is provided then by the equation:

S

N
= N∗√

N∗ + npix(NS +ND +N2
R)

(1.1)

Here, N∗ is the number of photons collected (equivalent/proportional to the number
of electrons produced), npix is the number of pixels, NS is the total number of
photons produced by the background per pixel, ND is the total number of dark
current electrons per pixel, and NR is the total number of photons per pixel resulting
from the read noise. Here all the sources of noise follow the Poisson distribution,
except for NR, which is shot noise. With more and more efficient CCDs, observing
the sky at ideally low temperatures, the dominant source of noise is N = NSnpix+N∗.
Since the number of received photons is typically large, the Poisson distribution is
well approximated by a Gaussian distribution, with mean N and standard deviation√
N .
If noise is dominated by N∗ the equation 1.1 becomes:

S

N
= N∗√

N∗
=
√
N∗ (1.2)

As N∗ is defined by N · t, where N is the number of photons per second and t is
the integration time, then S

N ∝ t. It is therefore possible to solve t( SN ) to find the
integration time needed to have a chosen S

N .
The current standard practice is to build 10-12 microns wide pixels to increase

image resolution, with over 100 millions pixels, a read noise as low as 1 electron, and
a QE close to 100% [112, 76].

1.3.2 Bias and Dark

To provide an estimate of the values produced by an unexposed CCD, a calibration
of the bias level must be performed. An unexposed pixel can produce a small ADU
distribution around zero. Bias (or zero) frames permits to measure the zero level of a
CCD. The image has an exposure of zero seconds, achieved letting the shutter closed.
The root mean square of the bias level is the read-noise. As well as for flat fielding,
an average of 5-10 bias is normally recommended. Another estimate achieved using
the closed shutter, but with an exposure time greater than zero, is the Dark current
estimation. Dark current, as mentioned above, is a source of noise, generated by
thermal electrons produced by the electronics at a fixed temperature. Using dark
frames is possible to estimate the thermal noise for given exposure time, and it is
also possible to avoid very long exposures, assuming the linear dependence with time
(which is not always true). CCDs are generally cooled using liquid nitrogen (LN2)
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or liquid helium-4 (H4) to reduce thermal contribution to practically zero [112, 76].

1.3.3 Flat fielding

CCDs are not perfect imaging devices; as pointed out above, each of the CCD
pixels can have a slightly different Gain or QE value. To cope with this, the CCD
images are typically calibrated using a flat field image. An ideal flat field image
should homogeneously light up all the pixels, i.e. the light should be spectrally and
spatially flat. Of course, this task is not always easy to accomplish, and an ideal flat
field is challenging to produce. Indeed QE pixels variations are wavelength-dependent
so that the illumination needs to have a very flat distribution in wavelengths, and
naturally, the illumination needs to be uniform over all the device. A standard
procedure is to light up the inside of the telescope dome, pointing the telescope at a
bright spot of the dome, taking short exposures to avoid saturation. In the case of
more filters, the flat fielding needs to be repeated for every filter, generally averaging
a sample of five to ten flat field images. Another possible procedure consists in
exposing the CCD to dusk/dawn sky, taking care of removing any star using a
median filter. Flat fields obtained using the dome procedure are referred to as dome
flats, while those obtained using the sky are called sky flats. For what concerns
satellite telescopes, flat fielding is performed in the laboratory before launch, using
de-focused observations of the Earth or the Moon or constant a dithered starfield
[112, 76].

1.3.4 Background Subtraction

CCD pixels collect every photon produced from the objects and the sky within
the telescope field of view. It is crucial then to disentangle the contribution that
comes from the sky, from that coming from the objects of interest. The sky or
background signal contains not only the actual photons of the sky but also the
light produced by unresolved astronomical objects. The unwanted signal can be
subtracted using specific software. A simple solution can be to center an annulus
around an object of interest, with an area at least a few times larger than the source
aperture. All the pixels, which value is below 3σ (a threshold which eliminates
cosmic rays and possible contamination) in the annulus area are summed, and the
sum is divided by the number of pixels, obtaining an estimated mean value of the
background light around the object [76].

1.4 Digital Imaging: Processing
Important advantages of digital images are provided by image processing. A

digital image is basically a multidimensional array, with array elements tracking
the pixel values. Mathematical operations can therefore be easily performed. In
this section, a few number of basic operations helpful to understand the following
chapters are described.
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1.4.1 Affine Transformations

Let us briefly and informally introduce the concept of affine space. An affine
space is a geometric structure related to the Euclidean spaces, which preserves
parallelism and ratio of lengths for line segments. In an affine space, there is no
concept of distance. Therefore, all the Euclidean spaces are affine.

An affine transformation is a function f between affine spaces X,Y which
preserves points, straight lines, and planes. Every affine transformation f : X → Y
is of the form x→Mx+ y. M represents a linear transformation in the space X, x
is a vector in X, and y is a vector in Y . So an affine transformation is composed of
a translation and a linear transformation. When working with vectors, the linear
transformation is represented by a matrix multiplication, whereas the translation is
represented by a vector addition: f(~x) = A~x+ ~y, A is a matrix.

Applying affine transformations to digital images is quite straightforward. In
this particular case, we talk about image transformations. The transformation
relocates the pixels, interpolating the values of moving ones. A small sample of 3×3
transformation matrices is shown in Tab. 1.1 [176]:

Sample transformation Description1 0 0
0 1 0
0 0 1

 Identity: Produces the same input image
−1 0 0

0 1 0
0 0 1

 Reflection: Reflects along the x-axis
αx 0 0

0 αy 0
0 0 1

 Scale: Scales along the axis by αx and αycos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 Rotate: Rotates by an angle θ
 1 βx 0
βy 1 0
0 0 1

 Shear: Shears along the axis by βx and βy

Table 1.1. A sample of 3× 3 affine transformation matrices

1.4.2 Filtering

Digital filtering is a technique used to blur, sharpen, or detect edges in a digital
image. Filtering an image means that a convolution is performed. Convolution is a
mathematical operation by means of which each pixel in the image is summed to
its neighbors, weighted by some kernel, and producing a smaller size image called
“feature map” [57]. Convolution is achieved sliding the kernel over the image with a
defined stride, making a matrix multiplication and summing the results onto the
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feature map. Convolution can be expressed as follows:
x11 x12 . . . x1n
x21 x22 · · · x2n
...

... . . . ...
xm1 xm2 . . . xmn

 ∗

y11 y12 . . . y1n
y21 y22 · · · y2n
...

... . . . ...
ym1 ym2 . . . ymn

 =
m−1∑
i=0

n−1∑
j=0

x(m−i)(n−j)y(i+1)(1+j)

Depending on the kernel, different results can be obtained, implying a vast
range of interesting applications. As an example blurring can provide a slight noise
reduction, edge detection can be used for segmentation (described in Sect. 1.4.3) or
blurring plus edge detection can be coupled to reduce noise preserving the image
details. A small list of kernels is shown here:

•

−1 −1 −1
−1 α −1
−1 −1 −1

 Edge Detection: Enhances edges of a factor α

•

 0 −1 0
−1 β −1
0 −1 0

 Sharpen: Sharpens of a factor β

• 1
16

1 2 1
2 4 2
1 2 1

 Gaussian Blur 3×3: Blurs with a normalized Gaussian

This operation of convolution is performed directly in the spatial domain, but
an alternative solution is the usage of a filter that works in the frequency domain,
masking unwanted frequencies. For digital signals, this can be achieved using the
Fourier Transform, while for digital images, the Wavelet Transform is used.

1.4.3 Image Segmentation

Image segmentation is a technique used to partition a digital image. It is used
to locate boundaries along level curves, assigning a label to all those pixels which
share similar properties, such as color or intensity. A large number of methods can
be used to produce an image segmentation with different degrees of complexity.

A brief description of a small number of segmentation methods is shown here:

• Thresholding: Probably the simplest image segmentation method, it is based
on setting a fixed threshold above which to the pixels is assigned the same
integer index. Pixels below the threshold are instead set to zero and are not
segmented

• Clustering: Many clustering algorithms can be applied to images producing
a segmentation. These methods include K-means, DBSCAN, DENCLUE,
and hierarchical clustering, which are described in Sect. 3.2.2

• Compression: Based on the assumption that the optimal segmentation is the
one that minimizes the coding length of data [120]. The compression efficiency
is related to the image regularity, while segmentation tries to find patterns
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Figure 1.2. Segmentation of an HST image performed using a thresholding approach.

and similarities. The segmentation is produced using a bottom-up hierarchical
clustering method. For each segment, the number of pixels that compose
the texture and the boundary is used to build up a probability distribution
function. The probability function is then used to select the best segmentation.

• Histogram: Histograms are computed using pixels in the image. Peaks and
valleys are then used to locate clusters [153]. The approach is highly time-
efficient, as the method requires to see pixels only once, even if it is not always
easy to identify significant peaks and valleys. A refinement consists in applying
the method recursively on clusters detected, to find smaller clusters in it [153]
[140].

• Region-growing: Different kind of region-growing methods have been de-
veloped. These methods assume that neighboring pixels share similar values
within a confined region.
The seeded method requires a fixed number of seeds in input, which identify
the object to be segmented. Neighboring pixels are compared, starting from
the seeds. If the difference between the value is smaller than a similarity
parameter, then those pixels are added to the segment.
The unseeded method, instead, uses a region in place of seeds. In the same
way as the seeded method, it compares the neighboring pixels, but in case
those pixels are below a certain threshold, a new region is created, and they
are attached to the new region.
Another method called λ-connected is based on pixel intensities and linking
paths between pixels. The method estimates a so-called λ connection to create
segments [36]. For an overview of region-growing segmentation see [84]

• Partial differential equation: Based on partial differential equations (PDE),
these methods are used for object extraction and tracking. Using curve
propagation, which is ruled by PDEs, to find the minimum in the potential
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defined by a cost function. The PDE methods family includes parametric
methods, level-set methods, and fast marching methods. Parametric (or
Lagrangian) methods, configure contours according to sampling and evolution
of each segment.
Level-set methods define a surface s(x, y). The interception with the plane
that represents the image, defines the contour Γ = [(x, y) | s(x, y) = 0]. The
evolution of Γ is used to derive a similar flow for s [131].
Fast marching methods relies on two quantities: time t and speed v, defined
by the evolution of a closed surface. Indeed each pixel x in the image Ω
requires a certain t(v) to be accepted in a segment. t is defined by the relation:
|∇t(x)| = 1/v for x ∈ Ω. The pixels are considered far (if not yet considered for
inclusion), considered (being considered for inclusion) and accepted (accepted
permanently in the curve) [152].

• Variational: Variational methods are based on energy functional minimization
to find the optimal segmentation u∗. The functional is composed of a data-
fitting term and a regularizing term. The Potts model is a variational method
define by:

argminuγ||∇u||0 +
∫

(u− f)2dx

where f is the input image to be segmented, u is the candidate segmentation,
γ is the parameter which controls trade-off between regularity and data fidelity,
while ||∇u||0 is called jump penalty. u∗ has an optimal trade-off between the
squared L2 distance to the given image f (

∫
(u− f)2dx) and the total length

of its jump set (argminuγ||∇u||0) [177].
A generalization, called Mumford-Shah model, takes into account the total
length of the segmentation curve K and the smoothness of the approximation
of u [122].

• Watershed: Watershed sees images as topographic landscapes with ridges
and valleys. The relative elevations are defined by values of the respective
pixels or their gradient magnitude. The method decomposes an image into
catchment basins (which behave like clusters). For each local minimum, a
catchment basin comprises all pixels who flows downhill following the steepest
descent, which ends at this minimum. The watershed then decomposes an
image completely, and pixels drained to a common catchment basin form a
segment [17].

• Model-based: Model-based techniques impose a prior which correspond to
a specific model that is believed to best fit the objects in the image [158].
Searching the probabilistic model, which better represent the target objects is
then the main issue, and this approach limits the segmentation only to images
populated of objects which share similar features.

Image segmentation is of fundamental importance for astronomy and for all
scientific fields which rely on imaging. This image processing technique is the first
level of source extraction, the procedure that locates and identifies objects, such as
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stars and galaxies, from an astronomical image. In many cases, segmentation alone
is not enough to properly identify astronomical objects. Other image processing
techniques, such as Denoising and Deblending, described in Chapt. 4 and Chapt. 5,
are used to enhance objects detection, extraction, and segmentation, also limiting
unwanted spurious detections.

1.5 Astronomical images

Figure 1.3. Image of the Milky Way in different wavelengths from radio to gamma-rays,
showing different light profiles. Credit: http://mwmw.gsfc.nasa.gov/mmw_edu.html

The astronomical images that we obtain through CCDs, and then we analyze,
are the result of what the telescopes observe. Telescopes technical features (e.g.,
spatial resolution, the field of view, aperture, etc.) define what kind of celestial
objects are optimal to be observed. The response of the telescope observing a
point source is defined by the so-called “Point Spread Function” (PSF). The PSF
defines the minimum resolution that can be achieved with the related telescope. The
spatial resolution is related to the diameter of the telescope and to the wavelength
of the photons emitted by the observed objects. Therefore, images produced by
various telescopes can be really different. The wavelength at which the observation
is performed has a large impact. Astronomical objects emit light at different
wavelengths in the electromagnetic spectrum, with peak emissions that depend on
the underlying physical mechanisms. Some typical sources with different wavelength
emission are:

• Radio - Supermassive Black Holes, Supernova remnants, Pulsars, Star forming

http://mwmw.gsfc.nasa.gov/mmw_edu.html
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regions, Quasars, Active Galactic Nuclei (AGN)

• Microwave - Neutral Hydrogen Clouds, AGN, Cosmic Microwave Background

• Infrared - Galaxies, Red-Brown Dwarfs, Cosmic Dust , Planets, AGN

• Visible - Main sequence Stars, Planets, Galaxies, AGN

• Ultraviolet - Blue-White Stars, AGN, Supernova remnants

• X-rays - AGN, Supernova remnants, Ionized Gas in Galaxies Clusters

• Gamma-rays - AGN, Gamma-ray Bursts

Our idea of the sky and of the objects that populate it completely changed
with the advent of observations from space. The Earth’s atmosphere is composed
of molecules that absorb photons at specific wavelengths, making it opaque and
impossible to observe them from the ground. Furthermore, the atmosphere limits
the spatial resolution of the observation, causing an apparent blurring/distortion due
to the variation of its refractive index. This blurring is referred to as “astronomical
seeing”.

When dealing with observations in the optical and near-infrared domains, the
choice between space and ground-based telescopes is dictated by the scientific goals
(high resolution, long exposure times, etc.). But for other wavelengths (Far-infrared,
Microwave, X-ray, and Gamma), the presence of the atmosphere is an insuperable
obstacle that can be overcome only by means of space observations (or high-altitude
balloons). On the other hand, Radio telescopes have huge diameters needed for
resolution purposes, which makes them (for the moment) not compatible with space
missions.

Since space observations do not have to deal with the atmosphere blurring, they
typically produce sharper images than ground-based, and at a wider variety of un-
absorbed wavelengths. On the other hand, space telescopes are difficult/impossible
to fix in case of technical problems, they are smaller, and expensive.

One last distinction is directly represented by the objects that are observed.
Astronomy can be broadly divided into many scientific branches, each relying on
different observables. For example, in cosmology, where the rules that govern
the evolution of the Universe are investigated, the objects of interest range from
microwave (with the Cosmic Microwave Background) to Weak Lensing (optical and
near-infrared). Extragalactic Astronomy objects of interest range from galaxies in
the optical near-infrared radiation to Ultraviolets, X-rays, and Gamma-rays, for
AGNs and Quasars. In the next section, we will focus on the standard file format
used for astronomical images and measurements regarding celestial objects, mainly
considering the optical and infrared wavelengths.

1.5.1 Flexible Image Transport System

The standard file format within the astronomical community is the Flexible
Image Transport System (FITS), developed in 1981 by Don Wells, Eric Greisen
and Ron Harten [175]. This standard allows a flexible transport of data from the
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Figure 1.4. Earth’s atmosphere absorption at different wavelengths. Credit:
NASA, public domain via https://commons.wikimedia.org/wiki/File:
Atmospheric_electromagnetic_opacity.svg

observatory to the researchers. A FITS standard image is composed by a “header”
of at least 36 lines (filled with blank characters if left empty) of 80 bytes, for a
minimum of 2,880 bytes. Each line contains a keyword for a maximum dimension
of 8 bytes. To each keyword a value with useful information about the image is
assigned. Keywords and values follow very strict rules about dimensions and names.
Required keywords are listed below [175]:

• SIMPLE - has a boolean value T (true) or F (false), stating whether the image
is FITS standard conform

• BITPIX - defines, with an integer value, the number of bits in the image. 8
(8-bit), 16 (16-bit) and 32 (32-bit) or -8, -16, -32, -64 for the floating-point
8-bit, 16-bit, etc.

• NAXIS - defines the data array shape. With 1 for 1-D data, such as a spectrum,
with 2 for a 2-D image, such as those collected with a CCD. With 3 it defines
a multi-layered cube of 2-D images. The maximum is NAXIS=999

• END - the last keyword which completes the header.

other optional keywords, which can be added above the mandatory END keyword
are listed here [175]:

• BSCALE - used in combination with BZERO keyword, to retrieve the true
physical values from the array pixels values, according to the equation:

true_value = BSCALE × array_value + BZERO

• BZERO - used in combination with BSCALE keyword

• OBJECT - used to give a name for the main object observed

https://commons.wikimedia.org/wiki/File:Atmospheric_electromagnetic_opacity.svg
https://commons.wikimedia.org/wiki/File:Atmospheric_electromagnetic_opacity.svg
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• TELESCOP - defines the telescope used to acquire the data

• INSTRUME - defines the instrument used to acquire the data

• OBSERVER - identifies who acquired the data.

A total of 53 different keywords can be used. The full list can be found
at https://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html. Following
the header, the actual “data” begin: a set of arrays with dimensions and shape
described by the NAXIS parameters. The FITS image is closed by the “tailer”, an
ASCII string of null characters.

The raw data in a FITS image is usually “reduced” to be corrected and calibrated.
Following the steps described in Sect. 1.3, bias/dark subtraction and flat-fielding
are performed. Different well-known tools allow FITS manipulation:

• AIPS - Astronomical Image Processing System is a free software package for
radio interferometric data calibration/display/analysis designed by National
Radio Astronomy Observatory (NRAO) in Charlottsville, Virginia (1978). The
new version of the software is completely written in C++ and is called Common
Astronomy Software Applications (CASA) (https://casa.nrao.edu/)

• IRAF - Image Reduction and Analysis Facility is a free general-purpose soft-
ware for astronomical images reduction and analysis. It includes a complete
programming environment and a programmable Command Language scripting
facility. IRAF is supposed to outclass AIPS in terms of portability and device-
independence. It is supported by National Optical Astronomy Observatories
(NOAO) in Tucson, Arizona (http://ast.noao.edu/data/software)

• STSDAS - Space Telescope Science Data Analysis System is a free software
layered on top of IRAF, specifically designed for HST data. The software is
distributed by Space Telescope Science Institute (STScI), Baltimore, Maryland
(http://www.stsci.edu/institute/software_hardware/stsdas)

• STARLINK is a free software developed in the UK in 1980, aiming to analyze
astronomical images. The main objectives were to coordinate different data
reduction tools through sharing and standardization, including hundreds of
items and external software such as IRAF. The main support facility was
closed in 2005, but support still exist at the UK Joint Astronomy Centre in
Hawaii (http://starlink.eao.hawaii.edu/starlink)

• ESO-MIDAS - is a software built to integrate complex analysis with flexibility,
including imaging and special reduction packages for European Southern
Observatory (ESO) instrumentation at La Silla and the VLT at Paranal. Some
of the STARLINK project ideas were used for the interface. It is command-line
driven, and the monitor is a command interpreter. The MIDAS Command
Language (MCL) is the language associated and allows to construct complex
command strings. It is distributed by ESO, (https://www.eso.org/sci/
software/esomidas//)

https://heasarc.gsfc.nasa.gov/docs/fcg/standard_dict.html
https://casa.nrao.edu/
http://ast.noao.edu/data/software
http://www.stsci.edu/institute/software_hardware/stsdas
http://starlink.eao.hawaii.edu/starlink
https://www.eso.org/sci/software/esomidas//
https://www.eso.org/sci/software/esomidas//
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• IDL - Interactive Data Language is a commercial package, not specifically
designed for astronomy, but with a more scientific purpose. Used also in
scientific engineering and for medical data, it incorporates an array-oriented
language as an alternative to FORTRAN and C. In astronomy IDL is used
for data simulation and modeling. The software license can be purchased at
https://www.harrisgeospatial.com/Software-Technology/IDL

• CFITSIO - is a library of C and Fortran subroutines for reading and writing
astronomical data. It also provides many advanced features for manipulating
and filtering the information in the FITS file. CFITSIO can be called from other
programming languages using specific interfaces. Compatible programming
languages are (C++, C#, Perl, Tcl, Python, Ruby, S-lang, MatLab, and
LabVIEW) (https://heasarc.gsfc.nasa.gov/fitsio/)

• ASTROPY - is a free software package written in the Python programming
language designed for astronomical analysis. The package contains classes for
representing multidimensional arrays or tables, unit, and physical quantity con-
versions, astronomical constants, celestial coordinates. It includes the former
standalone PyFITS interface to load FITS images. Astropy was written by the
Astropy collaboration [38], following the increasing Python popularity among
astronomers increased in the last decade (https://www.astropy.org/).

1.5.2 Astrometry

Astrometry is the precise determination of positions and motions of astronomical
objects. Mapping the celestial objects provides precise information about their
distribution and the local environment. This field is fundamental to understand
Solar System, stellar, and galactic dynamics. With a sufficient angular resolution, it
is also possible to directly observe binary systems, thus supporting the detection
of exoplanets thanks to the relative motion between the planet and its host star.
Astrometry is also used to estimate the distribution of DM in our galaxy and to put
constraints on supernovae explosions. Defining a reference system for positions of
celestial objects and measuring their distances, puts the basis of all astronomy.

A standard celestial reference system, the International Celestial Reference Sys-
tem (ICRS), is adopted by the International Astronomical Union (IAU). The origin
at the barycenter of the Solar System. A variant of the ICRS is the International
Celestial Reference Frame (ICRF), which relies on sources observed in the radio
wavelength. The first version of ICRF, the ICRF1 succeeded the previous “Fifth
Fundamental Catalog” (FK5), outperforming it by one order of magnitude in terms
of angular noise floor and reference axis stability [79]. ICRF1 agrees with the orien-
tation of FK5 “J2000.0” frame to within the precision of the latter, where J2000.0 is
January 1, 2000, 11:58:55.816 UTC (Coordinated Universal Time) [79]. From 1998
with ICRF1 to 2009 with ICRF1 and lastly ICRF3 in 2019, the ICRF passed several
revisions, incorporating an increasing number of extragalactic sources coupled with
new features, such as the effect of galactocentric acceleration of the solar system
[33] [127].

https://www.harrisgeospatial.com/Software-Technology/IDL
https://heasarc.gsfc.nasa.gov/fitsio/
https://www.astropy.org/
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1.5.3 Photometry

With the term photometry we refer to the process of measuring the flux emitted
by an astrophysical target. The term monochromatic flux F indicates the power
received (W m−2Hz−1) integrating the specific intensity over the angular size of the
source. A measure relative to F is the magnitude m. If we define F0 as a reference
monochromatic flux we obtain the relation between m and F :

m = m0 − 2.5logF + 2.5logF0 (1.3)

Taking m0 = 0, as the magnitude of a reference star, then the term 2.5logF0 defines
the magnitude scale zero-point. Because the flux (and then the magnitude) is
wavelength dependent, and astronomical objects are not monochromatic, two well-
known magnitude systems are defined: namely, the Vega system and the AB system.
The Vega system takes as reference the flux of the star Vega, setting the magnitude
of the star to 0 in every bandpass. The AB (absolute) system, based on the work by
Bev Oke [129], is not based on Vega, and indeed no relative reference object is used;
instead, it assumes that F0 is the same for all the wavelengths and passbands. The
relation between F in frequency units and m is:

mν = −2.5logF − 48.6 (1.4)

while F in wavelength units and m is:

mλ = −2.5logF − 21.1 (1.5)

Colors

Color indices (or simply colors) are defined as the difference of magnitude of
an object at two separate wavelengths. Taking the two filters, defined by a fixed
wavelength range: ∆λ1 and ∆λ2, the magnitude of the objects measured in the
different filters are m∆λ1 and m∆λ2 , so the color index is defined as:

color index = m∆λ1 −m∆λ2 . (1.6)

Taking, for example, a set of filters, such those in the “UBV system”[81] (U=365
nm, B=440 nm, V = 550 nm), the differences in magnitude (U-B=mU − mB,
U-V=mU −mV , B-V=mB −mV ) define the color index in this photometric system.

Aperture photometry

Aperture photometry is the technique of measuring the fluxes of astronomical
objects fluxes summing the pixel values within a given “aperture”, i.e. a circular or
elliptical area centered on the object centroid. It can be shown that for a point-like
source (e.g. a star) an aperture A = πr2 with radius r = 3× FWHM (where FWHM
is the Full Width at Half Maximum of the Point Spread Function) contains ∼ 100%
of the object flux. The measured flux should be background subtracted to estimate
the correct value of the object flux. A relation between the aperture radius and
the signal-to-noise ratio (S/N) indicates that the peak of the cumulative S/N is
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reached with a radius equal to r = 3× FWHM. Larger apertures include a larger
than required number of pixels increasing the contribution from noise sources to the
error term and lowering the S/N [76].

Profile fitting

An alternative method to aperture photometry relies on modeling the object
observed with analytical functions, which are fitted to the real data until a good
match is achieved. These profiles are generally Gaussian for stars and point-like
objects:

I(r) = I(0)e−r2/2σ2 (1.7)

where I(0) is the peak intensity, r is the radial distance and σ is the Gaussian
standard deviation. The real PSF can be used for fitting, and this is the preferred
choice when possible. In this case, we talk about “PSF fitting”.

For extended sources, the stardard choice to model the brightness as a function
of the radial distance is the Sérsic profile [151]:

I(r) = I(re)exp
{
−bn

[(
r

re

)1/n
− 1

]}
(1.8)

where re is the half-light radius, n is the Sersic index, and bn is a constant proportional
to n. n controls the profile curvature: with small n the profile is more diffuse, while
larger values provide a steeper logarithmic slope, concentrating most of the brightness
in a limited region. For example, setting n = 1 provides an exponential profile
I(r) ∝ ebr which is generally used as a good spiral galaxy disk approximation. On
the other hand, setting n = 4 gives the I(r) ∝ ebr1/4 which is used to model elliptical
galaxies. In crowded fields, profile fitting is useful, as it weights more the pixels close
to the peak, while weighting less the possibly spurious/contaminated pixels at the
edges of the considered radius. Of course, profile fitting relies on the good quality of
the fit, which sometimes is hard to achieve (e.g., faint, irregular or blended objects).

Template photometry

Template photometry is an advanced technique used to recover the correct
photometry from objects in a low-resolution image (LRI), using information from a
set of priors obtained from a high-resolution image (HRI). The priors are degraded
to match the resolution of LRI by means of a convolution kernel and used to solve
a linear minimization problem. This technique is implemented by several codes
[46, 95, 20] and [115, 114], it is particularly useful when observational data in different
wavelengths are combined. Even space-based and ground-based observations can be
combined, using the space-based images, that plays the role of HRI, to obtain the
priors for the ground-based, which in this case is the LRI. Template photometry can
be used to bypass the objects blending issue in the LRI, provided that the objects
are enough separated in the HRI [115, 114].
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Photometric Redshift

Photometric redshift, or Photo-z, is a measure of the redshift z using multi-band
photometry. This technique relies on the observation of strong enough features
of the object, which must therefore be observed in different bands. The photo-z
technique was initially developed in 1962 by W. A. Braum [15]. Braum observed six
bright elliptical galaxies belonging to Virgo cluster using a photoelectric photometer
in nine band-passes from 3730Å to 9875Å. He estimated the six galaxies average
spectral energy distribution (SED) comparing it with that of 3 galaxies belonging to
Abell 0801. He was able to measure the displacement of the two energy distributions
resulting in a value of z = 0.19 compared to the known spectroscopic value of
z = 0.192. Even if this measure was accurate, it relies on 4000Å break spectral
feature, making it reliable only for evolved, e.g. early-type galaxies. Years later,
other works improved the technique: using photographic plates and a theoretical
no-evolution model for the galaxies [92], defining a galaxy colors-redfshift diagram of
“permitted” redshift range [137], using the “ultraviolet dropout” technique, relying
on the Lyman break in galaxy spectra [159][107].

Whenever possible, more accurate spectroscopic redshifts are preferable to photo-
z. However, in the 1990s-2000, the technique gained popularity thanks to increasing
size of surveys, in which a growing number of faint high-redshift objects have been
observed, making a spectroscopic analysis unfeasible. To handle this large amount of
available data, in the recent years Bayesian methods and Artificial Neural Networks
have been deployed to estimate the photometric redshift. Even if these measures are
the only alternative to analyze a large amount of data, their reliability is often less
robust than that of spectroscopy.

1.6 Image formation model
This work aims at discussing two particular issues related to astronomical digital

images: namely, denoising and deblending. To understand the algorithms used to
tackle these tasks, we need to introduce a mathematical model of image formation.
The model takes into account the processes involved when an image observed with a
telescope is discretized on a pixels grid.

First of all, let us consider a continuous function such that the intensity of the
two-dimensional image is defined as F (x, y). As already discussed in Sect. 1.5, the
atmosphere produces a distortion effect in the image, which can be expressed with
the convolution of the Point Spread Function, PSF (x, y):

F̂ (x, y) = F (x, y) ∗ PSF (x, y) (1.9)

Considering a discrete grid of pixels, such that (i, j) are the indices, and repre-
senting the generic pixel pij , F̂ (x, y) is sampled at regular intervals (δx, δy) along
the axis of the grid. Added to the image is the noise component η(i, j), which is a
combination of different sources such as those discussed in Sect. 1.3.1. Then the
final image is represented by:

G(i, j) = F̂ (iδx, jδy) + η(i, j) (1.10)
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where G(i, j) represents the original image F (x, y) on a pixels grid. All the methods
discussed in Chapt. 3 assume this model and perform mathematical operations on
the discrete domain defined here.

This model assumes the presence of a noise component, which naturally depends
on the kind of image we are taking into consideration. Denoising methods aim at
reducing this component as much as possible, to recover the correct contribution of
F̂ (x, y) to each pixel pi,j of the grid.

On the other hand, the PSF convolution, blurring the image, lowers the resolution,
producing in some cases the blending of nearby objects. To reduce this effect, a
narrow PSF is required, which can be obtained in areas of optimal astronomical seeing
(e.g., dry areas), using adaptive optics, or observing from high-altitude balloons or
space. Unfortunately, most of the time, the blending issue is only partially removed.
Deblending algorithms aim at reducing this issue, recognizing blended objects and
dividing pixels among them, or even recovering the correct shape of blended objects
(through profile reconstruction techniques).

A free astronomical software, SExtractor, that handles both denoising and
deblending and is widely used in the astronomical community, is discussed in the
next section.

1.7 Source detection and deblending with SExtractor
In the past two decades, source detection, deblending and aperture photometry

in (extra-galactic) astronomy have been typically performed by means of one of
the most used free software available to the scientific community, SExtractor
[19]. This software, although developed more than 20 years ago, is still widely used
by astronomers. For example, it has been recently used for detection, deblending
and photometry in the CANDELS survey [66, 90, 69], and it will be used for the
detection in the forthcoming Euclid pipeline [97], although other solutions have been
considered. It is a powerful, well tested and versatile code, and it provides a solid
baseline for new software comparison. Although being suited for many applications
including photometry and background subtraction, detection, deblending, in this
section we focus only on detection, denoising (filtering), and deblending tasks. The
information discussed here will be useful for Chapt. 4-5.

First of all, the software analyzes the set of images provided by the user. If
known, the background noise model can be provided through an rms map, where each
pixel stores the root mean square (rms) value of the background pixels distribution.
Alternatively, the background noise model is estimated locally in each mesh of a grid
that covers the whole image. The local background histogram is clipped iteratively
until convergence (set at ±3σ) around its median. If σ value doesn’t change more
than 20% during the process, the field is considered not crowded and the mean of
the clipped histogram is taken as a value for the background. Otherwise, the mode
is estimated as follows: [19]:

mode = 2.5 ∗median− 1.5 ∗mean (1.11)

After that, the background is subtracted. Once the subtraction is performed, the
software filters the image (when a filter is provided, e.g., PSF or a Gaussian kernel),
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and then the image is thresholded on-the-fly. The threshold is essentially used for
detection. Subsequently, the detected objects are deblended and cleaned (see Cleaning
below), morphological information, and photometry are measured, and in the end, the
resulting information is written in an output catalog (see SExtractor documentation
at: https://www.astromatic.net/software/sextractor, and [75]).

The above-cited passages are analyzed below.

Filtering

With SExtractor it is possible to pre-filter the image, before detection. We
have seen in Sect. 1.4.2 the possible advantages provided by filtering, depending on
the kernel. Filtering can be enabled in the configuration file by setting the boolean
value TRUE to the parameter FILTER, while the kernel can be chosen providing to the
parameter FILTER_NAME the string name and path of the kernel to convolve with the
image. In general, filtering the image enhances the quality of detection; an in-depth
analysis of filtering and other denoising methods is shown in Chapt. 4.

Detection

SExtractor uses threshold parameters DETECT_THRESH and DETECT_MINAREA
to determine if a generic pixel is part of an object. There are three criteria that tune
the detection of objects :

• All the pixels forming the object must have values above DETECT_THRESH ×
the corresponding value of the rms map pixel

• All the pixels forming the object must be adjacent (including diagonals)

• The total number of pixels forming the object must be larger than (or equal
to) DETECT_MINAREA.

In some cases it is convenient to set DETECT_THRESH as an absolute value (expressed in
ADUs) instead of the value relative to the rms; this is possible setting THRESH_TYPE
to ABSOLUTE instead of RELATIVE.

The larger is the values for DETECT_THRESH, and DETECT_MINAREA, the more
significant must be the objects to be detected, performing a conservative detection.
Conservative combinations restrict the probability of spurious detections at the cost
of not detecting faint objects. The application of denoising algorithms allows setting
less conservative combinations of these two parameters, increasing the number of
faint objects detections since the spurious ones are less likely.

Deblending

Once the objects are detected, the deblending step is performed. In SExtractor,
deblending separates overlapping objects using a multi-threshold approach. The
software does not know a priori which of the detected objects are instead two or
more objects blended. Indeed it runs the deblending algorithm to each detected
object (which in some cases can produce false positives). To introduce the method,
we take as an example a generic detected object. The parameter DEBLEND_NTHRESH

https://www.astromatic.net/software/sextractor
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defines the number of thresholds: the pixels belonging to the detected object are
assigned to exponentially spaced bins between DETECT_THRESHOLD and the peak
value. After that, a “tree” is built, following the flux profile of the blended objects.
SExtractor divides the object into branches every time pixels above a threshold
are separated by pixels below it. Two criteria define a branch:

• The number of counts in the branch is above a fraction, defined by DEBLEND_-
MINCONT × the total number of counts of the object

• There exists at least another branch above the same threshold and above the
fraction.

DEBLEND_MINCONT represents the minimum threshold required for a branch to be
separated from the three. Typical values range from 0.01 to 0.0001. Ideal values for
DEBLEND_NTHRESH range from 8 to 64.

An in-depth analysis of deblending algorithms and their application is given in
Chapt. 5.

Cleaning

Once detection and deblending are concluded, the clean step, which can be
activated by setting to TRUE the parameter CLEAN, checks all the detections again,
to see if they would have been detected without their neighboring objects around.
An estimate of the neighbors’ contribution is performed using a function which
approximates the PSF, the Moffat profile [121]:

I(r) = I(0)
(1 + kr2)β (1.12)

β can be changed through CLEAN_PARAM, and ideal values range from 0.1 to 10, while
1.0 is the default value.

Outputs

SExtractor can produce an output catalog containing up to ∼400 columns (the
number of parameters can be set through the .param file), storing information about
all the extracted objects, such as their position in the image, their magnitudes/fluxes
at different apertures, their ellipticity, etc. A small list of commonly used parameters
is shown below:

• FLUX_ISO is the isophotal flux of a detected object, obtained by summing all
its background-subtracted pixels within the detection footprint. MAG_ISO is
the associated magnitude

• FLUX_APER is the fixed-aperture fluxes array, i.e. the fluxes within a given set
circular aperture, summing all the pixels above the background, within any
chosen radius. MAG_APER is the associated magnitude

• FLUX_AUTO is the automatic aperture flux estimating the total flux of a detected
object, summing all the pixels within an adaptive elliptical aperture; the shape
follows from [93]. MAG_AUTO is the associated magnitude
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• X_IMAGE (Y_IMAGE) is the x (y) coordinate of the isophotal image centroid

• ALPHA_J2000 (DELTA_J2000) is the J2000 right ascension (declination) of the
isophotal image centroid

• FWHM_IMAGE (FWHM_WORLD) is the FWHM estimate, assuming a gaussian core,
expressed in pixels (deg)

• ELLIPTICITY is the ellipticity of the detected object defined as: 1 − B_IMAGE
A_IMAGE ,

where A_IMAGE (B_IMAGE) is the isophotal major (minor) axis

The software can also be configured to produce the objects segmentation, their
apertures, the background map, etc., setting the CHECKIMAGE_TYPE keyword value
to match the desired check image output.

From the topics discussed in this chapter, it should be clear that noise and
blurring (one of the leading causes of objects blending) affecting astronomical images
are a crucial issue. Recovering such lost information is fundamental for imaging
surveys that aim at high precision measures. Before discussing denoising and
deblending algorithms, some of the next-generation surveys and their scientific goals
are described in the next chapter.
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Chapter 2

Next-generation surveys

2.1 Big data: imaging with next-generation telescopes
With the term Big Data, we refer to that field enclosing data processing software

specialized in mining information out of massive datasets, that traditional methods
cannot handle. Nowadays from social networks to e-commerce, from sports to science,
enormous quantities of data are analyzed to find trends and patterns. Astronomy
is no exception. Future advanced facilities will produce unparalleled massive data,
making the upcoming datasets extremely large, far too much to be analyzed with the
currently available tools and techniques. Forthcoming surveys will easily produce
dozens of petabytes (PB) of data to be analyzed fastly and precisely. New approaches
are needed. The term Big Data is in use since 1990s [103], and different definitions
exist[96, 25, 73]. We can summarize, for astronomy, four crucial keywords:

• Volume: Simply the volume of data expressed in Terabytes (TB), Petabytes
(PB) or Exabytes (EB)

• Variety: Meaning complexity, in terms of a large number of attributes per
data point, different data types/formats (obtained with different telescopes)

• Velocity: The rate of data being produced by the telescopes and analyzed by
software pipelines

• Value: The importance of data produced to discover new trends and patterns.

New strategies and algorithms are constantly being developed to handle this
upcoming challenge (data mining processes). These new methods aim at analyzing
large amounts of data to find correlations, trend, patterns, anomalies, outliers, and
so on. A particularly interesting data mining field is Machine Learning (ML). A
more detailed description of ML algorithms is given in Chapt. 3.2.

One of the recent surveys of the sky, and one among the first to collect enormous
amount of data, is the Sloan Digital Sky Survey (SDSS) [67]. The SDSS project
began in 2000 and is still producing data. SDSS-IV is the latest phase, started in
2014, and ending in 2020. By now, after more than 15 years, the SDSS collaboration
has catalogued ∼ 108 stars, ∼ 106 galaxies, and ∼ 105 quasars)[4]. SDSS is extremely
important for statistical studies. A popular side-project, based on crowdsourcing
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Survey Data Volume

2MASS 3 TB [183]
SDSS 40 TB [183]
DES ∼6 PB [1]
WFIRST ∼30 PB expected [94]
Euclid ∼30 PB expected [40]
PanSTARRS ∼40 PB expected [183]
LSST ∼60 PB expected [3]
SKA ∼1 EB/day expected [14]

Table 2.1. Future and already concluded Sky Surveys with their data volumes

on SDSS images, is Galaxy Zoo [141]. Galaxy Zoo asks people to visually classify
objects extracted from SDSS images, by simply reaching the site (http://zoo1.
galaxyzoo.org/) and choosing among different morphological options. The project
evolved in time, providing more and more options for a more detailed classification.
The latest version (https://zoo4.galaxyzoo.org) combines new SDSS imaging
with the HST survey CANDELS [90][66].

Next-generation surveys will produce data a factor ∼ 103 larger than the data
volume produced by SDSS, due to increased resolution, depth, and/or observation
area. This huge quantity of raw data needs to be reduced, cleaned and analyzed, by
optimized algorithms to provide high level information. A sample of surveys and
related data volumes is shown in Tab. 2.1

Observables and objects for cosmological and extragalactic studies are discussed
in the next section.

2.2 Cosmological and extragalactic observables
In this section, we will discuss the objects and phenomenons that will be observed

and analyzed by the next-generation sky surveys to shed light on the history and
evolution of the Universe. In particular, we will focus on the observables that can be
extracted from extragalactic optical and infrared images: they (and their analysis)
are the principal focus of this thesis.

We are interested in two categories of observables, astronomical objects, and
astrophysical phenomena. Astrophysical phenomena of cosmological interest retain
information about the evolution of the Universe and its composition, and are Weak
Lensing (WL), Baryonic Acoustic Oscillations (BAO). Astronomical objects of
cosmological and extragalactic interest are source of information for dark energy,
structure evolution, reionization, star formation, etc., and are Galaxy Clusters,
Supernovae Ia (SNe Ia), Galaxies, Quasars, and Active Galactic Nuclei (AGNs).

The gravitational potential field, generated by billions of galaxies and dark matter
over-densities, affects the path of the photons from the source where they are emitted
to the Earth. This phenomenon is called Gravitational Lensing. Gravitational lensing
behaves like a piece of glass with multiple refraction indexes, that vary with position.
It distorts light with variable intensity. We refer to Strong Lensing (SL) and Weak

http://zoo1.galaxyzoo.org/
http://zoo1.galaxyzoo.org/
https://zoo4.galaxyzoo.org
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Lensing (WL), to classify distortions effects. SL creates visible distortions such as
rings, arcs, and multiple images. On the other hand, WL creates weak distortions of
background sources, that can only be detected by analyzing statistical methods on a
large number of objects to find coherent distortions.

The resulting image shows a slight distortion, and is commonly referred as cosmic
shear (or simply shear). Measuring shear and its amplitude yields to the actual
map of the gravitational field, which encodes the statistical properties of the large
scale structure of the Universe. The pattern of alignments in background galaxies
can be studied measuring galaxies ellipticities, but since the distortion is very faint,
accurate measurements with high-resolution images are required [97].

Another way to study large scale structures is the analysis of Galaxy Clusters.
Quantitative measures of the properties of clustering can be performed with the
correlation function, to extract a distribution of galaxies with respect to their mutual
distance [136]. Along with WL, clusters of galaxies quantify the large scale structures
of the Universe. Furthermore being the largest virialized over-densities that we
observe, clusters probe the growth of structures. Clusters follow the statistical
distribution of the initial fluctuations and those with high masses at high redshift
are extremely sensitive to possible primordial non-Gaussianity and deviation from
the standard dark energy model [97].

An interesting outcome related to galaxy clusters correlation function is a pre-
ferred comoving distance of ∼ 150Mpc. This distance provides a standard ruler
which probes the expansion history of the Universe. This distance is the signature of
pressure waves in photo-baryonic primordial plasma, measured in the CMB and are
called Baryonic Acoustic Oscillations (BAO). Another way to measure distances
is by using standard candles such as Supernovae Ia (SNe). SNe are used to estab-
lish the redshift-distance relation, which led to the discovery of dark energy [143].
Further detections can be used to measure the expansion history of the Universe
while measuring their frequency allows to determine the star formation history of
the Universe and the stellar evolution.

A number of issues are still under investigation [97], for example:

• The nature of dark matter and its relationship with baryonic matter

• The internal structure of dark matter halos or how the central black hole
impacts its host galaxy evolution

• Where and when does star formation take place and is quenched

• The galaxy scaling relations and their dependency on the environment

• The luminosity function bright end at z > 6.5 and galaxy formation model

• The contribute of star-forming galaxies, quasars, and AGNs to reionization.

Future surveys will need to investigate objects at different redshift from local regions
to the primordial Universe, to try and answer these questions. Collecting information
in different wavelength from optical to infrared will be crucial.

In the next sections we will introduce some of the most important upcoming
surveys for extra-galactic astronomy: LSST, Euclid, WFIRST, and DES (which
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has already concluded the period of observations). The first three represent an
exhaustive sample of next-generation optical/infrared surveys. For what concerns
DES, even if already concluded, its data are still not publicly available, it shares
similar scientific goals with the other three, and it is supposed to be one of the
external surveys (EXT) supporting the Euclid satellite observations.

2.3 Euclid

Figure 2.1. An artist view of the Euclid Satellite. Credit: https://www.euclid-ec.org/

Euclid is a Medium Class ESA mission, which will be deployed in 2022 [2]. The
main goal of the Euclid survey is to show how Dark Energy (DE) acceleration modifies
the distribution of Dark Matter (DM) in the Universe. Euclid will measure over
a billion of galaxy shapes and photometric redshifts, to study Weak Gravitational
Lensing and Galaxies Clustering. The survey will investigate the nature of DE
and DM, using so-called “cosmological probes”. The Euclid mission is optimized to
accurately measure two observational signatures on the geometry of the Universe:
the Weak Lensing (WL) and the Baryonic Acoustic Oscillations (BAO). With WL, it
is then possible to map DM, which is essential to measure the DE by quantifying the
apparent distortions of the galaxies. With BAO, it is possible to derive a standard
rule to measure the expansion of the Universe. Along with these two main probes,
Euclid will provide several other essential data on galaxy clusters, redshift space
distortions, and the integrated Sachs Wolfe effect. To achieve the level of precision
needed for the WL analysis, high-quality images are required. Scales below the
arcsec in the visible and infrared bands are essential to estimate galaxy shapes and
photometric redshifts of the lensed galaxies out to z ≥ 2. For what concerns BAO,
accurate spectroscopic near-infrared measures of galaxies redshift out to z ≥ 0.7 are
required. Both WL and BAO require a massively large number of detected sources,
resulting in a survey which will observe a major fraction of the extragalactic sky.
The Euclid Wide Survey will scan 15,000 deg2 (i.e. 36% of the whole sky). Euclid

https://www.euclid-ec.org/
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uses the WL and BAO to measure the terms of the DE equation of state, the validity
of General Relativity, constraints on the sum of the neutrinos masses, deviations
to a Gaussian distribution of initial perturbation, with absolute precision, making
the mission able to challenge the cosmological model on many levels. As above
mentioned, Euclid will produce a vast dataset of billions of galaxies and millions of
spectra out to z ≥ 2 together with morphologies, masses and star-formation rates
with accuracy four times better and three near-infrared magnitudes deeper, than
possible from the ground. At low redshift, it will resolve the stellar population
of galaxies within ∼ 5 Mpc, while in combination with eROSITA, Planck and
SZ telescopes it will derive the mass function of galaxy clusters, discovering over
105 strong lensing systems. The gravitational lensing will also be used together
with the near-infrared photometry to further investigate the relationship between
light, baryons, and DM between galaxies. In addition to the Wide Survey, a Deep
Survey will observe an area of 40 deg2 (composed of two 20 deg2 regions), reaching
a sensitivity two magnitude deeper than the wider. The Deep Survey will be the
primary target for follow-up observations, containing objects at z ≥ 6, and quasar
candidates at z ≥ 8. The mission lifetime is of 7 years, containing 1 month to reach
the Lagrangian Point L2, 3-6 months of necessary calibrations, 6 years to complete
the Wide+Deep Survey, mapping the sky in the step and stare mode and sending
data to ground stations (at least one granted at time) at a rate of 850 Gbit/4 hours
[97].

Instrumentation

Euclid is equipped with a 1.2m diameter Korsch reflecting telescope, appropriate
for large field observations. The telescope reflects light to two instruments, the
visual instrument (VIS) and the near-infrared instrument (NISP). VIS is equipped
with 36 CCDs. It can observe objects with a very high resolution (better than 0.2
arcsec PSF FWHM, comparable to HST), with a pixel scale of 0.1 arcsec/pixel, in
one wide band (R+I+Z) from 550 to 900 nm. The NISP instrument operates in
3 different bands (Y=920-1146 nm, J=1146-1372 nm, H=1372-2000 nm), using 16
mercury cadmium telluride (HgCdTe) near-infrared detectors with a pixel scale of
0.3 arcsec/pixel and ∼ 0.4 arcsec resolution. VIS and NISP operate in parallel; VIS
only performs photometry measurements, while NISP also performs spectroscopy
measurements. In the Wide Survey VIS will reach a sensibility of 24.5 magnitudes
at 10σ for extended sources, while NISP will reach 24 magnitudes at 5σ for point
sources for photometry and 3× 10−16 erg cm−2 s−1 at 3.5σ unresolved line flux for
spectroscopy [97].

2.4 Large Synoptic Survey Telescope
The Large Synoptic Survey Telescope (LSST) is a 6.7 meters reflecting telescope

with a field of view of 9.6 deg2, which is in construction at the EL Peñón Peak of
Cerro Pachón in Chilean Andes. LSST will carry out a 20,000 deg2 wide survey in
10 years. The multi-purpose survey is designed to explore the Solar System beyond
the Kuiper Belt, to further investigate the structure of the Milky Way together
with the observation of the Local Group, and to observe billions of distant galaxies,
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Figure 2.2. LSST facility representation at EL Peñón Peak of Cerro Pachón, Chile. Credit:
https://gallery.lsst.org/

enhancing our knowledge of cosmology and galaxy evolution. The survey builds on
small patches of the sky, each one to be visited 1000 times. A “visit” consists of
two 15-seconds exposure per filter. The outcoming processed amount of data (32
bit) is expected to be of 30 TB/night, providing information of 20 billion objects in
10 years of activity. The wide survey will take the 90% of the observational time,
leaving the remaining 10% for very deep observations (with typical single visit depth
∼ 26 mag) focusing on the ecliptic, the Galactic plane and the Small and Large
Magellanic Clouds. Another 1% will be used for micro-surveys, for a total of 25
nights over ten years.

LSST will observe the small bodies of the Solar System as well as the Kuiper
belt region, which contains a portion of the early planet population. The encoded
information will be fundamental to understanding the formation and evolution of
our planetary system. Observations of the Milky Way will shed light on structures,
chemical compositions, and kinematics of the stars. With LSST we will be able to
understand the accretion history of the Milky Way and the fundamental properties
of all the stars within 300 pc from us. The long lifetime of the wide survey will be of
fundamental importance to discover and study transients and variable phenomena.
With a time resolution of 15 seconds, repeated observations of the same patches of
the sky and an ever-increasing limiting magnitude, the telescope will also enable
the analysis of neutron stars, black holes binaries, active galactic nuclei (AGN)
variability and the optical counterparts of gamma-ray burst and X-ray flashes. With
the wide survey, it will be possible to better understand the evolution of galaxies,
as well as galaxies morphologies with respect to their environment, providing an
unprecedentedly large statistical sample. LSST will also be crucial for better
constraining the cosmological model. Being a deep, wide-field, multi-color survey,
with a single dataset it will provide with excellent precision four cosmological probes:
WL, BAO, mass function evolution, redshift measurements using type Ia supernovae
[105].

https://gallery.lsst.org/
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Instrumentation

The telescope is a modified Paul-Baker three-mirrors system (named M1, M2,
and M3) with three refractive lenses (L1, L2 and L3) and a color filter at the focal
plane, before the sensor. 189 CCDs compose the LSST camera with 10µm pixels.
The pixel scale is 0.2 arcsec/pixel, which will work in the bands (u, g, r, i, z, y),
covering the wavelength from 320 to 1080 nm. The median free-air seeing is 0.7
arcsec/pixel in the r band [105].

2.5 Wide-Field InfraRed Survey Telescope

Figure 2.3. Rendered model of the WFIRST spacecraft. Credit: https://wfirst.gsfc.
nasa.gov/

The Wide-Field InfraRed Survey Telescope (WFIRST) is a 2.4m telescope
equipped with a Wide Field Instrument (WFI) and a Coronagraphic Instrument
(CGI). WFI is composed of a wide-field camera and an Integral Field Unit (IFU),
while CGI is composed by a High Contrast Imaging Testbed (HCIT) and an Integral
Field Spectrograph (IFS). WIF-IFU will focus on distant supernovae Ia (SN) to study
the evolution of the Universe, while CGI-IFS will be able to characterize the super-
Earth and Neptune-like planets atmospheres. To WFIRST was added the acronym
AFTA (Astrophysics Focused Telescope Assets) when the National Reconnaissance
Office offered to donate two telescopes, with the same size of Hubble Space Telescope
(HST), with shorter focal length but a wider field of view. The telescope is now
known as WFIRST-AFTA. The telescope has the spatial resolution of HST-WFC3
camera but with a field of view ∼ 200 times larger. Observing millions of galaxies,
WFIRST-AFTA will build an accurate 3D distribution of DM across ∼ 2200 deg2 of
the sky. This map coupled with and the high-resolution images produced by the
telescope, will be used to shed light on galaxy formation and evolution. Through
the High-Latitude Imaging Survey (HLS Imaging) it will enable accurate WL shape
measurements of ∼ 108 galaxies, yielding precise analysis of distances, clustering,
galaxy-galaxy lensing and mass profiles of galaxy clusters. With the High-Latitude
Imaging Survey (HLS Spectroscopy), instead, it will measure grism spectroscopic

https://wfirst.gsfc.nasa.gov/
https://wfirst.gsfc.nasa.gov/
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redshift of ∼ 107 galaxies. With the SN Survey, a new measure of the expansion of
the Universe will be provided, thanks to the analysis of more than 2700 supernovae
out to z = 1.7. WFIRST will also provide “Degree-Deep-Fields”, ∼ 100 times larger
than HST deep fields. It will determine positions/motions of more than 200 million
stars in the Milky Way with astonishing precision. This can be achieved collecting
photons produced by sources 500 times fainter than the ones observed with Gaia
telescope, providing then interesting data to trace DM distribution in our Galaxy.
It will be used to observe the infrared counterpart of gravitational waves merger
events, thus providing a deeper and more resolved view of the transient Universe.
It will grant interesting data regarding stellar evolution and galaxy formation of
nearby galaxies. Thanks to its features, WFIRST-AFTA is the optimal candidate to
complement missions like Euclid and LSST.

The larger mirror of WFIRST compared to the Euclid one balances the longer
wavelengths of near-infrared photons compared to the optical photons ones, thus
producing images with a similar angular resolution of the Euclid-VIS image, in
the near-infrared band. In the primary overlapping areas between the surveys, the
higher resolution near-infrared images (by WFIRST) can be coupled with the VIS
images (by Euclid), granting images of the same objects in different wavelengths
at the same resolution. Moreover, even if WFIRST survey will be narrower than
Euclid survey, it will be ∼ 2 mag deeper.

Instrumentation

WFIRST telescope mounts a 2.4m primary mirror, associated with a secondary
and a tertiary mirror, providing a three-mirror anastigmatic configuration. The orbit
is geosynchronous, with a 28.5-degree inclination, motivated by the high data rate
achievable. The telescope operates at a temperature of 270K, with the near-infrared
focal plane at 118K. WFI is composed of 18 H4RG-10 HgCDTe detectors, distributed
in a 6×3 array. The pixel scale is 0.11 arcsec (slightly variable in the different bands),
with 300Mpixels covering an area of 0.281 deg2. The camera has a filter wheel,
spacing from wavelength 0.76 µm to 2.0 µm and a grism, which grants an R = 700
resolution. IFU has a three arcsec field of view and an R = 75 resolution. With
the HLS survey, several depths (at 5σ) in the different bands are reached (Y =
26.7, J = 26.9, H = 26.7, F184 = 26.2) in a lifespan of 1.3 years for imaging. For
spectroscopy (at 7σ) a depth of 0.5× 10− 16erg/s/cm2@1.65µm is reached, in 0.6
years. The SN Survey, divided in 3 “micro-surveys” will reach different depths in
relation to the surveys areas (Wide = 27.44 deg2 Y = 27.1, J = 27.5; Medium =
8.96 deg2 J = 27.6, H = 28.1; Deep=5.04 deg2 J = 29.3, H = 29.4). CGI operates
in the 400-1000 nm band, having a 2.5 arcsec field of view, a 10−9 effective contrast
and a 100-200 mas inner working angle. While IFS has a R = 70 resolution [156].

2.6 Dark Energy Survey
The Dark Energy Survey (DES) investigates night sky with a wide-field camera

mounted on the 4m Blanco Telescope at Cerro Tololo Inter-American Observatory, in
Chile. The five years survey observed 5000 deg2 of the sky in five different filters, four
optical and one near-infrared (g, r, i, z, Y). DES is a collaboration between United
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Figure 2.4. Blanco Telescope Dome at Cerro Tololo Inter-American Observatory, Chile.
Credit: https://www.darkenergysurvey.org

States, Brazil, United Kingdom, Germany, Spain, and Switzerland. DES officially
saw the light in August 2013 and completed the last session of observation in January
2019. Data will be released to the public after one year of the proprietary period.
The main goal of DES is to determine, with high precision, the ratio of pressure to
density (w) in the DE equation of state, and other key cosmological parameters. In
addition DES is expected to catalog ∼ 3× 108 galaxies with photometric redshifts,
of which ∼ 3× 108 will have shape measurements for WL. Part of the survey area
(250 deg2) overlaps those of the South Pole Telescope (SPT), which complements the
optical techniques used by DES in finding galaxy clusters. The survey also overlaps
with the Sloan Digital Sky Survey (SDSS)[67] and Vista Hemisphere Survey, to
obtain a larger number of information on the galaxies observed by DES. A small
area of 27 deg2 will be used to measure supernovae Ia in the time domain [43].

Instrumentation

The wide-field camera used for DES is called Dark Energy Camera (DECam).
DECam is a 570Megapixel camera, composed in an array of 62 2048×4096 back-
illuminated CCDs. The CCDs are composed of high resistivity silicon with 15×15
µm pixels. The camera has a pixel scale of ∼ 0.26”, a field of view of 3 deg2 and an
increased sensitivity, extending the wavelength range to 1050 nm. The typical single
exposure is 90 seconds for griz and 45 seconds for Y. The survey reaches different
depths related to the bands and the time exposure (g = 24.45, r = 24.3, i = 23.5, z
= 22.9 and Y = 21.7; at 10σ). The estimated median seeing FWHM is ∼ 0.9” in
filters riz [43]

https://www.darkenergysurvey.org
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2.7 Surveys synergies
Next-generation extragalactic surveys will produce unprecedented amounts of

data. Although each will primarily focus on a few particular scientific goals, some of
these goals are in common and the different approaches used to achieve them will
constitute a unique opportunity: the combination of data from these surveys will
produce far more complete and accurate results, surveying an extensive area of the
extragalactic sky, with high resolution, a rapid cadence (from ground and space)
and spanning multiple wavelength bands from optical to near-infrared.

Following [80] and [142], we will now summarize the possible synergies among
LSST, WFIRST and Euclid for cosmological and extragalactic science.

As shown in the previous sections, LSST, WFIRST, and Euclid projects will
provide different surveys in terms of observed sky area, wavelength, depth, and
resolution. Their synergies rely on the combination of a large number of colors.
Precisely, nine filters (six optical from LSST and three infrared from WFIRST/Euclid
and one wide optical filter from Euclid) in the overlapping areas. WFIRST and
Euclid images will be much sharper, as the PSF will be several times smaller.

Data from cosmological and extragalactic observables, discussed in Sect. 2.2,
will be collected and handled with different techniques, each one having pros and
cons, including systematic errors. The combination of these surveys provides the
critical advantages of mitigating these errors. To name two, systematics on photo-z
measures are the result of incomplete wavelength coverage, whereas low-resolution
and blending create shear systematics.

Among the benefits granted it is pointed out: robust measurements of photometric
redshifts, to calibrate LSST WL; analysis of the correlation between optical colors
and near-infrared spectral energy distributions (SED) and a morphological study of
the galaxies with high-resolution images [156].

According to [142], two possible levels of combinations can be performed: catalog-
level and pixel level. The first assumes that the objects will be detected independently
by the surveys and then matched, whereas the second assumes that the objects
will be detected simultaneously. Various benefit about the two approaches can be
considered. For example, the catalog-level LSST will provide confirmation of Euclid
and WFIRST detection at their detection limits. While the pixel-level will enhance
the deblenders performances, providing wavelengths and morphology information.

We now discuss the benefits from possible synergies, concerning the different
observables.

Weak Lensing

The two space missions Euclid and WFIRST, with their optimal angular resolu-
tion, can provide improvements in the shear calibration for LSST. On the other hand,
the ground-based telescope LSST will have a deeper limiting magnitude, collecting
a large number of information on the outer parts of galaxy images.

An issue that affects ground-based telescopes such as LSST is the objects blending,
discussed in Chapt. 5. Blending will affect nearly half of the observed galaxies
[44][80], to reduce its impact a prior coming from Euclid (better than WFIRST,
due to larger overlapping area) could be provided to the LSST deblender. On the
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contrary, Euclid could benefit from LSST observations at different optical bands.
Indeed PSF is wavelength dependent; thus, it differs in relation to the SED. For this
reason, the only wide optical band of Euclid does not permit to estimate the proper
PSF for each galaxy/star, generating systematics for WL measurements.

Systematics of the three surveys are expected to be very different, cross-correlation
of the shear estimates should erase the errors, leaving only WL signatures. Fur-
thermore, the different redshift distribution of the lensed galaxies will contribute
to building a complete dataset. Combination of spectroscopic and lensing data will
provide a test of general relativity on cosmological scales. In LSST lensing sources
span a redshift range between 0 and 3. For what concerns Euclid and WFIRST, their
spectroscopic sources will span redshift from 0.4 to 3.5. With Euclid, a larger area
will be covered, while with WFIRST a much higher density of sources, in a smaller
area, will be provided. Furthermore, spectroscopic measures by Euclid and WFIRST
can enhance LSST shear measurements. Indeed, along with CMB polarization, they
are essential to calibrate its multiplicative shear bias.

Galaxy Clusters

LSST, Euclid, and WFIRST will observe different aspects of the galaxy clusters
emission. LSST will provide optical colors, which will be used to measure photo-z and
lensed objects time delays. Euclid and WFIRST will provide NIR photometry and
spectroscopy with different areas, depths, and resolution of the images. Altogether
these data/catalogs/images could provide remarkable improvements in the combined
analysis. LSST is exceptionally efficient in finding clusters applying appropriate
techniques for isolating overdensities (e.g., [148]), as they are often optimized for
optical wavelengths. By using NIR images, cluster finding can be extended over
z ∼ 1 with Euclid and WFIRST. A joint analysis could improve a cluster sample
selection, permitting to determine redshift distribution of background galaxies, that
is a possible source of systematic errors. For what concern strong and weak lensing in
galaxy clusters, WFIRST and Euclid can provide high-resolution images to calibrate
LSST shear, while this last will observe faint arcs, produced by strong lensing,
reaching a surface brightness of 28.7 mag per arcsecond.

Supernovae

WFIRST will observe thousands of SNe Ia per year from z = 0.1 to z = 1.7,
while LSST will observe 104 SNe per year from z = 0.03 to z = 1. The combined
analysis will measure distances from z = 0.03 to z = 1.7, measuring the dark energy
contribute to the evolution of the universe. Combining wavelength coverage and flux
calibration provided by WFIRST with the large aperture and the large number of
SNe observed by LSST could lead to a better characterization of each supernova at
different redshifts.

Photo-z

LSST will use photo-z to investigate Dark Energy, whereas WFIRST and Euclid
rely on photo-z for mass power spectrum, faint galaxies weak lensing and for
breaking spectroscopic degeneracies. Then reducing systematic error related to
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photo-z measurements is essential. The incomplete knowledge of the SEDs and poor
spectral coverage, due to low resolution of photometry, leads to systematics. Even if
LSST provides a significant advantage in estimating photo-z from z = 0 to z ∼ 6, the
photometric measures will be only in the optical wavelength. Combining these results
with spectroscopic measures from WFIRST (which shares a comparable depth with
the ten years survey), will provide complementary information, needed to reduce
systematics. In the same way, Euclid can contribute with the NIR photometry in its
three bands, using the large overlap of the surveys areas.

Galaxies

Combination of the three surveys will provide nine bands (from 0.3µm to 2 µm)
photometry at high signal-to-noise ratio. These combined data will allow easier
identification of galaxies and quasars at high redshift. The wavelength coverage will
provide SEDs of galaxies beyond 0.4 µm to z > 3, allowing accurate determination
of star formation rates and stellar masses.
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Chapter 3

Advanced Image Processing and
Computer Vision Techniques

In this chapter we discuss advanced techniques developed to extract information
from images. Image processing and computer vision are interdisciplinary fields,
spanning several areas of interest and performing an extensive number of tasks.
Typical tasks include Image restoration, Object detection, Classification, Pattern
recognition, Noise reduction, etc.

In Sect. 3.1, we focus on noise reduction techniques, aiming to provide an overview
of different state-of-the-art algorithms, successfully applied in many fields. These
algorithms are applied to extragalactic images in Chapt. 4 and their performances
are analyzed and compared with noise reduction techniques standardly used in
astronomy.

In Sect. 3.2, we focus on Machine Learning techniques and the possible advantages
provided when applied on astronomical images. The application of some of these
methods is shown for objects deblending in Chapt. 5.

3.1 Denoising Techniques
The focus of this section is to provide information on a large range of different

image denoising families proposed in the literature. These techniques are then
applied on astronomical images in Chapt. 4. An efficient denoising method is
crucial to extract the information contained in the image and could be used as a
preliminary step for other image processing problems, like the image segmentation
and/or deblurring.

The main families of noise reduction techniques analyzed are:

• Gaussian smoothing (3.1.1)

• Anisotropic diffusion (Non-linear filtering) (3.1.2)

• Bilateral filter (3.1.3)

• Total-variation (TV) denoising (3.1.4)

• Image decomposition (3.1.5)
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• Wavelets (3.1.6)

• Non-local means (3.1.7)

3.1.1 Gaussian smoothing

Let us consider the intensity function I(x, y) of a noisy image, with (x, y) ∈ Ω,
where Ω ⊂ R2 is the reconstruction domain. Let Iclean be the desired “clean image”,
i.e. an ideal, noiseless image with infinite signal-to-noise ratio. An image with a
Gaussian noise component is:

I(x, y) = Iclean(x, y) + η (3.1)

where η ∼ N(µ, σ) is the additive noise component.
Of course, we want to reconstruct Iclean from I.

This filter uses a Gaussian function for calculating the transformation to apply to
each pixel in the image. Mathematically, applying a Gaussian filter to a signal
corresponds to convolving the signal with a Gaussian function. Since the Fourier
transform of a Gaussian is still a Gaussian, applying a Gaussian smoothing has the
effect of reducing the image’s high-frequency components; a Gaussian filter is then a
low-pass filter. In two dimensions, it is the product of two Gaussian functions, one
in each dimension, so that the low-pass Gaussian filter is

Gσ(x, y) := 1
2πσ2 exp−

x2+y2

2σ2 (3.2)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaussian
distribution.
As mentioned above, filtering the image I : Ω ⊂ R2 → R with a “low-pass” Gaussian
filter is mathematically equivalent to process it with the heat equation [60, 101],
that is solving the following linear partial differential equation

∂I

∂t
(x, y, t) = ∇I(x, y, t) ∀(x, y, t) ∈ Ω× (0, TC ] ,

∂I

∂η
(x, y, t) = 0 , ∀(x, y, t) ∈ ∂Ω× (0, TC ] ,

I(x, y, 0) = I0(x, y) , ∀(x, y) ∈ Ω ,

(3.3)

which has a diffusive effect on the initial datum I0, for a small fixed time TC > 0.
The relation between the Gaussian filter (3.2) and the problem (3.3) is that the
solution of the heat equation is a convolution with the Gaussian filter, i.e.

I(x, y, t) = (Gσ(x, y) ∗ I0)(x, y) (3.4)

with σ =
√

2t.
It is well known that applying that filter does not preserve edges. This edge blurring
is due to the isotropic diffusion.
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3.1.2 Anisotropic Diffusion

An improvement of the simple Gaussian filter is obtained by modifying the heat
equation. Following the Perona-Malik model [139], we choose large values of |∇I| as
an indicator of the edge points of the image, in order to stop the diffusion at these
points. In this way we move from isotropic to anisotropic diffusion, as follows:

∂I

∂t
= div(∇I)⇒ ∂I

∂t
= div(g(|∇I|)∇I). (3.5)

The equation (3.5) must be complemented with suitable boundary conditions (e.g.
homogeneous Neumann boundary conditions) and an initial condition. Perona and
Malik pioneered the idea of anisotropic diffusion and proposed two functions for the
diffusion coefficient (also called edge-stopping functions):

g1(|∇I|) := 1

1 +
(
|∇I|
K

)2 (3.6)

g2(|∇I|) := exp
(
−
(
|∇I|
K

)2)
(3.7)

where K is the gradient magnitude threshold parameter that decides the amount of
diffusion to take place.
We also consider other three edge-stopping functions that have been proposed after
the original work by Perona and Malik:
In [22] is proposed an edge stopping function called Tukey’s biweight function defined
as:

g3(|∇I|) :=

 1
2

[
1−

(
|∇I|
K
√

2

)2]2
if |∇I| ≤ K

√
2

0 otherwise.
(3.8)

In [68] is proposed the following function:

g4(|∇I|) := 1

1 +
(
|∇I|
K

)α(|∇I|) (3.9)

where
α(|∇I|) := 2− 2

1 +
(
|∇I|
K

)2 . (3.10)

And finally in [174] is proposed:

g5(|∇I|) :=
{

1− exp(−3.31488 ∗K8/(|∇I|)8) if |∇I| 6= 0
1 otherwise. (3.11)

3.1.3 Bilateral filter

The Bilateral filter is an edge-preserving denoising algorithm that was first
introduced by [161].



3.1 Denoising Techniques 40

It is defined as (see also [12])

I(x) = 1
w

∑
xi∈Ω

I0(xi)fr(‖I0(xi)− I0(x)‖)gs(‖xi − x‖), (3.12)

where
w :=

∑
xi∈Ω

fr(‖I0(xi)− I0(x)‖)gs(‖xi − x‖) (3.13)

and

• I is the filtered image

• I0 is the original input image to be filtered

• x are the coordinates of the current pixel to be filtered

• Ω is the window centered in x, so xi ∈ Ω is another pixel

• fr is the range kernel for smoothing differences in intensities (this function can
be a Gaussian function)

• gs is the spatial (or domain) kernel for smoothing differences in coordinates
(this function can be a Gaussian function).

It averages pixels based on their spatial closeness and on their radiometric sim-
ilarity. Spatial closeness is measured by the Gaussian function of the Euclidean
distance between two pixels and a certain standard deviation (σspatial). Radiometric
similarity is measured by the Gaussian function of the Euclidean distance between
two color values and a certain standard deviation (σcolor).

3.1.4 Total Variation denoising

Total-variation denoising (also known as total-variation regularization) is based
on the principle that images with excessive and possibly spurious detail have high
TV, defined as

TV (u,Ω) :=
∫

Ω
|∇u(x)|dx (3.14)

for a function u ∈ C1(Ω) (note that a similar definition can be given also for L1

functions [91]). According to this principle, TV denoising tries to find an image
with less TV under the constraint of being similar to the input image, which is
controlled by the regularization parameter, i.e. tries to minimize TV (I,Ω). This
minimization problem leads to the Euler-Lagrangian equation, which can be solved
via the following evolutive problem:

ut = ∂

∂x

( ux√
u2
x + u2

y

)
+ ∂

∂y

( uy√
u2
x + u2

y

)
− λ(u− u0), (3.15)

for t > 0 and x, y ∈ Ω, with homogeneous Neumann boundary condition and a
given initial condition. TV denoising tends to produce “cartoon-like” images, that is,
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piecewise-constant images. The concept was pioneered by Rudin, Osher, and Fatemi
in [147] and is today known as the ROF model. TV denoising is remarkably effective
at simultaneously preserving edges whilst smoothing away noise in flat regions, even
at low signal-to-noise ratios.

3.1.5 Structure-texture image decomposition

A general approach to the denoising problem is based on the assumption that
an image I can be regarded as composed of a structural part u (i.e. the objects in
the image), and a textural part v which corresponds to finest details plus the noise.
Following the approach described in [9], such image decomposition technique is based
on the minimization of a functional with two terms, one based on the total variation
and a second one on a different norm adapted to the texture component. Given an
image I defined in a set Ω, and let BV (Ω) be the space of functions with limited
total variation in Ω we can decompose I into its two components by minimizing:

inf
( ∫

Ω
|∇u(x)|+ λ ||v(x)||pX dx

)
(3.16)

where || · ||pX denotes the norm of a given space X and the minimum is found among
all functions (u, v) ∈ BV (Ω)×X such that u+ v = I. The parameter p is a natural
exponent, and λ is the so-called splitting parameter which modifies the relative
weights. The best decomposition is found at the λ for which the correlation between
u and v reaches a minimum.

3.1.6 Wavelets

The wavelets transform is the counterpart for images of the Fourier transform
and the wavelets domain, which is a sparse representation of the image that can be
thought of similarly to the frequency domain of the Fourier transform [166]. Being a
sparse representation means that most values are zero or near-zero and truly random
noise is represented by many small values in the wavelet domain. Setting all values
below some threshold to 0 reduces the noise in the image, but larger thresholds also
decrease the detail present in the image.
Let us recall the relation introduced in Sect. 3.1.1

I = Iclean + η, (3.17)

where η is the noise and Iclean is the clean image (signal). The components of η
are independent and identically distributed (iid) as N (0, σ2) and independent of
Iclean. The goal is again to remove the noise obtaining an approximation Î of Iclean
minimizing the mean square error (MSE)

MSE(Î) := 1
N

N∑
j=1

(Îj − Ij)2, (3.18)

where N is the number of pixels. Let us denote by Y =WI the matrix of wavelet
coefficients of the image I where W is the orthogonal wavelet transform operator,



3.1 Denoising Techniques 42

similarly F = WIclean and E = Wη (see [171], [108] for more details on W). The
wavelet transform is based on the subbands (called details) at different scales usually
indexed by k ∈ K,K ⊂ N. The wavelet-thresholding method filters each coefficient
Yj from the detail subbands k ∈ K with a threshold function to obtain X̂. The
denoised approximation is Î =W−1X̂, where W−1 is the inverse wavelet transform.
Two thresholding techniques are frequently used. The soft-threshold function

ϕT (x) := sgn(x) max(|x| − T, 0) (3.19)

which shrinks the argument x to 0 by the threshold T . The hard-threshold function

ψT (x) := x1{|x|>T} (3.20)

which sets the input to 0 if is below (or equal) the threshold T . Note that the
threshold procedure removes noise by thresholding only the wavelet coefficients of
the corresponding subbands, while keeping the low resolution coefficients unaltered.

3.1.7 Non-local means

The non-local means algorithm averages the value of a given pixel with values of
other pixels in a limited proximity, under the condition that the patches centered on
the other pixels are similar enough to the patch centered on the pixel of interest.
This algorithm is defined by the formula [27]

NL[I0](x) = 1
C(x)

∫
Ω

exp (−ghσ(x)) I0(y) dy (3.21)

where
ghσ(x) := Gσ ∗ |I0(x+ .)− I0(y + .)|2)(0)

h2 , (3.22)

I0 is the original image, x ∈ Ω, C(x) is a normalizing constant, Gσ is a Gaussian
kernel with σ denoting the standard deviation, and h acts as a filtering parameter.
The algorithm has been found to have excellent performances when used to denoise
images with specific textures1.

We define by sizeI the image size in pixels, by sizep the size of the patch in
pixels, by dp the maximal distance in pixels where to search patches, by n the image
number of dimensions (n = 2, 3 depends if we consider 2D or 3D images). In its
original version the computational complexity of the algorithm is proportional to:
sizeI ∗ (sizep ∗ dp)n [27]. A new “fast” version is now preferentially used since its
actual complexity is proportional to: sizeI ∗ dnp [42].

Compared to the classic algorithm, in the fast mode the distances are computed
in a coarser way, indeed all pixels of a patch contribute to the distance to another
patch with the same weight, no matter their distance to the center of the patch.
This approach can result in a slightly poorer denoising performance.

When the standard deviation σ is given, the method gives a more robust compu-
1https://scikit-image.org/docs/dev/api/skimage.restoration.html#skimage.

restoration.denoise_nl_means

https://scikit-image.org/docs/dev/api/skimage.restoration.html##skimage.restoration.denoise_nl_means
https://scikit-image.org/docs/dev/api/skimage.restoration.html##skimage.restoration.denoise_nl_means
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tation of patch weights. A moderate improvement to denoising performance can be
obtained subtracting the known noise variance from the computed patch distances,
that improves the estimates of patch similarity [28].

3.2 Machine Learning and Neural Networks
Machine Learning (ML) is a subset of artificial intelligence field, a science that

researches methods for machines to acquire new knowledge, relying on patterns and
inference. The goal is to make machines capable of solving tasks nowadays handled
by human beings. The term ML appears for the first time in literature in a paper of
Arthur Samuel in 1959 [149]. The precise definition of machine learning is:

Def : A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at tasks in T,
as measured by P, improves with experience E [118].

ML algorithms are deployed to perform a large variety of tasks: data mining,
image segmentation, spam detection, market analysis, robotics, etc. Three are the
factors that made ML so popular today [65]:

• Larger than ever amount of available data easily sharable via Internet

• Computing power: in terms of CPU performances, storage capability, and
available memory

• Improved algorithms to be deployed on large datasets
Some example possible application for ML algorithms, include:

• Classification: The algorithm is capable of assigning data from a dataset to a
certain category, having learned which are the main features (attributes) of
the objects populating that category through a training set.

• Clustering: The algorithm is capable of recognizing patterns in the dataset,
making it able to distinguish between different categories (named clusters) of
objects without a training set

• Prediction: The algorithm is capable of making previsions using historical data
as a training set to forecast specific events.

Generally speaking, a large number of features are available for each object in
a dataset, and not all of them are useful to a specific task. Indeed a large number
of unuseful attributes provide a noise component, which worsens the performances.
For this reason, a dimension reduction is often performed. A popular solution is
the Principal Component Analysis (PCA) [134]. PCA converts possibly correlated
features in the dataset into a set linearly independent attributes, called principal
components.

ML algorithms can be divided into 4 categories: supervised Learning (SL),
unsupervised learning (UL) semi-supervised and reinforcement learning (RL) [65].
In the following sections, we will focus on supervised and unsupervised learning as
of main interest for this thesis field of research.
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3.2.1 Supervised Learning

Starting from a training set, which is a dataset containing labeled data, the SL
algorithms learn the main features of the dataset building up an optimal model
defined by a cost function. Datasets are data structures containing m number of
rows. Each row has n columns, containing the n features. The training set must be
representative such that the parameter space covered by the input features must span
all possible objects for which the SL algorithm is to be used. SL solves two kinds
of problems, classification, and regression. For example, a trained algorithm can
distinguish between dogs and cats if in the training set, where it learned, there are
images of both, dogs and cats, with the correct label. A possible real-life application
is for driver-less cars, as the algorithm recognizes obstacles like pedestrians, other
cars, etc. and also traffic lights road lines, etc. While if provided as training set the
stock market data, including not only stock prices but also an event history of the
prices, it will be able to predict price fluctuations.

How an SL algorithm learns from data is called regression. There are two kind
regressions:

• Linear regression: when the algorithm learns to predict the value of a continuous
variable

• Logistic regression: when instead learns to predict if the outcome will be
achieved

Let’s define y the continuous variable we want to predict independently by
regression type. x1, x2, .., xn are the “features” (xi), or input variables, characterizing
the dataset. w1, w2, .., wn are the multiplicative coefficients that the algorithm assigns
to xi, they are called “weights” (wi), and the additive constant called “bias” (w0). y
is defined by a linear combination of xi:

y = w0 + w1x1 + w2x2 + ..+ wnxn = w0 +
n∑
i=1

wixi (3.23)

Eq. 3.23 is called hypothesis function. The aim is to find the optimal set of wi,
which permits to best characterize the contribution of the different features. From
now on, the predicted outcome will be yp.

Cost Function minimization

Usually, weights are set to have a random initial value, which is close to zero. A
trial and error approach is deployed to set weights to their optimal value. A so-called
cost function takes into account the difference between yjp (predicted value) and yj
(target value reported in the label). Some of the weights that improve the error for
a given row could deteriorate the error for another row. The average error across all
the rows is considered, to avoid the issue. All the errors are, first of all, squared and
then are summed, to avoid positive and negative errors to eliminate each other. The
cost function assumes the form:

J(wi) = 1
2m

m∑
j=1

(yjp − yj)2 (3.24)
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Since J(wi) is quadratic, the shape of the curve ha only one minimum and further
is from the minimum higher is the absolute value of the slope. Then to locate the
minimum the Gradient Descent method is deployed. Gradient descent determines
the slope of J in respect to every wi using partial derivatives. Then:

∂J

∂wi
= 1
m

m∑
j=1

(yjp − yj) · x
j
i (3.25)

then weights are corrected following the relation:

wnewi = woldi − α
∂J

∂wi
(3.26)

α is the learning rate, which controls the learning speed. The choice of α impacts
not only on learning speed but directly on convergence! Too large values make the
algorithm to diverge, moving away from the minimum, too small values instead make
convergence time endlessly long. There are today computationally more efficient
optimizers, which deploy an adaptive learning rate such as AdaGrad [88], ADAM [87],
and more. Correction of the weights goes on until a threshold on J is reached. SL
algorithms suffer a problem called overfitting [52](or overtraining). Indeed, excessive
training can build an extremely well-fitted model to the training data, lowering
the overall performances when the same model is used to predict data that has
never been seen from the algorithm. Some techniques can be deployed to lessen
the chance of overfitting (e.g., Bayesian priors, Regularization [167], Dropout [157]
etc.). The output of the whole algorithm is yp, a continuous variable, which predicts
the expected value of a generic y given a generic set of xi. This technique is called
Linear Regression if a set of parameters is used to predict a linear outcome, providing
them with the linear model built. An alternative to linear regression is the Logistic
Regression. Logistic regression is when the outcome is a boolean variable, 0 or 1. For
this case, the function that parametrizes the hypothesis is called Sigmoid function:

yP (z) = 1
1 + e−z

(3.27)

where z = w0 +
∑n
i=1wixi. y here assumes values between 0 and 1. Indeed y

represents the probability for the outcome to be 1. The cost function for logistic
regression is changed due to the Sigmoid non-linearity:

J(wi) = − 1
m

 m∑
j=1

yjlog(yjP ) + (1− yj)log(1− yjp)

 (3.28)

yj is the j − th label (containing a boolean value), after this point, the procedures
are the same described for linear regression. The Sigmoid function used in this way
assumes the role of an activation function. The role of the activation function is
fundamental for neural networks and will be discussed later.

Logistic regression is the simplest SL approach. It can be considered as a binary
Classification. Indeed Classification is a generalized logistic regression, where instead
of having only 2 classes (1 and 0) we have N classes (e.g. ‘star’, ‘galaxy’ and ‘quasar’
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labeled as the vectors [1,0,0], [0,1,0], and [0,0,1], respectively [11]) and the probability
of the generic object to be classified is provided for each class. Typical classifiers
are k-Nearest Neighbors, Naive Bayes, Random Forests, Support Vector Machines,
Neural Networks, etc. The classification has an important role in astronomy, as it
can be used to distinguish stars from galaxies (e.g., [170]) or to classify galaxies in
their respective morphological classes (e.g.[62]), to estimate photometric redshift,
etc.

3.2.2 Unsupervised Learning

UL provides a different approach to SL. The main difference with SL is the
unlabelled data provided. Indeed UL does not need a training set, as it aims to
find patterns in the dataset and then creates clusters composed of the data points.
Clustering is used in astronomy to produce segmentation maps [162], which is
fundamental for object detection, and it provides an attractive solution for the
“blending” problem described in Chapt. 5.

Many clustering algorithms have been developed, K-means [106], DBSCAN [50],
Mixtures [51], OPTICS [7] are just few examples. A visual result of their application
on 6 datasets are shown in Fig. 3.1. In the next subsection the clustering algorithms,
K-means, DBSCAN and DENCLUE are considered.

Figure 3.1. Visual comparison between clustering algorithms applied on different datasets
[135]. Every row is a dataset and every column is the result provided by the algorithm.
The computation time for the algorithms applied on the datasets is recorded in the
bottom-right corner of every scatter plot. In order: K-means (K = 3) [106], Affinity
Propagation [58], Mean Shift [39], Spectral Clustering [125], Ward [144], Agglomerative
Clustering [144], DBSCAN [50], OPTICS [7], Birch [181][182], Gaussian Mixture [51]
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K-means

Given a predefined number of clusters K, K-means [106] assigns each point to
one of them. As the data points are unlabelled, the clusters use mean value of it
components as representative for the cluster. Given a dataset of m elements, which
is represented by xi with i = 1, 2, ..,m each element is composed by n features xj
with j = 1, 2, .., n, the aim is to assign each xi to a cluster Ck where νk is the cluster
center, calculated by averaging all the positions of the data points assigned to Ck.
The distance of xi by each center is defined:

d =
√
||xi − νk||2 (3.29)

Even in this case, a cost function minimization is required to find the optimal
solution. The cost function is defined as the sum of all the distances between each
data point and the cluster center assigned to that point:

J = 1
m

m∑
i=1

√
||xi − ν∗k ||2 (3.30)

ν∗k is the K-th cluster at which xi has been assigned. According to J the algorithm
updates Ck to contain the data points which minimize the overall distance, then νk
are updated. These steps are repeated until a threshold on J is reached.

The choice of cluster’s initial position is random. K-means is performed several
times with different initial positions. After that, the convergence is reached, the
algorithm with an initial position which minimizes the cost function is chosen. The
only limitation to K-means is that the number of clusters K needs to be decided a
priori. A great way to find the ideal K is to perform the algorithm several times,
with a different number of K clusters. After that, plotting J versus K produces the
K − J curve. If the curve shows an “elbow” K = Kelbow is the optimal number of
clusters [160]. Indeed K > Kelbow does not contribute significantly to J reduction,
while K < Kelbow gives too large J values. In some cases, K − J curve may be too
smooth to find an elbow. In such cases, the optimal K cannot be found in this way.

DBSCAN

The density-based spatial clustering of applications with noise (DBSCAN) is
another clustering algorithm [50], which does not require a fixed number of clusters
in the input. Furthermore, DBSCAN is able to find clusters of any shape, it has
a definition of outliers, and it only relies on two parameters. Considering m data
points to be clustered, a data point p can be: core, directly reachable, reachable,
outlier. ε is the radius of a circle used to evaluate p neighborhood, while minp
is a minimum number of points. These two parameters are used in the following
definitions:

• Core: if the number of points, including p within ε, is greater then a minimum
number minp, then p is a core point

• Directly reachable: if another point q is within ε from p, q is directly
reachable
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• Reachable: if a path of directly reachable core points connects a point q to
the core point p, then q is reachable from p

• Outliers: all not reachable points are outliers

All the core and reachable points form a cluster. The non-core points form the
edge. Since reachability is not symmetric, another definition, density connection, is
required. Two points p and q are density connected if both p and q are reachable
from a third point r. The density connection is symmetric. A cluster defined in this
way satisfies two properties:

• All points in the cluster a density connected

• A point density-reachable from a point in the cluster is part of the cluster as
well.

DENCLUE

A method based on density clustering is called DENCLUE (DENsity-based
CLUstEring) [6][74], more suitable to handle large amount of noise and for clustering
datasets with high-dimensional features. Differently from DBSCAN, the algorithm
is not dependent on a radius parameter but uses a kernel density estimation. This
estimation is an indicator of the probability density in the surrounding region. With
the latest version of the software, a fast hill-climbing method coupled with Gaussian
kernels are used for density estimation. The kernel density approximation of the
probability density function is:

f(x) = 1
nh

n∑
i=1

K(x− x1
h

) (3.31)

where xi is the independent and identically distributed sample of a random variable
f , K is the kernel function and h is the bandwidth, which defines the smoothing. K
is a gaussian with µ=0 and σ=1.

DENCLUE uses the kernel function to find points of density attraction, called
attractors. An attractor is a local maximum of the estimated density function. An
attractor x∗ is validated using a threshold ξ such that: f(x∗) ≥ ξ.

Each data point is associated with the clusters using the attractors, using the
fast hill-climbing procedure:

xj+1 + δ
∇f(xj)
|∇f(xj)|

(3.32)

where xj and xj+1 are the coordinates of the generic point x at the iteration j and
j + 1 respectively, δ is the speed of convergence. A cluster is defined by a set of
attractors and input points. Each input point is assigned to an attractor.

3.2.3 Neural Networks

Neural Networks or Artificial Neural Networks (ANNs) were developed with the
idea of reproducing a human brain. Indeed some key features of ANNs directly come
from our knowledge of how the human brain works. In our brain, neural networks
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are composed of Neurons, in the same way, ANNs are composed of artificial neurons.
Without going into many details, a neuron is an electrically excitable cell [133],
which receives multiple inputs by branched protoplasmic extensions called Dendrites
[89] producing a single output which transferred to other neurons with structures
called Synapses. [56]. Synapses transfer information from a neuron to the dendrites
of the following. A neuron can indeed receive electrical inputs from vital organs
or other neurons. The strength of each synapse can vary with time as the brain
learns and is “trained” it increases or decreases the strength of the various synapses.
These processes in neuroscience are called Long-Term Potentiation (LTP) [23] and
Long-Term Depression (LTD) [111]. In an ANN, artificial neurons (or also called
nodes) assign real values weights to their connections with the following neurons,
resembling the strength of the synapses. The ANN has several initial neurons which
fits the input data (the number of columns of an input dataset, where are stored the
features of each data point), and a fixed number of neuron in output, according to
the linear regression/ logistic regression/classification problem. The ANNs have also
an arbitrary number of intermediate layers (called hidden layers), each populated by
neurons. The neurons in the hidden layer can vary with the layer. Also, connectivity
between layers can vary. The neurons from 2 adjacent layers can be all connected (in
this case, we talk about fully connected or dense layers) or only partially connected.
Several design decisions must be taken to build up a neural network[65]:

1. The number of hidden layers

2. The number of neurons for each hidden layer

3. Connectivity between nodes of adjacent layers (dense or not)

4. The activation function used for each layer

5. Cost function used for minimization

6. The optimizer used for the optimization
Like for linear/logistic regression, for neural network, a cost function dictates

how weights need to be updated. The optimizer has the role of providing the slope of
the cost function toward the local minimum, and the activation function transforms
the output of neurons in comparable quantities. For simplicity, let us consider a
neural network, with one single hidden layer composed of 1 neuron. This network is
provided with a two-dimension dataset with m elements. x1 and x2 are the features
of the i− th data point in the dataset, w11 (w12) is the weight that connects x1 (x2)
to the first neuron, while w21 is the weight that connects the first (and only) neuron
in the hidden layer to the output. b1 and b2 are the biases of the neuron in the
hidden layer and the one in the output layer, respectively. Through w11 and w12,
the first neuron makes a weighted sum (z1) of x1 and x2:

z1 = x1w11 + x2w12 + b1 (3.33)

as seen in the logistic regression, the output of the neuron can be modified by an
activation function f . Let’s call the output of the activation function from the first
neuron as a1 and from the second neuron a2. a2 is the predicted value, provided x1
and x2 from this sample neural network.
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Figure 3.2. A visual representation of the sample neural network defined in Sect. 3.2.3

Cost Function minimization

As for regression, the cost function J is calculated:

Ji = 1
2 ||a2 − y||2 (3.34)

a2, y and Ji are in referred to the i− th data point, the output of the neural network,
the label and the contribute to the cost function respectively. The total error (or
total cost function) is expressed as:

J =
m∑
i=1

1
2m ||a2 − y||2 (3.35)

To update weights and biases the Eq. 3.26 is required:

∂J

∂wlk
= ∂J

∂al

∂al
∂zl

∂zl
∂wlk

(3.36)

∂J

∂bl
= ∂J

∂al

∂al
∂zl

∂zl
∂bl

(3.37)

which for w21 is:
∂J

∂w21
= ∂J

∂a2

∂a2
∂z2

∂z2
∂w21

(3.38)

and for b2 is:
∂J

∂b2
= ∂J

∂a2

∂a2
∂z2

∂z2
∂b2

(3.39)

To update weights in previous layers, the number of partial derivatives increases, as
an example to update w11:

∂J

∂w11
= ∂J

∂a2

∂a2
∂z2

∂z2
∂a1

∂a1
∂z1

∂z1
∂w11

(3.40)

the complexity of the update obviously increases with the increasing number of
hidden layers. It is possible to notice that if the Sigmoid described in Eq. 3.27 is
used as activation function, all the al will be between 0 and 1, so with the increasing
number of partial derivatives the weights in the first layers will “learn” at a slower
rate then those in the last layers. To prevent this issue, called the “Vanishing
Gradient” [178], another activation function is usually preferred, the Rectified Linear



3.2 Machine Learning and Neural Networks 51

Unit (ReLU) function[70]:
f(x) = max(0, x) (3.41)

using ReLU, the output of the neurons in between 0 and ∞, and the vanishing
gradient problem is solved. As the output of the neural network is required to
classify data points, the ReLU activation function cannot be used. In his place the
Softmax function [21] is generally used:

al = ezl∑P
p=1 e

zl
(3.42)

Where p represents the generic “class” reported in the label and P the total number
of classes. Softmax provides a probability for a data point to belong to the class p

3.2.4 Convolutional Neural Network

In Sect. 1.4.2 we introduced convolution. Convolution plays an important role
in a specific category of neural networks. This particular kind of network is called
Convolutional Neural Networks (CNNs). The kind of input data is assumed to be
an image. Convolution is used to discover patterns, using different trainable filters
(kernels). CNNs can be employed for image classification, object detection, and
other computer vision applications.

CNNs architecture

Figure 3.3. A typical CNN architecture for classification [57]

The first layer of a CNN is a convolutional layer. Here the input image (grayscale
or RGB) is filtered by an arbitrary number of kernels with arbitrary shape (kernels
must only match the depth of the image, 1 for grayscale and 3 for RGB). The number
of filters K, their shape F , and the stride S are called hyperparameters and are
chosen when the CNN before learning, then their values are fixed. An Edge detection
filter can be used to pre-process the images to make them sparse matrices, which
reduces computational time [164][65]. The convolutional layer output is several
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convolved images (sometimes called channels) equal to the number of filters. As for
the other ANNs and activation function is coupled to each convolutional layer, and
is generally used the ReLU function for the same reasons cited in Sect. 3.2.3.

After a convolutional layer, a pooling layer is often added. A pooling layer
has the task of reducing the data size through post-processing. An average or a
maximum pooling layer is generally used. The average pooling filters the image
with kernels of an arbitrary shape F and a stride S ≥ 2, averaging the pixels and
creating a feature map of dimensions S times smaller. The maximum pooling (max
pooling) instead takes the maximum. Pooling is needed to shorten training time
and controlling overfitting [57]. The max-pooling is generally preferred.

After a pooling layer, several other convolutional layers can be attached, followed
by another pooling layer, and so on. The convolutional part is then concluded and
now begins the classification part. After several convolutional+pooling layers, the
initial image has been transformed into a data cube. The shape of this data cube
is dependent on the hyperparameters K, F , and S is chosen for each layer. In the
end, the data cube is flattened. Each element of the cube is considered the input of
a fully connected classical ANN. While a classifier characterizes the output layer.
Usually the Softmax activation function [57] is used.

Segmentation with CNNs

Figure 3.4. Some Segmentation CNNs architectures [24]

Along with classification problem, CNNs can be deployed to produce segmentation
maps. Segmentation maps are particularly useful in astronomy for object detection,
and CNNs provide a new solution to the blending problem (described in Chapt.
5). The aim is to obtain a segmentation map of each input image, performing
an up-sampling at the end of the already discussed convolutional network, called
encoder.

The simplest implementation to produce segmentation maps with CNNs is to
remove the flatten layer and convert the fully connected layer to a 1×1 fully connected
convolutional layer, with the number of filters (channels) K corresponding to the
number of classes desired. Then an up-sampling layer with a fractional stride S∗
interpolates the 1× 1 convolutional layer outputs. The FCN model [104] implements
this strategy. FCN model up-samples this output by a factor ×32, this architecture
is called FCN-32s. Unfortunately, up-sampling with a large factor deteriorates the
quality of the label map. Indeed going deeper in terms of convolutional/pooling
layers provide deep features, but also spatial location information is lost [163]. To
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handle this issue, FCN connects distant layers bypassing the adjacent ones by adding,
pooling layers a different depths (each different encoding degrees of depth/spatial
information), and then transferring the information. This connection is called a
skip connection. The architectures obtained in this way are FCN-16s and FCN-8s,
up-sampling the label map respectively ×16 and ×8. The results make clear that
FCN-8s provides the best segmentation [163][104].

Another strategy adopted is to attach a fully up-sampling convolutional network,
to the encoder, taking the role of the decoder.

SegNet [10] and DeconvNet [126] follow the encoder-decoder architecture. Rather
than relying on interpolation, both architectures employ un-pooling operations.
Similarly to DeconvNet, SegNet up-samples the feature maps via memorized max-
pooling indices in the corresponding encoder layer. SegNet also employs a series of
convolutional layers, while DeconvNet employs deconvolutional layers. Deconvolution
is the transpose of a convolution, represented by the gradient of a convolutional
layer, making DeconvNet more computationally intensive, but providing similar
results in terms of accuracy [10].

U-Net [145] model employs architecture similar to SegNet and DeconvNet. Down-
sampling using max-pooling and up-sampling using up-convolutions. Similarly to
FCN, skip connections are performed through a concatenation operator (instead of
a sum ) between layers from the decoder to the corresponding encoder layer. At the
final layer, a pixel-wise convolution is used to build the label map.

HandSeg [24] models a hybrid encoder-decoder employing a hierarchy of decon-
volution layers without employing max-pooling and un-pooling layers. Similarly
to FCN and U-Net, the information in the encoder is kept and provided to the
decoder. Downsampling and up-sampling are achieved by S = S∗ = 2 in convolu-
tional/deconvolutional layers.

All the CNNs mentioned above employ a final 1×1 fully connected convolutional
layer to produce the segmentation map, with the number of classes (filters) required.

In Chapt. 5, a method based on CNNs, which handles separation between
blended objects, is described.
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Chapter 4

Denoising Comparison for
Extragalactic Imaging Surveys

M easuring the amount of photons that we receive from astronomical sources over
a given range of wavelengths is the primary way to gather information about

the Universe. From the advent of digital photography in the 1980’s, charge-coupled
device (CCD) imaging is one of the primary ways by which we do so. Currently,
CCDs can reach 100 million pixels, with read noise as low as one electron, almost
100% quantum efficiency, and sensitivity from the X-rays to the near infrared. Before
being ready for the extraction of meaningful scientific content, astronomical images
must be processed to, for instance, combine different observations into a single
mosaic, correct for flat-field, transients, artifacts, and defects, subtract a global or
local background, etc. Once these preparatory steps are completed, the quality of
the image mainly depends on its resolution capability (which is usually proportional
to λ/D, the ratio between the observed wavelength and the diameter of the telescope,
in the case of diffraction-limited instruments, e.g. space observatories; or from the
atmospheric seeing for ground-based facilities), and on its depth (i.e. magnitude at
a given reference signal-to-noise ratio), which mainly depends on the duration of the
observations (exposure time). Since increasing the latter is often unfeasible or too
demanding, searching for alternative methods to increase the signal-to-noise ratio
(SNR) is important. A possible solution can be the application of noise reduction
(“denoising”) techniques.

Typically, extragalactic images are convolved with a PSF shaped kernel to enhance
source detection [an application of the lemma by 124]; this is the most standard
example of a denoising algorithm, since filtering reduces the noise variance, allowing
real sources to raise above the background. In many familiar cases, the typical PSFs
of telescopes are quite similar to 2D Gaussians, making the PSF filtering basically
indistinguishable from a Gaussian filtering. However, in many non-astronomical
applications of image analysis this approach is often outclassed by other, more
refined methods, designed to be more efficient and to better preserve the borders
and edges of the sources. The goal of this chapter is to compare several classes of
denoising techniques, in order to find which ones yield the best improvements in
source detection. To this aim, we have performed an extended set of tests. We
considered many different noise reduction algorithms, roughly belonging to the
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following families: Perona-Malik (PM) filtering, Bilateral filter, Total Variation (TV)
denoising, Structure-texture image decomposition, Non-local means, and Wavelets.
Note that the numerical methods employed range from variational methods to PDEs-
based techniques, also including some statistical methods. We tested them using two
different datasets. First, we focused on simulated images, created by state-of-the-art
codes and prescriptions in order to mimic different realistic cases. This simplified
environment has the advantage to allow a detailed analysis of the results, since the
“truth” is perfectly known. For real images, we applied the algorithms giving the best
results obtained on the simulated dataset to check if the improvement is confirmed.
To our knowledge, this is the first attempt to extensively compare a large number
of denoising algorithms in an astrophysical context. In general, the performance of
any of these methods depends on the kind of noise that affects the image. Here we
are mainly interested in extragalactic imaging, and in particular we focus on the
next-generation of optical - near-infrared instruments and surveys such as Euclid
[97], LSST [105], DES [43], and WFIRST [156]. Throughout this chapter we adopt
the AB magnitude system [130] and a ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7,
H0 = 70 Kms−1Mpc−1. The content of this chapter is part of a scientific paper
(submitted to Astronomy & Astrophysics) at the time of this thesis submission, and
it is currently under the referee revision.

4.1 Methods
In this section we present how the methods already described in in Sect. 3.1

have been implemented for the analysis. All the algorithms shown here are analyzed
in Sect. 4.3.

Gaussian Filter

We have used a simple Gaussian smoothing using a kernel that approximates a
PSF of known FWHM, referring to it as “PSF”. While with “Gaussian” we refer to
the Gaussian filter with internal parameter σ.

We made use of the gaussian_filter routine implemented in the Python pack-
age Scipy1 [82], with σ ≈ FWHMpixel

2.355 , easily obtained defining the Gaussian kernel
radius r = x2 +y2, where the kernel maximum is at r = 0 then FWHM = 2

√
2 ln 2σ,

see also https://brainder.org/2011/08/20/gaussian-kernels-convert-fwhm-
to-sigma/ for further details.

Perona-Malik filter

This method has been developed by us in C++ and it is available at: https:
//github.com/valerioroscani/perona-malik.git.

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_
filter.html

https://brainder.org/2011/08/20/gaussian-kernels-convert-fwhm-to-sigma/
https://brainder.org/2011/08/20/gaussian-kernels-convert-fwhm-to-sigma/
https://github.com/valerioroscani/perona-malik.git
https://github.com/valerioroscani/perona-malik.git
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.ndimage.gaussian_filter.html
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Bilateral filter

We used the Python routine denoise_bilateral available in the Python package
scikit-image2. We noticed that using our dataset, variations of the sigma_spatial
were less effective than variations of sigma_color (see Sect. 3.1.3 for the parameters
definitions). We decided to set sigma_spatial = 3 since it provides the best results.

Total Variation denoising

We test the ROF method that was proposed by Chambolle in [34] and the TV
denoising using split-Bregman optimization [64, 63, 30]. For the implementation
of the two aforementioned methods we have used the Python routines denoise_-
tvchambolle and denoise_tv_bregman belonging to the Python package scikit-
image 2 [168].

Structure-texture decomposition

In [32], the authors proposed a C++ code named Astro-Total Variation Denoiser
(ATVD), which implements three versions of the technique, based respectively on
the TV -L2 (X = L2(Ω)), TV -L1 (X = L1(Ω)) and TVG (X being a Banach space
as defined in [9]) norms. Two thresholds are defined and used in the stopping criteria
of the algorithms, called εcorr and εsol.
εcorr defines the correlation algorithm precision, whereas εsol defines the method
precision (e.g. TVL2, TVG, TVL1). For all our tests, we will use εcorr = 10−4 and
εsol = 10−3, as suggested by the authors in [32].

Wavelets

We consider the two thresholding methods defined in the Python routine de-
noise_wavelet 2 [35, 49], the first applies BayesShrink, which is an adaptive thresh-
olding method that computes separate thresholds for each wavelet subband as
described in [35], the second is “VisuShrink”, in which a single “universal threshold”
is applied to all wavelet detail coefficients as described in [49]. This threshold is
designed to remove all Gaussian noise at a given σ with high probability, but tends
to produce images that appear overly smooth.
In this work we decided to apply the Meyer wavelet described in [116] with Vis-
uShrink thresholding method since, analyzing the application on our dataset, we
found that it provides the best performances based on the analysis described in Sect.
4.3. The list from which we took the Meyer wavelet can be found in [99].

4.2 The dataset
We first test the denoising algorithms on five different simulated images (Tab. 4.1),

chosen as to reproduce the properties of a wide range of typical cases in terms of
resolution, depth, pixel scale and wavelength:

• VIS: Euclid satellite visual band (wavelength: 550-900 nm)
2https://scikit-image.org/docs/dev/api/skimage.restoration.html

https://scikit-image.org/docs/dev/api/skimage.restoration.html


4.2 The dataset 57

• NIR H: Euclid satellite near infrared H band (wavelength: 1372-2000 nm)

• EXT G: ground-based optical filter

• H160: Hubble Space Telescope (HST) near infrared F160W band [e.g. CANDELS-
wide 69]

• IRAC: Irac-Spitzer 3.6µm channel.

From now on, we refer to the simulated images, provided as input to the
algorithms, as “Original”, while we refer to the simulated images representing the
true sky, without noise included, as “Noiseless”.

Filter PSF-FWHM Pixel Scale Mag Lim(a)

arcsec arcsec
VIS 0.2 0.1 25.25
NIR H 0.3 0.3 24.01
EXT G 0.8 0.2 25.93
H160 0.15 0.06 27.23
IRAC 1.6 0.6 25.40
HUDF (H160) 0.15 0.06 28.16/29.74(b)

Ks (HAWK-I) 0.4 0.1 24.45/26.3(c)

Table 4.1. (a): SNR=5;(b): limiting magnitude at the CANDELS and at the full HUDF
depth, respectively; (c): images from [31], and from the HUGS survey [54], respectively.

VIS and NIR H reproduce the expected features of the visual and near-infrared
bands in the forthcoming ESA satellite Euclid [97], and EXT G simulates a typical
ground-based complementary optical observation for the Euclid Wide Survey. H160
is modeled after the detection band in recent deep surveys such as CANDELS [66, 90]
and 3D-HST [154], whereas IRAC simulates the features of the Spitzer Channel 1
band in the CANDELS GOODS-South field [69].

The images have been simulated with SkyMaker [18] on the basis of source
catalogs generated by the Empirical Galaxy Generator (EGG) [150] and they have
been perturbed by Gaussian noise in order to reach the limiting magnitudes reported
in Tab. 4.1. All the PSFs are Gaussian except for the IRAC case where a real
IRAC 3.6µm channel PSF has been used. The H160 and HAWK-I images are real
observations whose tests are described in Sect. 4.5.1-4.5.2.

We can sort the simulated images in several different ways:

• Depth, from the deepest to the shallowest: H160 > EXT G > IRAC >
V IS > NIR H

• PSF, from the sharpest to the coarsest: H160 > V IS > NIR H > EXT G >
IRAC
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• Pixscale, from the smallest to the largest: H160 > V IS > EXT G > NIR H >
IRAC.

For each simulated image, we cut three independent areas of the sky, which are
the same for every band but differ in dimensions due to the different pixel scale.
The regions are listed below:

• BG: centered on a big elliptical galaxy (see Fig. 4.1)

• CL: centered on a cluster of galaxies (see Fig. 4.2)

• CM: an average portion of the sky (see Fig. 4.3).

Figure 4.1. From left to right: Crops of the BG (Big Galaxy) image central area for VIS,
H160, NIR H, EXT G and IRAC

Figure 4.2. From left to right: Crops of the CL (Cluster) image central area for VIS,
H160, NIR H, EXT G and IRAC

The three regions have a dimension of:

• VIS: 1000x1000 pixels

• NIR_H: 333x333 pixels

• EXT_G: 500x500 pixels
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Figure 4.3. From left to right: Crops of the CM (Average field) image central area for
VIS, H160, NIR H, EXT G and IRAC

• H160: 1666x1666 pixels

• IRAC1: 166x166 pixels.

After the analysis described in Sect. 4.3, commenting the results obtained in
Sect. 4.4, additional tests on real images (see Tab. 4.1 for details) ground-based
(HAWK-I) and from space (HST) are reported and analyzed in Sect. 4.5.

4.3 Quality tests
The idea at the basis of the analysis is to first evaluate the algorithms through

different tests, in order to apply only the most promising ones (with their best
configurations) on real images. We organize our analysis on the five simulated
images in different levels of testing. A brief description of each step is given below:

1. As a first step we compare the algorithms performances through three param-
eters: mean square error (MSE), structural similarity [SSIM 173] and CPU
time. The MSE is defined as:

MSE :=
∑N
i=1 (xi − x̂i)2

N
(4.1)

where xi is the i-th pixel in the denoised image and x̂i is the i-th pixel in the
original image (without noise). The SSIM is defined as:

SSIM := (2µxµy + c1)(2σxy + c2)
(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2) (4.2)

where µx is the average of x, µy is the average of y, σ2
x is the variance of x, σ2

y

is the variance of y, σxy is the covariance of x and y, c1 and c2 are constants
proportional to the dynamic range of the pixel values. The CPU time is the
computational time required by the algorithms to filter the image. Through
these tests we identify the main internal parameters of each algorithm and
their ideal values.
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2. We test the performances of the algorithms selected in the previous step as a
function of the FWHM of the PSF and as a function of the background noise
level.

3. We test the stability of the algorithms selected in the previous steps against
variations of the main internal parameter value (identified in Step 1), measuring
how the MSE varies as a function of the parameter values.

4. We test how the PSF FWHM is affected by the selected denoising algorithms
checking if they preserve the FWHM of point-like objects and the galaxies
profiles.

5. We test the selected algorithms, studying two parameters, completeness and
purity, which provide a quality estimate of the catalog produced after an ideal
source detection, exploring a combination of detection parameters.

6. As last step, we test if the denoised images can be used also for photometry
measurements, analyzing if the object fluxes are preserved after denoising.

Finally, we apply the best performing algorithms of our selection on real images
acquired from space and ground-based telescope, as described in Sect. 4.5.

4.3.1 Implementation details

We compare the different images, following always the same procedure here
described:

• The Original image is scaled to the range [0, 1]

• The Original image is filtered by the denoising algorithm providing the denoised
image

• The denoised image is scaled back to [Originalmin,Originalmax], whereOriginalmin
and Originalmax are the maximum and minimum values in the Original image,
using the following equation:

xiOriginal = (Originalmax −Originalmin) ∗ xi[0,1] +Originalmin (4.3)

where xiOriginal is the i− th pixel in the Original image and xi[0,1] is the i− th
pixel in the denoised image scaled to [0,1]

• MSE and SSIM are computed by comparing the denoised image to the noiseless
one.

In order to choose the best internal parameter for each denoising algorithm (a list of
these parameters is in Sect. 4.4.1), we used different stopping criteria:

• ATVD: In ATVD is already implemented a stopping rule, through a mini-
mization problem, as described in Sect. 3.1.5
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• Perona-Malik: In PM code we have a stopping rule composed by 3 conditions:
in the first one we compare at each time step MSEn with MSEn−1 where MSEn
is the MSE at the current time step, whereas MSEn−1 is the MSE at the
previous time step. The code continues running as MSEn−1 − MSEn > 0.
The second condition concerns the number of iterations n: the code continues
running until the number of iterations does not exceeds the maximum number
of iterations NMAX, which is set to NMAX=500. The third condition is
| MSEn−1−MSEn

MSEn−1
|≤ ε, with ε = 10−10

• Other denoising algorithms: For all the other denoising algorithms we
choose the main parameter(s) in the parameter space by an iterative process
with an adaptive step, computing the MSE at each iteration. The stopping
rule is reached when the step is smaller than an ε, set to 10−10, and the number
of iterations is lower than the maximum number of iterations NMAX, which is
in this case set to NMAX=100.

4.4 Results
In this section we analyze and comment in a separate and sequential way the

results related to the quality tests, following the same order of the steps used in
Sect. 4.3.

4.4.1 Ranking with MSE and SSIM

In this test we use three parameters to constrain the performances of denoising
methods: MSE, SSIM and CPU time (Sect. 4.3). We give priority to those
algorithms that are able to minimize as much as possible the MSE, preferring the
fastest method (in terms of CPU time) and the highest SSIM in case of comparable
MSE. Following this criterion, in this step we identify the best configuration and the
main parameters for every algorithm. These results are taken into account separately
for all the simulated images presented in Sect. 4.2.

The main internal parameters identified for the different algorithms are listed
below:

• Wavelets: sigma - The noise standard deviation used for compute threshold(s)

• NL means: h - Cut-off distance in grey levels

• TV Bregman: weight - Denoising weight, efficiency of denoising

• TV Chambolle: weight - Denoising weight, efficiency of denoising

• Gaussian: sigma - Standard deviation for Gaussian kernel

• Bilateral: sigma_color - Standard deviation for grey value distance

• Perona-Malik: T - Number of iterations of the anisotropic diffusion

• ATVD (TVL1,TVL2,TVG): λ - Structural-Texture splitting parameter.
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Further details for the algorithms implemented in Python and the measurement of
MSE and SSIM can be found in the scikit-image documentation 3. The method
used to identify the best internal parameter for each algorithm is described in Sect.
4.3.1 In Appendix A we show the best MSE and CPU time values of every algorithm,
for the different crops. The tables are organized to record the best MSE and CPU
time values obtained with the algorithms. The columns represent the different image
simulated filters and the value indicated in bold is the lowest of the column. Tab.
A1-A2-A3 contain the MSE values for the crops BG, CM and CL respectively. While
Tab. A4 contains the CPU time values for the crop CM. We remind that in the
following “PSF filtering” amounts to filtering with a Gaussian whose FWHM is the
same as the PSF-FWHM, while in the case of the “Gaussian filtering” the σ (and
thus the FWHM) is a free internal parameter. We shortly summarize here the main
results:

• TVL2, PM, NLmeans slow and TV Chambolle always yield good performance,
typically providing the lowest values of MSE

• TVL2, PM, NLmeans slow, TV Chambolle always perform better than Gaus-
sian filtering, with the only exception of the IRAC image (we discuss the IRAC
situation below in Sect. 4.4.2)

• the MSE of all the methods is proportional to the pixel scale of the image, so
that low sampling implies worse results

• in most cases (with the exception of IRAC, which we discuss below), the PSF
filtering provides a larger (i.e. worse) value of the MSE compared to the one
provided by Gaussian filtering.

• in some cases, the MSE of the denoised image is larger (i.e. worse) than the
one measured without denoising the image at all. Indeed some algorithms in
the situations listed below tend to over-smooth the image, providing a worse
MSE. This event occurs:

1. in VIS (CM) image, in the case of the PSF filtering
2. in all the H160 images for both the PSF filtering and TV Bregman
3. 2-4 times in NIR H images for methods NLmeans fast, wavelets, TV

Bregman and PSF filtering
4. only once in EXT G (CM), for the PSF filtering
5. 4 to 5 times in IRAC images, for NLmeans slow, NLmeans fast, TV

Bregman, Wavelets and PSF filtering.

• the SSIM ranking typically reflects the MSE ranking, pointing out the same
group of best algorithms found in the MSE ranking; even if some positions are
swapped in few cases, the SSIM values provided by the best algorithms are
comparable (∆SSIM < 10−4 )

If we focus on the algorithms belonging to the same classes of methods, we can
note that:

3https://scikit-image.org/docs/dev/api/skimage.restoration.html

https://scikit-image.org/docs/dev/api/skimage.restoration.html
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1. TVL2 performs clearly better than TVG and TVL1, e.g. in BG, 1− mse
mseOriginal

value is always within 5% from the value provided by the original image (no
noise), with the exception of IRAC, where it drops to 0.2, which is still greater
than the values provided by TVG and TVL1, as shown in Fig. A2

2. all the PM methods yield similar performances, (see Fig A1), and therefore
we choose to only keep g = g1 with the parameter k set to k = 1e− 3 in the
following steps

3. NLmeans slow performs slightly better than NLmeans fast for H160,VIS and
EXT G, (1− mse

mseOriginal
differences are within 5% in favor of NLmeans slow)

and much better for NIR H and IRAC (where NLmeans fast performs worse
than Original)

4. TV Chambolle performs better than TV Bregman, in H160, NIR H and IRAC,
TV Bregman performs worse than Original, whereas for VIS and EXT G it
performs (14% and 3% worse than TV Chambolle, relatively) (see Fig A3)

5. Bilateral is always within the best performing techniques (see Fig A3)

We nevertheless keep Wavelet, Gaussian and PSF filtering for reference, since they
are widely used. Hence, at the end of this first step we are left with 8 methods: PM
with edge-stopping function g1 and k = 1e− 3, TVL2, Gaussian, PSF, NL means
slow, Bilateral, TV Chambolle and Wavelets. Following our experiments analysis we
decide to discard 8 algorithms: 4 PM methods, TVG and TVL1, NL-means fast and
TV Bregman.

4.4.2 The IRAC results

We note that the IRAC images do not follow the same trends as the other bands.
While for all the other images there is always a small group of algorithms which
perform better than all the others, for IRAC nearly all the denoising algorithms
tend to have similar performances. We investigated the possibility that the number
of pixels were not enough (166x166 pixels) to extract significant conclusions from
these images and we tested the algorithms on an IRAC (CM) simulation with pixel
scale 0.1 arcsec and size of 1000 × 1000 pixels. We noticed that, TV Chambolle, NL
means slow and Gaussian provide the best performances (MSE ∝ 10−9), followed by
TV Bregman, TVL2, PM (g=g1 k=0.01) (MSE ∝ 1× 10−8 ), PSF (MSE ∝ 2× 10−8

) and then Bilateral, PM (g=g1 k=0.001) and Wavelets (MSE > 2× 10−8 ). After
this small test we point out that again the IRAC band doesn’t follow the trend
defined in the other bands (even if the MSE decreases for all the methods and the
Original image), but with the increased number of pixels TV Chambolle, NL means
slow and Gaussian are the algorithms which provide the best performances. The
low resolution of IRAC here plays a fundamental role, impacting on most of the
algorithms performances. This aspect of the algorithms will be described in the next
Sect. 4.4.3.
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4.4.3 Stability against FWHM and depth variations

In this second test we compare the performances of the 8 algorithms with respect
to the variation of the FWHM and depth of the images. We consider two cases:

• A 1000x1000 pixels crop of the simulated VIS image convolved with different
kernels, to degrade the resolution increasing the FWHM without changing the
depth of the image (we considered the cases FWHM = 0.5, 1, 1.5 and 2.0”,
with the original FWHM being 0.2”)

• We decreased the depth of a 1000x1000 crop of the simulated H160 image
without changing the FWHM, by adding Gaussian noise with increasing
standard deviation σ (×1, 10, 20, 30 and 40 times the original one) to the
Noiseless image.

The plots summarizing the results are shown in Figs. B1- B6, in Appendix B. We
can note that:

1. The MSE calculated on the original image alone decreases at increasing FWHM
due to the loss of information (i.e. small objects and details). All algorithms
follow this trend while lowering the MSE even more due to the effect of filtering
(see Fig. B1)

2. The ratio between the MSE obtained by each algorithm and the MSE computed
on the original image ( mse

mseOriginal
) increases at increasing FWHM, with the

only exception of the Gaussian filtering which instead follows the opposite
trend (see Fig. B2)

3. mse
msePSF

is weakly affected by variations of the FWHM for most of the denoising
methods, with the exception of Gaussian (see Fig. B3)

4. as expected, the MSE increases at increasing background level (due to the
increasing of σ for the Gaussian noise) both in the original image and in the
output denoised images for all the algorithms (see Fig. B4)

5. mse
mseOriginal

decreases at increasing background level for all the methods(see Fig.
B6)

6. mse
msePSF

increases at increasing background level for all the methods (see Fig.
B5).

Summarizing, we conclude that the best performances by any denoising algorithm
are obtained on images with low SNR and high resolution (narrow FWHM). The
best performances with respect to the PSF method are obtained by applying the
denoising methods on image with high SNR, regardless of the PSF FWHM. These
results can be used to estimate the efficiency of the denoising algorithms in different
situations, underlining that when applied to high resolution images they provide
the best improvements, whereas if applied on low SNR images (where there is the
peak of performances), the improvements compared to the PSF are slightly less
significant. From these results, it would be very interesting to apply these methods,
as an alternative of the PSF filtering, on images with high resolution and high SNR.



4.4 Results 65

Figure 4.4. Step 3: Stability against variations of the parameters. Each curve corresponds
to a denoising algorithm. We plot the MSE against the relative variation of the
parameters, parmin−par

parmin
. Obviously the absolute minimum of the curves is reached in 0

on the x-axis, corresponding to the ideal value of the parameter. In the upper panel we
report the standard deviations of the msemean −mse distributions.

4.4.4 Stability against variations of the parameters

In this test we analyze the selected methods by varying the values of those
internal parameters that had been kept fixed to the optimal ones in the previous
tests. The goal is to understand whether the performances are stable against sub-
optimal parameter settings. We exclude the PSF filtering from this analysis as it
is just a particular case of the Gaussian filtering method. We perform the test on
the VIS (CM) image and we change the main parameter value of each technique by
±10%,±25%,±50% and ±75% with respect to the value used for the MSE analysis
(see Subsect. 4.4.1). The results are shown in Fig 4.4. We notice that most of the
techniques tend to have similar performances when over-estimating the parameters,
remaining relatively stable; on the contrary, under-estimating it significantly worsens
the performance. However, all the algorithms have a lower dispersion in MSE
compared to the Gaussian filtering (this is not evident in the plot because of the
logarithmic y-axis scale, but we verified it numerically and we give the values in
the upper panel of the plot), meaning that they are generally more stable against
the variation of the parameters. In addition they yield a ∼ 1 order of magnitude
lower mean when the parameters are below the optimal value, and by ∼ 2 order of
magnitudes when they are above it.

4.4.5 Conservation of the FWHM

The optimal denoising approach should not significantly alter size and shape
of the detected sources so to enable a meaningful scientific analysis. We thus
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tested the selected methods by measuring the FWHM of the detected sources with
SExtractor, and comparing the measured values to the ones obtained on original,
unfiltered images. We perform this test on the simulated VIS image described before,
which is mainly populated by galaxies, and on a specific rendition of the simulated
VIS image populated by stars distributed on a grid. The results are shown in Figs.
4.5- 4.6.

Figure 4.5. Step 4: FWHM conservation test on stars. On the x-axis we plot the
FWHMdenoised−FWHMnoiseless, where FWHMnoiseless is the FHWM of the objects
measured on the Noiseless image. µ and σ are the mean and the standard deviation of
the distribution of FWHMdenoised − FWHMnoiseless.

While for the stars in Fig. 4.5 the PSF filtering tends to smooth all the detected
object as much as of ∼ 50% of the FWHM, most of the other algorithms, and in
particular Bilateral, Perona-Malik, TVL2 and TV Chambolle, have a much lower
impact (the FWHM is degraded by less than 20% of the original value). Similarly,
for the galaxies in Fig. 4.6, the PSF filtering causes again a small offset, whereas
all the other methods tend to better preserve the FWHM. From this test, we can
conclude that all the tested algorithms preserve the shape of the sources better than
the PSF filtering.

4.4.6 Completeness and Purity

In this test - perhaps the crucial one - we checked the quality of the catalogs
of sources extracted from the denoised images. We analyze two quantities, both
relevant to assess the performance of the detection process: namely, the completeness
and the purity as defined below. We extract the catalogs running SExtractor in
dual image mode using a denoised image as detection band and the original image
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Figure 4.6. Step 4: FWHM conservation test on galaxies. On the x-axis we plot the
FWHM of the objects measured on Noiseless image FWHMnoiseless, whereas on the
y-axis we plot the FWHM measured on the Original image after the application of the
denoising algorithms FWHMdenoised. µ and σ are the mean and the standard deviation
of the distribution of FWHMdenoised − FWHMnoiseless.

as measurement band so to perform a cross-correlation between the extracted and
the true catalogs of sources both in terms of position and flux.

We used the simulated VIS 5000x5000 pixels image, searching for the best
SExtractor parameter configurations for every denoised image. We have thus
tested a large number of possible combinations of the two parameters which control
the detection, i.e. DETECT_THRESH (from a minimum value of 0.2 to a maximum of 6.0,
with steps of 0.1) and DETECT_MINAREA (with values: 3,6,9,12,15,30), considering only
the combinations for which the quantity DETECT_THRESH ∗

√
DETECT_MINAREA > 1,

which provides a selection of objects with a global significance of at least 1-σ. The
number of detection parameters combinations which fulfil this requirement is ∼ 350.
We point out that the best algorithms configurations used for this test and obtained
by MSE minimization, do not differ significantly from the best configurations found
in the VIS (CM) image (Sect. 4.3). We introduce some notations:

• ndetected is the total number of detected objects, which includes both real and
spurious detections indiscriminately

• nsimulated is the number of simulated objects in the image

• nspurious is the number of spurious detections, as identified by the spurious
sources identification approach described in the following.

The spurious sources identification approach that we define for this work is related
to the SExtractor cross-correlation, when an association catalog is provided: we
denote by CRassoc the circle centered on the simulated object original position with
radius Rassoc, which is the maximal distance allowed for the association made by
SExtractor. We set it to 6 pixels (i.e. 3× FWHM). Then, we tag an object as
spurious if one of the following two conditions holds:
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• is outside CRassoc

• (is inside CRassoc) AND (|magmeasured−magsimulated| > 1.0) AND (magaperture−
magsimulated| > 1.0),

where magmeasured is SExtractor MAG_AUTO (an estimation of the total magnitude
of the source), magsimulated is the true magnitude of the simulated object, and
magaperture is SExtractor MAG_APER corresponding to the magnitude within a
circular aperture with diameter of 6 pixels.

Finally, we can now define the two quantities:

completeness := ndetected − nspurious
nsimulated

(4.4)

purity := 1− nspurious
nsimulated

(4.5)

where purity = purityassoc, determined by the association approach defined
above. We measure completeness and purity in 0.2 magnitudes bins. In Fig. 4.7
we plot the magnitudes at which the completeness drops below 50% against the
one at which the purity drops below 90%. Every symbol corresponds to a different
denoising technique, and repetitions of the same symbols corresponds to different
combination of the detection parameters for the same algorithms. For readability,
only the best 5 combinations per algorithm are shown.

We note that all the methods are improving the detection, the best performance
are reached by TVL2, Perona-Malik, TV Chambolle and Bilateral. Indeed, they reach
the completeness threshold 0.6 mag deeper, and the purity threshold 0.8 magnitude
deeper than the non-denoised run. Moreover, they improve the detection compared
to the PSF smoothing, reaching 0.2 magnitudes deeper in both completeness and
purity.

It is tempting to consider the MSE and SSIM measured on the VIS images used
for the completeness and purity analysis, searching for a possible correlation between
the parameters. In Fig. 4.8 the plots are produced using the results shown in Fig.
4.7. We find no or weak correlation between MSE (SSIM ) and purity, whereas a
stronger correlation exists between MSE (SSIM ) and completeness.

We show the snapshots of a sample of objects detected by the different methods
in the VIS image in Appendix C. These snapshots give a visual match of objects
detected in the denoised images. We only show the best performing algorithms
results compared to the Original, PSF-filtered and the Noiseless images. For VIS
the algorithms are: PM, TVL2, Bilateral and TV Chambolle. We point out that
these objects are undetected with the best detection parameters configuration in the
image filtered with the PSF.

4.4.7 Conservation of the flux

In this final test, we compare the total fluxes (SExtractor MAG_AUTO) measured
on the simulated denoised images, for objects with magnitude within 19 and 23, to
the true input fluxes. The results are shown in Figs. 4.9-4.10.

The standard deviation of the difference between measured and true magnitudes
is ∼0.13 for PSF-filtered images. All denoising methods show similar performances
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Figure 4.7. Step 5: Completeness and purity test. We extracted catalogs on the VIS
simulated image processed with the denoising algorithms, using different configurations
of SExtractor. We plot the magnitude at which the completeness drops below 50%
against the magnitude at which the purity drops below 90%. Each symbol corresponds
to a different denoising method, which can be present multiple times in the plot due to
different combinations of detection parameters. The positions of the symbols are slightly
randomized to improve readability.

with the exception of the Wavelet one (σmag=0.35). We conclude that denoising
algorithms preserve the overall calibration of the input images and they enable a
photometric accuracy comparable to the one usually achieved on images filtered
with the PSF.

4.5 Test on real images
After having analyzed the performance of denoising techniques on a series of

simulated images, we test the algorithms on real images, using the HST H160
observations of the GOODS-South Field and a crop of the HAWK-I survey.

4.5.1 Space telescope images

We use two images of the area of the Hubble Ultra Deep Field: one at the
full depth released with the official CANDELS mosaics that includes all WFC3
observations of that region (HUDF09, reaching H160=29.74 at SNR=5), the second,
shallower one at the depth obtained with WFC3 observations of the CANDELS
Treasury Program alone (GSDEEP, H160=28.16 at SNR=5) [90, 66]. We will use the
former, deeper image as “true sky”, against which we will compare the performance
of denosing techniques on the shallower image. Using an analysis similar to that in
Sect. 4.4.6, we take as reference catalog the one obtained running SExtractor
on HUDF09 with conservative detection parameters. The goal is again to check
completeness and purity. We use again an association radius Rassoc of 3× FWHM ,
now corresponding to 7.5 pixels. We identify an object as spurious using the same
criteria used in Sect. 4.4.6 with amagaperture within a circular aperture with diameter
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Figure 4.8. Correlation between MSE or SSIM and purity or completeness. On the x-axis
we plot the magnitudes at which completeness (purity) reaches 50% (90%), whereas on
the y-axis we plot the parameters MSE or SSIM. Dashed lines are the linear best-fitting.

of 7.5 pixels. The resulting plot, visible in Fig. 4.11, is similar to the one obtained on
the simulated image (Fig. 4.7). Clearly, TVL2 outperforms all the other algorithms
outperforming the PSF by 0.2 mag in completeness and purity (or alternatively
0.4 magnitudes more complete and 0.2 magnitudes less pure); Bilateral performs
better than the PSF filtering, by an amount of 0.2 magnitudes in completeness.
Perona-Malik can provide a 0.2 mag more complete and 0.2 less pure alternative to
the PSF filtering.

Like in Sect. 4.7, we show the snapshots of a sample of objects detected by
the different methods in the GSDEEP image in Appendix D. For GSDEEP the
best algorithms are: PM, TVL2, Bilateral and NL means. We point out that these
objects are undetected with the best detection parameters configuration in the image
filtered with the PSF.

4.5.2 Ground-based images

We repeat the same tests described above on two Ks-band observations of the
Goods-South field acquired with the HAWK-I imager at the VLT: a shallower
observation of the field presented in [31] and the ∼2 magnitude deeper observation
released by the HUGS Survey [54, see Table 4.1]. As above, we use the deepest image
as “true sky” and we apply the algorithms to reduce the noise on the shallow image.
We use again the association radius Rassoc of 3× FWHM corresponding to 11.25
pixels, with the relative magaperture (11.25 pixels diameter), identifying an object as
spurious using again the same criteria already used in Sect. 4.4.6 and Sect. 4.5.1.
The resulting plot (see Fig. 4.12) shows that, while these algorithms improve the
image detection compared to not making denoising at all (same result obtained in
Sect. 4.4.6 and Sect. 4.5.1) they do not provide significant improvements compared
to the PSF. Indeed, only PM creates a catalog of 0.2 magnitudes more pure at the
same completeness. These results are in agreement with those in Sect. 4.4.3, where
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Figure 4.9. Flux conservation distribution for objects with magnitude within 19 and
23. On the x-axis the real objects magnitude magreal, On the y-axis, the difference
between the magnitude measured MAG_AUTO and magreal. Only the detected objects
within the purity and completeness thresholds (Sect. 4.4.6) are considered. µ and σ are
the distribution mean and the standard deviation values.

Figure 4.10. Flux conservation distribution for objects with magnitude within 19 and 23.
On the x-axis, the difference between the magnitude measured MAG_AUTO and the real
objects magnitude from the catalog (magreal). On the y-axis the MAG_AUTO - magreal

probability distribution function. Only the detected objects within the purity and
completeness thresholds (Sect. 4.4.6) are considered. µ and σ are the distribution mean
and the standard deviation values.
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Figure 4.11. Space telescope real Images Completeness & Purity (GSDEEP and HUDF09).
On the x-axis the magnitude at which the purity drops below 90%, on the y-axis the
magnitude at which the completeness drop below 50%. Each symbol is referred to a
different denoising method, which can be present multiple times in the plot due to
different combinations of detection parameters, see text for details. The points are
randomized around their actual position within a circle of radius 0.025 magnitudes to
improve visibility.

we noticed that all these methods give the best with high resolution images (see Fig.
B2), such as VIS and H160. Indeed the lower resolution of the ground-based images
impacts the algorithms performances. In the same way the methods, and mainly
the PSF, perform better for lower SNR images (e.g. HAWK-I compared to VIS and
H160), as shown in Figs. B5-B6, resulting in less significant improvements from the
methods compared to the PSF.

4.6 Summary and Conclusions
The goal of this work is to make an extensive comparison between a number of

denoising algorithms, aimed at identifying the best choice to improve the detection of
faint objects in astronomical extragalactic images (e.g. considering the typical cases
of HST and Euclid). To this purpose we performed a large set of tests, on simulated
images. We also tested the methods on real images: from space and ground-based,
collecting really interesting hints on many situations.

We chose to test the smallest set of essential denoising algorithms, leaving a more
complete comparison for future works. In particular, we point out that ATVD-TVL2,
Bilateral, Perona-Malik and TV Chambolle are the most interesting to use among
all, as they provide good performances in the different tests proposed. Even if most
of these methods are quite unusual for the astronomical community, they are very
well-known in many other fields. They are known to outperform a straightforward
PSF/Gaussian filtering, which is the standard choice in astronomy. We therefore
considered these techniques as the reference ones, against which we tested all the
other methods.

As a first test, we considered the two parameters MSE and SSIM (defined in
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Figure 4.12. Ground-based real Images Completeness & Purity (HAWK-I and HAWK-I
UDS). On the x-axis the magnitude at which the purity drops below 90%, on the y-axis
the magnitude at which the completeness drop below 50%. Each symbol is referred to
a different denoising method, which can be present multiple times in the plot due to
different combinations of detection parameters, see text for details. The positions of the
symbols are slightly randomized to improve readability.

Sect. 4.4) and checked which methods yield the best performances with respect to
them. We compared their performances again through MSE and SSIM in relation to
depth, resolution and type of image. We tested the algorithms ability to preserve the
FWHM, in order to understand if they can preserve the shape of the objects, useful
in case photometric measurements on the denoised image are needed. We tested
their stability using the MSE, varying the ideal parameter of a fixed percentage,
with the goal of having a hint of their reliability, in case the best parameter is
chosen wrongly. We have also tested possible detection improvements through two
parameters completeness and purity which are used to measure the fraction of
real detections on the total number of objects in the image. Finally, we applied
these methods on real images (CANDELS-GS-deep and a crop of HAWK-I). We
summarize below the key points of the analysis performed:

• From MSE and SSIM we noticed that 8 algorithms are always on top of
rankings, especially for VIS and H160 images, which are of main interest for
the detection in future surveys. These algorithms are: PM, TVL2, Gaussian,
PSF, NL means slow, Bilateral, TV Chambolle and Wavelets

• From the PSF and Depth variation test we noticed that all the methods are
performing better with narrower FWHM. Whereas all the methods perform
better with the noise level increasing (in terms of Gaussian noise standard
deviation) but their improvements is more significant, compared to the PSF,
with high SNR images

• From the FWHM conservation test, we noticed that most of the algorithms
tend to not smooth the image, in terms of FWHM increments. On the contrary,
the PSF smoothing provides an offset in the FWHM measurement, for both,
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stars-only image and galaxies-image

• From the completeness and purity test we found a small number of algorithms
which provide 0.2 magnitudes more pure and complete catalogs than the PSF
filtering, these are TVL2, Perona-Malik, TV Chambolle and Bilateral

• From Flux conservation test we found that all algorithms, with the exception
of Wavelets, have similar performance to the PSF filtering, preserving the
overall calibration of the input images

• From real image test (H160) we found that TVL2 outperforms all the other
algorithms, and it is the only one that performs better than the PSF of 0.2
magnitudes in completeness and purity, while Bilateral produces only a 0.2
more pure catalog

• From real image test (HAWK-I) we found that only Perona-Malik outperforms
the PSF filtering, by 0.2 magnitudes in purity, the other methods performs
worse/similarly to the PSF.

The results we obtained demonstrate that denoising algorithms should be con-
sidered valuable tools for optical and near-IR extragalactic surveys, as they clearly
improve the detection of faint objects. In particular, structure-texture image de-
composition, Total Variation denoising, Perona-Malik and Bilateral filtering are
of particular interest. While further specific tests are needed to define for each
survey the optimal approach, and its parameter set, among the above mentioned
ones, our investigation on a small but reasoned reference set of simulated and real
extragalactic images shows that the scientific return of ongoing and future surveys
can be significantly enhanced by the adoption of these denoising methods in place
of standard filtering approaches.
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Chapter 5

Deblending with Machine
Learning Techniques on
Euclid-VIS Images

I n this chapter, we introduce the blending of astronomical objects typically found
in extragalactic surveys and its impact on scientific measures. The aim is to

introduce various deblending approaches, discussing their performances, in handling
blending issues. All the techniques shown in this chapter can be applied to several
situations, while alternative solutions are adopted [83, 113, 29] to optimally work on
multi-bands surveys.

We discuss three techniques and their application on a Euclid-like environment
[97], considering a single high-resolution VIS band with PSF-FWHM of 0.2 arcsec,
pixel scale of 0.1 arcsec, and limiting magnitude of 25.25 at SNR=5. The datasets
consider a straightforward blending situation with only 2 objects blended. This
decision is justified by examination of the HST catalogs, from which ∼ 75% of the
blendings is composed of only 2 objects [45]. The first technique is the already famous
code, SExtractor [19]. Its deblending strategy is based on a multi-thresholds
approach, moreover it is used as a baseline. The second technique is based on an
algorithm called DENCLUE (defined in Sect. 3.2.2) implemented in a Python
package called ASTErIsM [162], which is currently under testing (Tramacere et
al. in prep.). The third technique is actually a set of two Convolutional Neural
Networks blend2flux and blend2mask2flux [26].

After the introduction the chapter is divided in two parts, each introducing the
different methods. The comparison is performed using SExtractor as common
baseline. The datasets used differ for the two works along with the comparison
metrics. These two parts are the result of two scientific papers. The first, still under
preparation, discusses about theASTErIsM performances, while the second, already
accepted by Monthly Notices of the Royal Astronomical Society [26], discusses about
blend2flux and blend2mask2flux.
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5.1 The Blending issue in extragalactic images
Future extragalactic surveys (some of them seen in Chapt. 2) will push the limits

in size and depth to a new level, diving in the world of big data. With such an
amount of data, photometry and weak lensing measurements will reach unparalleled
high precision. The high precision required can only be achieved, limiting as far as
possible the major sources of systematic errors. One of these is the objects blending.
Objects blending (or simply blending) is the result of overlapping objects due to the
projection of the 3D sky on a 2D image. In a crowded field, even objects with a large
relative distance can be overlapping from our telescopes perspective, forming a single
blended profile. Blending is a function of the surface number density of objects in
the field and the telescope PSF (in terms of FWHM), which means that objects with
a large limiting magnitude and a broad PSF are mostly affected. It is estimated
that for an ultra-deep optical ground-based survey, such as LSST ∼ 45% − 55%
of the objects will be blended, producing systematics in several scientific measures
[44]. On the other hand, surveys from space, with a narrower PSF, are advantaged,
being less affected by blending issues. Nevertheless, high precision required for these
surveys scientific goals still implies that the blending issue must be handled.

A straightforward classification of blending is defined in [44]. The definition
assumes that the objects follow the PSF profile, parameterized by a Gaussian:

• Catastrophic blends: When 2 or more objects are blended such that the
relative distance between their peaks is within the sum of the 1σ distances,
and are normally considered a single object by detection algorithms

• Conspicuous blends: When 2 or more objects are blended such that the
relative distance between their peaks is within the sum of the 2σ distances,
and are detected as blended

• Innocuous blends: When 2 or more objects overlap by a negligible factor,
being the distance between their peaks larger than the sum of the 2σ distances.

Before introducing the methods a brief description about the impacts of blending
on the scientific measurements is shown.

5.1.1 Blending impact on Photo-z

Blending impacts photo-z measurements, providing false flux information due
to contamination which imply a redshift wrongly estimated [44]. To define the
contamination amount, it is needed a quantity called pixel purity [41]:

Pi = signal of object i
total signal of blended objects (5.1)

Pi is the pixel purity of the object i, which is blended with other n objects. From
Pi, purity per pixel Pij is defined such that

∑N
j=1 Pij = 1, N is the total number of

pixels of the blended objects. Thus, contamination for the object i is [44]:

Ci = 1−
∑N
j=1 SjPij∑N
j=1 Sj

(5.2)
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Sj is the pixel value (contributing to the flux). Considering a case where in a
blending, the first object is very bright in respect to the other objects, than Ci is
close to 0, whereas for the other fainter objects Ci is close to 1. Flux contamination
is not the issue to concern if the blended objects are at different redshifts the photo-z
estimation is less reliable [44]. The redshift difference between two blended objects
is defined as:

D = 1−
∫∞

0
1

σ1
√

2πe
−(z−z1)2

2σ2
1 1

σ2
√

2πe
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√
2π )2 ∫∞

0 e
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2σ2
min dz

(5.3)

D is calculated assuming that the photo-z uncertainty of the two objects is represented
by a Gaussian G(z, σ), with z1 and z2 the true redshift values and σ1, σ2 the standard
deviations. The denominator normalizes the function, thus if G1 = G(z1, σ1) =
G(z2, σ2) = G2 then D = 0, while larger is the separation, closer D is to 1. Blending
impacts the photo-z measures as a function of C and D, F (C,D). A possible function
is
√
C ·D as shown in [44].

5.1.2 Blending impact on Supernovae science

Blending impacts SN science as a function of flux contamination C (Eq. 5.2).
SN science is based on the photo-z estimation from the SN itself, or from the host
galaxy (before and after the SN explosion). As photo-z is directly affected by C,
photo-z estimation of the host galaxy could not always be reliable. A possible, new
alternative is the broad-band photometry of the SN directly. The method is less
sensitive to blending but is still affected, as the SN extinction is increased by it,
producing an uncertainty of a few percent level [44].

5.1.3 Blending impact on Weak Lensing science

Blending impacts WL science, directly influencing shear, and photo-z measures.
Catastrophic blends imply that two objects at the same redshift have the same shear,
but if the two objects have different SEDs, the combined SED could provide a wrong
photo-z estimation. In case the two objects are at different redshift, it is difficult to
interpret the shear estimate. Excluding blending in galaxy clusters, the majority of
catastrophic blends takes place at different redshift [109]. The approach of excluding
galaxies form WL measures does not help with catastrophic blends. Furthermore, it
gives a scale-dependent bias in shear-shear correlations, since blends are prevalent
in high-density regions [109][71].

5.2 Deblending with Unsupervised Learning
In this section, deblending with an unsupervised learning (topological clustering)

technique is investigated. The content of this section is part of two different
works currently under preparation. The first concerns the datasets creation and is
summarized in Sect. 5.2.1. The second is about the application of a topological
clustering technique compared to a multi-threshold approach, the metrics used, the
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preliminary results achieved. This second work is summarized in Sect. 5.2.2-5.2.3-
5.2.4.

5.2.1 The dataset

The datasets used for the analysis are cubes of FITS images. Each cube has a
different number of images in it, depending on the samples described below. In each
image, according to the dataset, there are 1 or 2 objects, see Table 5.1. The datasets
have been generated including all the couples of objects in an simulated extragalactic
image, within few FWHM (details in table 5.1) to be involved in deblending issues.
The general idea is to create two kinds of dataset, one is generated using Skymaker
[18], thus only with simulated objects, the other is generated using real CANDELS-
GS cutouts. First of all, we selected the objects in a simulated image Euclid VIS-like
created with EGG [150]. We select all the couples with distance between the
objects d within a range: [dmin, dmax], using a KD-tree algorithm described in [110]
and implemented using the Python class scipy.spatial.cKDTree1 [82]. After the
selection in distance, we proceeded selecting all the objects with a magnitude within
the range [magmin, magmax]. The parameters used for the datesets are reported in
the Table 5.1.

Dataset dmin dmax magmin magmax Nobj

couples 0 10 19 26.0 2
big 0 50 19 23.0 2
single 0 10 19 26.0 1

Table 5.1. Parameters for objects selection in the datasets, “couples” represents a sample
of common and typical couples of objects; ”big” represents a sample of bright and big
couples of objects; “single” represents all the objects in couples and big, one single object
per image. The distances are expressed in pixels

Skymaker Cubes

As a first step we created the cubes using Skymaker, selecting the objects as
described above. The cubes are also coupled with true maps cubes and an rms
map. The first contains the objects segmentation stored in the different images
that compose the cubes, the second is a single image, where every pixel has a the
same value, corresponding to the Euclid VIS background standard deviation σV IS
(Skymaker approximates the background to have a Gaussian distribution). In
the true maps cubes, the segmentation has been produced with a simple threshold
method. The continuous pixels in the image with values α times the rms, to the
corresponding pixels in the true map is given the same integer, all the other pixels are
set to 0 (we chose α = 0.8 as increasing this value produces small segmentation maps,
while a smaller value produces fake detections due to the background fluctuations).
The overlapping pixels between the two objects is indicated by the value -1. In
these cubes we can decide to randomize the objects inclination angles, deciding
the number of possible combinations through the parameter Nrepetitions. For the

1http://www.scipy.org/

http://www.scipy.org/
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2-objects per image datasets, we require that the objects sizes are smaller than the
distance between them. To avoid impossible cases to deblend, both the following
conditions must be fulfilled:

• max(bulgeradius,1, diskradius,1) < dmax

• max(bulgeradius,2, diskradius,2) < dmax

where bulgeradius,1 is the bulge radius of the first object, where bulgeradius,2 is the
bulge radius of the second object, where diskradius,1 is the disk radius of the first
object, where diskradius,2 is the bulge radius of the second object. For every object
in the dataset, the essential features extracted from the EGG catalog are stored and
listed below:

• type: Defines if the object is a star or a galaxy, with values 100 and 200
respectively

• x: New X coordinate of the object in the image

• y: New Y coordinate of the object in the image

• mvis: VIS magnitude of the object

• BT: Bulge on total ratio of the object

• b_R: Bulge radius in arcsec

• b_RATIO: Bulge inclination angle, normalized between 0 and 1, where 0 means
edge-on while 1 means face-on

• PA: Position angle of the object bulge and radius, perpendicular to the line of
sight

• d_R: Disk radius in arcsec

• d_RATIO: Disk inclination angle, normalized between 0 and 1, where 0 means
edge-on while 1 means face-on

• ID: Object ID in the EGG catalog

• z: Object spectroscopic redshift

• dx: Image dimension along the x-axis containing the object

• dy: Image dimension along the y-axis containing the object

In the 2-objects datasets, the 2 objects are put in the middle of the image at the
same Y coordinate and at a distance d between them on the X-axis. While for the
1-object dataset, the object is simply in the middle of the image.

For each object in the datasets, the surface brightness is evaluated considering
the brightest 5, 10 and 50 pixels of the object.
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Figure 5.1. A selection of the couples datasets. The first column shows two blended
simulated objects produced with Skymaker+EGG, the second column shows the
related true map (Skymaker+EGG), the third column shows the the two associated
blended CANDELS cutouts, the fourth column shows the related true map (CANDELS)

CANDELS-GS cutouts Cubes

Saving the Skymaker cubes for later we now discuss the CANDELS-GS cutout
selection. We selected cutouts cross-correlating different catalogs, classified by both
visual [85] and neural networks classifiers [78]. The GALFIT [169] parameters that
we use are listed below:
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• ID: The CANDELS object ID;

• gfit_mag_h: The absolute total magnitude from best fitting of Sersic model

• gfit_f_h: Quality flag of the fitting.

• gfit_sma_h: Semi-major axis of the ellipse containing half of the total light
in the best fitting Sersic model

• gfit_n_h: The Sersic index best fitting Sersic model for the object

• redshift: The object spectroscopic redshift

while the SExtractor [19] parameters from the CANDELS-GS catalog [69]
are listed below:

• MAG_AUTO: Kron-like elliptical aperture magnitude

• FLUX_AUTO: Flux within a Kron-like elliptical aperture

• FLUXERR_AUTO: RMS error for FLUX_AUTO

• ELONGATION: Major axis/Minor axis

• THETA_IMAGE: Position angle perpendicular to the line of sight

We selected cutouts with MAG_AUTO< 24.5 looking for a trade-off between diversity
and fidelity of the sample. After the cutout selection step, we take back the
Skymaker datasets, assigning a cutout to each object in the cubes. The assignment
algorithms is schematized below:

• Taking the generic Skymaker object for reference, if BT> 0.7 we restrict
the assignment to objects in the CANDELS cutouts with 3 < gfit_n_h < 8,
otherwise if BT< 0.7 we assign cutouts with 0.5 < gfit_n_h < 2

• We use the visual classifiers fdisk, fsph and firr from [85] to assign a morpho-
logical, class defined in [78], to the cutouts, as described below

• The morphological classes used are schematized below:

– Disk irregular: fdisk > 2/3 AND fsph < 2/3 AND firr > 1/10
– Disk: fdisk > 2/3 AND fsph < 2/3 AND firr < 1/10
– Spheroids: fdisk < 2/3 AND fsph > 2/3 AND firr < 1/10

We also use the same six spectroscopic redshift bins [0, 0.1, 0.6, 1.1, 1.6, 2.1, 2.6, 3+]
and the morphological distributions defined per bin

• For Skymaker objects with BT< 0.7 we use the redshift parameter extracted
from the EGG catalog to make a random choice, weighted using the morpho-
logical distributions in the proper bin as probability functions, assigning to the
object a cutout with the morphology randomly extracted, preferring cutouts
with similar surface brightness, dimension, magnitude and elongation
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• For Skymaker objects with BT> 0.7, we automatically assign a cutout be-
longing to the Spheroids class, again preferring similar surface brightness,
dimension, magnitude and elongation.

After that to each object is assigned a cutout, we proceed to create the CANDELS
cubes, mimicking the objects positions, magnitudes, dimensions, angles etc. We add
the Gaussian noise (in the same way of Skymaker does), with:

• σ = σV IS to every pixel which doesn’t belong to the objects

• σ =
√
σ2
V IS − σ2

CANDELS to every pixel which belongs to the objects but
doesn’t belong to the overlapping area

• σ =
√
σ2
V IS − σ2

CANDELS,1 − σ2
CANDELS,2 to every pixel in the object 1 and 2

overlapping area,

where σ2
CANDELS is the background standard deviation measured in the cutout

proximity and calculated as the ratio between the cutout flux and its signal-to-noise
ratio

In the CANDELS cubes, every image which reproduces the Skymaker image
is checked, in order to discard reproduced couples which totally overlap or those
that don’t have a true map over the threshold, meaning that the objects are too
faint. Indeed the CANDELS cutouts and the background are rescaled, to reproduce
a VIS-like image, but it is possible that, extremely faint (or close) Skymaker pairs
could not be ideally reproduced (the cutouts can indeed differ from the mathematical
models used by Skymaker). With the aim of having a one-to-one relationship
between the datasets, the images discarded in the CANDELS cubes are also discarded
in the Skymaker cubes. In the end a dataframe sky_to_CANDELS.pkl containing
all the information on the related dataset is produced.

5.2.2 Methods

ASTErIsM

ASTErIsM (AStronomical Tools for clustering-based dEtectIon and Morphome-
try) [162] is a Python package, performing different tasks, among which deblending,
performed with DENCLUE (see Sect. 3.2.2). ASTErIsM is designed to work with
CCD astronomical images, using a modified versions of the above-cited algorithms
to work with such datasets. The modifications to the algorithms are summarized
below.

DENCLUE is modified to work with a CCD matrix. As a first step the density
estimation is substituted by a kernel convolution. The resulting image after this
step is estimated by:

f(pj) ∝
n∑
i=1

G(qj − qi
h

)I(pi) (5.4)

where pj is the j-th pixel with coordinate qj , G is the non-negative symmetric kernel
function centred in qj , h is the bandwidth of G and I(pi) is the flux of the pixel pi.
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When a Gaussian is used as kernel, h represents the standard deviation. The fast
hill climbing used to associate density attractors to the data points is:

qt+1 =
∑n
i=1G( qt−qih )qiI(pi)∑n
i=1G( qt−qih )I(pi)

(5.5)

where qt+1 are the updated coordinates of the generic point at the t+ 1 iteration.
The convergence is reached when: ||qt − qt+1|| < εd, where εd is a threshold that can
be set. At convergence qt+1 defines the position of the density attractor p∗j for the
point pj . With DENCLUE the attractors are evaluated and clustered and after
that source clusters are eventually deblended:

• Being S a source cluster, each point pj ∈ S corresponds to the pixel with
coordinates qj and flux I(pj)

• For each pj a density attractor p∗j is associated

• All the attractors are then clustered using a labeling algorithm, implemented
in scikit-image2, producing a list of clusters of attractors

• The pixels whose density attractors belong to the same cluster compose a new
sub-cluster

• The new sub-clusters are then validated considering the number of pixels
(between a minimum and maximum value) and the ratio of the sub-cluster
flux compared to the parent cluster

In ASTErIsM, a scale-finder algorithm sets different values of h as a fraction
of the clusters radii, from now on, we talk about h_frac. To identify the optimal
value of h_frac, a recursive application of the Laplacian of Gaussian (LoG) blob
detection algorithm, implemented in scikit-image 2, is used. The tested values of
h_frac are within h_frac_min and h_frac_max. The two parameter are used
to find the optimal configuration to handle the objects blending.

For further details about the DENCLUE algorithm see [162]. The strategy
promoted to find the best configuration of ASTErIsM is described below.

As a first step, the segmentation maps are produced using SExtractor with
deblending turned off, using them as input for both SExtractor and ASTErIsM,
simulating the input to deblending of the Euclid pipeline. The segmentation images
compose a cube, that is added to the dataset. This step is fundamental for the
kind of pixel-wise analysis that we perform, which requires the same segmentation
maps. SExtractor detection parameters DETECT_THRESH and DETECT_MINAREA
are set to 1.2 and 10 respectively. These values provide a fair trade-off between
segmentation dimension and significance level. We used the rms map mentioned
in Sect. 5.2.1. We also pre-filtered the images through a Gaussian filter with Full
Width at Half Maximum (FWHM) of 2 pixels (approximating the VIS Point Spread
Function (PSF)) and set the cleaning with CLEAN_PARAM=1.0 by default.

Once the segmentation is provided to DENCLUE, the algorithm performs
deblending as described above. Here the value of the parameter h assumes an

2https://scikit-image.org/

https://scikit-image.org/
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important role in finding the sub-clusters. We explored different combinations of the
parameters: h_frac_min and h_frac_max, to find the best configuration which
optimizes the deblending. We sampled both values from 0.05 to 0.5 with a step of
0.05. We slightly pre-filter the images with a 0.5 pixels-wide PSF. The results shown
in Sect. 5.2.4 refers to a limited number of ASTErIsM configurations, which are
not included for simplicity purposes, concerning only combinations of h_frac_min
and h_frac_max. We refer to them as deblending parameters of ASTErIsM.

Baseline: SExtractor

In this section we describe the approach used for the detection (and deblending)
adopted with SExtractor [19]. We tested different configurations to find out
the best parameters combination that enhances the deblending performances. As
already described for ASTErIsM, we provide the input segmentation (using the same
detection+filtering+cleaning parameters) with deblending turned-off to SExtractor.
After that the deblending is performed.

We explored 80 combinations of the parameters which handle the deblending:
DEBLEND_MINCONT and DEBLEND_NTHRESH. We sampled DEBLEND_MINCONT from 1×
10−4 to 1× 10−2 with a step of 1× 10−3 and DEBLEND_NTHRESH from 8 to 64 with
step equal to 8. We pre-filtered the images with the 2 pixels-wide PSF. We also
wanted to test the impact of cleaning in the deblending performances, turning it
off and using the values for CLEAN_PARAM equal to 0.1 and 10. The results of the
various configurations are shown in Sect. 5.2.4, and concern only combinations of
DEBLEND_MINCONT and DEBLEND_NTHRESH, and represent the deblending parameters
of SExtractor.

5.2.3 Comparison Metrics

The aim is to compare the results produced by ASTErIsM and SExtractor in
their optimal configurations on our datasets, defined in Sect. 5.2.1. We remind that
the generic dataset is composed of a cube of images, a cube the related true maps,
a cube of related segmentation maps (without deblending), and the related rms
maps. Considering a couple of simulated objects in one of our datasets, the objects
are represented by an image (in the optical band Euclid VIS), a true map, and
segmentation map. After deblending is performed by the algorithms the deblended
segmentation map is used to evaluate the performances:

1. If the faintest of the simulated objects objs,n (n=1,2) has a magnitude >
magcut, where magcut is an arbitrary threshold, the image containing such
objects is not considered for the analysis, otherwise the analysis continues to
point 2

2. All the detected objects objd,m (m=1,2,3, ..) that do not overlap the simulated
objects (e.g. spurious detections) are not interesting for the analysis and then
are discarded

3. The areas of each objd,m that overlaps at least one of the objs,n is calculated,
we define this area as Region of Interest (ROI)
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4. To each objs,n is associated a objd,m, that is not already associated, matching
the minimum distance of the respective clusters centroids

5. Each non-associated objd,m overlapping a objs,n is defined as contaminant
objc,k (k=1,2,..,m) of that objs,n

6. The recovery fractions, defined as recovery = ROI
Asim

, are calculated for each
objs,n, Asim is the area of the objs,n for which recovery is calculated including
the one in common with the other objs,n

7. The contamination fractions, defined as contamination = ROI
Asim

, are calculated
for each objs,n

8. Two thresholds are set: εsim, εcont defining the minimum recovery fraction and
the maximum contamination accepted, respectively

9. objc,k providing a contamination below εcont are not considered in the final
count of the objects detected in the image

10. If the number of detected objects is equal to the number of simulated objects
in the image (n = m) and recovery > εsim then the image is considered well
deblended, and the total number of well deblended images Nokdeb increases by
1

11. The points 1-10 are repeated for each image in the cube and in the end Nokdeb

is divided by the total number of not discarded images (see point 1) in the
cube Ntot

Nokdeb
Ntot

is the deblending efficiency. A schematic representation of the metrics is
shown in Fig. 5.2.

The results obtained using this metrics, shown in Sect. 5.2.4, are obtained setting
different combinations of the parameters: εsim, εcont, and magcut, we refer to them
as analysis parameters.

5.2.4 Results

The results shown in this section are preliminary and based on a portion of the
datasets, at the time of this thesis submission. The complete results are part of a
scientific paper still works in progress.

From the performances comparison of the algorithms tested, obtained by applying
the metrics described in Sect. 5.2.3, we notice a significant discrepancy between the
multi-threshold and the topological clustering approach tested, in terms of deblending
efficiency.

The results shown in this section are obtained with a set combination of the
analysis parameters, each of these parameters can assume the following values:
εsim = [−1, 0.3], εcont = [−1, 0.1], and magcut = [−1, 25.3]. The value −1 indicates
that the threshold is turned off. We arbitrarily chose the threshold values according
to a visual inspection of the segmentations (post-deblending) produced. When the
thresholds are all turned-on, it means that we are considering a successful deblending,
if the number of detected objects corresponds to the number of simulated objects,
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Figure 5.2. A schematic representation of the comparison metrics with two simulated
objects objs,n. In the figure a detection without deblending is performed and in this
case 3 objects have been detected objd,m. After that, deblending is performed and the
detected object objd,1 is splitted in 3. The objd,m not overlapping any objs,n are not
considered, while the remaining objd,m become candidates. To each objs,n is associated
an objd,m, based on centroids distance. All the non-associated objd,m that overlap an
objs,n become contaminants of that objs,n (e.g. objd,5 becomes objc,1, contaminating
objs,1). For each objd,m the Region of Interest (ROI) is calculated, and the recovery and
contamination quantities are calculated. For further details see Sect. 5.2.3

all the associated objects reconstruct at least 30% of the simulated ones, all the
possible non-associated do not contaminate the simulated objects more than 10%
and both the simulated objects are brighter than magnitude 25.3 (corresponding to
SNR=5 for a Euclid-VIS image).

Results: Variation of the deblending parameters

The algorithms performances, varying only the deblending parameters and keeping
fixed a analysis parameters combination, obtained for the different datasets are
discussed below:

• couples_skymaker_r1: ASTErIsM performances for couples_skymaker_-
r1 are shown in Fig. 5.3. Performances with all the deblending parameters
combinations are obtained with the following analysis parameters: εcont=0.1,
εsim=0.3, magcut=25.3. In the left plot, we noticed that the highest perfor-
mances are obtained with the combination h_frac_min=0.05 and h_frac_-



5.2 Deblending with Unsupervised Learning 87

max = 0.1. This configuration correctly deblends ∼88% of the total dataset,
while in the worst scenario, ∼84% is obtained. We also noticed that variations
of the deblending parameters produce similar results. Therefore different com-
binations can be set, without impacting the performances significantly. All the
wrongly deblended images in the dataset are shown in the middle and right
plots. With the same deblending parameters combination ∼10% of the images
is under-deblended (n < m), while ∼2% is over-deblended (n > m).

• couples_skymaker_r1: SExtractor performances for couples_skymaker_-
r1 are shown in Fig. 5.4. Performances with all the deblending parameters
combinations are obtained, with the same analysis parameters set in Fig.
5.3 (εcont=0.1, εsim=0.3, magcut=25.3). In the left plot, the highest perfor-
mances, ∼83%, are obtained with the configuration: DEBLEND_NTHRESH=64,
DEBLEND_MINCONT=0.0001. Differently than ASTErIsM, a significant gra-
dient in performances, varying the deblending parameters combinations, is
obtained. Indeed, in the worst scenario, the performance drops to ∼59%,
meaning that the deblending performed by SExtractor is more sensitive to
a correct configuration of its parameters. All the wrongly deblended images are
divided into under-deblended and over-deblended in the middle and right plots,
respectively. We noticed that in the middle plot, the performance gradient is
very steep, passing from a minimum of ∼16% to a maximum of ∼41%. On
the other hand, in the right plot, the over-deblending is nearly not affected by
the deblending parameters selection.

• single_skymaker_r1: ASTErIsM and SExtractor performances for
single_skymaker_r1 are shown in Fig. 5.5-5.6. Performances with all the com-
binations of the deblending parameters for both the algorithms (ASTErIsM:
Fig. 5.5, SExtractor: Fig. 5.6) are obtained with the following analysis
parameters combination: εcont=-1, εsim=-1, magcut=25.3. We noticed that,
for both the cases the algorithms reach ∼100% performance, meaning that
over-deblending does not represent a problem for any of the deblending pa-
rameters combinations. The performances for single_CANDELS_r1 are very
similar to the ones shown in Fig. 5.5-5.6, therefore are only reported in Table
5.2.

• big_skymaker_r10: ASTErIsM and SExtractor performances big_sky-
maker_r10 are shown in Fig. 5.8-5.8. Performances with all the combinations
of the deblending parameters for both the algorithms (ASTErIsM: Fig. 5.8,
SExtractor: Fig. 5.7) are obtained with the following analysis parameters
combination: εcont=-1, εsim=-1, magcut=25.3. In the left plots we noticed that,
both the algorithms show a slight gradient in the performances, making nearly
all the configurations viable. ASTErIsM reaches ∼ 99% performance with
h_frac_min=0.15 and h_frac_max=0.20. h_frac_min (which defines
the lower boundary used by the scale-finder to find the correct value of
h) weights more than h_frac_max in the performances optimization, since
the objects in the dataset are moderately larger than those in “couples”. On
the other hand, SExtractor reaches ∼ 95% performances, with DEBLEND_-
NTHRESH=64, DEBLEND_MINCONT=0.01. Similarly to ASTErIsM, the optimal
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configuration takes into account the large size of the objects involved, preferring
a high number of sub-thresholds and a less aggressive value of DEBLEND_MIN-
CONT. All the wrongly deblended images are divided in under-deblended and
over-deblended in the middle and right plots, respectively. ASTErIsM in
its optimal configuration over-deblends ∼ 1% of the objects without under-
deblending one. SExtractor in its optimal configuration under-deblends
∼ 3% and over-deblends ∼ 2% of the objects.

• big_CANDELS_r10: ASTErIsM and SExtractor performances big_-
CANDELS_r10 are shown in Fig. 5.9-5.9. Performances with all the combi-
nations of the deblending parameters for both the algorithms (ASTErIsM:
Fig. 5.9, SExtractor: Fig. 5.10) are obtained with the following anal-
ysis parameters combination: εcont=-1, εsim=-1, magcut=25.3. Similarly to
big_skymaker_r10, in the left plots, both the algorithms show a slight gra-
dient in the performances. ASTErIsM reaches ∼ 90% performance with
the same h_frac_min=0.15 and h_frac_max=0.20. SExtractor reaches
∼ 82% performances, with DEBLEND_NTHRESH=48, DEBLEND_MINCONT=0.002.
Similarly for big_CANDELS_r10, ASTErIsM optimal configuration takes
into account the large size of the objects involved. On the contrary, SEx-
tractor optimal configuration is similar only for DEBLEND_NTHRESH, while for
DEBLEND_MINCONT a more aggressive value is preferred. A further investigation
is needed to shed light on the different optimal configuration. All the wrongly
deblended images are divided in under-deblended and over-deblended in the
middle and right plots, respectively. ASTErIsM in its optimal configuration
under-deblends ∼ 8% and over-deblends ∼ 2% of the objects. SExtractor
in its optimal configuration under-deblends ∼ 15% and over-deblends ∼ 5% of
the objects.

A discrepancy can be noted between the two “big” datasets. Indeed, both the
algorithms perform worse when applied on real objects (ASTErIsM loses a ∼ 9%
while SExtractor loses a ∼ 13%). We expected a similar result due to the natural
complexity of real objects compared to simulated ones.

Figure 5.3. ASTErIsM performances with all the h_frac_min, h_frac_max combina-
tions tested on couples_skymaker_r1 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset.
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Figure 5.4. SExtractor performances with all the DEBLEND_NTHRESH,DEBLEND_MINCONT
combinations tested on couples_skymaker_r1 dataset. The left plot shows the values of
the deblending efficiency. The central plot shows the number of under-deblended images
in the dataset. The right plot shows the number of over-deblended images in the dataset.

Figure 5.5. ASTErIsM performances with all the h_frac_min, h_frac_max combi-
nations tested on single_skymaker_r1 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset

Figure 5.6. SExtractor performances with all the DEBLEND_NTHRESH,DEBLEND_MINCONT
combinations tested on single_skymaker_r1 dataset. The left plot shows the values of
the deblending efficiency. The central plot shows the number of under-deblended images
in the dataset. The right plot shows the number of over-deblended images in the dataset.

Results: Overall combinations scenario and best results

In Table 5.2 the best analysis parameters and deblending parameters combinations
are reported. These results refer to the best deblending parameters combination
previously found and the analysis parameters already set above. Histograms of the
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Figure 5.7. ASTErIsM performances with all the h_frac_min, h_frac_max combi-
nations tested on big_skymaker_r10 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset

Figure 5.8. SExtractor performances with all the h_frac_min, h_frac_max com-
binations tested on big_skymaker_r10 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset

Figure 5.9. ASTErIsM performances with all the h_frac_min, h_frac_max combi-
nations tested on big_CANDELS_r10 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset

performances obtained by the two algorithms, varying all the possible deblending
parameters and analysis parameters combinations, are shown in Fig 5.11. We
noticed that, in both the “couple_skymaker” datasets the ASTErIsM performances
distribution is narrower and has a larger mode value than the one representing
SExtractor. An overlapping area between the two distributions is present, meaning
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Figure 5.10. SExtractor performances with all the h_frac_min, h_frac_max combi-
nations tested on big_CANDELS_r10 dataset. The left plot shows the values of the
deblending efficiency. The central plot shows the number of under-deblended images in
the dataset. The right plot shows the number of over-deblended images in the dataset

that for a small number of combinations the performances are comparable. On the
other hand, for the “single” datasets, SExtractor distribution is narrower and
the mode value is higher. In this case the difference between the mode values is
small, but a further analysis is required to investigate these results. Lastly, for the
“big” datasets a significant difference can be noticed in the mode values. Indeed
the absence of an overlapping area, denotes that, for nearly all the combinations,
ASTErIsM performs better than SExtractor.

Sample Multi-th Nthr MinCnt Denclue ∆ hmin hmax

couples_skymaker_r1 82.9574 64 0.0001 87.9699 5.0125 0.05 0.15
couples_skymaker_r5 78.3286 64 0.0001 82.5389 4.2103 0.05 0.10
single_skymaker_r1 99.8514 56 0.0034 99.9009 0.0495 0.05 0.20
single_CANDELS_r1 100.0000 24 0.0100 99.6936 -0.3064 0.15 0.25
big_skymaker_r10 95.3846 64 0.0100 99.3162 3.9316 0.15 0.20
big_CANDELS_r10 82.2222 48 0.0023 90.4274 8.2051 0.15 0.20

Table 5.2. In the table are shown the highest performances obtained on the different datasets
tested for both the SExtractor and ASTErIsM. The results refer to the algorithms in
their best configuration (represented by the deblending parameters discussed in Sect. 5.2.2
and the analysis parameters configuration: (couples: εcont=0.1, εsim=0.3, magcut=25.3;
single: εcont=-1, εsim=-1,magcut=25.3; big: εcont=-1, εsim=-1,magcut=25.3). Sample is
the dataset name, Multi-th is the highest value of the deblending efficiency obtained with
SExtractor, Nthr is the DEBLEND_NTHRESH value, MinCnt is the DEBLEND_MINCONT value,
DENCLUE is the highest value of the deblending efficiency obtained with ASTErIsM,
∆ is (∆ = DENCLUE - Multi-th), hmin/max is the value used for h_frac_min and
h_frac_max. In the dataset name the Nrepetitions is indicated with r followed by the
number of repetitions (e.g. r5 means Nrepetitions = 5)

5.3 Deblending with Convolutional Neural Networks
The goal of this section is to explore if deep learning is an approach worth

investigating for segmenting blended galaxies and estimating their photometry. The
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Figure 5.11. The plots show the performances of both the algorithms in all the possible
configurations tested, in terms of deblending parameters and analysis parameters. On
the x-axis the deblending efficiency. Each plot is for a different dataset.

content of this section is part of a scientific paper (for further details see [26]). We
further explore the use of deep learning to both segment and measure the photometry
of blended pairs of galaxies.

The goal is thus to obtain a neural network optimized to predict the photometry
of pairs of galaxies observed with fairly high spatial resolution in one single band.

5.3.1 The dataset

The quantification of the effects of blending on the derived galaxy properties
is a difficult task by nature, due to the integration of photons by our sensors and
the intrinsic convolution by the point spread function of the instrument. Most
existing methods require additional knowledge (several wavelength bands), or a
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priori knowledge, like parametric models, of the galaxy profiles, symmetries, etc.
Moreover, to assess the accuracy of such methods, we are often left with bottom-up
approaches like the simulation of galaxy blending using software like GalSim [146],
for which we have access to the true light distribution of each object in the image.
But as realistic as they can be, simulated images often show their limits when
compared with the diversity and the singularity of real data images [72]. This is
particularly critical for machine learning which implicitly assumes that the training
sets are fully representative of the real data.

In order to get a realistic representation of observations,for this work we decide to
simulate blended objects from real observations. Although this approach eventually
propagates the biases and errors existing in the observations, it has the advantage
of including fully realistic morphologies. We describe in the next paragraph the
methodology we follow to generate our galaxy sample.

Parent Sample

The parent sample used is the H-band selected catalogue from the Cosmic As-
sembly Near-infrared Deep Extragalactic Legacy (CANDELS) survey, presented in
[48]. The catalogue contains galaxies with F160W<23.5, for which both visual mor-
phologies and parametric bulge-disc decomposition are performed. From this parent
data set, we first define a clean sub-sample of isolated galaxies with unambiguous
morphologies that are then used to perform the blends. More precisely, we use
the neural-network-based morphological classification published in [78] and select
galaxies with four different morphological types:

• pure bulges: PSPH > 0.8

• pure disks: PDISK > 0.8

• two component bulge + disk: PSPH > 0.8 & PDISK > 0.8

• irregular galaxies: PIRR > 0.8

Note that the purpose of this selection is not to have a complete sample of
galaxies, but to have a clean data set of isolated galaxies with different morphologies
for which we can reasonably trust the segmentation procedure. By selecting galaxies
with very large probabilities of being in a given morphological type we can be
reasonably certain that we remove originally blended systems or complex structures
such as mergers. From this initial sample, we generate 128×128 pixel stamps centred
on the objects. We then remove all other objects present in the stamps. To that
purpose, we apply a morphological dilation to the original segmentation obtained
with SExtractor and replace all distinct regions with random pixels sampled from
empty regions in the background.

In order to further clean the sample, we visually inspect the selected galaxies
and remove the ones which still present anomalies such as originally blended systems
not detected by SExtractor, or the ones for which the removal of companions
created some visual artefacts in the images.
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Blending

To create the artificially blended systems, we combine the galaxies of the clean
sample we just obtained using the following procedure. First of all, we randomly
select one galaxy, referred to as the central galaxy, with a magnitude and an effective
radius respectively denoted magcen and Rcen. Rcen is the semi-major axis of the
best Sersic fit model from the catalog by [48]. Secondly, we pick a second galaxy
in the catalogue, referred to as the companion galaxy with properties magcomp
and Rcomp, so that it satisfies magcen − 2 < magcomp < magcen + 2. Then we set
R=max(Rcen,Rcomp) as the biggest effective radius between the two galaxies and
randomly select a couple of shifts (∆x,∆y) from a uniform distribution ranging from
0.5·R and half of the image size. We use these shifts to apply a translation to the
stamp of the companion galaxy. Finally, the blend is created by adding up the pixels
of two stamps. Note that the blending process contains two over-simplifications as
compared to real observed blends. Firstly, we avoid overlap in the very inner parts
of the central galaxy (<0.5Re) and secondly, the central galaxy is always placed at
the centre of the stamp. We are fully aware of these simplifications but consider this
enough complexity for our blends in a first proof-of-concept work.

We repeat this process to build up a sample of 30,000 blended galaxies, which
necessarily contains some redundancy because each galaxy appears in multiple stamps.
However since there are enough degrees of freedom coming from the selection of the
companion and the shifts, this redundancy is not to be considered problematic. It
allows us to build a large enough sample to train the networks as described in the
following. We show in Figure 5.12 some examples of blended pairs with different
magnitude differences and distances between the two galaxies.

With the purpose of triggering the comparison with other approaches, the
software used to generate the blends as described above has been publicly released
as a package called candels-blender 3

5.3.2 Training, Validation and Test datasets

As explained in the previous sections, the blend stamps contain some level
of redundancy since the same galaxy can appear in several of them. This could
artificially improve the results evaluated in the test set because the network might
have seen already the same galaxy in the training phase. To avoid this potential
bias, we adopt a specific procedure. Following a standard approach in machine
learning [179], we split the dataset into three subcategories: training, validation and
test, respectively 60%, 20% and 20% of the full dataset. During the training, the
model loss (i.e. cost function) is periodically computed on the validation sample to
ensure it is not diverging from the training, which would indicate over-fitting or a
bad convergence of the network.

Training and validation samples can be randomly selected from the same dataset,
however the test sample, on which the metrics are computed, must be carefully
chosen to be both distinct from and representative of the sample used for the training
and validation. To achieve this feature and obtain meaningful results, we isolate the
sample of galaxy stamps used for the test dataset at the very beginning by randomly

3https://github.com/aboucaud/candels-blender

https://github.com/aboucaud/candels-blender
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Figure 5.12. Selection of blended systems created and used in this work. The stamps are
ordered vertically by the distance in pixels between the galaxy centres, and horizontally
with respect to the magnitude difference between the galaxies. The images have all been
asinh-stretched for visualisation purposes.

picking them out of the catalogue. This way, all the galaxies used to construct the
blends for the training and validation are never to be found in the test sample of
blends,and vice-versa. In the end, we have a training/validation set composed of
25,000 blends and a test set of 5,000 blends. This generated data set is used to train
several deep neural network architectures as described below.

5.3.3 Methods

Our goal is to recover, with deep learning, the photometry of the two galaxies
before the blending process. The sample being made of real galaxies, we make
the assumption that the ground truth (also referred to as the target in supervised
learning) is the flux of the isolated galaxy computed by SExtractor on the
original CANDELS cutout. We also assume that the segmentation mask provided
by SExtractor for the isolated galaxies is correct. We understand that these are
strong assumptions. However, the main purpose of the work does not depend on
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the absolute accuracy of the training sample. The main objective is to calibrate
how well we can recover the photometry of blended galaxies relative to the accuracy
obtained on the same galaxies when they are isolated. In that respect, the ground
truth can be replaced with any other measurement.

We perform two different experiments. In the first one we use a standard
Convolutional Neural Network (similar to FCN [104]) to directly compute the fluxes
of the two galaxies from the blend image. We call this configuration blend2flux. In
the second experiment, we recover with a unique architecture, both the segmentation
maps and the fluxes of the two galaxies. The idea is to calibrate whether having
information on the segmentation map helps the network to obtain a more reliable
photometry. We call this second experiment blend2mask2flux. The networks are
implemented, trained and evaluated using the Python API Keras 4, which runs on
top of TensorFlow 5.

blend2flux

As seen in Sect. 3.2.4 with deep learning reducing pre-processing to a minimum
often provides better results. We thus start off with a deep neural network model
that predicts fluxes directly from the blended images without any intermediate
step. We use to that purpose a standard CNN configuration including a feature
extraction convolutional part followed by a fully connected network. The input of
the network is thus a 1-channel image with two blended galaxies and the output is a
vector of two floating numbers corresponding to the fluxes of each galaxy.We build a
modular version of this sequential network, where the number of layers of both the
convolutional and the dense network, as well as their filter size are adjustable.

Figure 5.13. Schematic representation of the fiducial blend2flux network. The network
takes as input an image of a blended system and outputs the fluxes of the two galaxies.
The blue boxes correspond to the convolutional part of the network. The yellow part is
the fully connected section. The sizes of the different layers and convolutions are also
indicated.

The architecture, whose results are shown in this work, is sketched in detail in
Figure 5.13. The CNN part is made of five convolutional layers activated using a
ReLU function and using convolution kernels of size 3×3 only. Max-pooling layers
are inserted in between each convolution layer to downsample the images. The first

4https://keras.io
5https://github.com/tensorflow/tensorflow

https://keras.io
https://github.com/tensorflow/tensorflow
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Initial Filter Size 64 256 512
No. parameters [million] 1.6 25.7 102.7
Flux error central [%] 9.33 8.39 8.25
Flux error companion [%] 8.79 8.01 7.98
Total Flux error [%] 9.06 8.20 8.12

Table 5.3. blend2flux network performance computed on the entire test set using mean
absolute percentage error (MAPE).

layer starts with a filter size of 256, and doubles this filter size every other layer.
After the fifth convolutional layer, the data is flattened to be fed to a three-layer
classical neural network, finally yielding a vector of size two with the fluxes. Given
that our network is aiming at correct relative flux measurements, we choose to use
the mean absolute percentage error (MAPE, see equation 5.6) as our loss function.
To adjust the weights during training, we select the ADAM optimizer. ADAM is an
extended stochastic gradient descent algorithm, meaning that it iteratively updates
network weights with individual adaptive learning rates based on both first and
second moments of the gradients.

MAPE(ymeas, ytrue) = 100
n

∑
n

|ytrue − ymeas
ytrue

| (5.6)

This blend2flux network, which has about 25.7 million free parameters, is then
trained from scratch using the training set of 25,000 images. We consider the network
as having converged after the validation loss, computed on the validation part of the
training sample, stays on a plateau for a full ten consecutive epochs after having
decreasing the learning rate several times [180]. For this network, it happened after
70 epochs which took less than five hours of training on an Nvidia K80 GPU.

The network built being modular, we trained a few variations around the fiducial
network presented above to compare their relative performance. The results of the
various network models as a function of the number of filters for the first convolutional
layer are summarized in Table 5.3 with the fiducial results in the middle column. The
table shows that doubling the initial filter size (right column) only slightly increases
the performance on the validation set regarding the estimated fluxes in Section 5.3.4,
at the expense of quadrupling the number of parameters (hence the training time
and computation cost). Using instead a smaller network with an initial filter size of
64 (left column) reduces the number of parameters to about 1.6 million, which has a
higher impact on the performance (∼ 1%worse). The network still reaches though a
precision below 10% on estimated fluxes, despite being significantly reduced in size.
We therefore want to stress here that smaller and simpler networks than our fiducial
one still outperform traditional methods.

blend2mask2flux

In a second experiment, we aim at recovering the individual segmentation maps
for the two galaxies in addition to the photometry. The objective of this exercise is to
quantify if the segmentation maps contain additional information that the networks
can use to improve the photometry. We achieve this objective using a concatenation
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of two different networks, one to produce the segmentation maps,and a second to
predict the fluxes from the segmentation maps and the blend image. We call that
composite network blend2mask2flux. One important constrain when building this
network was to ensure it had approximately the same number of free parameters
as the fiducial blend2flux. To produce the segmentation maps, we use the deep
network architecture of U-Net [145]. U-Net was designed to perform bio-medical
image segmentation and has already proven useful to detect and segment overlapping
chromosomes.

Figure 5.14. Schematic representation of the U-Net part of the blend2mask2flux network.
The network takes as input an image of blended system and outputs a segmentation
map. The lines indicate the connections among the different layers.

The network architecture is quite unique and characterized by an ability to
capture both fine and large scale information of the input image by keeping a copy
of each downsampling step (convolution+max-pooling) and concatenating it at the
upsampling step. For our purpose, we create a modular version of the original
U-Net architecture made of blocks of two convolutional layers activated with ReLU,
followed by either a downsizing or upsizing layer (respectively, max-pooling and up
convolution layers). Because the output images are of the same shape as the input
blend, each downsizing block is associated with an upsizing one in the network, and
the model can therefore be parametrized by the number of consecutive downsizing
blocks, as well as the size of the filters (number of convolution kernels). After some
tests and with a range of these parameters, we selected a U-Net with a depth of
5 and an initial filter size of 32, which we also refer to as the fiducial model. The
exact architecture of this segmentation network is depicted on Figure 5.14. The last
activation of the model is a sigmoid function. These pixels are then thresholded to
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Parameter Hot Cold
DETECT_THRESH 4 5
DETECT_MINAREA 6 10
DEBLEND_MINCONT 0.0001 0.01
DEBLEND_NTHRESH 64 64

Table 5.4. SExtractor parameters for hot and cold modes.

obtain segmentation maps with binary values 0,1 and we use a binary cross-entropy
loss to train the model. Further results of this pure segmentation stage will be
discussed in Sect. 5.3.4.

The second part of this composite model is the retrieval of the photometry using
the blend image and the segmentation maps obtained with the U-Net. For this part,
we use an architecture similar to the blend2flux model, with a reduced number of
free parameters, and changing the input to a 3-channel input - the concatenation
of the blend image, the segmentation of the central galaxy and the segmentation
of the companion galaxy - (instead of 1-channel - the blend image - in the original
blend2flux network). Like the blend2flux model, the output of the network is
evaluated using the mean absolute percentage error loss.

The composite blend2mask2flux network is trained following a particular pro-
cess. First, the U-Net is trained alone to produce accurate segmentation maps
of the two galaxies. Then we load the pre-trained weights of the U-Net into the
blend2mask2flux network, and train the network end-to-end with respect to the
flux retrieval, i.e. using the mean absolute percentage error loss on the photometry.
Note that we still keep the loss on the segmentation part but with a weight of 0.1
compared to the photometry loss. This last optimisation step, during which we
optimize the network with respect to both the segmentation and the photometry
loss,also fine-tunes the segmentation maps for flux measurement. A more detailed
discussion on this aspect can be found in Section 5.3.4.

This blend2mask2flux network presented above has 18.5 million free parameters,
a number very close and even inferior to the fiducial blend2flux model. The U-Net
part is trained from scratch on the 25,000 image training set for about 50 epochs.
Then the end-to-end blend2mask2flux network is trained during a few hundred
epochs with a small learning rate. This full process takes about fifty hours of training
on a Nvidia K80 GPU, much longer than that of the blend2flux network. Both
the model complexity, and the training process (reduced batch size for the U-Net
training) are accountable for that order of magnitude time difference.

Baseline: SExtractor

In order to have a baseline to compare with, we also run a classical SExtractor
segmentation procedure on the blended systems. We highlight that the comparison is
not completely fair since SExtractor does not only measure photometry but also
detects the objects without any prior on the number of existing objects. However,
the two deep learning approaches implicitly incorporate a prior on the number of
blended galaxies through the training set (networks are trained only with images
containing two objects).
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In order to minimize that effect, and help SExtractor as much as possible, we
adapted the procedure reported by [61], where SExtractor is first ran in a cold
mode, aiming to select the larger elements in a blended image followed by a second
round where it is ran in a hot mode - which is more sensitive to small structures. In
our particular case, where the data is known to have only two elements, the cold
mode was used to scan all the images and a subsequent run with the hot mode was
restricted to those images for which SExtractor identified only 1 object. Our
code used the Python package sep [13] and the parameters used for both modes are
described in Table 5.4. Following this procedure, results can be divided in 3 cases:

• SExtractor detects exactly two galaxies (75%): fluxes were associated with
central or companion galaxy based on the closest detection.

• SExtractor detects only a single object, meaning it is not able to deblend
the pair (22%): detected object was associated with the central galaxy if its
measured centroid is located within 0.5 Rcen from the centre of the image.
Otherwise, detection was associated with the companion galaxy.

• SExtractor over-deblends and detects more than two objects (3%): the two
brightest detections were considered, others were ignored.

5.3.4 Results

We now evaluate the results of the three experiments described previously. The
main objective is to test the photometric accuracy of blended objects as compared
with the photometry obtained on the same objects when they are isolated. We use
the magnitude difference as the main indicator of accuracy and explore the results
as a function of two main parameters: the magnitude difference between the two
galaxies and the distance between the two galaxy centroids.

Overall photometric accuracy

Figures 5.15 and 5.16 show the recovered magnitude in the blended systems
(hereafter output magnitude) for the three different methods, the blend2flux and
blend2mask2flux networks and SExtractor, as a function of the magnitude
measured on the same isolated galaxies (hereafter input magnitude). On Figure 5.15
we focus the results on the central (top) and the companion (bottom) galaxy using
the blends for which SExtractor detects them. On Figure 5.16, we aggregate the
results on both galaxies, and distinguish the cases for which SExtractor detects
the pair (top) and over- or under-deblends (bottom). On both figures, the deep
learning architectures behave very similarly. The relation between the two quantities
is centred on the one-to-one line and the typical scatter is ∼ 0.1 magnitudes. The
scatter is roughly constant over all the luminosity range explored which means that
the photometry can be recovered with similar accuracy for bright and faint objects in
our sample. This is clearly not the case for the SExtractor results which present
a noticeable increase of the scatter at the faint end. This difference highlights
an important advantage of the machine learning approaches. If the training set
is representative of the real data, the algorithm optimises the loss for all objects
equally.
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In each panel of Figures 5.15 and 5.16, we quantify in more detail the bias
and scatter on the recovered photometry. The embedded histograms show the
distribution of photometric error ∆mag=magblend-magisolated between the output
and input magnitudes. The distributions for both the central and the companion
galaxy are generally well centred around zero for the three codes, which indicates that
the estimators are globally unbiased. We note that the SExtractor panels present
a slightly skewed histogram and positive bias of 0.1 mag for the central galaxy. We
explain this slight bias by looking at the selection process of the companion galaxy
described in Section 5.3.1, which is skewed a bit towards selecting fainter galaxies
than the central ones. The visible difference between the methods are shown in the
scatter. Both deep learning approaches present a very low scatter of ∼ 0.1 mag
compared to the ∼0.5-0.7 mag scatter of SExtractor. Another good indicator of
the model performance, used for training the models, is the MAPE, computed here
on the magnitude. Again, both network model show good and similar performance,
with always a slight advantage for the blend2mask2flux, whereas SExtractor
is distanced. These two indicators show an overall improvement of the measured
photometry of a factor four using the deep learning models compared to using
SExtractor on these blended galaxies. Another important difference between
the methods is the fraction of catastrophic errors, i.e. cases in which the estimated
photometry in the blended systems significantly differs from the input value. We
arbitrarily set the threshold value to define catastrophic errors to |∆mag| > 0.75,
which corresponds to an error of a factor of two in flux. The fraction of outliers
defined that way is two orders of magnitude smaller with the deep learning methods
compared to SExtractor. Both network architectures achieve a comparable
fraction of ∼0.1% outliers whereas the SExtractor fraction is of the order of
∼10%, even when restricting the results to the cases where SExtractor detects
both objects (see top panel of Figure 5.16). Lastly, as shown on the bottom panels
of Figure 5.16, the performance of both blend2flux and blend2mask2flux models
on the galaxies that SExtractor did not manage to accurately deblend (25%) gets
affected compared with the well deblended cases (top panels) but remains unbiased
with a low scatter and an outliers rate below 0.4%

Photometric accuracy vs. blended properties

Aiming for an unbiased performance for a range of blend properties, we report
results as a function of the magnitude difference between blended galaxies and the
distance between the two objects. In Figure 5.17 we show the magnitude difference
between the isolated and blended galaxies (the bias in our magnitude estimate) as a
function of the difference in magnitude between the two galaxies blended together.
We observe that the two deep learning approaches present a very stable behaviour
across the whole range of magnitude difference. As expected, the bias slightly
increases when one of the galaxies in the pair is significantly brighter. However, it
remains below ∼0.05. Overall the bias remains always lower than the SExtractor-
based estimates. The deep learning results are also very stable in terms of scatter
which is of the order of ∼0.1 magnitudes. Here the scatter for SExtractor-based
estimates is always significantly larger (∼0.25 magnitudes) than for the networks,
and also shows a strong increase with magnitude difference between central galaxy
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Figure 5.15. Magnitude measured on the blend systems as a function of the magnitude
measured by SExtractor on the same isolated galaxies (isolated magnitude). The top
row shows the results for the central galaxy using the blends for which SExtractor
detected either the two galaxies or only the central one. The bottom row shows the
results for the companion galaxy using the blends for which SExtractor detected
either the two galaxies or only the companion. The columns refer to different codes
or models applied to the blend images, respectively from left to right blend2flux,
blend2mask2flux and SExtractor. The dashed line denotes identical estimation
from blended and isolated galaxy images to guide the eye. The inner panels show the
histograms of photometric errors (∆mag=magblend-magisolated). The numbers in each
panel indicate the average photometric error ∆mag, the dispersion σmag, the fraction of
outliers, defined as |∆mag|>0.75, and the mean absolute percentage error (MAPE) on
the magnitude.
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Figure 5.16. Magnitude measured on the blend systems as a function of the magnitude
measured by SExtractor on the same isolated galaxies (isolated magnitude). The
top row shows the results for the central and companion galaxies on the blends for
which SExtractor detected exactly two galaxies while the bottom row show the
results on the blends for which SExtractor detected either one or more than two
galaxies (under- or over-deblending). The different columns indicate different codes or
models applied to the blend images, from left to right blend2flux, blend2mask2flux
and SExtractor. The dashed line denotes identical estimation from blended and
isolated galaxy images to guide the eye. The inner panels show the histograms of
photometric errors (∆mag=magblend−magisolated). The numbers in each panel indicate
the average photometric error ∆mag, the dispersion σmag, the fraction of outliers, defined
as |∆mag|>0.75, and the mean absolute percentage error (MAPE) on the magnitude
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Figure 5.17. Magnitude difference (∆mag) between the same galaxies when they are
isolated (input) and blended (output) as a function of the magnitude difference in
the blended system (magcentral − magcompanion). The top row shows the difference
for the central galaxy. The bottom row corresponds to the companion galaxy. The
columns indicate different codes. From left to right: blend2flux,blend2mask2flux and
SExtractor. The boxplot marks the median and interquartile range (25% - 75%) for
different bins in magnitude difference. The lines emanating from the box extend from
5th to 95th percentile of the data in each bin. The colour bar shows, for each blend, the
distance between the objects normalized to the effective radius of the central galaxy.

and companion. For both networks this trend is only slightly visible.
Figure 5.17 also encodes in the color bar the normalized distance between the two

galaxies. Again, the deep learning results display little photometric dependence with
distance,for both central galaxy and companion. The SExtractor results show a
clearer dependence with distance, underestimating the fluxes up to 1 magnitude for
close objects (<Re).

Photometric accuracy and morphology

The galaxies in our sample are classified into four morphological types (pure
bulge, pure disk, two component bulge+disk, irregular) and are distributed as was
shown in Table 5.3.1. One major property of the machine leaning methods presented
here is that they do not assume any prior on the galaxy shape (as opposed to model
fitting techniques). We explore in Figure 5.18 the dependence of the photometric
accuracy on the morphological type. We plot the median bias and scatter in bins
of magnitude and distance now divided by morphological type. In general, the
machine learning approaches show little dependence on performance with respect
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Figure 5.18. Dependence of photometric bias (solid lines, top panels) and scatter (dotted
lines, bottom panels) on the morphological type for the three codes considered in this
work as a function of the magnitude difference. From left to right, the different panels
show the results for blend2flux, blend2mask2flux and SExtractor respectively.
The different colors indicate the morphological type: spheroids (yellow), disk+spheroids
(blue), disks (red) and irregulars (light green). The dark blue lines show the results for
all galaxies.

to morphology. As expected, irregular galaxies are harder to measure, and hence
present a marginally larger scatter from both codes. Surprisingly, spheroidal galaxies
tend to present larger errors when these galaxies are fainter than the other galaxy in
the blended system (∆mag > 0).This behaviour seems to be present in both codes.
The reason for this is unclear. One possible explanation is that the outskirts of
the spheroids are too faint to be detected. Since these objects typically have large
Sersic indices (i.e. steep luminosity profiles), the fraction of light in the outskirts is
not negligible. SExtractor presents similar trends but overall more dramatic. In
particular, the bias in the photometry of irregular galaxies is ∼0.2 larger than for the
whole population. Also the luminosity of spheroids is systematically underestimated.
As can be seen in Figure 5.18 the photometric accuracy (magnitude scatter) overall
is considerably lower for our two deep learning algorithms than for SExtractor
results.

Segmentation maps

By now segmentation maps have been considered as a by-product of both SEx-
tractor and the blend2mask2flux network, possibly improving the photometry.
Here, we focus on the recovery of the segmentation maps of blended galaxies from
the deep learning architecture, as well as the comparison between the results of
the initial training of the U-Net alone and the ones after the training of the full
blend2mask2flux network, which is characterized by the tuning of the segmentation
maps for photometry. The U-Net is in charge of reproducing the two SExtractor
segmentation maps of the original CANDELS galaxy cutouts from the blend im-
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Figure 5.19. Selection of four simulated blends from the test data set and the recovery of
the individual galaxy masks through the blend2mask2flux network. At the centre is the
stamp of blended galaxies that is input of the network. On the left are the segmentation
masks obtained on the individual galaxy images with SExtractor, and on the right
the segmentation masks recovered by the network out of the blend image.

age. In other words, its task is to take as input the full 128×128 blend image and
produce two binary 128×128 images that correspond to the masks of the central
and companion galaxy; this can be seen for a selection of four blends in Figure 5.19.
For better assessment of the accuracy of the method, we trained the network to
output the segmentation maps in a specific order, central galaxy first, and then
the companion. The cost function (loss) used to train the modified U-Net is a
binary-crossentropy, which performs well for a pixel-by-pixel binary classification as
needed for our segmentation maps.

To score the results, the binary-crossentropy loss is not very informative since
every pixel rightfully classified as background adds up to the accuracy, while we
would like to assess the similarity to the target SExtractor segmentation map.
For that purpose, we use a metric called Intersection over Union (IoU) also known
as Jaccard index [132] of set A and B:

IoU(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (5.7)

It is usually defined in computer vision for bounding boxes,but can be adapted to
any shape. This metric has the advantage of decreasing very rapidly to zero in case
of a mismatch between A and B in terms of location or morphology. Therefore a
score superior to 0.5 is considered a good score. After training, the U-Net obtains an
average IoU score of 0.82, on the test images, which is an indication of a very good
recovery. However, once the blend2mask2flux is trained end-to-end to recover the



5.4 Summary and Conclusions 107

Figure 5.20. Same selection of four blend cases as in Figure 5.19 to compare this time only
the results of the converged predicted segmentation masks of blended galaxies, yielded
respectively by the U-Net architecture (centre) and the blend2mask2flux model (right),
to the segmentation maps obtained from SExtractor on the individual galaxies. For
each recovered galaxy mask, the segmentation score (IoU) as compared the SExtractor
mask is indicated in the lower right corner

photometry, thus allowing the parameters of the U-Net section to vary, the average
IoU score on the test data set drops to 0.70.

The outcome and evolution from the pure segmentation objective to the photom-
etry objective can be seen in Figure 5.20, where the selection of blends is the same as
the one on Figure 5.19, but the segmentation results of the initial U-Net are shown in
the middle and can be directly compared with the one of the blend2mask2flux model
on the right. The IoU computed on each image with respect to the SExtractor
segmentation on the left is indicated on each image.

5.4 Summary and Conclusions
In this section, we summarize and briefly discuss the results obtained in this

chapter, for both the presented works. We tested different approaches to handle
the objects blending (see Sect. 5.2 and Sect. 5.3), using realistic datasets with
images of two blended objects to provide an estimate of their performances when
applied on Euclid-VIS images. The two works ran in parallel with a constant rate of
feedbacks and information exchange. The machine learning approaches have been
compared using the same baseline, but with different datasets and metrics. Both
the works produced interesting results, which encourage us to further investigate the
possibilities that the studied algorithms, and possible improvements, can provide.
Using the tested UL approach for deblending granted the following results, measured
using the metrics defined in Sect. 5.2.3:

• High overall performances (∼ 82%− 87%) with couples of simulated blended
objects, slightly better than SExtractor (∼+4%-5%)
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• Optimal overall performances (∼ 100%) with single object datasets, both real
and simulated ones, similar to SExtractor

• Optimal overall performances (∼ 99%) for couples of large simulated blended
objects, slightly better than SExtractor (∼ +4%)

• High overall performances (∼ 90%) with couples of large real blended objects,
better deblending than SExtractor (∼ +8% )

• Slightly less performance lost compared to SExtractor (∼ −4%) when
deblending large real blended objects compared to simulated ones

The results achieved demonstrate how the topological clustering approach outper-
forms the standard thresholding one. Performances, in terms of deblending efficiency,
obtained on the 2-objects datasets reach, in the best scenario, ∼9% while in all
the others it is never lower than ∼ 4%. The performance increments, compared
to the standard method, provide then a new strategy to reduce systematics on
cosmological/extragalactic measures. Using CNN approaches for deblending granted
the following results:

• Unbiased photometry with typical uncertainty of ∼ 0.1 magnitudes, implying
an improvement in the flux error ∼4 times better than SExtractor

• Fraction of outliers is lower than ∼ 1%, ∼12 times better than SExtractor

• For large magnitudes differences, photometric uncertainties is∼ 0.2 magnitudes,
SExtractor can reach 1 magnitude of difference

• Comparable photometric accuracy for all the morphological types explored

• The network optimizes photometry and segmentation maps generating tighter
maps than SExtractor

The photometric measurement networks have demonstrated that on monochromatic
images, they outperform traditional approaches with respect to photometric accu-
racy, precision, outliers fraction and stability towards different morphological types.
Furthermore probabilistic maps are produced meaning that a better photometry
than the direct mapping between the blend image to the flux measurement can be
achieved, once again reducing systematics.
From the discussed results, we are motivated to promote machine learning techniques
to handle objects blending. Both approaches provide significant improvements to
deblending, compared to the standard approach deployed, enhancing the objects’
correct separation and the relative fluxes reconstruction. These results are directly
translated in a boost for all the measures that are heavily dependent on the correct
flux (see Sect. 5.1), and therefore require an optimal deblending to be performed.
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Chapter 6

Conclusion and future
directions

I n this thesis we have discussed the application of state-of-the-art image analysis
techniques on astronomical images. We examined the improvements provided

by such methods to simulated digital images aimed at reproducing next-generation
extragalactic surveys data products, and to real images from recent deep sky surveys.

Next-generation imaging surveys aim to shed light on many deep questions
about the Cosmos. Euclid, LSST, WFIRST and DES (taken as examples in this
thesis, see Chapt. 2) will investigate fundamental questions about the nature of our
Universe, its evolution and its constituents, studying the nature of Dark Energy
and the distribution of Dark Matter. These surveys will provide unprecedented
amounts of data, stored in digital images, which will be analyzed by complex software
pipelines to extract scientific information. Billions of sources will be observed to
yield information about weak lensing, galaxy clusters, supernovae Ia, and baryonic
acoustic oscillations.

The technical features of the instrumentation and the observational integration
time should represent, in principle, the only limitations for the quality of imaging
surveys. However, in reality many sources of noise, intrinsically unavoidable in
astronomical images, lower the signal-to-noise ratio, and the blending of sources
creates systematic errors in photometric estimations. Thus noise and blending affect
the quality of the data, and therefore directly impact the quality of the available
scientific content.

To maximize the amount of valuable information, several image analysis tech-
niques can be implemented, enhancing the quality of the images. In this work,
we focused on techniques concerning the topics of “denoising” and “deblending”,
obtaining interesting results for the scientific community.

We investigated state-of-the-art denoising algorithms, vastly applied in other
fields that heavily rely on digital images, applying them to a sample of astronomical
extragalactic images. The tested methods represent various noise reduction families
that have different performances dependent on the kind of image. We compared the
algorithms (introduced in Sect. 3.1) with standard approaches used in astronomy,
such as PSF filtering and wavelets. From the various tests, we identified a small
number of techniques that provide exciting advancements (see Sect. 4.6). We
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demonstrated that Total-Variation techniques (ATVD-TVL2 and TV-Chambolle),
Anisotropic Diffusion (Perona-Malik), and Bilateral filtering enhance faint galaxies
detection (by definition, the most difficult to detect, and the less statistically
represented) for images with high resolution and signal-to-noise ratio (such as images
from space telescopes), without drastically altering shapes and fluxes of bright
objects.

Furthermore, we investigated whether the applicatiton of machine learning
techniques might adequately handle the blending of the sources in images sim-
ulating Euclid-VIS. In two different works, we compared Unsupervised learning
(ASTErIsM-DENCLUE) and Convolutional Neural Networks (blend2flux and
blend2mask2flux) to the standard multi-threshold approach (SExtractor), test-
ing their ability to recover the blended object’s correct fluxes and to properly separate
them. From our tests (see Sect 5.2.4), the unsupervised learning algorithm provided
higher performances in reconstructing the shapes of the objects than the multi-
threshold approach (∼ 4%− 8% better deblending efficiency), on various datasets
composed of simulated and real galaxies. In the same way (see Sect. 5.3.4), both the
Convolutional Neural Networks have demonstrated to recover the correct fluxes of
blended objects properly, with a scatter of the distribution of the errors four times
smaller compared to the multi-threshold approach, and drastically restricting the
number of catastrophic misclassifications, <1%. These results show how deblending
algorithms tested, improve the shape and fluxes recovery, reducing systematic errors,
and enhancing the analysis related to flux estimation, of extreme importance for
optical/near-infrared surveys.

Future work will focus on further investigations and refinements. A conspicuous
number of denoising algorithms are still to be tested in the astronomical scenario.
Moreover, some machine learning techniques have been successfully applied to reduce
noise in other fields, and they could, in principle, yield impressive results also on
astronomical images. Furthermore, additional tests and multiple extra datasets can
be considered to produce an even more detailed analysis of the algorithms. For what
concerns deblending, the obtained results encourage us to compare the algorithms
with a common metric. Unsupervised learning algorithms and convolutional neural
networks work in an entirely different way, so a thorough comparison between these
approaches is needed to analyze their performances on many levels. Moreover,
additional datasets, reproducing blending for other surveys such as LSST, can be
considered to study their behavior in different circumstances and to take advantage
of the strengths provided by the two techniques.

In conclusion, we tested several image analysis algorithms on astronomical
images, aiming to improve the amount of valuable information extracted. State-of-
the-art and new emerging algorithms, never experimented in our field, proved to
be a valuable asset for the astronomical images analysis, a solid alternative to the
standard approaches.
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Appendices

A MSE comparison tables and plots

Figure A1. Step 1: MSE comparison between Perona Malik functions on CM. On
the x-axis, all the simulated CM crops in the different bands, whereas on the y-axis
1− mse

mseOriginal
.

Figure A2. Step 1: MSE comparison between ATVD algorithms on BG. On the x-axis,
all the simulated BG crops in the different bands, whereas on the y-axis 1− mse

mseOriginal
.

Figure A3. Step 1: MSE comparison between the other algorithms excluding ATVD and
PM on CL. On the x-axis, all the simulated CL crops in the different bands, whereas on
the y-axis 1− mse

mseOriginal
.
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Name MSEH160 MSEV IS MSEEXTG MSENIRH MSEIRAC
TVL2 5.320 × 10−8 7.286 × 10−7 3.672 × 10−7 1.964 × 10−4 7.051× 10−5

TVL1 7.297× 10−5 5.155× 10−5 1.325× 10−5 4.409× 10−2 4.429× 10−2

TVG 3.922× 10−5 3.576× 10−5 8.760× 10−6 3.071× 10−3 6.370× 10−3

PM g=1 k=1× 10−3 9.490× 10−8 1.108× 10−6 6.776× 10−7 2.528× 10−4 5.473× 10−5

PM g=2 k=1× 10−3 9.790× 10−8 8.941× 10−5 8.147× 10−6 1.926× 10−3 7.073× 10−5

PM g=3 k=1× 10−3 9.930× 10−8 1.122× 10−4 8.390× 10−6 3.640× 10−3 7.855× 10−5

PM g=4 k=1× 10−4 7.960× 10−8 8.291× 10−5 7.641× 10−6 2.760× 10−4 6.288× 10−5

PM g=5 k=1× 10−3 1.077× 10−7 8.843× 10−5 8.131× 10−6 1.775× 10−3 7.157× 10−5

PSF 8.557× 10−6 1.833× 10−5 1.615× 10−6 3.492× 10−3 1.174× 10−3

Original 1.912× 10−6 1.154× 10−4 8.390× 10−6 4.722× 10−3 8.811× 10−5

TV Bregman 3.778× 10−6 5.908× 10−6 6.147× 10−7 1.960× 10−3 2.620× 10−4

Gaussian 1.301× 10−6 1.724× 10−5 9.434× 10−7 3.469× 10−3 6.955× 10−5

NL means slow 8.940× 10−8 1.513× 10−6 5.992× 10−7 3.066× 10−4 6.454× 10−5

NL means fast 1.019× 10−7 1.628× 10−6 5.750× 10−7 5.551× 10−3 1.389× 10−4

Bilateral 1.109× 10−7 3.754× 10−6 7.972× 10−7 4.612× 10−4 6.297× 10−5

TV Chambolle 1.876× 10−7 2.112× 10−6 4.914× 10−7 2.894× 10−4 5.444 × 10−5

Wavelets 5.119× 10−7 2.962× 10−5 2.117× 10−6 4.776× 10−3 9.583× 10−5

Table A1. MSE table of BG crops. The lowest MSE value per band is indicated in bold

Name MSEH160 MSEV IS MSEEXTG MSENIRH MSEIRAC
TVL2 5.590 × 10−8 8.746 × 10−7 3.268 × 10−7 1.808 × 10−4 5.699× 10−5

TVL1 5.878× 10−4 1.075× 10−3 5.485× 10−5 2.390× 10−1 8.910× 10−2

TVG 2.977× 10−5 3.147× 10−5 4.477× 10−5 3.672× 10−3 5.752× 10−3

PM g=1 k=1× 10−3 1.248× 10−7 2.277× 10−6 4.646× 10−7 2.625× 10−4 3.886 × 10−5

PM g=2 k=1× 10−3 1.257× 10−7 1.889× 10−6 4.310× 10−6 3.503× 10−4 4.969× 10−5

PM g=3 k=1× 10−3 1.228× 10−7 8.549× 10−6 7.173× 10−6 1.386× 10−3 5.755× 10−5

PM g=4 k=1× 10−4 8.470× 10−8 1.281× 10−6 3.914× 10−6 2.011× 10−4 4.697× 10−5

PM g=5 k=1× 10−3 1.468× 10−7 2.006× 10−6 8.287× 10−6 3.186× 10−4 5.055× 10−5

PSF 4.853× 10−5 1.532× 10−4 9.444× 10−6 6.024× 10−3 5.052× 10−3

Original 1.902× 10−6 1.116× 10−4 8.288× 10−6 4.679× 10−3 7.319× 10−5

TV Bregman 2.170× 10−5 1.084× 10−4 2.264× 10−6 1.023× 10−2 6.225× 10−4

Gaussian 1.835× 10−6 6.773× 10−5 1.913× 10−6 4.373× 10−3 7.094× 10−5

NL means slow 1.201× 10−7 1.883× 10−6 4.885× 10−7 7.916× 10−4 1.559× 10−4

NL means fast 1.990× 10−7 5.729× 10−6 4.655× 10−7 6.982× 10−3 1.814× 10−4

Bilateral 1.104× 10−7 4.027× 10−6 7.348× 10−7 3.630× 10−4 4.779× 10−5

TV Chambolle 4.964× 10−7 1.698× 10−6 4.723× 10−7 6.008× 10−4 5.398× 10−5

Wavelets 5.303× 10−7 2.999× 10−5 2.128× 10−6 4.732× 10−3 7.795× 10−5

Table A2. MSE table of CM crops. The lowest MSE value per band is indicated in bold

Name MSEH160 MSEV IS MSEEXTG MSENIRH MSEIRAC
TVL2 7.070 × 10−8 8.958 × 10−7 3.443 × 10−7 2.451 × 10−4 3.633× 10−4

TVL1 2.754× 10−4 1.707× 10−4 1.471× 10−5 1.121× 10−1 5.820× 10−2

TVG 4.424× 10−5 3.336× 10−5 1.387× 10−5 4.519× 10−3 1.013× 10−2

PM g=1 k=1× 10−3 1.463× 10−7 1.752× 10−6 5.923× 10−7 3.433× 10−4 3.312× 10−4

PM g=2 k=1× 10−3 1.437× 10−7 1.865× 10−5 7.553× 10−6 4.436× 10−4 3.433× 10−4

PM g=3 k=1× 10−3 1.431× 10−7 6.034× 10−5 8.342× 10−6 1.413× 10−3 3.501× 10−4

PM g=4 k=1× 10−4 1.029× 10−7 1.076× 10−5 6.809× 10−6 2.893× 10−4 3.397× 10−4

PM g=5 k=1× 10−3 1.668× 10−7 1.432× 10−5 7.471× 10−6 4.163× 10−4 3.439× 10−4

PSF 2.728× 10−5 3.421× 10−5 2.913× 10−6 4.576× 10−3 2.952× 10−3

Original 1.915× 10−6 1.155× 10−4 8.342× 10−6 4.748× 10−3 3.640× 10−4

TV Bregman 1.233× 10−5 1.795× 10−5 6.815× 10−7 7.211× 10−3 6.886× 10−4

Gaussian 1.699× 10−6 3.175× 10−5 1.211× 10−6 4.074× 10−3 2.487 × 10−4

NL means slow 1.664× 10−7 1.976× 10−6 5.627× 10−7 4.264× 10−4 3.432× 10−4

NL means fast 2.470× 10−7 3.702× 10−6 5.260× 10−7 1.975× 10−2 4.581× 10−4

Bilateral 1.307× 10−7 4.055× 10−6 7.697× 10−7 4.521× 10−4 3.413× 10−4

TV Chambolle 6.098× 10−7 1.740× 10−6 4.938× 10−7 7.015× 10−4 3.017× 10−4

Wavelets 5.399× 10−7 2.968× 10−5 2.149× 10−6 4.821× 10−3 4.016× 10−4

Table A3. MSE table of CL crops. The lowest MSE value per band is indicated in bold
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Name TH160[s] TV IS [s] TEXTG[s] TNIRH [s] TIRAC [s]
TVL2 9.047 3.588 0.688 0.132 0.0938
TVL1 5.408 0.814 0.339 0.020 0.0031
TVG 8.910 5.177 0.334 0.134 0.0914
PM g=1 k=1× 10−3 6.353 5.283 2.127 0.362 0.063
PM g=2 k=1× 10−3 10.519 22.826 0.248 8.347 0.159
PM g=3 k=1× 10−3 6.847 30.578 12.136 5.544 0.142
PM g=4 k=1× 10−4 88.506 323.720 109-356 50.417 6.512
PM g=5 k=1× 10−3 6.778 16.001 51.941 11.955 0.125
PSF 0.071 0.019 0.008 0.008 0.001
Original n.a. n.a. n.a. n.a. n.a.
TV Bregman 0.222 0.093 0.021 0.025 0.011
Gaussian 0.055 0.017 0.005 0.002 0.001
NL means slow 75.94 27.75 6.863 3.344 1.058
NL means fast 7.514 3.104 1.118 0.448 0.208
Bilateral 37.09 13.46 3.602 1.567 0.489
TV Chambolle 10.61 0.7668 0.109 0.587 0.034
Wavelets 0.827 0.329 0.091 0.038 0.012

Table A4. CPU Time table of CM crops .The lowest time value per band is indicated in
bold
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B PSF and Depth comparison plots

Figure B1. VIS FWHM variation comparison plot. On the x-axis the VIS images with
FWHM equal to the original value, 0.5, 1.0, 1.5 and 2.0 arcsecs, whereas on the y-axis
mse.

Figure B2. VIS FWHM variation comparison plot. On the x-axis the VIS images with
FWHM equal to the original value, 0.5, 1.0, 1.5 and 2.0 arcsecs, whereas on the y-axis

mse
mseOriginal

.

Figure B3. VIS FWHM variation comparison plot. On the x-axis the VIS images with
FWHM equal to the original value, 0.5, 1.0, 1.5 and 2.0 arcsecs, whereas on the y-axis

mse
mseP SF

.
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Figure B4. H160 depth variation comparison plot. On the x-axis the H160 images with
Gaussian noise standard deviation equal to 1, 10, 20, 30 and 40 times the original value,
whereas on the y-axis mse.

Figure B5. H160 depth variation comparison plot. On the x-axis the H160 images with
Gaussian noise standard deviation equal to 1, 10, 20, 30 and 40 times the original value,
whereas on the y-axis mse

mseP SF
.

Figure B6. H160 depth variation comparison plot. On the x-axis the H160 images with
Gaussian noise standard deviation equal to 1, 10, 20, 30 and 40 times the original value,
whereas on the y-axis mse

mseOriginal
.



116

C VIS Crops visual comparison

Figure C1. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 38.8 with magnitude of 25.79

Figure C2. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 48.2 with magnitude of 24.76

Figure C3. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 72.9 with magnitude of 23.82

Figure C4. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 47.5 with magnitude of 25.01

Figure C5. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 35.44 with magnitude of 25.39

Figure C6. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 21.26 with magnitude of 26.48
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Figure C7. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 27.70 with magnitude of 25.72

Figure C8. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 45.57 with magnitude of 24.97

Figure C9. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 68.29 with magnitude of 24.14

Figure C10. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 26.74 with magnitude of 26.13

Figure C11. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 25.44 with magnitude of 26.19

Figure C12. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 36.99 with magnitude of 25.71
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Figure C13. VIS crops visual comparison: Original, PSF, Perona-Malik, TVL2, Bilateral,
TV Chambolle, Noiseless. The green boxes are the detected objects regions. The central
object has been detected with a SNR of 90.35 with magnitude of 23.34

D GSDEEP Crops visual comparison

Figure D1. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 6.71 with magnitude of 27.47

Figure D2. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 7.37 with magnitude of 27.20

Figure D3. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 8.44 with magnitude of 26.80

Figure D4. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 6.88 with magnitude of 27.18

Figure D5. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 5.82 with magnitude of 27.48
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Figure D6. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 5.08 with magnitude of 27.48

Figure D7. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 6.51 with magnitude of 27.58

Figure D8. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 12.48 with magnitude of 27.17

Figure D9. GSDEEP crops visual comparison: Original, PSF, Perona-Malik, TVL2,
Bilateral, NL means, HUDF09. The green boxes are the detected objects regions. The
central object has been detected with a SNR of 9.77 with magnitude of 27.36
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