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Methanol plasma has been proposed as an effective way to improve the performances

of fluorocarbon (CFx) ultrathin films as stent coatings as it can successfully modulate

fluorine content and wettability of the films. Nevertheless, plasma treatment may affect

mechanical properties of the films, which therefore need comprehensively characterizing

to verify the suitability of treated films for application as stent coating materials. In this

work we investigate mechanical properties of methanol plasma treated CFx ultrathin films

on stainless steel. In particular, cohesion of the films and their adhesion to the substrate

is investigated using small punch test combined with atomic force microscopy (AFM)

imaging. Also, elastic and viscoelastic properties are investigated at the nanometer scale

using two different AFM based advanced technique for nanomechanical characterization,

i.e., HarmoniXTM and contact resonance AFM (CR-AFM). Overall, methanol plasma

treated CFx films have been demonstrated to be suitable for application as stent coating

also on the basis of their nanomechanical properties.

Keywords: fluorocarbon films, adhesion, elastic properties, viscoelastic properties, contact resonance atomic

force microscopy, HarmoniX, methanol plasma, biomaterials

1. INTRODUCTION

The mechanical characterization of thin coatings is increasingly emerging as a need in the Q6

development and optimization of biomaterials. Indeed, biomaterials for medical devices are often
subjected to surface modification processes, such as functionalization and deposition of thin
coatings, with the aim of improving their functionality and biocompatibility, without sacrificing
the high structural properties given by the bulk materials. Besides the opportune chemical, physical
and biocompatibility properties, a coating for medical devices must exhibit appropriate mechanical
properties in order to maintain its integrity, cohesion and adhesion to the underlying substrate,
even after significant elastic and plastic deformations to which the device can undergo. Together
with cohesion and adhesion to the substrate, the stiffness of the coating, i.e., the part of the
biomaterial in contact with the biological medium, is emerging as key factor, in addition to chemical
composition, surface energy and roughness, in the regulation of the biological response. Indeed,
the stiffness of biomaterials has been demonstrated to affect adhesion, proliferation, differentiation
and migration of several kind of cells (Lo et al., 2000; Guo et al., 2006; Chowdhury et al., 2010).
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For instance, neurons have been shown to proliferate better
on soft substrates (Flanagan et al., 2002) while fibroblasts and
chondrocytes exhibited maximum spread and proliferation on
stiffer substrates (Subramanian and Lin, 2005; Hopp et al., 2013).
Native mesenchymal stem cells undergo different differentiation
behavior when interacting with surfaces with different elastic
modulus (Engler et al., 2006). Endothelial cells have been
observed to exhibit tube-like structures on soft substrates and
high spread and proliferation on stiffer substrates (Califano and
Reinhart-King, 2008, 2010); smooth muscle cells and myoblasts
have been shown to have higher projected area on stiff substrates
(Engler et al., 2004a,b). Moreover, substrate stiffness has been
demonstrated to affect adhesion, spreading and activation of
platelets, suggesting that the mechanical properties at the surface
of cardiovascular devices could also have an effect on blood
contact behavior and clot formation (Qiu et al., 2014). Therefore,
the capability to characterize the mechanical properties of thin
coatings for medical devices is fundamental, not only from
the point of view of the integrity and mechanical behavior
of the device, but also for the comprehension of the effect
of surface stiffness on the biological events occurring at the
interface of the device. Indeed, the capability of measuring
and modulating the elastic modulus at the very surface of
an implant might allow improved body response and implant
performance. In previous studies, fluorocarbon (CFx) thin
films deposited by plasma enhanced chemical vapor deposition
(PECVD) with thickness of about 35 nm have been demonstrated
to be effective as coatings for cardiovascular stents, thanks
to their chemical inertness, high uniformity, flexibility and
adhesion to the substrate (Haïdopoulos et al., 2005). These
characteristics make them resistant to corrosion (Touzin et al.,
2010) and able to overcome the high deformation occurring
during stent deployment (about 25%) (Lewis et al., 2008).
The higher hemocompatibility of CFx coatings in respect of
bare metallic surfaces has been shown (Montaño-Machado
et al., 2017) and can mainly attributed to the presence of
fluorine content. Nevertheless, the hydrophobic nature of these
coatings could limit protein adsorption, hemocompatibility and
endothelialization (Arima and Iwata, 2007; Tang et al., 2008).
Recently, a novel oxidative methanol plasma treatment has
been developed and demonstrated to be effective in tuning the
hydrophobicity of CFx coatings without affecting their integrity,
uniformity and morphology (Montaño-Machado et al., 2019).
By analyzing coatings with different wettability and oxygen and
fluorine content, it has been shown that the blood contact
behavior of CFx coatings can be improved by modulating
surface energy and fluorine species content (Montaño-Machado
et al., 2019). Nevertheless, the effect of the treatment on the
mechanical properties of the modified films, which could affect
the cohesion and adhesion to the substrate as well as the blood
contact behavior, has not been evaluated yet. The mechanical
characterization of these ultrathin coatings is challenging. The
capability of the coating to maintain its integrity after a
determined deformation can be tested by the method developed
by Lewis et al. (2008), called small punch test, consisting in
the application of a known deformation and the subsequent
morphological analysis of the coating.

As for the quantitative evaluation of the elastic modulus,
it cannot be obtained by conventional techniques, such as
micro- and nanoindentation due to the limited thickness which
makes the results of the measurements strongly affected by
the mechanical properties of the underlying substrate (Fischer-
Cripps, 2006; Reggente et al., 2017). Moreover, micro- and
nanoindentation do not allow one to visualize the distribution
of these surface properties because of its poor spatial resolution.
Alternatives methods, based on atomic force microscopy (AFM),
can be used to obtain quantitative maps of mechanical
properties, such as indentation modulus, damping, adhesion and
energy dissipation (Passeri et al., 2013a) as well as viscoelastic
moduli, i.e., storage and loss modulus, and loss tangent
(Killgore and DelRio, 2018).

In this work, we perform an exhaustive mechanical
characterization of methanol plasma treated CFx ultrathin
films, with thickness in the range 30–65 nm, deposited on
stainless steel in order to verify the effect of plasma treatment
on the mechanical properties of the films. Cohesion of the
films and their adhesion to the substrate after deformation
was analyzed with small punch test method combined with
AFM morphological characterization. The challenging analysis
of elastic and viscoelastic response of ultrathin soft films
on stiff substrates was performed with two different AFM
based techniques for nanomechanical characterizations, i.e.,
HarmoniXTM and contact resonance AFM (CR-AFM), for the
latter using two different data analysis procedures, in order to
cross-validate these methods.

2. MATERIALS AND METHODS

2.1. Materials
2.1.1. Pre-treatment of 316L Stainless Steel

Substrates
316 L stainless steel disks of 12.7 mm diameter and 0.5 Q8

mm thickness (Goodfellow, Devon, PA, USA) are used as
substrates. First, they have been cleaned in an ultrasonic bath
with acetone, deionized water, and methanol for 10 min for
each solvent and then dried with particle-free compressed air.
Then an electropolishing and an acid dipping treatment have
been performed in order to reduce the surface roughness.
Electropolishing has been carried out in 100 mL of solution
containing glycerol, phosphoric acid and deionized water for 3
min at 90◦C. Acid dipping was performed for 30 s at 50◦C in a
solution consisted in nitric acid, hydrofluoric acid, and deionized
water (Montaño-Machado et al., 2019).

2.1.2. Plasma-Enhanced Chemical Vapor Deposition

of Fluorocarbon Coating
CFx coatings with different wettability and oxygen and
fluorine content have been obtained by PECVD, following the
protocols previously developed (Montaño-Machado et al., 2019).
Specimens were introduced into the previously described radio
frequency (RF) plasma reactor (Lewis et al., 2008) at 6 cm below
the electrode for a pulsed H2 plasma etching at 100 W for 100
s (ton = 100 ms; toff = 300 ms). Etching was carried out to
(i) remove the layer of organic contaminants and (ii) reduce
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the oxide layer on the sample surface. After the plasma etching
of the substrates, a fluorocarbon coating has been deposited by
pulsed afterglow plasma polymerization using C2F6 and H2 as
precursors. The sample was placed at 11 cm below the electrode
and the coating was realized using a peak power input of 150
W, a duty cycle of 20%, a pressure of 700 mTorr and a total gas
flow rate of 20 sccm for a deposition time of 5 min. An oxidation
treatment with methanol plasma was then carried out with the
sample at 6 cm below the electrode, using a continuous power
of 50 W and a flow of 10 sccm during 30 and 90 s. In this way,
three different coatings with decreasing hydrophobicity (static
contact angle of 117◦ for the unmodified CFx coating, 87◦ for
the coating after 30 s methanol treatment and 68◦ for the coating
after 90 s methanol treatment) and increasing O/F ratio (0.01
for the unmodified CFx coating, 0.44 for the coating after 30 s
methanol treatment and 1.08 for the coating after 90 s methanol
treatment) were obtained (Montaño-Machado et al., 2019). For
the sake of clarity, from herein CFx-A refers to the sample which
has not been processed with methanol plasma treatment, while
CFx-B and CFx-C indicate the samples modified by 30 and 90 s
methanol plasma treatment, respectively.

2.2. Instrumentation and Equipment
2.2.1. X-Ray Photoelectron Spectroscopy Analysis
Chemical composition of the coating was analyzed by X-ray
photoelectron spectroscopy (XPS), using an X-ray photoelectron
spectrometer (XPS-PHI 5600-ci Spectrometer-Physical
Electronics, Eden Prairie, MN, USA), with a base pressure below
5 × 10−7 Pa. Survey and high resolution spectra were acquired
using the Kα line of a standard aluminum (Kα = 1486.6 eV)
and magnesium (Kα = 1253.6 eV) X-ray sources, respectively,
operated at 300 W, without charge compensation. Three spots
on three samples were analyzed for each experiment.

2.2.2. Small Punch Test
A plastic deformation of 25%, i.e., the estimated maximum
deformation to which a stent undergo during deployment
(Migliavacca et al., 2005), was applied to the coated samples
using a custom-made small punch test device mounted on a
SATEC T20000 testing machine (Instron, Norwood, MA, USA)
as previously described (Lewis et al., 2007). All deformations were
performed at room temperature at a displacement rate of 0.05
mm s−1 and a maximal load of 2200 N. The state of the coating,
i.e., themorphology and the eventual presence of delamination or
cracks, after deformation was analyzed by AFM. A DimensionTM

3100 AFM (Veeco, Woodbury, NY, USA) was used in tapping
mode with a silicon tip (OTESPA, Bruker). 20 × 20 µm images
in correspondence of the topmost part of the samples, where
the maximum deformation (25%) occurs, were acquired and
analyzed. Three specimens for each condition (CFx-A, CFx-B and
CFx-C) were tested.

2.2.3. Nanomechanical Characterizations by Atomic

Force Microscopy
Mechanical characterizations of the films have been performed
through both CR-AFM and HarmoniXTM.

HarmoniXTM has been carried out using a standard AFM
apparatus (ICON, Bruker Inc.), equipped with a standard T-
shape Si cantilever (HMX10, Bruker Inc.) having kc = 4 N/m
(as reported by the manufacturer) and first flexural and torsional
resonance frequencies in air equal to f0,1 = 52.9 kHz and
t0,1 = 949 kHz, respectively. Cantilever force sensitivity has
been measured from force-deflection curves performed on Si
(100) single crystal. Calibration procedure has been performed
using a blend of polystyrene (PS) and low-density polyethylene
(LDPE) film deposited on a Si substrate (PS/LDPE, Bruker
Inc.), being MPS = 1.6 GPa and MLDPE = 100 MPa the
indentation modulus of PS and LDPE, respectively, as supplied
by the producer.

CR-AFM has been carried out using a standard AFM
apparatus (Solver, NT-MDT, Russia). The AFM setup was
equipped with a Si cantilever (CSG10, NT-MDT, Russia) with
spring constant kc = 0.116 N/m, determined through the
method described by Sader et al. (1999). In order to evaluate
the instrumental parameters required to analyze CR-AFM data, a
well-established experimental procedure was followed (Reggente
et al., 2015): standard force-deflection curves have been acquired
on Si (100) single crystal to calibrate the cantilever force
sensitivity; tip radius Rt has been evaluated by reconstructing
the tip shape through the analysis of the images collected on
an array of inverted tips used as reference sample (TGZ1, NT-
MDT, Russia); the exact position of the tip along the cantilever
axis has been determined through scanning electron microscopy
(SEM) analysis. Being the tip in contact with the sample surface,
contact resonance frequencies (CRFs) were detected for each
sample and CRFs values and the corresponding uncertainties
have been evaluated from statistics performed on not <512
points of CR-AFM images. Calibration of CR-AFM has been
performed using as the reference the PS regions of the above
described PS/LDPE sample. Numerical simulation of the entire
experimental session was performed using Matlab (version
7.1.0.246, 2005).

3. TECHNIQUES

3.1. HarmoniXTM

HarmoniXTM is tapping mode based AFM technique in which a
T-shaped cantilever with an out-of-axis tip is used (Sahin et al.,
2007; Sahin and Erina, 2008). The first flexural mode of the
cantilever, characterized by the first flexural resonance frequency
f0,1, is used to reconstruct sample morphology, as in standard
AFM tapping mode. During tapping performed at frequency
f0,1, the tip periodically (with period T0 = 1/f0,1) interacts
with the sample surface. The actual tip-sample interaction force
depends on the instantaneous value of tip-sample separation
d, i.e., is given by the van der Waals force if d > a0, and
by the sum of van der Waals and repulsive (elastic) forces if
d < a0, where a0 is an intermolecular distance. More explicitly,
by modeling the repulsive force using the Derjaguin-Muller-
Toporov (DMT) (Derjaguin et al., 1975) and assuming that the
lateral extension of the sample is much bigger than the tip
size (Santos et al., 2011), the tip-sample interaction force Fts is
given by
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Fts =























−
HRt

6d2
if d > a0

−
HRt

6a20
+

4

3
E∗
√

Rt
(

a0 − d
)3

if d < a0

(1)

where H is the Hamaker constant, Rt is the tip radius, a0 an
intermolecular distance, and E∗ is the reduced modulus given

by E∗ =
(

M−1
s +M−1

t

)−1
being Ms and Mt the indentation

modulus of the sample and of the tip, respectively (Derjaguin
et al., 1975; García and San Paulo, 1999). When Ms ≪ Mt

as in the case of the materials investigated in this work,
E∗ ≈ Ms. This force is measured by recording the cantilever
deflection 1z which is proportional to the tip-sample force
through the (normal) spring constant kc. Being periodic with
period T0, the force-separation curve could be, in principle,
reconstructed through inverse Fourier transform after acquiring
the harmonic components (multiple of f0,1) of the deflection
signal. Nevertheless, the presence of higher deflection modes of
the cantilever distorts the harmonic components of the force-
separation curve. A smart solution consists in using a T-shaped
cantilever with an out-of-axis tip. Indeed, during tapping, the
tip-sample interaction produces a torque Tts = Ftslt where
lt is the distance between the tip location and the cantilever
axis. This results in the torsion of the cantilever of an angle
1φ = Tts/kφ where kφ is the cantilever torsional spring
constant (Green et al., 2004; Pettersson et al., 2007). Thus,
the cantilever torsional signal is proportional to Fts and is
periodic with period T0. Therefore, the periodic Fts can be
reconstructed by inverse Fourier transform of the components
of the torsional signal at frequencies multiple of f0,1. Being
the value of the first free torsional resonance t0,1 much higher
than f0,1, this allows the analysis of harmonic components
of the torsional signal in an undistorted spectral region and
leads signal-to-noise ratio higher than the one relative to the
deflection signal. Therefore, the cantilever torsional signal can
be analyzed using inverse Fourier transform analysis in order
to extract a complete loading/unloading force-distance curve
during each tapping cycle. Unloading force-distance curves are
analyzed in real time to evaluate Ms through the DMT model
(Derjaguin et al., 1975) which is currently implemented in
HarmoniXTM software, although the Johnson-Kendall-Roberts
(JKR) model (Johnson et al., 1971) has been demonstrated
to be more accurate in the range of materials analyzed in
this work (Dokukin and Sokolov, 2012). To overcome the
need for accurate calibration of the cantilever geometrical
and elastic parameters, a phenomenological calibration is
performed using a reference sample with well-known indentation
modulusMref.

3.2. Contact Resonance Atomic Force
Microscopy
In contact resonance AFM (CR-AFM) the tip is in contact with
the sample surface and the system constituted by the cantilever,
the tip, and a volume of the sample under the tip is set into
oscillation using an ultrasonic transducer coupled to the sample
(Rabe and Arnold, 1994) or to the cantilever (Yamanaka et al.,

2008), or by the direct photothermal excitation of the cantilever
(Wagner and Killgore, 2015). In these conditions, the resonance
frequencies of the cantilever, namely the contact resonance
frequencies (CRFs) fn, can be detected. When the investigated
material is considered elastic, the system can be described as
sketched in Figure 1A. In this model: the cantilever is considered
inclined by an angle α respect to the sample surface; the tip
is located at distance L1 from the cantilever clamped end, so
that the parameter r = L1/L can be defined being L the
cantilever length; the height of the tip is ht; the tip interacts
with the sample surface via both normal and lateral forces,
and the contact is thus described by the normal and lateral
contact stiffness, modeled through the linear springs k∗ and k∗

lat
,

respectively. The values of the CRFs are determined by k∗ and
k∗
lat
, which depends on the elastic parameters of the sample, i.e.,

on the indentation and shear moduli of the sample (Ms and Gs,
respectively). Therefore, the measured values of fn can be used
to evaluate the elastic properties of the sample. Nevertheless, due
the complexity of the model in Figure 1A, the analysis of CRFs
data are generally carried out considering the simplified model
depicted in Figure 1B, in which the cantilever inclination, the tip
height, and the lateral tip-sample coupling are neglected. In the
standard procedure, the values of two different CRFs (say fn and
fm with n 6= m) are measured and used to determine r and k∗ by
numerically solving k∗(fn, r) = k∗(fm, r) (Kester et al., 2000). The
value of k∗ is related to that ofMs through the relation

k∗ = 2acMs (2)

where ac is the tip-sample contact radius and assumingMs ≪Mt

and, thus, E∗ ≈ Ms. Using the Hertzian model to describe the
tip-sample contact, Equation (2) can be rewritten as

k∗ =
3

√

6M2
sRtFN (3)

where FN is the static normal load applied by the tip on the
sample as a result of the selected deflection set point. To evaluate
Ms from k∗, the knowledge of the Rt is required. As Rt may
change during a measurement session due to abrasion, especially
when relatively stiff materials are investigated (Amelio et al.,
2001), and thus the use of predetermined values of Rt in Equation
(3) may result in a not accurate estimation ofMs. The uncertainty
in the value of Rt is one of the major factors affecting the
accuracy of CR-AFM measurements and, therefore, the actual
tip radius (and also the tip shape) should determined during
each experimental session by calibrating the tip radius using
one sample with well-known indentation modulus as reference
material (Yamanaka et al., 2000; Kopycinska-Müller et al., 2006;
Marinello et al., 2010, 2011). Really, to avoid the explicit
calculation of Rt, after the contact stiffness k

∗
ref

is determined on
the reference material with reduced modulus E∗

ref
, the reduced

modulus of the investigated sample E∗s is calculated from the
measured contact stiffness k∗s as

E∗s = E∗ref

(

k∗s
k∗
ref

)3/2

(4)
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FIGURE 1 | (A) Beam model of the cantilever with length L, inclined of an angle α respect to the sample surface; the tip is located at distance L1 from the cantileverQ4

Q5 clamped end, its height being ht; the tip interacts with the sample surface via both normal and lateral forces, and the contact is thus described by the normal and

lateral contact stiffness modeled through the linear springs k∗ and k∗lat, respectively. (B) Simplified beam model of the cantilever, supposed parallel to the sample

surface; the tip, the height of which is neglected, interacts with the sample only through normal forces modeled by the contact stiffness k∗. Reprinted and adapted

from Passeri et al. (2013b).

if measurements on the investigated sample and on the reference
material are performed at the same value of FN (Rabe et al.,
1996; Hurley et al., 2005; Passeri et al., 2005). For the sake of
clarity, this procedure—which is admittedly the most widespread
one—will be referred to as “single reference” approach in the
rest of the paper. In more accurate calibration procedures not
only Rt but also the indentation modulus of the tip Mt can be
calibrated using two (or more) reference materials (Stan and
Price, 2006). In particular, using two reference materials, Ms

andMt

Ms =

(

k∗
ref1

/k∗
ref2

− 1
)3/2

(

k∗
ref1

/k∗s
)3/2

(1/Mref2 − 1/Mref1) +
(

k∗
ref1

/k∗
ref2

)3/2
1/Mref1 − 1/Mref2

(5)

and

Mt =
Mref1Mref2

(

k∗
ref1

3/2
− k∗

ref2
3/2
)

k∗
ref2

3/2Mref1 − k∗
ref1

3/2Mref2

(6)

where k∗
ref1

and k∗
ref2

are the contact stiffness measured on the
first and second reference sample, respectively, and Mref1 and
Mref2 are the indentation moduli of the two reference materials
(Stan and Price, 2006). In particular, despite in a relatively limited
range of elastic moduli, the use of multiple reference materials
allows one to neglect lateral forces, thus using the model in
Figure 1B instead of that in Figure 1A although apparent values
of Rt and Mt (different from the real ones) are determined
(Passeri et al., 2013b).

In this work, results of CR-AFM data analysis through the
“single reference” approach were compared to those obtained
using an original method, which we refer to as the “apparent
stiffness” method. In the “apparent stiffness” method, the output
of numerical simulations of CR-AFM experiments performed
using the model in Figure 1A is analyzed using the simplified
model reported in Figure 1B in order to obtain calibration curves

in which the apparent value of k∗ is related to that of Ms.
Therefore, these calibration curves are used to evaluate Ms from
the values of k∗ determined in the first steps of the “single
reference” procedure.

Finally, not only can CR-AFM be used to study elastic but
also viscoelastic materials (Killgore and DelRio, 2018). In order
to account for the viscoelastic behavior of samples, a dashpot
of dumping σ is included in parallel to k∗ in the model
in Figure 1B (Yuya et al., 2008). The tip-sample contact is
described by the normalized tip-sample contact stiffness α and
the normalized damping coefficient β . These parameters can be
evaluated measuring the frequency fn of a given contact mode
of the cantilever and the corresponding quality factor Qn (Yuya
et al., 2011). Finally, the values of α and β can be used to evaluate
the storage and the loss modulus of the sample (E′s and E′′s ,
respectively) and the loss tangent defined as tan δ = E′′s /E

′
s.

In particular, a “single reference” approach can be followed,
using a material with well-known storage and loss modulus (E′

ref
and E′′

ref
, respectively). In this case, considering the tip much

stiffer than the sample, E′s and E′′s can be calculated as E′s =

E′
ref (α/αref)

3/2 and E′′s = E′′
ref

(

fnβ/fn,refβref

)3/2
, where fn,ref, αref,

and βref are measured and calculated on the reference sample
(Killgore et al., 2011). Conversely, tan δ can be evaluated without
the need for calibration using a reference material through
the relation

tan δ = (knL)
2r2

β

α

fn

f0,n
(7)

where knL = 7.855 if the third mode of the cantilever is analyzed
(n = 3) (Hurley et al., 2013), which we used in this work as it
was demonstrated to be more sensitive than, e.g., the first one
(Killgore and Hurley, 2012). In this work, we evaluated E′s using
the “single reference” approach assuming the PS as the reference
material, tan δ was evaluated using Equation (7), and finally E′′s
was calculated as E′′s = E′s tan δ.
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FIGURE 2 | XPS survey spectra of the untreated CFx film (A) and CFx films treated with 30 s (B) and 90 s (C) methanol plasma treatment and histogram of the relative

concentration of C, O, and F (D).

4. RESULTS

4.1. Chemical Analysis
Survey XPS spectra of CFx coatings before and after 30 and 90 s
methanol plasma treatments are reported in Figure 2 and show
that methanol plasma treatment produced an increase of the
oxygen amount of the coating (from 0% in CFx-A to 12% in
both CFx-B and CFx-C); the increase of the time of methanol
plasma treatment produced the increase of carbon amount (from
32.75 in CFx-A to 61.8% in CFx-B and 77.75 in CFx-C) and the
corresponding decrease of fluorine content (from 66.9 in CFx-
A to 26.5% and 10.7% in CFx-B and CFx-C, respectively). No
metal species were detected, demonstrating that the coating was
not damaged by methanol plasma treatment.

Figure 3 shows high resolution XPS spectra for C(1s) of the
unmodified CFx coating (a) and CFx coatings after 30 and 90 s
methanol plasma treatments. The C(1s) spectra of the CFx films
are fitted with five spectral components, as assigned to C–H/C–
C– (BE= 285 eV), C–CF/C–O (BE= 287), CF/C=O (BE= 289.5
eV), –CF2 (BE= 292), and CF3 (BE= 294 eV) groups, according
to literature (Horie, 1995; Mackie et al., 1997; Bourgoin et al.,
1999; Boehm, 2002). As <1 at.% of oxygen was detected at the
surface of the untreated CFx coating, no attribution due to C–O
(286.9) or C=O (288.1) is proposed, while for methanol treated
samples, peaks at BE= 287 and 289.5 can be attributed to oxygen
containing groups. Figure 3A shows the typical C(1s) spectrum
of CFx coating without any methanol plasma treatment, which
consists mainly of C–CF groups, CF2 and CF3 groups that
are characteristic of fluorocarbon plasma-polymer films. High
resolution spectra of CFx coating after 30 and 90 s methanol

plasma treatments (Figures 3B,C) show the increasing hindrance
of the CF2 and CF3 bands—characteristic of CFx coatings—
with the increase of the time of oxidative treatment, from 55
to 15% and <2%, respectively, and the corresponding increase
of C–C and C–O containing species. This demonstrates that
methanol plasma treatments allows the deposition of oxygen
species not containing fluoride on the surface of fluorocarbon
coating, without damaging it. The increase of the time of
methanol plasma treatment produces the increasing covering
of the fluorocarbon coating by oxygen species, which is also
consistent with the previously reported time-of-flight secondary
ion mass spectrometry (ToF-SIMS) analysis and the previously
observed increased thickness of the coating (from 30 nm for
untreated CFx coating to 41 nm for 30 s and 64 nm for 90 s
methanol treated samples) (Montaño-Machado et al., 2019).

4.2. Cohesion and Adhesion After
Deformation (Small Punch Test)
In Figure 4 typical AFM topographies of the areas corresponding
to the topmost part of the deformed samples are reported.
AFM analysis of all the deformed samples (unmodified CFx
and CFx after methanol treatment of 30 and 90 s) shows
the occurrence of slip bends due to the plastic deformation
of the underlying stainless steel substrate, but does not show
any cracks, delamination or failure. This demonstrates that the
methanol treatment did not significantly affect cohesion and
adhesion properties of the CFx films, which resulted in having
sufficient interfacial adhesion and cohesion to be employed as
stent coatings.
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FIGURE 3 | XPS high resolution C (1s) spectra of CFx film (A) and CFx films treated with 30 s (B) and 90 s (C) methanol plasma treatment and histogram of the

relative concentration of the characteristic bands (D).

FIGURE 4 | AFM topography images of the topmost part of CFx-A (a), CFx-B (b), and CFx-C (c) samples after application of 25% deformation.

4.3. Nanomechanical Characterizations
4.3.1. Elastic Modulus
A typical result of the characterization of CFx samples
using HarmoniXTM is shown in Figure 5, where topography
(Figure 5A), phase image (Figure 5B), map of the (not
calibrated) indentation modulus (Figure 5C), and map of the
(not calibrated) tip-sample adhesion force (Figure 5D) obtained
on the sample CFx-C are shown. Morphological reconstruction
shows the presence of ripples on the surface, indicating that
the film reproduces the features typical of the stainless-steel
substrate. These features are observed also in phase, indentation
modulus, and adhesion maps, and can be ascribed to the

modulation of the local value of the tip-sample contact area (Stan
and Cook, 2008) and to the variation of the local inclination of
the surface with respect to the tip axis (Passeri et al., 2013b).
Calibration of the indentation modulus maps was performed
on the PS/LDPE reference sample (Passeri et al., 2013a). More
specifically, the PS regions were used for calibration purposes,
while LDPE regions were used to check the calibration range
by comparing the obtained value to the one indicated by
the vendor (100 MPa). In Figure 6, the histograms of the
indentation modulus of the investigated CFx samples and those
of the reference sample are reported. The obtained value of
the indentation modulus of the LPDE is compatible with that
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FIGURE 5 | Example of nanomechanical mapping of the CFx-C sample using HarmoniXTM: (A) height, (B) phase, (C) not calibrated indentation modulus, (D) not

calibrated adhesion force.

FIGURE 6 | Distribution of the values of indentation modulus of the three CFx
samples and of the PS/LDPE reference, measured using HarmoniXTM.

expected but lower (51 ± 1 MPa), indicating a not perfect
calibration in low modulus range. Nevertheless, the moduli
of CFx samples are comparable to those of PS, and thus the
calibration can be considered accurate enough in the range of
interest. Indentation modulus values with the corresponding
uncertainty were obtained by Gaussian fitting of data in Figure 6

and are reported in Table 1.
CR-AFM was first used to evaluate mechanical properties

of the CFx thin films in elastic approximation. After

characterization of the free cantilever resonance in air, the
tip was brought in contact with the sample which was made
oscillate by the piezoelectric transducer coupled with its back
side. Values of f1 and f3 were obtained from statistics on the
corresponding CRFs maps acquired simultaneously to the
topographical images. For calibration purposes, CRFs maps
on the reference sample were acquired before and after each
measurement session. To limit the effect of tip wear, CFx samples
were purposely analyzed following the decreasing order of their
expected stiffness, i.e., starting from the sample expected to be
the stiffer one. Table 1 reports the values of f1 and f3 measured
on the CFx samples and the corresponding value of k∗ calculated
using the model in Figure 1B. The corresponding values of
indentation modulus calculated through the “single reference”
approach (Ms-r

s ) are then reported. The measured values of
CRFs confirm that the mechanical properties of the CFx samples
are close to those of the reference PS film (f1 = 121−123 kHz
and f3 = 704−715 kHz), encouraging the use of the “single
reference” approach. Conversely, CRFs measured on LDPE
seemed too low use LDPE as a second reference sample
(f1 = 111−112 kHz and f3 = 660− 685 kHz). To verify the
accuracy of the method, experimental data were analyzed
through a numerical simulation (the “apparent stiffness”
method). CR-AFM experiment was first simulated using the
model in Figure 1A to obtain as output the pairs of CRFs f1 and
f3 with a code which received as input mechanical properties
of the cantilever and the tip, their geometrical parameters, and
the mechanical properties of the sample (Passeri et al., 2013b).
The characteristic parameters of the system were optimized
in order to simultaneously match f1 and f3 experimentally
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TABLE 1 | Result of the nanomechanical characterizations using HarmoniXTM and CR-AFM: indentation modulus obtained with HarmoniXTM (Ms); first and third flexuralQ5

CRFs (f1 and f3, respectively); calculated contact stiffness k∗; indentation modulus calculated using the “single reference” method and the “apparent stiffness” method

(Ms-r
s and Ma-s

s , respectively).

HarmoniXTM CR-AFM

Sample Ms (GPa) f1 (kHz) f3 (kHz) k∗ (N/m) Ms−r
s (GPa) Ma−s

s (GPa)

CFx-A 1.18± 0.19 120.2± 0.4 711.5± 1.1 84 1.26± 0.13 1.27± 0.14

CFx-B 1.22± 0.20 121.2± 0.1 713.2± 1.5 91 1.43± 0.15 1.46± 0.16

CFx-C 1.51± 0.28 121.8± 0.3 715.2± 0.8 97 1.57± 0.16 1.59± 0.18

FIGURE 7 | (A) Values of the CRFs f1 and f3 calculated as a function of the sample indentation modulus Ms using the model depicted in Figure 1A (solid lines) and

values of f1 and f3 measured on the PS reference material (symbols). (B) Real and apparent contact stiffness (black and red solid line, respectively) as a function of the

sample indentation modulus, and values corresponding to the CFx and PS samples (symbols).

TABLE 2 | Measured values of the contact resonance frequency and quality factor of the third mode of the cantilever (f3 and Q3, respectively), calculated values of the

normalized contact stiffness (α) and the normalized damping (β) and calculated values of the loss tangent tan δ, storage modulus (E ′) and loss modulus (E ′′).

Sample f3 (kHz) Q3 α β tan δ E′ (GPa) E′′ (MPa)

CFx-A 711.5± 1.1 111± 7 724 0.057 7.37× 10−3 1.26 9.31

CFx-B 713.2± 1.5 137± 6 792 0.051 5.75× 10−3 1.45 8.31

CFx-C 715.2± 0.8 88± 5 833 0.011 1.21× 10−3 1.56 1.88

obtained in contact with the PS film. Pair of f1 and f3 were
than calculated as a function of Ms by varying Ms in the range
0.5−1.7 GPa, obtaining the curves reported in Figure 7A, where
the values of CRFs corresponding to the PS reference sample are
indicated (symbols). Then, assuming the model in Figure 1B,
for each Ms the values of f1 and f3 were used to calculate k∗,
which represents the “apparent” value of the tip-sample contact
stiffness. Values of the apparent contact stiffness as a function
of Ms are shown in Figure 7B (red solid line). For comparison,
the values of real contact stiffness calculated as k∗ ≈ 3

√

6RtFNM2
s

(black solid line), where FN is the static normal load applied
by the cantilever during the contact and Ms is used instead of
the reduced modulus as Ms ≪ Mt. As expected, the apparent
value of k∗ is bigger than the real one as a result of neglecting
lateral forces (Passeri et al., 2013b). Finally, the values of k∗ were
calculated for the CFx samples using the model in Figure 1B

and the curve of the apparent stiffness was used to determine
the corresponding values of Ms (symbols in Figure 7B). The

procedure was repeated using the CRFs measured on the PS
reference before and after the analysis of the CFx samples and
the corresponding values of indentation modulus calculated
using the “apparent stiffness” method (Ma-s

s ) are reported
in Table 1.

4.3.2. Viscoelastic Modulus
To characterize the viscoelastic response of the CFx films using
CR-AFM, maps of the quality factor of the third mode (Q3) have
been acquired in addition to those of f3 which are reported in
Table 2. First, by approximating the samples as elastic, f1 and f3
were used as described in section 4.3.1 to determine the value
of r, which was eventually used to calculate α and β using a
in-house written Matlab code (Passeri et al., 2013c) which are
reported in Table 2 together with the values of tan δ calculated
using Equation (7). The values of β were used to calculate E′

through the “single reference” approach after determining β on
the PS reference sample and the values of E′′ were determined as
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E′ × tan δ. E′ and E′′ calculated for the CFx samples are reported
in Table 2.

5. DISCUSSION

CFx materials are attractive for the use as stent coatings, in
particular after oxidative methanol plasma treatment which has
been demonstrated to modulate the hydrophobicity of their
surface in order to improve their performances, e.g., as far as
blood contact behavior is regarded, without altering integrity,
uniformity, and morphology (Montaño-Machado et al., 2019).
Mechanical properties of CFx coatings can undergo significant
changes when changes in the chemical composition and in the
thickness occur. Indeed, it has been shown that fluorocarbon
coatings thicker than 100 nm do not exhibit the required
cohesion and adhesion properties to resist during stent expansion
(Lewis et al., 2008). Furthermore, the elastic modulus of CFx
coatings has been demonstrated to be strongly dependent on
fluorine and crosslinking C–C units content (Tang et al., 2005).
We showed that our methanol plasma treatment produces
a significant increase of coating thickness and the decrease
of fluorine content at the surface, which could significantly
affect adhesion, cohesion and elastic modulus of the coatings.
A comprehensive mechanical characterization was therefore
necessary in order to evaluate the effect of methanol plasma
treatment on the mechanical properties of the modified coatings.

Small punch tests have demonstrated that the innovative
methanol plasma treatment does not undermine interfacial
adhesion and cohesion to be employed as stent coatings as
no delamination or cracks were observed even at plastic
deformations as high as 25%, corresponding to the estimated
maximum deformation which a stent may undergo during
deployment (Migliavacca et al., 2005).

The effect of plasma treatment on mechanical properties
of CFx films is another key issue that must be assessed to
evaluate the suitability of CFx thin films as stent coatings. Indeed,
depending on the polymerization and the post-deposition
treatments, elastic modulus of CFx film is reported to vary from
hundreds of megapascals like that of polytetrafluoroethylene
(PTFE) (Ianev and Schwesinger, 2001), to a few gigapascals
(Sirghi et al., 2009) and up to tens of gigapascals (Tang et al., 2005;
Li et al., 2008; Koumoulos et al., 2012). Results reported in the
present work show a good agreement between HarmoniXTM and
CR-AFM. In particular, no discrepancies were observed between
the two different methods for CR-AFM data analysis, i.e., the
“single reference” approach and the simulation of the actual CRFs
using the more comprehensive model depicted in Figure 1A and
calculating the “apparent stiffness” using the simpler model in
Figure 1B. The agreement between the two different approaches
can be rationalized observing that all the investigated materials
(CFx and PS) correspond to a region of the curve in Figure 7B

in which k∗ is proportional to Ms, i.e., k∗ = cMs being
c = 66 nm. It must be observed that if softer materials were
included among the investigated samples, the use of the single
reference method using PS would imply an overestimation of
their indentation modulus. Notably, considering the relatively

large thickness of the coatings (i.e., in the range 30−60 nm), the
similar nanometer tip-sample contact radius values typical of CR-
AFM and HarmoniXTM make the results of both the techniques
representative of the sole CFx thin films indentation modulus,
without the effect of the stainless steel substrate (Reggente et al.,
2017). This undoubtedly represents an advantage of these (and
similar) techniques over AFM-based nanoindentation, which
more extensively suffers from substrate effect in case of thin
compliant films on stiff substrates (Kovalev et al., 2004; Shulha
et al., 2004; Clifford and Seah, 2006; Passeri et al., 2011).
Nevertheless, in case of thinner films are investigated and/or
tip with larger Rt are used, substrate effects may affect also CR-
AFM and HarmoniXTM measurements and must be subtracted
to obtain the elastic modulus of the sole film (Passeri et al., 2008,
2015). The obtained indentation modulus values, in the range
1.0−1.6 GPa, are compatible with those obtained on analogous
materials using AFM based nanoindentation or conventional
nanoindentation. Indeed, Sirghi et al. (2009) measured by AFM
nanoindentation the elastic modulus of CFx films deposited by
PECVD using C2F8 as precursor and found values between
1.75 GPa and 3.2 GPa depending on the deposition parameters
(power of the RF discharge and dc bias potential). Tang et al.
(2005) studied, by nanoindentation, the hardness and the elastic
modulus of fluorocarbon coatings deposited by RF magnetron
sputtering using a PTFE target using different process parameters
(RF power, Ar and H2 flux) and found a dependence of the
studied properties with the fluorine and carbon content and,
more specifically, on the content of CFx or C–C crosslinking
units. The measured elastic modulus decreased with the increase
of fluorine content (i.e., CFx units) and the decrease of carbon
(i.e., crosslinking units) content from 18 GPa (for films having
33% fluorine and 67% carbon content) to 12 GPa (for films
having 43% fluorine and 57% carbon content) (Tang et al., 2005).
Considering the significantly higher fluorine content of our
untreated CFx coating (66.9%), the value of the elastic modulus
we measured by HarmoniXTM (1.18 GPa) and CR-AFM (1.26
GPa) appears to be coherent with the results of Tang et al. (2005).
As shown in Table 1, indentation modulus of CFx films has been
found dependent on the methanol plasma treatment. Indeed, a
slight increase of the elastic modulus of the coating with the
increase of the time of methanol plasma treatment was observed.
An increase of about 30% is observed between the as prepared
sample and that treated with methanol plasma for 90 s, which is
coherent with the covering of the fluorocarbon coating by a thin
layer of carbon and oxygen species not containing fluoride.

As expected, an analogous dependence with plasma exposure
time is observed in the measured viscoelastic parameters, i.e., in
E′, E′′, and tan δ. In particular, although the comparison with
PTFE properties is not always straightforward, we observe that
the values of E′ obtained on both untreated and plasma treated
CFx films are coherent with those reported for PTFE (Faughnan
et al., 1998; Fu and Chung, 2001; Blumm et al., 2010). Conversely,
the values of tan δ ad thus of E′′ are definitely lower than those
observed on PTFE, indicating that themechanical behavior of the
films is characterized by a very low viscous component. However,
it should be observed that viscoelastic parameters generally
depend on the frequency at which the mechanical response of
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the material is investigated, e.g., the viscous component may
either increase or decrease with the frequency and depends
on the specific polymer (Le Rouzic et al., 2009). Results by
standard dynamical mechanical analysis (DMA) usually reported
in literature are generally obtained for low frequency values, e.g.,
not exceeding 100 Hz, while CR-AFM investigates the sample at
much higher frequencies, e.g., from tens to hundreds kilohertz or
even a few megahertz (Hurley et al., 2013). In any case, plasma
treatment is observed to be responsible for the reduction of the
viscous component of the mechanical response of the films with
respect to the untreated sample.

6. CONCLUSION

In conclusion, mechanical characterization of methanol plasma
treated CFx ultrathin films on stainless steel demonstrated that
methanol plasma treatment does not affect cohesion of the
films and their adhesion to the substrate after deformation.
Also, nanoscale analysis of elastic and viscoelastic response
of films indicated that although these are slightly affected by
methanol plasma, which is responsible for the stiffening and
reduction of viscosity of the films. Nevertheless, such an effect
is admittedly marginal and, especially from the point of view
of the biological response, methanol plasma treatment does not
significantly modify mechanical properties of the films. Thus,
methanol plasma is a promising route to treat CFx ultrathin
stent coating, which allows the modulation of the wettability

(and fluorine content) of CFx coatings, without affecting their
integrity, morphology, adhesion, and cohesion of the coatings, as
well as their elastic and viscoelastic properties.
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