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“War is peace.  
Freedom is slavery.  

Ignorance is strength.”  

― George Orwell, 1984 
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Abstract 

Background 
Over the years the use of monoclonal antibodies (mAbs) for 
therapeutic purposes has been experiencing a significative boost.  

The reasons behind this enormous growth reside in both their 
inherent structural properties and in technological advances for their 
production and characterization. Indeed, their intrinsic high affinity 
and specificity toward a specific antigen, together with their modular 
anatomy, which largely simplify their engineering, are the most 
important drivers of this great market expansion.  

Antibody-based therapeutics are developed via well-established 
processes that can be broadly categorized into Lead Identification 
and Lead Optimization. During Lead Identification animal 
immunization or surface display technologies are used to generate a 
large number of ‘hit’ molecules which need to be further triaged. 
Following various rounds of screening and design during Lead 
Optimization, a small number of high affinity lead candidates are 
selected. During Lead Identification and Optimization, molecules are 
assessed for unfavourable characteristics such as immunogenicity or 
poor biophysical properties and experimental methodologies have 
been developed in order to improve such proprieties. A sound 
knowledge of the antibody binding site and the relationship between 
antibody and antigen residues is of paramount importance for the 
effective design of such strategies.  

Structural experimental techniques such as Nuclear Magnetic 
Resonance (NMR) or X-ray crystallography can be used to study 
antibody-antigen interactions but they are usually expensive and time 
consuming and not always applicable. Therefore, the development of 
computational methods is offering an attractive alternative and a 
faster approach for the characterization of antibodies and their 
interactions. Among those, docking approaches offer a valuable 
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strategy to elucidate the interaction between antibodies and antigens 
providing a tool to understand the role played by each residue in the 
binding.  

Despite great progresses in protein-protein docking in general, 
modelling of antibody-antigen complexes, which is a specialized 
application of the broader field of molecular docking, has been 
demonstrated to remain challenging.  

Aim 
This work aimed at investigating how information about the antibody 
paratope and the antigen epitope can be successfully used into an 
information-driven docking algorithm to characterize the molecular 
interactions between antibodies and antigens.  

In order to be able to use more accurate information about the 
antibody binding site, this work also aimed at improving proABC, a 
paratope prediction tool, and at demonstrating how this information 
impacts antibody-antigen molecular docking.   

The overarching aim is to deepen our understanding of antibody-
antigen recognition process and to provide computational tools and 
strategies that could facilitate antibody design and engineering.   

Results 
In this work I describe how information on the antibody 
hypervariable loops and the binding epitope can be effectively used 
to drive the modelling of their interaction by docking. In particular, I 
compare the accuracy of four docking software: ClusPro, 
HADDOCK, LightDock and ZDOCK in predicting antibody-antigen 
complexes. HADDOCK, which applies a purely data-driven strategy, 
performs better than the other systems especially when information 
about the epitope is provided.  
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I also investigate the accuracy of HADDOCK and LightDock (the 
only two software which allow flexibility of the components among 
the tested ones) in predicting the conformational change of the H3 
loop, which is crucial for the binding and notoriously challenging to 
model. The results, described in the related paper “Modelling 
antibody-antigen complexes by information-driven docking”,  
confirm that HADDOCK shows the best accuracy and that, even if 
to some extent it is not able to correctly model the conformation of 
the loop, it manages to predict the right H3 interactions with the 
antigen, providing valuable information for antibody engineering.  

To further improve the accuracy of the docking, I developed 
proABC-2 (PRediction Of AntiBody Contacts v2), which is an update, 
based on a deep learning framework, of the algorithm implemented 
in proABC originally developed by Olimpieri and co-workers 
(Olimpieri et al., 2013). The method is able to accurately predict the 
specific paratope residues and the type of interaction, starting from 
the antibody sequence alone and without additional information 
about the antigen. I demonstrate how its predictions can be 
effectively used to drive the docking using HADDOCK in order to 
improve its modelling accuracy. proABC-2 is freely available and 
accessible for academic purposes as a web server.  
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1. Chapter I 

1.1 General introduction 

Our ability to survive even in very unfavourable environments relies 
on the capacity of our organism to adapt itself according to the 
external conditions. To achieve this degree of flexibility different 
systems are finely tuned with one of the most important ones being 
known as the immune system. It allows us to fight and defend 
ourselves against pathogens and infections, being able to distinguish 
between “self” and “non self”. Two main responses are used by the 
immune system to fight extraneous attacks: innate and adaptative. As 
suggested by the names, the former refers to all of those mechanisms 
that are innately present to fight different ranges of threats, while the 
latter consists of all of the specific strategies developed by the 
organism upon interaction with a given pathogen. The innate system 
is designed to directly react to a threat, while the adaptive one 
requires some time to generate and fine tune the protective response. 
Antibodies (or immunoglobulins) are the result of this adaptive 
strategy and their role is crucial in order to identify and neutralize 
foreign organisms by recognizing specific antigens.  

The ability of antibodies to recognize and bind with high affinity and 
specificity a given antigen, along with their highly modular anatomy 
which largely facilitate their engineering and design, makes them 
valuable weapons to fight against specific diseases. Therefore, since 
their discovery in the 20th century by Paul Ehrlich they attracted the 
attention of researchers and industries in a wide range of different 
applications.  
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Nowadays immunoglobulins have revolutionized the medicine with 
more than 570 antibody therapeutics studied at various clinical 
phases in 2019, five of the top selling blockbusters are monoclonal 
antibodies (mAbs) and their market presence is expanding (Kaplon 
and Reichert, 2019). This rising trend in the use of antibodies for 
therapeutic purposes mainly relies on faster and more efficient design 
strategies to study and characterize them. Along with this, the 
development of in vitro phage display technologies and the 
generation of transgenic mice expressing human antibodies has 
considerably boosted and facilitated the production of highly specific 
antibodies (Larrick et al., 2016).  

Over the years, experimental techniques have been developed and 
optimized in order to get insights into immunoglobulin structures and 
properties. However, often such experimental methodologies are 
expensive and time-consuming. Computational approaches are 
providing a valuable alternative to standard experimental methods, 
allowing faster, easier and cheaper characterization of 
immunoglobulins and the way they interact with their cognate 
antigen. One major driver of this shift is the increasing number of 
sequence and structural data which is paving the way for the 
improvement of computational methods in order to increase their 
accuracy and reliability.  

Despite these developments, current computational approaches, as 
will be discussed in the following chapters, still show limitations due 
to the inherent properties of antibodies and several challenges (e.g. 
the prediction of the antibody antigen complexes and the modelling 
of the H3 loop) that still need to be overcome.  Therefore, new 
approaches are required to tackle these problems taking advantage 
from the large amount of data presently available.  
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1.2 Antibody structure 

Antibodies, or Immunoglobulins (Ig), are “Y-shaped” globular 
proteins produced in jawed vertebrates by B-cells in response to an 
external threat for the organism. Most of the times they are composed 
of two couples of identical polypeptide chains named heavy (H) and 
light (L) chain, kept together by disulphide bonds. In humans, the H 
and L chains can naturally assemble into five isotypes: IgG, IgD, IgE 
(monomeric forms), IgA (dimers) and IgM (pentamers) according to 
their heavy chain class, respectively: g, d, e, a or µ. For the light 
chain, there are four different isotypes but only two of them are 
present in mammals: k and l (Schroeder and Cavacini, 2010).  

Antibodies consist of one crystallizable (Fc) and two antigen binding 
(Fab) fragments as illustrated in Figure 1. The Fab domain contains the 
heavy and light variable segments (VH and VL) which are the regions 
involved in the recognition of the antigen. The VH and VL domains 
show very high sequence and structural variability among the 
antibody repertoire. In particular, both heavy and light chain variable 
segments contain three regions where the sequence displays the 
highest variability. These regions are known with the name of 
Complementarity Determining Regions (CDRs). The remaining part 
of the variable domain is called Framework and is characterized by 
a high sequence conservation. Its tertiary structure consists of a 2-
layer sandwich of 7-9 antiparallel β-strands arranged in two β-sheets 
forming the so-called immunoglobulin-like fold.  
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Figure 1: View of an immunoglobulin structure (PDB code: 1IGT). The two heavy 
chains are shown in grey while the light ones are represented in blue. The variable 
(VH/VL) domain and the binding (Fab) and crystallizable (Fc) fragments, are 
highlighted in orange, red and green, respectively.   

Each CDR harbours one loop, also named hyper variable loop (HV), 
for a total of six loops, three for the heavy chain (H1, H2, H3) and 
three for the light chain (L1, L2, L3) (Te Wu and Kabat, 1970). They 
play a crucial role in the binding of the antigen (Novotný et al., 1983). 
Despite their intrinsic high sequence variability, as demonstrated by 
Chothia and co-workers (Chothia et al., 1989), five out of the six HV 
loops exhibit a small set of well-defined conformations according to 
the length and to the presence of specific residues located in key 
positions of the antibody variable domain. 
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H3 is the loop which shows the highest structural and sequence 
diversity and it is also the one that is mainly involved in the antigen 
recognition (Shirai et al., 1996; Weitzner et al., 2015). Its modelling 
is one of the main challenges in the antibody modelling field. 
Structurally, is divided into two regions called “torso” and “apex” 
respectively more proximal or distal to the antibody framework. 
While for the apex it is not possible to define any “canonical 
conformation”, the torso can be classified into “bulged” on “non 
bulged” depending on the presence and absence of arginine and 
aspartate in defined positions of the framework (Morea et al., 1998).   
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1.3 Production of antibodies 

Production of antibodies is a complex and very well-regulated 
procedure. Indeed, the immune system has to be ready to fight with 
high specificity against a huge range of external (virus, bacteria, 
parasites) and internal threats (cancer cells). To do that the organism 
must be able to generate billions of different B-cells capable of 
releasing antibodies in response to a particular antigen. It has been 
estimated that around 5x109 B-cells are present in an organism 
(Briney et al., 2019) producing distinct B-cell receptors (membrane 
or bound) or antibodies (in soluble form).  The mechanism that 
underlies the generation of a such large volume of immunoglobulins 
based on the limited genomic space involves the somatic 
recombination of different gene segments, namely: variable (V), 
diversity (D), joining (J) and constant (C) segments. The overall 
process is known with the name of V(D)J recombination (Hesslein 
and Schatz, 2001; Tonegawa, 1983). 

These genomic segments are present in clusters and located in 
different loci situated in different chromosomes. In total in the human 
organism it is possible to find three different loci: one for the heavy 
chain, one for the isotype l of the light chain and one for the k one 
(Bassing et al., 2002).  

The heavy chain locus shows in sequence the V, D and J segments 
followed by the C one. The segments V, D and J encode for the entire 
variable domain of the heavy chain while the C segment is 
responsible for the constant domain, therefore it defines the 
immunoglobulin class. The two loci for the light chain include a 
group of V segments followed by the J ones. They are responsible for 
the first and last part of the light chain variable domain. The position 
of the C segments is different depending on the specific light chain 
isotype. In the lambda locus one single C region is located after the J 
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segments while in the case of kappa the C segments are alternated 
with the J ones.    

The V(D)J recombination occurs together with the maturation of the 
B-cell. It starts when a specific protein complex called V(D)J 
recombinase recognizes conserved regions named recombination 
signal sequences (RSS) surrounding two D and J segments on the 
heavy chain locus. This recognition leads to the formation of a ring 
structure in which a D and J segment are close to each other. Then 
the V(D)J recombinase cleaves and joins together two random D and 
J segments. This process is not accurate, with some nucleotides being 
added or deleted, and largely contributes to the final variability of the 
antibody repertoire.  

After the DJ recombination the two segments now joined together are 
successively combined to a random V segment leading to the 
formation of the so-called germline sequence (IGHV) which encodes 
for the full variable domain of the immunoglobulin heavy chain. 
Finally, the splicing of the corresponding RNA transcript assembles 
together the VDJ segment and the C one resulting in the final 
generation of the full functional heavy chain (Schatz and Swanson, 
2011).  

Once the heavy chain assembling is completed the rearrangement of 
the light chain can take place following similar steps.  

The V(D)J recombination process is already able to introduce some 
level of variability in the generation of the immunoglobulins. 
However, it is not able on its own to explain the huge variety of the 
antibody repertoire.  Indeed, upon antigen exposure, the antibody-
producing B-cells undergo a natural process of affinity maturation, 
based on somatic hypermutation (Peters and Storb, 1996). This 
process introduces mutations primarily in the CDR regions and in the 
HV loops developing a specific and high-affinity binder. Together 
with the diversity introduced by V(D)J recombination, somatic 
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hypermutation can produce an estimated 1012-1015 possible antibody 
sequences (Glanville et al., 2009) increasing the probability of 
recognizing an arbitrary foreign antigen. 
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1.4 Antibody numbering 

In order to study immunoglobulins on a large scale it is necessary to 
map the antibody sequence onto a standardized framework to allow 
the unambiguous identification of residues which show equivalent 
structural position by assigning a unique identifier to the amino acids 
of the variable domain. This is particularly relevant given the high 
similarities between antibody sequences and the presence of 
conserved residues in specific key positions. The numbering schemes 
contextualize each position within the structure of an antibody, 
allowing for rapid delineation of CDRs and framework regions. 
Since the seminal work to define a standard numbering scheme for 
antibodies was carried out by Kabat in 1970 (Te Wu and Kabat, 
1970), the Chothia (Chothia and Lesk, 1987) and IMGT 
(international ImMunoGeneTics information system) (Lefranc, 
2011) schemes have been adopted as the main alternatives. 
Additional numbering schemes such as Contact (MacCallum et al., 
1996), North (North et al., 2011), WolfGuy (Bujotzek et al., 2015) 
and Aho (Honegger and Plückthun, 2001) exist but these are less 
prevalent.  

Kabat and IMGT definitions are based on sequence alignments 
identifying conserved positions in the variable region whereas 
Chothia, which is a modification of the first Kabat scheme, takes into 
account the 3D structure of the CDR loops.  

In this work we are following the Chothia numbering scheme. More 
specifically, it assigns a consecutive number to all the framework 
residues of the light and heavy variable domain up to the ones that 
are part of one HV loop. From them, it continues by adding to the 
number of the last framework residues a letter (which identifies an 
insertion) until the end of the loop, then the consecutive numbering 
starts again (see Figure 2).  
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There are three freely available software packages to perform 
numbering of antibodies; ANARCI (Dunbar and Deane, 2016), 
Abnum (Abhinandan and Martin, 2008) and AbRSA (Li et al., 2019), 
to act as the first step in computational antibody analysis.  

 

Figure 2: (A) View of the variable domain of an antibody. CDRs are highlighted. 
(B) Chothia numbering scheme for the heavy and light chain (k and l isotypes). 
Arrows represent the hypervariable loops. In violet and cyan are represented the 
CDRs of the light and heavy chain, respectively. Framework residues are coloured 
in white and grey for the light and heavy chain respectively. Conserved residues 
are reported in red.  
Figure from: PIGSPro: Prediction of immunoGlobulin structures v2. Nucleic Acids 
Res., 45, W17–W23. 
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2. Chapter II 

2.1 Molecular docking 

Characterization of the interface between two molecules is a key step 
in order to elaborate efficient and effective rational design strategies 
for therapeutics. Several experimental techniques can be used to 
determine the three-dimensional (3D) structure of molecular 
complexes. These methods include X-ray crystallography, Nuclear 
Magnetic Resonance (NMR) and Cryo-Electron Microscopy (Cryo-
EM). Despite their reliability and accuracy, experimental methods 
are generally time consuming and expensive. Therefore, 
computational approaches can provide a valuable, more rapid 
solution to gain information about the interacting residues of two 
molecules. 

In this scenario, one suitable approach is “molecular docking”. It can 
be defined as the process that, starting from the free form structures 
of the components, predicts the structure of the complex. It usually 
involves two different steps: the sampling step, during which 
thousands of possible complex conformations are generated, and the 
scoring step, in which the conformations are ranked according to a 
specific scoring function to identify models which are closer to the 
native conformation.  

According to the sampling strategy used during the simulation, 
docking methods can be classified into two categories. The first class 
includes algorithms which perform a global search around the entire 
surface of the components without taking into account any 
information about the binding region (ab initio docking). The second 
class consists of docking methods that can use experimental data, for 
example coming from hydrogen-deuterium exchange (HDX) 
coupled with mass spectrometry, from mutational studies (Sevy et 
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al., 2013), or from predicted information about the binding interface 
to drive the sampling during docking (information-driven, local or 
integrative docking) (Rodrigues and Bonvin, 2014). Both classes can 
benefit from available information during the scoring step to select 
models that are consistent with the available information about the 
interaction.  

Most protein-protein docking algorithms do not consider possible 
conformational changes occurring upon binding (rigid-body 
docking). This is the case for software such as ClusPro (Kozakov et 
al., 2017) and ZDOCK (Chen and Weng, 2002) that are based on the 
Fast Fourier Transform (FTT) search algorithm (Katchalski-Katzir et 
al., 1992). In most cases, however, protein flexibility is a crucial 
factor to be considered (Kotev et al., 2016). Approaches that allow 
for flexibility of side chains and/or backbone have also been 
developed such as ATTRACT (De Vries et al., 2015), LightDock 
(Jiménez-García et al., 2018), Swarmdock (Torchala et al., 2013) 
SnugDock (Sircar and Gray, 2010) and HADDOCK (De Vries et al., 
2010). The former three do that by using normal modes, the latter 
two by allowing some flexibility along side-chains and backbone 
during a refinement stage. 

The performance of various docking software is regularly assessed 
by the Critical Assessment of Predicted Interactions (CAPRI) 
experiment (Méndez et al., 2003), catalysing the effort of researchers 
towards the development of new and more accurate methods.    
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2.2 Docking of antibody-antigen complexes 

The possibility to provide information either at the sampling and/or 
at the scoring level is particularly relevant in the case of antibody-
antigen docking as CDRs and in particular the HV loops offer a 
reasonable proxy of the binding interface on the antibody. In fact, 
some docking methods such as for example ClusPro and PatchDock 
(Comeau et al., 2004; Schneidman-Duhovny et al., 2005) are able to 
automatically define the antibody CDRs in order to use this 
information during the docking process.  

Despite great progresses in predicting protein-protein complexes, 
docking of antibody-antigen complexes remains challenging (Pedotti 
et al., 2011; Ponomarenko and Bourne, 2007; Vajda, 2005) due to the 
specific properties of their interfaces (Conte et al., 1999; Sela-Culang 
et al., 2013).  

Understanding the structural basis of the antibody-antigen interaction 
would pave the way to the design of new efficient biological drugs 
(Lippow et al., 2007). For the antibody, the residues involved in the 
binding – the so called paratope residues – can be predicted quite 
accurately through various computational approaches (Krawczyk et 
al., 2013; Kunik et al., 2012; Liberis et al., 2018; Olimpieri et al., 
2013). The information provided by those methods has been 
demonstrated to be valuable to drive the docking (Liberis et al., 
2018).  

The identification or prediction of the set of antigen residues that are 
recognized by the antibody is however the most challenging part. 
Several methods have been reported (Ansari and Raghava, 2010; 
Jespersen et al., 2017; Krawczyk et al., 2014; Kringelum et al., 2012; 
Liang et al., 2010; Qi et al., 2014; Rubinstein et al., 2009; Sela-
Culang et al., 2015), but existing epitope prediction systems still do 
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not provide reliable results, limiting their applicability in molecular 
docking (Ponomarenko and Bourne, 2007). In this context, docking 
approaches could present a valuable alternative to the available 
epitope prediction methods provided that near-native solutions can 
be generated and recognized. Additionally, docking approaches can 
elucidate the relationship between antibody and antigen residues 
facilitating the rational design and engineering of immunoglobulins.  
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3. Chapter III 

3.1 Modelling of antibody-antigen complexes  

In this chapter I present an assessment of the performance of ClusPro 
(Comeau et al., 2004; Kozakov et al., 2017), HADDOCK (De Vries 
et al., 2010), LightDock (Jiménez-García et al., 2018) and ZDOCK 
(Pierce et al., 2011) in predicting antibody-antigen structures. All 
those software allow to use in various ways a-priori knowledge, e.g. 
the hyper variable loops, into the modelling process to drive or limit 
the sampling and/or score the docking models. 

ClusPro and ZDOCK are based on the Fast Fourier Transform (FTT), 
they treat the molecules as rigid systems and thus they are unable to 
account for conformational changes upon binding. On the other hand, 
LightDock and HADDOCK allow for flexibility during the 
simulation, the former by using normal modes, the latter by allowing 
motions of both side chain and backbone during a refinement stage.   
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3.2 Dataset 

The dataset used in this work includes 16 complexes (see Table 1), 
all with available unbound structures, which represent the new 
antibody-antigen entries of the protein-protein benchmark version 
5.0 (Vreven et al., 2015). These were selected because none were 
used for training/scoring optimization of any of the docking software 
considered in this work. Only the antibody variable domain was used 
for the docking. Antibodies and antigens were each randomly 
translated and rotated in order to avoid any bias related to the starting 
orientation (this is required since the structures in the docking 
benchmark are pre-oriented onto their reference bound complex). 
The structures were renumbered using a consecutive numbering as 
not all the software used in this work are able to deal with the 
insertion format of the Chothia scheme. 

Table 1: Summary of the structures used in this work.  i-RMSD(Å) indicates the 
interface root mean square deviation of the Ca atoms of the interface residues 
calculated after finding the best superposition of bound and unbound interfaces. 
Complexes are grouped into two classes: Rigid and Medium according to the i-
RMSD and the faction of non-native residue contacts (not reported).   

 

Complex PDB ID 1 Protein 1 PDB ID 2 Protein 2 i-RMSD (Å)
Rigid 
2VXT 2VXU Murine reference antibody 125-2H FAB 1J0S Interleukin-18 1.33
2W9E 2W9D ICSM 18 FAB fragment 1QM1 Prion protein fragment 1.13
3EOA 3EO9 Efalizumab FAB fragment 3F74 Integrin alpha-L I domain 0.39
3HMX 3HMW Ustekinumab FAB 1F45 Interleukin-12 0.73
3MXW 3MXV Anti-Shh 5E1 chimera FAB fragment 3M1N Sonic Hedgehog N-terminal domain 0.48
3RVW 3RVT 4C1 FAB 3F5V DER P 1 allergen 0.5
4DN4 4DN3 CNTO888 FAB 1DOL MCP-1 0.81
4FQI 4FQH CR9114 FAB 2FK0 H5N1 influenza virus hemagglutinin 1.08
4G6J 4G5Z Canakinumab antibody fragment 4I1B Interleukin-1 beta 0.61
4G6M 4G6K Gevokizumab antibody fragment 4I1B Interleukin-1 beta 0.49
4GXU 4GXV 1F1 antibody 1RUZ 1918 H1 Hemagglutinin 0.78

Medium 
3EO1 3EO0 GC-1008  FAB fragment 1TGJ Transforming Growth Factor-Beta 3 1.37
3G6D 3G6A CNTO607 FAB 1IK0 Interleukin-13 1.86
3HI6 3HI5 AL-57 FAB fragment 1MJN Integrin alpha-L I domain 1.65
3L5W 3L7E C836 FAB 1IK0 Interleukin-13 0.48
3V6Z 3V6F FAB E6 3KXS Capsid protein assembly domain 1.83
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3.3 Docking scenarios 

Antibody-antigen docking was performed by providing specific 
options for the antibody antigen-modelling. Indeed, while for the 
antibody the HV loops provide a valuable proxy of the binding 
region, as already mentioned, the definition of the antigen epitope is 
challenging. Therefore, I elaborated three different scenarios in order 
to mimic different levels of available information about the binding 
interface on the antigen (see Figure 3):  

1. The first scenario (HV – Surf) includes information about the 
antibody HV loops, defined according to the Chothia 
numbering scheme (Al-Lazikani et al., 1997) but no 
information about the epitope. For HADDOCK this was 
complemented by all solvent-exposed antigen residues 
defined by selecting those with a relative accessible surface 
area (RSA) ≥ 40% as calculated with NACCESS (Hubbard 
SJ, 1993). 

2. In the second scenario (HV – Epi 9) a vague definition of the 
epitope is provided based on all residues having any atom 
within 9Å from any atom of the antibody in the reference 
structure.  

3. The third scenario (Real interface) represents the ideal case 
where both interfaces are well characterized. All interface 
residues, selected using a distance cutoff of 4.5Å between any 
antibody and antigen atom, were given to the docking 
software. 

This information was used differently in the various docking 
software depending on their ability to deal with it. In short, 
HADDOCK follows a data-driven sampling strategy in which the 
information is encoded into ambiguous restraints to drive the 
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docking; LightDock uses the information both to limit the sampling 
to specific regions and in scoring, while ClusPro and ZDOCK 
include this information into their scoring functions in order to select 
the correct models.  

 

Figure 3: Summary of the three docking scenarios used in this work. The first case 
represents the situation in which no previous information about the epitope is 
known so the docking is performed exploring the whole surface of the antigen 
while for the antibody the HV loops are provided. In the second scenario the 
antibody HV loops and a loose epitope definition corresponding to the antigen 
residues within 9Å from the antibody are used to drive the docking. Finally, in the 
third scenario the real interfaces of both the antigen and the antibody (defined at 
4.5Å distance) are used. 

HV loops - Surface

HV loops - Epi 9

Real interface

2

3

1
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3.4 Docking settings 

Four docking methods were compared in this work: ClusPro 
(Kozakov et al., 2017), HADDOCK (De Vries et al., 2010), 
LightDock (Jiménez-García et al., 2019)  and ZDOCK (Pierce et al., 
2011).  

The ClusPro web server (https://cluspro.org) was used in the 
Antibody Mode (Brenke et al., 2012) using default settings. 
Information was provided in the form of attractive residues.  

ZDOCK predictions were obtained using a local installation of 
version 3.0.2. The sampling was set to 2000 models. ZDOCK allows 
the user to assign a highly unfavourable contact energy to the 
residues which are known not to be involved in the binding. 
Accordingly, all residues not included in the defined interfaces were 
blocked.  

For LightDock I used release 0.5.6 of the software (Jiménez-García 
et al., 2019), which provides a mechanism for including residue 
restraints. At the receptor level, the surface swarms used at the start 
of the simulations are filtered according to the Euclidean distance of 
the restraints on the provided receptor residues. Only the ten closest 
swarms for each receptor residue restraint are kept. An additional 
energy term is added to the scoring function used in this work, 
DFIRE (Zhou and Zhou, 2009), that accounts for the percentage of 
satisfied restraints. The predictions are filtered with a minimum 40% 
cutoff of satisfied restraints, at both receptor and ligand levels. For 
the remaining parameters default settings were used: Anisotropic 
Network Model (ANM) enabled (10 first non-trivial modes for both 
receptor and ligand), 400 swarms before filtering by restraints, 200 
glowworms per swarm and 100 simulation steps. 

Finally, HADDOCK version 2.2 was used with default settings 
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except that the rigid-body (it0) sampling was increased to 5000 
models for the HV – Epi9 and the Real interface runs and to 10000 
for the HV – Surf scenario (default is 1000). The flexible (it1) and 
water refinement sampling were set to 400 models for all scenarios 
(default is 200) (Dominguez et al., 2003). This corresponds to an 
increased sampling compared to the default settings. In general, the 
least information is available to drive the docking in HADDOCK the 
larger the sampling should be. The docking was performed using the 
web server version of HADDOCK (https://haddock.science.uu.nl) 
(Van Zundert et al., 2016). In the case of the Real interface scenario, 
the random removal of restraints (by default 50% of restraints are 
randomly discarded for each docking trial) was turned off.  The 
information about the binding interface was encoded in the form of 
active and passive residues. The antibody HV loops and paratope 
residues were provided as active, while, for the antigen, the surface 
and the epitope residues, selected using a 9Å cutoff, were defined as 
passive. For the third, ideal scenario, the true interface epitope 
residues selected at 4.5Å distance cutoff were classified as active.  

The distinction between active and passive means that an active 
residue not at the interface (defined as the union of active and passive 
residues of the partner molecule) will result in an energy penalty 
while this is not the case for passive residues.  

In all the methods, the antibody was treated as the receptor partner 
and the antigen as ligand.  
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3.5 Docking performance 

I analysed the performance of the four docking methods in predicting 
antibody-antigen complexes in terms of success rate calculated as the 
percentage of cases in which at least one acceptable, medium or high-
quality model is found in the top N ranked solutions. The model 
quality was defined according to the CAPRI criteria (Méndez et al., 
2003). Those are based on three parameters; briefly:  

1. Interface root mean square deviation (i-RMSD): calculated 
on the backbone atoms of all interface residues of the native 
complex defined using a 10Å cutoff. 

2. Ligand root mean square deviation (L-RMSD): calculated by 
superimposing on the backbone atoms of the antibody and 
calculating the RMSD of the antigen backbone atoms. 

3. Fraction of native contacts (Fnat): number of native contacts 
in a docking model divided by the total number of contacts in 
the reference structure. These are defined using a 5Å cutoff. 

The ranges used to define the classes are shown in Table 2. 

Table 2: Classification of docking models in the classes: ***, **, * according to 
Fnat, and either L-RMSD or i-RMSD measures. 

Class Fnat L-RMSD[Å] i-RMSD[Å] 

High (***) > 0.5 ≤ 1.0 or ≤ 1.0 

Medium (**) > 0.3 ≤ 5.0 or ≤ 2.0  

Acceptable (*) > 0.1 ≤ 10.0 or ≤ 4.0  
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The success rate for top 1, 5, 10, 20, 50 and 100 is shown in Figure 4 
for each docking method and scenario as described in the paragraph 
3.3. The first panel refers to the HV – Surf scenario, the second to the 
HV – Epi 9 one and finally the third shows the success rate obtained 
using the real interface information in the docking. The latter 
represents the gold standard achievable by each docking approach, 
i.e. the best accuracy that can be reached for this dataset given a 
perfect interface definition (but no specific contacts) and starting 
from the unbound structures of the components.  

 
Figure 4: ClusPro, HADDOCK, LightDock and ZDOCK success rate for the three 
scenarios described in this work as a function of the top 1, 5, 10, 20, 50 and 100 
ranked models. The top row (HV - Surf) shows the success rate using the antibody 
HV loops and the entire antigen surface as restraints. The second represents the 
success rate achieved by driving the docking with the antibody HV loops and a 
loose epitope definition using a 9Å cutoff. The third panel shows the docking 
results using the true interfaces (defined at 4.5Å). The colour coding indicates the 
quality of the models according to CAPRI criteria. 

In the absence of any kind of information about the epitope (HV 
loops – surface – top row in Figure 4) the overall performance is 
rather low for all methods. HADDOCK reaches a success rate of 25% 
in the top 1 which is higher than ClusPro (6.2%), ZDOCK (6.2%) 
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and LightDock (0%). Note that considering the limited size of the 
benchmark, a difference of 6.2% only corresponds to one more 
successfully predicted complex. The differences are smaller for the 
top 10 (the typical number of models evaluated in CAPRI), with 
HADDOCK and ZDOCK leading with 31.2%, followed by ClusPro 
with 18.7%. Considering the top 100, in this scenario LightDock 
outperforms the other methods with a success rate of 68.7%. This is 
linked to the fact that LightDock is based on a very effective 
sampling strategy, but the scoring function used is not accurate for 
this type of complexes.  

By providing a low accuracy definition of the epitope region (HV – 
Epi 9, middle row in Figure 4) the success rate increases 
significantly. For example, HADDOCK and ClusPro are able to 
predict correct models respectively for 75% and 68.7% of the cases 
already in the top 5 (43.8% in the top1 for both), followed by 
ZDOCK (56.3%) and LightDock (37.4%).  

The bottom row in Figure 4 (Real interface) shows the results when 
both interfaces are perfectly characterized such that the exact 
residues involved in the binding are used in the docking. In this case 
HADDOCK ranks acceptable models in the top 1 position for all 16 
complexes of the dataset (100% success rate), while ZDOCK, 
ClusPro and LightDock reach success rates of 81.2%, 75% and 
31.2%, respectively.   

Overall, Figure 4 shows that HADDOCK is performing best in every 
scenario. Even in the cases where ClusPro, LightDock and ZDOCK 
are able to reach comparable results (e.g. top 50 HV – Epi 9 scenario) 
the quality of the generated models is usually not as good as those 
produced by HADDOCK. This can be attributed to the different 
strategies of using information between those software, with 
HADDOCK directly using restraints during the sampling/refinement 
stages, and not only for filtering and/or scoring as is the case in the 
other software. 
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3.6 HADDOCK performance – Cluster based  

Many approaches perform a clustering after docking in order to 
group together similar models and simplify the analysis. This has 
been demonstrated to significantly improve the accuracy of the 
scoring. The most widely used parameter to measure similarities 
among different structures is the positional RMSD. The fraction of 
common contacts (FCC) has been introduced as a fast and valuable 
alternative to classical RMSD-based methods (Rodrigues et al., 
2012). FCC clustering is used by default in HADDOCK  (with 4 as 
minimum cluster size) to cluster the docking models using a default 
cutoff of 0.6. This has been optimized on classical protein-protein 
systems. Taking into account the result of the cluster analysis it is 
possible to express the success rate as the percentage of cases in 
which there is at least one acceptable, medium or high-quality model 
in the top 4 cluster members of the top 1, 2, 3, 4 and 5 clusters. In 
this work clusters were ranked by the average HADDOCK score of 
their top 4 models (the default scoring scheme of the HADDOCK 
server (De Vries et al., 2010)). The cluster-based success rate of 
HADDOCK is shown in Figure 5 for the three different scenarios.   

Comparing Figure 4 and Figure 5, and in particular the success rate 
for top 1 and top 5, one can clearly see how cluster-based scoring 
increases the success rate of HADDOCK when information about the 
epitope is provided, but reduces it when no information on the 
antigen is available and the entire antigen surface is used to drive the 
docking. This is due to the fact that the sampling around the entire 
surface of the antigen leads to the generation of many possible 
different conformations. This results in many local minima of the 
energy landscape, which the HADDOCK scoring function is not able 
to distinguish properly. Also, a slightly lower number of models do 
fall into clusters in this case as illustrated by the clustering coverage 
calculated as the fraction of clustered models with average values of 
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0.83±0.10, 0.93±0.04 and 0.99±0.003 respectively for the HV – Surf, 
HV – Epi 9 and the Real interface scenarios. However, even with a 
rather loose definition of the epitope (HV – Epi 9 scenario), 
clustering leads to an improvement in scoring performance from 
43.8% to 56.3% for top 1. These results indicate that different scoring 
strategies should ideally be followed depending on the availability of 
epitope information or not. 

 
Figure 5: HADDOCK cluster-based success rate for the three docking scenarios 
as a function of the top 1,2,3,4 and 5 ranked clusters. The colour coding indicates 
the quality of the models according to CAPRI criteria. 
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3.7 Sampling performance 

Docking involves two different steps, the sampling for the generation 
of thousands of models, and the scoring to select the best (near-
native) models according to a specific scoring function. Most 
software include the information about the binding interface at the 
scoring stage, while HADDOCK is the only system which uses this 
information to drive the sampling (the information is encoded into an 
additional energy term that generates forces to drive the energy 
minimization and molecular dynamics steps). The effect of those 
different strategies can be noticed by calculating the number of 
acceptable, medium or high-quality models generated out of the total 
number of produced models. This number is summarized for each 
software in Figure 6.  
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Figure 6: Percentages of acceptable, medium and high-quality models generated 
by each software per complex and for each scenario. Complexes are split into rigid 
and medium categories according to the Docking Benchmark5 definition which is 
based on the size of the conformational change of the unbound molecules upon 
binding. Note that the Y axis scales are different for each docking method for better 
readability. The colour coding indicates the quality of the models according to 
CAPRI criteria. 

One can clearly see (Figure 6) how the driving strategy implemented 
in HADDOCK leads to the generation of a much higher number of 
good models when information about the interface is provided (HV 
– Epi 9 and Real Interface scenarios). It has however the danger that 
no single acceptable model might be generated in case of bad 
information. The other software, ClusPro, LightDock and ZDOCK 
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use the interface information only at the scoring level (except for 
LightDock that filters starting swarms to sample around the provided 
binding site). These have the advantage that they perform an 
exhaustive search of the interaction space, but this comes at the cost 
of a small number of near-native models generated. In that case, the 
scoring becomes crucial to identify the acceptable models. 
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3.8 H3 loop modelling performance  

The H3 loop of antibodies is the most important loop involved in 
antigen recognition. Its accurate modelling is still a challenge due to 
its high structural and sequence variability. Of the four docking 
software used in this work, two allow for conformational changes 
during the docking, namely HADDOCK and LightDock. I analysed 
their capability of inducing the right conformational changes of the 
loop upon binding with the antigen. For this I superimposed the 
antibody framework residues of the bound and the unbound structure 
and calculated the RMSD of H3 (H3unbound). Then I repeated the same 
procedure for each docking model compared to the native complex 
(H3model). For both HADDOCK and LightDock, models produced 
from the different scenarios were merged and split into correct (i-
RMSD ≤ 4Å) and wrong models (i-RMSD > 4Å). Figure 7 shows the 
distribution of H3model versus H3unbound for correct and wrong models. 
Values below the diagonal correspond to an improvement of the 
conformation of the H3 loop. Overall, for HADDOCK (Figure 7A) 
the flexible refinement tends to increase the RMSD of the H3 loop 
for complexes that show a low H3 conformational change upon 
binding but, in contrast, for complexes undergoing larger 
conformational changes of H3unbound, the refinement leads to 
improvement in the H3 conformation, especially in the scenarios 
where information about the epitope is provided (HV – Epi 9 and 
Real interface), with a maximum observed improvement of 1.25Å. 
In the case of LightDock (Figure 7B) the final selected H3 loop 
conformation from normal modes remains very close to the unbound 
form with no remarkable changes in terms of RMSD. 
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Figure 7: H3 loop RMSD [Å] from the bound conformation for the docked models 
(H3model) versus the starting unbound conformation (H3unbound). (A) HADDOCK 
models, (B) LightDock models. Correct and wrong models were defined according 
to their i-RMSD from the reference structure using a 4Å cutoff. 

To further investigate the impact of the HADDOCK flexible 
refinement stage on the H3 loop conformation I analysed the fraction 
of native contacts (Fnat) that H3 makes at the rigid body docking stage 
(H3it0) and after flexible refinement (H3water). Figure 8 plots H3water 
versus H3it0 for the three different scenarios discussed in this work, 
taking into account the quality of the models. In this case all points 
above the diagonal correspond to an improvement in Fnat after 
flexible refinement. Figure 8 clearly shows that for most cases the 
flexible refinement improves the number of native contacts made by 
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H3, with a maximum improvement observed of 0.72. This is more 
evident for the last two scenarios (HV – Epi 9 and Real interface) 
indicating that an accurate selection of the native interface is crucial 
in order to improve the H3 conformation during the simulation. 

 

Figure 8: Comparison of the fraction of native contacts (Fnat) made by the H3 loop 
after the rigid body docking stage (H3it0) and after flexible/water refinement 
(H3water) of the HADDOCK runs. Values above the diagonal correspond to an 
improvement in Fnat. 
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4. Chapter IV 

4.1 proABC-2: PRediction Of AntiBody Contacts v2 and 
its application to information-driven docking 

In this chapter I present an update of the method implemented in 
proABC (PRediction Of AntiBody Contacts) that allows the 
prediction of which residues of an antibody are forming 
intermolecular contacts with its cognate antigen, as well as the nature 
of the contacts distinguishing between hydrogen bonds and 
hydrophobic interactions.  

proABC is based on a random forest algorithm, using the antibody 
heavy and light chain sequence, the hypervariable loop canonical 
structures and lengths (Chothia and Lesk, 1987) and the germline 
family as features (Schatz and Swanson, 2011). The performance of 
this pipeline has been validated by us (Olimpieri et al., 2013) and 
others (Peng et al., 2014), demonstrating good accuracy and 
reliability.  

Here I aimed at developing proABC-2, an update of the original 
algorithm, based on a deep learning framework. In particular I 
trained a Convolutional Neural Network (CNN), which has been 
shown to be successful for similar purposes (Deac et al., 2019; 
Liberis et al., 2018). proABC-2 has been trained on the 
aforementioned features. Additionally, I show how the proABC-2 
predictions can be used to drive the docking algorithm implemented 
in HADDOCK (Dominguez et al., 2003), which, as I demonstrated 
in Chapter III, is performing best in the context of antibody-antigen 
modelling, giving useful insights into their binding mode. The 
method is integrated in a freely available web server that predicts 
paratope residues forming general contacts as well as those involved 
in hydrogen bonds and hydrophobic interactions. 
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4.2 Dataset and interaction calculation 

The full protein data bank (PDB) was scanned using in-house Hidden 
Markov Models (HMM) in order to identify all the antibody 
structures deposited. Immunoglobulins having only one chain 
(nanobodies), resolution lower than 3Å and not solved with an 
antigen were excluded. Finally, using cd-hit (Fu et al., 2012) all the 
antibodies sharing a sequence identity higher than 95% with any 
other immunoglobulin of the dataset were removed.  

I ended up with a dataset of 769 complexes (CNN-dataset) which was 
used to train the model.  

For the docking studies a dataset of 16 complexes (Docking-set), all 
with available unbound structures, corresponding to the new 
antibody-antigen entries of the protein-protein benchmark version 
5.0 was used (Vreven et al., 2015). 

For all the complexes of the CNN-dataset, the non-covalent 
interactions including intermolecular hydrogen bonds and 
hydrophobic interactions were calculated. Non-covalent interactions 
were determined using a distance cut-off of 3.9Å. Hydrogen bonds 
were calculated by defining donors (D) as any N/O/F/S connected to 
a hydrogen atom and acceptors (A) as any  Nitrogen (N), Oxygen 
(O), Fluorine (F) or Sulphur (S) within a distance threshold (2.5Å) of 
that hydrogen and by filtering the matches for D-H-A triplets with a 
minimum angle of 120 degrees (Baker and Hubbard, 1984). Finally, 
hydrophobic interactions were computed using a distance cutoff of 
4.4Å between any heavy atom of two hydrophobic residues (Bissantz 
et al., 2010).   

General contact were calculated using an in-house R script while H-
bond and hydrophobic interactions were determined using interfacea 
(Rodrigues et al., 2019). 
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4.3 Neural network features 

In order to train the CNN a specific set of features was used: 	

1. Light and heavy chain sequences aligned using HMM 
profiles. In particular for the H3 alignment, according to the 
previously described method (Morea et al., 1998), I put the 
insertions in the middle between the conserved residues 
Cys92 and Gly104 defined according to the Chothia 
numbering scheme (Chothia and Lesk, 1987). Each sequence 
position was considered as a variable. To allow the textual 
information of a sequence to be processed by an algorithm, 
each residue was converted into numerical values using one-
hot encoding, the representation of categorical variables (i.e. 
a residue) as binary vectors. Here, I used a 20x1 vector 
consisting of all zeros except at the index of the given residue, 
which was marked with a 1. Concurrent, a 20x1 vector of only 
zeros represented a gap. The heavy and light chains were 
represented by a 297x20 array.	

2. Hypervariable loops canonical structures calculated 
according to the key residues found within and outside the 
loops (Chothia and Lesk, 1987; Morea et al., 1998; Vargas-
Madrazo and Paz-García, 2002). One-hot encoding was used. 	

3. Length of the hypervariable loops defined according to the 
Chothia numbering scheme.	

4. Germline family and source organism determined using 
igblastp (Ye et al., 2013). One-hot encoding was used. 	
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4.4 Convolutional Neural Network (CNN) 

The neural network used by proABC-2 consists of three 
convolutional modules (Conv11, Conv12 and Conv2), a fully 
connected feed-forward module (Ff1) and an output layer (Figure 9). 
Conv11 and Conv12 are identical and consists of three parts; a 1D 
convolutional layer with 32 filters of size 3x1 and a stride of 1, 
followed by a 1D max pooling layer of size 10x1 and a stride of 3 
and finally a dropout layer with a dropout rate of 0.15. Conv2 also 
consists of three parts; a 1D convolutional layer with 64 filters of size 
3x1 and a stride of 1, followed by a 1D average pooling layer of size 
6x1 and a stride of 3 and finally a dropout layer with a dropout rate 
of 0.15. Ff1 consists of a fully connected layer with 512 nodes 
followed by a dropout layer with a dropout rate of 0.10. The final 
output layer has for each of the 297 residues 3 nodes, predicting the 
general interactions, H-bonds and hydrophobic interactions, 
amounting to 891 nodes. The model was constructed using the 
python package Tensorflow (Abadi et al., 2016).	

These modules are combined in the following way. The one-hot 
encoded heavy and light chains are connected to Conv11 and Conv12 
respectively. The extracted features of the heavy and light chains are 
then concatenated and enter Conv2 for a deeper feature extraction. 
The final extracted features from Conv2 are then flattened (reduced 
to one dimension) and concatenated with the additional features 
(germline, loop lengths and canonical structures) before entering Ff1 
and finally into the output nodes. The purpose of Ff1 is to learn each 
individual residue’s role in the paratope based on the extracted 
features and the additional ones. The architecture is shown in Figure 
9.  
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Figure 9: The CNN architecture implemented in the proABC-2 method.   

The network was optimized with a focal loss (Lin et al., 2017) and a 
stochastic gradient descent (SGD) optimizer. The learning rate 
followed a one-cycle learning rate policy (Smith and Topin, 2017) 
with a max learning rate of 0.5, a minimum learning rate of 0.1% of 
the max one and maximum momentum of 0.9. Exponential Linear 
Units (ELU) were used as activation functions for Conv11, Conv12, 
Conv2 and Ff1, and sigmoid on the final output. Dropout and early 
stopping were used throughout training as regularization techniques. 
All hyperparameters (i.e. nodes, filter sizes, dropout rate etc.) 
mentioned above were found empirically. 
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4.5 Model performance 

The evaluation of the model was performed using a 10-fold nested 
cross validation on the full CNN-set (769 complexes). The 
performance was measured taking into account three different 
metrics: Area under the Receiver Operating Characteristic (ROC) 
curve (AUC), Matthew Correlation Coefficient (MCC) and F-score. 
MCC and F-score were calculated using probability thresholds of 
0.40, 0.30 and 0.30 for the general interaction (Pt), hydrophobic 
interaction (Hy) and hydrogen bond (Hb) predictions, respectively. 
These cutoffs were selected by averaging the thresholds that, for each 
fold of the cross validation, gave the best MCC. 

AUC, MCC and F-score values corresponding to Pt, Hy and Hb 
predictions are reported in Table 3. One can clearly see how the 
performance of the model is higher for general interactions (Pt) 
(0.96, 0.57 and 0.59 respectively for AUC, MCC and F-score) and it 
decreases respectively for the hydrophobic interactions (0.95, 0.44 
and 0.41) and hydrogen bonds (0.94, 0.33 and 0.27). This is due to 
the smaller number of Hb and Hy interactions made by the complexes 
of the CNN-set compared to the Pt ones, which makes their 
predictions more difficult. 

Table 3: Performance of proABC-2 for the three different types of predicted 
interactions: general contacts (Pt), hydrophobic interactions (Hy) and Hydrogen 
bonds (Hb). 

Interaction AUC MCC F-score 

Pt 0.96 0.57 0.59 

Hy 0.95 0.44 0.41 

Hb 0.94 0.33 0.27 
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I also compared proABC-2 with Parapred (Liberis et al., 2018) 
which currently is one of the best paratope prediction methods. For a 
fair comparison proABC-2 was trained on the same dataset used to 
develop Parapred and the AUC, MCC and F-score were calculated 
on the same residues used by Parapred to make the predictions 
(CDRs defined according to the Chothia numbering scheme plus two 
extra residues) after a 10-fold nested cross validation. For proABC-
2 the MCC and F-score were calculated using a threshold of 0.37 
(determined as previously explained), while the values from the work 
of  Liberis et al. (Liberis et al., 2018) are reported for Parapred. 
Results shown in Table 4 indicate that proABC-2 outperforms 
Parapred in terms of AUC and MCC but shows a lower performance 
in terms of F-score.  

Table 4: Performance comparison between Parapred and proABC-2. 

Method AUC MCC F-score 

proABC-2 0.91 0.56 0.62 

Parapred 0.88 0.55 0.69 
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4.6 Docking scenarios and settings 

To assess the impact of the proABC-2 predictions on HADDOCK’s 
docking performance I designed different scenarios:  

1. Pred Para – Surf: No previous information about the epitope 
are provided to HADDOCK. The docking was performed by 
using the residues predicted to be in contact by proABC-2, 
defined as active, and the antigen residues having a relative 
accessible surface areas (RSA) ≥ 40% (calculated with 
NACCESS (Hubbard SJ, 1993)), provided as passive. Default 
docking settings were used except for the sampling that was 
increased to 10000, 400, 400 for it0, it1 and water 
respectively.    

2. Pred Para – Epi 9: In this case I provided a loose definition 
of the epitope region by selecting all the antigen residues 
within a 9Å distance from the antibody in the reference 
structure. I provided to HADDOCK the residues predicted by 
proABC-2 as active and the defined antigen residues as 
passive. Default docking settings were used except for the 
sampling that was increased to 5000, 400, 400 for it0, it1 and 
water respectively.   

These settings recapitulate the ones described in Chapter III in order 
to allow the comparison of the docking results.  

The docking models were analysed following the same criteria 
described in paragraph 3.5 Docking performance of Chapter III. 
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4.7 Prediction-driven docking accuracy 

I also investigated whether the predictions obtained from proABC-2 
can be used to successfully drive antibody-antigen docking using the 
HADDOCK 2.2 web server (De Vries et al., 2010; Van Zundert et 
al., 2016).  

For unbiased predictions the model was trained on a subset of the 
CNN-set in which all the structures that were part of the Docking-set 
and those sharing a 95% sequence identity with them were removed. 
Only residues making general contacts (Pt) were used to drive the 
docking. Those were selected using a 0.40 cutoff.  

The docking results were compared to those shown in Figure 4 of 
Chapter III and are reported here in terms of success rate in Figures 
10 and 11.  
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Figure 10: HADDOCK success rate as a function of the top 1, 5, 10, 20, 50 and 
100 ranked models. The top row (HV - Surf) shows the success rate using the 
antibody HV loops and the entire antigen surface as restraints. The second row 
represents the success rate achieved by driving the docking with the proABC-2 
predictions and the full surface of the antigen. The colour coding indicates the 
quality of the models according to CAPRI criteria. 

More specifically, Figure 10 shows the docking results for the first 
scenario described in this chapter (Pred Para - Surf) in comparison 
with the first one described in Chapter III (HV - Surf). In both cases 
no information about the epitope is provided to the system. Using the 
antibody hyper variable loops (HV) to drive the docking led to 
slightly better results for the top 1,5 and 10 with success rates of 25%, 
31.2% and 31.2% respectively, compared to 18.7%, 25% and 25% 
for the Pred Para - Surf scenario. On the other hand, the use of the 
predicted antibody residues (Pred Para - Surf) gives better results for 
the top 50 and 100 with a success rate of 50% and 62.5% respectively 
(note that 6.2% corresponds to a difference of only one complex). 
Thus, even if during the sampling HADDOCK is able to generate 
correct models, the scoring is not able to rank them in the top 
positions.  
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As for the quality of the models generated, using the HV loop led to 
better quality models overall. 	

The docking performance obtained by providing to the algorithm a 
loose definition of the epitope following the definition provided in 
Chapter III and either the antibody hypervariable loops or the 
proABC-2 predictions are compared in Figure 11. In this scenario 
driving the docking with the proABC-2 predictions led to a 
significative improvement of the Top1 success rate which increased 
from 43.8% (using the HV) to 62.5%. Overall, even if the success 
rate is comparable between the two scenarios the use of the proABC-
2 predictions generally resulted in an improvement of the quality of 
the generated models, which is mainly reflected in an increase in the 
number of medium quality ones.  

 

Figure 11: HADDOCK success rate as a function of the top 1, 5, 10, 20, 50 and 
100 ranked models. The top row (HV – Epi 9) shows the success rate using the 
antibody HV loops and a loose definition of the epitope using a 9Å cutoff. The 
second represents the success rate achieved by driving the docking with the 
proABC-2 predictions and the same definition for the epitope on the antigen. The 
colour coding indicates the quality of the models according to CAPRI criteria. 
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4.8 Web server 

proABC-2 is freely available as a web server  
at https://bianca.science.uu.nl/proabc2 (still under development). It 
only requires the user to provide the sequences of the heavy and light 
chains of an antibody. The input is subsequently processed in order 
to calculate all of the sequence-derived features (germline, canonical 
structures and length of the HV loops) and these are passed to the 
CNN to make the predictions. The computations only take a few 
seconds. The results page reports a barplot (see Figure 12) showing, 
for each antibody residue, the probability of making a general 
interaction (pt), H-bond (hb) and a hydrophobic contact (hy). The 
final output of the web server consists of two files (one for the heavy 
and one for the light chain) in which for each antibody residue are 
indicated the probability of making a general interaction, a H-bond 
and a hydrophobic interaction.  
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Figure 12: Output page of the proABC-2 web server. It shows the interaction 
probability of the antibody residues belonging to the heavy and light chain.  
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Conclusions and future perspectives 

Antibodies continue to dominate the field of biotherapeutics with an 
increasing number of new clinical approvals each year. Current 
approaches to bring these molecules to the market have remained 
experimentally focused, with animal immunization and surface 
display technologies accounting for the majority of the antibodies 
developed to date.  

The increasing amount of antibody-specific data in the public domain 
is catalysing the maturation of computational methods for antibody 
design, resulting in a growing uptake as part of standard 
pharmaceutical discovery processes. The switching from a purely 
experiment-based approach to the application of computational 
techniques could provide more cost-efficient and faster ways for 
rational design and engineering of immunoglobulins for therapeutic 
purposes. The final goal is not to completely bypass the experimental 
pipelines but rather offer a reliable framework which could act as a 
starting point for further experimental developments. 

With this work I demonstrated how the use of molecular docking 
coupled to machine learning techniques can be beneficial for the 
identification and the study of the key residues involved in the 
antigen recognition process.  

More specifically, one of the main benefits of this work is to offer 
researchers a clear overview of the state of the art of antibody-antigen 
structure prediction (for the various software considered) and of the 
various strategies that can be followed depending on the available 
information. Provided that at least a vague definition of the epitope 
can be obtained, reasonably accurate models can be generated, with 
HADDOCK performing best among the four software compared.  

I also developed and described a machine learning-based method 
able to predict the specific residues that will make an interaction with 
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the antigen and I characterised the impact of those predictions on the 
docking accuracy using HADDOCK. My results show that if a loose 
definition of the epitope region is provided, the use of the proABC-2 
predictions to guide the docking leads to an improvement of both the 
success rate and the quality of the HADDOCK models compared to 
the use of the HV loops.  

Altogether, my analysis indicates that there is still plenty of 
opportunities for improvements, especially in modelling 
conformational changes, with the H3 loop as particular challenge, but 
also in scoring considering that all software achieve a rather good 
performance in the top 100, but this significantly drops in most cases 
when only the top 10 or less are considered.   

In the context of scoring, machine learning and in particular deep 
learning offer a great potential but they strongly rely on the 
availability of enough reliable data. An accurate benchmarking is 
therefore of paramount importance for the application of such 
techniques. In addition, development of scoring schemes specifically 
tailored for the immune complexes might also increase the accuracy 
of the docking methods.  

Moreover, taking into account the low accuracy of the docking 
methods when no information about the antigen epitope is available, 
further progresses are required in the development of antibody-
specific epitope prediction methods. This might be achieved in the 
future by leveraging on the large amount of Next Generation 
Sequencing (NGS) data that are nowadays becoming available. 
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